Single Atom Hot-Spots at Au–Pd Nanoalloys for Elect H₂O₂ Production

Journal of the American Chemical Society 133, 19432-19441 DOI: 10.1021/ja206477z

Citation Report

#	Article	IF	CITATIONS
5	Trisoctahedral Au–Pd Alloy Nanocrystals with Highâ€Index Facets and Their Excellent Catalytic Performance. Chemistry - A European Journal, 2012, 18, 16626-16630.	1.7	42
6	Potential-Dependent Structural Memory Effects in Au–Pd Nanoalloys. Journal of Physical Chemistry Letters, 2012, 3, 315-321.	2.1	39
7	Enhancement in Aerobic Alcohol Oxidation Catalysis of Au ₂₅ Clusters by Single Pd Atom Doping. ACS Catalysis, 2012, 2, 1519-1523.	5.5	358
8	Electrocatalytic reduction of coreactant by highly loaded dendrimer-encapsulated palladium nanoparticles for sensitive electrochemiluminescent immunoassay. Chemical Communications, 2012, 48, 9159.	2.2	32
9	First-principles investigations of O2 dissociation on low-coordinated Pd ensembles over stepped Au surfaces. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 3432-3438.	0.9	11
10	Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today, 2012, 7, 448-466.	6.2	463
11	Reduction of Oxygen on Dispersed Nanocrystalline CoS ₂ . Journal of Physical Chemistry C, 2012, 116, 24436-24444.	1.5	60
12	Mesoporous Nitrogen-Doped Carbon for the Electrocatalytic Synthesis of Hydrogen Peroxide. Journal of the American Chemical Society, 2012, 134, 4072-4075.	6.6	609
13	One-pot, seedless synthesis of flowerlike Au–Pd bimetallic nanoparticles with core-shell-like structure via sodium citrate coreduction of metal ions. CrystEngComm, 2012, 14, 7036.	1.3	33
14	Facile synthesis of trimetallic AuPtPd alloy nanowires and their catalysis for ethanol electrooxidation. Journal of Materials Chemistry, 2012, 22, 14851.	6.7	73
15	BrÃ,nsted–Evans–Polanyi Relations for H2O2 Synthesis on Gold Surfaces. Catalysis Letters, 2012, 142, 601-607.	1.4	6
16	Core/shell Ni@Pd nanoparticles supported on MWCNTs at improved electrocatalytic performance for alcohol oxidation in alkaline media. Electrochimica Acta, 2012, 77, 237-243.	2.6	97
17	CO oxidation on Cu-doped Ag clusters. Theoretical Chemistry Accounts, 2013, 132, 1.	0.5	9
18	Au@Pd Core–Shell Nanobricks with Concave Structures and Their Catalysis of Ethanol Oxidation. ChemSusChem, 2013, 6, 1945-1951.	3.6	32
19	Hydrodechlorination catalysis of Pd-on-Au nanoparticles varies with particle size. Journal of Catalysis, 2013, 298, 206-217.	3.1	60
20	Understanding the synergistic effects of gold bimetallic catalysts. Journal of Catalysis, 2013, 308, 258-271.	3.1	178
21	Hybrid Pt Nanostructures by Metallization of Organic Films. Journal of Physical Chemistry C, 2013, 117, 22746-22755.	1.5	6
22	Enabling direct H2O2 production through rational electrocatalyst design. Nature Materials, 2013, 12, 1137-1143.	13.3	1,031

#	Article	IF	CITATIONS
23	Componentâ€Controlled Synthesis of Smallâ€Sized Pdâ€Ag Bimetallic Alloy Nanocrystals and Their Application in a Nonâ€Enzymatic Glucose Biosensor. Particle and Particle Systems Characterization, 2013, 30, 549-556.	1.2	27
24	Validation of binuclear descriptor for mixed transition metal oxide supported electrocatalytic water oxidation. Catalysis Today, 2013, 202, 114-119.	2.2	32
25	Selectivity of cobalt-based catalysts towards hydrogen peroxide formation during the reduction of oxygen. Catalysis Today, 2013, 202, 135-143.	2.2	45
26	CO Oxidation on the Ag-Doped Au Nanoparticles. Catalysis Letters, 2013, 143, 84-92.	1.4	21
27	Electrocatalysis of oxygen reduction on electrodeposited Pd coatings on gold. Journal of Electroanalytical Chemistry, 2013, 691, 35-41.	1.9	22
28	DFT study on stability and H2 adsorption activity of bimetallic Au79â^Pd (n= 1–55) clusters. Chemical Physics, 2013, 415, 179-185.	0.9	20
29	Tandem cathode for proton exchange membrane fuel cells. Physical Chemistry Chemical Physics, 2013, 15, 9326.	1.3	53
30	Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Accounts of Chemical Research, 2013, 46, 1740-1748.	7.6	3,405
31	Heterogeneous Catalysis by Gold-based Bimetallic Catalysts. Recent Patents on Catalysis, 2013, 2, 2-46.	0.2	4
32	Oxygen reduction reaction on Cu-doped Ag cluster for fuel-cell cathode. Journal of Molecular Modeling, 2014, 20, 2454.	0.8	16
33	Hydrogen Peroxide Synthesis via Enhanced Two-Electron Oxygen Reduction Pathway on Carbon-Coated Pt Surface. Journal of Physical Chemistry C, 2014, 118, 30063-30070.	1.5	248
34	From single crystal surfaces to single atoms: investigating active sites in electrocatalysis. Nanoscale, 2014, 6, 4012-4026.	2.8	60
35	Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the selective hydrogenation of acetylene in excess ethylene. New Journal of Chemistry, 2014, 38, 2043.	1.4	151
36	Efficient and Durable Au Alloyed Pd Single-Atom Catalyst for the Ullmann Reaction of Aryl Chlorides in Water. ACS Catalysis, 2014, 4, 1546-1553.	5.5	221
37	Structure, Redox Chemistry, and Interfacial Alloy Formation in Monolayer and Multilayer Cu/Au(111) Model Catalysts for CO ₂ Electroreduction. Journal of Physical Chemistry C, 2014, 118, 7954-7961.	1.5	68
38	Single Crystal (Mn,Co)3O4 Octahedra for Highly Efficient Oxygen Reduction Reactions. Electrochimica Acta, 2014, 144, 31-41.	2.6	35
39	Nanoscale Electrocatalysis: Visualizing Oxygen Reduction at Pristine, Kinked, and Oxidized Sites on Individual Carbon Nanotubes. Journal of the American Chemical Society, 2014, 136, 11252-11255.	6.6	139
40	Colloidal Au single-atom catalysts embedded on Pd nanoclusters. Journal of Materials Chemistry A, 2014, 2, 13498-13508.	5.2	65

#	Article	IF	CITATIONS
41	Highly Selective Two-Electron Oxygen Reduction Catalyzed by Mesoporous Nitrogen-Doped Carbon. ACS Catalysis, 2014, 4, 3749-3754.	5.5	351
42	Trends in the Electrochemical Synthesis of H ₂ O ₂ : Enhancing Activity and Selectivity by Electrocatalytic Site Engineering. Nano Letters, 2014, 14, 1603-1608.	4.5	521
43	Subâ€5â€nm Pd–Ru Nanoparticle Alloys as Efficient Catalysts for Formic Acid Electrooxidation. ChemCatChem, 2014, 6, 1731-1736.	1.8	44
44	Intermetallic Alloys as CO Electroreduction Catalysts—Role of Isolated Active Sites. ACS Catalysis, 2014, 4, 2268-2273.	5.5	101
45	The Power of Singleâ€Atom Catalysis. ChemCatChem, 2015, 7, 2559-2567.	1.8	289
47	Determination of Core–Shell Structures in Pdâ€Hg Nanoparticles by STEMâ€EDX. ChemCatChem, 2015, 7, 3748-3752.	1.8	9
48	In Situ Growth of Surfactant-Free Gold Nanoparticles on Nitrogen-Doped Graphene Quantum Dots for Electrochemical Detection of Hydrogen Peroxide in Biological Environments. Analytical Chemistry, 2015, 87, 1903-1910.	3.2	525
49	Chemical synthesis and application of palladium nanoparticles. Journal of Materials Science, 2015, 50, 2337-2354.	1.7	158
50	Fabrication of hollow Cu ₂ O@CuO-supported Au–Pd alloy nanoparticles with high catalytic activity through the galvanic replacement reaction. Journal of Materials Chemistry A, 2015, 3, 4578-4585.	5.2	89
51	Theoretical Studies on the Synergetic Effects of Au–Pd Bimetallic Catalysts in the Selective Oxidation of Methanol. Journal of Physical Chemistry C, 2015, 119, 16072-16081.	1.5	45
52	Biosynthesis of Pd–Au alloys on carbon fiber paper: Towards an eco-friendly solution for catalysts fabrication. Journal of Power Sources, 2015, 291, 132-137.	4.0	38
53	Highly Efficient AuPd/Carbon Nanotube Nanocatalysts for the Electroâ€Fenton Process. Chemistry - A European Journal, 2015, 21, 7611-7620.	1.7	30
54	High‥ield Electrosynthesis of Hydrogen Peroxide from Oxygen Reduction by Hierarchically Porous Carbon. Angewandte Chemie - International Edition, 2015, 54, 6837-6841.	7.2	419
55	Kinetic analysis of the reduction of 4-nitrophenol catalyzed by Au/Pd nanoalloys immobilized in spherical polyelectrolyte brushes. Physical Chemistry Chemical Physics, 2015, 17, 28137-28143.	1.3	83
56	Catalysis on Single Supported Atoms. , 2015, , 263-274.		4
57	Applications of Electron Microscopy in Heterogeneous Catalysis. , 2015, , 193-238.		1
58	Efficient Mineralization of Perfluorooctanoate by Electro-Fenton with H ₂ O ₂ Electro-generated on Hierarchically Porous Carbon. Environmental Science & Technology, 2015, 49, 13528-13533.	4.6	174
59	Interconnected 1D Co3O4 nanowires on reduced graphene oxide for enzymeless H2O2 detection. Nano Research, 2015, 8, 469-480.	5.8	129

#	Article	IF	CITATIONS
60	Synthesis and Catalytic Activity of Crown Jewelâ€Structured (IrPd)/Au Trimetallic Nanoclusters. Advanced Materials, 2015, 27, 1383-1388.	11.1	40
61	One-pot synthesis of gold–palladium@palladium core–shell nanoflowers as efficient electrocatalyst for ethanol electrooxidation. Journal of Power Sources, 2015, 278, 430-435.	4.0	42
62	Mechanistic aspects in the direct synthesis of hydrogen peroxide on PdAu catalyst from first principles. Catalysis Today, 2015, 248, 142-148.	2.2	35
63	Oxygen Electroreduction on Electrodeposited PdAu Nanoalloys. Electrocatalysis, 2015, 6, 77-85.	1.5	35
64	Regenerable Subnanometer Pd Clusters on Zirconia for Highly Selective Hydrogenation of Biomass-Derived Succinic Acid in Water. Catalysts, 2016, 6, 100.	1.6	2
65	Au-Based Catalysts: Electrochemical Characterization for Structural Insights. Molecules, 2016, 21, 261.	1.7	8
66	Bimetallic Catalysts Containing Gold and Palladium for Environmentally Important Reactions. Catalysts, 2016, 6, 97.	1.6	54
67	Continuously photocatalytic production of H 2 O 2 with high concentrations using 2-ethylanthraquinone as photocatalyst. Journal of Molecular Catalysis A, 2016, 420, 66-72.	4.8	17
68	Atomically dispersed Pd catalysts for the selective hydrogenation of succinic acid to γ-butyrolactone. Catalysis Today, 2016, 276, 55-61.	2.2	41
69	Nanoporous Mn-based electrocatalysts through thermal conversion of cyano-bridged coordination polymers toward ultra-high efficiency hydrogen peroxide production. Journal of Materials Chemistry A, 2016, 4, 9266-9274.	5.2	51
70	Quantum Mechanical Screening of Single-Atom Bimetallic Alloys for the Selective Reduction of CO ₂ to C ₁ Hydrocarbons. ACS Catalysis, 2016, 6, 7769-7777.	5.5	190
71	Epitaxial Growth of Au–Pt–Ni Nanorods for Direct High Selectivity H ₂ O ₂ Production. Advanced Materials, 2016, 28, 9949-9955.	11.1	205
72	Determination of the Electron Transfer Number for the Oxygen Reduction Reaction: From Theory to Experiment. ACS Catalysis, 2016, 6, 4720-4728.	5.5	513
73	Density functional theory (DFT) studies of CO oxidation reaction on M ₁₃ and Au ₁₈ M clusters (M = Au, Ag, Cu, Pt and Pd): the role of co-adsorbed CO molecule. RSC Advances, 2016, 6, 55867-55877.	1.7	26
74	Vertical α-FeOOH nanowires grown on the carbon fiber paper as a free-standing electrode for sensitive H2O2 detection. Nano Research, 2016, 9, 2260-2269.	5.8	41
75	The bifurcation point of the oxygen reduction reaction on Au–Pd nanoalloys. Faraday Discussions, 2016, 188, 257-278.	1.6	26
76	Exceptional size-dependent catalytic activity enhancement in the room-temperature hydrogen generation from formic acid over bimetallic nanoparticles supported by porous carbon. Journal of Materials Chemistry A, 2016, 4, 1887-1894.	5.2	64
77	Active sites and mechanisms for H ₂ O ₂ decomposition over Pd catalysts. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1973-82.	3.3	171

#	Article	IF	CITATIONS
78	Electrocatalytic hydrogen peroxide formation on mesoporous non-metal nitrogen-doped carbon catalyst. Journal of Energy Chemistry, 2016, 25, 251-257.	7.1	107
79	Simple wet-chemical synthesis of core–shell Au–Pd@Pd nanocrystals and their improved electrocatalytic activity for ethylene glycol oxidation reaction. International Journal of Hydrogen Energy, 2016, 41, 2547-2553.	3.8	60
80	Towards multifunctional coating in the boron-doped graphene/copper system. Carbon, 2017, 115, 375-379.	5.4	1
81	Electrocatalytic synthesis of hydrogen peroxide on Au-Pd nanoparticles: From fundamentals to continuous production. Chemical Physics Letters, 2017, 683, 436-442.	1.2	112
82	Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355,	6.0	7,837
83	Development of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H ₂ O ₂ . Reaction Chemistry and Engineering, 2017, 2, 239-245.	1.9	157
84	Recent Advances in Atomic Metal Doping of Carbonâ€based Nanomaterials for Energy Conversion. Small, 2017, 13, 1700191.	5.2	290
85	Bimetallic core-based cuboctahedral core–shell nanoclusters for the formation of hydrogen peroxide (2e ^{â^'} reduction) over water (4e ^{â^'} reduction): role of core metals. Nanoscale, 2017, 9, 9537-9547.	2.8	20
86	Einzelatomâ€Elektrokatalysatoren. Angewandte Chemie, 2017, 129, 14132-14148.	1.6	99
87	Singleâ€Atom Electrocatalysts. Angewandte Chemie - International Edition, 2017, 56, 13944-13960.	7.2	1,040
88	CO Oxidation on Metal Oxide Supported Single Pt atoms: The Role of the Support. Industrial & Engineering Chemistry Research, 2017, 56, 6916-6925.	1.8	94
89	Addressing stability challenges of using bimetallic electrocatalysts: the case of gold–palladium nanoalloys. Catalysis Science and Technology, 2017, 7, 1848-1856.	2.1	35
90	A rapid synthesis of high surface area PdRu nanosponges: Composition-dependent electrocatalytic activity for formic acid oxidation. Journal of Energy Chemistry, 2017, 26, 703-711.	7.1	23
91	Atomic‣evelâ€Designed Catalytically Active Palladium Atoms on Ultrathin Gold Nanowires. Advanced Materials, 2017, 29, 1604571.	11.1	52
92	Preparation, characterization and catalytic performance of single-atom catalysts. Chinese Journal of Catalysis, 2017, 38, 1528-1539.	6.9	65
93	Palladium–gold single atom alloy catalysts for liquid phase selective hydrogenation of 1-hexyne. Catalysis Science and Technology, 2017, 7, 4276-4284.	2.1	100
94	DFT study reveals geometric and electronic synergisms of palladium-mercury alloy catalyst used for hydrogen peroxide formation. Applied Catalysis A: General, 2017, 547, 69-74.	2.2	16
95	PdRu alloy nanoparticles of solid solution in atomic scale: outperformance towards formic acid electro-oxidation in acidic medium. Electrochimica Acta, 2017, 251, 588-594.	2.6	35

#	Article	IF	CITATIONS
96	CoA-dependent coordination polymer as a novel electrochemical sensing platform for sensitive detection of hydrogen peroxide in biological environments. Journal of Electroanalytical Chemistry, 2017, 801, 306-314.	1.9	7
97	Atomic Fe Embedded in Carbon Nanoshells–Graphene Nanomeshes with Enhanced Oxygen Reduction Reaction Performance. Chemistry of Materials, 2017, 29, 9915-9922.	3.2	64
98	Cold–Palladium Bimetallic Catalyst Stability: Consequences for Hydrogen Peroxide Selectivity. ACS Catalysis, 2017, 7, 5699-5705.	5.5	76
99	Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. Chemical Reviews, 2017, 117, 8208-8271.	23.0	1,694
100	Catalysis by Supported Single Metal Atoms. ACS Catalysis, 2017, 7, 34-59.	5.5	1,047
101	Destruction of tetracycline hydrochloride antibiotics by FeOOH/TiO2 granular activated carbon as expanded cathode in low-cost MBR/MFC coupled system. Journal of Membrane Science, 2017, 525, 202-209.	4.1	63
102	Environment-Friendly Approach in the Synthesis of Metal/ Polymeric Nanocomposite Particles and Their Catalytic Activities on the Reduction of p-Nitrophenol to p-Aminophenol. , 0, , .		3
103	Efficient Electrochemical Hydrogen Peroxide Production from Molecular Oxygen on Nitrogen-Doped Mesoporous Carbon Catalysts. ACS Catalysis, 2018, 8, 2844-2856.	5.5	372
104	Direct growth of ultrasmall bimetallic AuPd nanoparticles supported on nitrided carbon towards ethanol electrooxidation. Electrochimica Acta, 2018, 269, 441-451.	2.6	41
105	Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chemical Reviews, 2018, 118, 4981-5079.	23.0	3,103
106	Highly effective electrosynthesis of hydrogen peroxide from oxygen on a redox-active cationic covalent triazine network. Chemical Communications, 2018, 54, 4433-4436.	2.2	55
107	Carbon catalysts for electrochemical hydrogen peroxide production in acidic media. Electrochimica Acta, 2018, 272, 192-202.	2.6	63
108	Oxygen Reduction by Homogeneous Molecular Catalysts and Electrocatalysts. Chemical Reviews, 2018, 118, 2340-2391.	23.0	483
109	High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nature Catalysis, 2018, 1, 156-162.	16.1	1,120
110	N-Doped Graphitized Carbon Nanohorns as a Forefront Electrocatalyst in Highly Selective O2 Reduction to H2O2. CheM, 2018, 4, 106-123.	5.8	348
111	Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nature Catalysis, 2018, 1, 282-290.	16.1	699
112	Toward the Decentralized Electrochemical Production of H ₂ O ₂ : A Focus on the Catalysis. ACS Catalysis, 2018, 8, 4064-4081.	5.5	663
113	Mesoporous carbon doped with N,S heteroatoms prepared by one-pot auto-assembly of molecular precursor for electrocatalytic hydrogen peroxide synthesis. Catalysis Today, 2018, 301, 2-10.	2.2	40

#	Article	IF	CITATIONS
114	Solarâ€Driven Production of Hydrogen Peroxide from Water and Dioxygen. Chemistry - A European Journal, 2018, 24, 5016-5031.	1.7	106
115	Defective Carbon-Based Materials for the Electrochemical Synthesis of Hydrogen Peroxide. ACS Sustainable Chemistry and Engineering, 2018, 6, 311-317.	3.2	236
116	Selective catalytic two-electron O2 reduction for onsite efficient oxidation reaction in heterogeneous electro-Fenton process. Chemical Engineering Journal, 2018, 332, 486-498.	6.6	141
117	Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon. Journal of Catalysis, 2018, 357, 118-126.	3.1	252
118	Supported single-atom catalysts: synthesis, characterization, properties, and applications. Environmental Chemistry Letters, 2018, 16, 477-505.	8.3	96
119	Direct synthesis of H2O2 on Pd and AuxPd1 clusters: Understanding the effects of alloying Pd with Au. Journal of Catalysis, 2018, 357, 163-175.	3.1	106
120	Die facettenreiche Reaktivitäheterogener Einzelatomâ€Katalysatoren. Angewandte Chemie, 2018, 130, 15538-15552.	1.6	36
121	Descriptor study by density functional theory analysis for the direct synthesis of hydrogen peroxide using palladium–gold and palladium–mercury alloy catalysts. Molecular Systems Design and Engineering, 2018, 3, 896-907.	1.7	8
122	First-Principles Modeling in Heterogeneous Electrocatalysis. Catalysts, 2018, 8, 424.	1.6	27
123	Selective Electrochemical H ₂ O ₂ Production through Twoâ€Electron Oxygen		
	Electrochemistry. Advanced Energy Materials, 2018, 8, 1801909.	10.2	498
124	Electrochemistry. Advanced Energy Materials, 2018, 8, 1801909. The Multifaceted Reactivity of Singleâ€Atom Heterogeneous Catalysts. Angewandte Chemie - International Edition, 2018, 57, 15316-15329.	10.2 7.2	498 261
	Electrochemistry. Advanced Energy Materials, 2018, 8, 1801909. The Multifaceted Reactivity of Singleâ€Atom Heterogeneous Catalysts. Angewandte Chemie -		
124	Electrochemistry. Advanced Energy Materials, 2018, 8, 1801909. The Multifaceted Reactivity of Singleâ€Atom Heterogeneous Catalysts. Angewandte Chemie - International Edition, 2018, 57, 15316-15329. Progress Towards Direct Hydrogen Peroxide Fuel Cells (DHPFCs) as an Energy Storage Concept.	7.2	261
124 125	 Electrochemistry. Advanced Energy Materials, 2018, 8, 1801909. The Multifaceted Reactivity of Singleâ€Atom Heterogeneous Catalysts. Angewandte Chemie - International Edition, 2018, 57, 15316-15329. Progress Towards Direct Hydrogen Peroxide Fuel Cells (DHPFCs) as an Energy Storage Concept. Australian Journal of Chemistry, 2018, 71, 781. One-Pot Pyrolysis Method to Fabricate Carbon Nanotube Supported Ni Single-Atom Catalysts with 	7.2 0.5	261 33
124 125 126	 Electrochemistry. Advanced Energy Materials, 2018, 8, 1801909. The Multifaceted Reactivity of Singleâ€Atom Heterogeneous Catalysts. Angewandte Chemie - International Edition, 2018, 57, 15316-15329. Progress Towards Direct Hydrogen Peroxide Fuel Cells (DHPFCs) as an Energy Storage Concept. Australian Journal of Chemistry, 2018, 71, 781. One-Pot Pyrolysis Method to Fabricate Carbon Nanotube Supported Ni Single-Atom Catalysts with Ultrahigh Loading. ACS Applied Energy Materials, 0, , . Understanding the Effect of Au in Au–Pd Bimetallic Nanocrystals on the Electrocatalysis of the 	7.2 0.5 2.5	261 33 19
124 125 126 127	 Electrochemistry. Advanced Energy Materials, 2018, 8, 1801909. The Multifaceted Reactivity of Singleâ€Atom Heterogeneous Catalysts. Angewandte Chemie - International Edition, 2018, 57, 15316-15329. Progress Towards Direct Hydrogen Peroxide Fuel Cells (DHPFCs) as an Energy Storage Concept. Australian Journal of Chemistry, 2018, 71, 781. One-Pot Pyrolysis Method to Fabricate Carbon Nanotube Supported Ni Single-Atom Catalysts with Ultrahigh Loading. ACS Applied Energy Materials, 0, , . Understanding the Effect of Au in Au–Pd Bimetallic Nanocrystals on the Electrocatalysis of the Methanol Oxidation Reaction. Journal of Physical Chemistry C, 2018, 122, 21718-21723. Self-Powered and Highly Efficient Production of H₂O₂ through a Zn–Air Battery with Oxygenated Carbon Electrocatalyst. ACS Applied Materials & amp; Interfaces, 2018, 10, 	7.2 0.5 2.5 1.5	261 33 19 43
124 125 126 127 128	 Electrochemistry. Advanced Energy Materials, 2018, 8, 1801909. The Multifaceted Reactivity of Singleâ€Atom Heterogeneous Catalysts. Angewandte Chemie - International Edition, 2018, 57, 15316-15329. Progress Towards Direct Hydrogen Peroxide Fuel Cells (DHPFCs) as an Energy Storage Concept. Australian Journal of Chemistry, 2018, 71, 781. One-Pot Pyrolysis Method to Fabricate Carbon Nanotube Supported Ni Single-Atom Catalysts with Ultrahigh Loading. ACS Applied Energy Materials, 0, , . Understanding the Effect of Au in Auâ€^ePd Bimetallic Nanocrystals on the Electrocatalysis of the Methanol Oxidation Reaction. Journal of Physical Chemistry C, 2018, 122, 21718-21723. Self-Powered and Highly Efficient Production of H₂O₂ through a Znâ€^eAir Battery with Oxygenated Carbon Electrocatalyst. ACS Applied Materials & amp; Interfaces, 2018, 10, 31855-31859. In-situ electrosynthesis of hydrogen peroxide and wastewater treatment application: A novel strategy 	 7.2 0.5 2.5 1.5 4.0 	 261 33 19 43 43

#	Article	IF	CITATIONS
132	Recent progress in single-atom electrocatalysts: concept, synthesis, and applications in clean energy conversion. Journal of Materials Chemistry A, 2018, 6, 14025-14042.	5.2	224
133	Impact of Palladium Loading and Interparticle Distance on the Selectivity for the Oxygen Reduction Reaction toward Hydrogen Peroxide. Journal of Physical Chemistry C, 2018, 122, 15878-15885.	1.5	53
134	Mixed AuPd Nanoparticles as Highly Active Catalysts for Alkyne <i>Z</i> emihydrogenation. European Journal of Organic Chemistry, 2018, 2018, 3403-3409.	1.2	13
135	Structure, Activity, and Faradaic Efficiency of Nitrogenâ€Doped Porous Carbon Catalysts for Direct Electrochemical Hydrogen Peroxide Production. ChemSusChem, 2018, 11, 3388-3395.	3.6	148
136	Designing Boron Nitride Islands in Carbon Materials for Efficient Electrochemical Synthesis of Hydrogen Peroxide. Journal of the American Chemical Society, 2018, 140, 7851-7859.	6.6	310
137	The Rise of Hydrogen Peroxide as the Main Product by Metalâ€Free Catalysis in Oxygen Reductions. Advanced Materials, 2019, 31, e1802920.	11.1	251
138	Electrocatalytic Production of H ₂ O ₂ by Selective Oxygen Reduction Using Earth-Abundant Cobalt Pyrite (CoS ₂). ACS Catalysis, 2019, 9, 8433-8442.	5.5	167
139	High-efficiency electrogeneration of hydrogen peroxide from oxygen reduction by carbon xerogels derived from glucose. Electrochimica Acta, 2019, 320, 134569.	2.6	22
140	Carbon Black Oxidized by Air Calcination for Enhanced H ₂ O ₂ Generation and Effective Organics Degradation. ACS Applied Materials & Interfaces, 2019, 11, 27846-27853.	4.0	106
141	Pyrrolic-nitrogen-rich biomass-derived catalyst for sustainable degradation of organic pollutant via a self-powered electro-Fenton process. Nano Energy, 2019, 64, 103940.	8.2	62
142	In Situ Deposition of Pd during Oxygen Reduction Yields Highly Selective and Active Electrocatalysts for Direct H ₂ O ₂ Production. ACS Catalysis, 2019, 9, 8453-8463.	5.5	60
143	Direct Methane Conversion under Mild Condition by Thermo-, Electro-, or Photocatalysis. CheM, 2019, 5, 2296-2325.	5.8	331
144	Direct electrosynthesis of pure aqueous H ₂ O ₂ solutions up to 20% by weight using a solid electrolyte. Science, 2019, 366, 226-231.	6.0	573
145	Electrosynthesis of Hydrogen Peroxide by Phase-Transfer Catalysis. Joule, 2019, 3, 2942-2954.	11.7	89
146	Supported Transition Metal Phosphides: Activity Survey for HER, ORR, OER, and Corrosion Resistance in Acid and Alkaline Electrolytes. ACS Catalysis, 2019, 9, 11515-11529.	5.5	245
147	N-Doped Mesoporous Carbons: From Synthesis to Applications as Metal-Free Reduction Catalysts and Energy Storage Materials. Frontiers in Chemistry, 2019, 7, 761.	1.8	22
148	Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nature Communications, 2019, 10, 3997.	5.8	528
149	Secondary phosphine oxides stabilized Au/Pd nanoalloys: metal components-controlled regioselective hydrogenation toward phosphinyl (<i>Z</i>)-[3]dendralenes. Chemical Communications, 2019, 55, 11699-11702.	2.2	5

#	Article	IF	CITATIONS
150	Ensemble Effect in Bimetallic Electrocatalysts for CO ₂ Reduction. Journal of the American Chemical Society, 2019, 141, 16635-16642.	6.6	238
151	Electrochemical H ₂ O ₂ Production and Accumulation from H ₂ O by Composite Effect of Al ₂ O ₃ and BiVO ₄ . Journal of the Electrochemical Society, 2019, 166, H644-H649.	1.3	19
152	Highly efficient electro-generation of H2O2 by adjusting liquid-gas-solid three phase interfaces of porous carbonaceous cathode during oxygen reduction reaction. Water Research, 2019, 164, 114933.	5.3	113
153	Simultaneously Achieving High Activity and Selectivity toward Two-Electron O ₂ Electroreduction: The Power of Single-Atom Catalysts. ACS Catalysis, 2019, 9, 11042-11054.	5.5	314
154	Kinetic Understanding of the Reduction of Oxygen to Hydrogen Peroxide over an N-Doped Carbon Electrocatalyst. Journal of Physical Chemistry C, 2019, 123, 4590-4596.	1.5	42
155	Cu-Based Single-Atom Catalysts Boost Electroreduction of CO ₂ to CH ₃ OH: First-Principles Predictions. Journal of Physical Chemistry C, 2019, 123, 4380-4387.	1.5	68
156	Tuning the Selectivity of AuPd Nanoalloys towards Selective Dehydrogenative Alkyne Silylation. Chemistry - A European Journal, 2019, 25, 5870-5874.	1.7	19
157	Pd–Au–Y as Efficient Catalyst for C–C Coupling Reactions, Benzylic C–H Bond Activation, and Oxidation of Ethanol for Synthesis of Cinnamaldehydes. ACS Catalysis, 2019, 9, 5860-5875.	5.5	35
158	The Role of Supported Atomically Distributed Metal Species in Electrochemistry and How to Create Them. ChemElectroChem, 2019, 6, 3860-3877.	1.7	11
159	Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nature Reviews Chemistry, 2019, 3, 442-458.	13.8	544
160	The Direct Synthesis of H2O2 and Selective Oxidation of Methane to Methanol Using HZSM-5 Supported AuPd Catalysts. Catalysis Letters, 2019, 149, 3066-3075.	1.4	30
161	Palladium Singleâ€Atom Catalysts Supported on C@C ₃ N ₄ for Electrochemical Reactions. ChemElectroChem, 2019, 6, 4757-4764.	1.7	70
162	High-Concentration Single Atomic Pt Sites on Hollow CuSx for Selective O2 Reduction to H2O2 in Acid Solution. CheM, 2019, 5, 2099-2110.	5.8	279
163	Understanding the high activity of mildly reduced graphene oxide electrocatalysts in oxygen reduction to hydrogen peroxide. Materials Horizons, 2019, 6, 1409-1415.	6.4	51
164	Recent progress in theoretical and computational investigations of structural stability and activity of single-atom electrocatalysts. Progress in Natural Science: Materials International, 2019, 29, 256-264.	1.8	27
165	A COOH-terminated nitrogen-doped carbon aerogel as a bulk electrode for completely selective two-electron oxygen reduction to H ₂ O ₂ . Chemical Communications, 2019, 55, 6173-6176.	2.2	66
166	Hydrogen peroxide generation from O2 electroreduction for environmental remediation: A state-of-the-art review. Chemosphere, 2019, 225, 588-607.	4.2	211
167	Single-Atom Catalysts for Photocatalytic Reactions. ACS Sustainable Chemistry and Engineering, 2019, 7, 6430-6443.	3.2	121

#	Article	IF	CITATIONS
168	Electrocatalytic Activities towards the Electrochemical Oxidation of Formic Acid and Oxygen Reduction Reactions over Bimetallic, Trimetallic and Core–Shell-Structured Pd-Based Materials. Inorganics, 2019, 7, 36.	1.2	23
169	Electrosynthesis of Hydrogen Peroxide Synergistically Catalyzed by Atomic Co–N <i>_x</i> –C Sites and Oxygen Functional Groups in Nobleâ€Metalâ€Free Electrocatalysts. Advanced Materials, 2019, 31, e1808173.	11.1	252
170	Sensitive amperometric immunosensor with improved electrocatalytic Au@Pd urchin-shaped nanostructures for human epididymis specific protein 4 antigen detection. Analytica Chimica Acta, 2019, 1069, 117-125.	2.6	32
171	Enhanced electrocatalytic activity for H2O2 production by the oxygen reduction reaction: Rational control of the structure and composition of multi-walled carbon nanotubes. Chinese Journal of Catalysis, 2019, 40, 523-533.	6.9	37
172	Synergetic electrocatalytic activities towards hydrogen peroxide: Understanding the ordered structure of PdNi bimetallic nanocatalysts. Electrochemistry Communications, 2019, 101, 93-98.	2.3	12
173	Selective Electrocatalytic H ₂ O ₂ Generation by Cobalt@Nâ€Doped Graphitic Carbon Core–Shell Nanohybrids. ChemSusChem, 2019, 12, 1664-1672.	3.6	40
174	Finely dispersed Au nanoparticles on graphitic carbon nitride as highly active photocatalyst for hydrogen peroxide production. Catalysis Communications, 2019, 123, 69-72.	1.6	63
175	Simultaneously Providing Iron Source toward Electro-Fenton Process and Enhancing Hydrogen Peroxide Production via a Fe ₃ O ₄ Nanoparticles Embedded Graphite Felt Electrode. ACS Applied Materials & Interfaces, 2019, 11, 45692-45701.	4.0	36
176	N-doped three-dimensional carbon foam as binder-free electrode for organic pollutants removal by electro-Fenton in neutral medium. Blue-Green Systems, 2019, 1, 86-101.	0.6	2
177	Electronic Tuning of Metal Nanoparticles for Highly Efficient Photocatalytic Hydrogen Peroxide Production. ACS Catalysis, 2019, 9, 626-631.	5.5	84
178	CaSnO ₃ : An Electrocatalyst for Two-Electron Water Oxidation Reaction to Form H ₂ O ₂ . ACS Energy Letters, 2019, 4, 352-357.	8.8	148
179	Rational Design of TiC-Supported Single-Atom Electrocatalysts for Hydrogen Evolution and Selective Oxygen Reduction Reactions. ACS Energy Letters, 2019, 4, 126-132.	8.8	104
180	In-Plane Carbon Lattice-Defect Regulating Electrochemical Oxygen Reduction to Hydrogen Peroxide Production over Nitrogen-Doped Graphene. ACS Catalysis, 2019, 9, 1283-1288.	5.5	216
181	Active Edgeâ€Siteâ€Rich Carbon Nanocatalysts with Enhanced Electron Transfer for Efficient Electrochemical Hydrogen Peroxide Production. Angewandte Chemie, 2019, 131, 1112-1117.	1.6	22
182	Active Edgeâ€Siteâ€Rich Carbon Nanocatalysts with Enhanced Electron Transfer for Efficient Electrochemical Hydrogen Peroxide Production. Angewandte Chemie - International Edition, 2019, 58, 1100-1105.	7.2	244
183	Coordination-Dependent Catalytic Activity and Design Principles of Metal–Organic Frameworks as Efficient Electrocatalysts for Clean Energy Conversion. Journal of Physical Chemistry C, 2019, 123, 214-221.	1.5	10
184	Selective Hydrogenation over Supported Metal Catalysts: From Nanoparticles to Single Atoms. Chemical Reviews, 2020, 120, 683-733.	23.0	871
185	2D Electrocatalysts for Converting Earthâ€Abundant Simple Molecules into Valueâ€Added Commodity Chemicals: Recent Progress and Perspectives. Advanced Materials, 2020, 32, e1904870.	11.1	76

#	Article	IF	CITATIONS
186	2 D Hybrid of Ni‣DH Chips on Carbon Nanosheets as Cathode of Zinc–Air Battery for Electrocatalytic Conversion of O ₂ into H ₂ O ₂ . ChemSusChem, 2020, 13, 1496-1503.	3.6	30
187	Tailoring the Electrochemical Production of H ₂ O ₂ : Strategies for the Rational Design of Highâ€Performance Electrocatalysts. Small, 2020, 16, e1902845.	5.2	114
188	The Synergy of Dilute Pd and Surface Oxygen Species for Methane Upgrading on Au ₃ Pd(111). Energy Technology, 2020, 8, 1900732.	1.8	3
189	Structural Regulation with Atomic-Level Precision: From Single-Atomic Site to Diatomic and Atomic Interface Catalysis. Matter, 2020, 2, 78-110.	5.0	221
190	Hydrogen peroxide synthesis on porous graphitic carbon nitride using water as a hydrogen source. Journal of Materials Chemistry A, 2020, 8, 124-137.	5.2	18
191	Janus Electrode of Asymmetric Wettability for H ₂ O ₂ Production with Highly Efficient O ₂ Utilization. ACS Applied Energy Materials, 2020, 3, 705-714.	2.5	44
192	Constructing efficient WO3-FPC system for photoelectrochemical H2O2 production and organic pollutants degradation. Chemical Engineering Journal, 2020, 389, 123427.	6.6	23
193	Oxygen and nitrogen co-doped ordered mesoporous carbon materials enhanced the electrochemical selectivity of O2 reduction to H2O2. Journal of Colloid and Interface Science, 2020, 562, 540-549.	5.0	46
194	Insights into Practical-Scale Electrochemical H2O2 Synthesis. Trends in Chemistry, 2020, 2, 942-953.	4.4	85
195	Conversion of Methane into Liquid Fuels—Bridging Thermal Catalysis with Electrocatalysis. Advanced Energy Materials, 2020, 10, 2002154.	10.2	57
196	Increased Stability of Palladiumâ€ridiumâ€Gold Electrocatalyst for the Hydrogen Oxidation Reaction in Polymer Electrolyte Membrane Fuel Cells. Electroanalysis, 2020, 32, 2893-2901.	1.5	2
197	A review of advanced metal-free carbon catalysts for oxygen reduction reactions towards the selective generation of hydrogen peroxide. Journal of Materials Chemistry A, 2020, 8, 20849-20869.	5.2	88
198	Electrochemical oxygen reduction for H ₂ O ₂ production: catalysts, pH effects and mechanisms. Journal of Materials Chemistry A, 2020, 8, 24996-25016.	5.2	94
199	Photoelectrochemical H ₂ O ₂ Production from Oxygen Reduction. ACS Symposium Series, 2020, , 93-109.	0.5	0
200	A comparative perspective of electrochemical and photochemical approaches for catalytic H ₂ O ₂ production. Chemical Society Reviews, 2020, 49, 6605-6631.	18.7	308
201	Tuning the electrocatalytic 2- and 4-electron reduction of oxygen by electrodeposited hybrid graphene-Co/Mn porphyrin coatings. Electrochimica Acta, 2020, 356, 136792.	2.6	6
202	Ni3B as a highly efficient and selective catalyst for the electrosynthesis of hydrogen peroxide. Applied Catalysis B: Environmental, 2020, 279, 119371.	10.8	48
203	Scalable neutral H2O2 electrosynthesis by platinum diphosphide nanocrystals by regulating oxygen reduction reaction pathways. Nature Communications, 2020, 11, 3928.	5.8	101

ARTICLE IF CITATIONS Carbon Anode in Carbon History. Molecules, 2020, 25, 4996. 204 1.7 4 A β-cyclodextrin Modified Graphitic Carbon Nitride with Au Co-Catalyst for Efficient Photocatalytic Hydrógen Peroxide Production. Nanomaterials, 2020, 10, 1969. Heterogeneous Atomic Catalysts Overcoming the Limitations of Single-Atom Catalysts. ACS Nano, 206 97 7.3 2020, 14, 14355-14374. Electrocatalytic Synthesis of Hydrogen Peroxide over Au/TiO₂ and Electrochemical Trace of OOH* Intermediate. Chemistry - an Asian Journal, 2020, 15, 4280-4285. Atomically dispersed Lewis acid sites boost 2-electron oxygen reduction activity of carbon-based 208 5.8 114 catalysts. Nature Communications, 2020, 11, 5478. Insights into the zinc effect on radio-cobalt deposition on stainless steel piping surfaces under BWR 209 conditions from experiment guided 1st principles modelling. Journal of Nuclear Materials, 2020, 540, 1.3 152361. Room temperature and atmospheric pressure aqueous partial oxidation of ethane to oxygenates over 210 2.1 2 AuPd catalysts. Catalysis Science and Technology, 2020, 10, 6679-6686. Recent advances in electrochemical 2e oxygen reduction reaction for on-site hydrogen peroxide production and beyond. Chemical Communications, 2020, 56, 12109-12121. Design of Thiazolo[5,4-<i>d</i>) thiazole-Bridged Ionic Covalent Organic Polymer for Highly Selective 212 3.2 23 Oxygen Reduction to H₂O₂. Chemistry of Materials, 2020, 32, 8553-8560. Recent Progress of Singleâ€atom Catalysts in the Electrocatalytic Reduction of Oxygen to Hydrogen 1.5 Peroxide. Electroanalysis, 2020, 32, 2591-2602. Facile one-step deposition of Co3O4-MoS2 nanocomposites using a vacuum kinetic spray process for 214 1.5 9 non-enzymatic H2O2 sensing. Surfaces and Interfaces, 2020, 21, 100748. Z-Scheme 2D/3D hierarchical MoS₂@CoMoS₄ flower-shaped arrays with enhanced full spectrum light photoelectrocatalytic activity for 5.2 H₂O₂/<i>p</i>aminophenol production and contaminant degradation. Journal of Materials Chemistry A. 2020. 8. 25890-25903. 216 Electrochemical Degradation of Lignin by ROS. Sustainable Chemistry, 2020, 1, 345-360. 2.2 9 Extendable Machine Learning Model for the Stability of Single Atom Alloys. Topics in Catalysis, 2020, 63, 728-741. 217 1.3 Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to 218 281 5.8 H2O2. Nature Communications, 2020, 11, 2209. Heteroatom Dopants Promote Twoâ€Electron O₂ Reduction for Photocatalytic Production of H₂O₂ on Polymeric Carbon Nitride. Angewandte Chemie, 2020, 132, 59 16343-16351. Heteroatom Dopants Promote Twoâ€Electron O₂ Reduction for Photocatalytic Production 220 of H₂O₂ on Polymeric Carbon Nitride. Angewandte Chemie - International 7.2 270 Edition, 2020, 59, 16209-16217. Recent Advances in Electrochemical Oxygen Reduction to H₂O₂: Catalyst and 8.8 185 Cell Design. ACS Energy Letters, 2020, 5, 1881-1892.

#	Article	IF	CITATIONS
222	Two-electron oxygen reduction reaction by high-loading molybdenum single-atom catalysts. Rare Metals, 2020, 39, 455-457.	3.6	40
223	Carbon-based dots for the electrochemical production of hydrogen peroxide. Chemical Communications, 2020, 56, 7609-7612.	2.2	14
224	Partially Pyrolyzed Binary Metal–Organic Framework Nanosheets for Efficient Electrochemical Hydrogen Peroxide Synthesis. Angewandte Chemie, 2020, 132, 14479-14483.	1.6	17
225	Partially Pyrolyzed Binary Metal–Organic Framework Nanosheets for Efficient Electrochemical Hydrogen Peroxide Synthesis. Angewandte Chemie - International Edition, 2020, 59, 14373-14377.	7.2	127
226	Mesoporous Carbon Hollow Spheres as Efficient Electrocatalysts for Oxygen Reduction to Hydrogen Peroxide in Neutral Electrolytes. ACS Catalysis, 2020, 10, 7434-7442.	5.5	123
227	Catalyst Design for Electrochemical Oxygen Reduction toward Hydrogen Peroxide. Advanced Functional Materials, 2020, 30, 2003321.	7.8	170
228	A Review on Challenges and Successes in Atomic-Scale Design of Catalysts for Electrochemical Synthesis of Hydrogen Peroxide. ACS Catalysis, 2020, 10, 7495-7511.	5.5	254
229	In Situ Formation of Gold Nanoparticles Decorated Ti ₃ C ₂ MXenes Nanoprobe for Highly Sensitive Electrogenerated Chemiluminescence Detection of Exosomes and Their Surface Proteins. Analytical Chemistry, 2020, 92, 5546-5553.	3.2	170
230	Graphitic N in nitrogen-Doped carbon promotes hydrogen peroxide synthesis from electrocatalytic oxygen reduction. Carbon, 2020, 163, 154-161.	5.4	131
231	Graphene-Supported Single Nickel Atom Catalyst for Highly Selective and Efficient Hydrogen Peroxide Production. ACS Applied Materials & Interfaces, 2020, 12, 17519-17527.	4.0	99
232	Nitride or Oxynitride? Elucidating the Composition–Activity Relationships in Molybdenum Nitride Electrocatalysts for the Oxygen Reduction Reaction. Chemistry of Materials, 2020, 32, 2946-2960.	3.2	57
233	Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chemical Society Reviews, 2020, 49, 2215-2264.	18.7	582
234	Controlled coassembly of dumbbell-like Au nanoparticles with a porous nitrogen doped carbon aerogel for cancer cell H2O2 detection. Analytica Chimica Acta, 2020, 1126, 100-105.	2.6	10
235	The oxygen reduction reaction on palladium with low metal loadings: The effects of chlorides on the stability and activity towards hydrogen peroxide. Journal of Catalysis, 2020, 389, 400-408.	3.1	25
236	Single atom alloy: An emerging atomic site material for catalytic applications. Nano Today, 2020, 34, 100917.	6.2	91
237	Progress of Electrochemical Hydrogen Peroxide Synthesis over Single Atom Catalysts. , 2020, 2, 1008-1024.		129
238	Electrocatalyst design for promoting two-electron oxygen reduction reaction: Isolation of active site atoms. Current Opinion in Electrochemistry, 2020, 21, 109-116.	2.5	39
239	Design of hierarchical, threeâ€dimensional freeâ€standing singleâ€atom electrode for H ₂ O ₂ production in acidic media. , 2020, 2, 276-282.		56

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
240	Prospects of Valueâ€Added Chemicals and Hydrogen via Electrolysis. ChemSusChem, 2020, 13, 2513-2521.	3.6	70
241	Electrocatalytic oxygen reduction to hydrogen peroxide by oxidized graphene aerogel supported cubic MnCO3 for antibacteria in neutral media. Electrochimica Acta, 2020, 340, 135880.	2.6	22
242	Accelerating CO ₂ Electroreduction to CO Over Pd Singleâ€Atom Catalyst. Advanced Functional Materials, 2020, 30, 2000407.	7.8	173
243	On the Controlled Loading of Single Platinum Atoms as a Coâ€Catalyst on TiO ₂ Anatase for Optimized Photocatalytic H ₂ Generation. Advanced Materials, 2020, 32, e1908505.	11.1	189
244	Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production. Nature Materials, 2020, 19, 436-442.	13.3	725
245	Enabling Direct H2O2 Production in Acidic Media through Rational Design of Transition Metal Single Atom Catalyst. CheM, 2020, 6, 658-674.	5.8	418
246	High-yield electrochemical hydrogen peroxide production from an enhanced two-electron oxygen reduction pathway by mesoporous nitrogen-doped carbon and manganese hybrid electrocatalysts. Nanoscale Horizons, 2020, 5, 832-838.	4.1	40
247	Visible-light-driven H2O2 production from O2 reduction with nitrogen vacancy-rich and porous graphitic carbon nitride. Applied Catalysis B: Environmental, 2020, 273, 119064.	10.8	135
248	Promoting H2O2 production via 2-electron oxygen reduction by coordinating partially oxidized Pd with defect carbon. Nature Communications, 2020, 11, 2178.	5.8	209
249	Palladiumâ€Based Bimetallic Nanocrystal Catalysts for the Direct Synthesis of Hydrogen Peroxide. ChemSusChem, 2020, 13, 3243-3251.	3.6	35
250	Hydrochlorination of acetylene on single-atom Pd/N-doped carbon catalysts: Importance of pyridinic-N synergism. Applied Catalysis B: Environmental, 2020, 272, 118944.	10.8	84
251	Atomically dispersed palladium-based catalysts obtained <i>via</i> constructing a spatial structure with high performance for lean methane combustion. Journal of Materials Chemistry A, 2020, 8, 7395-7404.	5.2	40
252	Crystallinity dependence for high-selectivity electrochemical oxygen reduction to hydrogen peroxide. Chemical Communications, 2020, 56, 5299-5302.	2.2	10
253	Engineering Facets and Oxygen Vacancies over Hematite Single Crystal for Intensified Electrocatalytic H ₂ O ₂ Production. Advanced Functional Materials, 2020, 30, 1910539.	7.8	90
254	Selective electrochemical production of hydrogen peroxide at zigzag edges of exfoliated molybdenum telluride nanoflakes. National Science Review, 2020, 7, 1360-1366.	4.6	40
255	Highâ€Efficiency Oxygen Reduction to Hydrogen Peroxide Catalyzed by Nickel Singleâ€Atom Catalysts with Tetradentate N ₂ O ₂ Coordination in a Threeâ€Phase Flow Cell. Angewandte Chemie, 2020, 132, 13157-13162.	1.6	16
256	Highâ€Efficiency Oxygen Reduction to Hydrogen Peroxide Catalyzed by Nickel Singleâ€Atom Catalysts with Tetradentate N ₂ O ₂ Coordination in a Threeâ€Phase Flow Cell. Angewandte Chemie - International Edition, 2020, 59, 13057-13062.	7.2	222
257	Electrogeneration of Hydrogen Peroxide via Oxygen Reduction on Polyindole Films. Journal of the Electrochemical Society, 2020, 167, 086502.	1.3	13

#	Article	IF	CITATIONS
258	Exploring Bi ₂ Te ₃ Nanoplates as Versatile Catalysts for Electrochemical Reduction of Small Molecules. Advanced Materials, 2020, 32, e1906477.	11.1	65
259	Tailoring Selectivity of Electrochemical Hydrogen Peroxide Generation by Tunable Pyrrolicâ€Nitrogenâ€Carbon. Advanced Energy Materials, 2020, 10, 2000789.	10.2	247
260	Theoretical Modeling of Site Selectivity and Chemical Substitution Effect of H2O2 Production Efficiency on Modified Graphene. Catalysis Letters, 2021, 151, 390-397.	1.4	3
261	Selective H2O2 production on surface-oxidized metal-nitrogen-carbon electrocatalysts. Catalysis Today, 2021, 359, 99-105.	2.2	42
262	Thiolateâ€Protected Singleâ€Atom Alloy Nanoclusters: Correlation between Electronic Properties and Catalytic Activities. Advanced Materials Interfaces, 2021, 8, 2001342.	1.9	10
263	Electrocatalytic reduction of Cr(VI) over heterophase MoS2 film electrode. Chemical Engineering Journal, 2021, 404, 126556.	6.6	25
264	Environmental Materials beyond and below the Nanoscale: Single-Atom Catalysts. ACS ES&T Engineering, 2021, 1, 157-172.	3.7	88
265	Thermally treated candle soot as a novel catalyst for hydrogen peroxide in-situ production enhancement in the bio-electro-Fenton system. Chemosphere, 2021, 262, 127839.	4.2	13
266	Stability and catalytic activity of Au30M12 (MÂ=ÂAu, Ag, Cu, Pt) icosahedral clusters. Chemical Physics Letters, 2021, 763, 138186.	1.2	7
267	Electrochemical Oxygen Reduction to Hydrogen Peroxide via a Twoâ€Electron Transfer Pathway on Carbonâ€Based Singleâ€Atom Catalysts. Advanced Materials Interfaces, 2021, 8, 2001360.	1.9	35
268	Nanoscale engineering of catalytic materials for sustainable technologies. Nature Nanotechnology, 2021, 16, 129-139.	15.6	210
269	Highly active, selective, and stable Pd single-atom catalyst anchored on N-doped hollow carbon sphere for electrochemical H2O2 synthesis under acidic conditions. Journal of Catalysis, 2021, 393, 313-323.	3.1	43
270	Single-atom alloy catalysts: structural analysis, electronic properties and catalytic activities. Chemical Society Reviews, 2021, 50, 569-588.	18.7	220
271	Strain engineered gas-consumption electroreduction reactions: Fundamentals and perspectives. Coordination Chemistry Reviews, 2021, 429, 213649.	9.5	6
272	Electrocatalytic Oxygen Reduction to Hydrogen Peroxide: From Homogeneous to Heterogeneous Electrocatalysis. Advanced Energy Materials, 2021, 11, 2003323.	10.2	150
273	Evaluating the electro-sensing behaviors of single-atom catalysts based on mechanistic insights. Current Opinion in Electrochemistry, 2021, 25, 100646.	2.5	3
274	Gold-based nanoalloys: synthetic methods and catalytic applications. Journal of Materials Chemistry A, 2021, 9, 19025-19053.	5.2	16
275	Boron containing metal–organic framework for highly selective photocatalytic production of H ₂ O ₂ by promoting two-electron O ₂ reduction. Materials Horizons, 2021, 8, 2842-2850.	6.4	31

#	Article	IF	CITATIONS
276	Electrochemical Stability and Degradation Mechanisms of Commercial Carbon-Supported Gold Nanoparticles in Acidic Media. Journal of Physical Chemistry C, 2021, 125, 635-647.	1.5	18
277	CoTe nanoparticle-embedded N-doped hollow carbon polyhedron: an efficient catalyst for H ₂ O ₂ electrosynthesis in acidic media. Journal of Materials Chemistry A, 2021, 9, 21703-21707.	5.2	29
278	Copper-based single-atom alloys for heterogeneous catalysis. Chemical Communications, 2021, 57, 2710-2723.	2.2	22
279	Plasma activation towards oxidized nanocarbons for efficient electrochemical synthesis of hydrogen peroxide. Plasma Science and Technology, 2021, 23, 025502.	0.7	2
280	Nitrogen and oxygen tailoring of a solid carbon active site for two-electron selectivity electrocatalysis. Inorganic Chemistry Frontiers, 2021, 8, 173-181.	3.0	11
281	A computational study on the reduction of O ₂ to H ₂ O ₂ using small polycyclic aromatic molecules. Catalysis Science and Technology, 2021, 11, 4979-4986.	2.1	0
282	Co, Fe codoped holey carbon nanosheets as bifunctional oxygen electrocatalysts for rechargeable Zn–air batteries. Chemical Communications, 2021, 57, 2049-2052.	2.2	27
283	Nitrogen, sulfur co-doped carbon coated zinc sulfide for efficient hydrogen peroxide electrosynthesis. Dalton Transactions, 2021, 50, 5416-5419.	1.6	6
284	Heteroatom-doped carbon-based oxygen reduction electrocatalysts with tailored four-electron and two-electron selectivity. Chemical Communications, 2021, 57, 7350-7361.	2.2	43
285	Efficient Discovery of Active, Selective, and Stable Catalysts for Electrochemical H ₂ O ₂ Synthesis through Active Motif Screening. ACS Catalysis, 2021, 11, 2483-2491.	5.5	44
286	Hydrogen Peroxide Generation with 100% Faradaic Efficiency on Metal-Free Carbon Black. ACS Catalysis, 2021, 11, 2454-2459.	5.5	98
287	Advanced Development Strategy of Nano Catalyst and DFT Calculations for Direct Synthesis of Hydrogen Peroxide. Advanced Energy Materials, 2021, 11, 2003121.	10.2	34
288	Shape-Selective Synthesis of Intermetallic Pd ₃ Pb Nanocrystals and Enhanced Catalytic Properties in the Direct Synthesis of Hydrogen Peroxide. ACS Catalysis, 2021, 11, 2288-2301.	5.5	27
289	Design Strategies of Nonâ€Noble Metalâ€Based Electrocatalysts for Twoâ€Electron Oxygen Reduction to Hydrogen Peroxide. ChemSusChem, 2021, 14, 1616-1633.	3.6	46
290	Hydrogen peroxide electrosynthesis via regulating the oxygen reduction reaction pathway on Pt noble metal with ion poisoning. Electrochimica Acta, 2021, 371, 137721.	2.6	25
291	Designing Atomically Dispersed Au on Tensile-Strained Pd for Efficient CO ₂ Electroreduction to Formate. Journal of the American Chemical Society, 2021, 143, 5386-5395.	6.6	74
292	3d Transitionâ€Metalâ€Mediated Columbite Nanocatalysts for Decentralized Electrosynthesis of Hydrogen Peroxide. Small, 2021, 17, e2007249.	5.2	35
293	Honeycomb Carbon Nanofibers: A Superhydrophilic O ₂ â€Entrapping Electrocatalyst Enables Ultrahigh Mass Activity for the Twoâ€Electron Oxygen Reduction Reaction. Angewandte Chemie, 2021, 133, 10677-10681.	1.6	26

#	Article	IF	CITATIONS
294	Honeycomb Carbon Nanofibers: A Superhydrophilic O ₂ â€Entrapping Electrocatalyst Enables Ultrahigh Mass Activity for the Twoâ€Electron Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2021, 60, 10583-10587.	7.2	219
295	High Yield Electrosynthesis of Hydrogen Peroxide from Water Using Electrospun CaSnO ₃ @Carbon Fiber Membrane Catalysts with Abundant Oxygen Vacancy. Advanced Functional Materials, 2021, 31, 2100099.	7.8	52
296	Highly Selective O ₂ Reduction to H ₂ O ₂ Catalyzed by Cobalt Nanoparticles Supported on Nitrogen-Doped Carbon in Alkaline Solution. ACS Catalysis, 2021, 11, 5035-5046.	5.5	36
297	N-doped carbon nanotubes supported CoSe2 nanoparticles: A highly efficient and stable catalyst for H2O2 electrosynthesis in acidic media. Nano Research, 2022, 15, 304-309.	5.8	90
298	Recent Progress of Electrochemical Production of Hydrogen Peroxide by Twoâ€Electron Oxygen Reduction Reaction. Advanced Science, 2021, 8, e2100076.	5.6	148
299	Highly efficient hydrogen peroxide electrosynthesis on oxidized carbon nanotubes by thermally activated-persulfate. Journal of Materiomics, 2022, 8, 136-143.	2.8	4
300	Promoting the Two-Electron Oxygen Reduction Reaction Performance of Carbon Nanospheres by Pore Engineering. ACS Applied Energy Materials, 2021, 4, 4620-4629.	2.5	16
301	Fast and Stable Electrochemical Production of H ₂ O ₂ by Electrode Architecture Engineering. ACS Sustainable Chemistry and Engineering, 2021, 9, 7120-7129.	3.2	24
302	Spherical Polydopamine-Modified Carbon-Felt Cathode with an Active Indole Structure for Efficient Hydrogen Peroxide Electroproduction. Applied Sciences (Switzerland), 2021, 11, 5371.	1.3	1
303	Chemical Identification of Catalytically Active Sites on Oxygenâ€doped Carbon Nanosheet to Decipher the High Activity for Electroâ€synthesis Hydrogen Peroxide. Angewandte Chemie - International Edition, 2021, 60, 16607-16614.	7.2	150
304	Origin of Selective Production of Hydrogen Peroxide by Electrochemical Oxygen Reduction. Journal of the American Chemical Society, 2021, 143, 9423-9428.	6.6	169
305	Efficient Electrochemical Production of H ₂ O ₂ on Hollow N-Doped Carbon Nanospheres with Abundant Micropores. ACS Applied Materials & Interfaces, 2021, 13, 29551-29557.	4.0	70
306	Bimetallic PdAu Nanoframes for Electrochemical H ₂ O ₂ Production in Acids. , 2021, 3, 996-1002.		48
307	Chemical Identification of Catalytically Active Sites on Oxygenâ€doped Carbon Nanosheet to Decipher the High Activity for Electroâ€synthesis Hydrogen Peroxide. Angewandte Chemie, 2021, 133, 16743-16750.	1.6	34
308	Mediated Charge Transfer at Nanoelectrodes: A New Approach to Electrochemical Reactivity Mapping and Nanosensing. Journal of the American Chemical Society, 2021, 143, 8547-8551.	6.6	22
309	Inexpensive activated coke electrocatalyst for high-efficiency hydrogen peroxide production: Coupling effects of amorphous carbon cluster and oxygen dopant. Applied Catalysis B: Environmental, 2021, 286, 119860.	10.8	55
310	Selectively photoelectrocatalytic reduction of oxygen to hydroxyl radical and singlet oxygen: Mechanism and validation in coal wastewater. Applied Catalysis B: Environmental, 2021, 286, 119908.	10.8	61
311	Single-Atom Catalysts Designed and Prepared by the Atomic Layer Deposition Technique. ACS Catalysis, 2021, 11, 7018-7059.	5.5	106

#	Article	IF	CITATIONS
312	PdAu alloy nano wires for the elevated alcohol electro-oxidation reaction. Electrochimica Acta, 2021, 384, 138405.	2.6	16
313	Maximizing the Catalytic Performance of Pd@Au _x Pd _{1â^²<i>x</i>} Nanocubes in H ₂ O ₂ Production by Reducing Shell Thickness to Increase Compositional Stability. Angewandte Chemie, 2021, 133, 19795-19799.	1.6	11
314	Sustainable microwave-assisted hydrothermal synthesis of carbon-supported ZrO2 nanoparticles for H2O2 electrogeneration. Materials Chemistry and Physics, 2021, 267, 124575.	2.0	18
315	Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates. Nature Communications, 2021, 12, 4225.	5.8	218
316	Maximizing the Catalytic Performance of Pd@Au _x Pd _{1â^'<i>x</i>} Nanocubes in H ₂ O ₂ Production by Reducing Shell Thickness to Increase Compositional Stability. Angewandte Chemie - International Edition, 2021, 60, 19643-19647.	7.2	44
317	Recent advances and trends of heterogeneous electro-Fenton process for wastewater treatment-review. Chinese Chemical Letters, 2022, 33, 653-662.	4.8	64
318	General Design Concept for Singleâ€Atom Catalysts toward Heterogeneous Catalysis. Advanced Materials, 2021, 33, e2004287.	11.1	170
319	Earth-abundant metal-free carbon-based electrocatalysts for Zn-air batteries to power electrochemical generation of H2O2 for in-situ wastewater treatment. Chemical Engineering Journal, 2021, 416, 128338.	6.6	21
320	Rational Design of Singleâ€Atom Site Electrocatalysts: From Theoretical Understandings to Practical Applications. Advanced Materials, 2021, 33, e2008151.	11.1	175
321	Carbon Free and Noble Metal Free Ni ₂ Mo ₆ S ₈ Electrocatalyst for Selective Electrosynthesis of H ₂ O ₂ . Advanced Functional Materials, 2021, 31, 2104716.	7.8	44
322	Preparation of a uniform thin-film Pd-Au electrocatalyst via electroreduction of a palladium hexacyanoferrate(II)-Au electrodeposit for alkaline oxidation of methanol. Journal of Electroanalytical Chemistry, 2021, 895, 115416.	1.9	1
323	Designing highly active nanoporous carbon H2O2 production electrocatalysts through active site identification. CheM, 2021, 7, 3114-3130.	5.8	109
324	Unassisted photocatalytic H2O2 production under visible light by fluorinated polymer-TiO2 heterojunction. Chemical Engineering Journal, 2021, 418, 129346.	6.6	63
325	Enhanced On‣ite Hydrogen Peroxide Electrosynthesis by a Selectively Carboxylated Nâ€Doped Graphene Catalyst. ChemCatChem, 2021, 13, 4372-4383.	1.8	15
326	Self-Nanocavity-Confined Halogen Anions Boosting the High Selectivity of the Two-Electron Oxygen Reduction Pathway over Ni-Based MOFs. Journal of Physical Chemistry Letters, 2021, 12, 8706-8712.	2.1	19
327	Selective Electrochemical Generation of Hydrogen Peroxide from Oxygen Reduction on Atomically Dispersed Platinum. ACS Applied Energy Materials, 2021, 4, 10843-10848.	2.5	16
328	Highly efficient electrochemical production of hydrogen peroxide over nitrogen and phosphorus dual-doped carbon nanosheet in alkaline medium. Journal of Electroanalytical Chemistry, 2021, 896, 115197.	1.9	29
329	Structural Modulation on NiCo ₂ S ₄ Nanoarray by N Doping to Enhance 2eâ€ORR Selectivity for Photothermal AOPs and Znâ^'O ₂ Batteries**. Chemistry - A European Journal, 2021, 27, 14451-14460.	1.7	6

#	Article	IF	CITATIONS
330	Strongly Coupled Cobalt Diselenide Monolayers Selectively Catalyze Oxygen Reduction to H2O2 in an Acidic Environment. Angewandte Chemie, 0, , .	1.6	3
331	<i>In Situ</i> Detection of Released H ₂ O ₂ from Living Cells by Carbon Cloth-Supported Graphene/Au–Pt Nanoparticles. ACS Applied Nano Materials, 2021, 4, 9449-9458.	2.4	8
332	Investigating the efficacy of CeO2 multi-layered triangular nanosheets for augmenting cathodic hydrogen peroxide production in microbial fuel cell. Electrochimica Acta, 2021, 398, 139341.	2.6	15
333	Tuning Metal Elements in Open Frameworks for Efficient Oxygen Evolution and Oxygen Reduction Reaction Reaction Catalysts. ACS Applied Materials & amp; Interfaces, 2021, 13, 42715-42723.	4.0	17
334	Strongly Coupled Cobalt Diselenide Monolayers for Selective Electrocatalytic Oxygen Reduction to H ₂ O ₂ under Acidic Conditions. Angewandte Chemie - International Edition, 2021, 60, 26922-26931.	7.2	61
335	Greatly Facilitated Two-Electron Electroreduction of Oxygen into Hydrogen Peroxide over TiO ₂ by Mn Doping. ACS Applied Materials & Interfaces, 2021, 13, 46659-46664.	4.0	46
336	Carbonâ€Based Electrocatalysts for Efficient Hydrogen Peroxide Production. Advanced Materials, 2021, 33, e2103266.	11.1	104
337	A newly-explored Pd-based nanocrystal for the pH-universal electrosynthesis of H2O2. Nano Energy, 2021, 89, 106480.	8.2	25
338	Electrocatalytic generation of hydrogen peroxide on cobalt nanoparticles embedded in nitrogen-doped carbon. Chinese Journal of Catalysis, 2021, 42, 2296-2305.	6.9	10
339	Harnessing selective and durable electrosynthesis of H2O2 over dual-defective yolk-shell carbon nanosphere toward on-site pollutant degradation. Applied Catalysis B: Environmental, 2021, 298, 120572.	10.8	29
340	Integrating H2O2 generation from electrochemical oxygen reduction with the selective oxidation of organics in a dual-membrane reactor. Chemical Engineering Journal, 2022, 428, 131534.	6.6	16
341	Palladium-based single atom catalysts for high-performance electrochemical production of hydrogen peroxide. Chemical Engineering Journal, 2022, 428, 131112.	6.6	29
342	Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy and Environmental Science, 2021, 14, 2809-2858.	15.6	198
343	Assessing the oxygen reduction reaction by a 2-electron mechanism on ceria surfaces. Physical Chemistry Chemical Physics, 2021, 23, 18580-18587.	1.3	7
344	Electrocatalytic hydrogen peroxide production in acidic media enabled by NiS ₂ nanosheets. Journal of Materials Chemistry A, 2021, 9, 6117-6122.	5.2	102
345	Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis. Energy and Environmental Science, 2021, 14, 2954-3009.	15.6	188
346	Lightâ€Driven BiVO ₄ –C Fuel Cell with Simultaneous Production of H ₂ O ₂ . Advanced Energy Materials, 2018, 8, 1801158.	10.2	107
347	Efficient H ₂ O ₂ Production via H ₂ O Oxidation on an Anode Modified with Sbâ€Containing Mixed Metal Oxides. ChemElectroChem, 2020, 7, 2448-2455.	1.7	22

#	Article	IF	CITATIONS
348	Building highly active hybrid double–atom sites in C2N for enhanced electrocatalytic hydrogen peroxide synthesis. Green Energy and Environment, 2021, 6, 846-857.	4.7	22
349	Towards quaternary alloy Au–Pd catalysts for direct synthesis of hydrogen peroxide. Materials Today Energy, 2020, 16, 100399.	2.5	5
350	Efficient Electrochemical Oxygen Reduction to Hydrogen Peroxide by Transition Metal-Doped Silicate Sr0.7Na0.3SiO3â~δ. ACS Applied Materials & Interfaces, 2021, 13, 382-390.	4.0	5
351	Recent Advances in Single-Atom Electrocatalysts for Oxygen Reduction Reaction. Research, 2020, 2020, 9512763.	2.8	45
352	Carbon-based single atom catalysts for tailoring the ORR pathway: a concise review. Journal of Materials Chemistry A, 2021, 9, 24803-24829.	5.2	60
353	Structural Regulation of Pdâ€Based Nanoalloys for Advanced Electrocatalysis. Small Science, 2021, 1, 2100061.	5.8	48
354	Bubble-templated synthesis of nanocatalyst Co/C as NADH oxidase mimic. National Science Review, 2022, 9, nwab186.	4.6	25
355	Nanoporous Graphene <i>via</i> a Pressing Organization Calcination Strategy for Highly Efficient Electrocatalytic Hydrogen Peroxide Generation. ACS Applied Materials & Interfaces, 2021, 13, 47478-47487.	4.0	7
356	Recent advances in electrocatalytic oxygen reduction for on-site hydrogen peroxide synthesis in acidic media. Journal of Energy Chemistry, 2022, 67, 432-450.	7.1	66
357	Engineering Ir Atomic Configuration for Switching the Pathway of Formic Acid Electrooxidation Reaction. Advanced Functional Materials, 2022, 32, 2107672.	7.8	18
358	Durable and Selective Electrochemical H ₂ O ₂ Synthesis under a Large Current Enabled by the Cathode with Highly Hydrophobic Three-Phase Architecture. ACS Catalysis, 2021, 11, 13797-13808.	5.5	59
359	Bacterial cellulose-regulated synthesis of metallic Ni catalysts for high-efficiency electrosynthesis of hydrogen peroxide. Science China Materials, 0, , 1.	3.5	6
360	Electronic Structure Regulation of Singleâ€Atom Catalysts for Electrochemical Oxygen Reduction to H ₂ O ₂ . Small, 2022, 18, e2103824.	5.2	49
361	Rational construction of thermally stable single atom catalysts: From atomic structure to practical applications. Chinese Journal of Catalysis, 2022, 43, 71-91.	6.9	15
362	Noble Metalâ€Based Multimetallic Nanoparticles for Electrocatalytic Applications. Advanced Science, 2022, 9, e2104054.	5.6	54
363	Understanding the activity origin of oxygen-doped carbon materials in catalyzing the two-electron oxygen reduction reaction towards hydrogen peroxide generation. Journal of Colloid and Interface Science, 2022, 610, 934-943.	5.0	15
364	Hybrids of Reduced Graphene Oxide Aerogel and CNT for Electrochemical O2 Reduction. Catalysts, 2021, 11, 1404.	1.6	3
365	BiVO ₄ Microparticles Decorated with Cu@Au Core-Shell Nanostructures for Photocatalytic H ₂ O ₂ Production. ACS Applied Nano Materials, 2021, 4, 13158-13166	2.4	21

ARTICLE IF CITATIONS Electrochemical two-electron O₂ reduction reaction toward H₂O₂ production: using cobalt porphyrin decorated carbon nanotubes as a 366 5.2 55 nanohybrid catalyst. Journal of Materials Chemistry A, 2021, 9, 26019-26027. Single-atom catalysts on supported silicomolybdic acid for CO₂ electroreduction: a DFT 5.2 prediction. Journal of Materials Chemistry A, 2022, 10, 6178-6186. The increase in embodied exergy to produce metal proportional to the decrease in mineral 368 2.1 0 concentration. Cleaner Engineering and Technology, 2022, 6, 100363. Exsolved Co3O4 with tunable oxygen vacancies for electrocatalytic H2O2 production. Materials Today Energy, 2022, 24, 100931. Enhanced H2O2 electrosynthesis on kneading oxidized carbon nanotubes. Applied Surface Science, 370 3.1 9 2022, 580, 152293. Oxygen Self-Doping Formicary-Like Electrocatalyst with Ultrahigh Specific Surface Area Derived from Waste Pitaya Peels for High-Efficiency H ₂O ₂ Electrosynthesis and Electro-Fenton System. SSRN Electronic Journal, 0, , . 371 0.4 Synergistically enhanced single-atomic site catalysts for clean energy conversion. Journal of 372 5.2 12 Materials Chemistry A, 2022, 10, 5673-5698. Using Palladium and Gold Palladium Nanoparticles Decorated with Molybdenum Oxide for Versatile Hydrogen Peroxide Electroproduction on Graphene Nanoribbons. ACS Applied Materials & amp; 4.0 Interfaces, 2022, 14, 6777-6793. Investigation of MXenes as oxygen reduction electrocatalyst for selective H2O2 generation. Nano 374 5.8 30 Research, 2022, 15, 3927-3932. A transferable machine-learning scheme from pure metals to alloys for predicting adsorption 5.2 energies. Journal of Materials Chemistry A, 2022, 10, 872-880. SnO₂-supported single metal atoms: a bifunctional catalyst for the electrochemical 376 5.2 14 synthesis of H₂0₂. Journal of Materials Chemistry A, 2022, 10, 6115-6121. Selective, Stable, Biasâ€Free, and Efficient Solar Hydrogen Peroxide Production on Inorganic Layered Materials. Advanced Functional Materials, 2022, 32, . Catalytic activity, thermal stability and structural evolution of PdCu single-atom alloy catalysts: the 378 1.7 4 effects of size and morphology. RSC Advances, 2021, 12, 62-71. Highly efficient two-electron electroreduction of oxygen into hydrogen peroxide over Cu-doped TiO2. Nano Research, 2022, 15, 3880-3885. 379 5.8 38 N, O-coupling towards the selectively electrochemical production of H2O2. Chinese Chemical Letters, 380 19 4.8 2022, 33, 5152-5157. Engineering the Local Atomic Environments of Indium Singleâ€Atom Catalysts for Efficient Electrochemical Production of Hydrogen Peroxide. Angewandte Chemie, 2022, 134, . Engineering the Local Atomic Environments of Indium Singleâ€Atom Catalysts for Efficient Electrochemical Production of Hydrogen Peroxide. Angewandte Chemie - International Edition, 2022, 382 7.2 127 61,. Mechanism investigation of enhanced electrochemical H2O2 production performance on oxygen-rich 5.8 hollow porous carbon spheres. Nano Research, 2022, 15, 4599-4605.

#	Article	IF	CITATIONS
384	A Selective Copper Based Oxygen Reduction Catalyst for the Electrochemical Synthesis of H 2 O 2 at Neutral pH. ChemElectroChem, 2022, 9, .	1.7	7
385	Metalâ€Free Boronâ€Rich Borocarbonitride Catalysts for Highâ€Efficient Oxygen Reduction to Produce Hydrogen Peroxideâ€. ChemistrySelect, 2022, 7, .	0.7	2
386	Non-precious metal electrocatalysts for two-electron oxygen electrochemistry: Mechanisms, progress, and outlooks. Journal of Energy Chemistry, 2022, 69, 54-69.	7.1	16
387	Tuning Twoâ€Electron Oxygenâ€Reduction Pathways for H ₂ O ₂ Electrosynthesis via Engineering Atomically Dispersed Single Metal Site Catalysts. Advanced Materials, 2022, 34, e2107954.	11.1	84
388	Surface ion isolated platinum-thiocyanate catalysts for hydrogen peroxide production via 2-electron oxygen reduction in acidic media. Chemical Engineering Journal, 2022, 435, 135105.	6.6	6
389	Electrochemical Hydrogen Peroxide Synthesis from Selective Oxygen Reduction over Metal Selenide Catalysts. Nano Letters, 2022, 22, 1257-1264.	4.5	33
390	Unravelling the Surface Structure and Active Site of Casno3, as Well as H2o2 Formation Mechanism in Two Electron Water Oxidation Reaction. SSRN Electronic Journal, 0, , .	0.4	0
391	Precise synthesis of single-atom Mo, W, Nb coordinated with oxygen functional groups of graphene oxide for stable and selective two-electron oxygen reduction in neutral media. Journal of Materials Chemistry A, 2022, 10, 9488-9496.	5.2	8
392	Research progress on carbon-based non-metallic nanomaterials as catalysts for the two-electron oxygen reduction for hydrogen peroxide production. New Carbon Materials, 2022, 37, 136-151.	2.9	9
393	Coupling Co–N–C with MXenes Yields Highly Efficient Catalysts for H ₂ O ₂ Production in Acidic Media. ACS Applied Materials & Interfaces, 2022, 14, 11350-11358.	4.0	19
394	Enhanced electrochemical hydrogen peroxide production from surface state modified mesoporous tin oxide catalysts. International Journal of Energy Research, 2022, 46, 9150-9165.	2.2	1
395	Enhanced Electrochemical O ₂ â€toâ€H ₂ O ₂ Synthesis Via Cuâ€Pb Synergistic Interplay. Small, 2022, 18, e2106534.	5.2	7
396	Linkerâ€Modulated Peroxide Electrosynthesis Using Metalâ€Organic Nanosheets**. ChemElectroChem, 2022, 9, .	1.7	3
397	Trimetallic Sulfide Hollow Superstructures with Engineered dâ€Band Center for Oxygen Reduction to Hydrogen Peroxide in Alkaline Solution. Advanced Science, 2022, 9, e2104768.	5.6	26
398	Cationâ€Vacancyâ€Enriched Nickel Phosphide for Efficient Electrosynthesis of Hydrogen Peroxides. Advanced Materials, 2022, 34, e2106541.	11.1	123
399	Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts?. Chemical Reviews, 2022, 122, 8594-8757.	23.0	118
400	Highly dispersed Ag clusters for active and stable hydrogen peroxide production. Nano Research, 2022, 15, 5842-5847.	5.8	34
401	Boosting Oxygen Reduction for Highâ€Efficiency H ₂ O ₂ Electrosynthesis on Oxygen Coordinated CoNC Catalysts. Small, 2022, 18, e2200730.	5.2	25

#	Article	IF	CITATIONS
402	Electrosynthesis of H2O2 through a two-electron oxygen reduction reaction by carbon based catalysts: From mechanism, catalyst design to electrode fabrication. Environmental Science and Ecotechnology, 2022, 11, 100170.	6.7	29
403	Tailoring 2-electron oxygen reduction reaction selectivity on h-BN-based single-atom catalysts from superoxide dismutase: A DFT investigation. Applied Surface Science, 2022, 592, 153233.	3.1	18
404	Oxygen self-doping formicary-like electrocatalyst with ultrahigh specific surface area derived from waste pitaya peels for high-yield H2O2 electrosynthesis and efficient electro-Fenton degradation. Separation and Purification Technology, 2022, 289, 120687.	3.9	11
405	Highly dispersed Co atoms anchored in porous nitrogen-doped carbon for acidic H2O2 electrosynthesis. Chemical Engineering Journal, 2022, 438, 135619.	6.6	21
406	Pd17Se15-Pd3B nanocoral electrocatalyst for selective oxygen reduction to hydrogen peroxide in near-neutral electrolyte. Applied Catalysis B: Environmental, 2022, 309, 121265.	10.8	16
407	Cooperatively interface role of surface atoms and aqueous media on single atom catalytic property for H2O2 synthesis. Journal of Colloid and Interface Science, 2022, 617, 752-763.	5.0	10
408	Tuning the atomic configuration of Co-N-C electrocatalyst enables highly-selective H2O2 production in acidic media. Applied Catalysis B: Environmental, 2022, 310, 121312.	10.8	64
409	Highâ€Efficiency Electrosynthesis of Hydrogen Peroxide from Oxygen Reduction Enabled by a Tungsten Single Atom Catalyst with Unique Terdentate N ₁ O ₂ Coordination. Advanced Functional Materials, 2022, 32, .	7.8	55
410	Metal–Support Interactions of Single-Atom Catalysts for Biomedical Applications. ACS Applied Materials & Interfaces, 2021, 13, 60815-60836.	4.0	16
411	Modulating Coordination Environment of Fe Single Atoms for High-Efficiency All-Ph-Tolerated H2o2 Electrochemical Production. SSRN Electronic Journal, 0, , .	0.4	0
412	Highly Efficient Electrochemical Synthesis of Hydrogen Peroxide (H ₂ O ₂) Enabled by Amino Acid Glycine-Derived Metal-Free Nitrogen-Doped Ordered Mesoporous Carbon. ACS Sustainable Chemistry and Engineering, 2022, 10, 5453-5462.	3.2	13
413	Mass-transfer control for selective deposition of well-dispersed AuPd cocatalysts to boost photocatalytic H2O2 production of BiVO4. Chemical Engineering Journal, 2022, 443, 136429.	6.6	26
414	Epitaxially Grown Porous Heterostructure of Hexagonal Boron Nitride/Graphene as Efficient Electrocatalyst for H2o2ÂGeneration. SSRN Electronic Journal, 0, , .	0.4	0
415	Amorphous Nickel Oxides Supported on Carbon Nanosheets as High-Performance Catalysts for Electrochemical Synthesis of Hydrogen Peroxide. ACS Catalysis, 2022, 12, 5911-5920.	5.5	37
416	Pyrimidine-assisted synthesis of S, N-codoped few-layered graphene for highly efficient hydrogen peroxide production in acid. Chem Catalysis, 2022, 2, 1450-1466.	2.9	7
417	Tailoring surface carboxyl groups of mesoporous carbon boosts electrochemical H2O2 production. Journal of Colloid and Interface Science, 2022, 622, 849-859.	5.0	12
418	A novel three-dimensional flow-through graphite felt-matrix cathode for in-situ hydrogen peroxide generation in multi-environment systems-Multiphysics modeling for in-situ hydrogen peroxide generation. Journal of Colloid and Interface Science, 2022, 622, 357-366.	5.0	1
419	Electroreduction of N ₂ to NH ₃ catalyzed by a Mn/Re(111) single-atom alloy catalyst with high activity and selectivity: a new insight from a first-principles study. Catalysis Science and Technology, 2022, 12, 4074-4085.	2.1	6

#	Article	IF	CITATIONS
420	Isolating Single and Few Atoms for Enhanced Catalysis. Advanced Materials, 2022, 34, e2201796.	11.1	84
421	Theory-guided design of hydrogen-bonded cobaltoporphyrin frameworks for highly selective electrochemical H2O2 production in acid. Nature Communications, 2022, 13, 2721.	5.8	38
422	Structure-controlled graphene electrocatalysts for high-performance H ₂ O ₂ production. Energy and Environmental Science, 2022, 15, 2858-2866.	15.6	52
423	Mechanisms and Energetics of Complete Ethylene Oxidation on a PdAu Bimetallic Catalyst from a Theoretical Perspective. Journal of Physical Chemistry C, 2022, 126, 9361-9370.	1.5	2
424	Ultrafine PdZn bimetallic nanoparticles anchored on sulfur-doped mesoporous carbon for the partial hydrogenation of alkynols. Catalysis Today, 2022, , .	2.2	3
425	Unravelling the surface structure and active site of CaSnO3, as well as H2O2 formation mechanism in two electron water oxidation reaction. Applied Surface Science, 2022, 598, 153832.	3.1	5
426	Modulating coordination environment of Fe single atoms for high-efficiency all-pH-tolerated H2O2 electrochemical production. Applied Catalysis B: Environmental, 2022, 315, 121578.	10.8	38
427	Recycling synthesis of single-atom Zn-nitrogen-carbon catalyst for electrocatalytic reduction of O2 to H2O2. Science China Materials, 2022, 65, 3490-3496.	3.5	10
428	Synergetic Dualâ€Ion Centers Boosting Metal Organic Framework Alloy Catalysts toward Efficient Two Electron Oxygen Reduction. Small, 2022, 18, .	5.2	17
429	Strategies and challenges on selective electrochemical hydrogen peroxide production: Catalyst and reaction medium design. Chem Catalysis, 2022, 2, 1919-1960.	2.9	41
430	Charge state modulation on boron site by carbon and nitrogen localized bonding microenvironment for two-electron electrocatalytic H2O2 production. Chinese Chemical Letters, 2023, 34, 107596.	4.8	3
431	Electrochemical grafting of a pyridinium onjugated assembly on graphite for H2O2 electrochemical production. ChemElectroChem, 0, , .	1.7	0
432	Harnessing Optimized Surface Reconstruction of Single-Atom Ni-Doped Ni-NiO/NC Precatalysts toward Robust H ₂ O ₂ Production. ACS Applied Materials & Interfaces, 2022, 14, 26803-26813.	4.0	5
433	Theoretical Study of Oxygen Adsorption on a Metal (Ni, Rh, Pd, Pt)-Doped Au(111) Surface. International Journal of Electrochemical Science, 0, , ArticleID:220717.	0.5	1
434	Low Consumption Fenton-Like Water Purification Through Pollutants as Electron Donors Substituting H2o2 Consumption Via Twofold Cation-Î Over Mos2 Cross-Linking G-C3n4 Hybrid. SSRN Electronic Journal, 0, , .	0.4	0
435	Regulable pyrrolic-N-doped carbon materials as an efficient electrocatalyst for selective O ₂ reduction to H ₂ O ₂ . New Journal of Chemistry, 2022, 46, 14510-14516.	1.4	7
436	Support Engineering Strategy to Tackle the Trade-Off between Catalytic Reactivity and H2o2 Selectivity in Electro-Oxygen Reduction. SSRN Electronic Journal, 0, , .	0.4	0
437	Optimization of H2O2 production in small-scale off-grid buffer layer flow cell equipped with Cobalt@N-Doped Graphitic Carbon Core–Shell Nanohybrid electrocatalyst. Materials Today Energy, 2022, , 101092.	2.5	6

#	Article	IF	CITATIONS
438	Nb2CT MXenes functionalized Coâ^'NC enhancing electrochemical H2O2 production for organics degradation. Applied Catalysis B: Environmental, 2022, 317, 121737.	10.8	19
439	Efficient overall 2e- oxygen electrolysis to H2O2 on CeO2 nanocubes. Electrochimica Acta, 2022, 430, 141091.	2.6	8
440	Photo/Electrocatalytic Hydrogen Peroxide Production by Manganese and Iron Porphyrin/Molybdenum Disulfide Nanoensembles. Small, 2022, 18, .	5.2	6
441	Low consumption Fenton-like water purification through pollutants as electron donors substituting H2O2 consumption via twofold cation-ï€ over MoS2 cross-linking g-C3N4 hybrid. Applied Catalysis B: Environmental, 2023, 320, 121871.	10.8	23
442	Catalyst design, measurement guidelines, and device integration for H2O2 electrosynthesis from oxygen reduction. Cell Reports Physical Science, 2022, 3, 100987.	2.8	15
443	Recent Advances of Singleâ€Atomâ€Alloy for Energy Electrocatalysis. Advanced Energy Materials, 2022, 12,	10.2	50
444	CO ₂ Laserâ€Induced Graphene with an Appropriate Oxygen Species as an Efficient Electrocatalyst for Hydrogen Peroxide Synthesis. Chemistry - A European Journal, 2022, 28, .	1.7	11
445	Probing the relationship between bulk and local environments to understand impacts on electrocatalytic oxygen reduction reaction. Journal of Catalysis, 2022, 414, 33-43.	3.1	12
446	Synthesis of 2, 3-dihydroquinozoline- 4(1H) - Ones using magnetically retrievable nickel based nanocatalyst. Results in Engineering, 2022, 15, 100552.	2.2	5
447	Engineering ultrathin PdAu nanoring via a facile process for electrocatalytic ethanol oxidation. Journal of Colloid and Interface Science, 2022, 628, 53-63.	5.0	5
448	Fundamental principles and environmental applications of electrochemical hydrogen peroxide production: A review. Chemical Engineering Journal, 2023, 452, 139371.	6.6	3
449	Singlet oxygen synergistic surface-adsorbed hydroxyl radicals for phenol degradation in CoP catalytic photo-Fenton. Chinese Journal of Catalysis, 2022, 43, 2678-2689.	6.9	18
450	Elucidation and modulation of active sites in holey graphene electrocatalysts for <scp>H₂O₂</scp> production. EcoMat, 2023, 5, .	6.8	11
451	Electrochemical Synthesis of Hydrogen Peroxide Catalyzed by Carbon Nanotubes with Surface Co-N _{<i>X</i>} Sites and Encapsulated Co Nanoparticles. ACS Applied Materials & Interfaces, 2022, 14, 44282-44291.	4.0	8
452	Black Phosphorous Mediates Surface Charge Redistribution of CoSe ₂ for Electrochemical H ₂ O ₂ Production in Acidic Electrolytes. Advanced Materials, 2022, 34, .	11.1	25
453	Electrocatalytic Oxygen Reduction to Produce Hydrogen Peroxide: Rational Design from Single-Atom Catalysts to Devices. Electrochemical Energy Reviews, 2022, 5, .	13.1	24
454	Adsorption Energy in Oxygen Electrocatalysis. Chemical Reviews, 2022, 122, 17028-17072.	23.0	45
455	Making cathode composites more efficient for electro-fenton and bio-electro-fenton systems: A review. Separation and Purification Technology, 2023, 304, 122302.	3.9	12

#	Article	IF	CITATIONS
456	Room-temperature fabrication of a heterostructure Cu2O@CuO nanosheet electrocatalyst for non-enzymatic detection of glucose and H2O2. Journal of Electroanalytical Chemistry, 2022, 924, 116874.	1.9	11
457	Platinumâ€Gold Alloy Catalyzes the Aerobic Oxidation of Formic Acid for Hydrogen Peroxide Synthesis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	4
458	Platinumâ€â€Gold Alloy Catalyzes the Aerobic Oxidation of Formic Acid for Hydrogen Peroxide Synthesis. Angewandte Chemie, 0, , .	1.6	0
459	High Selective Direct Synthesis of H ₂ O ₂ over Pd ₁ @γâ€Al ₂ O ₃ Singleâ€Atom Catalyst. ChemCatChem, 2022, 14, .	1.8	0
460	Using Au NPs anchored on ZrO2/carbon black toward more efficient H2O2 electrogeneration in flow-by reactor for carbaryl removal in real wastewater. Chemical Engineering Journal, 2023, 452, 139598.	6.6	14
461	Recent Advances in Catalysts for Electrochemical Methods of H ₂ O ₂ Production. Hans Journal of Nanotechnology, 2022, 12, 258-269.	0.1	0
462	Multiple Roles of Alkanethiolateâ€Ligands in Direct Formation of H ₂ O ₂ over Pd Nanoparticles. Angewandte Chemie - International Edition, 2022, 61, .	7.2	3
463	Multiple Roles of Alkanethiolate‣igands in Direct Formation of H2O2 over Pd Nanoparticles. Angewandte Chemie, 0, , .	1.6	1
464	Rational design of noble metal-based multimetallic nanomaterials: A review. Nano Energy, 2022, 104, 107959.	8.2	8
465	Electrocatalytic selectivity to H2O2 enabled by two-electron pathway on Cu-deficient Au@Cu2-xS-CNTs electrocatalysts. Chemical Engineering Journal, 2023, 454, 140317.	6.6	3
466	Tafel Slope Analysis from Inherent Rate Constants for Oxygen Reduction Reaction Over N-doped Carbon and Fe–N-doped Carbon Electrocatalysts. Catalysis Surveys From Asia, 2023, 27, 84-94.	1.0	3
467	Coâ€based Catalysts for Selective H ₂ O ₂ Electroproduction via 2â€electron Oxygen Reduction Reaction. Chemistry - A European Journal, 2023, 29, .	1.7	5
468	Mesoscale Mass Transport Enhancement on Well-Defined Porous Carbon Platform for Electrochemical H ₂ O ₂ Synthesis. Nano Letters, 2022, 22, 9551-9558.	4.5	12
469	Lowâ€Coordinated Mo Clusters for Highâ€Efficiency Electrocatalytic Hydrogen Peroxide Production. Advanced Materials Interfaces, 2023, 10, .	1.9	15
470	Facile fabrication of carbon dots containing abundant h-BN/graphite heterostructures as efficient electrocatalyst for hydrogen peroxide synthesis. Applied Catalysis B: Environmental, 2023, 324, 122195.	10.8	24
471	Heterogeneous molecular Co–N–C catalysts for efficient electrochemical H ₂ O ₂ synthesis. Energy and Environmental Science, 2023, 16, 446-459.	15.6	27
472	New strategies to improve two-electron oxygen reduction reaction selectivity of polypyrrole-based catalysts. Journal of Materials Chemistry A, 2023, 11, 2168-2177.	5.2	6
473	Single-atom CoN4 sites with elongated bonding induced by phosphorus doping for efficient H2O2 electrosynthesis. Applied Catalysis B: Environmental, 2023, 324, 122267.	10.8	26

#	Article	IF	CITATIONS
474	Iterative machine learning method for screening high-performance catalysts for H2O2 production. Chemical Engineering Science, 2023, 267, 118368.	1.9	2
475	Anion-tuned nickel chalcogenides electrocatalysts for efficient 2eâ^ ORR towards H2O2 production in acidic media. Nano Research, 2023, 16, 4729-4735.	5.8	7
476	Lowâ€Coordinated Pd Site within Amorphous Palladium Selenide for Active, Selective, and Stable H ₂ O ₂ Electrosynthesis. Advanced Materials, 2023, 35, .	11.1	17
477	Doped-nitrogen enhanced the performance of Nb2CTx on the electrocatalytic synthesis of H2O2. Nano Research, 2023, 16, 6120-6127.	5.8	6
478	Recent progress in the design of photocatalytic H2O2 synthesis system. Frontiers in Chemistry, 0, 10, .	1.8	3
479	Porous heterostructure of graphene/hexagonal boron nitride as an efficient electrocatalyst for hydrogen peroxide generation. , 2023, 5, .		12
480	Recent progress in heteroatom-doped carbon electrocatalysts for the two-electron oxygen reduction reaction. Chemical Engineering Journal, 2023, 456, 141042.	6.6	19
481	Synchronous generation of green oxidants H ₂ O ₂ and O ₃ by using a heterojunction bifunctional ZnO/ZnS@C electrocatalyst. Journal of Materials Chemistry A, 2023, 11, 3454-3463.	5.2	3
482	Chalcogenide-Based Complex Transition Metal Electrocatalyst for Hydrogen Peroxide Production. Journal of the Electrochemical Society, 2023, 170, 016506.	1.3	0
483	Atomic {Pdn+-X} States at Nanointerfaces: Implications in Energy-Related Catalysis. Energies, 2023, 16, 913.	1.6	1
484	Directing oxygen reduction reaction selectivity towards hydrogen peroxide <i>via</i> electric double layer engineering. Nanoscale, 2023, 15, 3832-3840.	2.8	4
485	Electrocatalytic Oxygen Reduction to Hydrogen Peroxide on Graphdiyne-Based Single-Atom Catalysts: First-Principles Studies. Catalysts, 2023, 13, 307.	1.6	9
486	Sb2S3-templated synthesis of sulfur-doped Sb-N-C with hierarchical architecture and high metal loading for H2O2 electrosynthesis. Nature Communications, 2023, 14, .	5.8	42
487	Nanomaterials in the environment: impacts and challenges. , 2023, , 389-414.		0
488	Recent Advances of Electrocatalyst and Cell Design for Hydrogen Peroxide Production. Nano-Micro Letters, 2023, 15, .	14.4	14
489	Generation and transfer of long lifetime reactive oxygen species (ROSs) from electrochemical regulation. Chemical Engineering Journal, 2023, 464, 142443.	6.6	6
490	CO2-derived edge-boron-doped hierarchical porous carbon catalysts for highly effective electrochemical H2O2 production. Applied Catalysis B: Environmental, 2023, 329, 122557.	10.8	9
491	Efficient electrocatalytic H2O2 production in simulated seawater on ZnO/reduced graphene oxide nanocomposite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 668, 131446.	2.3	3

#	Article	IF	CITATIONS
492	Boosting the electrochemical O2-to-H2O2 synthesis by revamping the FeMo catalyst with N/O co-doped surface. Chemical Engineering Journal, 2023, 460, 141673.	6.6	2
493	Revealing the steric effects of cobalt porphyrin on the selectivity of oxygen reduction reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 663, 131091.	2.3	11
494	Cobalt atoms anchored on nitrogen-doped hollow carbon spheres for efficient electrocatalysis of oxygen reduction to H ₂ O ₂ . JPhys Energy, 2023, 5, 025001.	2.3	1
495	Impact of catalyst loading of atomically dispersed transition metal catalysts on H2O2 electrosynthesis selectivity. Electrochimica Acta, 2023, 444, 142031.	2.6	1
496	Optimizing the Pd Sites in Pure Metallic Aerogels for Efficient Electrocatalytic H ₂ O ₂ Production. Advanced Materials, 2023, 35, .	11.1	13
497	NBOH Siteâ€Activated Graphene Quantum Dots for Boosting Electrochemical Hydrogen Peroxide Production. Advanced Materials, 2023, 35, .	11.1	43
498	Metal-free carbon-based catalysts design for oxygen reduction reaction towards hydrogen peroxide: From 3D to 0D. Materials Today, 2023, 63, 339-359.	8.3	14
499	Singleâ€Atom Catalysts for H ₂ O ₂ Electrosynthesis via Twoâ€Electron Oxygen Reduction Reaction. Advanced Functional Materials, 2023, 33, .	7.8	26
500	Emerging electrocatalysts for electrochemical advanced oxidation processes (EAOPs): recent progress and perspectives. Materials Chemistry Frontiers, 2023, 7, 2528-2553.	3.2	3
501	Ultrafine Co nanoparticles confined in nitrogen-doped carbon toward two-electron oxygen reduction reaction for H2O2 electrosynthesis in acidic media. Chinese Chemical Letters, 2023, 34, 108291.	4.8	5
502	Phosphorus Optimized Metastable Hexagonal loseâ€Packed Phase Nickel for Efficient Hydrogen Peroxide Production in Neutral Media. Advanced Functional Materials, 2023, 33, .	7.8	6
503	Computational Discovery of Active and Selective Metalâ€Nitrogenâ€Graphene Catalysts for Electrooxidation of Water to H ₂ O ₂ . ChemCatChem, 2023, 15, .	1.8	0
504	Transition metal single atom-optimized g-C ₃ N ₄ for the highly selective electrosynthesis of H ₂ O ₂ under neutral electrolytes. Nanoscale Horizons, 2023, 8, 695-704.	4.1	5
505	Promotion of the Efficient Electrocatalytic Production of H2O2 by N,O- Co-Doped Porous Carbon. Nanomaterials, 2023, 13, 1188.	1.9	3
506	Photocatalytic and Electrocatalytic Generation of Hydrogen Peroxide: Principles, Catalyst Design and Performance. Nano-Micro Letters, 2023, 15, .	14.4	17
507	Correlation of the spin state and catalytic property of M–N ₄ single-atom catalysts in oxygen reduction reactions. Physical Chemistry Chemical Physics, 2023, 25, 11673-11683.	1.3	6
508	Oxygen Vacancy Boosts the V ₂ O ₅ Performance for the Electrochemical H ₂ O ₂ Product. Industrial & Engineering Chemistry Research, 0, , .	1.8	2
509	A sulfite/air fuel cell for H ₂ O ₂ electrosynthesis. Green Chemistry, 2023, 25, 3940-3947.	4.6	5

#	Article	IF	CITATIONS
510	Recent Progress on Nonâ€Carbonâ€Supported Singleâ€Atom Catalysts for Electrochemical Conversion of Green Energy. Small Science, 2023, 3, .	5.8	3
511	Phosphorous and selenium tuning Co-based non-precious catalysts for electrosynthesis of H2O2 in acidic media. Chinese Chemical Letters, 2023, , 108472.	4.8	0
521	Electrified water treatment: fundamentals and roles of electrode materials. Nature Reviews Materials, 2023, 8, 472-490.	23.3	33
542	Chevrel phases: synthesis, structure, and electrocatalytic applications. Materials Chemistry Frontiers, 2023, 7, 5500-5518.	3.2	1
553	铜基å•原åå,¬åŒ–å‰,电å,¬åŒ–èį~原二氧化碳的ç"ç©¶èį›å±•. Science China Materials, 2023, 66,	37865-378	51.2

557	Review and perspectives on carbon-based electrocatalysts for the production of H ₂ O ₂ <i>via</i> two-electron oxygen reduction. Green Chemistry, 2023, 25, 9501-9542.	4.6	3
573	Metal–organic frameworks for electrocatalytic hydrogen peroxide production. Materials Chemistry Frontiers, 2024, 8, 1084-1100.	3.2	0
585	Recent advancements in modified SnO ₂ –Sb electrodes for electrochemical treatment of wastewater. Journal of Materials Chemistry A, 2024, 12, 4397-4420.	5.2	0