Peripheral education of the immune system by colonic

Nature 478, 250-254 DOI: 10.1038/nature10434

Citation Report

#	Article	IF	CITATIONS
2	Metagenomics and Personalized Medicine. Cell, 2011, 147, 44-56.	28.9	189
3	Role of the Commensal Microbiota in Normal and Pathogenic Host Immune Responses. Cell Host and Microbe, 2011, 10, 311-323.	11.0	458
4	Microbiota in autoimmunity and tolerance. Current Opinion in Immunology, 2011, 23, 761-768.	5.5	102
5	Thymic and Peripheral Differentiation of Regulatory T Cells. Advances in Immunology, 2011, 112, 25-71.	2.2	67
6	Colonic creatures are TReg teachers. Nature Reviews Immunology, 2011, 11, 721-721.	22.7	1
7	TCR diversity and Treg cells, sometimes more is more. European Journal of Immunology, 2011, 41, 3097-3100.	2.9	20
8	Moving <i>Helicobacter pylori</i> vaccine development forward with bioinformatics and immunomics. Expert Review of Vaccines, 2012, 11, 1031-1033.	4.4	9
10	The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes, 2012, 3, 4-14.	9.8	881
11	Non-IgE Mediated Food Allergy – Update of Recent Progress in Mucosal Immunity. Inflammation and Allergy: Drug Targets, 2012, 11, 382-396.	1.8	12
12	Kidney-infiltrating CD4+ T-cell clones promote nephritis in lupus-prone mice. Kidney International, 2012, 82, 969-979.	5.2	57
13	Man and his spaceships. Mobile Genetic Elements, 2012, 2, 272-278.	1.8	5
14	The microbiology of human hygiene and its impact on type 1 diabetes. Islets, 2012, 4, 253-261.	1.8	24
15	Oral tolerance to food protein. Mucosal Immunology, 2012, 5, 232-239.	6.0	540
16	Highlights in inflammatory bowel disease – from bench to bedside. Clinical Chemistry and Laboratory Medicine, 2012, 50, 1229-1235.	2.3	13
17	A Basal Chordate Model for Studies of Gut Microbial Immune Interactions. Frontiers in Immunology, 2012, 3, 96.	4.8	31
18	IL-10 Produced by Induced Regulatory T Cells (iTregs) Controls Colitis and Pathogenic Ex-iTregs during Immunotherapy. Journal of Immunology, 2012, 189, 5638-5648.	0.8	72
19	Road to Fulfilment: Taming the Immune Response to Restore Vision. Ophthalmic Research, 2012, 48, 43-49.	1.9	13
20	Toll-Like Receptors in Gastrointestinal Diseases. Digestive Diseases, 2012, 30, 74-77.	1.9	5

	Сіт	ation Report	
# 21	ARTICLE The Intestine: where amazing things happen. Cell Research, 2012, 22, 277-279.	lF 12.0	Citations 8
22	The Commensal Microbiota Drives Immune Homeostasis. Frontiers in Immunology, 2012, 3, 33.	4.8	54
23	FcγRIIB: a modulator of cell activation and humoral tolerance. Expert Review of Clinical Immunology, 2012, 8, 243-254.	3.0	26
24	Regulatory T Cell Differentiation: Turning Harmful into Useful. Immunity, 2012, 37, 441-443.	14.3	3
25	The price of immunity. Nature Immunology, 2012, 13, 932-938.	14.5	144
26	Microbial regulation of allergic responses to food. Seminars in Immunopathology, 2012, 34, 671-688.	6.1	40
27	Intestinal Commensal Microbes as Immune Modulators. Cell Host and Microbe, 2012, 12, 496-508.	11.0	353
28	A Broad Range of Self-Reactivity Drives Thymic Regulatory T Cell Selection to Limit Responses to Self. Immunity, 2012, 37, 475-486.	14.3	162
29	The world within: living with our microbial guests and guides. Translational Research, 2012, 160, 239-245.	5.0	9
30	The function of secretory IgA in the context of the intestinal continuum of adaptive immune responses in host-microbial mutualism. Seminars in Immunology, 2012, 24, 36-42.	5.6	32
31	Intestinal microbiota: Shaping local and systemic immune responses. Seminars in Immunology, 2012, 2 58-66.	24, 5.6	137
32	Induction of Treg cells in the mouse colonic mucosa: A central mechanism to maintain host–microbiota homeostasis. Seminars in Immunology, 2012, 24, 50-57.	5.6	50
33	The rhizosphere microbiome and plant health. Trends in Plant Science, 2012, 17, 478-486.	8.8	3,741
34	Acute Gastrointestinal Infection Induces Long-Lived Microbiota-Specific T Cell Responses. Science, 2012, 337, 1553-1556.	12.6	331
35	Emergence of T cells that recognize nonpolymorphic antigens during graft-versus- host disease. Blood, 2012, 119, 6354-6364.	1.4	22
36	Treg Cells, Life History, and Diversity. Cold Spring Harbor Perspectives in Biology, 2012, 4, a007021-a007021.	5.5	109
37	Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. Journal of Experimental Medicine, 2012, 209, 1723-1742.	8.5	530
38	Barriers of the Human Organism and Their Achilles' Heels. , 2012, , 1-50.		0

#	ARTICLE	IF	Citations
39	Lymphotoxin regulates commensal responses to enable diet-induced obesity. Nature immunology, 2012, 13, 947-953.	14.5	128
40	Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. Nature, 2012, 490, 102-106.	27.8	426
41	Infection induces friendly fire. Nature, 2012, 490, 41-43.	27.8	1
42	Innate IL-17 and IL-22 responses to enteric bacterial pathogens. Trends in Immunology, 2012, 33, 112-118.	6.8	86
43	The Impact of the Gut Microbiota on Human Health: An Integrative View. Cell, 2012, 148, 1258-1270.	28.9	2,920
44	Extrathymic Generation of Regulatory T Cells in Placental Mammals Mitigates Maternal-Fetal Conflict. Cell, 2012, 150, 29-38.	28.9	534
45	Maintenance of small intestinal and colonic tolerance by IL-10-producing regulatory T cell subsets. Current Opinion in Immunology, 2012, 24, 269-276.	5.5	40
46	Context and location dependence of adaptive Foxp3+ regulatory T cell formation during immunopathological conditions. Cellular Immunology, 2012, 279, 60-65.	3.0	15
47	Life, death, and miracles: <scp>T</scp> h17 cells in the intestine. European Journal of Immunology, 2012, 42, 2238-2245.	2.9	64
48	Immunohistochemical investigation of Foxp3 expression in the intestine in healthy and diseased dogs. Veterinary Research, 2012, 43, 23.	3.0	43
49	The Microbiome in Infectious Disease and Inflammation. Annual Review of Immunology, 2012, 30, 759-795.	21.8	688
50	Host-microbiota interactions in inflammatory bowel disease. Gut Microbes, 2012, 3, 332-344.	9.8	100
51	The Role of Secretory Immunoglobulin A in the Natural Sensing of Commensal Bacteria by Mouse Peyer's Patch Dendritic Cells. Journal of Biological Chemistry, 2012, 287, 40074-40082.	3.4	46
52	Inflammatory Bowel Disease and Celiac Disease: Environmental Risks Factors and Consequences. Molecular and Integrative Toxicology, 2012, , 291-312.	0.5	0
53	Regulatory role of suppressive motifs from commensal DNA. Mucosal Immunology, 2012, 5, 623-634.	6.0	64
54	Natural Killer T Cells: Born in the Thymus, Raised in the Gut. Gastroenterology, 2012, 143, 293-296.	1.3	3
55	Antibiotics, microbiota, and immune defense. Trends in Immunology, 2012, 33, 459-466.	6.8	279
56	T cell tolerance and immunity to commensal bacteria. Current Opinion in Immunology, 2012, 24, 385-391.	5.5	86

#	ARTICLE	IF	CITATIONS
57	The induction of Treg cells by gut-indigenous Clostridium. Current Opinion in Immunology, 2012, 24, 392-397.	5.5	130
58	Host–microbe interactions that facilitate gut colonization by commensal bifidobacteria. Trends in Microbiology, 2012, 20, 467-476.	7.7	164
59	Regulatory Tâ€cell abnormalities and the global epidemic of immunoâ€inflammatory disease. Immunology and Cell Biology, 2012, 90, 256-259.	2.3	22
60	Revisiting the old link between infection and autoimmune disease with commensals and T helper 17 cells. Immunologic Research, 2012, 54, 50-68.	2.9	23
61	Manipulating intestinal immunity and microflora: an alternative solution to viral myocarditis?. Future Microbiology, 2012, 7, 1207-1216.	2.0	8
62	Immunotoxicity, Immune Dysfunction, and Chronic Disease. Molecular and Integrative Toxicology, 2012, , .	0.5	4
63	Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature, 2012, 482, 395-399.	27.8	733
64	Reciprocal interactions of the intestinal microbiota and immune system. Nature, 2012, 489, 231-241.	27.8	1,278
65	Immunoregulation by the gut microbiota. Cellular and Molecular Life Sciences, 2012, 69, 3635-3650.	5.4	66
66	Neonatal Colonisation Expands a Specific Intestinal Antigen-Presenting Cell Subset Prior to CD4 T-Cell Expansion, without Altering T-Cell Repertoire. PLoS ONE, 2012, 7, e33707.	2.5	19
67	Loss of Sex and Age Driven Differences in the Gut Microbiome Characterize Arthritis-Susceptible *0401 Mice but Not Arthritis-Resistant *0402 Mice. PLoS ONE, 2012, 7, e36095.	2.5	195
68	Avian Resistance to Campylobacter jejuni Colonization Is Associated with an Intestinal Immunogene Expression Signature Identified by mRNA Sequencing. PLoS ONE, 2012, 7, e40409.	2.5	46
69	Probiotic Bifidobacterium breve Induces IL-10-Producing Tr1 Cells in the Colon. PLoS Pathogens, 2012, 8, e1002714.	4.7	277
70	Balancing pro- and anti-inflammatory CD4+ T helper cells in the intestine. , 0, , .		1
71	Regulatory T Cells: Mechanisms of Differentiation and Function. Annual Review of Immunology, 2012, 30, 531-564.	21.8	2,329
72	Induced CD4 ⁺ Foxp3 ⁺ Regulatory T Cells in Immune Tolerance. Annual Review of Immunology, 2012, 30, 733-758.	21.8	501
73	Interactions Between the Microbiota and the Immune System. Science, 2012, 336, 1268-1273.	12.6	3,422
74	Induction of gut IgA production through T cellâ€dependent and T cellâ€independent pathways. Annals of the New York Academy of Sciences, 2012, 1247, 97-116.	3.8	80

#	Article	IF	CITATIONS
75	Beyond pattern recognition: five immune checkpoints for scaling the microbial threat. Nature Reviews Immunology, 2012, 12, 215-225.	22.7	229
76	The effects of commensal microbiota on immune cell subsets and inflammatory responses. Immunological Reviews, 2012, 245, 45-55.	6.0	86
77	The influence of the microbiota on typeâ€l diabetes: on the threshold of a leap forward in our understanding. Immunological Reviews, 2012, 245, 239-249.	6.0	81
78	Foxp3 ⁺ regulatory T cells, immune stimulation and host defence against infection. Immunology, 2012, 136, 1-10.	4.4	74
79	Regulatory Tâ€cell therapy for inflammatory bowel disease: more questions than answers. Immunology, 2012, 136, 115-122.	4.4	111
80	Human Seminal Plasma Fosters <scp>CD</scp> 4 ⁺ Regulatory Tâ€cell Phenotype and Transforming Growth Factorâ€î²1 Expression. American Journal of Reproductive Immunology, 2012, 68, 322-330.	1.2	28
81	Immunomodulatory Effect of Vancomycin on Treg in Pediatric Inflammatory Bowel Disease and Primary Sclerosing Cholangitis. Journal of Clinical Immunology, 2013, 33, 397-406.	3.8	94
82	<scp>CD</scp> 4 ⁺ Tâ€cell subsets in intestinal inflammation. Immunological Reviews, 2013, 252, 164-182.	6.0	175
83	Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota.	27.8	2,339
	Nature, 2013, 500, 232 230.		
84	Novel Immune Potentiators and Delivery Technologies for Next Generation Vaccines. , 2013, , .		2
84 85	Novel Immune Potentiators and Delivery Technologies for Next Generation Vaccines. , 2013, , . Can an Engineer Fix an Immune System?–Rethinking theoretical biology. Acta Biotheoretica, 2013, 61, 223-258.	1.5	2
84 85 86	Novel Immune Potentiators and Delivery Technologies for Next Generation Vaccines. , 2013, , . Can an Engineer Fix an Immune System?–Rethinking theoretical biology. Acta Biotheoretica, 2013, 61, 223-258. The New Paradigm of Immunity to Tuberculosis. Advances in Experimental Medicine and Biology, 2013, , .	1.5	2 1 16
84 85 86 87	Novel Immune Potentiators and Delivery Technologies for Next Generation Vaccines. , 2013, , . Can an Engineer Fix an Immune System?–Rethinking theoretical biology. Acta Biotheoretica, 2013, 61, 223-258. The New Paradigm of Immunity to Tuberculosis. Advances in Experimental Medicine and Biology, 2013, , . Microbiota's Influence on Immunity. Else-Kröner-Fresenius-Symposia, 2013, , 43-47.	1.5 1.6 0.1	2 1 16 1
84 85 86 87 88	Nature, 2013, 500, 252 250. Novel Immune Potentiators and Delivery Technologies for Next Generation Vaccines., 2013, , . Can an Engineer Fix an Immune System?–Rethinking theoretical biology. Acta Biotheoretica, 2013, 61, 223-258. The New Paradigm of Immunity to Tuberculosis. Advances in Experimental Medicine and Biology, 2013, , . Microbiota's Influence on Immunity. Else-Kröner-Fresenius-Symposia, 2013, , 43-47. Autoimmune Features in Metabolic Liver Disease: A Single-Center Experience and Review of the Literature. Clinical Reviews in Allergy and Immunology, 2013, 45, 143-148.	1.5 1.6 0.1 6.5	2 1 16 1 39
84 85 86 87 88 88	Nature, 2013, 500, 232 230. Novel Immune Potentiators and Delivery Technologies for Next Generation Vaccines. , 2013, , . Can an Engineer Fix an Immune System?〓Rethinking theoretical biology. Acta Biotheoretica, 2013, 61, 223-258. The New Paradigm of Immunity to Tuberculosis. Advances in Experimental Medicine and Biology, 2013, , . Microbiota's Influence on Immunity. Else-Kröner-Fresenius-Symposia, 2013, , 43-47. Autoimmune Features in Metabolic Liver Disease: A Single-Center Experience and Review of the Literature. Clinical Reviews in Allergy and Immunology, 2013, 45, 143-148. The speed of change: towards a discontinuity theory of immunity?. Nature Reviews Immunology, 2013, 13, 764-769.	1.5 1.6 0.1 6.5 22.7	2 1 16 1 39 136
 84 85 86 87 88 89 90 	Nautic, 2013, 300, 252 250. Novel Immune Potentiators and Delivery Technologies for Next Generation Vaccines., 2013, , . Can an Engineer Fix an Immune System?〓Rethinking theoretical biology. Acta Biotheoretica, 2013, 61, 223-258. The New Paradigm of Immunity to Tuberculosis. Advances in Experimental Medicine and Biology, 2013, , . Microbiota's Influence on Immunity. Else-Kröner-Fresenius-Symposia, 2013, , 43-47. Autoimmune Features in Metabolic Liver Disease: A Single-Center Experience and Review of the Literature. Clinical Reviews in Allergy and Immunology, 2013, 45, 143-148. The speed of change: towards a discontinuity theory of immunity?. Nature Reviews Immunology, 2013, 13, 764-769. From meta-omics to causality: experimental models for human microbiome research. Microbiome, 2013, 1, 14.	1.5 1.6 0.1 6.5 22.7 11.1	2 1 16 1 39 136
 84 85 86 87 88 89 90 91 	Novel Immune Potentiators and Delivery Technologies for Next Generation Vaccines. , 2013, , . Can an Engineer Fix an Immune System?〓Rethinking theoretical biology. Acta Biotheoretica, 2013, 61, 223-258. The New Paradigm of Immunity to Tuberculosis. Advances in Experimental Medicine and Biology, 2013, , . Microbiota's Influence on Immunity. Else-Kröner-Fresenius-Symposia, 2013, , 43-47. Autoimmune Features in Metabolic Liver Disease: A Single-Center Experience and Review of the Literature. Clinical Reviews in Allergy and Immunology, 2013, 45, 143-148. The speed of change: towards a discontinuity theory of immunity?. Nature Reviews Immunology, 2013, 13, 764-769. From meta-omics to causality: experimental models for human microbiome research. Microbiome, 2013, 1, 14. Knockout of Ste20-Like Proline/Alanine-Rich Kinase (SPAK) Attenuates Intestinal Inflammation in Mice. American Journal of Pathology, 2013, 182, 1617-1628.	1.5 1.6 0.1 6.5 22.7 11.1 3.8	2 1 16 1 39 136 173 28

#	Article	IF	CITATIONS
93	Transcriptional control of regulatory T cell development and function. Trends in Immunology, 2013, 34, 531-539.	6.8	62
94	Peripheral education of the immune system by the colonic microbiota. Seminars in Immunology, 2013, 25, 364-369.	5.6	82
95	Microbiota-mediated colonization resistance against intestinal pathogens. Nature Reviews Immunology, 2013, 13, 790-801.	22.7	1,138
96	A fresh look at the hygiene hypothesis: How intestinal microbial exposure drives immune effector responses in atopic disease. Seminars in Immunology, 2013, 25, 378-387.	5.6	55
97	GPR15-Mediated Homing Controls Immune Homeostasis in the Large Intestine Mucosa. Science, 2013, 340, 1456-1459.	12.6	251
98	Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 2013, 504, 451-455.	27.8	3,412
99	The Intestinal Microbiota Modulates the Anticancer Immune Effects of Cyclophosphamide. Science, 2013, 342, 971-976.	12.6	1,580
100	Molecular Genetics of Inflammatory Bowel Disease. , 2013, , .		0
101	Substitutions Near the Receptor Binding Site Determine Major Antigenic Change During Influenza Virus Evolution. Science, 2013, 342, 976-979.	12.6	500
102	Aryl Hydrocarbon Receptor Control of Adaptive Immunity. Pharmacological Reviews, 2013, 65, 1148-1161.	16.0	267
103	Butyrophilin-like 2 Modulates B7 Costimulation To Induce Foxp3 Expression and Regulatory T Cell Development in Mature T Cells. Journal of Immunology, 2013, 190, 2027-2035.	0.8	55
104	The Hologenome Concept: Human, Animal and Plant Microbiota. , 2013, , .		58
105	Human Memory Heliosâ^' FOXP3+ Regulatory T Cells (Tregs) Encompass Induced Tregs That Express Aiolos and Respond to IL-11² by Downregulating Their Suppressor Functions. Journal of Immunology, 2013, 191, 4619-4627.	0.8	58
106	Commensal Clostridia: leading players in the maintenance of gut homeostasis. Gut Pathogens, 2013, 5,	3.4	631
	23.		
107	23. Genome resolved analysis of a premature infant gut microbial community reveals a Varibaculum cambriense genome and a shift towards fermentation-based metabolism during the third week of life. Microbiome, 2013, 1, 30.	11.1	50
107 108	 23. Genome resolved analysis of a premature infant gut microbial community reveals a Varibaculum cambriense genome and a shift towards fermentation-based metabolism during the third week of life. Microbiome, 2013, 1, 30. Importance of Early Microbial Colonization for Intestinal Immune Development. World Review of Nutrition and Dietetics, 2013, , 43-55. 	11.1 0.3	50
107 108 109	 23. Genome resolved analysis of a premature infant gut microbial community reveals a Varibaculum cambriense genome and a shift towards fermentation-based metabolism during the third week of life. Microbiome, 2013, 1, 30. Importance of Early Microbial Colonization for Intestinal Immune Development. World Review of Nutrition and Dietetics, 2013, , 43-55. Developmental Plasticity of Murine and Human Foxp3+ Regulatory T Cells. Advances in Immunology, 2013, 119, 85-106. 	11.1 0.3 2.2	50 1 19

#	Article	IF	CITATIONS
111	Mucosal Immunity. , 2013, , 71-81.		1
113	Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4410-4415.	7.1	893
114	Trafficking of regulatory T cells in the intestinal immune system. International Immunology, 2013, 25, 139-143.	4.0	19
115	Controlling the frontier: Regulatory T-cells and intestinal homeostasis. Seminars in Immunology, 2013, 25, 352-357.	5.6	89
116	Avian CD4+CD25+ regulatory T cells: Properties and therapeutic applications. Developmental and Comparative Immunology, 2013, 41, 397-402.	2.3	32
117	Alternative TLRs are stimulated by bacterial ligand to induce TLR2-unresponsive colon cell response. Cellular Signalling, 2013, 25, 1678-1688.	3.6	5
118	The life of regulatory T cells. Annals of the New York Academy of Sciences, 2013, 1283, 8-12.	3.8	57
120	Microbial–immune crossâ€ŧalk and regulation of the immune system. Immunology, 2013, 138, 12-22.	4.4	32
121	Gut microbiota, host health, and polysaccharides. Biotechnology Advances, 2013, 31, 318-337.	11.7	181
122	Fetal Regulatory T Cells and Peripheral Immune Tolerance <i>In Utero</i> : Implications for Development and Disease. American Journal of Reproductive Immunology, 2013, 69, 346-358.	1.2	124
123	Peptidoglycan Recognition Protein 1 Enhances Experimental Asthma by Promoting Th2 and Th17 and Limiting Regulatory T Cell and Plasmacytoid Dendritic Cell Responses. Journal of Immunology, 2013, 190, 3480-3492.	0.8	45
124	Lymphotoxin signalling in immune homeostasis and the control of microorganisms. Nature Reviews Immunology, 2013, 13, 270-279.	22.7	112
125	The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney International, 2013, 83, 1010-1016.	5.2	369
126	Role of the gut microbiota in immunity and inflammatory disease. Nature Reviews Immunology, 2013, 13, 321-335.	22.7	1,771
127	Natural CD4+CD25+FOXP3+ regulatory T cells in graft-versus-host disease. , 2013, , 245-270.		0
128	Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota. Nature, 2013, 497, 258-262.	27.8	333
129	Counterpoise between the microbiome, host immune activation and pathology. Current Opinion in Immunology, 2013, 25, 456-462.	5.5	15
130	LITERATURE Watch Implications for transplantation. American Journal of Transplantation, 2013, 13, 829-829.	4.7	4

#	Article	IF	Citations
131	Foxp3+ Regulatory T Cells in Tuberculosis. Advances in Experimental Medicine and Biology, 2013, 783, 165-180.	1.6	59
132	Basic principles of tumor-associated regulatory T cell biology. Trends in Immunology, 2013, 34, 33-40.	6.8	91
133	Intestinal bacteria induce TSLP to promote mutualistic T-cell responses. Mucosal Immunology, 2013, 6, 1157-1167.	6.0	64
134	Pathogen-Specific Treg Cells Expand Early during Mycobacterium tuberculosis Infection but Are Later Eliminated in Response to Interleukin-12. Immunity, 2013, 38, 1261-1270.	14.3	126
135	Effector and memory T cell responses to commensal bacteria. Trends in Immunology, 2013, 34, 299-306.	6.8	61
136	Pro-Angiogenic Activity of TLRs and NLRs: A Novel Link Between Gut Microbiota and Intestinal Angiogenesis. Gastroenterology, 2013, 144, 613-623.e9.	1.3	103
137	A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis. Journal of Allergy and Clinical Immunology, 2013, 131, 201-212.	2.9	381
138	Location, location, location: tissue-specific regulation of immune responses. Journal of Leukocyte Biology, 2013, 94, 409-421.	3.3	74
139	Mucosal immunology and bacterial handling inÂthe intestine. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2013, 27, 17-24.	2.4	14
140	Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonization. Genome Research, 2013, 23, 111-120.	5.5	409
141	Regulatory T Cells Control Immune Responses through Their Non-Redundant Tissue Specific Features. Frontiers in Immunology, 2013, 4, 294.	4.8	36
142	Tailoring gut immune responses with lipoteichoic acid-deficient Lactobacillus acidophilus. Frontiers in Immunology, 2013, 4, 25.	4.8	21
143	The colonic microbiota in health and disease. Current Opinion in Gastroenterology, 2013, 29, 49-54.	2.3	81
144	Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) and IPEX-related disorders. Current Opinion in Pediatrics, 2013, 25, 708-714.	2.0	147
145	Regulatory cell populations in the intestinal mucosa. Current Opinion in Gastroenterology, 2013, 29, 614-620.	2.3	14
146	Interleukin-2 and STAT5 in regulatory T cell development and function. Jak-stat, 2013, 2, e23154.	2.2	92
147	Local "On-Demand―Generation and Function of Antigen-Specific Foxp3+ Regulatory T Cells. Journal of Immunology, 2013, 190, 4971-4981.	0.8	21
148	Microbiota: Host Interactions in Mucosal Homeostasis and Systemic Autoimmunity. Cold Spring Harbor Symposia on Quantitative Biology, 2013, 78, 193-201.	1.1	43

ARTICLE IF CITATIONS # On the road to tolerance â€" Generation and migration of gut regulatory T cells. European Journal of 149 2.9 13 Immunology, 2013, 43, 1422-1425. Targeting cells in motion: Migrating toward improved therapies. European Journal of Immunology, 2013, 43, 1430-1435. 151 Alarminâ€induced cell migration. European Journal of Immunology, 2013, 43, 1412-1418. 2.9 26 <scp>CCRL</scp>2, a fringe member of the atypical chemoattractant receptor family. European Journal of Immunology, 2013, 43, 1418-1422. 2.9 Emerging aspects of leukocyte migration. European Journal of Immunology, 2013, 43, 1404-1406. 153 2.9 10 The Degree of Helicobacter pylori-Triggered Inflammation Is Manipulated by Preinfection Host Microbiota. Infection and Immunity, 2013, 81, 1382-1389. 2.2 Divergent contributions of regulatory T cells to the pathogenesis of chronic hepatitis C. Human 155 3.3 11 Vaccines and Immunotherapeutics, 2013, 9, 1569-1576. CTLA-4 promotes Foxp3 induction and regulatory T cell accumulation in the intestinal lamina propria. 6.0 Mucosal Immunology, 2013, 6, 324-334. Organ-specific regulatory T cells of thymic origin are expanded in murine prostate tumors. 157 9 4.6 Oncolmmunology, 2013, 2, e24898. The two-faced T cell epitope. Human Vaccines and Immunotherapeutics, 2013, 9, 1577-1586. 3.3 Commensal microbiota drive proliferation of conventional and Foxp3+Regulatory CD4+T cells in mesenteric lymph nodes and Peyer's patches. European Journal of Microbiology and Immunology, 2013, 159 2.8 37 3, 1-10. Gate-keeper function of the intestinal epithelium. Beneficial Microbes, 2013, 4, 67-82. 160 2.4 Induced and Natural Regulatory T Cells in the Development of Inflammatory Bowel Disease. 161 1.9 157 Inflammatory Bowel Diseases, 2013, 19, 1772-1788. Peripherally Induced Tregs – Role in Immune Homeostasis and Autoimmunity. Frontiers in Immunology, 4.8 2013, 4, 232. Peripheral and Thymic Foxp3+ Regulatory T Cells in Search of Origin, Distinction, and Function. 163 4.8 55 Frontiers in Immunology, 2013, 4, 253. From heart beats to health recipes: The role of fractal physiology in the Ancestral Health movement. 164 Journal of Evolution and Health, 2013, 1, . CD4 T Lymphopenia, Thymic Function, Homeostatic Proliferation and Late Complications Associated 165 1 with Kidney Transplantation., 2013,,. Intestinal barrier: A gentlemen's agreement between microbiota and immunity. World Journal of 101 Gastrointestinal Pathophysiology, 2014, 5, 18.

	CITATION RE	PORT	
#	ARTICLE	IF	CITATIONS
167	regulatory subsets in the suppression of neuroinflammation. Gut Microbes, 2014, 5, 552-561.	9.8	104
168	The Ability To Rearrange Dual TCRs Enhances Positive Selection, Leading to Increased Allo- and Autoreactive T Cell Repertoires. Journal of Immunology, 2014, 193, 1778-1786.	0.8	22
169	The Potential Causality of the Microbiome and Infectious Pathogens in Primary Vasculitis. Current Clinical Microbiology Reports, 2014, 1, 73-80.	3.4	2
170	Transcriptional Control of Regulatory T cells. Current Topics in Microbiology and Immunology, 2014, 381, 83-124.	1.1	16
171	HIV-induced alteration in gut microbiota. Gut Microbes, 2014, 5, 562-570.	9.8	131
172	Pharmacological Modulation of Caspase-8 in Thymus-Related Medical Conditions. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 18-24.	2.5	3
173	Rad50 and CARD9, missing links in cytosolic DNA–stimulated inflammation. Nature Immunology, 2014, 15, 534-536.	14.5	8
174	Interactions between the intestinal microbiota and innate lymphoid cells. Gut Microbes, 2014, 5, 129-140.	9.8	22
175	Organ-Specific and Memory Treg Cells: Specificity, Development, Function, and Maintenance. Frontiers in Immunology, 2014, 5, 333.	4.8	104
176	Gut Microbes and Host Physiology: What Happens When You Host Billions of Guests?. Frontiers in Endocrinology, 2014, 5, 91.	3.5	25
177	Blowing on Embers: Commensal Microbiota and Our Immune System. Frontiers in Immunology, 2014, 5, 318.	4.8	62
178	CD4CD8αα Lymphocytes, A Novel Human Regulatory T Cell Subset Induced by Colonic Bacteria and Deficient in Patients with Inflammatory Bowel Disease. PLoS Biology, 2014, 12, e1001833.	5.6	117
179	Regulatory T Cells Occupy an Isolated Niche in the Intestine that Is Antigen Independent. Cell Reports, 2014, 9, 1567-1573.	6.4	30
180	Immune Dysregulation Leading to Chronic Autoimmunity. , 2014, , 497-516.		1
181	The Importance of Microbes in Animal Development: Lessons from the Squid-Vibrio Symbiosis. Annual Review of Microbiology, 2014, 68, 177-194.	7.3	212
182	â€ ⁻ Default' generated neonatal regulatory T cells are hypomethylated at conserved nonâ€coding sequence 2 and promote longâ€ŧerm cardiac allograft survival. Immunology, 2014, 143, 618-630.	4.4	8
183	Expansion of Foxp3 ⁺ T ell populations by <i>Candida albicans</i> enhances both Th17â€eell responses and fungal dissemination after intravenous challenge. European Journal of Immunology, 2014, 44, 1069-1083.	2.9	55
184	Individuals' diet diversity influences gut microbial diversity in two freshwater fish (threespine) Tj ETQq1 1 0.7843	14.rgBT /0 6.4	Dverlock 10

	CHATION I	LEPUKI	
#	Article	IF	CITATIONS
185	Prospects for therapeutic tolerance in humans. Current Opinion in Rheumatology, 2014, 26, 219-227.	4.3	11
187	TLR4 regulates IFN-γ and IL-17 production by both thymic and induced Foxp3+ Tregs during intestinal inflammation. Journal of Leukocyte Biology, 2014, 96, 895-905.	3.3	41
188	Identifying Gut Microbe–Host Phenotype Relationships Using Combinatorial Communities in Gnotobiotic Mice. Science Translational Medicine, 2014, 6, 220ra11.	12.4	325
190	Regulatory T-Cell Differentiation and Their Function in Immune Regulation. Advances in Experimental Medicine and Biology, 2014, 841, 67-97.	1.6	18
191	The role of commensal bacteria in the regulation of sensitization to food allergens. FEBS Letters, 2014, 588, 4258-4266.	2.8	53
192	Microbial and dietary factors modulating intestinal regulatory T cell homeostasis. FEBS Letters, 2014, 588, 4182-4187.	2.8	11
193	The intestinal micro-environment imprints stromal cells to promote efficient Treg induction in gut-draining lymph nodes. Mucosal Immunology, 2014, 7, 359-368.	6.0	82
195	Role of the Microbiota in Immunity and Inflammation. Cell, 2014, 157, 121-141.	28.9	3,494
196	Intestinal microbiota and its effects on the immune system. Cellular Microbiology, 2014, 16, 1004-1013.	2.1	96
197	Relationship between gut microbiota and development of T cell associated disease. FEBS Letters, 2014, 588, 4195-4206.	2.8	84
198	Induced and thymusâ€derived <scp>F</scp> oxp3 ⁺ regulatory <scp>T</scp> cells share a common niche. European Journal of Immunology, 2014, 44, 460-468.	2.9	27
199	Diet, microbiota and autoimmune diseases. Lupus, 2014, 23, 518-526.	1.6	156
200	Food allergy: Insights into etiology, prevention, and treatment provided by murine models. Journal of Allergy and Clinical Immunology, 2014, 133, 309-317.	2.9	96
201	Uhrf to Treg cells: reinforcing the mucosal peacekeepers. Nature Immunology, 2014, 15, 533-534.	14.5	4
202	The balance of intestinal Foxp3 ⁺ regulatory T cells and Th17 cells and its biological significance. Expert Review of Clinical Immunology, 2014, 10, 353-362.	3.0	23
203	A new unexpected twist in newborn immunity. Nature Medicine, 2014, 20, 22-23.	30.7	2
204	Modulation of immune development and function by intestinal microbiota. Trends in Immunology, 2014, 35, 507-517.	6.8	259
205	Development and Survival of Th17 Cells within the Intestines: The Influence of Microbiome- and Diet-Derived Signals. Journal of Immunology, 2014, 193, 4769-4777.	0.8	49

\sim		<u> </u>	
			ЪΤ
	ITAL	KLPU	IN I

#	Article	IF	CITATIONS
206	Antigenic relatedness defines Toll-like receptor 2 is crafted on ligand blueprint. Immunobiology, 2014, 219, 798-801.	1.9	0
207	Major <scp>H</scp> istocompatibility <scp>C</scp> omplex class <scp>II</scp> b polymorphism influences gut microbiota composition and diversity. Molecular Ecology, 2014, 23, 4831-4845.	3.9	174
208	From the classic concepts to modern practice. Clinical Microbiology and Infection, 2014, 20, 4-9.	6.0	40
209	Continuous requirement for the TCR in regulatory T cell function. Nature Immunology, 2014, 15, 1070-1078.	14.5	458
210	Neuropeptides and the Microbiota-Gut-Brain Axis. Advances in Experimental Medicine and Biology, 2014, 817, 195-219.	1.6	321
211	Follicular helper T cell-mediated mucosal barrier maintenance. Immunology Letters, 2014, 162, 39-47.	2.5	13
212	Commensal microbes drive intestinal inflammation by IL-17–producing CD4 ⁺ T cells through ICOSL and OX40L costimulation in the absence of B7-1 and B7-2. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10672-10677.	7.1	25
213	Individual diet has sex-dependent effects on vertebrate gut microbiota. Nature Communications, 2014, 5, 4500.	12.8	464
214	Harnessing the Intestinal Microbiome for Optimal Therapeutic Immunomodulation. Cancer Research, 2014, 74, 4217-4221.	0.9	39
215	T cells and intestinal commensal bacteriaâ€ignorance, rejection, and acceptance. FEBS Letters, 2014, 588, 4167-4175.	2.8	15
216	Distinct Contributions of Aire and Antigen-Presenting-Cell Subsets to the Generation of Self-Tolerance in the Thymus. Immunity, 2014, 41, 414-426.	14.3	218
217	Antigen-specific expansion of human regulatory T cells as a major tolerance mechanism against mucosal fungi. Mucosal Immunology, 2014, 7, 916-928.	6.0	110
218	Gastrointestinal Microbiota–Mediated Control of Enteric Pathogens. Annual Review of Genetics, 2014, 48, 361-382.	7.6	53
219	Fast food fever: reviewing the impacts of the Western diet on immunity. Nutrition Journal, 2014, 13, 61.	3.4	289
220	The murine appendiceal microbiome is altered in spontaneous colitis and its pathological progression. Gut Pathogens, 2014, 6, 25.	3.4	36
221	The effects of the microbiota on the host immune system. Autoimmunity, 2014, 47, 494-504.	2.6	43
222	Shaping the repertoire of tumorâ€infiltrating effector and regulatory T cells. Immunological Reviews, 2014, 259, 245-258.	6.0	70
223	The importance of regulatory Tâ€cell heterogeneity in maintaining selfâ€tolerance. Immunological Reviews, 2014, 259, 103-114.	6.0	87

#	Article	IF	CITATIONS
224	Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease. Advances in Experimental Medicine and Biology, 2014, , .	1.6	59
225	Contextual functions of antigenâ€presenting cells in the gastrointestinal tract. Immunological Reviews, 2014, 259, 75-87.	6.0	30
226	The Microbiota, the Immune System and the Allograft. American Journal of Transplantation, 2014, 14, 1236-1248.	4.7	53
227	αβT Cell Receptors Expressed by CD4â^'CD8αβâ^' Intraepithelial T Cells Drive Their Fate into a Unique Lineage with Unusual MHC Reactivities. Immunity, 2014, 41, 207-218.	14.3	68
228	Macrophage-Restricted Interleukin-10 Receptor Deficiency, but Not IL-10 Deficiency, Causes Severe Spontaneous Colitis. Immunity, 2014, 40, 720-733.	14.3	460
229	Inhibition of death receptor signaling by bacterial gut pathogens. Cytokine and Growth Factor Reviews, 2014, 25, 235-243.	7.2	47
230	Segmented Filamentous Bacterium Uses Secondary and Tertiary Lymphoid Tissues to Induce Gut IgA and Specific T Helper 17 Cell Responses. Immunity, 2014, 40, 608-620.	14.3	280
231	Mining the Human Gut Microbiota for Effector Strains that Shape the Immune System. Immunity, 2014, 40, 815-823.	14.3	104
232	Th17 cells and Tregs: unlikely allies. Journal of Leukocyte Biology, 2014, 95, 723-731.	3.3	81
233	Tâ€eell selection and intestinal homeostasis. Immunological Reviews, 2014, 259, 60-74.	6.0	46
234	Friendly pathogens: prevent or provoke autoimmunity. Critical Reviews in Microbiology, 2014, 40, 273-280.	6.1	11
236	Microbes and Allogeneic Transplantation. Transplantation, 2014, 97, 5-11.	1.0	17
238	IL-10-producing CD4+ T cells negatively regulate fucosylation of epithelial cells in the gut. Scientific Reports, 2015, 5, 15918.	3.3	26
239	Antihypertensive effects of probiotics <i>Lactobacillus</i> strains in spontaneously hypertensive rats. Molecular Nutrition and Food Research, 2015, 59, 2326-2336.	3.3	156
240	Gut microbiota and allogeneic transplantation. Journal of Translational Medicine, 2015, 13, 275.	4.4	71
241	Colonic bacterial composition in Parkinson's disease. Movement Disorders, 2015, 30, 1351-1360.	3.9	932
242	Mouthguards: does the indigenous microbiome play a role in maintaining oral health?. Frontiers in Cellular and Infection Microbiology, 2015, 5, 35.	3.9	29
243	The Mucosal Immune System of Teleost Fish. Biology, 2015, 4, 525-539.	2.8	340

#	Article	IF	CITATIONS
244	Human Blood and Mucosal Regulatory T Cells Express Activation Markers and Inhibitory Receptors in Inflammatory Bowel Disease. PLoS ONE, 2015, 10, e0136485.	2.5	24
245	Phylogenetic and Metabolic Tracking of Gut Microbiota during Perinatal Development. PLoS ONE, 2015, 10, e0137347.	2.5	84
246	Differences in Expression Level of Helios and Neuropilin-1 Do Not Distinguish Thymus-Derived from Extrathymically-Induced CD4+Foxp3+ Regulatory T Cells. PLoS ONE, 2015, 10, e0141161.	2.5	139
247	Regulation of intestinal Th17 and Treg cells by gut microbiota. Inflammation and Regeneration, 2015, 35, 099-105.	3.7	2
248	T Lymphocyte Dynamics in Inflammatory Bowel Diseases: Role of the Microbiome. BioMed Research International, 2015, 2015, 1-9.	1.9	44
249	T-cell Receptor Sequencing Reveals the Clonal Diversity and Overlap of Colonic Effector and FOXP3+ T Cells in Ulcerative Colitis. Inflammatory Bowel Diseases, 2015, 21, 19-30.	1.9	26
250	New technologies for monitoring human antigen-specific T cells and regulatory T cells by flow-cytometry. Current Opinion in Pharmacology, 2015, 23, 17-24.	3.5	35
251	Regulatory T cell identity: formation and maintenance. Trends in Immunology, 2015, 36, 344-353.	6.8	119
252	Gnotobiology and the Study of Complex Interactions between the Intestinal Microbiota, Probiotics, and the Host. , 2015, , 109-133.		6
253	Mucosal Dendritic Cells. , 2015, , 489-541.		4
254	Intestinal Regulatory CD4 + T Cells. , 2015, , 777-785.		2
255	Gut Microbiota and Intestinal Adaptive Immunity. , 2015, , 849-858.		0
256	Discriminating Pathogens from Commensals at Mucosal Surfaces. , 2015, , 975-984.		5
257	T cells in the control of organ-specific autoimmunity. Journal of Clinical Investigation, 2015, 125, 2250-2260.	8.2	122
258	The human microbiome in hematopoiesis and hematologic disorders. Blood, 2015, 126, 311-318.	1.4	66
259	The Gut as a Source of Inflammation in Chronic Kidney Disease. Nephron, 2015, 130, 92-98.	1.8	346
260	Gut-Resident Lactobacillus Abundance Associates with IDO1 Inhibition and Th17 Dynamics in SIV-Infected Macaques. Cell Reports, 2015, 13, 1589-1597.	6.4	75
261	Foxp3 ⁺ regulatory Tâ€cell homeostasis quantitatively differs in murine peripheral lymph nodes and spleen. European Journal of Immunology, 2015, 45, 153-166.	2.9	11

		CITATION REPORT		
#	ARTICLE		IF	Citations
262	Microenvironment Matters. Progress in Molecular Biology and Translational Science, 2	015, 136, 35-56.	1.7	10
263	Development and Function of Effector Regulatory T Cells. Progress in Molecular Biolog Translational Science, 2015, 136, 155-174.	y and	1.7	38
264	Colonization of the upper genital tract by vaginal bacterial species in nonpregnant wo Journal of Obstetrics and Gynecology, 2015, 212, 611.e1-611.e9.	men. American	1.3	259
265	Cross-Differentiation from the CD8 Lineage to CD4ÂT Cells in the Gut-Associated Micr with a Nonessential Role of Microbiota. Cell Reports, 2015, 10, 574-585.	oenvironment	6.4	17
266	Using metabolomics to analyse the role of gut microbiota in nutrition and disease. , 20)15,,115-136.		1
267	Homeostatic Control of Memory Cell Progenitors in the Natural Killer Cell Lineage. Cell 2015, 10, 280-291.	Reports,	6.4	56
268	Culture and molecular-based profiles show shifts in bacterial communities of the uppe tract that occur with age. ISME Journal, 2015, 9, 1246-1259.	r respiratory	9.8	165
269	Microbiota-Mediated Inflammation and Antimicrobial Defense in the Intestine. Annual Immunology, 2015, 33, 227-256.	Review of	21.8	227
270	Mechanisms of Molecular Mimicry Involving the Microbiota in Neurodegeneration. Jou Alzheimer's Disease, 2015, 45, 349-362.	rnal of	2.6	259
271	Artery Tertiary Lymphoid Organs Control Aorta Immunity and Protect against Atherosov Vascular Smooth Muscle Cell Lymphotoxin β Receptors. Immunity, 2015, 42, 1100-11	tlerosis via 15.	14.3	179
272	MyD88 Adaptor-Dependent Microbial Sensing by Regulatory T Cells Promotes Mucosa Enforces Commensalism. Immunity, 2015, 43, 289-303.	l Tolerance and	14.3	133
273	Maintaining Intestinal Health: The Genetics and Immunology of Very Early Onset Inflar Disease. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1, 462-476.	nmatory Bowel	4.5	39
274	The microbiome at the pulmonary alveolar niche and its role in Mycobacterium tubercuinfection. Tuberculosis, 2015, 95, 651-658.	ılosis	1.9	51
275	The microbiota regulates type 2 immunity through RORÎ ³ t ⁺ T cells. Scier 989-993.	ce, 2015, 349,	12.6	709
276	Phenotype and function of tissue-resident unconventional Foxp3-expressing CD4+ reg Cellular Immunology, 2015, 297, 53-59.	ulatory T cells.	3.0	16
277	Parasite Proximity Drives the Expansion of Regulatory T Cells in Peyer's Patches follow Helminth Infection. Infection and Immunity, 2015, 83, 3657-3665.	ng Intestinal	2.2	31
278	The immune system as a self-centered network of lymphocytes. Immunology Letters, 2	2015, 166, 109-116.	2.5	9
279	IL-6 and ICOS Antagonize Bim and Promote Regulatory T Cell Accrual with Age. Journa 2015, 195, 944-952.	l of Immunology,	0.8	58

#	Article	IF	CITATIONS
280	The Environment of Regulatory T Cell Biology: Cytokines, Metabolites, and the Microbiome. Frontiers in Immunology, 2015, 6, 61.	4.8	116
281	Peripherally Induced Tolerance Depends on Peripheral Regulatory T Cells That Require Hopx To Inhibit Intrinsic IL-2 Expression. Journal of Immunology, 2015, 195, 1489-1497.	0.8	38
282	Intestinal mucosal tolerance and impact of gut microbiota to mucosal tolerance. Frontiers in Microbiology, 2014, 5, 781.	3.5	66
283	Symbiotic and antibiotic interactions between gut commensal microbiota and host immune system. Medicina (Lithuania), 2015, 51, 69-75.	2.0	40
284	Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria–specific CD4 ⁺ T cells. Science, 2015, 348, 1031-1035.	12.6	421
285	Microbiota—implications for immunity and transplantation. Nature Reviews Nephrology, 2015, 11, 342-353.	9.6	47
286	Epigenetic and transcriptional control of Foxp3+ regulatory T cells. Seminars in Immunology, 2015, 27, 10-18.	5.6	105
287	Time for T? Immunoinformatics addresses vaccine design for neglected tropical and emerging infectious diseases. Expert Review of Vaccines, 2015, 14, 21-35.	4.4	35
288	Profound loss of intestinal Tregs in acutely SIV-infected neonatal macaques. Journal of Leukocyte Biology, 2015, 97, 391-400.	3.3	13
289	The influence of the microbiota on the immune response to transplantation. Current Opinion in Organ Transplantation, 2015, 20, 1-7.	1.6	28
290	Autoimmune host–microbiota interactions at barrier sites and beyond. Trends in Molecular Medicine, 2015, 21, 233-244.	6.7	100
291	An IL-23R/IL-22 Circuit Regulates Epithelial Serum Amyloid A to Promote Local Effector Th17 Responses. Cell, 2015, 163, 381-393.	28.9	474
292	MHC variation sculpts individualized microbial communities that control susceptibility to enteric infection. Nature Communications, 2015, 6, 8642.	12.8	132
293	Individual intestinal symbionts induce a distinct population of RORÎ ³ ⁺ regulatory T cells. Science, 2015, 349, 993-997.	12.6	707
294	Requirement of full TCR repertoire for regulatory T cells to maintain intestinal homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12770-12775.	7.1	52
295	The Special Relationship in the Development and Function of T Helper 17 and Regulatory T Cells. Progress in Molecular Biology and Translational Science, 2015, 136, 99-129.	1.7	37
296	Melatonin Contributes to the Seasonality of Multiple Sclerosis Relapses. Cell, 2015, 162, 1338-1352.	28.9	249
297	Effect of Salmonella infection on cecal tonsil regulatory T cell properties in chickens. Poultry Science, 2015, 94, 1828-1835.	3.4	39

#	Article	IF	CITATIONS
298	A Wave of Regulatory T Cells into Neonatal Skin Mediates Tolerance to Commensal Microbes. Immunity, 2015, 43, 1011-1021.	14.3	424
299	Unique Features of Fish Immune Repertoires: Particularities of Adaptive Immunity Within the Largest Group of Vertebrates. Results and Problems in Cell Differentiation, 2015, 57, 235-264.	0.7	52
300	The interplay between the intestinal microbiota and the immune system. Clinics and Research in Hepatology and Gastroenterology, 2015, 39, 9-19.	1.5	60
301	The Role of the Gut Microbiota in the Pathogenesis of Antiphospholipid Syndrome. Current Rheumatology Reports, 2015, 17, 472.	4.7	32
302	Editorial Commentary: Immune Reconstitution Syndrome: How Do We "Tolerate" Our Microbiome?. Clinical Infectious Diseases, 2015, 60, 45-47.	5.8	4
303	Metabolic control of regulatory T cell development and function. Trends in Immunology, 2015, 36, 3-12.	6.8	227
304	Importance of the Microbiota in Early Life and Influence on Future Health. , 2016, , 159-184.		5
305	Correlating the Gut Microbiome to Health and Disease. , 2016, , 261-291.		5
306	Artery Tertiary Lymphoid Organs: Powerhouses of Atherosclerosis Immunity. Frontiers in Immunology, 2016, 7, 387.	4.8	76
307	New Insights into Regulatory T Cells: Exosome- and Non-Coding RNA-Mediated Regulation of Homeostasis and Resident Treg Cells. Frontiers in Immunology, 2016, 7, 574.	4.8	45
308	Genetic and Transcriptomic Profiles of Inflammation in Neurodegenerative Diseases: Alzheimer, Parkinson, Creutzfeldt-Jakob and Tauopathies. International Journal of Molecular Sciences, 2016, 17, 206.	4.1	91
309	Conventional and Regulatory CD4+ T Cells That Share Identical TCRs Are Derived from Common Clones. PLoS ONE, 2016, 11, e0153705.	2.5	16
310	Disrupted regulatory T cell homeostasis in inflammatory bowel diseases. World Journal of Gastroenterology, 2016, 22, 974.	3.3	43
311	How antigen specificity directs regulatory Tâ€cell function: self, foreign and engineered specificity. Hla, 2016, 88, 3-13.	0.6	31
312	The microbiota in adaptive immune homeostasis and disease. Nature, 2016, 535, 75-84.	27.8	1,336
313	Cytokine Networks and T-Cell Subsets in Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 2016, 22, 1157-1167.	1.9	118
314	Neuropeptides, Microbiota, and Behavior. International Review of Neurobiology, 2016, 131, 67-89.	2.0	41
315	Role of the intestinal mucosa in acute gastrointestinal GVHD. Hematology American Society of Hematology Education Program, 2016, 2016, 119-127.	2.5	6

#	Article	IF	CITATIONS
316	Microbiota, regulatory T cell subsets, and allergic disorders. Allergo Journal International, 2016, 25, 114-123.	2.0	26
317	Fecal Microbiota and Metabolome in a Mouse Model of Spontaneous Chronic Colitis. Inflammatory Bowel Diseases, 2016, 22, 2767-2787.	1.9	41
318	The role of short-chain fatty acid on blood pressure regulation. Current Opinion in Nephrology and Hypertension, 2016, 25, 379-383.	2.0	98
319	Regulation of Immunity to Tuberculosis. Microbiology Spectrum, 2016, 4, .	3.0	18
320	T cell receptor signalling in the control of regulatory T cell differentiation and function. Nature Reviews Immunology, 2016, 16, 220-233.	22.7	388
321	Pulmonary Th17 Antifungal Immunity Is Regulated by the Gut Microbiome. Journal of Immunology, 2016, 197, 97-107.	0.8	108
322	The microbiota and immune response during Clostridium difficile infection. Anaerobe, 2016, 41, 79-84.	2.1	28
323	Contribution of Mesenteric Lymph Nodes and GALT to the Intestinal Foxp3+ Regulatory T-Cell Compartment. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 274-280.e3.	4.5	14
324	Development and maintenance of intestinal regulatory T cells. Nature Reviews Immunology, 2016, 16, 295-309.	22.7	442
325	Developmental Progression and Interrelationship of Central and Effector Regulatory T Cell Subsets. Journal of Immunology, 2016, 196, 3665-3676.	0.8	26
326	Maternal IgG and IgA Antibodies Dampen Mucosal T Helper Cell Responses in Early Life. Cell, 2016, 165, 827-841.	28.9	231
327	Gut Immunity and Type 1 Diabetes: a Mélange of Microbes, Diet, and Host Interactions?. Current Diabetes Reports, 2016, 16, 60.	4.2	13
328	How colonization by microbiota in early life shapes the immune system. Science, 2016, 352, 539-544.	12.6	1,378
329	The Microbiome, Timing, and Barrier Function in the Context of Allergic Disease. Immunity, 2016, 44, 728-738.	14.3	126
330	Alterations in human milk leptin and insulin are associated with early changes in the infant intestinal microbiome. American Journal of Clinical Nutrition, 2016, 103, 1291-1300.	4.7	118
331	Tissue Tregs. Annual Review of Immunology, 2016, 34, 609-633.	21.8	442
332	Regulatory T cells in allergic diseases. Journal of Allergy and Clinical Immunology, 2016, 138, 639-652.	2.9	272
333	Microbiome Changes during Tuberculosis and Antituberculous Therapy. Clinical Microbiology Reviews, 2016, 29, 915-926.	13.6	71

#	Article	IF	CITATIONS
334	FOXP3 + CD4 T-cell maturity and responses to microbial stimulation alter with age and associate with early-life gut colonization. Journal of Allergy and Clinical Immunology, 2016, 138, 905-908.e4.	2.9	3
335	Regulatory T Cells and Cancer: A Two-Sided Story. Immunological Investigations, 2016, 45, 797-812.	2.0	36
336	Restoring Regulatory T Cells in Type 1 Diabetes. Current Diabetes Reports, 2016, 16, 110.	4.2	35
337	Antigen-Specific Development of Mucosal Foxp3+RORγt+ T Cells from Regulatory T Cell Precursors. Journal of Immunology, 2016, 197, 3512-3519.	0.8	36
338	Rapid and Efficient Generation of Regulatory T Cells to Commensal Antigens in the Periphery. Cell Reports, 2016, 17, 206-220.	6.4	115
339	Diverse Intestinal Bacteria Contain Putative Zwitterionic Capsular Polysaccharides with Anti-inflammatory Properties. Cell Host and Microbe, 2016, 20, 535-547.	11.0	108
340	Antigen exposure shapes the ratio between antigen-specific Tregs and conventional T cells in human peripheral blood. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6192-E6198.	7.1	37
341	G-CSF–Induced Suppressor IL-10+Neutrophils Promote Regulatory T Cells That Inhibit Graft-Versus-Host Disease in a Long-Lasting and Specific Way. Journal of Immunology, 2016, 197, 3725-3734.	0.8	35
342	Affinity for self antigen selects Treg cells with distinct functional properties. Nature Immunology, 2016, 17, 1093-1101.	14.5	91
343	Memory of Inflammation in Regulatory T Cells. Cell, 2016, 166, 977-990.	28.9	148
344	Quantifying rigidity of Parkinson's disease in relation to laxative treatment: a service evaluation. British Journal of Clinical Pharmacology, 2016, 82, 441-450.	2.4	9
345	RAGs and BUGS: An alliance for autoimmunity. Gut Microbes, 2016, 7, 503-511.	9.8	11
346	Insights into human evolution from ancient and contemporary microbiome studies. Current Opinion in Genetics and Development, 2016, 41, 14-26.	3.3	49
347	Glimpse of natural selection of long-lived T-cell clones in healthy life. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9858-9863.	7.1	19
348	Role of the intestinal mucosa in acute gastrointestinal GVHD. Blood, 2016, 128, 2395-2402.	1.4	39
349	Microbiota, regulatory T cell subsets, and allergic disorders. Allergo Journal, 2016, 25, 16-25.	0.1	0
350	Induced Regulatory T Cells: Their Development, Stability, and Applications. Trends in Immunology, 2016, 37, 803-811.	6.8	295
351	Impact of HIV on the human gut microbiota: Challenges and perspectives. Human Microbiome Journal, 2016, 2, 3-9.	3.8	11

#	Article	IF	CITATIONS
352	Exposure to the Functional Bacterial Amyloid Protein Curli Enhances Alpha-Synuclein Aggregation in Aggred Fischer 344 Rats and Caenorhabditis elegans. Scientific Reports, 2016, 6, 34477.	3.3	319
353	Control of Intestinal Regulatory T Cells by Human Commensal Bacteria. , 2016, , 591-601.		0
354	Regulatory T Cell Specificity Directs Tolerance versus Allergy against Aeroantigens in Humans. Cell, 2016, 167, 1067-1078.e16.	28.9	253
355	Tissue-specific emergence of regulatory and intraepithelial T cells from a clonal T cell precursor. Science Immunology, 2016, 1, eaaf7471.	11.9	45
356	Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer's disease. Scientific Reports, 2016, 6, 30028.	3.3	469
358	Understanding Luminal Microorganisms and Their Potential Effectiveness in Treating Intestinal Inflammation. Inflammatory Bowel Diseases, 2016, 22, 194-201.	1.9	8
359	Mode of Delivery Determines Neonatal Pharyngeal Bacterial Composition and Early Intestinal Colonization. Journal of Pediatric Gastroenterology and Nutrition, 2016, 63, 320-328.	1.8	43
360	Plant, Soil and Microbes. , 2016, , .		5
361	Microbiota and pathogen â€~pas de deux': setting up and breaking down barriers to intestinal infection. Pathogens and Disease, 2016, 74, ftw051.	2.0	20
362	Tolerance to the Intestinal Microbiota Mediated by ROR(γt) + Cells. Trends in Immunology, 2016, 37, 477-486.	6.8	30
363	Soil Microbe Diversity and Root Exudates as Important Aspects of Rhizosphere Ecosystem. , 2016, , 337-357.		12
364	Advances, challenges, and directions in shrimp disease control: the guidelines from an ecological perspective. Applied Microbiology and Biotechnology, 2016, 100, 6947-6954.	3.6	107
365	Unstable FoxP3 ⁺ T regulatory cells in NZW mice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1345-1350.	7.1	26
366	The Microbiome, Systemic Immune Function, and Allotransplantation. Clinical Microbiology Reviews, 2016, 29, 191-199.	13.6	39
367	Indigenous microbiota and Leishmaniasis. Parasite Immunology, 2016, 38, 37-44.	1.5	21
368	Exploring the Microbiome in Heart Failure. Current Heart Failure Reports, 2016, 13, 103-109.	3.3	67
369	T Regulatory Cell Biology in Health and Disease. Current Allergy and Asthma Reports, 2016, 16, 27.	5.3	63
370	Gut microbiota amplifies host-intrinsic conversion from the CD8 T cell lineage to CD4 T cells for induction of mucosal immune tolerance. Gut Microbes, 2016, 7, 40-47.	9.8	5

#	Article	IF	CITATIONS
371	Alternatively Activated Macrophages Boost Induced Regulatory T and Th17 Cell Responses during Immunotherapy for Colitis. Journal of Immunology, 2016, 196, 3305-3317.	0.8	39
372	Roles of transcription factors and epigenetic modifications in differentiation and maintenance of regulatory T cells. Microbes and Infection, 2016, 18, 378-386.	1.9	35
373	Immunopathogenesis of IBD: current state of the art. Nature Reviews Gastroenterology and Hepatology, 2016, 13, 13-27.	17.8	1,107
374	T cell epitope redundancy: cross-conservation of the TCR face between pathogens and self and its implications for vaccines and autoimmunity. Expert Review of Vaccines, 2016, 15, 607-617.	4.4	28
375	Probiotics and Bioactive Carbohydrates in Colon Cancer Management. , 2016, , .		5
376	In vivo induction of regulatory T cells for immune tolerance in hemophilia. Cellular Immunology, 2016, 301, 18-29.	3.0	34
377	Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design. FEMS Microbiology Reviews, 2016, 40, 117-132.	8.6	303
378	The Microbiome. Veterinary Pathology, 2016, 53, 10-21.	1.7	79
379	Foxp3+ T cells expressing RORγt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation. Mucosal Immunology, 2016, 9, 444-457.	6.0	341
380	Controversies concerning thymusâ€derived regulatory T cells: fundamental issues and a new perspective. Immunology and Cell Biology, 2016, 94, 3-10.	2.3	27
381	Secretory IgA in complex with Lactobacillus rhamnosus potentiates mucosal dendritic cell-mediated Treg cell differentiation via TLR regulatory proteins, RALDH2 and secretion of IL-10 and TGF-β. Cellular and Molecular Immunology, 2017, 14, 546-556.	10.5	40
382	Gut microbiome in chronic kidney disease: challenges and opportunities. Translational Research, 2017, 179, 24-37.	5.0	186
383	Microbiome of HIV-infected people. Microbial Pathogenesis, 2017, 106, 85-93.	2.9	35
384	Inflammatory bowel disease and cancer response due to anti-CTLA-4: is it in the flora?. Seminars in Immunopathology, 2017, 39, 327-331.	6.1	22
385	Burn injury influences the T cell homeostasis in a butyrate-acid sphingomyelinase dependent manner. Cellular Immunology, 2017, 313, 25-31.	3.0	13
386	The Influence of the Microbiome on Allergic Sensitization to Food. Journal of Immunology, 2017, 198, 581-589.	0.8	92
387	An expanding stage for commensal microbes in host immune regulation. Cellular and Molecular Immunology, 2017, 14, 339-348.	10.5	35
388	Asthma and the microbiome: defining the critical window in early life. Allergy, Asthma and Clinical Immunology, 2017, 13, 3.	2.0	131

#	Article	IF	CITATIONS
389	Target Intestinal Microbiota to Alleviate Disease Progression in Amyotrophic Lateral Sclerosis. Clinical Therapeutics, 2017, 39, 322-336.	2.5	182
390	Long-term use of ceftriaxone sodium induced changes in gut microbiota and immune system. Scientific Reports, 2017, 7, 43035.	3.3	34
391	The Potential Role of Gut-Derived Inflammation in Multiple System Atrophy. Journal of Parkinson's Disease, 2017, 7, 331-346.	2.8	68
392	Mining the Human Gut Microbiota for Immunomodulatory Organisms. Cell, 2017, 168, 928-943.e11.	28.9	554
393	CD40-signalling abrogates induction of RORÎ ³ t+ Treg cells by intestinal CD103+ DCs and causes fatal colitis. Nature Communications, 2017, 8, 14715.	12.8	36
394	Role of the Intestinal Immune System in Health. , 2017, , 23-56.		2
395	The gut microbiome and microbial translocation in multiple sclerosis. Clinical Immunology, 2017, 183, 213-224.	3.2	64
396	Intestinal commensal bacteria mediate lung mucosal immunity and promote resistance of newborn mice to infection. Science Translational Medicine, 2017, 9, .	12.4	168
397	The Lower Limit of Regulatory CD4+ Foxp3+ TCRÎ ² Repertoire Diversity Required To Control Autoimmunity. Journal of Immunology, 2017, 198, 3127-3135.	0.8	12
398	Transforming growth factor β: a master regulator of the gut microbiota and immune cell interactions. Clinical and Translational Immunology, 2017, 6, e136.	3.8	89
399	Tissue adaptation: Implications for gut immunity and tolerance. Journal of Experimental Medicine, 2017, 214, 1211-1226.	8.5	51
400	Homeostatic Immunity and the Microbiota. Immunity, 2017, 46, 562-576.	14.3	840
401	Reply to "Tolerogenic insulin peptide therapy precipitates type 1 diabetes― Journal of Experimental Medicine, 2017, 214, 2157-2159.	8.5	1
402	T-cell expression of AhR inhibits the maintenance of pTreg cells in the gastrointestinal tract in acute GVHD. Blood, 2017, 130, 348-359.	1.4	25
403	Induction of Colonic Regulatory T Cells by Mesalamine by Activating the Aryl Hydrocarbon Receptor. Cellular and Molecular Gastroenterology and Hepatology, 2017, 4, 135-151.	4.5	37
404	Microbiota differences between commercial breeders impacts the post-stroke immune response. Brain, Behavior, and Immunity, 2017, 66, 23-30.	4.1	58
405	The Host Microbiome Regulates and Maintains Human Health: A Primer and Perspective for Non-Microbiologists. Cancer Research, 2017, 77, 1783-1812.	0.9	270
406	Antihypertensive Effects of Probiotics. Current Hypertension Reports, 2017, 19, 26.	3.5	93

#	Article	IF	CITATIONS
407	Early-life antibiotic treatment enhances the pathogenicity of CD4+ T cells during intestinal inflammation. Journal of Leukocyte Biology, 2017, 101, 893-900.	3.3	31
408	Associations between acute gastrointestinal GvHD and the baseline gut microbiota of allogeneic hematopoietic stem cell transplant recipients and donors. Bone Marrow Transplantation, 2017, 52, 1643-1650.	2.4	63
409	A Gut Microbial Mimic that Hijacks Diabetogenic Autoreactivity to Suppress Colitis. Cell, 2017, 171, 655-667.e17.	28.9	106
410	Probiotic species in the modulation of the anticancer immune response. Seminars in Cancer Biology, 2017, 46, 182-190.	9.6	47
411	Mesenteric lymph node stromal cellâ€derived extracellular vesicles contribute to peripheral de novo induction of Foxp3 ⁺ regulatory T cells. European Journal of Immunology, 2017, 47, 2142-2152.	2.9	13
412	<i>Helicobacter</i> species are potent drivers of colonic T cell responses in homeostasis and inflammation. Science Immunology, 2017, 2, .	11.9	100
413	Hostâ€microbiota interactions and adaptive immunity. Immunological Reviews, 2017, 279, 63-69.	6.0	63
414	Regulatory T cells in skin. Immunology, 2017, 152, 372-381.	4.4	115
415	Induction and maintenance of regulatory T cells by transcription factors and epigenetic modifications. Journal of Autoimmunity, 2017, 83, 113-121.	6.5	55
416	IL-17A-dependent gut microbiota is essential for regulating diet-induced disorders in mice. Science Bulletin, 2017, 62, 1052-1063.	9.0	16
417	Antigen-specific regulatory T-cell responses to intestinal microbiota. Mucosal Immunology, 2017, 10, 1375-1386.	6.0	87
418	<i>Lactobacillus reuteri</i> induces gut intraepithelial CD4 ⁺ CD8αα ⁺ T cells. Science, 2017, 357, 806-810.	12.6	543
419	Learning Objectives for Weaving Evolutionary Thinking into Medical Education. Medical Science Educator, 2017, 27, 137-145.	1.5	2
420	Microbial antigen encounter during a preweaning interval is critical for tolerance to gut bacteria. Science Immunology, 2017, 2, .	11.9	167
421	Microbial Insights into Asthmatic Immunopathology. A Forward-Looking Synthesis and Commentary. Annals of the American Thoracic Society, 2017, 14, S316-S325.	3.2	5
422	The transcription factor Batf3 inhibits the differentiation of regulatory T cells in the periphery. Experimental and Molecular Medicine, 2017, 49, e393-e393.	7.7	44
423	The influence of the commensal microbiota on distal tumor-promoting inflammation. Seminars in Immunology, 2017, 32, 62-73.	5.6	24
424	Microbiome Structural and Functional Interactions across Host Dietary Niche Space. Integrative and Comparative Biology, 2017, 57, 743-755.	2.0	30

#	Article	IF	CITATIONS
425	Gut microbiota modulate host immune cells in cancer development and growth. Free Radical Biology and Medicine, 2017, 105, 28-34.	2.9	24
426	Magnetic resonance imaging of experimental autoimmune encephalomyelitis in the common marmoset. Journal of Neuroimmunology, 2017, 304, 86-92.	2.3	15
427	Allergies – A T cells perspective in the era beyond the TH1/TH2 paradigm. Clinical Immunology, 2017, 174, 73-83.	3.2	47
428	Gleaning Insights from Fecal Microbiota Transplantation and Probiotic Studies for the Rational Design of Combination Microbial Therapies. Clinical Microbiology Reviews, 2017, 30, 191-231.	13.6	67
429	Neonatal mucosal immunology. Mucosal Immunology, 2017, 10, 5-17.	6.0	117
430	Host Defense Mechanisms Against Viruses. , 2017, , 1175-1197.e7.		2
431	Regulatory T Cells. , 2017, , 1377-1422.		0
432	Amino acid supplements and metabolic health: a potential interplay between intestinal microbiota and systems control. Genes and Nutrition, 2017, 12, 27.	2.5	40
433	Resident Microbiome Disruption with Antibiotics Enhances Virulence of a Colonizing Pathogen. Scientific Reports, 2017, 7, 16177.	3.3	33
434	Diet and microbiota in inflammatory bowel disease: The gut in disharmony. World Journal of Gastroenterology, 2017, 23, 2124.	3.3	123
435	18. MicrObesity in pregnancy: the inside story. , 2017, , .		0
436	Regulation of Immunity to Tuberculosis. , 2017, , 73-93.		1
437	Calcium-mediated shaping of naive CD4 T-cell phenotype and function. ELife, 2017, 6, .	6.0	20
438	Peripherally Induced Regulatory T Cells: Recruited Protectors of the Central Nervous System against Autoimmune Neuroinflammation. Frontiers in Immunology, 2017, 8, 532.	4.8	42
439	Interactions between Intestinal Microbiota and Host Immune Response in Inflammatory Bowel Disease. Frontiers in Immunology, 2017, 8, 942.	4.8	249
440	The Enigma of Heat Shock Proteins in Immune Tolerance. Frontiers in Immunology, 2017, 8, 1599.	4.8	60
441	Visceral Inflammation and Immune Activation Stress the Brain. Frontiers in Immunology, 2017, 8, 1613.	4.8	50
442	The Immunomodulatory Potential of tolDCs Loaded with Heat Shock Proteins. Frontiers in Immunology, 2017, 8, 1690.	4.8	8

	Сітаті	on Report	
#	Article	IF	CITATIONS
443	Regulatory T Cells in Allergy and Asthma. Frontiers in Pediatrics, 2017, 5, 117.	1.9	84
444	Does the Gut Microbiota Influence Immunity and Inflammation in Multiple Sclerosis Pathophysiology?. Journal of Immunology Research, 2017, 2017, 1-14.	2.2	52
445	Exclusive Enteral Nutrition Induces Remission in Pediatric Crohn's Disease via Modulation of the Gut Microbiota. BioMed Research International, 2017, 2017, 1-6.	1.9	11
446	Habitat and indigenous gut microbes contribute to the plasticity of gut microbiome in oriental river prawn during rapid environmental change. PLoS ONE, 2017, 12, e0181427.	2.5	67
447	Physiology and Pathology of Immune Dysregulation: Regulatory T Cells and Anergy. , 2017, , .		1
448	A Cross-Talk Between Microbiota-Derived Short-Chain Fatty Acids and the Host Mucosal Immune System Regulates Intestinal Homeostasis and Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2018, 24, 558-572.	1.9	276
449	Transcriptional regulation and development of regulatory T cells. Experimental and Molecular Medicine, 2018, 50, e456-e456.	7.7	95
450	History, applications, and challenges of immune repertoire research. Cell Biology and Toxicology, 2018, 34, 441-457.	5.3	81
451	Type 3 regulatory T cells at the interface of symbiosis. Journal of Microbiology, 2018, 56, 163-171.	2.8	22
452	How uterine microbiota might be responsible for a receptive, fertile endometrium. Human Reproduction Update, 2018, 24, 393-415.	10.8	176
453	The Influence of the Gut Microbiome on Cancer, Immunity, and Cancer Immunotherapy. Cancer Cell, 2018, 33, 570-580.	16.8	911
454	Antibiotics as Instigators of Microbial Dysbiosis: Implications for Asthma and Allergy. Trends in Immunology, 2018, 39, 697-711.	6.8	75
455	Hospitalized Premature Infants Are Colonized by Related Bacterial Strains with Distinct Proteomic Profiles. MBio, 2018, 9, .	4.1	34
456	Goblet cell associated antigen passages are inhibited during Salmonella typhimurium infection to prevent pathogen dissemination and limit responses to dietary antigens. Mucosal Immunology, 2018, 11, 1103-1113.	6.0	47
457	Adaptive immune education by gut microbiota antigens. Immunology, 2018, 154, 28-37.	4.4	203
458	Microbiota regulate the development and function of the immune cells. International Reviews of Immunology, 2018, 37, 79-89.	3.3	19
459	Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nature Immunology, 2018, 19, 291-301.	14.5	312
460	The microbiome and autoimmunity: a paradigm from the gut–liver axis. Cellular and Molecular Immunology, 2018, 15, 595-609.	10.5	160

ARTICLE IF CITATIONS # Revealing the specificity of regulatory T cells in murine autoimmune diabetes. Proceedings of the 7.1 64 461 National Academy of Sciences of the United States of America, 2018, 115, 5265-5270. Gut-immune-brain dysfunction in Autism: Importance of sex. Brain Research, 2018, 1693, 214-217. 2.2 Contributory Role of Gut Microbiota and Their Metabolites Toward Cardiovascular Complications in 463 1.6 40 Chronic Kidney Disease. Seminars in Nephrology, 2018, 38, 193-205. Altered microbiome in chronic kidney disease: systemic effects of gut-derived uremic toxins. Clinical 464 Science, 2018, 132, 509-522. Gut Microbiomicsâ€"A Solution to Unloose the Gordian Knot of Biological Effects of Ionizing 465 2.4 16 Radiation. Journal of Heredity, 2018, 109, 212-221. Insights into defective serological memory after acute lymphoblastic leukaemia treatment: The role of the plasma cell survival niche, memory B-cells and gut microbiota in vaccine responses. Blood 5.7 Reviews, 2018, 32, 71-80. Regulatory T cells in acute and chronic kidney diseases. American Journal of Physiology - Renal 467 2.7 46 Physiology, 2018, 314, F679-F698. The mechanisms shaping the repertoire of CD4⁺ÂFoxp3⁺ regulatory T cells. 468 4.4 24 Immunology, 2018, 153, 290-296. Antigen-specific Treg cells in immunological tolerance: implications for allergic diseases. 469 1.6 31 F1000Research, 2018, 7, 38. Development and Functional Modulation of Regulatory T Cells by Transcription Factors and 1.7 Epigenetics. Cornea, 2018, 37, S42-S49. Developmental induction of human T-cell responses against Candida albicans and Aspergillus 471 3.3 23 fumigatus. Scientific Reports, 2018, 8, 16904. Commensal Bacteria-Specific CD4+ T Cell Responses in Health and Disease. Frontiers in Immunology, 4.8 2018, 9, 2667. Human Breast-Milk Feeding Enhances the Humoral and Cell-Mediated Immune Response in Neonatal 473 2.9 33 Piglets. Journal of Nutrition, 2018, 148, 1860-1870. How Can We Define "Optimal Microbiota?†A Comparative Review of Structure and Functions of 474 3.7 Microbiota of Animals, Fish, and Plants in Agriculture. Frontiers in Nutrition, 2018, 5, 90. T Cell Calcium Signaling Regulation by the Co-Receptor CD5. International Journal of Molecular 475 20 4.1 Sciences, 2018, 19, 1295. Altered Gut Microbiota in Myasthenia Gravis. Frontiers in Microbiology, 2018, 9, 2627. An Impressive Example of Peripheral Tolerance Against Nonself: Tolerance to Commensal Bacterial and 477 0 Dietary Protein Antigens., 2018, , 829-835. Antigen in theÂAbsence of DAMPs Promotes Immune Tolerance: The Role of Dendritic Cells and 478 Regulatory T Cells. , 2018, , 791-827.

#	ARTICLE	IF	CITATIONS
479	 ⁺ regulatory T cells. Science Immunology, 2018, 3, . 	11.9	145
480	Environmental Factors and Their Influence on Intestinal Fibrosis. , 2018, , 111-126.		0
481	Clonally Expanded Decidual Effector Regulatory T Cells Increase in Late Gestation of Normal Pregnancy, but Not in Preeclampsia, in Humans. Frontiers in Immunology, 2018, 9, 1934.	4.8	89
482	Extrathymically Generated Regulatory T Cells Establish a Niche for Intestinal Border-Dwelling Bacteria and Affect Physiologic Metabolite Balance. Immunity, 2018, 48, 1245-1257.e9.	14.3	100
483	T Cell Proliferation and Colitis Are Initiated by Defined Intestinal Microbes. Journal of Immunology, 2018, 201, 243-250.	0.8	15
484	Microbiota and Type 2 immune responses. Current Opinion in Immunology, 2018, 54, 20-27.	5.5	29
485	Evidence-Based Approach in Translational Dental Research. , 2018, , 81-101.		5
486	Nanotechnological approaches to colon-specific drug delivery for modulating the quorum sensing of gut-associated pathogens. , 2018, , 325-377.		1
487	Communication Between the Microbiota and Mammalian Immunity. Annual Review of Microbiology, 2018, 72, 399-422.	7.3	59
488	Microbiome and Gut Immunity: T Cells. , 2018, , 119-140.		4
489	Bacterial-Host Interactions: Physiology and Pathophysiology of Respiratory Infection. Physiological Reviews, 2018, 98, 781-811.	28.8	69
490	Sex and strain dependent differences in mucosal immunology and microbiota composition in mice. Biology of Sex Differences, 2018, 9, 26.	4.1	110
491	Intestinal Microbiota Disruption Reduces Regulatory T Cells and Increases Respiratory Viral Infection Mortality Through Increased IFNÎ ³ Production. Frontiers in Immunology, 2018, 9, 1587.	4.8	52
492	Intestinal Inflammation in Chilean Infants Fed With Bovine Formula vs. Breast Milk and Its Association With Their Gut Microbiota. Frontiers in Cellular and Infection Microbiology, 2018, 8, 190.	3.9	30
493	Emerging Functions of Regulatory T Cells in Tissue Homeostasis. Frontiers in Immunology, 2018, 9, 883.	4.8	201
494	Infectious Agents as Stimuli of Trained Innate Immunity. International Journal of Molecular Sciences, 2018, 19, 456.	4.1	78
495	Immunological pathogenesis of inflammatory bowel disease. Intestinal Research, 2018, 16, 26.	2.6	337
496	Time-resolved transcriptome and proteome landscape of human regulatory T cell (Treg) differentiation reveals novel regulators of FOXP3. BMC Biology, 2018, 16, 47.	3.8	23

#	Article	IF	CITATIONS
497	Gut bacterial composition in a mouse model of Parkinson's disease. Beneficial Microbes, 2018, 9, 799-814.	2.4	72
498	Gut microbes as future therapeutics in treating inflammatory and infectious diseases: Lessons from recent findings. Journal of Nutritional Biochemistry, 2018, 61, 111-128.	4.2	66
499	The Role of Diet in Multiple Sclerosis: Mechanistic Connections and Current Evidence. Current Nutrition Reports, 2018, 7, 150-160.	4.3	114
500	Antigen-Specificity in the Thymic Development and Peripheral Activity of CD4+FOXP3+ T Regulatory Cells. Frontiers in Immunology, 2018, 9, 1701.	4.8	37
501	Efficacy of Probiotics in Prevention and Treatment of Infectious Diseases. Clinical Microbiology Newsletter, 2018, 40, 97-103.	0.7	10
502	Soil exposure modifies the gut microbiota and supports immune tolerance in a mouse model. Journal of Allergy and Clinical Immunology, 2019, 143, 1198-1206.e12.	2.9	124
503	Microbiome and Melanoma. , 2019, , 287-302.		0
504	Dendritic Cell Accumulation in the Gut and Central Nervous System Is Differentially Dependent on $\hat{I}\pm4$ Integrins. Journal of Immunology, 2019, 203, 1417-1427.	0.8	7
506	Immunity to <i>Staphylococcus aureus</i> : Implications for Vaccine Development. Microbiology Spectrum, 2019, 7, .	3.0	18
507	Nutrition, Immunity, and Cancer. , 2019, , 209-281.		2
507 508	Nutrition, Immunity, and Cancer. , 2019, , 209-281. The Post-amyloid Era in Alzheimer's Disease: Trust Your Gut Feeling. Frontiers in Aging Neuroscience, 2019, 11, 143.	3.4	2 41
507 508 509	Nutrition, Immunity, and Cancer. , 2019, , 209-281. The Post-amyloid Era in Alzheimer's Disease: Trust Your Gut Feeling. Frontiers in Aging Neuroscience, 2019, 11, 143. Helios: still behind the clouds. Immunology, 2019, 158, 161-170.	3.4 4.4	2 41 66
507 508 509 510	Nutrition, Immunity, and Cancer., 2019, , 209-281. The Post-amyloid Era in Alzheimer's Disease: Trust Your Gut Feeling. Frontiers in Aging Neuroscience, 2019, 11, 143. Helios: still behind the clouds. Immunology, 2019, 158, 161-170. Regulatory T Cell Development in the Thymus. Journal of Immunology, 2019, 203, 2031-2041.	3.4 4.4 0.8	2 41 66 64
507 508 509 510	Nutrition, Immunity, and Cancer., 2019, , 209-281. The Post-amyloid Era in Alzheimer's Disease: Trust Your Gut Feeling. Frontiers in Aging Neuroscience, 2019, 11, 143. Helios: still behind the clouds. Immunology, 2019, 158, 161-170. Regulatory T Cell Development in the Thymus. Journal of Immunology, 2019, 203, 2031-2041. Malt1 Protease Deficiency in Mice Disrupts Immune Homeostasis at Environmental Barriers and Drives Systemic T Cell〓Mediated Autoimmunity. Journal of Immunology, 2019, 203, 2791-2806.	3.4 4.4 0.8 0.8	2 41 66 64 20
507 508 509 510 511	Nutrition, Immunity, and Cancer. , 2019, , 209-281. The Post-amyloid Era in Alzheimer's Disease: Trust Your Gut Feeling. Frontiers in Aging Neuroscience, 2019, 11, 143. Helios: still behind the clouds. Immunology, 2019, 158, 161-170. Regulatory T Cell Development in the Thymus. Journal of Immunology, 2019, 203, 2031-2041. Malt1 Protease Deficiency in Mice Disrupts Immune Homeostasis at Environmental Barriers and Drives Systemic T Cell–Mediated Autoimmunity. Journal of Immunology, 2019, 203, 2791-2806. Foxp3 Post-translational Modifications and Treg Suppressive Activity. Frontiers in Immunology, 2019, 10, 2486.	3.4 4.4 0.8 0.8 4.8	2 41 66 64 20 90
 507 508 509 510 511 512 513 	Nutrition, Immunity, and Cancer. , 2019, , 209-281. The Post-amyloid Era in Alzheimer's Disease: Trust Your Gut Feeling. Frontiers in Aging Neuroscience, 2019, 11, 143. Helios: still behind the clouds. Immunology, 2019, 158, 161-170. Regulatory T Cell Development in the Thymus. Journal of Immunology, 2019, 203, 2031-2041. Malt1 Protease Deficiency in Mice Disrupts Immune Homeostasis at Environmental Barriers and Drives Systemic T Cellãe [®] Mediated Autoimmunity. Journal of Immunology, 2019, 203, 2791-2806. Foxp3 Post-translational Modifications and Treg Suppressive Activity. Frontiers in Immunology, 2019, 10, 2486. Gut microbiotas and immune checkpoint inhibitor therapy response: a causal or coincidental relationship?. Clinical Chemistry and Laboratory Medicine, 2019, 58, 18-24.	3.4 4.4 0.8 0.8 4.8	2 41 66 64 20 90
 507 508 509 510 511 512 513 514 	Nutrition, Immunity, and Cancer. , 2019, , 209-281. The Post-amyloid Era in Alzheimer's Disease: Trust Your Gut Feeling. Frontiers in Aging Neuroscience, 2019, 11, 143. Helios: still behind the clouds. Immunology, 2019, 158, 161-170. Regulatory T Cell Development in the Thymus. Journal of Immunology, 2019, 203, 2031-2041. Malt1 Protease Deficiency in Mice Disrupts Immune Homeostasis at Environmental Barriers and Drives Systemic T Cellâ€"Mediated Autoimmunity. Journal of Immunology, 2019, 203, 2791-2806. Foxp3 Post-translational Modifications and Treg Suppressive Activity. Frontiers in Immunology, 2019, 10, 2486. Gut microbiotas and immune checkpoint inhibitor therapy response: a causal or coincidental relationship?. Clinical Chemistry and Laboratory Medicine, 2019, 58, 18-24. Regulatory T Cells: the Many Faces of Foxp3. Journal of Clinical Immunology, 2019, 39, 623-640.	3.4 4.4 0.8 0.8 4.8 2.3 3.8	2 41 66 64 20 90 13 145

#	Article	IF	CITATIONS
516	The microbiome and immunodeficiencies: Lessons from rare diseases. Journal of Autoimmunity, 2019, 98, 132-148.	6.5	35
517	Short-term consumption of a high-fat diet increases host susceptibility to Listeria monocytogenes infection. Microbiome, 2019, 7, 7.	11.1	60
518	Gut Microbiome as Target for Innovative Strategies Against Food Allergy. Frontiers in Immunology, 2019, 10, 191.	4.8	75
519	Gut microbiome and cancer immunotherapy. Cancer Letters, 2019, 447, 41-47.	7.2	159
520	In silico prediction reveals the existence of potential bioactive neuropeptides produced by the human gut microbiota. Food Research International, 2019, 119, 221-226.	6.2	8
521	MAdCAM-1-Mediated Intestinal Lymphocyte Homing Is Critical for the Development of Active Experimental Autoimmune Encephalomyelitis. Frontiers in Immunology, 2019, 10, 903.	4.8	17
522	Manipulation of Gut Microbiota Influences Immune Responses, Axon Preservation, and Motor Disability in a Model of Progressive Multiple Sclerosis. Frontiers in Immunology, 2019, 10, 1374.	4.8	35
523	Gut Mycobiota in Immunity and Inflammatory Disease. Immunity, 2019, 50, 1365-1379.	14.3	158
524	Microbiota therapy acts via a regulatory T cell MyD88/RORÎ ³ t pathway to suppress food allergy. Nature Medicine, 2019, 25, 1164-1174.	30.7	259
525	Gut Microbiome Alterations During HIV/SIV Infection: Implications for HIV Cure. Frontiers in Microbiology, 2019, 10, 1104.	3.5	52
526	Sex-specific effects of microbiome perturbations on cerebral Aβ amyloidosis and microglia phenotypes. Journal of Experimental Medicine, 2019, 216, 1542-1560.	8.5	165
527	Foxp3+ Regulatory and Conventional CD4+ T Cells Display Similarly High Frequencies of Alloantigen-Reactive Cells. Frontiers in Immunology, 2019, 10, 521.	4.8	5
528	Impact of the microbiome on cancer progression and response to anti-cancer therapies. Advances in Cancer Research, 2019, 143, 255-294.	5.0	23
529	The Microbiome and Food Allergy. Annual Review of Immunology, 2019, 37, 377-403.	21.8	102
530	Microbiome and Melanoma. , 2019, , 1-16.		0
531	Regulatory T cell adaptation in the intestine and skin. Nature Immunology, 2019, 20, 386-396.	14.5	128
532	Cross-Talk Between Antigen Presenting Cells and T Cells Impacts Intestinal Homeostasis, Bacterial Infections, and Tumorigenesis. Frontiers in Immunology, 2019, 10, 360.	4.8	200
533	<i>>Heligmosomoides polygyrus bakeri</i> Infection Decreases Smad7 Expression in Intestinal CD4+ T Cells, Which Allows TGF-I² to Induce IL-10–Producing Regulatory T Cells That Block Colitis. Journal of Immunology, 2019, 202, 2473-2481.	0.8	18

#	Article	IF	Citations
534	Microbiome, Parkinson's Disease and Molecular Mimicry. Cells, 2019, 8, 222.	4.1	56
535	Mechanisms of human FoxP3+ Treg cell development and function in health and disease. Clinical and Experimental Immunology, 2019, 197, 36-51.	2.6	62
536	Food Allergy and the Microbiota: Implications for Probiotic Use in Regulating Allergic Responses. , 2019, , 179-194.		2
537	T cell-mediated immunity to malaria. Nature Reviews Immunology, 2019, 19, 457-471.	22.7	173
539	Altered Gut Microbiota Activate and Expand Insulin B15-23–Reactive CD8+ T Cells. Diabetes, 2019, 68, 1002-1013.	0.6	28
540	Microbiome Dependent Regulation of Tregs and Th17 Cells in Mucosa. Frontiers in Immunology, 2019, 10, 426.	4.8	163
541	Immune cell populations residing in mesenteric adipose depots and mesenteric lymph nodes of lean dairy cows. Journal of Dairy Science, 2019, 102, 3452-3468.	3.4	4
542	Immunity to Staphylococcus aureus: Implications for Vaccine Development. , 2019, , 766-775.		1
543	Modulatory Effects of Pregnancy on Inflammatory Bowel Disease. Clinical and Translational Gastroenterology, 2019, 10, e00009.	2.5	24
544	Comparative analysis of microbiota along the length of the gastrointestinal tract of two tree squirrel species (<i>Sciurus aberti</i> and <i>S. niger</i>) living in sympatry. Ecology and Evolution, 2019, 9, 13344-13358.	1.9	5
545	Extracellular Membrane Vesicles from Lactobacilli Dampen IFN-Î ³ Responses in a Monocyte-Dependent Manner. Scientific Reports, 2019, 9, 17109.	3.3	37
546	One, No One, and One Hundred Thousand: T Regulatory Cells' Multiple Identities in Neuroimmunity. Frontiers in Immunology, 2019, 10, 2947.	4.8	18
547	Metabolic Control of Treg Cell Stability, Plasticity, and Tissue-Specific Heterogeneity. Frontiers in Immunology, 2019, 10, 2716.	4.8	122
548	Influence of the microbiota on epigenetics in colorectal cancer. National Science Review, 2019, 6, 1138-1148.	9.5	25
549	Impact of gut microbiota on gutâ€distal autoimmunity: a focus on T cells. Immunology, 2019, 156, 305-318.	4.4	38
550	The clinical role of the TME in solid cancer. British Journal of Cancer, 2019, 120, 45-53.	6.4	380
551	Cross-Domain and Viral Interactions in the Microbiome. Microbiology and Molecular Biology Reviews, 2019, 83, .	6.6	95
552	Helios ⁺ and Helios ^{â^'} Treg subpopulations are phenotypically and functionally distinct and express dissimilar TCR repertoires. European Journal of Immunology, 2019, 49, 398-412.	2.9	133

	CITATION	Report	
#	Article	IF	Citations
553	Defining Dysbiosis in Inflammatory Bowel Disease. Immunity, 2019, 50, 8-10.	14.3	14
554	High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nature Medicine, 2019, 25, 242-248.	30.7	280
555	Subcellular antigen localization in commensal E. coli is critical for T cell activation and induction of specific tolerance. Mucosal Immunology, 2019, 12, 97-107.	6.0	7
556	The microgenderome revealed: sex differences in bidirectional interactions between the microbiota, hormones, immunity and disease susceptibility. Seminars in Immunopathology, 2019, 41, 265-275.	6.1	160
557	Enteric α-defensins on the verge of intestinal immune tolerance and inflammation. Seminars in Cell and Developmental Biology, 2019, 88, 138-146.	5.0	17
558	A wave of Foxp3+ regulatory T cell accumulation in the neonatal liver plays unique roles in maintaining self-tolerance. Cellular and Molecular Immunology, 2020, 17, 507-518.	10.5	21
559	Regulating colonic dendritic cells by commensal glycosylated large surface layer protein A to sustain gut homeostasis against pathogenic inflammation. Mucosal Immunology, 2020, 13, 34-46.	6.0	15
561	Influence of Commensal Microbiota and Metabolite for Mucosal Immunity. , 2020, , 143-164.		1
562	Immunological Tolerance—T Cells. , 2020, , 65-90.		1
563	Treg cell-based therapies: challenges and perspectives. Nature Reviews Immunology, 2020, 20, 158-172.	22.7	383
564	Biodistribution and pharmacokinetic profiles of an altered peptide ligand derived from heat-shock proteins 60 in Lewis rats. Cell Stress and Chaperones, 2020, 25, 133-140.	2.9	5
565	Early life microbial exposure, child neurocognition and behaviour at 2 years of age: A birth cohort study. Journal of Paediatrics and Child Health, 2020, 56, 590-599.	0.8	4
566	Depletion of Foxp3 ⁺ regulatory T cells is accompanied by an increase in the relative abundance of Firmicutes in the murine gut microbiome. Immunology, 2020, 159, 344-353.	4.4	24
567	Immune Response and Tissue Damage. , 2020, , 155-203.		2
568	Roles of microbiota in response to cancer immunotherapy. Seminars in Cancer Biology, 2020, 65, 164-175.	9.6	36
569	Antigen discovery tools for adaptive immune receptor repertoire research. Current Opinion in Systems Biology, 2020, 24, 64-70.	2.6	5
570	Gut microbiota and old age: Modulating factors and interventions for healthy longevity. Experimental Gerontology, 2020, 141, 111095.	2.8	61
571	Reproductive Microbiomes and the Sexual Transmission of Beneficial Microbes: Reply to Lombardo et al Trends in Ecology and Evolution, 2020, 35, 964-965.	8.7	0

#	Article	IF	CITATIONS
572	A Potential Role for Stress-Induced Microbial Alterations in IgA-Associated Irritable Bowel Syndrome with Diarrhea. Cell Reports Medicine, 2020, 1, 100124.	6.5	24
573	Bone Morphogenic Proteins Are Immunoregulatory Cytokines Controlling FOXP3+ Treg Cells. Cell Reports, 2020, 33, 108219.	6.4	13
574	Epidemiology and Pathogenesis of Ulcerative Colitis. Gastroenterology Clinics of North America, 2020, 49, 643-654.	2.2	227
575	Intrahepatic TH17/TReg Cells in Homeostasis and Disease—It's All About the Balance. Frontiers in Pharmacology, 2020, 11, 588436.	3.5	23
576	Cutting Edge: Tissue Antigen Expression Levels Fine-Tune T Cell Differentiation Decisions In Vivo. Journal of Immunology, 2020, 205, 2577-2582.	0.8	1
577	T Cell Receptor Is Required for Differentiation, but Not Maintenance, of Intestinal CD4+ Intraepithelial Lymphocytes. Immunity, 2020, 53, 1001-1014.e20.	14.3	54
578	Short chain fatty acids: Postbiotics/metabolites and graft versus host disease colitis. Seminars in Hematology, 2020, 57, 1-6.	3.4	24
579	T cell Tolerance in Early Life. Frontiers in Immunology, 2020, 11, 576261.	4.8	9
580	The Impact of Air Pollution on Intestinal Microbiome of Asthmatic Children: A Panel Study. BioMed Research International, 2020, 2020, 1-13.	1.9	20
581	Oxygen and Metabolism: Digesting Determinants of Antibiotic Susceptibility in the Gut. IScience, 2020, 23, 101875.	4.1	1
582	Exposome and Immunity Training: How Pathogen Exposure Order Influences Innate Immune Cell Lineage Commitment and Function. International Journal of Molecular Sciences, 2020, 21, 8462.	4.1	18
583	Determinants of Tissue-Specific Metabolic Adaptation of T Cells. Cell Metabolism, 2020, 32, 908-919.	16.2	27
584	MAIT Cells in Barrier Tissues: Lessons from Immediate Neighbors. Frontiers in Immunology, 2020, 11, 584521.	4.8	27
585	Capsaicin and Gut Microbiota in Health and Disease. Molecules, 2020, 25, 5681.	3.8	41
586	The COVID-19 Pandemic: Does Our Early Life Environment, Life Trajectory and Socioeconomic Status Determine Disease Susceptibility and Severity?. International Journal of Molecular Sciences, 2020, 21, 5094.	4.1	39
587	Microbial modulation of intestinal T helper cell responses and implications for disease and therapy. Mucosal Immunology, 2020, 13, 855-866.	6.0	23
588	CD4 T Helper Cell Subsets and Related Human Immunological Disorders. International Journal of Molecular Sciences, 2020, 21, 8011.	4.1	148
589	Developmental and cellular age direct conversion of CD4+ T cells into RORÎ ³ + or Helios+ colon Treg cells. Journal of Experimental Medicine, 2020, 217, .	8.5	50

#	Article	IF	CITATIONS
590	Alzheimer's Disease: Protective Effects of Mycobacterium vaccae, a Soil-Derived Mycobacterium with Anti-Inflammatory and Anti-Tubercular Properties, on the Proteomic Profiles of Plasma and Cerebrospinal Fluid in Rats. Journal of Alzheimer's Disease, 2020, 78, 965-987.	2.6	4
591	Parallel and non-parallel changes of the gut microbiota during trophic diversification in repeated young adaptive radiations of sympatric cichlid fish. Microbiome, 2020, 8, 149.	11.1	13
593	The Gut Microbiome in Psychosis From Mice to Men: A Systematic Review of Preclinical and Clinical Studies. Frontiers in Psychiatry, 2020, 11, 799.	2.6	19
594	Inflammatory Bowel Disease: The Emergence of New Trends in Lifestyle and Nanomedicine as the Modern Tool for Pharmacotherapy. Nanomaterials, 2020, 10, 2460.	4.1	14
595	The Many Functions of Foxp3+ Regulatory T Cells in the Intestine. Frontiers in Immunology, 2020, 11, 600973.	4.8	52
596	GPA33: A Marker to Identify Stable Human Regulatory T Cells. Journal of Immunology, 2020, 204, 3139-3148.	0.8	26
597	Lactobacillus acidophilus Membrane Vesicles as a Vehicle of Bacteriocin Delivery. Frontiers in Microbiology, 2020, 11, 710.	3.5	57
598	Maternal and fetal T cells in term pregnancy and preterm labor. Cellular and Molecular Immunology, 2020, 17, 693-704.	10.5	52
599	Tissue regulatory T cells. Immunology, 2020, 161, 4-17.	4.4	30
600	Relationship between T cells and microbiota in health and disease. Progress in Molecular Biology and Translational Science, 2020, 171, 95-129.	1.7	4
601	Role of the Microbiome in Allergic Disease Development. Current Allergy and Asthma Reports, 2020, 20, 44.	5.3	21
602	Metabolic adaptation orchestrates tissue contextâ€dependent behavior in regulatory T cells. Immunological Reviews, 2020, 295, 126-139.	6.0	5
603	A role for cellâ€autocrine interleukinâ€2 in regulatory Tâ€cell homeostasis. Immunology, 2020, 160, 295-309.	4.4	14
604	Gut Microbiome and Osteoporosis. , 2020, 11, 438.		61
605	The Immune System: Our Body's Homeland Security Against Disease. , 2020, , 285-302.		2
606	The link "Cancer and autoimmune diseases―in the light of microbiota: Evidence of a potential culprit. Immunology Letters, 2020, 222, 12-28.	2.5	14
607	Effects of Jian Pi Qu Shi Formula on intestinal bacterial flora in patients with idiopathic membranous nephropathy: A prospective randomized controlled trial. Chronic Diseases and Translational Medicine, 2020, 6, 124-133.	1.2	5
608	The Gut-liver Axis in Immune Remodeling: New insight into Liver Diseases. International Journal of Biological Sciences, 2020, 16, 2357-2366.	6.4	59

			2
#	ARTICLE	IF	CITATIONS
609	transcription factor complexes. Immunology, 2020, 160, 24-37.	4.4	100
610	Multiomic immune clockworks of pregnancy. Seminars in Immunopathology, 2020, 42, 397-412.	6.1	47
611	Early sexual dimorphism in the developing gut microbiome of northern elephant seals. Molecular Ecology, 2020, 29, 2109-2122.	3.9	37
612	Gut Microbiome Modulates Response to Cancer Immunotherapy. Digestive Diseases and Sciences, 2020, 65, 885-896.	2.3	38
613	Dietary supplementation with spray-dried porcine plasma has prebiotic effects on gut microbiota in mice. Scientific Reports, 2020, 10, 2926.	3.3	21
614	Regulatory T Cell Development. Annual Review of Immunology, 2020, 38, 421-453.	21.8	144
615	The Impact of Dietary Components on Regulatory T Cells and Disease. Frontiers in Immunology, 2020, 11, 253.	4.8	38
616	Lineage Tracking the Generation of T Regulatory Cells From Microbial Activated T Effector Cells in Naìve Mice. Frontiers in Immunology, 2020, 10, 3109.	4.8	5
618	Microbiome maturation during a unique developmental window. Molecular Ecology, 2020, 29, 1941-1943.	3.9	1
619	The Effects of Low-Nickel Diet Combined with Oral Administration of Selected Probiotics on Patients with Systemic Nickel Allergy Syndrome (SNAS) and Gut Dysbiosis. Nutrients, 2020, 12, 1040.	4.1	15
620	Differences in T regulatory cells between mouse strains frequently used in immunological research. Immunology Letters, 2020, 223, 17-25.	2.5	11
621	The progress and prospect of regulatory T cells in autoimmune diseases. Journal of Autoimmunity, 2020, 111, 102461.	6.5	51
622	Commensal epitopes drive differentiation of colonic T _{regs} . Science Advances, 2020, 6, eaaz3186.	10.3	44
623	Emerging role of microbiota in immunomodulation and cancer immunotherapy. Seminars in Cancer Biology, 2021, 70, 37-52.	9.6	19
624	Gut microbiota contributes towards immunomodulation against cancer: New frontiers in precision cancer therapeutics. Seminars in Cancer Biology, 2021, 70, 11-23.	9.6	26
625	Microbiome implications in transplantation and oncology. , 2021, , 71-77.e3.		0
626	Overview of the rules of the microbial engagement in the gut microbiome: a step towards microbiome therapeutics. Journal of Applied Microbiology, 2021, 130, 1425-1441.	3.1	38
627	Microbiota metabolites modulate the T helper 17 to regulatory T cell (Th17/Treg) imbalance promoting resilience to stress-induced anxiety- and depressive-like behaviors. Brain, Behavior, and Immunity, 2021, 91, 350-368.	4.1	64

#	Article	IF	CITATIONS
628	Gut Microbiota: the Emerging Link to Lung Homeostasis and Disease. Journal of Bacteriology, 2021, 203,	2.2	29
629	The microbial origins of food allergy. Journal of Allergy and Clinical Immunology, 2021, 147, 808-813.	2.9	38
630	Comparing the effects of two different strains of mycobacteria, Mycobacterium vaccae NCTC 11659 and M. vaccae ATCC 15483, on stress-resilient behaviors and lipid-immune signaling in rats. Brain, Behavior, and Immunity, 2021, 91, 212-229.	4.1	12
631	Inhibition of PD-1 Protects against TNBS-Induced Colitis via Alteration of Enteric Microbiota. BioMed Research International, 2021, 2021, 1-12.	1.9	7
632	Gut Microbiota–Host Interactions in Inborn Errors of Immunity. International Journal of Molecular Sciences, 2021, 22, 1416.	4.1	18
634	Regulation of oral antigen delivery early in life: Implications for oral tolerance and food allergy. Clinical and Experimental Allergy, 2021, 51, 518-526.	2.9	16
635	Intestinal Regulatory T Cells. Advances in Experimental Medicine and Biology, 2021, 1278, 141-190.	1.6	7
636	Gut Microbial Dysbiosis and HIV Infection. , 2021, , .		0
637	Gut Microbiota Influence in Hematological Malignancies: From Genesis to Cure. International Journal of Molecular Sciences, 2021, 22, 1026.	4.1	31
638	The Complex Role of Regulatory T Cells in Immunity and Aging. Frontiers in Immunology, 2020, 11, 616949.	4.8	81
639	Preventive Effects of Probiotics and Prebiotics in Food Allergy: Potentials and Promise. Microorganisms for Sustainability, 2021, , 85-100.	0.7	0
640	Changes in Cecal Microbiota and Short-chain Fatty Acid During Lifespan of the Rat. Journal of Neurogastroenterology and Motility, 2021, 27, 134-146.	2.4	28
641	Lysates of Methylococcus capsulatus Bath induce a lean-like microbiota, intestinal FoxP3+RORÎ ³ t+IL-17+ Tregs and improve metabolism. Nature Communications, 2021, 12, 1093.	12.8	24
642	Immunological Impact of Intestinal T Cells on Metabolic Diseases. Frontiers in Immunology, 2021, 12, 639902.	4.8	8
643	An Antibiotic-Impacted Microbiota Compromises the Development of Colonic Regulatory T Cells and Predisposes to Dysregulated Immune Responses. MBio, 2021, 12, .	4.1	29
644	Regulatory T Cell Heterogeneity in the Thymus: Impact on Their Functional Activities. Frontiers in Immunology, 2021, 12, 643153.	4.8	26
645	Gut Helicobacter presentation by multiple dendritic cell subsets enables context-specific regulatory T cell generation. ELife, 2021, 10, .	6.0	18
646	Regulatory T Cells Developing Peri-Weaning Are Continually Required to Restrain Th2 Systemic Responses Later in Life. Frontiers in Immunology, 2020, 11, 603059.	4.8	9

#	Article	IF	CITATIONS
647	Role of gut microbiome in the outcome of cancer immunotherapy. International Journal of Cancer, 2021, 149, 760-768.	5.1	3
648	Primary Human Dendritic Cells and Whole-Blood Based Assays to Evaluate Immuno-Modulatory Properties of Heat-Killed Commensal Bacteria. Vaccines, 2021, 9, 225.	4.4	2
649	Interleukin-6 produced by enteric neurons regulates the number and phenotype of microbe-responsive regulatory TAcells in the gut. Immunity, 2021, 54, 499-513.e5.	14.3	63
650	T Cell Subsets During Early Life and Their Implication in the Treatment of Childhood Acute Lymphoblastic Leukemia. Frontiers in Immunology, 2021, 12, 582539.	4.8	3
651	The microbiota-gut-bone axis and bone health. Journal of Leukocyte Biology, 2021, 110, 525-537.	3.3	51
652	Control of Immunity by the Microbiota. Annual Review of Immunology, 2021, 39, 449-479.	21.8	129
653	Intestinal immunoregulation: lessons from human mendelian diseases. Mucosal Immunology, 2021, 14, 1017-1037.	6.0	9
656	Mechanisms of exTreg induction. European Journal of Immunology, 2021, 51, 1956-1967.	2.9	21
657	Robust microbe immune recognition in the intestinal mucosa. Genes and Immunity, 2021, 22, 268-275.	4.1	5
658	Antigen-Specific Regulatory T Cell Therapy in Autoimmune Diseases and Transplantation. Frontiers in Immunology, 2021, 12, 661875.	4.8	45
659	Effects of a Bioprocessed Soybean Meal Ingredient on the Intestinal Microbiota of Hybrid Striped Bass, Morone chrysops x M. saxatilis. Microorganisms, 2021, 9, 1032.	3.6	8
660	Thymic development of gut-microbiota-specific T cells. Nature, 2021, 594, 413-417.	27.8	108
661	Intestinal Microbiota—A Promising Target for Antiviral Therapy?. Frontiers in Immunology, 2021, 12, 676232.	4.8	18
662	Modern Sensing Approaches for Predicting Toxicological Responses of Food- and Drug-Based Bioactives on Microbiomes of Gut Origin. Journal of Agricultural and Food Chemistry, 2021, 69, 6396-6413.	5.2	4
663	Regulatory T Cells in GVHD Therapy. Frontiers in Immunology, 2021, 12, 697854.	4.8	22
664	Antigen Processing, Presentation, and Tolerance: Role in Autoimmune Skin Diseases. Journal of Investigative Dermatology, 2022, 142, 750-759.	0.7	3
665	Gut Microbiota in Cancer Immune Response and Immunotherapy. Trends in Cancer, 2021, 7, 647-660.	7.4	136
666	Microbiota Signals during the Neonatal Period Forge Life-Long Immune Responses. International Journal of Molecular Sciences, 2021, 22, 8162.	4.1	9

#	Article	IF	CITATIONS
667	A Central Role for Atg5 in Microbiota-Dependent Foxp3+ RORÎ ³ t+ Treg Cell Preservation to Maintain Intestinal Immune Homeostasis. Frontiers in Immunology, 2021, 12, 705436.	4.8	5
668	Intestinal Regulatory T Cells as Specialized Tissue-Restricted Immune Cells in Intestinal Immune Homeostasis and Disease. Frontiers in Immunology, 2021, 12, 716499.	4.8	34
669	Phenotypic and Functional Diversity in Regulatory T Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 715901.	3.7	17
671	Influences of non-IgE-mediated cow's milk protein allergy-associated gut microbial dysbiosis on regulatory T cell-mediated intestinal immune tolerance and homeostasis. Microbial Pathogenesis, 2021, 158, 105020.	2.9	13
672	Diverse functions and mechanisms of regulatory T cell in ischemic stroke. Experimental Neurology, 2021, 343, 113782.	4.1	13
673	The Gut-Lung Axis in Cystic Fibrosis. Journal of Bacteriology, 2021, 203, e0031121.	2.2	44
674	Cognate recognition of microbial antigens defines constricted CD4+ TÂcell receptor repertoires in the inflamed colon. Immunity, 2021, 54, 2565-2577.e6.	14.3	8
675	The role of the pediatric cutaneous and gut microbiomes in childhood disease: A review. Seminars in Perinatology, 2021, 45, 151452.	2.5	1
676	Mapping the spatial distribution of T cells in repertoire dimension. Molecular Immunology, 2021, 138, 161-171.	2.2	1
677	The epigenetic regulation of the immune system during pregnancy. , 2021, , 365-385.		2
677 678	The epigenetic regulation of the immune system during pregnancy. , 2021, , 365-385. Gut microbiota and the immune system and inflammation. , 2021, , 311-333.		2
677 678 679	The epigenetic regulation of the immune system during pregnancy. , 2021, , 365-385. Gut microbiota and the immune system and inflammation. , 2021, , 311-333. The Microbiome as an Endocrine Organ. , 2021, , .		2 0 0
677 678 679 680	The epigenetic regulation of the immune system during pregnancy. , 2021, , 365-385. Gut microbiota and the immune system and inflammation. , 2021, , 311-333. The Microbiome as an Endocrine Organ. , 2021, , . Gut microbiota impact on the peripheral immune response in non-alcoholic fatty liver disease related hepatocellular carcinoma. Nature Communications, 2021, 12, 187.	12.8	2 0 0 209
677 678 679 680 681	The epigenetic regulation of the immune system during pregnancy. , 2021, , 365-385. Gut microbiota and the immune system and inflammation. , 2021, , 311-333. The Microbiome as an Endocrine Organ. , 2021, , . Gut microbiota impact on the peripheral immune response in non-alcoholic fatty liver disease related hepatocellular carcinoma. Nature Communications, 2021, 12, 187. Immunopathogenesis: the role of mucosal and skin microbiota in SLE. , 2021, , 117-130.	12.8	2 0 0 209 0
677 678 679 680 681 682	The epigenetic regulation of the immune system during pregnancy. , 2021, , 365-385. Gut microbiota and the immune system and inflammation. , 2021, , 311-333. The Microbiome as an Endocrine Organ. , 2021, , . Gut microbiota impact on the peripheral immune response in non-alcoholic fatty liver disease related hepatocellular carcinoma. Nature Communications, 2021, 12, 187. Immunopathogenesis: the role of mucosal and skin microbiota in SLE. , 2021, , 117-130. Safety Challenges Facing Next Generation Vaccines and the Role for Biomarkers. , 2013, , 351-364.	12.8	2 0 0 209 0 2
677 678 679 680 681 682 683	The epigenetic regulation of the immune system during pregnancy. , 2021, , 365-385. Gut microbiota and the immune system and inflammation. , 2021, , 311-333. The Microbiome as an Endocrine Organ. , 2021, , . Gut microbiota impact on the peripheral immune response in non-alcoholic fatty liver disease related hepatocellular carcinoma. Nature Communications, 2021, 12, 187. Immunopathogenesis: the role of mucosal and skin microbiota in SLE. , 2021, , 117-130. Safety Challenges Facing Next Generation Vaccines and the Role for Biomarkers. , 2013, , 351-364. Bioactive Carbohydrate: Prebiotics and Colorectal Cancer. , 2016, , 57-82.	12.8	2 0 0 209 0 2 2
 677 678 679 680 681 682 683 684 	The epigenetic regulation of the immune system during pregnancy. , 2021, , 365-385. Gut microbiota and the immune system and inflammation. , 2021, , 311-333. The Microbiome as an Endocrine Organ. , 2021, , . Gut microbiota impact on the peripheral immune response in non-alcoholic fatty liver disease related hepatocellular carcinoma. Nature Communications, 2021, 12, 187. Immunopathogenesis: the role of mucosal and skin microbiota in SLE. , 2021, , 117-130. Safety Challenges Facing Next Generation Vaccines and the Role for Biomarkers. , 2013, , 351-364. Bioactive Carbohydrate: Prebiotics and Colorectal Cancer. , 2016, , 57-82. Role of Gut Microbiota in Combating Oxidative Stress. , 2019, , 43-82.	12.8	2 0 0 209 2 2 2 2 19

#	Article	IF	CITATIONS
686	Role of the gut microbiota in immunity and inflammatory disease. , 0, .		1
687	Host–microbiota interactions in inflammatory bowel disease. Nature Reviews Immunology, 2020, 20, 411-426.	22.7	407
688	Host–microbiota interactions in immune-mediated diseases. Nature Reviews Microbiology, 2020, 18, 521-538.	28.6	254
689	Gut microbiota and systemic immunity in health and disease. International Immunology, 2021, 33, 197-209.	4.0	34
690	Immune tolerance therapies for autoimmune diseases based on heat shock protein T-cell epitopes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160531.	4.0	23
695	Role and significance of traditional Chinese medicine in regulating gastrointestinal microecology to prevent and treat gastrointestinal cancer. World Chinese Journal of Digestology, 2020, 28, 1-8.	0.1	1
696	Synchronization of mothers and offspring promotes tolerance and limits allergy. JCI Insight, 2020, 5, .	5.0	25
697	Influences on allergic mechanisms through gut, lung, and skin microbiome exposures. Journal of Clinical Investigation, 2019, 129, 1483-1492.	8.2	50
698	MyD88 is critically involved in immune tolerance breakdown at environmental interfaces of Foxp3-deficient mice. Journal of Clinical Investigation, 2012, 122, 1933-1947.	8.2	50
699	Commensal Propionibacterium strain UF1 mitigates intestinal inflammation via Th17 cell regulation. Journal of Clinical Investigation, 2017, 127, 3970-3986.	8.2	67
700	Evolution, immunity and the emergence of brain superautoantigens. F1000Research, 2017, 6, 171.	1.6	24
701	Signaling in T cells – is anything the m(a)TOR with the picture(s)?. F1000Research, 2016, 5, 191.	1.6	6
702	STAT5 and CD4+ T Cell Immunity. F1000Research, 2017, 6, 32.	1.6	39
703	Early-Life Gut Bacteria Associate with IL-4â^', IL-10â^' and IFN-Î ³ Production at Two Years of Age. PLoS ONE, 2012, 7, e49315.	2.5	37
704	The Microaerophilic Microbiota of De-Novo Paediatric Inflammatory Bowel Disease: The BISCUIT Study. PLoS ONE, 2013, 8, e58825.	2.5	63
705	Effects of Vendor and Genetic Background on the Composition of the Fecal Microbiota of Inbred Mice. PLoS ONE, 2015, 10, e0116704.	2.5	268
706	Comparative Analysis of Gut Microbiota of Native Tibetan and Han Populations Living at Different Altitudes. PLoS ONE, 2016, 11, e0155863.	2.5	70
707	The Association between Modulating Inflammatory Cytokines and Constipation of Geriatrics in Iran. Middle East Journal of Digestive Diseases, 2017, 9, 228-234.	0.4	13

#	Article	IF	Citations
708	ACCEPTIVE IMMUNITY — A BASIS FOR SYMBIOTIC RELATIONSHIPS. Russian Journal of Infection and Immunity, 2015, 5, 113-130.	0.7	8
709	Regulatory T Cells in Treatment of Type-1 Diabetes: Types and Approaches. Sports and Exercise Medicine - Open Journal, 2015, 1, 54-66.	0.3	3
710	Interaction between Microbes and Host Intestinal Health: Modulation by Dietary Nutrients and Gut-Brain-Endocrine-Immune Axis. Current Protein and Peptide Science, 2015, 16, 592-603.	1.4	116
711	æɨ河猴和食蟹猴直è,微生物èŒç¾ड़ॕॢså®åŸºå›ç»"比较. Zoological Research, 2019, 40, 89-93.	2.1	14
712	Dynamic changes in the regulatory T-cell heterogeneity and function by murine IL-2 mutein. Life Science Alliance, 2020, 3, e201900520.	2.8	13
713	Kombucha microbiome as a probiotic: a view from the perspective of post-genomics and synthetic ecology. Biopolymers and Cell, 2012, 28, 103-113.	0.4	41
714	T cell immunodominance is dictated by the positively selecting self-peptide. ELife, 2014, 3, e01457.	6.0	10
715	Tissue-specific shaping of the TCR repertoire and antigen specificity of iNKT cells. ELife, 2019, 8, .	6.0	16
716	Alteration of the gut microbiota associated with childhood obesity by 16S rRNA gene sequencing. PeerJ, 2020, 8, e8317.	2.0	74
717	Nurturing the Early Life Gut Microbiome and Immune Maturation for Long Term Health. Microorganisms, 2021, 9, 2110.	3.6	34
718	Endometrial Microbiome and Women's Reproductive Health – Review of the Problem Endometrial Microbiome and Reproductive Health. Journal of Pure and Applied Microbiology, 0, , .	0.9	0
719	How microbes train our immune system. Nature, 0, , .	27.8	1
720	The IL23-Th17 Axis in Intestinal Inflammation. , 2013, , 219-240.		0
723	Infectious Microecology and Immunology. Advanced Topics in Science and Technology in China, 2014, , 33-57.	0.1	0
724	ASD and Food Allergy. , 2014, , 1995-2013.		0
725	Intestinal microbiota mining: a Th17/Treg cell perspective. European Journal of BioMedical Research, 2015, 1, 28.	0.2	3
726	The Role of the Gut in Type 2 Immunity. Birkhauser Advances in Infectious Diseases, 2017, , 145-165.	0.3	0
727	Immune Dysregulation Associated with Very Early-Onset Inflammatory Bowel Disease. , 2017, , 55-67.		2

# 730	ARTICLE Commensal Candida Albicans Positively Calibrate Systemic Th17 Immunological Responses. SSRN	IF 0.4	Citations
731	Electronic Journal, O, , . Gut Microbiota and Human Health with Special Reference to Autoimmunity. Journal of Gastrointestinal Infections, 2018, 8, 32-38.	0.2	0
732	IMMUNOLOGICAL MEMORY: THE ROLE OF REGULATORY CELLS (TREGS). Medical Immunology (Russia), 2018, 20, 613-620.	0.4	1
733	The IL-23/Th17 Axis in Intestinal Inflammation. , 2019, , 281-303.		0
734	The Gut Microbiome in Inflammatory Bowel Disease. , 2019, , 347-377.		0
740	Commensal Cryptosporidium colonization elicits a cDC1-dependent Th1 response that promotes intestinal homeostasis and limits other infections. Immunity, 2021, 54, 2547-2564.e7.	14.3	28
741	Rhizosphere Microbiome: The Emerging Barrier in Plant-Pathogen Interactions. Frontiers in Microbiology, 2021, 12, 772420.	3.5	36
742	Epithelial-myeloid exchange of MHC class II constrains immunity and microbiota composition. Cell Reports, 2021, 37, 109916.	6.4	14
744	Salmonella-induced changes in the level of key immunoregulatory bacteria affect the transcriptional activity of the <i>Foxp3</i> and <i>RORgt</i> genes in the gut-associated lymphoid tissue of rats. Russian Journal of Infection and Immunity, 2020, 10, 671-685.	0.7	0
746	Microbiota-Immune System Interactions in Human Neurological Disorders. CNS and Neurological Disorders - Drug Targets, 2020, 19, 509-526.	1.4	0
748	Striking a Balance with Help from our Little Friends - How the Gut Microbiota Contributes to Immune Homeostasis. Yale Journal of Biology and Medicine, 2016, 89, 389-395.	0.2	24
749	Food Allergy: Searching for the Modern Environmental Culprit. Yale Journal of Biology and Medicine, 2020, 93, 733-747.	0.2	1
750	Prenatal and neonatal probiotic intake in pediatric allergy. , 2022, , 147-159.		0
751	The Gut Microbiome Alterations in Pediatric Patients with Functional Abdominal Pain Disorders. Microorganisms, 2021, 9, 2354.	3.6	7
752	Mucosal tissue regulatory T cells are integral in balancing immunity and tolerance at portals of antigen entry. Mucosal Immunology, 2022, 15, 398-407.	6.0	30
753	T cells in harmony: Aligning the TCR repertoire pool to identify microbiota recognizing TÂcells. Immunity, 2021, 54, 2437-2439.	14.3	0
755	Lactoferrin Ameliorates Dry Eye Disease Potentially through Enhancement of Short-Chain Fatty Acid Production by Gut Microbiota in Mice. International Journal of Molecular Sciences, 2021, 22, 12384.	4.1	8
756	lleitis-associated tertiary lymphoid organs arise at lymphatic valves and impede mesenteric lymph flow in response to tumor necrosis factor. Immunity, 2021, 54, 2795-2811.e9.	14.3	31

ARTICLE IF CITATIONS Microbiota-specific T follicular helper cells drive tertiary lymphoid structures and anti-tumor 757 14.3 99 immunity against colorectal cancer. Immunity, 2021, 54, 2812-2824.e4. Mikrobiom-Forschung: Kann die Darmflora Allergien verhindern?., 0, , . Functional roles of the microbiota-gut-brain axis in Alzheimer's disease: Implications of gut 759 1.4 21 microbiota-targeted therapy. Translational Neuroscience, 2021, 12, 581-600. The gut microbiota of Cystidicola farionis parasitizing the swim bladder of the nosed charr morph 0.9 Salvelinus malma complex in Lake Kronotskoe (Kamchatka, Russia). Journal of Nematology, 2021, 53, 1-15. Intestinal microbial communities and <i>Holdemanella</i> isolated from HIV+/â[~] men who have sex with men increase frequencies of lamina propria CCR5⁺ CD4⁺ T cells. Gut 761 9.8 8 Microbes, 2021, 13, 1997292. Salmonella enterica serovar Typhimurium uses anaerobic respiration to overcome 6.4 propionate-mediated colonization resistance. Cell Reports, 2022, 38, 110180. Lipidomics Analysis of Outer Membrane Vesicles and Elucidation of the Inositol Phosphoceramide 763 3.0 24 Biosynthetic Pathway in Bacteroides thetaiotaomicron. Microbiology Spectrum, 2022, 10, e0063421. Ex Vivo Differential Responsiveness to Clostridium perfringens and Lactococcus lactis by Avian Small 764 4.8 Intestine Macrophages and T Cells. Frontiers in Immunology, 2022, 13, 807343. Colonization of fecal microbiota from patients with neonatal necrotizing enterocolitis exacerbates 765 intestinal injury in germfree mice subjected to necrotizing enterocolitis-induction protocol via 22 4.4 alterations in butyrate and regulatory T cells. Journal of Translational Medicine, 2021, 19, 510. The Intestinal Microbiota May Be a Potential Theranostic Tool for Personalized Medicine. Journal of 2.5 Personalized Medicine, 2022, 12, 523. The Insider: Impact of the Gut Microbiota on Cancer Immunity and Response to Therapies in Multiple 767 10 4.8 Myeloma. Frontiers in Immunology, 2022, 13, 845422. Effects of Gut Microbiota on Host Adaptive Immunity Under Immune Homeostasis and Tumor 768 4.8 Pathology State. Frontiers in Immunology, 2022, 13, 844335. Roles of Microbiota in Cancer: From Tumor Development to Treatment. Journal of Oncology, 2022, 769 1.3 8 2022, 1-15. Immunogenetic variation shapes the gut microbiome in a natural vertebrate population. Microbiome, 770 11.1 2022, 10, 41. Rap1 prevents colitogenic Th17 cell expansion and facilitates Treg cell differentiation and distal TCR 771 4.4 5 signaling. Communications Biology, 2022, 5, 206. Intestinal Fibrosis in Inflammatory Bowel Disease and the Prospects of Mesenchymal Stem Cell Therapy. Frontiers in Immunology, 2022, 13, 835005. Insights into the Role of Commensal-Specific T Cells in Intestinal Inflammation. Journal of 773 3.54 Inflammation Research, 2022, Volume 15, 1873-1887. The impact of the gut microbiota on T cell ontogeny in the thymus. Cellular and Molecular Life 774 5.4 Sciences, 2022, 79, 221.

#	Article	IF	CITATIONS
775	Single cell analysis of spondyloarthritis regulatory T cells identifies distinct synovial gene expression patterns and clonal fates. Communications Biology, 2021, 4, 1395.	4.4	27
776	Fecal Microbial Enterotypes Differentially Respond to a High-fat Diet Based on Sex in Fischer-344 Rats. Journal of Cancer Prevention, 2021, 26, 277-288.	2.0	1
777	Your Regulatory T Cells Are What You Eat: How Diet and Gut Microbiota Affect Regulatory T Cell Development. Frontiers in Nutrition, 2022, 9, 878382.	3.7	12
778	Exploring the Gut Microbiome in Myasthenia Gravis. Nutrients, 2022, 14, 1647.	4.1	17
779	Targeting the gut and tumor microbiota in cancer. Nature Medicine, 2022, 28, 690-703.	30.7	159
790	Immunomodulation by Gut Microbiome on Gastrointestinal Cancers: Focusing on Colorectal Cancer. Cancers, 2022, 14, 2140.	3.7	11
791	Moving to the Outskirts: Interplay Between Regulatory T Cells and Peripheral Tissues. Frontiers in Immunology, 2022, 13, 864628.	4.8	4
792	Resistance Mechanisms to Anti-PD Cancer Immunotherapy. Annual Review of Immunology, 2022, 40, 45-74.	21.8	122
793	Interaction between MHC diversity and constitution, gut microbiota and Astrovirus infections in a neotropical bat. Molecular Ecology, 2022, 31, 3342-3359.	3.9	16
794	Predictive and Prognostic Roles of Gut Microbial Variation in Liver Transplant. Frontiers in Medicine, 2022, 9, .	2.6	4
795	Association of the gut microbiome with cancer immunotherapy. International Journal of Clinical Oncology, 2022, , 1.	2.2	0
796	Shifts in gut microbiome across five decades of repeated guppy translocations in Trinidadian streams. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	2.6	4
798	A Prebiotic Diet Alters the Fecal Microbiome and Improves Sleep in Response to Sleep Disruption in Rats. Frontiers in Neuroscience, 2022, 16, .	2.8	6
799	The gut microbiome and the immune system. Exploration of Medicine, 0, , 219-233.	1.5	3
800	Regulation of Treg Cell Metabolism and Function in Non-Lymphoid Tissues. Frontiers in Immunology, 0, 13, .	4.8	8
801	Microbial Dysbiosis Tunes the Immune Response Towards Allergic Disease Outcomes. Clinical Reviews in Allergy and Immunology, 2023, 65, 43-71.	6.5	14
802	The Microbiome as a Gateway to Prevention of Allergic Disease Development. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 2195-2204.	3.8	5
803	Regulatory T Cells, a Viable Target Against Airway Allergic Inflammatory Responses in Asthma. Frontiers in Immunology, 0, 13, .	4.8	8

#	Article	IF	CITATIONS
804	Diet-Induced Host–Microbe Interactions: Personalized Diet Strategies for Improving Inflammatory Bowel Disease. Current Developments in Nutrition, 2022, 6, nzac110.	0.3	7
805	From Intestinal Epithelial Homeostasis to Colorectal Cancer: Autophagy Regulation in Cellular Stress. Antioxidants, 2022, 11, 1308.	5.1	2
806	Reciprocal Interactions Between Regulatory T Cells and Intestinal Epithelial Cells. Frontiers in Immunology, 0, 13, .	4.8	3
807	Colorectal Cancer-Infiltrating Regulatory T Cells: Functional Heterogeneity, Metabolic Adaptation, and Therapeutic Targeting. Frontiers in Immunology, 0, 13, .	4.8	23
808	Differentiation and homeostasis of effector Treg cells are regulated by inositol polyphosphates modulating Ca ²⁺ influx. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	4
809	Gut Microbiota and Immunotherapy. Frontiers in Microbiology, 0, 13, .	3.5	8
810	Hair Microbiome Diversity within and across Primate Species. MSystems, 0, , .	3.8	0
811	Interaction between microbiota and immunity and its implication in colorectal cancer. Frontiers in Immunology, 0, 13, .	4.8	10
812	Regulatory CAR-T cells in autoimmune diseases: Progress and current challenges. Frontiers in Immunology, 0, 13, .	4.8	8
813	Migration and homeostasis of regulatory T cells in rheumatoid arthritis. Frontiers in Immunology, 0, 13, .	4.8	17
814	The dark side of Tregs during aging. Frontiers in Immunology, 0, 13, .	4.8	8
815	A conserved Bacteroidetes antigen induces anti-inflammatory intestinal T lymphocytes. Science, 2022, 377, 660-666.	12.6	45
816	Glucose promotes regulatory TÂcell differentiation to maintain intestinal homeostasis. IScience, 2022, 25, 105004.	4.1	6
817	The interplay between Helicobacter pylori and the gut microbiota: An emerging driver influencing the immune system homeostasis and gastric carcinogenesis. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	25
818	The CD4+ T cell response to a commensal-derived epitope transitions from a tolerant to an inflammatory state in Crohn's disease. Immunity, 2022, 55, 1909-1923.e6.	14.3	21
819	Diarrheal disease and gut microbiome. Progress in Molecular Biology and Translational Science, 2022,	1.7	1
820	Modulation of gut microbiota by probiotic interventions: A potential approach toward alleviating food allergy. , 2022, , 139-157.		0
821	Immunological paradox for maintaining normal flora: it is all by design, not by chance. , 2022, , 39-73.		0

#	Article	IF	Citations
822	Characterization of Mouse CD4 TCR and Its Targeting Antigen. Methods in Molecular Biology, 2022, , 221-232.	0.9	1
823	Gut microbiota shed new light on the management of <scp>immuneâ€related</scp> adverse events. Thoracic Cancer, 2022, 13, 2681-2691.	1.9	10
824	Nanocatalytic bacteria disintegration reverses immunosuppression of colorectal cancer. National Science Review, 2022, 9, .	9.5	14
825	A human STAT3 gain-of-function variant confers T cell dysregulation without predominant Treg dysfunction in mice. JCI Insight, 2022, 7, .	5.0	6
826	The Crosstalk between Microbiome and Immunotherapeutics: Myth or Reality. Cancers, 2022, 14, 4641.	3.7	1
828	Metabolic regulation and function of T helper cells in neuroinflammation. Seminars in Immunopathology, 2022, 44, 581-598.	6.1	7
829	Etiology of Ulcerative Colitis. , 0, , .		0
830	The Impact of Short-Chain Fatty Acids on Neonatal Regulatory T Cells. Nutrients, 2022, 14, 3670.	4.1	5
831	Analysis of Peripherally Derived Treg in the Intestine. Methods in Molecular Biology, 2023, , 41-49.	0.9	0
832	Antigen-specific depletion of CD4 ⁺ T cells by CAR T cells reveals distinct roles of higher- and lower-affinity TCRs during autoimmunity. Science Immunology, 2022, 7, .	11.9	17
833	Microbiome Derived Metabolites in CKD and ESRD. , 2022, , 45-60.		0
834	Manipulating the microbiome to enhance oral tolerance in food allergy. Cellular Immunology, 2022, 382, 104633.	3.0	4
835	Effects of probiotics supplementation on blood pressure: An umbrella meta-analysis of randomized controlled trials. Nutrition, Metabolism and Cardiovascular Diseases, 2023, 33, 275-286.	2.6	3
836	Alterations of the human gut microbiome in patients with hidradenitis suppurativa: a case-control study and review of the literature. Dermatology Practical and Conceptual, 0, , e2022191.	0.9	2
837	Regulation of T cell repertoires by commensal microbiota. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	6
838	Helminths and Bacterial Microbiota: The Interactions of Two of Humans' "Old Friendsâ€: International Journal of Molecular Sciences, 2022, 23, 13358.	4.1	9
839	Localization and movement of Tregs in gastrointestinal tract: a systematic review. Inflammation and Regeneration, 2022, 42, .	3.7	2
840	Precision Nutrition from the View of the Gut Microbiome. , 2022, , 67-96.		1

#	Article	IF	CITATIONS
841	The crosstalk between intestinal bacterial microbiota and immune cells in colorectal cancer progression. Clinical and Translational Oncology, 0, , .	2.4	1
842	Cell-based therapy in prophylaxis and treatment of chronic graft-versus-host disease. Frontiers in Immunology, 0, 13, .	4.8	4
843	Investigating dysbiosis and microbial treatment strategies in inflammatory bowel disease based on two modified Koch's postulates. Frontiers in Medicine, 0, 9, .	2.6	4
844	Human gut microbiota-reactive DP8α regulatory T cells, signature and related emerging functions. Frontiers in Immunology, 0, 13, .	4.8	1
845	Once induced, it lasts for a long time: the structural and molecular signatures associated with depressive-like behavior after neonatal immune activation. Frontiers in Cellular Neuroscience, 0, 16, .	3.7	2
846	Gut microbiota and calcium balance. Frontiers in Microbiology, 0, 13, .	3.5	5
847	A conserved population of MHC II-restricted, innate-like, commensal-reactive T cells in the gut of humans and mice. Nature Communications, 2022, 13, .	12.8	6
848	Regulatory T cells as a therapeutic approach for inflammatory bowel disease. European Journal of Immunology, 2023, 53, .	2.9	10
850	Context-Dependent Regulation of Type17 Immunity by Microbiota at the Intestinal Barrier. Immune Network, 2022, 22, .	3.6	7
851	Communication of gut microbiota and brain via immune and neuroendocrine signaling. Frontiers in Microbiology, 0, 14, .	3.5	18
852	Immune Dysregulation Associated with Very Early-Onset Inflammatory Bowel Disease. , 2023, , 61-74.		0
853	Ganmaidazao decoction alleviated cognitive impairment on Alzheimer's disease rats by regulating gut microbiota and their corresponding metabolites. Arabian Journal of Chemistry, 2023, 16, 104688.	4.9	2
854	Is there a role for microbiome-based approach in common variable immunodeficiency?. Clinical and Experimental Medicine, 2023, 23, 1981-1998.	3.6	2
855	Factors Affecting Gut Microbiota of Puppies from Birth to Weaning. Animals, 2023, 13, 578.	2.3	1
856	Principles of regulatory TÂcell function. Immunity, 2023, 56, 240-255.	14.3	48
857	Inflammatory Bowel Diseases and Gut Microbiota. International Journal of Molecular Sciences, 2023, 24, 3817.	4.1	24
858	The Role of Microbiota in Liver Transplantation and Liver Transplantation-Related Biliary Complications. International Journal of Molecular Sciences, 2023, 24, 4841.	4.1	4
859	Predicting Neurodegenerative Disease Using Prepathology Gut Microbiota Composition: a Longitudinal Study in Mice Modeling Alzheimer's Disease Pathologies. Microbiology Spectrum, 2023, 11,	3.0	11

#	Article	IF	CITATIONS
860	Human small intestine contains 2 functionally distinct regulatory T-cell subsets. Journal of Allergy and Clinical Immunology, 2023, 152, 278-289.e6.	2.9	2
861	The biogeography of hostâ€associated bacterial microbiomes: Revisiting classic biodiversity patterns. Global Ecology and Biogeography, 2023, 32, 931-944.	5.8	6
862	State of the art: Intrapartum antibiotics in cesarean section, the infant microbiota and allergic diseases. Acta Obstetricia Et Gynecologica Scandinavica, 2023, 102, 811-820.	2.8	1
863	Opportunities for Treg cell therapy for the treatment of human disease. Frontiers in Immunology, 0, 14, .	4.8	8
864	Obesity-induced thymic involution and cancer risk. Seminars in Cancer Biology, 2023, 93, 3-19.	9.6	4
865	Alcohol, the gut microbiome, and liver disease. Journal of Gastroenterology and Hepatology (Australia), 2023, 38, 1205-1210.	2.8	8
866	Phosphatase Ssu72 Is Essential for Homeostatic Balance Between CD4 ⁺ T Cell Lineages. Immune Network, 2023, 23, .	3.6	1
867	Evaluating Current Molecular Techniques and Evidence in Assessing Microbiome in Placenta-Related Health and Disorders in Pregnancy. Biomolecules, 2023, 13, 911.	4.0	1
869	Gut microbiome in cancer immunotherapy: Current trends, translational challenges and future possibilities. Biochimica Et Biophysica Acta - General Subjects, 2023, 1867, 130401.	2.4	1
870	Regulatory T cells in the face of the intestinal microbiota. Nature Reviews Immunology, 2023, 23, 749-762.	22.7	15
871	Gut Microbiota and Liver Transplantation: Immune Mechanisms behind the Rejection. Biomedicines, 2023, 11, 1792.	3.2	3
872	Regulatory T cells in peripheral tissue tolerance and diseases. Frontiers in Immunology, 0, 14, .	4.8	10
873	Probiotic-based Anticancer Immunity In Hepato-cellular Carcinoma (liver Cancer). , 2023, , 189-210.		0
874	Gut Microbiota and Host Immune System in Cancer. , 2023, , 1-40.		0
875	Microbial sensing in the intestine. Protein and Cell, 2023, 14, 824-860.	11.0	5
878	Development of the intestinal microbiome in cystic fibrosis in early life. MSphere, 2023, 8, .	2.9	6
879	Multimodal immune cell phenotyping in GI biopsies reveals microbiome-related T cell modulations in human GvHD. Cell Reports Medicine, 2023, 4, 101125.	6.5	1
880	The splicing isoform Foxp3î"2 differentially regulates tTreg and pTreg homeostasis. Cell Reports, 2023, 42, 112877.	6.4	1

#	Article	IF	CITATIONS
883	The role of the symbiotic microecosystem in cancer: gut microbiota, metabolome, and host immunome. Frontiers in Immunology, 0, 14, .	4.8	4
884	Modulation of gut microbiota: a novel approach to enhancing the effects of immune checkpoint inhibitors. Therapeutic Advances in Medical Oncology, 2023, 15, .	3.2	3
885	Systemic Onco-Sphere: Host Microbiome and Cancer. , 2023, , 553-577.		0
886	CD4+ T lymphocyte responses to viruses and virus-relevant stimuli in teleost fish. Fish and Shellfish Immunology, 2023, 142, 109007.	3.6	1
887	Degenerative Cervical Myelopathy induces sex-specific dysbiosis in mice. Frontiers in Microbiology, 0, 14, .	3.5	1
888	Intestinal factors promoting the development of RORγt+ cells and oral tolerance. Frontiers in Immunology, 0, 14, .	4.8	1
889	Regulatory T cells in skin regeneration and wound healing. Military Medical Research, 2023, 10, .	3.4	0
890	Orally-administered nanomedicine systems targeting colon inflammation for the treatment of inflammatory bowel disease: latest advances. Journal of Materials Chemistry B, O, , .	5.8	0
891	Oral tolerance to systemic vaccination remains intact without RORÎ ³ t expression in regulatory TÂcells. IScience, 2023, 26, 108504.	4.1	0
892	T cell and bacterial microbiota interaction at intestinal and skin epithelial interfaces. , 0, , .		0
893	The interplay between the microbiota, diet and T regulatory cells in the preservation of the gut barrier in inflammatory bowel disease. Frontiers in Microbiology, 0, 14, .	3.5	1
894	Metabolic Syndrome: A Narrative Review from the Oxidative Stress to the Management of Related Diseases. Antioxidants, 2023, 12, 2091.	5.1	2
895	RIPK1 plays a crucial role in maintaining regulatory T-Cell homeostasis by inhibiting both RIPK3- and FADD-mediated cell death. , 0, , .		1
896	Role of the immune system in liver transplantation and its implications for therapeutic interventions. MedComm, 2023, 4, .	7.2	0
897	Kruppel-like factor 2+ CD4 TÂcells avert microbiota-induced intestinal inflammation. Cell Reports, 2023, 42, 113323.	6.4	0
898	Traditional Chinese Medicine in Osteoporosis Intervention and the Related Regulatory Mechanism of Gut Microbiome. The American Journal of Chinese Medicine, 0, , 1-25.	3.8	0
899	Selective ablation of thymic and peripheral Foxp3+ regulatory T cell development. Frontiers in Immunology, 0, 14, .	4.8	0
900	Effect of treatment with Lactococcus lactis NZ9000 on intestinal microbiota and mucosal immune responses against Clostridium perfringens in broiler chickens. Frontiers in Microbiology, 0, 14, .	3.5	0

#	Article	IF	Citations
901	The gut-lung axis in critical illness: microbiome composition as a predictor of mortality at day 28 in mechanically ventilated patients. BMC Microbiology, 2023, 23, .	3.3	0
902	Microbiota-dependent activation of CD4 ⁺ T cells induces CTLA-4 blockade–associated colitis via Fcγ receptors. Science, 2024, 383, 62-70.	12.6	3
903	Alleviative effects of exopolysaccharides from Limosilactobacillus mucosae CCFM1273 against ulcerative colitis via modulation of gut microbiota and inhibition of Fas/Fasl and TLR4/NF-I®B pathways. International Journal of Biological Macromolecules, 2024, 260, 129346.	7.5	0
904	Intestinal microbiota-specific Th17 cells possess regulatory properties and suppress effector TÂcells via c-MAF and IL-10. Immunity, 2023, 56, 2719-2735.e7.	14.3	1
907	Correlating the Gut Microbiome to Health and Disease. , 2024, , 1-36.		0
909	A lncRNA Dleu2-encoded peptide relieves autoimmunity by facilitating Smad3-mediated Treg induction. EMBO Reports, 2024, 25, 1208-1232.	4.5	0
910	Microbial butyrate capacity is reduced in inflamed mucosa in patients with ulcerative colitis. Scientific Reports, 2024, 14, .	3.3	0
911	Immunological mechanisms of tolerance: central, peripheral and the role of T and B cells. Asia Pacific Allergy, 0, , .	1.3	1
912	The regulation and differentiation of regulatory T cells and their dysfunction in autoimmune diseases. Nature Reviews Immunology, 0, , .	22.7	0
914	Gut microbiota-gonadal axis: the impact of gut microbiota on reproductive functions. Frontiers in Immunology, 0, 15, .	4.8	0
915	Human Milk Components and the Infant Gut Microbiome at 6 Months: Understanding the Interconnected Relationship. Journal of Nutrition, 2024, 154, 1200-1208.	2.9	0
916	The Impact of Microbiota–Immunity–Hormone Interactions on Autoimmune Diseases and Infection. Biomedicines, 2024, 12, 616.	3.2	0
917	How gut microbiota may impact ocular surface homeostasis and related disorders. Progress in Retinal and Eye Research, 2024, 100, 101250.	15.5	0
918	Gut bacteria–derived serotonin promotes immune tolerance in early life. Science Immunology, 2024, 9, ·	11.9	0
919	Interleukin-2 signaling in the regulation of T cell biology in autoimmunity and cancer. Immunity, 2024, 57, 414-428.	14.3	0
920	Regulatory T Cells for Control of Autoimmunity. Advances in Experimental Medicine and Biology, 2024, , 67-82.	1.6	0