Indian and African plate motions driven by the push for

Nature 475, 47-52 DOI: 10.1038/nature10174

Citation Report

#	Article	IF	CITATIONS
1	A platform for copper pumps. Nature, 2011, 475, 41-42.	13.7	8
2	Plate motion and mantle plumes. Nature, 2011, 475, 40-41.	13.7	13
3	Mantle conveyor beneath the Tethyan collisional belt. Earth and Planetary Science Letters, 2011, 310, 453-461.	1.8	163
5	Numerical models of slab migration in continental collision zones. Solid Earth, 2012, 3, 293-306.	1.2	51
6	A global-scale plate reorganization event at 105â^'100Ma. Earth and Planetary Science Letters, 2012, 355-356, 283-298.	1.8	165
7	Clinopyroxene–rutile phyllonites from the East Tenda Shear Zone (Alpine Corsica, France): pressure–temperature–time constraints to the Alpine reworking of Variscan Corsica. Journal of the Geological Society, 2012, 169, 723-732.	0.9	35
8	Absolute plate motions in a reference frame defined by moving hot spots in the Pacific, Atlantic, and Indian oceans. Journal of Geophysical Research, 2012, 117, .	3.3	252
9	Linking continental drift, plate tectonics and the thermal state of the Earth's mantle. Earth and Planetary Science Letters, 2012, 351-352, 134-146.	1.8	89
10	Reconstructing plate-motion changes in the presence of finite-rotations noise. Nature Communications, 2012, 3, 1048.	5.8	46
11	Insights on the kinematics of the Indiaâ€Eurasia collision from global geodynamic models. Geochemistry, Geophysics, Geosystems, 2012, 13, .	1.0	74
12	Constraining the Jurassic extent of Greater India: Tectonic evolution of the West Australian margin. Geochemistry, Geophysics, Geosystems, 2012, 13, .	1.0	78
13	On the role of slab pull in the Cenozoic motion of the Pacific plate. Geophysical Research Letters, 2012, 39, .	1.5	62
14	Phanerozoic polar wander, palaeogeography and dynamics. Earth-Science Reviews, 2012, 114, 325-368.	4.0	1,088
15	Degassing of primordial hydrogen and helium as the major energy source for internal terrestrial processes. Geoscience Frontiers, 2012, 3, 911-921.	4.3	29
16	Tethys–Atlantic interaction along the Iberia–Africa plate boundary: The Betic–Rif orogenic system. Tectonophysics, 2012, 579, 144-172.	0.9	214
17	Trench migration and upper plate strain over a convecting mantle. Physics of the Earth and Planetary Interiors, 2012, 212-213, 32-43.	0.7	37
18	Late Cretaceousâ€Palaeogene stratigraphic and basin evolution in the Zhepure Mountain of southern Tibet: implications for the timing of Indiaâ€Asia initial collision. Basin Research, 2012, 24, 520-543.	1.3	116
	A reply to "How many arcs can dance on the head of a plume?―by Jean Bédard. Precambrian Research.		

19A reply to "How many arcs can dance on the head of a plume?―by Jean Bédard, Precambrian Research,
2012. Precambrian Research, 2013, 229, 198-202.10

ARTICLE IF CITATIONS # Paleomagnetism of Cryogenian Kitoi mafic dykes in South Siberia: Implications for Neoproterozoic 20 1.2 27 paleogeography. Precambrian Research, 2013, 231, 372-382. Ridge push, mantle plumes and the speed of the Indian plate. Geophysical Journal International, 2013, 1.0 <u>194, 670-677.</u> 22 Mountain building and mantle dynamics. Tectonics, 2013, , n/a-n/a. 1.3 1 The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its 392 northward flight from Gondwana to Asia. Gondwana Research, 2013, 23, 238-267. Internal crustal deformation in the northern part of Shan-Thai Block: New evidence from 24 0.9 59 paleomagnetic results of Cretaceous and Paleogene redbeds. Tectonophysics, 2013, 608, 1138-1158. Mountain building and mantle dynamics. Tectonics, 2013, 32, 80-93. 1.3 Mechanics of mafic dyke swarms in the Deccan Large Igneous Province: Palaeostress field modelling. 26 0.7 48 Journal of Geodynamics, 2013, 66, 79-91. Subduction and slab breakoff controls on Asian indentation tectonics and Himalayan western 1.0 54 syntaxis formation. Geochemistry, Geophysics, Geosystems, 2013, 14, 3515-3531. Subsidence history, crustal structure, and evolution of the Somaliland‥emen conjugate margin. 28 1.4 17 Journal of Geophysical Research: Solid Earth, 2013, 118, 1638-1649. Slab detachment during continental collision: Influence of crustal rheology and interaction with lithospheric delamination. Tectonophysics, 2013, 602, 124-140. Evidence of pre-Oligocene emergence of the Indian passive margin and the timing of collision 30 13 0.6 initiation between India and Eurasia. Lithosphere, 2013, 5, 501-506. Imaging mantle lithosphere for diamond prospecting in southeast India. Lithosphere, 2013, 5, 331-342. 0.6 24 Tectonics: 50 years after the Revolution., 2013,,. 32 3 Tracking the Australian plate motion through the Cenozoic: Constraints from 1.3 ⁴⁰Ar/³⁹Ar geochronology. Tectonics, 2013, 32, 1371-1383. Modulation of Late Cretaceous and Cenozoic climate by variable drawdown of atmospheric <i&gt;p&lt;/i&gt;CO&lt;sub&gt;2&lt;/sub&gt; from weathering of 34 1.3 85 basaltic provinces on continents drifting through the equatorial humid belt. Climate of the Past, 2013, 9, 525-546 Seismic evidence of continental margin influence on the NinetyEast Ridge in the Bay of Bengal. Geophysical Research Letters, 2014, 41, 7143-7150. Pacific plate slab pull and intraplate deformation in the early Cenozoic. Solid Earth, 2014, 5, 757-777. 36 1.2 19 Plume–plate interaction. Canadian Journal of Earth Sciences, 2014, 51, 208-221.

#	Article	IF	CITATIONS
38	Reconstructing the Cenozoic evolution of the mantle: Implications for mantle plume dynamics under the Pacific and Indian plates. Earth and Planetary Science Letters, 2014, 390, 146-156.	1.8	20
39	Tracking basement cross-strike discontinuities in the Indian crust beneath the Himalayan orogen using gravity data – relationship to upper crustal faults. Geophysical Journal International, 2014, 198, 198-215.	1.0	96
40	Correlation between magmatism of the Ladakh Batholith and plate convergence rates during the India–Eurasia collision. Gondwana Research, 2014, 26, 1051-1059.	3.0	38
41	The Gangdese magmatic constraints on a latest Cretaceous lithospheric delamination of the Lhasa terrane, southern Tibet. Lithos, 2014, 210-211, 168-180.	0.6	95
42	Derivation of paleolongitude from the geometric parametrization of apparent polar wander path: Implication for absolute plate motion reconstruction. Geophysical Research Letters, 2014, 41, 4503-4511.	1.5	12
43	Constraining South Atlantic growth with seafloor spreading data. Tectonics, 2014, 33, 1848-1873.	1.3	111
44	A geodynamical view on the steadiness of geodetically derived rigid plate motions over geological time. Geochemistry, Geophysics, Geosystems, 2014, 15, 238-254.	1.0	11
45	Paleomagnetism of the ~1.1 Ga Coldwell Complex (Ontario, Canada): Implications for Proterozoic geomagnetic field morphology and plate velocities. Journal of Geophysical Research: Solid Earth, 2014, 119, 8633-8654.	1.4	7
46	Post break-up tectonic inversion across the southwestern cape of South Africa: New insights from apatite and zircon fission track thermochronometry. Tectonophysics, 2015, 654, 30-55.	0.9	64
47	Tracking the Late Jurassic apparent (or true) polar shift in Uâ€Pbâ€dated kimberlites from cratonic North America (Superior Province of Canada). Geochemistry, Geophysics, Geosystems, 2015, 16, 983-994.	1.0	37
48	Magma production rate along the Ninetyeast Ridge and its relationship to Indian plate motion and Kerguelen hot spot activity. Geophysical Research Letters, 2015, 42, 1105-1112.	1.5	22
49	Plate Tectonics. , 2015, , 45-93.		12
50	Complex rift geometries resulting from inheritance of pre-existing structures: Insights and regional implications from the Barmer Basin rift. Journal of Structural Geology, 2015, 71, 136-154.	1.0	55
51	A tectonic model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the central-eastern Tethys. Gondwana Research, 2015, 28, 451-492.	3.0	165
52	The anticorrelated velocities of Africa and India in the Late Cretaceous and early Cenozoic. Geophysical Journal International, 2015, 200, 227-243.	1.0	50
53	Australian plate motion and topography linked to fossil New Guinea slab below Lake Eyre. Earth and Planetary Science Letters, 2015, 421, 107-116.	1.8	38
54	The Cenozoic rotational extrusion of the Chuan Dian Fragment: New paleomagnetic results from Paleogene red-beds on the southeastern edge of the Tibetan Plateau. Tectonophysics, 2015, 658, 46-60.	0.9	34
55	Paleomagnetic results from the Early Cretaceous Lakang Formation lavas: Constraints on the paleolatitude of the Tethyan Himalaya and the India $\hat{\epsilon}^{*}$ Asia collision. Earth and Planetary Science Letters, 2015, 428, 120-133.	1.8	72

#	ARTICLE	IF	CITATIONS
56	Tracking the Tristan-Gough mantle plume using discrete chains of intraplate volcanic centers buried in the Walvis Ridge. Geology, 2015, 43, 715-718.	2.0	45
57	Absolute plate motion of Africa around Hawaii-Emperor bend time. Geophysical Journal International, 2015, 201, 1743-1764.	1.0	20
58	Hotspots, Large Igneous Provinces, and Melting Anomalies. , 2015, , 393-459.		13
59	Interactions between continent-like â€ [~] drift', rifting and mantle flow on Venus: gravity interpretations and Earth analogues. Geological Society Special Publication, 2015, 401, 327-356.	0.8	26
60	Rapid Plate Motion Variations Through Geological Time: Observations Serving Geodynamic Interpretation. Annual Review of Earth and Planetary Sciences, 2015, 43, 571-592.	4.6	40
61	Ridge subduction sparked reorganization of the Pacific plateâ€mantle system 60–50 million years ago. Geophysical Research Letters, 2015, 42, 1732-1740.	1.5	170
62	Double dip. Nature Geoscience, 2015, 8, 428-429.	5.4	3
63	Anomalously fast convergence of India and Eurasia caused by double subduction. Nature Geoscience, 2015, 8, 475-478.	5.4	197
65	Reconciling subduction dynamics during Tethys closure with large-scale Asian tectonics: Insights from numerical modeling. Geochemistry, Geophysics, Geosystems, 2015, 16, 962-982.	1.0	33
66	Development of topography in 3â€D continentalâ€collision models. Geochemistry, Geophysics, Geosystems, 2015, 16, 1378-1400.	1.0	52
67	Paleomagnetism of Upper Cretaceous red-beds from the eastern Qiangtang Block: Clockwise rotations and latitudinal translation during the India–Asia collision. Journal of Asian Earth Sciences, 2015, 114, 732-749.	1.0	41
68	South Atlantic opening: A plume-induced breakup?. Geology, 2015, 43, 931-934.	2.0	54
69	Latest Cretaceous Himalayan tectonics: Obduction, collision or Deccan-related uplift?. Gondwana Research, 2015, 28, 165-178.	3.0	55
70	The tectonic stress field evolution of India since the Oligocene. Gondwana Research, 2015, 28, 612-624.	3.0	30
71	Quantitative Plate Tectonics. , 2015, , .		5
72	Paleogene carbonate microfacies and sandstone provenance (Gamba area, South Tibet): Stratigraphic response to initial India–Asia continental collision. Journal of Asian Earth Sciences, 2015, 104, 39-54.	1.0	38
73	Alignment between seafloor spreading directions and absolute plate motions through time. Geophysical Research Letters, 2016, 43, 1472-1480.	1.5	12
74	Geological, geophysical, and inherited tectonic imprints on the climate and contrasting coastal geomorphology of the Indian peninsula. Gondwana Research, 2016, 36, 65-93.	3.0	35

#	Article	IF	CITATIONS
75	Tectonic drivers and the influence of the Kerguelen plume on seafloor spreading during formation of the early Indian Ocean. Gondwana Research, 2016, 35, 97-114.	3.0	22
76	The chronology and tectonic style of landscape evolution along the elevated Atlantic continental margin of South Africa resolved by joint apatite fission track and (Uâ€Thâ€Sm)/He thermochronology. Tectonics, 2016, 35, 511-545.	1.3	85
77	Pseudofaults and associated seamounts in the conjugate Arabian and Eastern Somali basins, NW Indian Ocean – New constraints from high-resolution satellite-derived gravity data. Journal of Asian Earth Sciences, 2016, 131, 1-11.	1.0	9
78	Genesis of the East African Rift System. , 2016, , 25-59.		5
79	Constraining central Neoâ€Tethys Ocean reconstructions with mantle convection models. Geophysical Research Letters, 2016, 43, 9595-9603.	1.5	33
80	Tectonic evolution and deep mantle structure of the eastern Tethys since the latest Jurassic. Earth-Science Reviews, 2016, 162, 293-337.	4.0	151
81	Ridgeâ€ s potting: A new test for Pacific absolute plate motion models. Geochemistry, Geophysics, Geosystems, 2016, 17, 2408-2420.	1.0	10
82	Abrupt plate accelerations shape rifted continental margins. Nature, 2016, 536, 201-204.	13.7	147
83	Tectonic evolution of sedimentary basins of northern Somalia. Basin Research, 2016, 28, 340-364.	1.3	21
84	The Mantle. , 2016, , 89-133.		1
86	Origin of arc-like continental basalts: Implications for deep-Earth fluid cycling and tectonic discrimination. Lithos, 2016, 261, 5-45.	0.6	126
87	A new highâ€resolution seafloor age grid for the <scp>S</scp> outh <scp>A</scp> tlantic. Geochemistry, Geophysics, Geosystems, 2017, 18, 457-470.	1.0	27
88	On the deep-mantle origin of the Deccan Traps. Science, 2017, 355, 613-616.	6.0	35
89	Geodynamics of divergent double subduction: 3â€Ð numerical modeling of a Cenozoic example in the Molucca Sea region, Indonesia. Journal of Geophysical Research: Solid Earth, 2017, 122, 3977-3998.	1.4	47
90	Subduction-transition zone interaction: A review. , 2017, 13, 644-664.		167
91	Paleomagnetism of the Upper Cretaceous red-beds from the eastern edge of the Lhasa Terrane: New constraints on the onset of the India-Eurasia collision and latitudinal crustal shortening in southern Eurasia. Gondwana Research, 2017, 48, 86-100.	3.0	29
92	A full-plate global reconstruction of the Neoproterozoic. Gondwana Research, 2017, 50, 84-134.	3.0	474
93	Break-up and seafloor spreading domains in the NE Atlantic. Geological Society Special Publication,	0.8	54

#	Article	IF	CITATIONS
94	Paleomagnetism of Eocene red-beds in the eastern part of the Qiangtang Terrane and its implications for uplift and southward crustal extrusion in the southeastern edge of the Tibetan Plateau. Earth and Planetary Science Letters, 2017, 475, 1-14.	1.8	57
95	How plumeâ€ridge interaction shapes the crustal thickness pattern of the <scp>R</scp> éunion hotspot track. Geochemistry, Geophysics, Geosystems, 2017, 18, 2930-2948.	1.0	26
96	Kinematic constraints on the Rodinia to Gondwana transition. Precambrian Research, 2017, 299, 132-150.	1.2	59
97	Dynamic topography and lithospheric stresses since 400 <scp>M</scp> a. Geochemistry, Geophysics, Geosystems, 2017, 18, 2673-2700.	1.0	3
98	The geochemical evolution of syncollisional magmatism and the implications for significant magmatic-hydrothermal lead–zinc mineralization (Gangdese, Tibet). Lithos, 2017, 288-289, 143-155.	0.6	18
99	Continental underplating after slab break-off. Earth and Planetary Science Letters, 2017, 474, 59-67.	1.8	59
100	Early Cenozoic rapid flight enigma of the Indian subcontinent resolved: Roles of topographic top loading and subcrustal erosion. Geoscience Frontiers, 2017, 8, 15-23.	4.3	26
101	A mantle convection perspective on global tectonics. Earth-Science Reviews, 2017, 165, 120-150.	4.0	69
102	A geodynamic model of subduction evolution and slab detachment to explain Australian plate acceleration and deceleration during the latest Cretaceous–early Cenozoic. Lithosphere, 2017, 9, 976-986.	0.6	12
103	Breaking supercontinents; no need to choose between passive or active. Solid Earth, 2017, 8, 817-825.	1.2	11
104	Indian Ocean floor deformation induced by the Reunion plume rather than the Tibetan Plateau. Nature Geoscience, 2018, 11, 362-366.	5.4	23
105	Anomalous K-Pg–aged seafloor attributed to impact-induced mid-ocean ridge magmatism. Science Advances, 2018, 4, eaao2994.	4.7	10
106	New plate kinematic model and tectonoâ€stratigraphic history of the East African and West Madagascan Margins. Basin Research, 2018, 30, 1118-1140.	1.3	25
107	Stagnant lids and mantle overturns: Implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics. Geoscience Frontiers, 2018, 9, 19-49.	4.3	292
108	Mantle kinematics driving collisional subduction: Insights from analogue modeling. Earth and Planetary Science Letters, 2018, 502, 96-103.	1.8	11
109	Sediment control on subduction plate speeds. Earth and Planetary Science Letters, 2018, 502, 166-173.	1.8	71
110	Post-Deccan Trap stress reorientation under transpression: Evidence from fault slip analyses from SW Saurashtra, Western India. Journal of Geodynamics, 2018, 121, 9-19.	0.7	30
111	Back to the future: Testing different scenarios for the next supercontinent gathering. Global and Planetary Change, 2018, 169, 133-144.	1.6	21

	Cr	CITATION REPORT	
#	Article	IF	Citations
112	Venus Interior Structure and Dynamics. Space Science Reviews, 2018, 214, 1.	3.7	51
113	Cenozoic record of δ34S in foraminiferal calcite implies an early Eocene shift to deep-ocean sulfide burial. Nature Geoscience, 2018, 11, 761-765.	5.4	50
114	Global Eocene tectonic unrest: Possible causes and effects around the North American plate. Tectonophysics, 2019, 760, 136-151.	0.9	16
115	Surface Motions and Continental Deformation in the Indian Plate and the Indiaâ€Eurasia Collision Zor Journal of Geophysical Research: Solid Earth, 2019, 124, 12141-12170.	ie. 1.4	4
116	Time series analysis of mantle cycles Part II: The geologic record in zircons, large igneous provinces and mantle lithosphere. Geoscience Frontiers, 2019, 10, 1327-1336.	4.3	26
117	Diabetes and hepatic encephalopathy in cirrhotics: Fact or fiction. Advances in Digestive Medicine, 2019, 6, 89-90.	0.1	0
118	Modeling the Inception of Supercontinent Breakup: Stress State and the Importance of Orogens. Geochemistry, Geophysics, Geosystems, 2019, 20, 4830-4848.	1.0	21
119	Seismological Evidence for Lithospheric Low-Velocity Anomalies beneath the Eastern Mediterranean: Impact of Tectonics. Geotectonics, 2019, 53, 617-633.	0.2	6
120	A 6000-km-long Neo-Tethyan arc system with coherent magmatic flare-ups and lulls in South Asia. Geology, 2019, 47, 573-576.	2.0	73
121	Modeling Long-Wavelength Geoid Anomalies from Instantaneous Mantle Flow: Results from Two Recent Tomography Models. Pure and Applied Geophysics, 2019, 176, 4335-4348.	0.8	1
122	Formation and Stability of Sameâ€Dip Double Subduction Systems. Journal of Geophysical Research: Solid Earth, 2019, 124, 7387-7412.	1.4	16
123	Mesozoic–Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses. Numerische Mathematik, 2019, 319, 159-254.	0.7	408
124	Detailed Structure and Plate Reconstructions of the Central Indian Ocean Between 83.0 and 42.5 Ma (Chrons 34 and 20). Journal of Geophysical Research: Solid Earth, 2019, 124, 4305-4322.	1.4	18
125	Plate Tectonics. , 2019, , .		1
126	Paleobiogeographical inferences of Indian Late Cretaceous vertebrates with special reference to dinosaurs. Historical Biology, 2019, , 1-12.	0.7	16
127	Preliminary Results of the Geohistorical and Paleomagnetic Analysis of Marine Magnetic Anomalies in the Northwestern Indian Ocean. Springer Geophysics, 2019, , 479-490.	0.9	1
128	Timeline of the South Tibet – Himalayan belt: the geochronological record of subduction, collision, and underthrusting from zircon and monazite U–Pb ages. Canadian Journal of Earth Sciences, 2019 1318-1332.	, 56, 0.6	26
129	Nature, age and emplacement of the Spongtang ophiolite, Ladakh, NW India. Journal of the Geologica Society, 2019, 176, 284-305.	0.9	11

ARTICLE IF CITATIONS The dynamic life of an oceanic plate. Tectonophysics, 2019, 760, 107-135. 130 0.9 33 Plate tectonic modelling: review and perspectives. Geological Magazine, 2019, 156, 208-241. 24 Successive shifts of the India-Africa transform plate boundary during the Late Cretaceous-Paleogene 132 interval: Implications for ophiolite emplacement along transforms. Journal of Asian Earth Sciences, 9 1.0 2020, 191, 104225. Subduction tectonics vs. Plume tectonicsâ€"Discussion on driving forces for plate motion. Science China Earth Sciences, 2020, 63, 315-328. Continental Interior and Edge Breakup at Convergent Margins Induced by Subduction Direction Reversal: A Numerical Modeling Study Applied to the South China Sea Margin. Tectonics, 2020, 39, 134 1.3 19 e2020TC006409. Weak orogenic lithosphere guides the pattern of plume-triggered supercontinent break-up. 2.6 Communications Earth & Environment, 2020, 1, . Rapid drift of the Tethyan Himalaya terrane before two-stage India-Asia collision. National Science 136 4.6 46 Review, 2021, 8, nwaa173. Indo-Atlantic plate accelerations around the Cretaceous-Paleogene boundary: A time-scale error, not 2.0 a plume-push signal. Geology, 2020, 48, 1169-1173. Effect of Plate Length on Subduction Kinematics and Slab Geometry: Insights From Buoyancyâ€Driven 138 9 1.4 Analog Subduction Models. Journal of Geophysical Research: Solid Éarth, 2020, 125, e2Ó20JB020514. The convergence history of India-Eurasia records multiple subduction dynamics processes. Science Advances, 2020, 6, eaa28681. Geochemistry and geochronology of the Cenozoic Zhalaga granitoids of the Yulong alkaliâ€rich porphyry belt in eastern Xizang province, SW China: Petrogenesis and tectonic implications. Acta 140 2 0.8 Geologica Sinica, 2020, 94, 2077. Plate kinematic reconstructions., 2020, , 61-91. Resolving geological enigmas using plate tectonic reconstructions and mantle flow models., 2020, 142 1 93-111. Does pulsed Tibetan deformation correlate with Indian plate motion changes?. Earth and Planetary 143 1.8 Science Letters, 2020, 536, 116144. Current Deformation in the Tibetan Plateau: A Stress Gauge in the Indiaâ€Asia Collision Tectonics. 144 1.0 12 Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008649. Timing and causes of the mid-Cretaceous global plate reorganization event. Earth and Planetary 145 1.8 Science Letters, 2020, 534, 116071. Quaternary development history of coral reefs from West Indian islands: a review. International 146 0.9 4 Journal of Éarth Sciences, 2020, 109, 911-930. Large-scale asymmetry in thickness of crustal accretion at the Southeast Indian Ridge due to deep 1.6 mantle anomalies. Bulletin of the Geological Society of America, 2021, 133, 1057-1070.

#	Article	IF	CITATIONS
148	Building the Himalaya from tectonic to earthquake scales. Nature Reviews Earth & Environment, 2021, 2, 251-268.	12.2	53
149	High resolution reconstructions of the Southwest Indian Ridge, 52 Ma to present: implications for the breakup and absolute motion of the Africa plate. Geophysical Journal International, 2021, 226, 1461-1497.	1.0	12
150	Pressureâ€Driven Poiseuille Flow Inherited From Mesozoic Mantle Circulation Led to the Eocene Separation of Australia and Antarctica. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB019945.	1.4	9
151	Long-term evolution of a plume-induced subduction in the Neotethys realm. Earth and Planetary Science Letters, 2021, 561, 116798.	1.8	22
152	Interplays Between Mantle Flow and Slab Pull at Subduction Zones in 3D. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021574.	1.4	7
153	A tree of Indo-African mantle plumes imaged by seismic tomography. Nature Geoscience, 2021, 14, 612-619.	5.4	43
154	Mantle micro-block beneath the Indian Ocean and its implications on the continental rift-drift-collision of the Tethyan evolution. Earth-Science Reviews, 2021, 217, 103622.	4.0	3
155	Paleomagnetic Constraints on the India–Asia Collision and the Size of Greater India. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021965.	1.4	21
156	A record of plume-induced plate rotation triggering subduction initiation. Nature Geoscience, 2021, 14, 626-630.	5.4	50
157	Petrogenesis and Tectonic Implications of the Latest Cretaceous Intrusive Rocks from the Eastern Gangdese Belt, Southeast Tibet. Acta Geologica Sinica, 2022, 96, 891-903.	0.8	4
158	Detailed reconstructions of India-Somalia plate motion, 60 Ma to present: Implications for Somalia plate absolute motion and India-Eurasia plate motion. Geophysical Journal International, 0, , .	1.0	13
159	Exploring the Dynamics of Global Plate Motion Based on the Granger Causality Test. Applied Sciences (Switzerland), 2021, 11, 7853.	1.3	1
160	Magma-assisted fragmentation of Pangea: Continental breakup initiation and propagation. Gondwana Research, 2021, 96, 56-75.	3.0	10
161	Yellowstone Plume Drives Neogene North American Plate Motion Change. Geophysical Research Letters, 2021, 48, e2021GL095079.	1.5	4
162	Cenozoic mountain building and topographic evolution in Western Europe: impact of billions of years of lithosphere evolution and plate kinematics. Bulletin - Societie Geologique De France, 2021, 192, 56.	0.9	21
163	Direct dating of the Sinongduo thrust system in southern Tibet: immediate response to India-Asia collision. International Geology Review, 0, , 1-11.	1.1	3
164	Crustal structure of the Nogal basin, northern Somalia. Journal of African Earth Sciences, 2021, , 104385.	0.9	4
165	Connection Between a Subcontinental Plume and the Midâ€Lithospheric Discontinuity Leads to Fast and Intense Craton Lithospheric Thinning. Tectonics, 2021, 40, e2021TC006711.	1.3	13

#	ARTICLE	IF	Citations
166	Do the 85°E Ridge and Conrad Rise form a hotspot track crossing the Indian Ocean?. Lithos, 2021, 398-399, 106234.	0.6	9
168	The mantle. , 2022, , 81-125.		2
169	Plate Motions. , 2015, , 29-80.		1
170	The Indian Promontory: A Bridge between Plate Tectonics and Life Evolution Models. Universal Journal of Geoscience, 2017, 5, 25-32.	0.7	7
171	Tethyan geodynamics. Acta Petrologica Sinica, 2020, 36, 1627-1674.	0.3	149
174	Dynamics of closure of the Proto-Tethys Ocean: A perspective from the Southeast Asian Tethys realm. Earth-Science Reviews, 2021, 222, 103829.	4.0	16
175	Mantle plume propelled India towards Asia. Nature, 0, , .	13.7	0
177	Paleomagnetism and Earth History. , 2015, , 177-223.		0
178	The Evolution of Modern Continents. , 2018, , 83-154.		0
179	From new geological paradigm to the problems of regional geological-geophysical survey. Geofizicheskiy Zhurnal, 2018, 40, 3-72.	0.0	8
180	Hypothetical Physics and Chemistry of Volcanic Eruptions: The Doorway to Their Prediction. International Journal of Geosciences, 2019, 10, 377-404.	0.2	0
181	Ripple Tectonics—When Subduction Is Interrupted. Positioning, 2020, 11, 33-44.	0.1	0
182	The Amirante Ridge and Trench System in the IndianÂOcean: the southern termination of the NWÂIndian subduction. Comptes Rendus - Geoscience, 2020, 352, 235-245.	0.4	3
183	Ripple Tectonics—When Subduction Is Interrupted. Positioning, 2020, 11, 33-44.	0.1	0
184	Upper mantle seismic anisotropy beneath the Deccan Volcanic Province and the adjacent Eastern Dharwar Craton in south Indian shield from shear wave splitting analysis. Physics of the Earth and Planetary Interiors, 2022, 322, 106829.	0.7	2
185	Could the Réunion plume have thinned the Indian craton?. Geology, 2022, 50, 346-350.	2.0	8
186	The cold and hot collisional orogens: Thermal regimes and metallogeny of the Alpine versus Himalayan-Tibetan belts. Ore Geology Reviews, 2022, 141, 104671.	1.1	4
187	Arc tempos of the Gangdese batholith, southern Tibet. Journal of Geodynamics, 2022, 149, 101897.	0.7	13

#	Article	IF	Citations
188	The African continental divide: Indian versus Atlantic Ocean spreading during Gondwana dispersal. , 2022, , .		0
189	The effects of plate interface rheology on subduction kinematics and dynamics. Geophysical Journal International, 2022, 230, 796-812.	1.0	16
190	Plate tectonic chain reaction revealed by noise in the Cretaceous quiet zone. Nature Geoscience, 2022, 15, 233-239.	5.4	9
191	Deccan volcanism at K-Pg time. , 2022, , .		0
192	Tomographic Imaging of the Plate Geometry Beneath the Arunachal Himalaya and Burmese Subduction Zones. Geophysical Research Letters, 2022, 49, .	1.5	2
193	Subduction Erosion Revealed by Late Mesozoic Magmatism in the Gangdese Arc, South Tibet. Geophysical Research Letters, 2022, 49, .	1.5	2
194	å∰œ°ç£çº¦æŸçš"æŸ′北ç¼~åæ—°è¿'纪æž"逿—‹è½¬ä,Žåº"力åĩ化. SCIENTIA SINICA Terrae, 2022, , .	0.1	0
195	Alkaline rocks from the Deccan Large Igneous Province: Time–space distribution, petrology, geochemistry and economic aspects. Journal of Earth System Science, 2022, 131, .	0.6	7
196	Topographic Response of Hinterland Basins in Tibet to the India–Asia Convergence: 3D Thermo-Mechanical Modeling. Frontiers in Earth Science, 2022, 10, .	0.8	3
197	Triple-stage India-Asia collision involving arc-continent collision and subsequent two-stage continent-continent collision. Global and Planetary Change, 2022, 212, 103821.	1.6	28
198	Terrestrial impact craters track the voyage of lithospheric plates. Geological Journal, 2022, 57, 3769-3780.	0.6	3
199	Evidence for active upper mantle flow in the Atlantic and Indo-Australian realms since the Upper Jurassic from hiatus maps and spreading rate changes. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, .	1.0	3
200	Plume $\hat{a} {\in} \mathbf{s}$ lab interactions can shut off subduction. Geophysical Research Letters, 0, , .	1.5	2
202	Bulk chemistry and Hf isotope ratios of the Almogholagh Intrusive Complex, western Iran: a consequence of an extensional tectonic regime in the Late Jurassic. International Geology Review, 2023, 65, 1878-1899.	1.1	2
203	Slab remnants beneath the Myanmar terrane evidencing double subduction of the Neo-Tethyan Ocean. Science Advances, 2022, 8, .	4.7	10
204	Plume–MOR decoupling and the timing of India–Eurasia collision. Scientific Reports, 2022, 12, .	1.6	4
205	Palaeomagnetic inclination anomaly in the Deccan traps and its geodynamic implications over the Indian plate. Journal of Earth System Science, 2022, 131, .	0.6	4
206	Sustained indentation in 2-D models of continental collision involving whole mantle subduction. Geophysical Journal International, 2022, 232, 343-365.	1.0	2

	CHATION R	CITATION REPORT	
#	Article	IF	CITATIONS
207	Lithospheric architecture below the Eastern Ghats Mobile Belt and adjoining Archean cratons: Imprints of India-Antarctica collision tectonics. Gondwana Research, 2022, 111, 209-222.	3.0	2
208	Late Cretaceous–Early Cenozoic exhumation across the Yalong thrust belt in eastern Tibet and its implications for outward plateau growth. Global and Planetary Change, 2022, 216, 103897.	1.6	6
209	Earthâ \in ™s gradients as the engine of plate tectonics and earthquakes. Rivista Del Nuovo Cimento, 0, , .	2.0	2
210	A brief introduction to tectonics. , 2023, , 65-80.		0
212	Changes in Plate Motions Caused by Increases in Gravitational Potential Energy of Mountain Belts. Geochemistry, Geophysics, Geosystems, 2022, 23, .	1.0	3
213	Machine Learning and Singularity Analysis Reveal Zircon Fertility and Magmatic Intensity: Implications for Porphyry Copper Potential. Natural Resources Research, 2022, 31, 3061-3078.	2.2	5
214	Paleomagnetic constraints on Paleogene-Neogene rotation and paleo-stress in the northern Qaidam Basin. Science China Earth Sciences, 2022, 65, 2385-2404.	2.3	3
216	Jurassic Paleomagnetism of the Lhasa Terrane—Implications for Tethys Evolution and True Polar Wander. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	5
217	New Yuomys rodents from southeastern Qinghai-Tibet Plateau indicate low elevation during the Middle Eocene. Frontiers in Earth Science, 0, 10, .	0.8	3
218	Geodynamic processes of the southeastern Neo-Tethys Ocean and the formation mechanism of the curved subduction system in Southeast Asia. Science China Earth Sciences, 2023, 66, 703-717.	2.3	12
219	Paleogeographic reconstructions using QGIS: Introducing Terra Antiqua plugin and its application to 30 and 50 Ma maps. Earth-Science Reviews, 2023, 240, 104401.	4.0	2
220	Pulsed counterclockwise rotation of the southwestern Sichuan Basin in response to the India-Asia convergence during 128-42 Ma. Earth and Planetary Science Letters, 2023, 611, 118142.	1.8	0
221	Sunda subduction drives ongoing India-Asia convergence. Tectonophysics, 2023, 849, 229727.	0.9	5
222	Breakup of Pangea and the Cretaceous Revolution. Tectonics, 2023, 42, .	1.3	2
223	A Smaller Greater India and a Middleâ€Early Eocene Collision With Asia. Geophysical Research Letters, 2023, 50, .	1.5	7
224	Plume driven plate motion changes: New insights from the South Atlantic realm. Journal of South American Earth Sciences, 2023, 124, 104257.	0.6	1