Tunable Photoconduction Sensitivity and Bandwidth for Nanocrystalline Cadmium Selenide Nanowires

ACS Nano 5, 7627-7639 DOI: 10.1021/nn202728f

Citation Report

#	Article	IF	CITATIONS
1	Nucleation and Growth of Extremely Thin CdSe Films Electrodeposited from Near-Neutral Electrolytes. Journal of the Electrochemical Society, 2012, 159, D605-D610.	2.9	10
2	On-Surface Formation of Metal Nanowire Transparent Top Electrodes on CdSe Nanowire Array-Based Photoconductive Devices. ACS Applied Materials & Interfaces, 2012, 4, 3157-3162.	8.0	22
3	High-Throughput Fabrication of Photoconductors with High Detectivity, Photosensitivity, and Bandwidth. ACS Nano, 2012, 6, 5627-5634.	14.6	25
4	Field-Effect Transistors from Lithographically Patterned Cadmium Selenide Nanowire Arrays. ACS Applied Materials & Interfaces, 2012, 4, 4445-4452.	8.0	11
5	Tuning Electrical and Optoelectronic Properties of Single Cadmium Telluride Nanoribbon. Journal of Physical Chemistry C, 2012, 116, 9202-9208.	3.1	15
6	Self-powered high performance photodetectors based on CdSe nanobelt/graphene Schottky junctions. Journal of Materials Chemistry, 2012, 22, 2863.	6.7	115
7	Growth and Device Application of CdSe Nanostructures. Advanced Functional Materials, 2012, 22, 1551-1566.	14.9	122
8	Synthesis and characterization of CdSe nanocrystalline thin films deposited by chemical bath deposition. Materials Science in Semiconductor Processing, 2013, 16, 1592-1598.	4.0	40
9	Electroluminescent, Polycrystalline Cadmium Selenide Nanowire Arrays. ACS Nano, 2013, 7, 9469-9479.	14.6	9
10	Electrodeposited Light-Emitting Nanojunctions. Chemistry of Materials, 2013, 25, 623-631.	6.7	5
11	High gain single GaAs nanowire photodetector. Applied Physics Letters, 2013, 103, .	3.3	63
12	Large photoresponse of Cu:7,7,8,8-tetracyanoquinodimethane nanowire arrays formed as aligned nanobridges. Applied Physics Letters, 2013, 102, .	3.3	28
13	Urchin-like CdS/ZrO2 nanocomposite prepared by microwave-assisted hydrothermal combined with ion-exchange and its multimode photocatalytic activity. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	16
14	Single CuTCNQ charge transfer complex nanowire as ultra high responsivity photo-detector. Optics Express, 2014, 22, 4944.	3.4	28
15	Ultrahigh Responsivity of Ternary Sb–Bi–Se Nanowire Photodetectors. Advanced Functional Materials, 2014, 24, 3581-3586.	14.9	37
16	Facile fabrication of ultralong nanobelts of positively charged PTCDI for high-performance photodetectors. Materials Research Express, 2014, 1, 035032.	1.6	4
17	Large-scale, solution-phase growth of semiconductor nanocrystals into ultralong one-dimensional arrays and study of their electrical properties. Nanoscale, 2014, 6, 6828-6836.	5.6	4
18	Facile fabrication and optoelectronic properties of platinum octaethylporphyrin microsheets. RSC Advances, 2014, 4, 47325-47328.	3.6	4

ARTICLE IF CITATIONS # Fabrication of large-area PbSe films at the organic–aqueous interface and their near-infrared 19 5.5 10 photoresponse. Journal of Materials Chemistry C, 2014, 2, 6283. Electrodeposited Nanophotonics. Journal of Physical Chemistry C, 2014, 118, 17179-17192. 3.1 Surface plasmon propelled high-performance CdSe nanoribbons photodetector. Optics Express, 2015, 21 3.4 42 23, 12979. A 30 μ4m Coaxial Nanowire Photoconductor Enabling Orthogonal Carrier Collection. Nano Letters, 9.1 2015, 15, 5861-5867. Optoelectronic properties of semiconductor nanowires., 2015, , 327-363. 23 15 Cathodoluminescence and Photoconductive Characteristics of Singleâ€Crystal Ternary CdS/CdSe/CdS Biaxial Nanobelts. Small, 2015, 11, 1531-1536. Fabrication and Photo-Detecting Performance of 2D ZnO Inverse Opal Films. Applied Sciences 25 2.59 (Switzerland), 2016, 6, 259. Electrodeposited, Transverse Nanowire Electroluminescent Junctions. ACS Nano, 2016, 10, 8233-8242. 14.6 26 Performanceâ€Enhancing Broadband and Flexible Photodetectors Based on Perovskite/ZnOâ€Nanowire 27 7.3 96 Hybrid Structures. Advanced Optical Materials, 2017, 5, 1700206. Periodic voltammetry as a successful technique for synthesizing CdSe semiconductor films for 2.5 photo-electrochemical application. Journal of Solid State Electrochemistry, 2017, 21, 3083-3091. Light-directed growth of metal and semiconductor nanostructures. Journal of Materials Chemistry 29 19 5.5C, 2017, 5, 5628-5642. Guided CdSe Nanowires Parallelly Integrated into Fast Visible-Range Photodetectors. ACS Nano, 2017, 14.6 11, 213-220. One-step synthesis of CdSe nanotubes with novel hollow tubular structure as high-performance $\mathbf{31}$ 5.5 14 active material for photodetector. Journal of Alloys and Compounds, 2017, 726, 214-220. A high-performance fully nanostructured individual CdSe nanotube photodetector with enhanced 5.5 responsivity and photoconductive gain. Journal of Materials Chemistry C, 2017, 5, 7057-7066. Single crystalline SmB6 nanowires for self-powered, broadband photodetectors covering 33 3.3 14 mid-infrared. Applied Physics Letters, 2018, 112, . Wavelength-Controlled Photodetector Based on Single CdSSe Nanobelt. Nanoscale Research Letters, 2018, 13, 171. High-performance ultra-violet phototransistors based on CVT-grown high quality 35 4.6 29 SnS₂flakes. Nanoscale Advances, 2019, 1, 3973-3979. Solutionâ€Processed Transparent Sn⁴⁺â€Doped Cul Hybrid Photodetectors with Enhanced Performances. Advanced Materials Interfaces, 2019, 6, 1900669.

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
37	1D ZnSSeâ€ZnSe Axial Heterostructure and its Application for Photodetectors. Advanced Electronic Materials, 2019, 5, 1800770.	5.1	16
38	Cadmium selenide nanowires from growth to applications. Materials Research Express, 2019, 6, 122007.	1.6	8
39	Improving the Photoresponse Properties of CdSe Quantum Wires by Alignment and Ligand Exchange. ACS Applied Materials & Interfaces, 2019, 11, 1192-1200.	8.0	3
40	Liquidâ€Alloyâ€Assisted Growth of 2D Ternary Ga ₂ In ₄ S ₉ toward Highâ€Performance UV Photodetection. Advanced Materials, 2019, 31, e1806306.	21.0	90
41	Rose spherical structure Ag2S/ZnIn2S4/ZnS composites with visible light response: Enhanced photodegradation and hydrogen production performance. Journal of Physics and Chemistry of Solids, 2020, 136, 109148.	4.0	21
42	2D Siliconâ€Based Semiconductor Si ₂ Te ₃ toward Broadband Photodetection. Small, 2021, 17, e2006496.	10.0	19
43	Ultraviolet photodetector based on p-borophene/n-ZnO heterojunction. Nanotechnology, 2021, 32, 505606.	2.6	18
44	Optimization of different temperature annealed nanostructured CdSe thin film for photodetector applications. Optical Materials, 2021, 122, 111706.	3.6	21
45	Investigation of light–matter interaction in single vertical nanowires in ordered nanowire arrays. Nanoscale, 2022, 14, 3527-3536.	5.6	6
46	In-Depth Investigation of Photoresponse Properties Versus Illumination and Bias Conditions in Î'-Ga2o3 Solar-Blind Photodetectors. SSRN Electronic Journal, 0, , .	0.4	0
47	A photoelectric synapse based on optimized perovskite CH3NH3PbBr3 quantum dot film detectors. Applied Physics Letters, 2022, 120, .	3.3	6
48	Self-powered p-Cul/n-GaN heterojunction UV photodetector based on thermal evaporated high quality Cul thin film. Optics Express, 2022, 30, 29749.	3.4	6
49	Improved response speed of \hat{l}^2 -Ga2O3 solar-blind photodetectors by optimizing illumination and bias. Materials and Design, 2022, 221, 110917.	7.0	28
50	Colossal Vacancy Effect of 2D CuInP ₂ S ₆ Quantum Dots for Enhanced Broadband Photodetection. Crystal Growth and Design, 2023, 23, 1259-1268.	3.0	5
51	Vertical Architecture Solution-Processed Quantum Dot Photodetectors with Amorphous Selenium Hole Transport Layer. ACS Photonics, 2023, 10, 134-146.	6.6	1
52	CdSe – Based Photodetectors for Visible-NIR Spectral Region. , 2023, , 231-250.		0
53	Photothermal effect on the photoconduction properties of one-dimensional carbyne nanostructures. Modern Physics Letters B, 0, , .	1.9	0
54	A Universal Strategy for Synthesis of 2D Ternary Transition Metal Phosphorous Chalcogenides. Advanced Materials, 2024, 36, .	21.0	3