Bubbles navigating through networks of microchannels

Lab on A Chip 11, 3970 DOI: 10.1039/c1lc20444k

Citation Report

CITATION	ODT

#	Article	IF	CITATIONS
1	Role of entrapped vapor bubbles during microdroplet evaporation. Applied Physics Letters, 2012, 101, 071602.	3.3	4
2	Engineering of polarized tubular structures in a microfluidic device to study calcium phosphate stone formation. Lab on A Chip, 2012, 12, 4037.	6.0	37
4	Microfluidic electronics. Lab on A Chip, 2012, 12, 2782.	6.0	254
5	Droplet sorting in a loop of flat microfluidic channels. Journal of Physics Condensed Matter, 2013, 25, 285102.	1.8	14
6	Self-similarity of contact line depinning from textured surfaces. Nature Communications, 2013, 4, 1492.	12.8	181
7	Path selection rules for droplet trains in single-lane microfluidic networks. Physical Review E, 2013, 88, 013012.	2.1	8
8	A microfluidic device to load multiple mechanical stimulators with differing strain magnitudes with a single pump. , 2013, , .		0
9	Millifluidics as a simple tool to optimize droplet networks: Case study on drop traffic in a bifurcated loop. Biomicrofluidics, 2014, 8, 064111.	2.4	9
10	Lattice Boltzmann-immersed boundary approach for vesicle navigation in microfluidic channel networks. Microfluidics and Nanofluidics, 2014, 17, 1061-1070.	2.2	6
11	Bubbles and foams in microfluidics. Soft Matter, 2014, 10, 6888-6902.	2.7	74
12	Active surfaces: Ferrofluid-impregnated surfaces for active manipulation of droplets. Applied Physics Letters, 2014, 105, .	3.3	103
13	Between giant oscillations and uniform distribution of droplets: The role of varying lumen of channels in microfluidic networks. Physical Review E, 2015, 92, 063008.	2.1	7
14	Expanding Imaging Capabilities for Microfluidics: Applicability of Darkfield Internal Reflection Illumination (DIRI) to Observations in Microfluidics. PLoS ONE, 2015, 10, e0116925.	2.5	8
15	Fast Fluorescence-Based Microfluidic Method for Measuring Minimum Miscibility Pressure of CO ₂ in Crude Oils. Analytical Chemistry, 2015, 87, 3160-3164.	6.5	68
16	Droplet microfluidics in (bio)chemical analysis. Analyst, The, 2015, 140, 22-38.	3.5	122
17	Engineering droplet navigation through tertiary-junction microchannels. Microfluidics and Nanofluidics, 2016, 20, 1.	2.2	1
18	Droplets and Bubbles in Microfluidic Devices. Annual Review of Fluid Mechanics, 2016, 48, 285-309.	25.0	394
19	Capillary driven flow in wettability altered microchannel. AICHE Journal, 2017, 63, 4616-4627.	3.6	4

CITATION REPORT

#	Article	IF	CITATIONS
20	Numerical Study of Bubble Breakup in Fractal Tree-Shaped Microchannels. International Journal of Molecular Sciences, 2019, 20, 5516.	4.1	3
21	Oscillating droplet trains in microfluidic networks and their suppression in blood flow. Nature Physics, 2019, 15, 706-713.	16.7	30
22	Breakup dynamics of droplets in an asymmetric bifurcation by μPIV and theoretical investigations. Chemical Engineering Science, 2019, 197, 258-268.	3.8	28
23	Non-Newtonian droplet-based microfluidics logic gates. Scientific Reports, 2020, 10, 9293.	3.3	12
24	Droplet behavior and its effects on flow characteristics in T-junction microchannels. Physics of Fluids, 2021, 33, .	4.0	11
25	A deterministic model for bubble propagation through simple and cascaded loops of microchannels in power-law fluids. Physics of Fluids, 2021, 33, .	4.0	7
26	Direct Imaging of Superwetting Behavior on Solid–Liquid–Vapor Triphase Interfaces. Advanced Materials, 2017, 29, 1703009.	21.0	10
27	Yield stress fluid behavior of foam in porous media. Physical Review Fluids, 2020, 5, .	2.5	7
28	Multiphase Lattice Boltzmann simulations of droplets in Microchannel networks. Houille Blanche, 2013, , 5-11.	0.3	0
29	Nonlinear Phenomena in Microfluidics. Chemical Reviews, 2022, 122, 6921-6937.	47.7	34
30	Parallelization of Microfluidic Droplet Junctions for Ultraviscous Fluids. Small, 2022, 18, .	10.0	3
31	Microfluidic equivalents of three logical systems for controlling droplet generation: Set, reset, and set-reset latches. Sensors and Actuators A: Physical, 2023, 349, 114073.	4.1	1
32	Hydrodynamics of gas–liquid microfluidics: A review. Chemical Engineering Science, 2024, 285, 119563.	3.8	1