A luminous quasar at a redshift of z = 7.085

Nature 474, 616-619 DOI: 10.1038/nature10159

Citation Report

#	Article	IF	CITATIONS
1	A Physics-Based Charge-Control Model for InP DHBT Including Current-Blocking Effect. Chinese Physics Letters, 2009, 26, 077302.	1.3	11
2	SPECTROSCOPIC CONFIRMATION OF <i>z</i> â ¹ /4 7 LYMAN BREAK GALAXIES: PROBING THE EARLIEST GALAXIES AND THE EPOCH OF REIONIZATION. Astrophysical Journal, 2011, 743, 132.	1.6	257
3	Populations III.1 and III.2 gamma-ray bursts: constraints on the event rate for future radio and X-ray surveys. Astronomy and Astrophysics, 2011, 533, A32.	2.1	98
4	The low-metallicity QSO HEÂ2158Ââ^Â0107: a massive galaxy growing by accretion of nearly pristine gas from its environment?. Astronomy and Astrophysics, 2011, 535, A72.	2.1	18
5	Star Formation in the Early Universe. Proceedings of the International Astronomical Union, 2011, 7, 216-223.	0.0	0
6	COMMISSION 28: GALAXIES. Proceedings of the International Astronomical Union, 2011, 7, 255-259.	0.0	3
7	COMMISSION 47: COSMOLOGY. Proceedings of the International Astronomical Union, 2011, 7, 260-267.	0.0	0
8	A MULTIWAVELENGTH STUDY OF BINARY QUASARS AND THEIR ENVIRONMENTS. Astrophysical Journal, 2011, 743, 81.	1.6	17
9	BLACK HOLE GROWTH AND ACTIVE GALACTIC NUCLEI OBSCURATION BY INSTABILITY-DRIVEN INFLOWS IN HIGH-REDSHIFT DISK GALAXIES FED BY COLD STREAMS. Astrophysical Journal Letters, 2011, 741, L33.	3.0	199
10	Subaru studies of the cosmic dawn. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2011, 87, 575-586.	1.6	3
11	How neutral is the intergalactic medium surrounding the redshift <i>z</i> = 7.085 quasar ULAS J1120+0641?. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 416, L70-L74.	1.2	190
12	Primordial magnetic field constraints from the end of reionization. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 418, L143-L147.	1.2	18
13	Atom gives light a subtle squeeze. Nature, 2011, 474, 584-585.	13.7	1
14	Re-ionizing the universe without stars. Astrophysics and Space Science, 2011, 335, 345.	0.5	21
15	Production of dust by massive stars at high redshift. Astronomy and Astrophysics Review, 2011, 19, 1.	9.1	151
16	A monster in the early Universe. Nature, 2011, 474, 583-584.	13.7	3
17	2011 Editors' choice. Nature, 2011, 480, 468-469.	13.7	0
18	A Practical Guide to the Massive Black Hole Cosmic History. Advances in Astronomy, 2012, 2012, 1-16.	0.5	15

#	Article	IF	CITATIONS
19	Photon trapping enables super-Eddington growth of black hole seeds in galaxies at high redshift. Monthly Notices of the Royal Astronomical Society, 2012, 425, 2892-2902.	1.6	37
20	X-ray emission from high-redshift miniquasars: self-regulating the population of massive black holes through global warming. Monthly Notices of the Royal Astronomical Society, 2012, 425, 2974-2987.	1.6	59
21	The Role of Gravitational Instabilities in the Feeding of Supermassive Black Holes. Advances in Astronomy, 2012, 2012, 1-15.	0.5	5
22	Formation of the first stars in the universe. Progress of Theoretical and Experimental Physics, 2012, 2012, 1A305-0.	1.8	16
23	Extremely metal-poor gas at a redshift of 7. Nature, 2012, 492, 79-82.	13.7	80
24	Ubiquitous seeding of supermassive black holes by direct collapse. Monthly Notices of the Royal Astronomical Society, 2012, 425, 2854-2871.	1.6	202
25	Black hole formation with an interacting vacuum energy density. Physical Review D, 2012, 86, .	1.6	11
26	Observations of the first light and the epoch of reionization. Research in Astronomy and Astrophysics, 2012, 12, 865-890.	0.7	11
27	EXPLORING THE CORRELATIONS BETWEEN GLOBULAR CLUSTER POPULATIONS AND SUPERMASSIVE BLACK HOLES IN GIANT GALAXIES. Astronomical Journal, 2012, 144, 154.	1.9	20
28	Demography of High-Redshift AGN. Advances in Astronomy, 2012, 2012, 1-7.	0.5	5
29	Mass Functions of Supermassive Black Holes across Cosmic Time. Advances in Astronomy, 2012, 2012, 1-21.	0.5	50
30	Low-mass black holes as the remnants of primordial black hole formation. Nature Communications, 2012, 3, 1304.	5.8	125
31	THE FIRST HIGH-REDSHIFT QUASAR FROM Pan-STARRS. Astronomical Journal, 2012, 143, 142.	1.9	46
32	A minimalist operating mode for UKIRT. Proceedings of SPIE, 2012, , .	0.8	0
33	QUASI-STAR JETS AS UNIDENTIFIED GAMMA-RAY SOURCES. Astrophysical Journal Letters, 2012, 755, L15.	3.0	4
34	Formation and evolution of early-type galaxies – III. Dependence of the star formation history on the total mass and initial overdensity. Monthly Notices of the Royal Astronomical Society, 2012, 427, 1530-1554.	1.6	26
35	STAR FORMATION IN THE EARLY UNIVERSE: BEYOND THE TIP OF THE ICEBERG. Astrophysical Journal, 2012, 754, 46.	1.6	104
36	CONNECTING THE GAMMA RAY BURST RATE AND THE COSMIC STAR FORMATION HISTORY: IMPLICATIONS FOR REIONIZATION AND GALAXY EVOLUTION. Astrophysical Journal, 2012, 744, 95.	1.6	182

_

#	Article	IF	CITATIONS
37	COSMIC MICROWAVE BACKGROUND CONSTRAINTS ON THE DURATION AND TIMING OF REIONIZATION FROM THE SOUTH POLE TELESCOPE. Astrophysical Journal, 2012, 756, 65.	1.6	128
38	SIMULTANEOUS ULTRAVIOLET AND OPTICAL EMISSION-LINE PROFILES OF QUASARS: IMPLICATIONS FOR BLACK HOLE MASS DETERMINATION. Astrophysical Journal, 2012, 754, 11.	1.6	40
39	GAMMA-RAY BURST HOST GALAXY SURVEYS AT REDSHIFT <i>z</i> â‰ ³ 4: PROBES OF STAR FORMATION RATE AND COSMIC REIONIZATION. Astrophysical Journal Letters, 2012, 749, L38.	3.0	63
40	RAPID, MACHINE-LEARNED RESOURCE ALLOCATION: APPLICATION TO HIGH-REDSHIFT GAMMA-RAY BURST FOLLOW-UP. Astrophysical Journal, 2012, 746, 170.	1.6	12
41	THE GROWTH OF THE STELLAR SEEDS OF SUPERMASSIVE BLACK HOLES. Astrophysical Journal, 2012, 750, 66.	1.6	88
42	COMOVING SPACE DENSITY AND OBSCURED FRACTION OF HIGH-REDSHIFT ACTIVE GALACTIC NUCLEI IN THE SUBARU/ <i>XMM-NEWTON</i> DEEP SURVEY. Astrophysical Journal, 2012, 758, 49.	1.6	25
43	MID-INFRARED SELECTION OF ACTIVE GALACTIC NUCLEI WITH THE <i>WIDE-FIELD INFRARED SURVEY EXPLORER </i> . I. CHARACTERIZING <i>WISE </i> -SELECTED ACTIVE GALACTIC NUCLEI IN COSMOS. Astrophysical Journal, 2012, 753, 30.	1.6	637
44	A Lyα GALAXY AT REDSHIFT <i>z</i> = 6.944 IN THE COSMOS FIELD. Astrophysical Journal Letters, 2012, 752, L28.	3.0	25
45	The Cosmogony of Super-Massive Black Holes. Journal of Physics: Conference Series, 2012, 372, 012002.	0.3	0
46	Growing supermassive black holes: sub-grid modelling and intermediate-scale processes. Journal of Physics: Conference Series, 2012, 372, 012003.	0.3	0
47	Simulating matched filter detection of ionized bubble around a quasar in the epoch of reionization. Journal of Physics: Conference Series, 2012, 405, 012021.	0.3	0
48	THE FORMATION OF SUPERMASSIVE BLACK HOLES FROM LOW-MASS POP III SEEDS. Astrophysical Journal Letters, 2012, 756, L19.	3.0	77
49	DETECTING THE RISE AND FALL OF THE FIRST STARS BY THEIR IMPACT ON COSMIC REIONIZATION. Astrophysical Journal Letters, 2012, 756, L16.	3.0	96
50	COLD FLOWS AND THE FIRST QUASARS. Astrophysical Journal Letters, 2012, 745, L29.	3.0	219
51	RAPIDLY ACCRETING SUPERGIANT PROTOSTARS: EMBRYOS OF SUPERMASSIVE BLACK HOLES?. Astrophysical Journal, 2012, 756, 93.	1.6	136
52	FORCE-FEEDING BLACK HOLES. Astrophysical Journal Letters, 2012, 749, L3.	3.0	15
53	Origin of the antihierarchical growth of black holes. Monthly Notices of the Royal Astronomical Society, 2012, 426, 237-257.	1.6	101
54	Constraints on X-ray emissions from the reionization era. Monthly Notices of the Royal Astronomical Society, 2012, 426, 1349-1360.	1.6	113

#	Article	IF	Citations
55	Evanescent matter. Annalen Der Physik, 2012, 524, 591-601.	0.9	1
56	21 cm cosmology in the 21st century. Reports on Progress in Physics, 2012, 75, 086901.	8.1	665
57	Constraining quasar and intergalactic medium properties through bubble detection in redshifted 21-cm maps. Monthly Notices of the Royal Astronomical Society, 2012, 426, 3178-3194.	1.6	29
58	Faint AGN inz≳ 6 Lyman-break galaxies powered by cold accretion and rapid angular momentum transport. Monthly Notices of the Royal Astronomical Society, 2012, 426, 3477-3489.	1.6	7
59	Heavily reddened quasars at <i>z</i> â^1⁄4 2 in the UKIDSS Large Area Survey: a transitional phase in AGN evolution. Monthly Notices of the Royal Astronomical Society, 2012, 427, 2275-2291.	1.6	75
60	Fifty Years of Quasars: Current Impressions and Future Perspectives. Astrophysics and Space Science Library, 2012, , 549-570.	1.0	6
61	What drives the growth of black holes?. New Astronomy Reviews, 2012, 56, 93-121.	5.2	459
62	Limits on the high redshift growth of massive black holes. Astronomy and Astrophysics, 2012, 545, L6.	2.1	39
63	THE FAINTEST X-RAY SOURCES FROM <i>z</i> = 0 TO 8 [,] [,] . Astrophysical Journal, 2012, 748, 50.	1.6	65
64	CRITICAL STAR FORMATION RATES FOR REIONIZATION: FULL REIONIZATION OCCURS AT REDSHIFT <i>z</i> â‰^ Astrophysical Journal, 2012, 747, 100.	7. 1.6	133
65	THE HALO OCCUPATION DISTRIBUTION OF SDSS QUASARS. Astrophysical Journal, 2012, 755, 30.	1.6	60
66	DETECTION OF ATOMIC CARBON [C II] 158 μm AND DUST EMISSION FROM A <i>z</i> = 7.1 QUASAR HOST GALAXY. Astrophysical Journal Letters, 2012, 751, L25.	3.0	156
67	CONSTRAINTS ON THE FAINT END OF THE QUASAR LUMINOSITY FUNCTION AT <i>z</i> â ¹ /4 5 IN THE COSMOS FIELD. Astrophysical Journal, 2012, 756, 160.	1.6	34
68	Spectrum of the unresolved cosmic X-ray background: what is unresolved 50Âyears after its discovery. Astronomy and Astrophysics, 2012, 548, A87.	2.1	41
69	CANDELS: THE CONTRIBUTION OF THE OBSERVED GALAXY POPULATION TO COSMIC REIONIZATION. Astrophysical Journal, 2012, 758, 93.	1.6	174
70	UltraVISTA: a new ultra-deep near-infrared survey in COSMOS. Astronomy and Astrophysics, 2012, 544, A156.	2.1	596
71	Near-infrared spectroscopy of a nitrogen-loud quasar SDSSÂJ1707+6443. Astronomy and Astrophysics, 2012, 543, A143.	2.1	9
72	The Formation and Evolution of Massive Black Holes. Science, 2012, 337, 544-547.	6.0	232

\mathbf{C}	IT A T	LON	Dr	DODT
C	ПАI		IXE.	PORT

#	Article	IF	CITATIONS
73	Probabilistic selection of high-redshift quasars. Monthly Notices of the Royal Astronomical Society, 2012, 419, 390-410.	1.6	53
74	Selection constraints on high-redshift quasar searches in the VISTA Kilo-degree Infrared Galaxy survey. Monthly Notices of the Royal Astronomical Society, 2012, 419, 3354-3367.	1.6	14
75	Detecting the highest redshift (z > 8) quasi-stellar objects in a wide, near-infrared slitless spectroscopic survey. Monthly Notices of the Royal Astronomical Society, 2012, 420, 1764-1778.	1.6	11
76	Constraining dynamical dark energy models through the abundance of high-redshift supermassive black holes. Monthly Notices of the Royal Astronomical Society, 2012, 420, 2429-2444.	1.6	1
77	The host galaxies and black hole-to-galaxy mass ratios of luminous quasars at $zambox{a}/f$ 4. Monthly Notices of the Royal Astronomical Society, 2012, 420, 3621-3631.	1.6	58
78	Estimating black hole masses in quasars using broad optical and UV emission lines. New Astronomy Reviews, 2012, 56, 49-63.	5.2	67
79	Thermal constraints on the reionization of hydrogen by Population II stellar sources. Monthly Notices of the Royal Astronomical Society, 2012, 421, 1969-1981.	1.6	33
80	Modelling supermassive black hole growth: towards an improved sub-grid prescription. Monthly Notices of the Royal Astronomical Society, 2012, 421, 3443-3449.	1.6	28
81	Formation of galactic nuclei with multiple supermassive black holes at high redshifts. Monthly Notices of the Royal Astronomical Society, 2012, 422, 1306-1323.	1.6	68
82	The mass function of black holes 1 <z<4.5: 2012,="" 2051-2057.<="" 422,="" astronomical="" comparison="" models="" monthly="" notices="" observations.="" of="" royal="" society,="" td="" the="" with=""><td>1.6</td><td>26</td></z<4.5:>	1.6	26
83	Supermassive black hole ancestors. Monthly Notices of the Royal Astronomical Society, 2012, 422, 1690-1699.	1.6	33
84	Supermassive black hole formation by cold accretion shocks in the first galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 422, 2539-2546.	1.6	81
85	The effect of intergalactic helium on hydrogen reionization: implications for the sources of ionizing photons at z>6. Monthly Notices of the Royal Astronomical Society, 2012, 423, 558-574.	1.6	53
86	Joint Lyman \hat{I}_\pm emitters - quasars reionization constraints. Monthly Notices of the Royal Astronomical Society, 2012, 423, 774-786.	1.6	2
87	Concordance models of reionization: implications for faint galaxies and escape fraction evolution. Monthly Notices of the Royal Astronomical Society, 2012, 423, 862-876.	1.6	274
88	Can 21-cm observations discriminate between high-mass and low-mass galaxies as reionization sources?. Monthly Notices of the Royal Astronomical Society, 2012, 423, 2222-2253.	1.6	80
89	The formation of galaxies hosting <i>z</i> â^¼ 6 quasars. Monthly Notices of the Royal Astronomical Society, 2012, 423, 2397-2406.	1.6	38
90	Feeding compact bulges and supermassive black holes with low angular momentum cosmic gas at high redshift. Monthly Notices of the Royal Astronomical Society, 2012, 423, 3616-3630.	1.6	100

#	Article	IF	CITATIONS
91	Studying cosmic reionization with observations of the global 21-cm signal. Monthly Notices of the Royal Astronomical Society, 2012, 424, 2551-2561.	1.6	18
92	Prospects of observing a quasar H ii region during the epoch of reionization with the redshifted 21-cm signal. Monthly Notices of the Royal Astronomical Society, 2012, 424, 762-778.	1.6	35
93	Accretion, growth of supermassive black holes, and feedback in galaxy mergers. Monthly Notices of the Royal Astronomical Society, 2012, 424, 1461-1470.	1.6	36
94	Active galactic nuclei — the physics of individual sources and the cosmic history of formation and evolution. Frontiers of Physics, 2013, 8, 609-629.	2.4	12
95	Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies. Annual Review of Astronomy and Astrophysics, 2013, 51, 511-653.	8.1	2,809
96	SUPERMASSIVE BLACK HOLE FORMATION AT HIGH REDSHIFTS VIA DIRECT COLLAPSE: PHYSICAL PROCESSES IN THE EARLY STAGE. Astrophysical Journal, 2013, 774, 149.	1.6	70
97	Semi-implicit scheme for treating radiation under M1 closure in general relativistic conservative fluid dynamics codes. Monthly Notices of the Royal Astronomical Society, 2013, 429, 3533-3550.	1.6	144
98	Formation and Coalescence of Cosmological Supermassive-Black-Hole Binaries in Supermassive-Star Collapse. Physical Review Letters, 2013, 111, 151101.	2.9	65
99	Matter matters: unphysical properties of the RhÂ= ct universe. Monthly Notices of the Royal Astronomical Society, 2013, 432, 2324-2330.	1.6	30
100	The characteristic black hole mass resulting from direct collapse in the early Universe. Monthly Notices of the Royal Astronomical Society, 2013, 436, 2989-2996.	1.6	129
101	Reionization and the Cosmic Dawn with the Square Kilometre Array. Experimental Astronomy, 2013, 36, 235-318.	1.6	255
102	Observing the First Galaxies. Astrophysics and Space Science Library, 2013, , 223-292.	1.0	25
103	SUPERMASSIVE SEEDS FOR SUPERMASSIVE BLACK HOLES. Astrophysical Journal, 2013, 771, 116.	1.6	88
104	The data zoo in Astro-WISE. Experimental Astronomy, 2013, 35, 187-201.	1.6	1
105	The role of relativistic jets in the heaviest and most active supermassive black holes at high redshift. Monthly Notices of the Royal Astronomical Society, 2013, 432, 2818-2823.	1.6	39
106	Growth and anisotropy of ionization fronts near high-redshift quasars in the MassiveBlack simulation. Monthly Notices of the Royal Astronomical Society, 2013, 429, 1554-1563.	1.6	8
107	Evidence of Gunn–Peterson damping wings in high-z quasar spectra: strengthening the case for incomplete reionization at z â^¼ 6–7. Monthly Notices of the Royal Astronomical Society, 2013, 428, 3058-3071.	1.6	106
108	The VISTA Deep Extragalactic Observations (VIDEO) surveyâ~ Monthly Notices of the Royal Astronomical Society, 2013, 428, 1281-1295.	1.6	235

#	Article	IF	CITATIONS
109	A study of AGN and supernova feedback in simulations of isolated and merging disc galaxies. Monthly Notices of the Royal Astronomical Society, 2013, 434, 3606-3627.	1.6	30
110	Spectral energy distributions of type 1 AGN in XMM-COSMOS – II. Shape evolution. Monthly Notices of the Royal Astronomical Society, 2013, 438, 1288-1304.	1.6	29
111	The effect of baryonic streaming motions on the formation of the first supermassive black holes. Monthly Notices of the Royal Astronomical Society, 2013, 435, 3559-3567.	1.6	31
112	The most luminous quasars do not live in the most massive dark matter haloes at any redshift. Monthly Notices of the Royal Astronomical Society, 2013, 436, 315-326.	1.6	74
113	Metals in the IGM approaching the re-ionization epoch: results from X-shooter at the VLT☠Monthly Notices of the Royal Astronomical Society, 2013, 435, 1198-1232.	1.6	83
114	Probing reionization with LOFAR using 21-cm redshift space distortions. Monthly Notices of the Royal Astronomical Society, 2013, 435, 460-474.	1.6	69
115	The host haloes of O i absorbers in the reionization epoch. Monthly Notices of the Royal Astronomical Society, 2013, 436, 1818-1835.	1.6	37
116	Sample variance and Lyman α forest transmission statistics. Monthly Notices of the Royal Astronomical Society, 2013, 428, 540-550.	1.6	40
117	The depletion of gas in high-redshift dwarf galaxies from an inhomogeneous reionization. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 432, L51-L55.	1.2	63
118	Blowing cold flows away: the impact of early ACN activity on the formation of a brightest cluster galaxy progenitor. Monthly Notices of the Royal Astronomical Society, 2013, 428, 2885-2900.	1.6	97
119	The small-scale dynamo and the amplification of magnetic fields in massive primordial haloes. Monthly Notices of the Royal Astronomical Society, 2013, 432, 668-678.	1.6	66
120	On the rapid demise of Ly α emitters at redshift z ≳ 7 due to the increasing incidence of optically thick absorption systems. Monthly Notices of the Royal Astronomical Society, 2013, 429, 1695-1704.	1.6	96
121	A new multifield determination of the galaxy luminosity function at z = 7–9 incorporating the 2012 Hubble Ultra-Deep Field imaging. Monthly Notices of the Royal Astronomical Society, 2013, 432, 2696-2716.	1.6	329
122	Black hole mergers: do gas discs lead to spin alignment?. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 429, L30-L34.	1.2	30
123	Pulsational instability of supergiant protostars: do they grow supermassive by accretion?. Monthly Notices of the Royal Astronomical Society, 2013, 431, 3036-3044.	1.6	33
124	Simulating extremely metal-poor gas and DLA metal content at redshift z $\widehat{a} \le f$ 7. Monthly Notices of the Royal Astronomical Society, 2013, 435, 1443-1450.	1.6	14
125	Prospects for detecting the 21Âcm forest from the diffuse intergalactic medium with LOFAR. Monthly Notices of the Royal Astronomical Society, 2013, 428, 1755-1765.	1.6	22
126	BLACK HOLE-GALAXY CORRELATIONS WITHOUT SELF-REGULATION. Astrophysical Journal, 2013, 770, 5.	1.6	94

#	Article	IF	CITATIONS
127	DWARF GALAXIES WITH OPTICAL SIGNATURES OF ACTIVE MASSIVE BLACK HOLES. Astrophysical Journal, 2013, 775, 116.	1.6	362
128	STAR FORMATION AND GAS KINEMATICS OF QUASAR HOST GALAXIES AT <i>z</i> â ¹ /4 6: NEW INSIGHTS FROM ALMA. Astrophysical Journal, 2013, 773, 44.	1.6	317
129	THE SPECTRAL EVOLUTION OF THE FIRST GALAXIES. II. SPECTRAL SIGNATURES OF LYMAN CONTINUUM LEAKAGE FROM GALAXIES IN THE REIONIZATION EPOCH. Astrophysical Journal, 2013, 777, 39.	1.6	119
130	urchin: a reverse ray tracer for astrophysical applications. Monthly Notices of the Royal Astronomical Society, 2013, 434, 748-764.	1.6	29
131	THE LOW-LUMINOSITY END OF THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2013, 767, 149.	1.6	619
132	INTERPRETING THE GLOBAL 21 cm SIGNAL FROM HIGH REDSHIFTS. I. MODEL-INDEPENDENT CONSTRAINTS. Astrophysical Journal, 2013, 777, 118.	1.6	35
133	FOSSIL IMPRINT OF A POWERFUL FLARE AT THE GALACTIC CENTER ALONG THE MAGELLANIC STREAM. Astrophysical Journal, 2013, 778, 58.	1.6	65
134	BLACK HOLE FORAGING: FEEDBACK DRIVES FEEDING. Astrophysical Journal Letters, 2013, 777, L28.	3.0	14
135	NEW CONSTRAINTS ON COSMIC REIONIZATION FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN. Astrophysical Journal, 2013, 768, 71.	1.6	428
136	FORMATION OF PRIMORDIAL SUPERMASSIVE STARS BY RAPID MASS ACCRETION. Astrophysical Journal, 2013, 778, 178.	1.6	201
137	IDENTIFYING IONIZED REGIONS IN NOISY REDSHIFTED 21 cm DATA SETS. Astrophysical Journal, 2013, 767, 68.	1.6	17
138	EXTRAGALACTIC BACKGROUND LIGHT FROM HIERARCHICAL GALAXY FORMATION: GAMMA-RAY ATTENUATION UP TO THE EPOCH OF COSMIC REIONIZATION AND THE FIRST STARS. Astrophysical Journal, 2013, 768, 197.	1.6	125
139	Black hole formation in the early Universe. Monthly Notices of the Royal Astronomical Society, 2013, 433, 1607-1618.	1.6	176
140	A DIRECT MEASUREMENT OF THE MEAN OCCUPATION FUNCTION OF QUASARS: BREAKING DEGENERACIES BETWEEN HALO OCCUPATION DISTRIBUTION MODELS. Astrophysical Journal, 2013, 779, 147.	1.6	19
141	THE SUPERNOVA THAT DESTROYED A PROTOGALAXY: PROMPT CHEMICAL ENRICHMENT AND SUPERMASSIVE BLACK HOLE GROWTH. Astrophysical Journal, 2013, 774, 64.	1.6	42
142	<i>WISE</i> DETECTIONS OF KNOWN QSOs AT REDSHIFTS GREATER THAN SIX. Astrophysical Journal, 2013, 778, 113.	1.6	18
143	KECK SPECTROSCOPY OF GRAVITATIONALLY LENSED $\langle i \rangle z \langle i \rangle \hat{a} \ll f$ 4 GALAXIES: IMPROVED CONSTRAINTS ON THE SCAPE FRACTION OF IONIZING PHOTONS. Astrophysical Journal, 2013, 779, 52.	ΙΕ 1.6	106
144	THE BIGGEST EXPLOSIONS IN THE UNIVERSE. Astrophysical Journal, 2013, 775, 107.	1.6	38

#	Article	IF	CITATIONS
145	THE BIGGEST EXPLOSIONS IN THE UNIVERSE. II Astrophysical Journal, 2013, 777, 99.	1.6	31
146	THE <i>z</i> = 5 QUASAR LUMINOSITY FUNCTION FROM SDSS STRIPE 82. Astrophysical Journal, 2013, 768, 105.	1.6	181
147	Gravitational wave emission from binary supermassive black holes. Classical and Quantum Gravity, 2013, 30, 244009.	1.5	28
148	The high-redshift (z > 3) active galactic nucleus population in the 4-Ms Chandra Deep Field-South. Monthly Notices of the Royal Astronomical Society, 2013, 428, 354-369.	1.6	37
149	New measurements of the ionizing ultraviolet background over 2Â<ÂzÂ<Â5 and implications for hydrogen reionization. Monthly Notices of the Royal Astronomical Society, 2013, 436, 1023-1039.	1.6	254
150	Identifying Lyman α emitters powered by AGNs. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 432, L6-L10.	1.2	8
151	VLT/XSHOOTER and Subaru/MOIRCS spectroscopy of HUDF.YD3: no evidence for Lyman α emission at zÂ= 8.55â~ Monthly Notices of the Royal Astronomical Society, 2013, 430, 3314-3319.	1.6	19
152	ASYMMETRIC ABSORPTION PROFILES OF LyÎ \pm AND LyÎ 2 IN DAMPED LyÎ \pm SYSTEMS. Astrophysical Journal, 2013, 772, 123.	1.6	13
153	DISCOVERY OF THREE <i>z</i> > 6.5 QUASARS IN THE VISTA KILO-DEGREE INFRARED GALAXY (VIKING) SURVEY. Astrophysical Journal, 2013, 779, 24.	1.6	243
154	DEEP LBT/LUCI SPECTROSCOPY OF AN Lyα EMITTER CANDIDATE AT <i>z</i> â‰f 7.7. Astrophysical Journal Letters, 2013, 771, L6.	3.0	13
155	Gamma-ray Bursts and the First Stars. EAS Publications Series, 2013, 61, 585-593.	0.3	0
156	Formation of the first stars. Reports on Progress in Physics, 2013, 76, 112901.	8.1	246
157	Broad <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="bold">K<mml:mi>α</mml:mi></mml:mi </mml:math> iron line from accretion disks around traversable wormholes. Physical Review D, 2013, 87, .	1.6	76
158	Seeding supermassive black holes with a nonvortical dark-matter subcomponent. Physical Review D, 2013, 88, .	1.6	13
159	SUPERMASSIVE POPULATION III SUPERNOVAE AND THE BIRTH OF THE FIRST QUASARS. Astrophysical Journal, 2013, 778, 17.	1.6	37
160	NEW OBSERVATIONAL CONSTRAINTS ON THE GROWTH OF THE FIRST SUPERMASSIVE BLACK HOLES. Astrophysical Journal, 2013, 778, 130.	1.6	59
161	CHARACTERIZING THE MID-INFRARED EXTRAGALACTIC SKY WITH <i>WISE</i> AND SDSS. Astronomical Journal, 2013, 145, 55.	1.9	146
162	Did massive black holes in globular clusters initially satisfy galactic scaling relations?. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 434, L41-L45.	1.2	20

#	Article	IF	CITATIONS
163	CLASH: THREE STRONGLY LENSED IMAGES OF A CANDIDATE <i>z</i> â‰^ 11 GALAXY. Astrophysical Journal, 2013, 762, 32.	1.6	301
164	HIGH- <i>z</i> QUASARS IN THE <i>R</i> _h = <i>ct</i> UNIVERSE. Astrophysical Journal, 2013, 764, 72.	1.6	60
165	Star formation and accretion in the circumnuclear disks of active galaxies. Astronomy and Astrophysics, 2013, 560, A34.	2.1	13
166	The Canada-France High- <i>z</i> Quasar Survey: 1.2 mm observations. Astronomy and Astrophysics, 2013, 552, A43.	2.1	28
167	THE CHEMICAL PROPERTIES OF LOW-REDSHIFT QSOs. Astrophysical Journal, 2013, 763, 58.	1.6	37
168	Indication for an intermediate-mass black hole in the globular cluster NGC 5286 from kinematics. Astronomy and Astrophysics, 2013, 554, A63.	2.1	37
169	Massive black hole factories: Supermassive and quasi-star formation in primordial halos. Astronomy and Astrophysics, 2013, 558, A59.	2.1	127
170	THE DEMOGRAPHICS OF BROAD-LINE QUASARS IN THE MASS-LUMINOSITY PLANE. II. BLACK HOLE MASS AND EDDINGTON RATIO FUNCTIONS. Astrophysical Journal, 2013, 764, 45.	1.6	135
171	Monolithic View of Galaxy Formation and Evolution. Galaxies, 2014, 2, 300-381.	1.1	7
172	X-ray observation of ULAS J1120+0641, the most distant quasar at <i>z</i> = 7.08. Astronomy and Astrophysics, 2014, 563, A46.	2.1	21
173	Primordial environment of super massive black holes: large-scale galaxy overdensities around <i>z </i> Â~ 6 quasars with LBT. Astronomy and Astrophysics, 2014, 568, A1.	2.1	57
174	Suite of hydrodynamical simulations for the Lyman- <i>\hat{l}±</i> forest with massive neutrinos. Astronomy and Astrophysics, 2014, 567, A79.	2.1	32
175	The Direct Collapse of Supermassive Black Hole Seeds. Proceedings of the International Astronomical Union, 2014, 11, 486-487.	0.0	0
176	Supersonic relative velocity between dark matter and baryons: A review. International Journal of Modern Physics D, 2014, 23, 1430017.	0.9	43
177	Understanding the Core-Halo Relation of Quantum Wave Dark Matter from 3D Simulations. Physical Review Letters, 2014, 113, 261302.	2.9	340
178	CLOSE COMPANIONS TO TWO HIGH-REDSHIFT QUASARS. Astronomical Journal, 2014, 148, 73.	1.9	25
179	SDSS J013127.34–032100.1: A NEWLY DISCOVERED RADIO-LOUD QUASAR AT <i>z</i> = 5.18 WITH EXTREME HIGH LUMINOSITY. Astrophysical Journal Letters, 2014, 795, L29.	ELY 3.0	27
180	DISCOVERY OF EIGHT <i>z</i> a^1/4 6 QUASARS FROM Pan-STARRS1. Astronomical Journal, 2014, 148, 14.	1.9	126

#	Article	IF	CITATIONS
181	THE GENTLE GROWTH OF GALAXIES AT HIGH REDSHIFTS IN OVERDENSE ENVIRONMENTS. Astrophysical Journal Letters, 2014, 790, L32.	3.0	22
182	THE PREMATURE FORMATION OF HIGH-REDSHIFT GALAXIES. Astronomical Journal, 2014, 147, 120.	1.9	39
183	Three-dimensional general relativistic radiation magnetohydrodynamical simulation of super-Eddington accretion, using a new code harmrad with M1 closure. Monthly Notices of the Royal Astronomical Society, 2014, 441, 3177-3208.	1.6	228
184	Spectroscopy of z â^¼ 7 candidate galaxies: using Lyman α to constrain the neutral fraction of hydrogen in the high-redshift universea~ Monthly Notices of the Royal Astronomical Society, 2014, 443, 2831-2842.	1.6	126
185	High-redshift quasars host galaxies: is there a stellar mass crisis?. Monthly Notices of the Royal Astronomical Society, 2014, 444, 2442-2455.	1.6	70
186	The hard X-ray luminosity function of high-redshift (3Â<ÂzÂ≲Â5) active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2014, 445, 3557-3574.	1.6	77
187	Relativistic self-similar dynamic collapses of black holes in general polytropic spherical clouds. Monthly Notices of the Royal Astronomical Society, 2014, 438, 1242-1255.	1.6	12
188	Large-scale environment of z â^¼ 5.7 C iv absorption systems – I. Projected distribution of galaxies*. Monthly Notices of the Royal Astronomical Society, 2014, 442, 946-978.	1.6	24
189	No excess of bright galaxies around the redshift 7.1 quasar ULAS J1120+0641. Monthly Notices of the Royal Astronomical Society, 2014, 442, 3454-3461.	1.6	33
190	Distinguishing models of reionization using future radio observations of 21-cm 1-point statistics. Monthly Notices of the Royal Astronomical Society, 2014, 443, 3090-3106.	1.6	47
191	Do high-redshift quasars have powerful jets?. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 442, L81-L84.	1.2	23
192	The First Billion Years project: birthplaces of direct collapse black holes. Monthly Notices of the Royal Astronomical Society, 2014, 443, 648-657.	1.6	92
193	Outflows from active galactic nuclei: the BLR–NLR metallicity correlation. Monthly Notices of the Royal Astronomical Society, 2014, 438, 2828-2838.	1.6	28
194	A UV flux constraint on the formation of direct collapse black holes. Monthly Notices of the Royal Astronomical Society, 2014, 443, 1979-1987.	1.6	73
195	The bright end of the galaxy luminosity function at z≃7: before the onset of mass quenching?. Monthly Notices of the Royal Astronomical Society, 2014, 440, 2810-2842.	1.6	168
196	Initial mass function of intermediate-mass black hole seeds. Monthly Notices of the Royal Astronomical Society, 2014, 443, 2410-2425.	1.6	123
197	X-rays from the redshift 7.1 quasar ULAS J1120+0641. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 440, L91-L95.	1.2	31
198	Intermediate Mass Black Holes: Their Motion and Associated Energetics. Advances in High Energy Physics, 2014, 2014, 1-8.	0.5	3

#	Article	IF	CITATIONS
199	Distinctive 21-cm structures of the first stars, galaxies and quasars. Monthly Notices of the Royal Astronomical Society, 2014, 445, 3674-3684.	1.6	13
200	A no-go theorem for direct collapse black holes without a strong ultraviolet background. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 442, L100-L104.	1.2	52
201	Highly accreting quasars: sample definition and possible cosmological implications. Monthly Notices of the Royal Astronomical Society, 2014, 442, 1211-1229.	1.6	70
202	The high- <i>z</i> quasar Hubble Diagram. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 027-027.	1.9	28
203	What do observations of the Lyman \hat{l}_{\pm} fraction tell us about reionization?. Monthly Notices of the Royal Astronomical Society, 2014, 437, 2542-2553.	1.6	22
204	Probing reionization using quasar near-zones at redshift z â^¼ 6. Monthly Notices of the Royal Astronomical Society, 2014, 443, 3761-3779.	1.6	11
205	Combining Dark Energy Survey Science Verification data with near-infrared data from the ESO VISTA Hemisphere Survey. Monthly Notices of the Royal Astronomical Society, 2014, 446, 2523-2539.	1.6	29
206	Overlapping inflow events as catalysts for supermassive black hole growth. Monthly Notices of the Royal Astronomical Society, 2014, 438, 1698-1713.	1.6	3
207	The Giant Gemini GMOS survey of zem > 4.4 quasars – I. Measuring the mean free path across cosmic time. Monthly Notices of the Royal Astronomical Society, 2014, 445, 1745-1760.	1.6	146
208	Dark halo microphysics and massive black hole scaling relations in galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 445, 3415-3434.	1.6	5
209	Late-time vacuum phase transitions: Connecting sub-eV scale physics with cosmological structure formation. Physical Review D, 2014, 90, .	1.6	12
210	Highlights and discoveries from the <i>Chandra</i> X-ray Observatory. Reports on Progress in Physics, 2014, 77, 066902.	8.1	29
211	Self-interacting dark matter from a non-Abelian hidden sector. Physical Review D, 2014, 89, .	1.6	161
212	A Semi-analytical Model of Quasar Formation. Chinese Astronomy and Astrophysics, 2014, 38, 375-388.	0.1	0
213	Testing scenarios of primordial black holes being the seeds of supermassive black holes by ultracompact minihalos and CMB <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>1¼<</mml:mi></mml:math> distortions. Physical Review D, 2014, 90, .	1.6	91
214	Distinguishing black holes and wormholes with orbiting hot spots. Physical Review D, 2014, 90, .	1.6	66
215	Testing Bell's Inequality with Cosmic Photons: Closing the Setting-Independence Loophole. Physical Review Letters, 2014, 112, 110405.	2.9	71
216	SUPER-CRITICAL GROWTH OF MASSIVE BLACK HOLES FROM STELLAR-MASS SEEDS. Astrophysical Journal Letters, 2014, 784, L38.	3.0	185

		PORT	
# 217	ARTICLE UPPER BOUND ON THE FIRST STAR FORMATION HISTORY. Astrophysical Journal Letters, 2014, 781, L35.	IF 3.0	Citations
218	MEASURING QUASAR VARIABILITY WITH Pan-STARRS1 AND SDSS. Astrophysical Journal, 2014, 784, 92.	1.6	45
219	ACCELERATED EVOLUTION OF THE Lyα LUMINOSITY FUNCTION AT <i>z</i> ≳ 7 REVEALED BY THE SUBARU ULTRA-DEEP SURVEY FOR Lyα EMITTERS AT <i>z</i> = 7.3. Astrophysical Journal, 2014, 797, 16.	1.6	148
220	CHEMICAL CONSTRAINTS ON THE CONTRIBUTION OF POPULATION III STARS TO COSMIC REIONIZATION. Astrophysical Journal, 2014, 787, 64.	1.6	18
221	PROBING THE ACTIVE MASSIVE BLACK HOLE CANDIDATE IN THE CENTER OF NGC 404 WITH VLBI. Astrophysical Journal, 2014, 791, 2.	1.6	20
222	THE DIRECT COLLAPSE OF A MASSIVE BLACK HOLE SEED UNDER THE INFLUENCE OF AN ANISOTROPIC LYMAN-WERNER SOURCE. Astrophysical Journal, 2014, 795, 137.	1.6	64
223	Probing the metallicity and ionization state of the circumgalactic medium at zÂâ^1⁄4 6 and beyond with O i absorption. Monthly Notices of the Royal Astronomical Society, 2014, 438, 1820-1831.	1.6	38
224	The dust content of QSO hosts at high redshift. Monthly Notices of the Royal Astronomical Society, 2014, 438, 2765-2783.	1.6	52
225	Lyα Emitting Galaxies as a Probe of Reionisation. Publications of the Astronomical Society of Australia, 2014, 31, .	1.3	214
226	The impact of reionization on the formation of supermassive black hole seeds. Monthly Notices of the Royal Astronomical Society, 2014, 445, 686-693.	1.6	42
227	The birth of a galaxy – III. Propelling reionization with the faintest galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 442, 2560-2579.	1.6	321
228	Gravitational and distributed heating effects of a cD galaxy on the hydrodynamical structure of its host cluster. Monthly Notices of the Royal Astronomical Society, 2014, 437, 3750-3765.	1.6	2
229	Does disc fragmentation prevent the formation of supermassive stars in protogalaxies?. Monthly Notices of the Royal Astronomical Society, 2014, 445, 1549-1557.	1.6	65
230	Radiative feedback from high-mass X-ray binaries on the formation of the first galaxies and early reionization. Monthly Notices of the Royal Astronomical Society, 2014, 440, 3778-3796.	1.6	83
231	Numerical resolution effects on simulations of massive black hole seeds. Monthly Notices of the Royal Astronomical Society, 2014, 439, 1160-1175.	1.6	68
232	A 10Âdeg2 Lyman α survey at z=8.8 with spectroscopic follow-up: strong constraints on the luminosity function and implications for other surveysa ั Monthly Notices of the Royal Astronomical Society, 2014, 440, 2375-2387.	1.6	40
233	Constraining the high-redshift formation of black hole seeds in nuclear star clusters with gas inflows. Monthly Notices of the Royal Astronomical Society, 2014, 442, 3616-3626.	1.6	90
234	Black hole evolution – II. Spinning black holes in a supernova-driven turbulent interstellar medium. Monthly Notices of the Royal Astronomical Society, 2014, 440, 2333-2346.	1.6	40

#	Article	IF	CITATIONS
235	A GLOBAL THREE-DIMENSIONAL RADIATION MAGNETO-HYDRODYNAMIC SIMULATION OF SUPER-EDDINGTON ACCRETION DISKS. Astrophysical Journal, 2014, 796, 106.	1.6	312
236	SONGLINES FROM DIRECT COLLAPSE SEED BLACK HOLES: EFFECTS OF X-RAYS ON BLACK HOLE GROWTH AND STELLAR POPULATIONS. Astrophysical Journal, 2014, 797, 139.	1.6	34
237	PROBING BARYONIC PROCESSES AND GASTROPHYSICS IN THE FORMATION OF THE MILKY WAY DWARF SATELLITES. I. METALLICITY DISTRIBUTION PROPERTIES. Astrophysical Journal, 2014, 791, 8.	1.6	6
238	Extreme galaxies during reionization: testing ISM and disc models. Monthly Notices of the Royal Astronomical Society, 2014, 438, 2483-2498.	1.6	11
239	Feedback-regulated supermassive black hole seed formation. Monthly Notices of the Royal Astronomical Society, 2014, 442, 2036-2047.	1.6	129
240	First CO(17–16) emission line detected in a zÂ>Â6 quasar. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2848-2853.	1.6	54
241	Probing intergalactic neutral hydrogen by the Lyman alpha red damping wing of gamma-ray burst 130606A afterglow spectrum at <i>z</i> Â=Â5.913. Publication of the Astronomical Society of Japan, 2014, 66, .	1.0	45
242	THE HIGHEST REDSHIFT QUASAR AT <i>z</i> = 7.085: A RADIO-QUIET SOURCE. Astronomical Journal, 2014, 147, 6.	1.9	17
243	SPECTROSCOPIC OBSERVATION OF LyÎ \pm EMITTERS AT <i>z </i> â^1/4 7.7 AND IMPLICATIONS ON RE-IONIZATION. Astrophysical Journal, 2014, 788, 87.	1.6	46
244	BLACK HOLE MASS ESTIMATES AND EMISSION-LINE PROPERTIES OF A SAMPLE OF REDSHIFT <i>z</i> > 6.5 QUASARS. Astrophysical Journal, 2014, 790, 145.	1.6	170
245	Driving the growth of the earliest supermassive black holes with major mergers of host galaxies. Classical and Quantum Gravity, 2014, 31, 244005.	1.5	22
246	Star formation in high redshift galaxies including supernova feedback: Effect on stellar mass and luminosity functions. New Astronomy, 2014, 30, 89-99.	0.8	11
247	The formation of massive black holes in zÂâ^¼Â30 dark matter haloes with large baryonic streaming velocities. Monthly Notices of the Royal Astronomical Society, 2014, 439, 1092-1100.	1.6	77
248	THE COEVOLUTION OF SUPERMASSIVE BLACK HOLES AND MASSIVE GALAXIES AT HIGH REDSHIFT. Astrophysical Journal, 2014, 782, 69.	1.6	88
249	THE GENERAL RELATIVISTIC INSTABILITY SUPERNOVA OF A SUPERMASSIVE POPULATION III STAR. Astrophysical Journal, 2014, 790, 162.	1.6	54
250	Misaligned accretion on to supermassive black hole binaries. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2285-2296.	1.6	16
251	Formation of an embryonic supermassive star in the first galaxy. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 445, L109-L113.	1.2	78
252	SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. II. THE MOST LUMINOUS STANDARD CANDLES IN THE UNIVERSE. Astrophysical Journal, 2014, 793, 108.	1.6	120

#	Article	IF	CITATIONS
253	Rapid growth of seed black holes in the early universe by supra-exponential accretion. Science, 2014, 345, 1330-1333.	6.0	135
254	Seeds to monsters: tracing the growth of black holes in the universe. General Relativity and Gravitation, 2014, 46, 1.	0.7	49
255	Accretion disks around binary black holes of unequal mass: General relativistic magnetohydrodynamic simulations near decoupling. Physical Review D, 2014, 89, .	1.6	87
256	Impact of baryonic streaming velocities on the formation of supermassive black holes via direct collapse. Monthly Notices of the Royal Astronomical Society, 2014, 440, 2969-2975.	1.6	37
257	Cosmic backgrounds due to the formation of the first generation of supermassive black holes. Monthly Notices of the Royal Astronomical Society, 2014, 441, 1147-1156.	1.6	25
258	Magnetic fields during the formation of supermassive black holes. Monthly Notices of the Royal Astronomical Society, 2014, 440, 1551-1561.	1.6	43
259	High-redshift supermassive black holes: accretion through cold flows. Monthly Notices of the Royal Astronomical Society, 2014, 440, 1865-1879.	1.6	42
260	altimg="si19.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"	1.2	1
261	Amins to = "http://www.elsevier.com/xmil.common/cable/ord" xmins.so = "http://www.elsevier.com/xmil. Massive black hole seeds born via direct gas collapse in galaxy mergers: their properties, statistics and environment. Monthly Notices of the Royal Astronomical Society, 2014, 437, 1576-1592.	1.6	53
262	Effects of turbulence and rotation on protostar formation as a precursor of massive black holes. Astronomy and Astrophysics, 2014, 572, A22.	2.1	13
263	Finding the Most Distant Quasars Using Bayesian Selection Methods. Statistical Science, 2014, 29, .	1.6	1
264	The environment of bright QSOs at z â^1⁄4 6: star-forming galaxies and X-ray emission. Monthly Notices of the Royal Astronomical Society, 2014, 439, 2146-2174.	1.6	83
265	Fifty Years of Quasars: Physical Insights and Potential for Cosmology. Journal of Physics: Conference Series, 2014, 565, 012018.	0.3	8
266	AN ULTRA-LUMINOUS QUASAR AT <i>z</i> = 5.363 WITH A TEN BILLION SOLAR MASS BLACK HOLE AND A METAL-RICH DLA AT <i>z</i> â ¹ /4 5. Astrophysical Journal Letters, 2015, 807, L9.	3.0	33
267	Reionisation and High-Redshift Galaxies: The View from Quasar Absorption Lines. Publications of the Astronomical Society of Australia, 2015, 32, .	1.3	97
268	THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: POST-STARBURST SIGNATURES IN QUASAR HOST GALAXIES AT <i>z</i>	1.6	36
269	Identification of the brightest Lyα emitters at z = 6.6: implications for the evolution of the luminosity function in the reionization era. Monthly Notices of the Royal Astronomical Society, 2015, 451, 400-417.	1.6	139
270	Cosmological evolution of supermassive black holes in galactic centers unveiled by hard X-ray observations. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2015, 91, 175-192.	1.6	4

#	Article	IF	CITATIONS
271	Helium reionization in the presence of self-annihilating clumpy dark matter. Physical Review D, 2015, 92, .	1.6	1
272	Quasistationary solutions of self-gravitating scalar fields around collapsing stars. Physical Review D, 2015, 92, .	1.6	23
273	Fisher versus Bayes: A comparison of parameter estimation techniques for massive black hole binaries to high redshifts with eLISA. Physical Review D, 2015, 91, .	1.6	15
274	GAMMA-RAY BURSTS TRACE UV METRICS OF STAR FORMATION OVER 3 < <i>z</i> < 5. Astrophysical Journal, 2015, 809, 76.	1.6	50
275	DIRECT FORMATION OF SUPERMASSIVE BLACK HOLES IN METAL-ENRICHED GAS AT THE HEART OF HIGH-REDSHIFT GALAXY MERGERS. Astrophysical Journal, 2015, 810, 51.	1.6	79
276	REIONIZATION AFTER <i>PLANCK</i> : THE DERIVED GROWTH OF THE COSMIC IONIZING EMISSIVITY NOW MATCHES THE GROWTH OF THE GALAXY UV LUMINOSITY DENSITY. Astrophysical Journal, 2015, 811, 140.	1.6	323
277	DISCOVERY OF A FAINT QUASAR AT <i>z</i> â^¼ 6 AND IMPLICATIONS FOR COSMIC REIONIZATION. Astrophysical Journal Letters, 2015, 813, L35.	3.0	34
278	EARLY STRUCTURE FORMATION FROM PRIMORDIAL DENSITY FLUCTUATIONS WITH A BLUE, TILTED POWER SPECTRUM. Astrophysical Journal, 2015, 814, 18.	1.6	17
279	THE EVOLUTION OF THE GALAXY REST-FRAME ULTRAVIOLET LUMINOSITY FUNCTION OVER THE FIRST TWO BILLION YEARS. Astrophysical Journal, 2015, 810, 71.	1.6	524
280	Nearest neighbor density ratio estimation for large-scale applications in astronomy. Astronomy and Computing, 2015, 12, 67-72.	0.8	14
281	Cosmic reionization of hydrogen and helium: contribution from both mini-quasars and stars. Monthly Notices of the Royal Astronomical Society, 2015, 451, 1875-1882.	1.6	3
282	High-energy neutrino fluxes from AGN populations inferred from X-ray surveys. Monthly Notices of the Royal Astronomical Society, 2015, 451, 3649-3663.	1.6	9
283	Simulations of the OzDES AGN reverberation mapping project. Monthly Notices of the Royal Astronomical Society, 2015, 453, 1701-1726.	1.6	46
284	First discoveries of <i>z</i> Ââ^1⁄4Â6 quasars with the Kilo-Degree Survey and VISTA Kilo-Degree Infrared Galaxy survey. Monthly Notices of the Royal Astronomical Society, 2015, 453, 2260-2267.	1.6	72
285	Probing the end of reionization with the near zones of <i>z</i> ≳ 6 QSOs. Monthly Notices of the Royal Astronomical Society, 2015, 454, 681-697.	1.6	38
286	Limits on luminosity and mass accretion rate of a radiation-pressure-dominated accretion disc. Monthly Notices of the Royal Astronomical Society, 2015, 448, 3514-3521.	1.6	12
287	Lyman Î \pm emitters gone missing: evidence for late reionization?. Monthly Notices of the Royal Astronomical Society, 2015, 452, 261-277.	1.6	98
288	The Illustris simulation: the evolving population of black holes across cosmic time. Monthly Notices of the Royal Astronomical Society, 2015, 452, 575-596.	1.6	452

#	Article	IF	CITATIONS
289	Direct collapse black hole formation via high-velocity collisions of protogalaxies. Monthly Notices of the Royal Astronomical Society, 2015, 453, 1692-1700.	1.6	40
290	The systematic search for zÂ≳Â5 active galactic nuclei in the Chandra Deep Field South. Monthly Notices of the Royal Astronomical Society, 2015, 448, 3167-3195.	1.6	67
291	Two bright <i>z</i> Â>Â6 quasars from VST ATLAS and a new method of optical plus mid-infrared colour selection. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 451, L16-L20.	1.2	70
292	21CMMC: an MCMC analysis tool enabling astrophysical parameter studies of the cosmic 21Âcm signal. Monthly Notices of the Royal Astronomical Society, 2015, 449, 4246-4263.	1.6	181
293	The most distant quasar at <i>z</i> = 7.08: Probable retrograde rotation of an accreting supermassive black hole. Astronomische Nachrichten, 2015, 336, 312-315.	0.6	2
294	Formation of the initial distribution of matter inhomogeneities in the era of radiation domination. International Journal of Geometric Methods in Modern Physics, 2015, 12, 1550097.	0.8	4
295	Thirty Meter Telescope Detailed Science Case: 2015. Research in Astronomy and Astrophysics, 2015, 15, 1945-2140.	0.7	118
296	The formation of supermassive black holes in rapidly rotating disks. Astronomy and Astrophysics, 2015, 578, A118.	2.1	31
297	Discovery of a 12 billion solar mass black hole at redshift 6.3 and its challenge to the black hole/galaxy coevolution at cosmic dawn. Proceedings of the International Astronomical Union, 2015, 11, 80-83.	0.0	1
298	The evolution of high-redshift massive black holes. Proceedings of the International Astronomical Union, 2015, 11, 72-79.	0.0	5
299	Growth of Supermassive Black Holes, Galaxy Mergers and Supermassive Binary Black Holes. Proceedings of the International Astronomical Union, 2015, 11, 292-298.	0.0	2
300	Early BHs: simulations and observations. Proceedings of the International Astronomical Union, 2015, 11, 92-100.	0.0	0
301	The spectral energy distribution of the redshift 7.1 quasar ULAS J1120+0641. Astronomy and Astrophysics, 2015, 575, A31.	2.1	25
302	THE IDENTIFICATION OF <i>z</i> -DROPOUTS IN PAN-STARRS1: THREE QUASARS AT 6.5< <i>z</i> < 6.7. Astrophysical Journal Letters, 2015, 801, L11.	3.0	151
303	THE MOST LUMINOUS GALAXIES DISCOVERED BY <i>WISE</i> . Astrophysical Journal, 2015, 805, 90.	1.6	129
304	Cosmic string loops as the seeds of super-massive black holes. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 007-007.	1.9	29
305	SUPERMASSIVE BLACK HOLES FROM ULTRA-STRONGLY SELF-INTERACTING DARK MATTER. Astrophysical Journal, 2015, 804, 131.	1.6	87
306	Supermassive black hole formation at high redshifts via direct collapse in a cosmological context. Monthly Notices of the Royal Astronomical Society, 2015, 450, 4411-4423.	1.6	44

#	Article	IF	CITATIONS
307	THE SUBARU HIGH- <i>z</i> QUASAR SURVEY: DISCOVERY OF FAINT <i>z</i> â^¼ 6 QUASARS. Astrophysical Journal, 2015, 798, 28.	1.6	100
308	LBT/LUCI SPECTROSCOPIC OBSERVATIONS OF <i>z</i> â‰f7 Galaxies GALAXIES. Astrophysical Journal, 2015, 806, 108.	1.6	7
309	Off the beaten path: a new approach to realistically model the orbital decay of supermassive black holes in galaxy formation simulations. Monthly Notices of the Royal Astronomical Society, 2015, 451, 1868-1874.	1.6	117
310	Early cosmic merger of multiple black holes. Monthly Notices of the Royal Astronomical Society, 2015, 451, 2174-2184.	1.6	13
311	Assessing inflow rates in atomic cooling haloes: implications for direct collapse black holes. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1026-1044.	1.6	41
312	The suppression of direct collapse black hole formation by soft X-ray irradiation. Monthly Notices of the Royal Astronomical Society, 2015, 450, 4350-4363.	1.6	54
313	SMBH growth parameters in the early Universe of Millennium and Millennium-II simulations. Monthly Notices of the Royal Astronomical Society, 2015, 451, 1964-1972.	1.6	6
314	Re-examining the case for neutral gas near the redshift 7 quasar ULAS J1120+0641. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1105-1111.	1.6	38
315	Megahertz peaked-spectrum sources in the Boötes field I - a route towards finding high-redshift AGN. Monthly Notices of the Royal Astronomical Society, 2015, 450, 1477-1485.	1.6	42
316	Calibrating cosmological radiative transfer simulations with LyÂα forest data: evidence for large spatial UV background fluctuations at <i>z</i> â^¼ 5.6–5.8 due to rare bright sources. Monthly Notices of the Royal Astronomical Society, 2015, 453, 2944-2965.	1.6	72
317	Supermassive black holes in the early Universe. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20150449.	1.0	22
318	Simulating the formation of massive seed black holes in the early Universe – I. An improved chemical model. Monthly Notices of the Royal Astronomical Society, 2015, 451, 2082-2096.	1.6	60
319	ADDING CONTEXT TO <i>JAMES WEBB SPACE TELESCOPE </i> SURVEYS WITH CURRENT AND FUTURE 21 cm RADIO OBSERVATIONS. Astrophysical Journal, 2015, 800, 128.	1.6	34
320	Simulating the growth of intermediate-mass black holes. Monthly Notices of the Royal Astronomical Society, 2015, 448, 104-118.	1.6	41
321	X-RAY CONSTRAINTS ON THE LOCAL SUPERMASSIVE BLACK HOLE OCCUPATION FRACTION. Astrophysical Journal, 2015, 799, 98.	1.6	109
322	An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30. Nature, 2015, 518, 512-515.	13.7	583
323	The powerful jet of an off-nuclear intermediate-mass black hole in the spiral galaxy NGC 2276. Monthly Notices of the Royal Astronomical Society, 2015, 448, 1893-1899.	1.6	78
324	How realistic UV spectra and X-rays suppress the abundance of direct collapse black holes. Monthly Notices of the Royal Astronomical Society, 2015, 446, 3163-3177.	1.6	85

\sim	 	D	PORT
		REL	דעהנ
		NLF	

#	Article	IF	CITATIONS
325	Dynamical evolution of massive black holes in galactic-scale <i>N</i> -body simulations – introducing the regularized tree code â€~rvine'. Monthly Notices of the Royal Astronomical Society, 2015, 452, 2337-2352.	1.6	12
326	Formation of primordial supermassive stars by burst accretion. Monthly Notices of the Royal Astronomical Society, 2015, 452, 755-764.	1.6	65
327	The growth efficiency of high-redshift black holes. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1922-1933.	1.6	85
328	Accurate Lyα scattering cross-section and red damping wing in the reionization epoch. Monthly Notices of the Royal Astronomical Society, 2015, 446, 264-273.	1.6	7
329	How an improved implementation of H ₂ self-shielding influences the formation of massive stars and black holes. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1233-1244.	1.6	42
330	The broadening of Lyman-α forest absorption lines. Monthly Notices of the Royal Astronomical Society, 2015, 450, 1465-1476.	1.6	31
332	Fast cold gas in hot AGN outflows. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 448, L30-L34.	1.2	61
333	CONSTRAINING THE RADIO-LOUD FRACTION OF QUASARS AT <i>z</i> > 5.5. Astrophysical Journal, 2015, 804, 118.	1.6	87
334	EVIDENCE FOR PopIII-LIKE STELLAR POPULATIONS IN THE MOST LUMINOUS Ly <i>α</i> EMITTERS AT THE EPOCH OF REIONIZATION: SPECTROSCOPIC CONFIRMATION. Astrophysical Journal, 2015, 808, 139.	1.6	285
335	CHARACTERISTICS OF He ii PROXIMITY PROFILES. Astrophysical Journal, 2015, 806, 142.	1.6	15
336	Shining in the dark: the spectral evolution of the first black holes. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3771-3777.	1.6	67
337	The AGN Hubble Diagram and its implications for cosmology. Astrophysics and Space Science, 2015, 359, 1.	0.5	6
338	DES J0454â^'4448: discovery of the first luminous <i>z</i> ≥ 6 quasar from the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3952-3961.	1.6	60
339	News Feature: Reionizing the universe. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12225-12227.	3.3	0
340	CAN DIRECT COLLAPSE BLACK HOLES LAUNCH GAMMA-RAY BURSTS AND GROW TO SUPERMASSIVE BLACK HOLES?. Astrophysical Journal, 2015, 810, 64.	1.6	35
341	BLACK HOLE AND GALAXY COEVOLUTION FROM CONTINUITY EQUATION AND ABUNDANCE MATCHING. Astrophysical Journal, 2015, 810, 74.	1.6	87
342	DISCOVERY OF EIGHT <i>z</i> â^¼ 6 QUASARS IN THE SLOAN DIGITAL SKY SURVEY OVERLAP REGIONS. Astronomical Journal, 2015, 149, 188.	1.9	55
343	ON THE SCATTER IN THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2015, 801, 8.	1.6	43

#	Article	IF	CITATIONS
344	REST-FRAME OPTICAL SPECTRA AND BLACK HOLE MASSES OF 3 < <i>z</i> < 6 QUASARS. Astrophysical Journal, 2015, 806, 109.	1.6	64
345	Limits on Population III star formation in minihaloes implied by <i>Planck</i> . Monthly Notices of the Royal Astronomical Society, 2015, 453, 4457-4467.	1.6	48
346	Large-Scale Structure Formation: From the First Non-linear Objects to Massive Galaxy Clusters. Space Science Reviews, 2015, 188, 93-139.	3.7	37
347	COSMOLOGICAL SIMULATIONS OF EARLY BLACK HOLE FORMATION: HALO MERGERS, TIDAL DISRUPTION, AND THE CONDITIONS FOR DIRECT COLLAPSE. Astrophysical Journal, 2016, 832, 134.	1.6	70
348	REVISITING THE COMPLETENESS AND LUMINOSITY FUNCTION IN HIGH-REDSHIFT LOW-LUMINOSITY QUASAR SURVEYS. Astrophysical Journal, 2016, 832, 208.	1.6	11
349	ON THE FORMATION OF MOLECULAR CLUMPS IN QSO OUTFLOWS. Astrophysical Journal, 2016, 833, 46.	1.6	33
350	THE IMPACT OF UNRESOLVED TURBULENCE ON THE ESCAPE FRACTION OF LYMAN CONTINUUM PHOTONS. Astrophysical Journal Letters, 2016, 832, L9.	3.0	15
351	CHANDRA COUNTERPARTS OF CANDELS GOODS-S SOURCES. Astrophysical Journal, 2016, 823, 95.	1.6	44
352	OBSCURED AGNs IN BULGELESS HOSTS DISCOVERED BY WISE: THE CASE STUDY OF SDSS J1224+5555. Astrophysical Journal, 2016, 827, 58.	1.6	6
353	Forecasts for the <i>WFIRST</i> High Latitude Survey using the BlueTides simulation. Monthly Notices of the Royal Astronomical Society, 2016, 463, 3520-3530.	1.6	34
354	Observational Searches for Star-Forming Galaxies at <i>z</i> > 6. Publications of the Astronomical Society of Australia, 2016, 33, .	1.3	117
355	SUBARU HIGH-z EXPLORATION OF LOW-LUMINOSITY QUASARS (SHELLQs). I. DISCOVERY OF 15 QUASARS AND BRIGHT GALAXIES AT 5.7 < z < 6.9 ^{â^—} â€. Astrophysical Journal, 2016, 828, 26.	1.6	164
356	Extracting the late-time kinetic Sunyaev–Zel'dovich effect. Monthly Notices of the Royal Astronomical Society, 2016, 463, 2425-2442.	1.6	16
357	Unveiling early black holes with <i>JWST</i> . Proceedings of the International Astronomical Union, 2016, 12, 257-264.	0.0	0
358	A Quasar Discovered at redshift 6.6 from Pan-STARRS1. Monthly Notices of the Royal Astronomical Society, 0, , stw3287.	1.6	21
359	REVISITING THE LYMAN CONTINUUM ESCAPE CRISIS: PREDICTIONS FOR zÂ>Â6 FROM LOCAL GALAXIES. Astrophysical Journal, 2016, 829, 99.	1.6	62
360	AN EXTREME LUMINOUS X-RAY SOURCE CATALOG BASED ON CHANDRA ACIS OBSERVATIONS. Astrophysical Journal, Supplement Series, 2016, 222, 12.	3.0	6
361	THE SPACE DENSITY OF LUMINOUS DUSTY STAR-FORMING GALAXIES AT zÂ>Â4: SCUBA-2 AND LABOCA IMAGING OF ULTRARED GALAXIES FROM HERSCHEL-ATLAS. Astrophysical Journal, 2016, 832, 78.	1.6	91

#	Article	IF	CITATIONS
362	Positive or negative? The impact of X-ray feedback on the formation of direct collapse black hole seeds. Monthly Notices of the Royal Astronomical Society, 2016, 461, 111-125.	1.6	16
363	A concept for seeing-limited near-IR spectroscopy on the Giant Magellan Telescope. , 2016, , .		0
364	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 596, A108.	2.1	375
365	The chemical evolution of self-gravitating primordial disks. Astronomy and Astrophysics, 2016, 585, A11.	2.1	5
366	Supermassive dark-matter Q-balls in galactic centers?. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 027-027.	1.9	17
367	SPECTRAL AND TEMPORAL PROPERTIES OF THE ULTRA-LUMINOUS X-RAY PULSAR IN M82 FROM 15 YEARS OF CHANDRA OBSERVATIONS AND ANALYSIS OF THE PULSED EMISSION USING NuSTAR. Astrophysical Journal, 2016, 816, 60.	1.6	50
368	THE FINAL SDSS HIGH-REDSHIFT QUASAR SAMPLE OF 52 QUASARS AT zÂ>Â5.7. Astrophysical Journal, 2016, 833, 222.	1.6	225
369	Formation of Supermassive Black Hole Seeds. Publications of the Astronomical Society of Australia, 2016, 33, .	1.3	113
370	THE FINAL FATES OF ACCRETING SUPERMASSIVE STARS. Astrophysical Journal Letters, 2016, 830, L34.	3.0	84
371	EXPLORATORY CHANDRA OBSERVATION OF THE ULTRALUMINOUS QUASAR SDSS J010013.02+280225.8 AT REDSHIFT 6.30. Astrophysical Journal Letters, 2016, 823, L37.	3.0	14
372	The Early Growth of the First Black Holes. Publications of the Astronomical Society of Australia, 2016, 33, .	1.3	46
373	Black Hole Mass Estimation: How Good is the Virial Estimate?. Publications of the Astronomical Society of Australia, 2016, 33, .	1.3	18
374	New constraints on direct collapse black hole formation in the early Universe. Monthly Notices of the Royal Astronomical Society, 2016, 459, 4209-4217.	1.6	63
375	IMPACT OF DUST COOLING ON DIRECT-COLLAPSE BLACK HOLE FORMATION. Astrophysical Journal, 2016, 823, 40.	1.6	37
376	Cosmic reionization study: principle component analysis after Planck. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 046-046.	1.9	4
377	Supermassive black hole seed formation at high redshifts: long-term evolution of the direct collapse. Monthly Notices of the Royal Astronomical Society, 2016, 456, 500-511.	1.6	27
378	A SURVEY OF LUMINOUS HIGH-REDSHIFT QUASARS WITH SDSS AND WISE. I. TARGET SELECTION AND OPTICAL SPECTROSCOPY. Astrophysical Journal, 2016, 819, 24.	1.6	78
379	The effect of foreground mitigation strategy on EoR window recovery. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2928-2939.	1.6	59

#	Article	IF	CITATIONS
380	First identification of direct collapse black hole candidates in the early Universe in CANDELS/GOODS-S. Monthly Notices of the Royal Astronomical Society, 2016, 459, 1432-1439.	1.6	51
381	General Polytropic Self-gravitating Cylinder Free-fall and Accreting Mass String with a Chain of Collapsed Objects. Monthly Notices of the Royal Astronomical Society, 0, , stw591.	1.6	6
382	Early astrophysical objects and cosmological antimatter. , 2016, , .		3
383	What are the megahertz peaked-spectrum sources?. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2455-2471.	1.6	23
384	21-cm signature of the first sources in the Universe: prospects of detection with SKA. Monthly Notices of the Royal Astronomical Society, 2016, 460, 827-843.	1.6	25
385	Hyper-Eddington accretion flows on to massive black holes. Monthly Notices of the Royal Astronomical Society, 2016, 459, 3738-3755.	1.6	148
386	Exploring the nature of the Lyman-α emitter CR7. Monthly Notices of the Royal Astronomical Society, 2016, 462, 2184-2202.	1.6	38
387	Hyper-Eddington mass accretion on to a black hole with super-Eddington luminosity. Monthly Notices of the Royal Astronomical Society, 2016, 461, 4496-4504.	1.6	38
388	Quasistationary solutions of scalar fields around accreting black holes. Physical Review D, 2016, 94, .	1.6	8
389	BRIGHT [C ii] AND DUST EMISSION IN THREE zÂ>Â6.6 QUASAR HOST GALAXIES OBSERVED BY ALMA. Astrophysical Journal, 2016, 816, 37.	1.6	163
390	The Evolution of the Intergalactic Medium. Annual Review of Astronomy and Astrophysics, 2016, 54, 313-362.	8.1	232
391	Dark matter concentrations in galactic nuclei according to polytropic models. Monthly Notices of the Royal Astronomical Society, 2016, 461, 4295-4316.	1.6	19
392	Mergers of accreting stellar-mass black holes. Monthly Notices of the Royal Astronomical Society, 2016, 462, 3812-3822.	1.6	18
393	DO CIRCUMNUCLEAR DENSE GAS DISKS DRIVE MASS ACCRETION ONTO SUPERMASSIVE BLACK HOLES?. Astrophysical Journal, 2016, 827, 81.	1.6	49
394	QUASARS AS A TRACER OF LARGE-SCALE STRUCTURES IN THE DISTANT UNIVERSE. Astrophysical Journal, 2016, 827, 104.	1.6	11
395	Can massive primordial black holes be produced in mild waterfall hybrid inflation?. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 041-041.	1.9	42
396	THE PAN-STARRS1 DISTANT zÂ>Â5.6 QUASAR SURVEY: MORE THAN 100 QUASARS WITHIN THE FIRST GYR OF THE UNIVERSE. Astrophysical Journal, Supplement Series, 2016, 227, 11.	3.0	266
397	Observational Signatures of High-Redshift Quasars and Local Relics of Black Hole Seeds. Publications of the Astronomical Society of Australia, 2016, 33, .	1.3	61

#	Article	IF	Citations
398	Supermassive black holes formed by direct collapse of inflationary perturbations. Physical Review D, 2016, 94, .	1.6	50
399	IS THERE A MAXIMUM MASS FOR BLACK HOLES IN GALACTIC NUCLEI?. Astrophysical Journal, 2016, 828, 110.	1.6	42
400	Science with the space-based interferometer eLISA: Supermassive black hole binaries. Physical Review D, 2016, 93, .	1.6	321
401	Probing Individual Sources during Reionization and Cosmic Dawn using Square Kilometre Array HI 21-cm Observations. Journal of Astrophysics and Astronomy, 2016, 37, 1.	0.4	6
402	A POPULATION OF INTERMEDIATE-MASS BLACK HOLES IN DWARF STARBURST GALAXIES UP TO REDSHIFT = 1.5. Astrophysical Journal, 2016, 817, 20.	1.6	89
403	The deepest X-ray view of high-redshift galaxies: constraints on low-rate black hole accretion. Monthly Notices of the Royal Astronomical Society, 2016, 463, 348-374.	1.6	64
404	Observing stellar mass and supermassive black holes. Physics-Uspekhi, 2016, 59, 702-712.	0.8	16
405	Early formed astrophysical objects and cosmological antimatter. International Journal of Modern Physics A, 2016, 31, 1645029.	0.5	2
406	A method for determining AGN accretion phase in field galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 461, 3322-3335.	1.6	2
407	Modelling reionization in a bursty universe. Monthly Notices of the Royal Astronomical Society, 2016, 462, 1164-1179.	1.6	11
408	Cosmological tests with the FSRQ gamma-ray luminosity function. Monthly Notices of the Royal Astronomical Society, 2016, 462, 3094-3103.	1.6	11
409	On the number density of â€~direct collapse' black hole seeds. Monthly Notices of the Royal Astronomical Society, 2016, 463, 529-540.	1.6	91
410	Theoretical re-evaluations of the black hole mass–bulge mass relation – I. Effect of seed black hole mass. Monthly Notices of the Royal Astronomical Society, 2016, 461, 4389-4394.	1.6	14
411	Gamma-Ray Bursts and Population III Stars. Space Science Reviews, 2016, 202, 159-180.	3.7	17
412	The imprint of the cosmic supermassive black hole growth history on the 21Âcm background radiation. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2619-2626.	1.6	16
413	Stellar population effects on the inferred photon density at reionization. Monthly Notices of the Royal Astronomical Society, 2016, 456, 485-499.	1.6	270
414	Quasar ionization front Lyα emission in an inhomogeneous intergalactic medium. Monthly Notices of the Royal Astronomical Society, 2016, 457, 3006-3023.	1.6	32
415	Intermediate-mass black holes from Population III remnants in the first galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2016, 460, 4122-4134.	1.6	26

#	Article	IF	CITATIONS
416	Supermassive star formation via episodic accretion: protostellar disc instability and radiative feedback efficiency. Monthly Notices of the Royal Astronomical Society, 2016, 459, 1137-1145.	1.6	54
417	Constraints on the star formation efficiency of galaxies during the epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2016, 460, 417-433.	1.6	125
418	Powerful quasar outflow in a massive disc galaxy at <i>z</i> Ââ^¼Â5. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 457, L34-L38.	1.2	21
419	An effective selection method for low-mass active black holes and first spectroscopic identification. Publication of the Astronomical Society of Japan, 2016, 68, .	1.0	10
420	THE JET-POWERED SUPERNOVAE OF â^¼10 ⁵ M _⊙ POPULATION III STARS ARE OBSER BY EUCLID, WFIRST, WISH, AND JWST. Astrophysical Journal, 2016, 823, 83.	VABLE	15
421	GRBs as Probes of the IGM. Space Science Reviews, 2016, 202, 143-158.	3.7	1
422	Formation, disruption and energy output of Population III X-ray binaries. Monthly Notices of the Royal Astronomical Society, 2016, 456, 223-238.	1.6	27
423	Are there reliable methods to estimate the nuclear orientation of Seyfert galaxies?. Monthly Notices of the Royal Astronomical Society, 2016, 460, 3679-3705.	1.6	49
424	Detecting direct collapse black holes: making the case for CR7. Monthly Notices of the Royal Astronomical Society, 2016, 460, 4003-4010.	1.6	47
425	The Dark Energy Survey: more than dark energy – an overview. Monthly Notices of the Royal Astronomical Society, 2016, 460, 1270-1299.	1.6	618
426	Selection bias in dynamically measured supermassive black hole samples: its consequences and the quest for the most fundamental relation. Monthly Notices of the Royal Astronomical Society, 2016, 460, 3119-3142.	1.6	198
427	Forming supermassive black hole seeds under the influence of a nearby anisotropic multifrequency source. Monthly Notices of the Royal Astronomical Society, 2016, 459, 3377-3394.	1.6	28
428	THE IMPOSSIBLY EARLY GALAXY PROBLEM. Astrophysical Journal, 2016, 824, 21.	1.6	79
429	Physics of the Intergalactic Medium During the Epoch of Reionization. Astrophysics and Space Science Library, 2016, , 23-63.	1.0	8
430	THE LARGE SKY AREA MULTI-OBJECT FIBER SPECTROSCOPIC TELESCOPE QUASAR SURVEY: QUASAR PROPERTIES FROM THE FIRST DATA RELEASE. Astronomical Journal, 2016, 151, 24.	1.9	24
431	Role of the \$mathrm{H}_2^+\$ channel in the primordial star formation under strong radiation field and the critical intensity for the supermassive star formation. Monthly Notices of the Royal Astronomical Society, 2016, 456, 270-277.	1.6	24
432	Understanding the Epoch of Cosmic Reionization. Astrophysics and Space Science Library, 2016, , .	1.0	30
433	Radio recombination lines from obscured quasars with the SKA. Monthly Notices of the Royal Astronomical Society, 2016, 456, 98-107.	1.6	4

#	Article	IF	CITATIONS
434	The large-scale observational signatures of low-mass galaxies during reionization. Monthly Notices of the Royal Astronomical Society, 2016, 456, 3011-3029.	1.6	46
435	Super-Eddington growth of the first black holes. Monthly Notices of the Royal Astronomical Society, 2016, 458, 3047-3059.	1.6	94
436	BULGE-DRIVEN FUELING OF SEED BLACK HOLES. Astrophysical Journal, 2016, 818, 184.	1.6	29
437	The role of stellar relaxation in the formation and evolution of the first massive black holes. Monthly Notices of the Royal Astronomical Society, 2016, 457, 2423-2432.	1.6	33
438	From the first stars to the first black holes. Monthly Notices of the Royal Astronomical Society, 2016, 457, 3356-3371.	1.6	96
439	Witnessing the birth of a supermassive protostar. Monthly Notices of the Royal Astronomical Society, 2016, 458, 233-241.	1.6	42
440	APPLICATION OF STOCHASTIC MODELING TO ANALYSIS OF PHOTOMETRIC REVERBERATION MAPPING DATA. Astrophysical Journal, 2016, 819, 122.	1.6	51
441	3-cm FINE STRUCTURE MASERS: A UNIQUE SIGNATURE OF SUPERMASSIVE BLACK HOLE FORMATION VIA DIRECT COLLAPSE IN THE EARLY UNIVERSE. Astrophysical Journal, 2016, 820, 10.	1.6	11
442	Growing massive black holes through supercritical accretion of stellar-mass seeds. Monthly Notices of the Royal Astronomical Society, 2016, 456, 2993-3003.	1.6	84
443	Black hole formation and growth with non-Gaussian primordial density perturbations. Monthly Notices of the Royal Astronomical Society, 2016, 456, 1901-1912.	1.6	17
444	Baryogenesis. UNITEXT for Physics, 2016, , 127-159.	0.1	0
445	Bright vigorous winds as signposts of supermassive black hole birth. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2-16.	1.6	17
446	Feedback Limits to Maximum Seed Masses of Black Holes. Astrophysical Journal Letters, 2017, 835, L36.	3.0	22
447	CONSTRAINING THE EPOCH OF REIONIZATION FROM THE OBSERVED PROPERTIES OF THE HIGH-z UNIVERSE. Astrophysical Journal, 2017, 834, 49.	1.6	12
448	Discovery of a very Lyman-α-luminous quasar at z = 6.62. Scientific Reports, 2017, 7, 41617.	1.6	10
449	Lyα emission-line reconstruction for high- <i>z</i> QSOs. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1814-1838.	1.6	77
450	A likely decade-long sustained tidal disruption event. Nature Astronomy, 2017, 1, .	4.2	63
451	First Discoveries of zÂ>Â6 Quasars with the DECam Legacy Survey and UKIRT Hemisphere Survey. Astrophysical Journal, 2017, 839, 27.	1.6	69

CITATION	DEDODT
	KFF()KI
Onwinent	

#	Article	IF	CITATIONS
452	The concerted impact of galaxies and QSOs on the ionization and thermal state of the intergalactic medium. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3718-3736.	1.6	25
453	Implications of zÂâ^¼Â6 Quasar Proximity Zones for the Epoch of Reionization and Quasar Lifetimes. Astrophysical Journal, 2017, 840, 24.	1.6	122
454	Quenching of Supermassive Black Hole Growth around the Apparent Maximum Mass. Astrophysical Journal Letters, 2017, 840, L9.	3.0	15
455	Black holes in close binary systems and galactic nuclei. Astronomy Reports, 2017, 61, 265-274.	0.2	2
456	Early formation of (super)massive black holes and gravitational waves from their coalescence. Astronomy Reports, 2017, 61, 275-280.	0.2	2
457	Unveiling the First Black Holes With JWST:Multi-wavelength Spectral Predictions. Astrophysical Journal, 2017, 838, 117.	1.6	90
458	A universal minimal mass scale for present-day central black holes. Nature Astronomy, 2017, 1, .	4.2	17
459	Turbulent gas accretion between supermassive black-holes and star-forming rings in the circumnuclear disk. Astronomy and Astrophysics, 2017, 602, A84.	2.1	4
460	Milliarcsecond Imaging of the Radio Emission from the Quasar with the Most Massive Black Hole at Reionization. Astrophysical Journal Letters, 2017, 835, L20.	3.0	12
461	Observations of the Lyman series forest towards the redshift 7.1 quasar ULAS J1120+0641. Astronomy and Astrophysics, 2017, 601, A16.	2.1	42
462	On the Maximum Mass of Accreting Primordial Supermassive Stars. Astrophysical Journal Letters, 2017, 842, L6.	3.0	89
463	Physical Properties of the First Quasars. Publications of the Astronomical Society of Australia, 2017, 34, .	1.3	40
464	Quasars signpost massive galaxies. Nature, 2017, 545, 418-419.	13.7	0
466	Enhanced direct collapse due to Lyman <i>α</i> feedback. Astronomy and Astrophysics, 2017, 601, A138.	2.1	13
467	Black Holes: The making of a monster. Nature Astronomy, 2017, 1, .	4.2	4
468	Big Universe, Big Data: Machine Learning and Image Analysis for Astronomy. IEEE Intelligent Systems, 2017, 32, 16-22.	4.0	65
469	How AGN and SN Feedback Affect Mass Transport and Black Hole Growth in High-redshift Galaxies. Astrophysical Journal, 2017, 836, 216.	1.6	33
470	Rapid formation of massive black holes in close proximity to embryonic protogalaxies. Nature Astronomy, 2017, 1, .	4.2	86

	CITATION REF	PORT	
#	Article	IF	Citations
471	The Compact,Ââ^¼1 kpc Host Galaxy of a Quasar at a Redshift of 7.1. Astrophysical Journal, 2017, 837, 146.	1.6	79
472	Radiative effects during the assembly of direct collapse black holes. Monthly Notices of the Royal Astronomical Society, 2017, 472, 205-216.	1.6	21
473	Cosmological perturbations of extreme axion in the radiation era. Physical Review D, 2017, 96, .	1.6	30
474	The X-ray properties of <i>z</i> ~ 6 luminous quasars. Astronomy and Astrophysics, 2017, 603, A128.	2.1	71
475	Supersonic gas streams enhance the formation of massive black holes in the early universe. Science, 2017, 357, 1375-1378.	6.0	99
476	Active galactic nuclei: what's in a name?. Astronomy and Astrophysics Review, 2017, 25, 1.	9.1	399
477	An Upper Limit on the Mass of a Central Black Hole in the Large Magellanic Cloud from the Stellar Rotation Field. Astrophysical Journal, 2017, 846, 14.	1.6	7
478	Weak gravitational lensing of quantum perturbed lukewarm black holes and cosmological constant effect. Research in Astronomy and Astrophysics, 2017, 17, 052.	0.7	3
479	Recoiling supermassive black hole escape velocities from dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2017, 472, 1526-1537.	1.6	7
480	The first supermassive black holes. Astronomy and Geophysics, 2017, 58, 3.22-3.26.	0.1	25
481	Gas Dynamics of a Luminous zÂ=Â6.13 Quasar ULAS J1319+0950 Revealed by ALMA High-resolution Observations. Astrophysical Journal, 2017, 845, 138.	1.6	48
482	On the Formation of the First Quasars. Publications of the Astronomical Society of Australia, 2017, 34,	1.3	64
483	Rapid black hole growth under anisotropic radiation feedback. Monthly Notices of the Royal Astronomical Society, 2017, 469, 62-79.	1.6	34
484	Relativistic Bondi–Hoyle–Lyttleton accretion in the presence of small rigid bodies around a black hole. Monthly Notices of the Royal Astronomical Society, 2017, 471, 3127-3134.	1.6	16
485	Circumnuclear Structures in Megamaser Host Galaxies. Astrophysical Journal, 2017, 844, 165.	1.6	14
486	The Infrared Medium-deep Survey. III. Survey of Luminous Quasars at 4.7Ââ‰ÅzÂâ‰Å5.4*. Astrophysical Journal, Supplement Series, 2017, 231, 16.	3.0	13
487	Chemical Evolution of the Universe at 0.7 < z < 1.6 Derived from Abundance Diagnostics of Quasars. , 2017, , .		0
488	Magnetorotational collapse of supermassive stars: Black hole formation, gravitational waves, and jets. Physical Review D, 2017, 96, .	1.6	27

#	Article	IF	CITATIONS
489	A Multi-wavelength Study of the Turbulent Central Engine of the Low-mass AGN Hosted by NGC 404. Astrophysical Journal, 2017, 845, 50.	1.6	29
490	Conditions for Optimal Growth of Black Hole Seeds. Astrophysical Journal Letters, 2017, 850, L42.	3.0	60
491	A Mote in Andromeda's Disk: A Misidentified Periodic AGN behind M31. Astrophysical Journal, 2017, 850, 86.	1.6	13
492	Constraining Reionization with the z â^¼ 5–6 Lyα Forest Power Spectrum: The Outlook after Planck. Astrophysical Journal, 2017, 847, 63.	1.6	34
493	Copious Amounts of Dust and Gas in a zÂ=Â7.5 Quasar Host Galaxy. Astrophysical Journal Letters, 2017, 851, L8.	3.0	103
494	Quasar Rain: The Broad Emission Line Region as Condensations in the Warm Accretion Disk Wind. Astrophysical Journal, 2017, 847, 56.	1.6	30
495	SHARDS Frontier Fields: Physical Properties of a Low-mass Lyα Emitter at zÂ=Â5.75. Astrophysical Journal, 2017, 849, 82.	1.6	11
496	On the Accretion Rates and Radiative Efficiencies of the Highest-redshift Quasars. Astrophysical Journal Letters, 2017, 836, L1.	3.0	51
497	Triggering the Formation of Direct Collapse Black Holes by Their Congeners. Astrophysical Journal, 2017, 838, 111.	1.6	9
498	Gravitational collapse of rotating supermassive stars including nuclear burning effects. Physical Review D, 2017, 96, .	1.6	29
499	Ultraluminous X-Ray Sources. Annual Review of Astronomy and Astrophysics, 2017, 55, 303-341.	8.1	352
500	Stellar Dynamics and Stellar Phenomena Near a Massive Black Hole. Annual Review of Astronomy and Astrophysics, 2017, 55, 17-57.	8.1	103
501	Chandra Survey of Nearby Galaxies: A Significant Population of Candidate Central Black Holes in Late-type Galaxies. Astrophysical Journal, 2017, 842, 131.	1.6	37
502	Observational evidence for intermediate-mass black holes. International Journal of Modern Physics D, 2017, 26, 1730021.	0.9	175
503	Galaxy-scale Bars in Late-type Sloan Digital Sky Survey Galaxies Do Not Influence the Average Accretion Rates of Supermassive Black Holes. Astrophysical Journal, 2017, 843, 135.	1.6	28
504	Spectra of black hole accretion models of ultraluminous X-ray sources. Monthly Notices of the Royal Astronomical Society, 2017, 469, 2997-3014.	1.6	65
505	Winds of change: reionization by starburst galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 468, 2176-2188.	1.6	34
506	Active Galactic Nucleus Environments and Feedback to Neighboring Galaxies at zÂâ^1⁄4Â5 Probed by Lyα Emitters ^{â^—} . Astrophysical Journal, 2017, 841, 128.	1.6	21

	CITATION RE	PORT	
#	ARTICLE	IF	CITATIONS
507	The dark nemesis of galaxy formation: why hot haloes trigger black hole growth and bring star formation to an end. Monthly Notices of the Royal Astronomical Society, 2017, 465, 32-44.	1.6	214
508	Redshift remapping and cosmic acceleration in dark-matter-dominated cosmological models. Monthly Notices of the Royal Astronomical Society, 2017, 470, 4493-4511.	1.6	13
509	ã, ã, ãf¼ã,µãf¼ã•å \$ è³é‡éŠ€æ²³ã₽ç,®å₽. Nature Digest, 2017, 14, 28-30.	0.0	0
510	Black hole growth and AGN feedback under clumpy accretion. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1462-1476.	1.6	23
511	Quasar UV luminosity function evolution up to <i>z</i> Â=Â8. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1160-1169.	1.6	46
512	Faint progenitors of luminous <i>z</i> Ââ^¼Â6 quasars: Why do not we see them?. Monthly Notices of the Royal Astronomical Society, 2017, 466, 2131-2142.	1.6	28
513	Evaluating and improving the redshifts of zÂ>Â2.2 quasars. Monthly Notices of the Royal Astronomical Society, 2017, 469, 4675-4682.	1.6	5
514	The Romulus cosmological simulations: a physical approach to the formation, dynamics and accretion models of SMBHs. Monthly Notices of the Royal Astronomical Society, 2017, 470, 1121-1139.	1.6	185
515	XMM–Newton observation of the ultraluminous quasar SDSS J010013.02+280225.8 at redshift 6.326. Monthly Notices of the Royal Astronomical Society, 2017, 470, 1587-1592.	1.6	10
516	A deep search for metals near redshift 7: the line of sight towards ULASÂJ1120+0641. Monthly Notices of the Royal Astronomical Society, 2017, 470, 1919-1934.	1.6	33
517	The origin of the most massive black holes at high-z: BlueTides and the next quasar frontier. Monthly Notices of the Royal Astronomical Society, 2017, 467, 4243-4251.	1.6	83
518	The impact of ionizing radiation on the formation of a supermassive star in the early Universe. Monthly Notices of the Royal Astronomical Society, 2017, 467, 4293-4303.	1.6	12
519	Blossoms from black hole seeds: properties and early growth regulated by supernova feedback. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3935-3948.	1.6	157
520	Gran Telescopio Canarias observations of an overdense region of Lyman α emitters at z = 6.5. Monthly Notices of the Royal Astronomical Society, 2017, 469, 2646-2661.	1.6	12
521	Beasts in Lambda-CDM zoo. Physics of Atomic Nuclei, 2017, 80, 987-994.	0.1	8
522	CHEMICAL EVOLUTION OF THE UNIVERSE AT 0.7 < z < 1.6 DERIVED FROM ABUNDANCE DIAGNOSTICS OF THE BROAD-LINE REGION OF QUASARS. Astrophysical Journal, 2017, 834, 203.	1.6	23
523	An Optically Faint Quasar Survey at zÂâ^¼Â5 in the CFHTLS Wide Field: Estimates of the Black Hole Masses and Eddington Ratios. Astrophysical Journal, 2017, 846, 57.	1.6	6
524	Dusty Gas Accretion onto Massive Black Holes and Infrared Diagnosis of the Eddington Ratio. Astrophysical Journal, 2017, 846, 3.	1.6	20

#	Article	IF	CITATIONS
525	Unseen Progenitors of Luminous High-z Quasars in the R _h Â=Âct Universe. Astrophysical Journal, 2017, 846, 129.	1.6	5
526	An analytic resolution to the competition between Lyman–Werner radiation and metal winds in direct collapse black hole hosts. Monthly Notices of the Royal Astronomical Society, 2017, 470, 4034-4038.	1.6	10
527	The Extremely Luminous Quasar Survey in the SDSS Footprint. I. Infrared-based Candidate Selection. Astrophysical Journal, 2017, 851, 13.	1.6	30
528	Dark-ages reionization and galaxy formation simulation – XII. Bubbles at dawn. Monthly Notices of the Royal Astronomical Society, 2017, 472, 1324-1335.	1.6	10
529	Formation of intermediate-mass black holes through runaway collisions in the first star clusters. Monthly Notices of the Royal Astronomical Society, 2017, 472, 1677-1684.	1.6	69
530	On the effect of Lyman $\hat{I}\pm$ trapping during the initial collapse of massive black hole seeds. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2773-2786.	1.6	10
531	Theoretical modeling of Comptonized X-ray spectra of super-Eddington accretion flow: Origin of hard excess in ultraluminous X-ray sources. Publication of the Astronomical Society of Japan, 2017, 69,	1.0	22
532	Imprints of the super-Eddington accretion on the quasar clustering. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 471, L21-L25.	1.2	5
533	Lyman <i>α</i> radiation hydrodynamics of galactic winds before cosmic reionization. Monthly Notices of the Royal Astronomical Society, 2017, 464, 2963-2978.	1.6	36
534	Mapping the Lyα Emission around a zÂâ^¼Â6.6 QSO with MUSE: Extended Emission and a Companion at a Close Separation. Astrophysical Journal, 2017, 848, 78.	1.6	43
535	Physical Properties of 15 Quasars at zÂ≳Â6.5. Astrophysical Journal, 2017, 849, 91.	1.6	230
536	Ionized Gas Kinematics around an Ultra-luminous X-Ray Source in NGC 5252: Additional Evidence for an Off-nuclear AGN. Astrophysical Journal Letters, 2017, 844, L21.	3.0	8
537	Minor Contribution of Quasars to Ionizing Photon Budget at zÂâ^¼Â6: Update on Quasar Luminosity Function at the Faint End with Subaru/Suprime-Cam. Astrophysical Journal Letters, 2017, 847, L15.	3.0	57
538	The formation of direct collapse black holes under the influence of streaming velocities. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4878-4884.	1.6	70
539	Can Superconducting Cosmic Strings Piercing Seed Black Holes Generate Supermassive Black Holes in the Early Universe?. Fortschritte Der Physik, 2017, 65, 1600121.	1.5	4
540	Eight new luminous z ≥ 6 quasars discovered via SED model fitting of VISTA, WISE and Dark Energy Survey Year 1 observations. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4702-4718.	1.6	92
541	The nature of the Lyman α emitter CR7: a persisting puzzle. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 468, L77-L81.	1.2	30
542	Cosmic Reionization after Planck and before JWST: An Analytic Approach. Astrophysical Journal, 2017, 851, 50.	1.6	39

#	Article	IF	CITATIONS
543	Molecular clumps photoevaporation in ionized regions. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4476-4487.	1.6	17
544	ELDAR, a new method to identify AGN in multi-filter surveys: the ALHAMBRA test case. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2085-2106.	1.6	12
545	Molecular Gas in Three zÂâ^¼Â7 Quasar Host Galaxies. Astrophysical Journal, 2017, 845, 154.	1.6	74
546	Do stellar winds prevent the formation of supermassive stars by accretion?. Monthly Notices of the Royal Astronomical Society, 2017, 465, 5016-5025.	1.6	10
547	A Multiply-Imaged <i>z</i> â^¼ 6.3 Lyman Alpha Emitter candidate behind Abell 2261. Monthly Notices of the Royal Astronomical Society, 0, , stx157.	1.6	3
548	Mg ii Absorption at 2Â<ÂZÂ<Â7 with Magellan/Fire. III. Full Statistics of Absorption toward 100 High-redshift QSOs*. Astrophysical Journal, 2017, 850, 188.	1.6	42
549	Quasar Photometric Redshifts and Candidate Selection: A New Algorithm Based on Optical and Mid-infrared Photometric Data. Astronomical Journal, 2017, 154, 269.	1.9	26
550	The formation of ultra compact dwarf galaxies and massive globular clusters. Astronomy and Astrophysics, 2017, 608, A53.	2.1	29
551	Hydrogen Epoch of Reionization Array (HERA). Publications of the Astronomical Society of the Pacific, 2017, 129, 045001.	1.0	448
552	NO OVERDENSITY OF LYMAN-ALPHA EMITTING GALAXIES AROUND A QUASAR AT zÂâ^1⁄4Â5.7. Astrophysical Jour 2017, 834, 83.	nal. 1.6	50
553	Radio spectra of bright compact sources at z>4.5. Monthly Notices of the Royal Astronomical Society, 0, , stx215.	1.6	13
554	New constraints on Lyman-α opacity using 92 quasar lines of sight. Proceedings of the International Astronomical Union, 2017, 12, 234-237.	0.0	0
555	Radiation-damped profiles of extremely high column density neutral hydrogen: implications of cosmic reionization. Monthly Notices of the Royal Astronomical Society, 2017, 464, 1137-1145.	1.6	0
556	Black holes on FIRE: stellar feedback limits early feeding of galactic nuclei. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 472, L109-L114.	1.2	176
557	Light or heavy supermassive black hole seeds: the role of internal rotation in the fate of supermassive stars. Monthly Notices of the Royal Astronomical Society, 2017, 464, 2259-2269.	1.6	9
558	The global history of reionization. Monthly Notices of the Royal Astronomical Society, 2017, 465, 4838-4852.	1.6	82
559	Lyman–Werner escape fractions from the first galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 467, 2288-2300.	1.6	29
560	The most massive black holes on the Fundamental Plane of black hole accretion. Monthly Notices of the Royal Astronomical Society, 2018, 474, 1342-1360.	1.6	33

	CITATION RE	PORT	
#	Article	IF	CITATIONS
561	An ALMA [C ii] Survey of 27 Quasars at zÂ>Â5.94. Astrophysical Journal, 2018, 854, 97.	1.6	220
562	Massive black holes from dissipative dark matter. Monthly Notices of the Royal Astronomical Society, 2018, 473, 328-335.	1.6	33
563	Role of primordial black holes in the direct collapse scenario of supermassive black hole formation at high redshifts. Journal of Astrophysics and Astronomy, 2018, 39, 1.	0.4	10
564	Direct Collapse to Supermassive Black Hole Seeds with Radiative Transfer: Isolated Halos. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3523-3539.	1.6	26
565	Chasing the observational signatures of seed black holes at zÂ>Â7: candidate statistics. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3825-3834.	1.6	22
566	The Halo Occupation Distribution of obscured quasars: revisiting the unification model. Monthly Notices of the Royal Astronomical Society, 2018, 477, 45-55.	1.6	13
567	SMBH Seeds: Model Discrimination with High-energy Emission Based on Scaling Relation Evolution. Astrophysical Journal, 2018, 854, 4.	1.6	6
568	Two channels of supermassive black hole growth as seen on the galaxies mass–size plane. Monthly Notices of the Royal Astronomical Society, 2018, 473, 5237-5247.	1.6	20
569	No evidence for a significant AGN contribution to cosmic hydrogen reionization. Monthly Notices of the Royal Astronomical Society, 2018, 474, 2904-2923.	1.6	109
570	Signatures of primordial black holes as seeds of supermassive black holes. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 017-017.	1.9	33
571	SED Constraints on the Highest-z Blazar Jet: QSO J0906+6930. Astrophysical Journal, 2018, 856, 105.	1.6	15
572	On the Observability of Individual Population III Stars and Their Stellar-mass Black Hole Accretion Disks through Cluster Caustic Transits. Astrophysical Journal, Supplement Series, 2018, 234, 41.	3.0	66
573	Systematic Identification of LAEs for Visible Exploration and Reionization Research Using Subaru HSC (SILVERRUSH). I. Program strategy and clustering properties of â^¼2000 Lyα emitters at <i>z</i> Â=Â6–7 over the 0.3–0.5 Gpc2 survey area. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	159
574	SILVERRUSH. IV. Lyα luminosity functions at <i>z</i> Â=Â5.7 and 6.6 studied with â^¼1300 Lyα emitters on the 14–21 deg2 sky. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	140
575	Formation of massive seed black holes via collisions and accretion. Monthly Notices of the Royal Astronomical Society, 2018, 476, 366-380.	1.6	59
576	Luminous quasars do not live in the most overdense regions of galaxies at <i>z</i> Ââ^¼Â4. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	43
577	The evolution of supermassive Population III stars. Monthly Notices of the Royal Astronomical Society, 2018, 474, 2757-2773.	1.6	98
578	The Infrared Medium-deep Survey. IV. The Low Eddington Ratio of A Faint Quasar at zÂâ^¼Â6: Not Every Supermassive Black Hole is Growing Fast in the Early Universe. Astrophysical Journal, 2018, 855, 138.	1.6	17

#	Article	IF	CITATIONS
579	A tale of seven narrow spikes and a long trough: constraining the timing of the percolation of H ii bubbles at the tail end of reionization with ULAS J1120+0641. Monthly Notices of the Royal Astronomical Society, 2018, 473, 765-775.	1.6	16
580	An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5. Nature, 2018, 553, 473-476.	13.7	726
581	The effect of nuclear gas distribution on the mass determination of supermassive black holes. Nature Astronomy, 2018, 2, 63-68.	4.2	79
582	High-redshift quasar selection from the CFHQSIR survey. Astronomy and Astrophysics, 2018, 617, A127.	2.1	4
583	Opacity Limit for Supermassive Protostars. Astrophysical Journal, 2018, 857, 138.	1.6	10
584	The Discovery of a Luminous Broad Absorption Line Quasar at a Redshift of 7.02. Astrophysical Journal Letters, 2018, 869, L9.	3.0	82
585	First Spectroscopic Study of a Young Quasar. Astrophysical Journal, 2018, 867, 30.	1.6	49
586	Direct collapse to supermassive black hole seeds with radiation transfer: cosmological haloes. Monthly Notices of the Royal Astronomical Society, 2018, 479, 2277-2293.	1.6	24
587	Prediction of the 21-cm signal from reionization: comparison between 3D and 1D radiative transfer schemes. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1741-1755.	1.6	34
588	Resolution of the small scale structure issues with dissipative dark matter from multiple standard model sectors. Physical Review D, 2018, 98, .	1.6	3
589	The Extremely Luminous Quasar Survey in the Sloan Digital Sky Survey Footprint. II. The North Galactic Cap Sample. Astrophysical Journal, 2018, 863, 144.	1.6	18
590	Texas Spectroscopic Search for Lyα ÂEmission at the End of Reionization I. Constraining the Lyα Equivalent-width Distribution at 6.0Â<ÂzÂ<Â7.0. Astrophysical Journal, 2018, 864, 103.	1.6	26
591	Quantitative Constraints on the Reionization History from the IGM Damping Wing Signature in Two Quasars at zÂ>Â7. Astrophysical Journal, 2018, 864, 142.	1.6	197
592	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). V. Quasar Luminosity Function and Contribution to Cosmic Reionization at zÂ=Â6. Astrophysical Journal, 2018, 869, 150.	1.6	153
593	Reionization of the Milky Way, M31, and their satellites – I. Reionization history and star formation. Monthly Notices of the Royal Astronomical Society, 2018, 477, 867-881.	1.6	11
594	The evolution of chemical abundance in quasar broad line region. Monthly Notices of the Royal Astronomical Society, 2018, 480, 345-357.	1.6	39
595	BlueTides simulation: establishing black holeâ^'galaxy relations at high redshift. Monthly Notices of the Royal Astronomical Society, 2018, 478, 5063-5073.	1.6	23
596	Stunted accretion growth of black holes by combined effect of the flow angular momentum and radiation feedback. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3961-3975.	1.6	30

#	Article	IF	CITATIONS
597	Gravitational wave signals from the first massive black hole seeds. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 479, L23-L27.	1.2	20
598	Detecting free-floating planets using water-dependent colour terms in the next generation of infrared space-based surveys. Monthly Notices of the Royal Astronomical Society, 2018, 481, 447-451.	1.6	5
599	Simulating the magnetorotational collapse of supermassive stars: Incorporating gas pressure perturbations and different rotation profiles. Physical Review D, 2018, 98, .	1.6	13
600	Two more, bright, zÂ>Â6 quasars from VST ATLAS and WISE. Monthly Notices of the Royal Astronomical Society, 2018, 478, 1649-1659.	1.6	32
601	Modeling the Radio Background from the First Black Holes at Cosmic Dawn: Implications for the 21 cm Absorption Amplitude. Astrophysical Journal, 2018, 868, 63.	1.6	149
602	Accretion of dissipative dark matter onto active galactic nuclei. Journal of High Energy Physics, 2018, 2018, 1.	1.6	7
603	On the Detection of Supermassive Primordial Stars. Astrophysical Journal Letters, 2018, 869, L39.	3.0	23
604	Monitoring AGNs with Hβ Asymmetry. I. First Results: Velocity-resolved Reverberation Mapping. Astrophysical Journal, 2018, 869, 142.	1.6	59
605	X-ray ionization of the intergalactic medium by quasars. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4320-4335.	1.6	21
606	Rise of the first supermassive stars. Monthly Notices of the Royal Astronomical Society, 2018, 478, 5037-5049.	1.6	23
607	The extended radio jet of an off-nuclear low-mass AGN in NGC 5252. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 480, L74-L78.	1.2	13
608	Predicting Quasar Continua near Lyα with Principal Component Analysis. Astrophysical Journal, 2018, 864, 143.	1.6	49
609	Neutrino burst-generated gravitational radiation from collapsing supermassive stars. Physical Review D, 2018, 98, .	1.6	10
610	Subaru High- <i>z</i> Exploration of Low-Luminosity Quasars (SHELLQs). III. Star formation properties of the host galaxies at <i>z</i> Â≳ 6 studied with ALMA. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	42
611	Early growth of typical high-redshift black holes seeded by direct collapse. Monthly Notices of the Royal Astronomical Society, 2018, 476, 5016-5025.	1.6	33
612	Observing the Influence of Growing Black Holes on the Pre-reionization IGM. Astrophysical Journal, 2018, 865, 130.	1.6	2
613	Radiation Hydrodynamical Simulations of the First Quasars. Astrophysical Journal, 2018, 865, 126.	1.6	42
614	Limits on runaway growth of intermediate mass black holes from advanced LIGO. Physical Review D, 2018, 97, .	1.6	17

#	Article	IF	CITATIONS
615	Identifying Direct Collapse Black Hole Seeds through Their Small Host Galaxies. Astrophysical Journal Letters, 2018, 865, L9.	3.0	11
616	Revolutionizing Our Understanding of AGN Feedback and its Importance to Galaxy Evolution in the Era of the Next Generation Very Large Array. Astrophysical Journal, 2018, 859, 23.	1.6	27
617	A Census of the LyC photons that form the UV background during reionization. Monthly Notices of the Royal Astronomical Society, 2018, 478, 4986-5005.	1.6	24
618	Observational constraints on key-parameters of cosmic reionisation history. Astronomy and Astrophysics, 2018, 616, A113.	2.1	25
619	Shadow of a black hole at cosmological distances. Physical Review D, 2018, 98, .	1.6	65
620	The observational signatures of supermassive black hole seeds. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3278-3292.	1.6	92
621	How black holes stop their host galaxy from growing without AGN feedback. Monthly Notices of the Royal Astronomical Society, 2018, 480, 5673-5688.	1.6	1
622	Feeding supermassive black holes by collisional cascades. Monthly Notices of the Royal Astronomical Society, 2018, 478, 852-866.	1.6	0
623	Observational signatures of massive black hole formation in the early Universe. Nature Astronomy, 2018, 2, 987-994.	4.2	24
624	Quenching star formation with quasar outflows launched by trapped IR radiation. Monthly Notices of the Royal Astronomical Society, 2018, 479, 2079-2111.	1.6	75
625	Seven hints for primordial black hole dark matter. Physics of the Dark Universe, 2018, 22, 137-146.	1.8	131
626	Results from EDGES High-band. II. Constraints on Parameters of Early Galaxies. Astrophysical Journal, 2018, 863, 11.	1.6	44
627	Assembly of supermassive black hole seeds. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	19
628	The most massive galaxies and black holes allowed by Ĵ›CDM. Monthly Notices of the Royal Astronomical Society, 2018, 477, 5382-5387.	1.6	50
629	High-redshift AGN in the Chandra Deep Fields: the obscured fraction and space density of the sub-L* population. Monthly Notices of the Royal Astronomical Society, 2018, 473, 2378-2406.	1.6	110
630	The intrinsic far-UV spectrum of the high-redshift quasar B1422+231. Monthly Notices of the Royal Astronomical Society, 2018, 473, 4722-4730.	1.6	1
631	Quasar outflows at z ≥ 6: the impact on the host galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 473, 4003-4020.	1.6	44
632	Radiation hydrodynamics simulations of the formation of direct-collapse supermassive stellar systems. Monthly Notices of the Royal Astronomical Society, 2018, 475, 4104-4121.	1.6	52

#	Article	IF	CITATIONS
633	Observing patchy reionization with future CMB polarization experiments. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 014-014.	1.9	20
634	Enhancement of galaxy overdensity around quasar pairs at <i>z</i> Â<Â3.6 based on the Hyper Suprime-Cam Subaru Strategic Program Survey. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	23
635	Fragmentation inside atomic cooling haloes exposed to Lyman–Werner radiation. Monthly Notices of the Royal Astronomical Society, 2018, 475, 4636-4647.	1.6	22
636	Rapid growth of black holes accompanied with hot or warm outflows exposed to anisotropic super-Eddington radiation. Monthly Notices of the Royal Astronomical Society, 2018, 476, 673-682.	1.6	34
637	The descendants of the first quasars in the BlueTides simulation. Monthly Notices of the Royal Astronomical Society, 2018, 474, 597-603.	1.6	25
638	Star cluster disruption by a massive black hole binary. Monthly Notices of the Royal Astronomical Society, 2018, 474, 1054-1064.	1.6	18
639	The duration of reionization constrains the ionizing sources. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 477, L111-L116.	1.2	5
640	The Faint End of the zÂ=Â5 Quasar Luminosity Function from the CFHTLS. Astronomical Journal, 2018, 155, 131.	1.9	74
641	Maximally rotating supermassive stars at the onset of collapse: the perturbative effects of gas pressure, magnetic fields, dark matter, and dark energy. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3694-3710.	1.6	13
642	A beacon at the dawn of the Universe. Nature, 2018, 553, 410-411.	13.7	0
643	A Hubble Diagram for Quasars. Frontiers in Astronomy and Space Sciences, 2018, 4, .	1.1	16
644	Intermediate-mass black holes in dwarf galaxies out to redshift â^1⁄42.4 in the Chandra COSMOS-Legacy Survey. Monthly Notices of the Royal Astronomical Society, 2018, 478, 2576-2591.	1.6	124
645	Does particle creation mechanism favour formation of black hole or naked singularity?. European Physical Journal C, 2018, 78, 1.	1.4	4
646	The 500Âks <i>Chandra</i> observation of the <i>z</i> Â=Â6.31 QSO SDSS J1030Â+Â0524. Astronomy and Astrophysics, 2018, 614, A121.	2.1	33
647	Sowing Black Hole Seeds: Direct Collapse Black Hole Formation with Realistic Lyman–Werner Radiation in Cosmological Simulations. Astrophysical Journal, 2018, 861, 39.	1.6	21
648	Kiss-and-tell way to track cell contacts. Nature, 2018, 553, 414-415.	13.7	1
649	New constraints on Lyman-α opacity with a sample of 62 quasars at z > 5.7. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	124
650	Spectroscopic Constraints on UV Metal Line Emission at z ≃ 6 â^ 9 The Nature of Lyα Emitting Galaxies in the Reionization-Era. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	65

	Сітатіо	CITATION REPORT	
#	Article	IF	Citations
651	Obscured Active Galactic Nuclei. Annual Review of Astronomy and Astrophysics, 2018, 56, 625-671.	8.1	278
652	Massive and supermassive black holes in the contemporary and early Universe and problems in cosmology and astrophysics. Physics-Uspekhi, 2018, 61, 115-132.	0.8	30
653	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). IV. Discovery of 41 Quasars and Luminous Galaxies at 5.7Ââ‰ÂzÂâ‰Â6.9. Astrophysical Journal, Supplement Series, 2018, 237, 5.	3.0	81
654	Heating of Intergalactic Gas Near Growing Black Holes During the Hydrogen Reionization Epoch. Astrophysics, 2018, 61, 354-369.	0.1	0
655	The growth of black holes from Population III remnants in the Renaissance simulations. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3762-3773.	1.6	62
656	A Population of Bona Fide Intermediate-mass Black Holes Identified as Low-luminosity Active Galactic Nuclei. Astrophysical Journal, 2018, 863, 1.	1.6	109
657	J1342+0928 supports the timeline in the <i>R</i> _h = <i>ct</i> cosmology. Astronomy and Astrophysics, 2018, 615, A113.	2.1	5
658	Subaru High- <i>z</i> Exploration of Low-Luminosity Quasars (SHELLQs). II. Discovery of 32 quasars and luminous galaxies at 5.7Â<Â <i>z</i> ≤6.8. Publication of the Astronomical Society of Japan, 2018 70, .	, 1.0	95
659	Growth problems of stellar black holes in early galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 480, 681-691.	1.6	2
660	Looking at cosmic near-infrared background radiation anisotropies. Reviews of Modern Physics, 2018, 90, .	16.4	45
661	The route to massive black hole formation via merger-driven direct collapse: a review. Reports on Progress in Physics, 2019, 82, 016901.	8.1	55
662	Structure formation and exotic compact objects in a dissipative dark sector. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 036-036.	1.9	40
663	Primordial black holes from thermal inflation. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 046-046.	1.9	16
664	Detailed dust modelling in the L-Galaxies semi-analytic model of galaxy formation. Monthly Notices of the Royal Astronomical Society, 2019, 489, 4072-4089.	1.6	61
665	Titans of the early Universe: The Prato statement on the origin of the first supermassive black holes. Publications of the Astronomical Society of Australia, 2019, 36, .	1.3	114
666	Constraining the reionization history with CMB and spectroscopic observations. Physical Review D, 2019, 99, .	1.6	9
667	Evolution of the AGN UV luminosity function from redshift 7.5. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1035-1065.	1.6	143
668	Radio jets from AGNs in dwarf galaxies in the COSMOS survey: mechanical feedback out to redshift â^1⁄43.4. Monthly Notices of the Royal Astronomical Society, 2019, 488, 685-695.	1.6	54

#	Article	IF	CITATIONS
669	Spatially Resolved Interstellar Medium and Highly Excited Dense Molecular Gas in the Most Luminous Quasar at zÂ=Â6.327. Astrophysical Journal, 2019, 880, 2.	1.6	54
670	High Star Formation Rates of Low Eddington Ratio Quasars at zÂ≳Â6. Astrophysical Journal, 2019, 879, 117.	1.6	7
671	A <i>NuSTAR</i> view of powerful <i>γ</i> -ray loud blazars. Astronomy and Astrophysics, 2019, 627, A72.	2.1	9
672	Intermediate-mass black hole growth and feedback in dwarf galaxies at high redshifts. Monthly Notices of the Royal Astronomical Society, 2019, 487, 5549-5563.	1.6	30
673	Super-Eddington growth of black holes in the early universe: effects of disc radiation spectra. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2689-2700.	1.6	17
674	Near-infrared Spectroscopy of Galaxies During Reionization: Measuring C iii] in a Galaxy at zÂ=Â7.5. Astrophysical Journal, 2019, 879, 70.	1.6	49
675	Texas Spectroscopic Search for Lyα Emission at the End of Reionization. II. The Deepest Near-infrared Spectroscopic Observation at zÂ≳Â7. Astrophysical Journal, 2019, 877, 146.	1.6	16
676	Reverberation Mapping of the Narrow-line Seyfert 1 Galaxy I Zwicky 1: Black Hole Mass. Astrophysical Journal, 2019, 876, 102.	1.6	23
677	Early formation of supermassive black holes via dark matter self-interactions. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 036-036.	1.9	35
678	Super-Eddington Accretion Disks around Supermassive Black Holes. Astrophysical Journal, 2019, 880, 67.	1.6	128
679	Mass transport in galaxy discs limits black hole growth to sub-Eddington rates. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2006-2017.	1.6	0
680	The Mass Function of Supermassive Black Holes in the Direct-collapse Scenario. Astrophysical Journal Letters, 2019, 879, L3.	3.0	14
681	Intermittent fragmentation and statistical variations during gas collapse in magnetized atomic cooling haloes. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4525-4535.	1.6	9
682	The Extremely Luminous Quasar Survey in the Pan-STARRS 1 Footprint (PS-ELQS). Astrophysical Journal, Supplement Series, 2019, 243, 5.	3.0	22
683	From primordial black holes abundance to primordial curvature power spectrum (and back). Journal of Cosmology and Astroparticle Physics, 2019, 2019, 031-031.	1.9	70
684	Modelling the spectral energy distribution of super-Eddington quasars. Monthly Notices of the Royal Astronomical Society, 2019, 489, 524-533.	1.6	26
685	The Lyman-α forest as a diagnostic of the nature of the dark matter. Monthly Notices of the Royal Astronomical Society, 2019, 489, 3456-3471.	1.6	45
686	On Constraining the Growth History of Massive Black Holes via Their Distribution on the Spin–Mass Plane. Astrophysical Journal, 2019, 873, 101.	1.6	19

#	Article	IF	CITATIONS
687	Exploring Reionization-era Quasars. III. Discovery of 16 Quasars at 6.4Â≲ÂzÂ≲Â6.9 with DESI Legacy Imagi Surveys and the UKIRT Hemisphere Survey and Quasar Luminosity Function at zÂâ^¼Â6.7. Astrophysical Journal, 2019, 884, 30.	ng 1.6	114
688	<i>Euclid</i> preparation. Astronomy and Astrophysics, 2019, 631, A85.	2.1	40
689	The diverse galaxy counts in the environment of high-redshift massive black holes in Horizon-AGN. Monthly Notices of the Royal Astronomical Society, 2019, 489, 1206-1229.	1.6	31
690	A Metal-poor Damped Lyα System at Redshift 6.4. Astrophysical Journal, 2019, 885, 59.	1.6	38
691	Extracting the 21cm Global Signal using Artificial Neural Networks. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	6
692	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). VI. Black Hole Mass Measurements of Six Quasars at 6.1Ââ‰ÂzÂâ‰Â6.7. Astrophysical Journal, 2019, 880, 77.	1.6	90
693	A Catastrophic Failure to Build a Massive Galaxy around a Supermassive Black Hole at zÂ=Â3.84. Astrophysical Journal, 2019, 881, 145.	1.6	4
694	High-redshift quasars and their host galaxies – I. Kinematical and dynamical properties and their tracers. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4004-4022.	1.6	54
695	Exploring Reionization-era Quasars. IV. Discovery of Six New zÂ≳Â6.5 Quasars with DES, VHS, and unWISE Photometry. Astronomical Journal, 2019, 157, 236.	1.9	82
696	A full treatment of peculiar velocities on the reionization light cone. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1255-1269.	1.6	6
697	AGN radiative feedback in the early growth of massive black holes. Monthly Notices of the Royal Astronomical Society, 2019, 489, 5225-5230.	1.6	2
698	Discovery of the first heavily obscured QSO candidate at <i>z</i> > 6 in a close galaxy pair. Astronomy and Astrophysics, 2019, 628, L6.	2.1	31
699	Cosmological test using the Hubble diagram of high-z quasars. Monthly Notices of the Royal Astronomical Society, 2019, 489, 517-523.	1.6	36
700	On the detection of supermassive primordial stars – II. Blue supergiants. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3995-4003.	1.6	19
701	Maximally rotating supermassive stars at the onset of collapse: effects of gas pressure. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4195-4206.	1.6	3
702	F-GAMMA: Multi-frequency radio monitoring of <i>Fermi</i> blazars. Astronomy and Astrophysics, 2019, 626, A60.	2.1	21
703	Catalogues of active galactic nuclei from Gaia and unWISE data. Monthly Notices of the Royal Astronomical Society, 2019, 489, 4741-4759.	1.6	42
704	Signature of the interaction between dark sectors in the reionization process. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 034-034.	1.9	1

#	Article	IF	Citations
705	Cosmological constraints from the Hubble diagram of quasars at high redshifts. Nature Astronomy, 2019, 3, 272-277.	4.2	236
706	The Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) Quasar Survey: The Fourth and Fifth Data Releases. Astrophysical Journal, Supplement Series, 2019, 240, 6.	3.0	33
707	Formation of massive black holes in rapidly growing pre-galactic gas clouds. Nature, 2019, 566, 85-88.	13.7	122
708	The role of galaxies and AGNs in reionizing the IGM – II. Metal-tracing the faint sources of reionization at 5 ≲ <i>z</i> ≲ 6. Monthly Notices of the Royal Astronomical Society, 2019, 483, 19-37.	1.6	34
709	Star Formation and ISM Properties in the Host Galaxies of Three Far-infrared Luminous Quasars at zÂâ^1⁄4Â6. Astrophysical Journal, 2019, 876, 99.	1.6	32
710	Cosmological mass transport on galactic nuclei and the growth of highâ€ <i>z</i> quasars. Astronomische Nachrichten, 2019, 340, 108-111.	0.6	0
711	Heating of the Intergalactic Medium by Hydrogen Reionization. Astrophysical Journal, 2019, 874, 154.	1.6	47
712	New constraints on quasar evolution: broad-line velocity shifts over 1.5 ≲ z ≲ 7.5. Monthly Notices of the Royal Astronomical Society, 2019, 487, 3305-3323.	1.6	47
713	Evaluating the QSO contribution to the 21-cm signal from the Cosmic Dawn. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1101-1119.	1.6	31
714	Galaxy formation and evolution science in the era of the Large Synoptic Survey Telescope. Nature Reviews Physics, 2019, 1, 450-462.	11.9	17
715	Cosmological magnetic braking and the formation of high-redshift, super-massive black holes. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1629-1640.	1.6	8
716	Supermassive black holes in the early universe. Contemporary Physics, 2019, 60, 111-126.	0.8	27
717	Slowing down of cosmic growth of supermassive black holes: theoretical prediction of the Eddington ratio distribution. Monthly Notices of the Royal Astronomical Society, 2019, 487, 409-419.	1.6	10
718	Three new VHS–DES quasars at 6.7 < z < 6.9 and emission line properties at z > 6.5. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1874-1885.	1.6	64
719	Physical Properties of a Coma-analog Protocluster at zÂ=Â6.5. Astrophysical Journal, 2019, 877, 51.	1.6	16
720	The seeds of supermassive black holes and the role of local radiation and metal spreading. Publications of the Astronomical Society of Australia, 2019, 36, .	1.3	16
721	Efficient selection of quasar candidates based on optical and infrared photometric data using machine learning. Monthly Notices of the Royal Astronomical Society, 2019, 485, 4539-4549.	1.6	29
722	Black hole mass and spin estimates of the most distant quasars. Astronomy and Astrophysics, 2019, 625, A23.	2.1	8

#	Article	IF	CITATIONS
723	Post-Newtonian evolution of massive black hole triplets in galactic nuclei – IV. Implications for LISA. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4044-4060.	1.6	91
724	Results from EDGES High-Band. III. New Constraints on Parameters of the Early Universe. Astrophysical Journal, 2019, 875, 67.	1.6	49
725	Strongly coupled dark energy cosmologies yielding large-mass primordial black holes. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2321-2335.	1.6	11
726	Inhomogeneous reionization models in cosmological hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4075-4097.	1.6	34
727	The formation of supermassive black holes from Population III.1 seeds. I. Cosmic formation histories and clustering properties. Monthly Notices of the Royal Astronomical Society, 2019, 483, 3592-3606.	1.6	11
728	Super-Eddington accretion and feedback from the first massive seed black holes. Monthly Notices of the Royal Astronomical Society, 2019, 486, 3892-3906.	1.6	65
729	Black hole formation in the context of dissipative dark matter. Monthly Notices of the Royal Astronomical Society, 2019, 485, 3352-3359.	1.6	14
730	Automatic detection of tidal disruption events and other longâ€duration transients in XMMâ€Newton data. Astronomische Nachrichten, 2019, 340, 262-266.	0.6	0
731	The first supermassive black holes: indications from models for future observations. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2694-2709.	1.6	29
732	A tiny host galaxy for the first giant black hole: <i>z</i> Â= 7.5 quasar in BlueTides. Monthly Notices of the Royal Astronomical Society, 2019, 483, 1388-1399.	1.6	14
733	The Goldilocks problem of the quasar contribution to reionization. Monthly Notices of the Royal Astronomical Society, 2019, 483, 5301-5314.	1.6	20
734	A new bright <i>z</i> Â=Â6.82 quasar discovered with VISTA: VHS J0411–0907. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5142-5154.	1.6	28
735	Growth of intermediate mass black holes by tidal disruption events in the first star clusters. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4665-4677.	1.6	26
736	The Infrared Medium-deep Survey. VI. Discovery of Faint Quasars at zÂâ^1⁄4Â5 with a Medium-band-based Approach. Astrophysical Journal, 2019, 870, 86.	1.6	16
737	Revealing Reionization with the Thermal History of the Intergalactic Medium: New Constraints from the Lyα Flux Power Spectrum. Astrophysical Journal, 2019, 872, 101.	1.6	91
738	Gemini GNIRS Near-infrared Spectroscopy of 50 Quasars at z ≳ 5.7. Astrophysical Journal, 2019, 873, 35.	1.6	115
739	Discovery of the First Low-luminosity Quasar at zÂ>Â7. Astrophysical Journal Letters, 2019, 872, L2.	3.0	114
740	Warm absorbers: supermassive black hole feeding and Compton-thick AGN. Monthly Notices of the Royal Astronomical Society, 2019, 484, 1829-1837.	1.6	6

#	Article	IF	CITATIONS
741	Evidence for short â^¼ 1 Myr lifetimes from the HeÂ <scp>ii</scp> proximity zones of <i>z</i> Ââ^¼Â4 quas Monthly Notices of the Royal Astronomical Society, 2019, 484, 3897-3910.	ars 1:6	27
742	Constraints on reionization from the <i>z</i> = 7.5 QSO ULASJ1342+0928. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5094-5101.	1.6	97
743	Filling in the Quasar Redshift Gap at zÂâ^¼Â5.5. II. A Complete Survey of Luminous Quasars in the Post-reionization Universe. Astrophysical Journal, 2019, 871, 199.	1.6	25
744	The Extremely Luminous Quasar Survey in the Sloan Digital Sky Survey Footprint. III. The South Galactic Cap Sample and the Quasar Luminosity Function at Cosmic Noon. Astrophysical Journal, 2019, 871, 258.	1.6	31
745	400 pc Imaging of a Massive Quasar Host Galaxy at a Redshift of 6.6. Astrophysical Journal Letters, 2019, 874, L30.	3.0	54
746	De re metallica: the cosmic chemical evolution of galaxies. Astronomy and Astrophysics Review, 2019, 27, 1.	9.1	372
747	Linking galaxy structural properties and star formation activity to black hole activity with IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4413-4443.	1.6	59
748	Growth of intermediate mass black holes in first star clusters. Proceedings of the International Astronomical Union, 2019, 14, 220-223.	0.0	0
749	The X-Ray Halo Scaling Relations of Supermassive Black Holes. Astrophysical Journal, 2019, 884, 169.	1.6	64
750	Resolving the Interstellar Medium in the Nuclear Region of Two zÂ=Â5.78 Quasar Host Galaxies with ALMA. Astrophysical Journal, 2019, 887, 40.	1.6	16
751	Extreme Primordial Star Formation Enabled by High-redshift Quasars. Astrophysical Journal, 2019, 879, 18.	1.6	7
752	Conditions for Reionizing the Universe with a Low Galaxy Ionizing Photon Escape Fraction. Astrophysical Journal, 2019, 879, 36.	1.6	201
753	Dynamic spherical collapses towards growing black holes in relativistically degenerate or hot host mass reservoirs. Monthly Notices of the Royal Astronomical Society, 2019, , .	1.6	2
754	Quasars as standard candles II. Astronomy and Astrophysics, 2019, 631, A120.	2.1	46
755	High-redshift Galaxy Formation with Self-consistently Modeled Stars and Massive Black Holes: Stellar Feedback and Quasar Growth. Astrophysical Journal, 2019, 887, 120.	1.6	11
756	Maximally accreting supermassive stars: a fundamental limit imposed by hydrostatic equilibrium. Astronomy and Astrophysics, 2019, 632, L2.	2.1	23
757	Probing Massive Black Hole Binary Populations with LISA. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	44
758	Magnetic braking of supermassive stars through winds. Astronomy and Astrophysics, 2019, 623, L7.	2.1	14

	CITATION RE	PORT	
#	Article	IF	CITATIONS
759	The Galaxy's Gas Content Regulated by the Dark Matter Halo Mass Results in a Superlinear M _{BH} –M _⋆ Relation. Astrophysical Journal Letters, 2019, 885, L36.	3.0	14
760	How AGN feedback drives the size growth of the first quasars. Monthly Notices of the Royal Astronomical Society, 2019, 490, 4918-4934.	1.6	20
761	Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). VIII. A less biased view of the early co-evolution of black holes and host galaxies. Publication of the Astronomical Society of Japan, 2019, 71, .	1.0	51
762	The Role of Gas Fragmentation During the Formation of Supermassive Black Holes. Astrophysical Journal, 2019, 885, 127.	1.6	18
763	The Lyα Luminosity Function and Cosmic Reionization at zÂâ^¼Â7.0: A Tale of Two LAGER Fields. Astrophysical Journal, 2019, 886, 90.	1.6	44
764	A Global Solution to a Slim Accretion Disk with Radiation-driven Outflows. Astrophysical Journal, 2019, 885, 93.	1.6	12
765	Rapidly Accreting Black Hole of the Lyα-luminous Quasar PSOJ006.1240+39.2219. Astrophysical Journal, 2019, 882, 144.	1.6	3
766	The REQUIEM Survey. I. A Search for Extended Lyα Nebular Emission Around 31 zÂ>Â5.7 Quasars. Astrophysical Journal, 2019, 887, 196.	1.6	68
767	The Discovery of a Gravitationally Lensed Quasar at zÂ=Â6.51. Astrophysical Journal Letters, 2019, 870, L11.	3.0	71
768	A New Sample of (Wandering) Massive Black Holes in Dwarf Galaxies from High-resolution Radio Observations. Astrophysical Journal, 2020, 888, 36.	1.6	150
769	The 21 cm bispectrum during reionization: a tracer of the ionization topology. Monthly Notices of the Royal Astronomical Society, 2020, 492, 653-667.	1.6	38
770	X-ray properties of z ≳ 6.5 quasars. Monthly Notices of the Royal Astronomical Society, 2020, 491, 3884-3890.	1.6	26
771	The early growth of supermassive black holes in cosmological hydrodynamic simulations with constrained Gaussian realizations. Monthly Notices of the Royal Astronomical Society, 2020, 496, 1-12.	1.6	13
772	The host galaxies of <i>z</i> = 7 quasars: predictions from the <scp>BlueTides</scp> simulation. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3819-3836.	1.6	24
773	Intermediate-Mass Black Holes. Annual Review of Astronomy and Astrophysics, 2020, 58, 257-312.	8.1	294
774	The Assembly of the First Massive Black Holes. Annual Review of Astronomy and Astrophysics, 2020, 58, 27-97.	8.1	264
775	Thermodynamics of shearing massless scalar field spacetimes is inconsistent with the Weyl curvature hypothesis. Physical Review D, 2020, 102, .	1.6	9
776	Constraining the intergalactic medium at z â‰^ 9.1 using LOFAR Epoch of Reionization observations. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4728-4747.	1.6	69

#	Article	IF	CITATIONS
777	The bolometric quasar luminosity function at <i>z</i> Â= 0–7. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3252-3275.	1.6	150
778	On monolithic supermassive stars. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2236-2243.	1.6	18
779	Joining Bits and Pieces of Reionization History. Physical Review Letters, 2020, 125, 071301.	2.9	12
780	Hyper-Eddington accretion flows on to black holes accompanied by powerful outflows. Monthly Notices of the Royal Astronomical Society, 2020, 497, 302-317.	1.6	31
781	Constraining the second half of reionization with the Ly β forest. Monthly Notices of the Royal Astronomical Society, 2020, 497, 906-915.	1.6	29
782	Ultra-luminous quasars at redshift z > 4.5 from SkyMapper. Monthly Notices of the Royal Astronomical Society, 2020, 491, 1970-1979.	1.6	15
783	QSO obscuration at high redshift (<i>z</i> ≳ 7): predictions from the <scp>bluetides</scp> simulation. Monthly Notices of the Royal Astronomical Society, 2020, 495, 2135-2151.	1.6	41
784	Inception of a first quasar at cosmic dawn. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3761-3769.	1.6	10
785	Bayesian approach to constraining the properties of ionized bubbles during reionization. Monthly Notices of the Royal Astronomical Society, 2020, 496, 739-753.	1.6	9
786	Charged particle dynamics in the surrounding of Schwarzschild anti-de Sitter black hole with topological defect immersed in an external magnetic field. European Physical Journal C, 2020, 80, 1.	1.4	9
787	Self-interacting dark matter from late decays and the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>H</mml:mi><mml:mn>0</mml:mn></mml:msub> tension. Physical Review D, 2020, 102, .</mml:math 	1.6	31
788	Applications of artificial intelligence in astronomical big data. , 2020, , 347-375.		7
789	Effects of the Hubble parameter on the cosmic growth of the first quasars. Monthly Notices of the Royal Astronomical Society, 2020, 496, 888-893.	1.6	6
790	Hypermassive black holes have faint broad and narrow emission lines. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2992-3010.	1.6	1
791	Observing the tail of reionization: neutral islands in the <i>z</i> Â= 5.5 Lyman-α forest. Monthly Notices of the Royal Astronomical Society, 2020, 494, 3080-3094.	1.6	64
792	Subaru High- <i>z</i> Exploration of Low-Luminosity Quasars (SHELLQs). IX. Identification of two red quasars at <i>z</i> > 5.6. Publication of the Astronomical Society of Japan, 2020, 72, .	1.0	10
793	Reionization history constraints from neural network based predictions of high-redshift quasar continua. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4256-4275.	1.6	29
794	Supermassive star formation via super competitive accretion in slightly metal-enriched clouds. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2851-2860.	1.6	49

#	Article	IF	CITATIONS
795	Rapid Reionization by the Oligarchs: The Case for Massive, UV-bright, Star-forming Galaxies with High Escape Fractions. Astrophysical Journal, 2020, 892, 109.	1.6	166
796	Radio Power from a Direct-collapse Black Hole in CR7. Astrophysical Journal Letters, 2020, 896, L45.	3.0	12
797	Properties of simulated galaxies and supermassive black holes in cosmic voids. Monthly Notices of the Royal Astronomical Society, 2020, 493, 899-921.	1.6	24
798	Carbon-loud SDSS BOSS type II quasars at z > 2: high-density gas or secondary production of carbon?. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4707-4746.	1.6	2
799	Growth of Supermassive Black Hole Seeds in ETG Star-forming Progenitors: Multiple Merging of Stellar Compact Remnants via Gaseous Dynamical Friction and Gravitational-wave Emission. Astrophysical Journal, 2020, 891, 94.	1.6	22
800	Introducing the Search for Intermediate-mass Black Holes in Nearby Galaxies (SIBLING) Survey. Astrophysical Journal, 2020, 889, 113.	1.6	22
801	The Radio Scream from black holes at Cosmic Dawn: a semi-analytic model for the impact of radio-loud black holes on the 21 cm global signal. Monthly Notices of the Royal Astronomical Society, 2020, 492, 6086-6104.	1.6	39
802	Tidal Disruptions of White Dwarfs: Theoretical Models and Observational Prospects. Space Science Reviews, 2020, 216, 1.	3.7	27
803	A thirty-four billion solar mass black hole in SMSS J2157–3602, the most luminous known quasar. Monthly Notices of the Royal Astronomical Society, 2020, 496, 2309-2314.	1.6	11
804	PÅniuÄâ€~ena: A Luminous zÂ=Â7.5 Quasar Hosting a 1.5 Billion Solar Mass Black Hole. Astrophysical Journal Letters, 2020, 897, L14.	3.0	202
805	Finding Direct-collapse Black Holes at Birth. Astrophysical Journal Letters, 2020, 897, L16.	3.0	18
806	A Significantly Neutral Intergalactic Medium Around the Luminous zÂ=Â7 Quasar J0252–0503. Astrophysical Journal, 2020, 896, 23.	1.6	97
807	Gaseous dynamical friction under radiative feedback: do intermediate-mass black holes speed up or down?. Monthly Notices of the Royal Astronomical Society, 2020, 496, 1909-1921.	1.6	21
808	Reality or Mirage? Observational Test and Implications for the Claimed Extremely Magnified Quasar at zÂ=Â6.3. Astrophysical Journal, 2020, 889, 52.	1.6	10
809	Concerns regarding the use of black hole shadows as standard rulers. Classical and Quantum Gravity, 2020, 37, 087001.	1.5	91
810	Primordial black holes dark matter from inflection point models of inflation and the effects of reheating. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 037-037.	1.9	60
811	Cosmic textures and global monopoles as seeds for super-massive black holes. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 002-002.	1.9	4
812	Star formation in accretion discs and SMBH growth. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3732-3743.	1.6	47

#	Article	IF	CITATIONS
813	Direct collapse to supermassive black hole seeds: the critical conditions for suppression of H2 cooling. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4917-4926.	1.6	13
814	Stellar properties of the host galaxy of an ultraluminous X-ray source in NGC 5252. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 493, L76-L80.	1.2	6
815	Observing the Redshifted 21 cm Signal around a Bright QSO at zÂâ^1⁄4Â10. Astrophysical Journal, 2020, 888, 112.	1.6	8
816	AGNs at the cosmic dawn: predictions for future surveys from a $\hat{P}CDM$ cosmological model. Monthly Notices of the Royal Astronomical Society, 2020, 492, 2535-2552.	1.6	7
817	Black hole shadow as a <i>standard ruler</i> in cosmology. Classical and Quantum Gravity, 2020, 37, 065016.	1.5	43
818	Model-independent Distance Calibration and Curvature Measurement Using Quasars and Cosmic Chronometers. Astrophysical Journal, 2020, 888, 99.	1.6	27
819	The impact of inhomogeneous subgrid clumping on cosmic reionization. Monthly Notices of the Royal Astronomical Society, 2020, 491, 1600-1621.	1.6	19
820	Four direct measurements of the fine-structure constant 13 billion years ago. Science Advances, 2020, 6, .	4.7	45
821	VLT/SINFONI study of black hole growth in high-redshift radio-loud quasars from the CARLA survey. Monthly Notices of the Royal Astronomical Society, 2020, 492, 1991-2016.	1.6	8
822	Using variability and VLBI to measure cosmological distances. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 495, L27-L31.	1.2	6
823	The near and mid-infrared photometric properties of known redshift <i>z</i> ≥ 5 quasars. Monthly Notices of the Royal Astronomical Society, 2020, 494, 789-803.	1.6	23
824	Cosmological simulations of massive black hole seeds: predictions for next-generation electromagnetic and gravitational wave observations. Monthly Notices of the Royal Astronomical Society, 2020, 491, 4973-4992.	1.6	20
825	Properties of reionization-era galaxies from JWST luminosity functions and 21-cm interferometry. Monthly Notices of the Royal Astronomical Society, 2020, 491, 3891-3899.	1.6	24
826	The emergence of the first star-free atomic cooling haloes in the Universe. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3021-3031.	1.6	16
827	Formation of SMBH seeds in Population III star clusters through collisions: the importance of mass loss. Monthly Notices of the Royal Astronomical Society, 2020, 493, 2352-2362.	1.6	21
828	Search for traversable wormholes in active galactic nuclei using x-ray data. Physical Review D, 2020, 101, .	1.6	12
830	Refining the mass estimate for the intermediate-mass black hole candidate in NGC 3319. Publications of the Astronomical Society of Australia, 2021, 38, .	1.3	4
831	The rapid transition from star formation to AGN-dominated rest-frame ultraviolet light at $\langle i\rangle z \langle i\rangle$ â‰f 4. Monthly Notices of the Royal Astronomical Society, 2021, 502, 662-677.	1.6	17

#	Article	IF	CITATIONS
832	On the kinematic interpretation of cosmological redshifts. Communications of the Byurakan Astrophysical Observatory, 0, , 12-31.	0.0	2
833	A Luminous Quasar at Redshift 7.642. Astrophysical Journal Letters, 2021, 907, L1.	3.0	237
834	High-redshift SMBHs can grow from stellar-mass seeds via chaotic accretion. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4289-4297.	1.6	12
835	An Extraordinary Response of Iron Emission to the Central Outburst in a Tidal Disruption Event Candidate. Astrophysical Journal Letters, 2021, 907, L29.	3.0	6
836	SuperBoRG: Search for the Brightest of Reionizing Galaxies and Quasars in HST Parallel Imaging Data*. Astrophysical Journal, Supplement Series, 2021, 253, 4.	3.0	14
837	Infrared emission of <i>z</i> â ⁻¹ ⁄4 6 galaxies: AGN imprints. Monthly Notices of the Royal Astronomical Society, 2021, 503, 2349-2368.	1.6	20
838	Super-Eddington Mass Growth of Intermediate-mass Black Holes Embedded in Dusty Circumnuclear Disks. Astrophysical Journal, 2021, 907, 74.	1.6	17
839	Formation of supermassive black hole seeds in nuclear star clusters via gas accretion and runaway collisions. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1051-1069.	1.6	23
840	Revealing the Accretion Physics of Supermassive Black Holes at Redshift z â^1⁄4 7 with Chandra and Infrared Observations. Astrophysical Journal, 2021, 908, 53.	1.6	35
841	Supermassive black holes in cosmological simulations I: <i>M</i> BH â^ <i>M</i> â <t 1940-1975.<="" 2021,="" 503,="" and="" astronomical="" black="" function.="" hole="" mass="" monthly="" notices="" of="" relation="" royal="" society,="" td="" the=""><td>1.6</td><td>63</td></t>	1.6	63
842	A comparison of quasar emission reconstruction techniques for <i>z</i> ≥ 5.0 Lyman α and Lyman β transmission. Monthly Notices of the Royal Astronomical Society, 2021, 503, 2077-2096.	1.6	21
843	Large-scale Variation in Reionization History Caused by Baryon–Dark Matter Streaming Velocity. Astrophysical Journal, 2021, 908, 96.	1.6	13
844	Discovery of the Most X-ray Luminous Quasar SRGE J170245.3+130104 at Redshift \$\$oldsymbol{zapprox 5.5}\$\$. Astronomy Letters, 2021, 47, 123-140.	0.1	17
845	Core-halo mass relation in scalar field dark matter models and its consequences for the formation of supermassive black holes. Physical Review D, 2021, 103, .	1.6	23
846	Viewing Angle Effects in Quasar Application to Cosmology. Astrophysical Journal, 2021, 909, 58.	1.6	4
847	A hyperluminous obscured quasar at a redshift of z â‰^ 4.3. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 503, L11-L16.	1.2	8
848	Big and Young Supermassive Black Holes in the Early Universe. Galaxies, 2021, 9, 23.	1.1	8
849	Forming massive seed black holes in high-redshift quasar host progenitors. Monthly Notices of the Royal Astronomical Society, 2021, 503, 5046-5060.	1.6	31

#	Article	IF	CITATIONS
850	Observational properties of a general relativistic instability supernova from a primordial supermassive star. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1206-1213.	1.6	11
851	Enhanced X-Ray Emission from the Most Radio-powerful Quasar in the Universe's First Billion Years. Astrophysical Journal, 2021, 911, 120.	1.6	17
852	The Diverse Morphologies and Structures of Dwarf Galaxies Hosting Optically Selected Active Massive Black Holes. Astrophysical Journal, 2021, 911, 134.	1.6	6
853	Exploring the Universe with dark light scalars. Physical Review D, 2021, 103, .	1.6	17
854	An investigation on gravitational entropy of cosmological models. International Journal of Modern Physics D, 2021, 30, 2150051.	0.9	3
855	Dark Energy Constraintsfrom Quasar Observations. Acta Physica Polonica A, 2021, 139, 389-393.	0.2	20
856	The Kinematics of z ≳ 6 Quasar Host Galaxies. Astrophysical Journal, 2021, 911, 141.	1.6	62
857	Reconstruction of reionization history through dispersion measurements of fast radio bursts. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 050.	1.9	3
858	Effect of mass-loss due to stellar winds on the formation of supermassive black hole seeds in dense nuclear star clusters. Monthly Notices of the Royal Astronomical Society, 2021, 505, 2186-2194.	1.6	8
859	The first measurement of the quasar lifetime distribution. Monthly Notices of the Royal Astronomical Society, 2021, 505, 649-662.	1.6	23
860	Stellar collisions in flattened and rotating Population III star clusters. Astronomy and Astrophysics, 2021, 649, A160.	2.1	14
861	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). XIII. Large-scale Feedback and Star Formation in a Low-luminosity Quasar at z = 7.07 on the Local Black Hole to Host Mass Relation. Astrophysical Journal, 2021, 914, 36.	1.6	37
862	Seeding Supermassive Black Holes with Self-interacting Dark Matter: A Unified Scenario with Baryons. Astrophysical Journal Letters, 2021, 914, L26.	3.0	31
863	Reionization and galaxy inference from the high-redshift Ly α forest. Monthly Notices of the Royal Astronomical Society, 2021, 506, 2390-2407.	1.6	61
864	Dating individual quasars with the He <scp>ii</scp> proximity effect. Monthly Notices of the Royal Astronomical Society, 2021, 505, 5084-5103.	1.6	13
865	Objectives of the Millimetron Space Observatory science program and technical capabilities of its realization. Physics-Uspekhi, 2021, 64, 386-419.	0.8	24
866	Hubble diagram at higher redshifts: model independent calibration of quasars. Monthly Notices of the Royal Astronomical Society, 2021, 507, 919-926.	1.6	27
867	Introducing SPHINX-MHD: the impact of primordial magnetic fields on the first galaxies, reionization, and the global 21-cm signal. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1254-1282.	1.6	30

#	Article	IF	CITATIONS
868	Host galaxies of high-redshift quasars: SMBH growth and feedback. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1-26.	1.6	29
869	SMBH seeds from dissipative dark matter. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 039.	1.9	12
870	Exploration of the high-redshift universe enabled by THESEUS. Experimental Astronomy, 2021, 52, 219-244.	1.6	12
871	On the Evolution of Supermassive Primordial Stars in Cosmological Flows. Astrophysical Journal, 2021, 915, 110.	1.6	16
872	Redshift evolution of the Amati relation: Calibrated results from the Hubble diagram of quasars at high redshifts. Astronomy and Astrophysics, 2021, 651, L8.	2.1	9
873	Probing reionization and early cosmic enrichment with the Mg <scp>ii</scp> forest. Monthly Notices of the Royal Astronomical Society, 2021, 506, 2963-2984.	1.6	6
874	Chronos: A NIR spectroscopic galaxy survey to probe the most fundamental stages of galaxy evolution. Experimental Astronomy, 2021, 51, 729.	1.6	0
875	Detecting and Characterizing Young Quasars. II. Four Quasars at z â^1⁄4 6 with Lifetimes < 10 ⁴ Yr. Astrophysical Journal, 2021, 917, 38.	1.6	27
876	Evolution of High-redshift Quasar Hosts and Promotion of Massive Black Hole Seed Formation. Astrophysical Journal, 2021, 917, 60.	1.6	9
877	Maximum accretion rate of supermassive stars. Astronomy and Astrophysics, 2021, 652, L7.	2.1	9
878	Radiation hydrodynamics simulations of line-driven AGN disc winds: metallicity dependence and black hole growth. Monthly Notices of the Royal Astronomical Society, 2021, 507, 904-913.	1.6	2
879	Quantumbit Cosmology Explains Effects of Rotation Curves of Galaxies. Foundations of Science, 0, , 1.	0.4	0
880	Impact of gas-based seeding on supermassive black hole populations at <i>z</i> ≥ 7. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2012-2036.	1.6	5
881	Cosmological Simulations of Quasar Fueling to Subparsec Scales Using Lagrangian Hyper-refinement. Astrophysical Journal, 2021, 917, 53.	1.6	49
882	Unveiling the gravitational universe at μ-Hz frequencies. Experimental Astronomy, 2021, 51, 1333-1383.	1.6	88
883	Modelling type 1 quasar colours in the era of Rubin and Euclid. Monthly Notices of the Royal Astronomical Society, 2021, 508, 737-754.	1.6	11
884	The OBELISK simulation: Galaxies contribute more than AGN to H†I reionization of protoclusters. Astronomy and Astrophysics, 2021, 653, A154.	2.1	37
885	Peering into the dark (ages) with low-frequency space interferometers. Experimental Astronomy, 2021, 51, 1641-1676.	1.6	10

#	Article	IF	CITATIONS
886	Neutrino emission from the collapse of â^¼104 M⊙ Population III supermassive stars. Monthly Notices of the Royal Astronomical Society, 2021, 508, 828-841.	1.6	2
887	Radiation hydrodynamical simulations of the birth of intermediate-mass black holes in the first galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1756-1767.	1.6	17
888	The mean free path of ionizing photons at 5 < <i>z</i> < 6: evidence for rapid evolution near reionization. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1853-1869.	1.6	63
889	Cosmological Advection Flows in the Presence of Primordial Black Holes as Dark Matter and Formation of First Sources. Physical Review Letters, 2021, 126, 011101.	2.9	8
890	Structure formation and the matter power-spectrum in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e427" altimg="si346.svg"><mml:mrow><mml:msub><mml:mi>R</mml:mi></mml:msub></mml:mrow><mml:mrow><mml:mi>R</mml:mi></mml:mrow><mml:mrow><mml:mi>nt="normal">h</mml:mi></mml:mrow><mml:mol <br="" linebreak="goodbreak">linebreakstyle="after">=<t</mml:mol></mml:math 	nl:mi 1.8	4
891	universe. Physics of the Dark Universe, 2021, 31, 100752. Massive black holes in high-redshift Lyman Break Galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2757-2769.	1.6	6
892	Cosmological direct-collapse black hole formation sites hostile for their growth. Monthly Notices of the Royal Astronomical Society, 2021, 502, 700-713.	1.6	13
893	Large-Scale Structure Formation: From the First Non-linear Objects to Massive Galaxy Clusters. Space Sciences Series of ISSI, 2016, , 93-139.	0.0	4
894	The Scientific Potential of Space-Based Gravitational Wave Detectors. Thirty Years of Astronomical Discovery With UKIRT, 2015, , 225-243.	0.3	1
895	Quasars as Probes of Cosmological Reionization. Astrophysics and Space Science Library, 2016, , 187-226.	1.0	14
896	Observing the Epoch of Reionization with the Cosmic Microwave Background. Astrophysics and Space Science Library, 2016, , 227-245.	1.0	3
897	New Eyes for Galaxies Investigation. Astrophysics and Space Science Library, 2016, , 697-737.	1.0	1
898	The Epoch of Reionization. Astrophysics and Space Science Library, 2013, , 45-101.	1.0	68
899	Near Field Cosmology: The Origin of the Galaxy and the Local Group. Saas-Fee Advanced Course, 2014, , 1-144.	1.1	4
900	Towards equation of state of dark energy from quasar monitoring: Reverberation strategy. Astronomy and Astrophysics, 2013, 556, A97.	2.1	48
901	ls MgII <i>λ</i> 2800 a reliable virial broadening estimator for quasars?. Astronomy and Astrophysics, 2013, 555, A89.	2.1	67
902	Dust production 680–850 million years after the Big Bang. Astronomy and Astrophysics, 2015, 577, A80.	2.1	91
903	Probing the radio loud/quiet AGN dichotomy with quasar clustering. Astronomy and Astrophysics, 2017, 600, A97.	2.1	31

#	Article	IF	CITATIONS
904	Infrared signature of active massive black holes in nearby dwarf galaxies. Astronomy and Astrophysics, 2017, 602, A28.	2.1	31
905	Chemical enrichment and accretion of nitrogen-loud quasars. Astronomy and Astrophysics, 2017, 608, A90.	2.1	10
906	Solving the conundrum of intervening strong Mg II absorbers towards gamma-ray bursts and quasars. Astronomy and Astrophysics, 2017, 608, A84.	2.1	11
907	An extremely X-ray weak blazar at <i>z</i> = 5. Astronomy and Astrophysics, 2019, 629, A68.	2.1	9
908	The X-ray properties of <i>z</i> > 6 quasars: no evident evolution of accretion physics in the first Gyr of the Universe. Astronomy and Astrophysics, 2019, 630, A118.	2.1	71
909	Observational and theoretical constraints on the formation and early evolution of the first dust grains in galaxies at 5 < <i>z</i> < 10. Astronomy and Astrophysics, 2020, 637, A32.	2.1	26
910	The effects of a background potential in star cluster evolution. Astronomy and Astrophysics, 2020, 639, A92.	2.1	13
911	The WISSH quasars project. Astronomy and Astrophysics, 2021, 645, A33.	2.1	41
912	A STUDY OF FUNDAMENTAL LIMITATIONS TO STATISTICAL DETECTION OF REDSHIFTED H I FROM THE EPOCH OF REIONIZATION. Astrophysical Journal, 2013, 776, 6.	1.6	123
913	Testing the Kerr nature of supermassive and intermediate-mass black hole binaries using spin-induced multipole moment measurements. Classical and Quantum Gravity, 2020, 37, 205019.	1.5	11
914	Radiative feedback for supermassive star formation in a massive cloud with H2 molecules in an atomic-cooling halo. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5960-5971.	1.6	7
915	The mass assembly of high-redshift black holes. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2146-2158.	1.6	19
916	Constraining reionization in progress at <i>z</i> Â= 5.7 with Lyman-α emitters: voids, peaks, and cosmic variance. Monthly Notices of the Royal Astronomical Society, 2021, 501, 5294-5308.	1.6	12
917	A Machine Learning Approach For Classifying Low-mass X-ray Binaries Based On Their Compact Object Nature. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	10
918	Formation of the First Black Holes. , 2019, , .		9
919	Formation of the first stars. , 2019, , 67-97.		19
920	Super-Eddington accretion; flow regimes and conditions in high-z galaxies. , 2019, , 195-222.		10
921	STELLAR TIDAL DISRUPTION EVENTS BY DIRECT-COLLAPSE BLACK HOLES. Astrophysical Journal, 2016, 826, 80.	1.6	15

	CITATIO	N REPORT	
#	Article	IF	CITATIONS
922	Discovery of Two Quasars at zÂ=Â5 from the OGLE Survey. Astrophysical Journal, 2019, 878, 115.	1.6	3
923	Heavy Element Absorption Systems at 5.0Â<ÂzÂ<Â6.8: Metal-poor Neutral Gas and a Diminishing Signature of Highly Ionized Circumgalactic Matter. Astrophysical Journal, 2019, 882, 77.	1.6	37
924	Redshift Horizon for Detecting the First Galaxies in Far-infrared Surveys. Astrophysical Journal, 2019, 883, 113.	1.6	2
925	Implications of Symmetry and Pressure in Friedmann Cosmology. II. Stellar Remnant Black Hole Mass Function. Astrophysical Journal, 2020, 889, 115.	1.6	14
926	Truth or Delusion? A Possible Gravitational Lensing Interpretation of the Ultraluminous Quasar SDSS J010013.02+280225.8 at zÂ=Â6.30. Astrophysical Journal, 2020, 891, 64.	1.6	14
927	Making a Supermassive Star by Stellar Bombardment. Astrophysical Journal, 2020, 892, 36.	1.6	47
928	Survey of Extremely High-velocity Outflows in Sloan Digital Sky Survey Quasars. Astrophysical Journal, 2020, 896, 151.	1.6	12
929	Hydrodynamic Response of the Intergalactic Medium to Reionization. Astrophysical Journal, 2020, 898, 149.	1.6	33
930	No Redshift Evolution in the Broad-line-region Metallicity up to zÂ=Â7.54: Deep Near-infrared Spectroscopy of ULAS J1342+0928. Astrophysical Journal, 2020, 898, 105.	1.6	38
931	First Structure Formation under the Influence of Gas–Dark Matter Streaming Velocity and Density: Impact of the "Baryons Trace Dark Matter―Approximation. Astrophysical Journal, 2020, 900, 30.	1.6	12
932	SCUBA2 High Redshift Bright Quasar Survey: Far-infrared Properties and Weak-line Features. Astrophysical Journal, 2020, 900, 12.	1.6	10
933	Detecting and Characterizing Young Quasars. I. Systemic Redshifts and Proximity Zone Measurements. Astrophysical Journal, 2020, 900, 37.	1.6	56
934	Limits to Rest-frame Ultraviolet Emission from Far-infrared-luminous zÂ≃Â6 Quasar Hosts. Astrophysical Journal, 2020, 900, 21.	1.6	19
935	Model-independent Constraints on Cosmic Curvature: Implication from Updated Hubble Diagram of High-redshift Standard Candles. Astrophysical Journal, 2020, 901, 129.	1.6	29
936	Pulsation-driven Mass Loss from Massive Stars behind Stellar Mergers in Metal-poor Dense Clusters. Astrophysical Journal, 2020, 902, 81.	1.6	5
937	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). XI. Proximity Zone Analysis for Faint Quasar Spectra at zÂâ^1⁄4Â6. Astrophysical Journal, 2020, 903, 60.	1.6	15
938	Probing the Nature of High-redshift Weak Emission Line Quasars: A Young Quasar with a Starburst Host Galaxy. Astrophysical Journal, 2020, 903, 34.	1.6	27
939	Measurements of the zÂâ^1⁄4Â6 Intergalactic Medium Optical Depth and Transmission Spikes Using a New zÂ>Â6.3 Quasar Sample. Astrophysical Journal, 2020, 904, 26.	1.6	71

#	Article	IF	CITATIONS
940	The Faint End of the Quasar Luminosity Function at zÂâ^¼Â5 from the Subaru Hyper Suprime-Cam Survey. Astrophysical Journal, 2020, 904, 89.	1.6	31
941	The Infrared Medium-deep Survey. VIII. Quasar Luminosity Function at zÂâ^1⁄4Â5. Astrophysical Journal, 2020, 904, 111.	1.6	26
942	The X-SHOOTER/ALMA Sample of Quasars in the Epoch of Reionization. I. NIR Spectral Modeling, Iron Enrichment, and Broad Emission Line Properties. Astrophysical Journal, 2020, 905, 51.	1.6	66
943	Biconical-dominated Accretion Flow onto Seed Black Holes in a Hyperaccretion Regime. Astrophysical Journal, 2020, 905, 92.	1.6	6
944	No Evidence for [C ii] Halos or High-velocity Outflows in zÂ≳Â6 Quasar Host Galaxies. Astrophysical Journal, 2020, 904, 131.	1.6	41
945	NuSTAR Discovery of Dead Quasar Engine in Arp 187. Astrophysical Journal Letters, 2019, 883, L13.	3.0	8
946	Evidence for Low Radiative Efficiency or Highly Obscured Growth of zÂ>Â7 Quasars. Astrophysical Journal Letters, 2019, 884, L19.	3.0	52
947	The Birth of Binary Direct-collapse Black Holes. Astrophysical Journal Letters, 2020, 892, L4.	3.0	23
948	Induced Metal-free Star Formation around a Massive Black Hole Seed. Astrophysical Journal Letters, 2020, 898, L53.	3.0	6
949	Quantum Cosmology Explains the General Galaxy-Black Hole Correlation. International Journal of Astronomy and Astrophysics, 2012, 02, 101-112.	0.2	1
950	Mass of the Universe and the Redshift. International Journal of Astronomy and Astrophysics, 2018, 08, 68-78.	0.2	5
951	A Y-BAND LOOK OF THE SKY WITH 1-M CLASS TELESCOPES. Journal of the Korean Astronomical Society, 2012, 45, 7-17.	1.5	6
952	THE INFRARED MEDIUM-DEEP SURVEY. V. A NEW SELECTION STRATEGY FOR QUASARS AT z > 5 BASED ON MEDIUM-BAND OBSERVATIONS WITH SQUEAN. Journal of the Korean Astronomical Society, 2016, 49, 25-35.	1.5	10
953	The search for the farthest quasar: consequences for black hole growth and seed models. Monthly Notices of the Royal Astronomical Society, 2021, 509, 1885-1891.	1.6	20
954	Low frequency radio properties of the <i>z</i> > â€<5 quasar population. Astronomy and Astrophysics, 2021, 656, A137.	2.1	20
955	Recent Advances in Cosmological Hydrogen Reionization. , 2012, , .		0
956	BLACK HOLE MASS MEASUREMENTS WITH REST-FRAME OPTICAL QUASAR SPECTRA AT 3. Publications of the Korean Astronomical Society, 2012, 27, 361-362.	0.1	0
957	Supermassive Black Holes, Large Scale Structure and Holography. Journal of Modern Physics, 2013, 04, 50-54.	0.3	3

#	Article	IF	CITATIONS
958	Das Universum. , 2014, , 1-45.		0
959	Massive Galaxies and Central Black Holes at z = 6 to z = 8. Journal of Modern Physics, 2015, 06, 1987-1990.	0.3	0
960	No Dark Matter? Prediction from Dynamic Universe Model Came True!. Journal of Astrophysics & Aerospace Technology, 2015, 03, .	0.1	1
961	Young black hole had monstrous growth spurt. Nature, 0, , .	13.7	0
962	Black Hole Observations—Towards the Event Horizon. Springer Proceedings in Physics, 2016, , 15-22.	0.1	0
964	Gamma-Ray Bursts and Population III Stars. Space Sciences Series of ISSI, 2016, , 161-182.	0.0	0
965	GRBs as Probes of the IGM. Space Sciences Series of ISSI, 2016, , 145-160.	0.0	0
966	The Physics of Galaxy Formation and Evolution. Astrophysics and Space Science Library, 2016, , 585-695.	1.0	0
968	In Pursuit of High Redshift Galaxies. Astrophysics and Space Science Library, 2016, , 479-508.	1.0	0
969	The GMOX science case: resolving galaxies through cosmic time. , 2016, , .		0
970	Thoughts on 50 Years in Astrophysics and Cosmology and on What Comes Next. Fundamental Theories of Physics, 2017, , 353-361.	0.1	0
972	CND-Scale AGN Fueling: Do CNDs Drive the Growth of Supermassive Black Holes?. Springer Theses, 2018, , 83-115.	0.0	0
973	2005–2015: Harvest Time. Historical & Cultural Astronomy, 2018, , 535-553.	0.1	0
974	An inexpensive turnkey 6.5-m observatory with customizing options. , 2018, , .		0
976	The Panchromatic Polarisation Signatures of Active Galactic Nuclei. Astrophysics and Space Science Library, 2019, , 363-389.	1.0	0
977	Observations of Ly\$\$alpha \$\$ Emitters at High Redshift. Saas-Fee Advanced Course, 2019, , 189-318.	1.1	6
978	Submillimeter Signatures from Growing Supermassive Black Holes before Reionization. Astrophysical Journal, 2019, 887, 174.	1.6	3
979	Revisiting the SoÅ,tan Argument Based on a Semianalytical Model for Galaxy and Black Hole Evolution. Astrophysical Journal, 2020, 898, 63.	1.6	1

#	Article	IF	CITATIONS
980	A Wide and Deep Exploration of Radio Galaxies with Subaru HSC (WERGS). IV. Rapidly Growing (Super)Massive Black Holes in Extremely Radio-loud Galaxies. Astrophysical Journal, 2021, 921, 51.	1.6	8
981	A Local Baseline of the Black Hole Mass Scaling Relations for Active Galaxies. IV. Correlations Between M _{BH} and Host Galaxy If, Stellar Mass, and Luminosity. Astrophysical Journal, 2021, 921, 36.	1.6	31
982	Not all peaks are created equal: the early growth of supermassive black holes. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3043-3064.	1.6	4
983	A complete search for redshift <i>z</i> ≳ 6.5 quasars in the VIKING survey. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1663-1676.	1.6	3
984	Deep Extragalactic VIsible Legacy Survey (DEVILS): identification of AGN through SED fitting and the evolution of the bolometric AGN luminosity function. Monthly Notices of the Royal Astronomical Society, 2021, 509, 4940-4961.	1.6	20
985	CAN UVB VARIATIONS RECONCILE SIMULATED QUASAR ABSORPTION LINES AT HIGH REDSHIFT?. Revista Mexicana De Astronomia Y Astrofisica, 2020, 56, 97-107.	0.2	0
986	Estimating the Effective Lifetime of the z â^¼ 6 Quasar Population from the Composite Proximity Zone Profile. Astrophysical Journal, 2021, 921, 88.	1.6	16
987	A new transient ultraluminous X-ray source in NGC 7090. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1002-1012.	1.6	9
988	Exploring the origin of supermassive black holes with coherent neutrino scattering. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 020.	1.9	8
989	XXL-HSC: An updated catalogue of high-redshift (<i>z</i> ≥ 3.5) X-ray AGN in the XMM-XXL northern field. Astronomy and Astrophysics, 2022, 658, A175.	2.1	4
990	Impact of gas spin and Lyman–Werner flux on black hole seed formation in cosmological simulations: implications for direct collapse. Monthly Notices of the Royal Astronomical Society, 2021, 510, 177-196.	1.6	3
991	Time domain astronomy with the THESEUS satellite. Experimental Astronomy, 2021, 52, 309-406.	1.6	7
992	Gaussian Process Reconstruction of Reionization History. Astrophysical Journal, 2021, 922, 95.	1.6	6
993	The effect of inhomogeneous reionization on the LymanÂα forest power spectrum at redshift z > 4: implications for thermal parameter recovery. Monthly Notices of the Royal Astronomical Society, 2021, 509, 6119-6137.	1.6	14
994	Radio Power from Direct-collapse Black Holes. Astrophysical Journal Letters, 2021, 922, L39.	3.0	7
995	Massive Black-Hole Mergers. , 2021, , 1-33.		2
996	Deep learning in searching the spectroscopic redshift of quasars. Monthly Notices of the Royal Astronomical Society, 2022, 511, 4490-4499.	1.6	4
997	High-redshift quasars and their host galaxies – II. Multiphase gas and stellar kinematics. Monthly Notices of the Royal Astronomical Society, 2022, 510, 5760-5779.	1.6	11

ARTICLE IF CITATIONS The low-end of the black hole mass function at cosmic dawn. Monthly Notices of the Royal 998 29 1.6 Astronomical Society, 2022, 511, 616-640. Metallicity in Quasar Broad-line Regions at Redshift â¹/₄ 6. Astrophysical Journal, 2022, 925, 121. 1.6 The<scp>thesan</scp>project: properties of the intergalactic medium and its connection to 1000 1.6 44 reionization-era galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 512, 4909-4933. $Co-evolution \ of \ massive \ black \ holes \ and \ their \ host \ galaxies \ at \ high \ redshift: \ discrepancies \ from \ six \ cosmological \ simulations \ and \ the \ key \ role \ of \ <i >JWST </i >. \ Monthly \ Notices \ of \ the \ Royal \ Astronomical \ simulations \ and \ the \ key \ role \ of \ <i >JWST </i >.$ Society, 2022, 511, 3751-3767. The Black Hole Mass Function Across Cosmic Times. I. Stellar Black Holes and Light Seed Distribution. 1002 7 1.6 Astrophysical Journal, 2022, 924, 56. Black hole–galaxy scaling relations in FIRE: the importance of black hole location and mergers. Monthly Notices of the Royal Astronomical Society, 2022, 511, 506-535. 1.6 Search for Intermediate-mass Black Holes at Low Redshift with Intra-night Variability. Astronomical 1004 1.9 4 Journal, 2022, 163, 73. Relativistic X-Ray Reverberation from Super-Eddington Accretion Flow. Astrophysical Journal, 2022, 1.6 925, 151. Revealing new high-redshift quasar populations through Gaussian mixture model selection. 1006 2.1 6 Astronomy and Astrophysics, 2022, 660, A22. First Light And Reionisation Epoch Simulations (FLARES) â€" III. The properties of massive dusty galaxies 1.6 at cosmic dawn. Monthly Notices of the Royal Astronomical Society, 2022, 511, 4999-5017. Constraints on the End of Reionization from the Density Fields Surrounding Two Highly Opaque 1008 17 1.6 Quasar Sightlines. Astrophysical Journal, 2021, 923, 87. Probing Early Supermassive Black Hole Growth and Quasar Evolution with Near-infrared 1.6 Spectroscopy of 37 Reionization-era Quasars at 6.3 < z â‰\$.64. Astrophysical Journal, 2021, 923, 262. Conditions for Direct Black Hole Seed Collapse near a Radio-loud Quasar 1 Gyr after the Big Bang. 1010 1.6 8 Astrophysical Journal, 2022, 926, 114. Black hole virial masses from single-epoch photometry. The miniJPAS test case. Astronomy and 2.1 Astrophysics, 0, , . Solitons in the dark: First approach to non-linear structure formation with fuzzy dark matter. 1012 2.1 15 Astronomy and Astrophysics, 2022, 662, A29. Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). XVI. 69 New Quasars at 5.8 < z < 3.0 7.0. Astrophysical Journal, Supplement Series, 2022, 259, 18. IGM damping wing constraints on reionization from covariance reconstruction of two <i>z</i> 1014 1.6 30 QSOs. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5390-5403. Constraining Galaxy Overdensities around Three z â⁻¹/₄ 6.5 Quasars with ALMA and MUSE. Astrophysical Journal, 2022, 927, 141.

~	_	
CITAT	DEDO	DT
CHAL	NLPU	IX I

#	Article	IF	CITATIONS
1016	Radio and far-IR emission associated with a massive star-forming galaxy candidate at <i>z</i> ≃ 6.8: a radio-loud AGN in the reionization era?. Monthly Notices of the Royal Astronomical Society, 2022, 512, 4248-4261.	1.6	12
1017	Exploring Gravitationally Lensed z ≳ 6 X-Ray Active Galactic Nuclei Behind the RELICS Clusters. Astrophysical Journal, 2022, 927, 34.	1.6	1
1018	Rapid Growth of Seed Black Holes during Early Bulge Formation. Astrophysical Journal, 2022, 927, 237.	1.6	16
1019	A Search for H-Dropout Lyman Break Galaxies at z â^¼ 12–16. Astrophysical Journal, 2022, 929, 1.	1.6	68
1020	Exploring the Hubble Tension and Spatial Curvature from the Ages of Old Astrophysical Objects. Astrophysical Journal, 2022, 928, 165.	1.6	17
1021	Galaxy Formation and Reionization: Key Unknowns and Expected Breakthroughs by the <i>James Webb Space Telescope</i> . Annual Review of Astronomy and Astrophysics, 2022, 60, 121-158.	8.1	84
1022	The effect of impact parameters on the formation of massive black hole binaries in galactic mergers. Astrophysics and Space Science, 2021, 366, 1.	0.5	1
1023	The impact of black hole feedback on the UV luminosity and stellar mass assembly of high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 510, 5661-5675.	1.6	7
1024	Dark twilight joined with the light of dawn to unveil the reionization history. Physical Review D, 2021, 104, .	1.6	3
1025	Dark-ages reionization and galaxy formation simulation XX. The Ly α IGM transmission properties and environment of bright galaxies during the epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3858-3866.	1.6	19
1026	Hydrogen reionization ends by <i>z</i> = 5.3: Lyman-α optical depth measured by the XQR-30 sample. Monthly Notices of the Royal Astronomical Society, 2022, 514, 55-76.	1.6	82
1027	The Decoupled Kinematics of High-z QSO Host Galaxies and Their Lyα Halos. Astrophysical Journal, 2022, 929, 86.	1.6	6
1028	A dusty compact object bridging galaxies and quasars at cosmic dawn. Nature, 2022, 604, 261-265.	13.7	34
1029	The large-scale 21-cm power spectrum from reionization. Monthly Notices of the Royal Astronomical Society, 2022, 513, 5109-5124.	1.6	8
1030	Staring at the Shadows of Archaic Galaxies: Damped Lyα and Metal Absorbers Toward a Young z â^1⁄4 6 Weak-line Quasar. Astronomical Journal, 2022, 163, 251.	1.9	6
1031	VLBI observations of VIK J2318â^'3113, a quasar at <i>z</i> = 6.44. Astronomy and Astrophysics, 2022, 662 L2.	² 2 . 1	7
1032	Dark atoms and composite dark matter. SciPost Physics Lecture Notes, 0, , .	0.0	11
1033	Blazar nature of high- <i>z</i> radio-loud quasars. Astronomy and Astrophysics, 2022, 663, A147.	2.1	3

#	Article	IF	CITATIONS
1034	å'现èį"ä»Šä¸²æ¢æœ€é¥èįœçš"æ~Žä²®ç±»æ~Ÿä½"J0313-1806. Chinese Science Bulletin, 2022, , .	0.4	0
1035	Systematically smaller single-epoch quasar black hole masses using a radius–luminosity relationship corrected for spectral bias. Monthly Notices of the Royal Astronomical Society, 2022, 515, 491-506.	1.6	6
1036	The formation of the first quasars: the black hole seeds, accretion, and feedback models. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5583-5606.	1.6	10
1037	Lensing in the darkness: a Bayesian analysis of 22 <i>Chandra</i> sources at <i>z</i> ≳ 6 shows no evidence of lensing. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2855-2863.	1.6	1
1038	Massive Black-Hole Mergers. , 2022, , 851-883.		0
1039	Finding Lensed Direct-collapse Black Holes and Supermassive Primordial Stars. Astrophysical Journal Letters, 2022, 933, L8.	3.0	6
1040	Quasars as high-redshift standard candles. Astronomy and Astrophysics, 2022, 663, L7.	2.1	15
1041	Turbulent cold flows gave birth to the first quasars. Nature, 2022, 607, 48-51.	13.7	37
1042	Black hole and host galaxy growth in an isolated <i>z</i> â^¼â€"6 QSO observed with ALMA. Astronomy and Astrophysics, 2022, 665, A107.	2.1	10
1043	Paving the way for <i>Euclid</i> and <i>JWST</i> via probabilistic selection of high-redshift quasars. Monthly Notices of the Royal Astronomical Society, 2022, 515, 3224-3248.	1.6	5
1044	The Black Hole Mass Function across Cosmic Time. II. Heavy Seeds and (Super)Massive Black Holes. Astrophysical Journal, 2022, 934, 66.	1.6	4
1045	A Simple Condition for Sustained Super-Eddington Black Hole Growth. Astrophysical Journal, 2022, 934, 58.	1.6	2
1046	The short ionizing photon mean free path at <i>z</i> Â=Â6 in Cosmic Dawn III, a new fully coupled radiation-hydrodynamical simulation of the Epoch of Reionization. Monthly Notices of the Royal Astronomical Society, 2022, 516, 3389-3397.	1.6	16
1047	Long-term Evolution of Supercritical Black Hole Accretion with Outflows: A Subgrid Feedback Model for Cosmological Simulations. Astrophysical Journal, 2022, 934, 132.	1.6	10
1048	Gamma-ray bursts, supernovae Ia, and baryon acoustic oscillations: A binned cosmological analysis. Publication of the Astronomical Society of Japan, 2022, 74, 1095-1113.	1.0	19
1049	Dissimilar donuts in the sky? Effects of a pressure singularity on the circular photon orbits and shadow of a cosmological black hole. Europhysics Letters, 2022, 139, 59003.	0.7	15
1050	Photometric IGM tomography: Efficiently mapping quasar light echoes with deep narrow-band imaging. Monthly Notices of the Royal Astronomical Society, 2022, 516, 582-601.	1.6	3
1051	Maximal X-ray feedback in the pre-reionization Universe. Monthly Notices of the Royal Astronomical Society, 2022, 515, 5568-5575.	1.6	3

#	Article	IF	CITATIONS
1052	Supercritical Growth Pathway to Overmassive Black Holes at Cosmic Dawn: Coevolution with Massive Quasar Hosts. Astrophysical Journal, 2022, 935, 140.	1.6	7
1053	Probing the <i>z</i> â‰ ³ 6 quasars in a universe with IllustrisTNG physics: impact of gas-based black hole seeding models. Monthly Notices of the Royal Astronomical Society, 2022, 516, 138-157.	1.6	6
1054	Implications for the Hubble tension from the ages of the oldest astrophysical objects. Journal of High Energy Astrophysics, 2022, 36, 27-35.	2.4	34
1055	A Hidden Population of Massive Black Holes in Simulated Dwarf Galaxies. Astrophysical Journal, 2022, 936, 82.	1.6	12
1056	Probing Our Universe's Past Using Earth's Geological and Climatological History and Shadows of Galactic Black Holes. Universe, 2022, 8, 484.	0.9	5
1057	Unresolved z â^¼ 8 Point Sources and Their Impact on the Bright End of the Galaxy Luminosity Function. Astrophysical Journal, 2022, 936, 167.	1.6	4
1058	Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs) – XV. Constraining the cosmic reionization at 5.5 < <i>z</i> < 7. Monthly Notices of the Royal Astronomical Society, 2022, 517, 1264-1281.	1.6	3
1059	Stability analysis of supermassive primordial stars: a new mass range for general relativistic instability supernovae. Monthly Notices of the Royal Astronomical Society, 2022, 517, 1584-1600.	1.6	10
1060	A Supercritical Accretion Disk with Radiation-driven Outflows. Astrophysical Journal, 2022, 936, 141.	1.6	2
1062	Empirical scenaria of galaxy evolution. Physics-Uspekhi, 0, , .	0.8	1
1063	Accelerated Growth of Seed Black Holes by Dust in the Early Universe. Astrophysical Journal, 2022, 936, 116.	1.6	2
1064	Demographics of <i>z</i> â^1⁄4 6 quasars in the black hole mass–luminosity plane. Monthly Notices of the Royal Astronomical Society, 2022, 517, 2659-2676.	1.6	7
1065	Discovery of 24 radio-bright quasars at 4.9 ≤i>z ≤6.6 using low-frequency radio observations. Astronomy and Astrophysics, 2022, 668, A27.	2.1	13
1066	Finding of a Population of Active Galactic Nuclei Showing a Significant Luminosity Decline in the Past â^¼10 ³ –10 ⁴ yr. Astrophysical Journal, 2022, 938, 75.	1.6	2
1067	An Empirical Approach to Selecting the First Growing Black Hole Seeds with JWST/NIRCam. Astrophysical Journal Letters, 2022, 938, L9.	3.0	6
1068	The REBELS ALMA Survey: efficient Ly α transmission of UV-bright <i>z</i> â‰f 7 galaxies from large velocity offsets and broad line widths. Monthly Notices of the Royal Astronomical Society, 2022, 517, 5642-5659.	y 1.6	17
1069	Cospatial 21Âcm and metal-line absorbers in the epoch of reionization – I. Incidence and observability. Monthly Notices of the Royal Astronomical Society, 2022, 517, 2331-2342.	1.6	0
1070	Radiative feedback on supermassive star formation: the massive end of the Population III initial mass function. Monthly Notices of the Royal Astronomical Society, 2022, 518, 1601-1616.	1.6	3

#	Article	IF	CITATIONS
1071	Catalog of Quasars Produced from the Results of a Medium-Band Photometric Survey at a 1-m Schmidt Telescope. Astronomy Letters, 2022, 48, 417-433.	0.1	0
1072	Astraeus – VI. Hierarchical assembly of AGN and their large-scale effect during the Epoch of Reionization. Monthly Notices of the Royal Astronomical Society, 2022, 518, 3576-3592.	1.6	5
1073	First light: switching on stars at the dawn of time. Contemporary Physics, 2022, 63, 15-33.	0.8	0
1074	Modeling cosmic reionization. Living Reviews in Solar Physics, 2022, 8, .	5.0	12
1075	Redshift-evolutionary X-Ray and UV Luminosity Relation of Quasars from Gaussian Copula. Astrophysical Journal, 2022, 940, 174.	1.6	6
1076	Probing quasar lifetimes with proximate 21-centimetre absorption in the diffuse intergalactic medium at redshifts <i>z</i> ≥ 6. Monthly Notices of the Royal Astronomical Society, 2022, 519, 3027-3045.	1.6	2
1077	A search for missing radio sources at <i>z</i> ≳ 4 using Lyman dropouts. Monthly Notices of the Royal Astronomical Society, 2023, 519, 4902-4919.	1.6	2
1078	A Southern Photometric Quasar Catalog from the Dark Energy Survey Data Release 2. Astrophysical Journal, Supplement Series, 2023, 264, 9.	3.0	5
1079	The X–shooter/ALMA Sample of Quasars in the Epoch of Reionization. II. Black Hole Masses, Eddington Ratios, and the Formation of the First Quasars. Astrophysical Journal, 2022, 941, 106.	1.6	36
1080	Seeking the growth of the first black hole seeds with JWST. Monthly Notices of the Royal Astronomical Society, 2023, 519, 4753-4764.	1.6	15
1081	A Candid Assessment of Standard Cosmology. Publications of the Astronomical Society of the Pacific, 2022, 134, 121001.	1.0	14
1082	How the super-Eddington regime regulates black hole growth in high-redshift galaxies. Astronomy and Astrophysics, 2023, 670, A180.	2.1	8
1083	Constraints on the X-ray luminosity function of AGN at <i>z</i> Â= 5.7–6.4 with the Extragalactic Serendipitous Swift Survey. Monthly Notices of the Royal Astronomical Society, 2023, 519, 6055-6064.	1.6	3
1084	(Nearly) Model-independent Constraints on the Neutral Hydrogen Fraction in the Intergalactic Medium at z â^1⁄4 5–7 Using Dark Pixel Fractions in Lyα and Lyβ Forests. Astrophysical Journal, 2023, 942, 59.	1.6	10
1085	JWST's PEARLS: Bright 1.5–2.0 μm Dropouts in the Spitzer/IRAC Dark Field. Astrophysical Journal Letters, 2023, 942, L8.	3.0	12
1086	Early structure formation in the THESAN radiation-magneto-hydrodynamics simulations. Proceedings of the International Astronomical Union, 2020, 16, 1-7.	0.0	0
1087	Pulsations of primordial supermassive stars induced by a general relativistic instability; visible to JWST at z > 12. Monthly Notices of the Royal Astronomical Society: Letters, 2022, 520, L72-L77.	1.2	4
1088	Searching for Anisotropic Stochastic Gravitational-wave Backgrounds with Constellations of Space-based Interferometers. Astrophysical Journal, 2023, 943, 72.	1.6	2

#	Article	IF	CITATIONS
1089	Varying fundamental constants and dark energy in the ESPRESSO era. , 2023, , .		0
1090	When Spectral Modeling Meets Convolutional Networks: A Method for Discovering Reionization-era Lensed Quasars in Multiband Imaging Data. Astrophysical Journal, 2023, 943, 150.	1.6	1
1091	A Comprehensive Study of Galaxies at z â^¼ 9–16 Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre-reionization Epoch. Astrophysical Journal, Supplement Series, 2023, 265, 5.	3.0	131
1092	Eddington accreting black holes in the epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2023, 520, 740-749.	1.6	4
1093	From dark matter halos to pre-stellar cores: high resolution follow-up of cosmological Lyman–Werner simulations. Monthly Notices of the Royal Astronomical Society, 2023, 520, 2081-2093.	1.6	2
1094	In Situ Star Formation in Accretion Disks and Explanation of Correlation between the Black Hole Mass and Metallicity in Active Galactic Nuclei. Astrophysical Journal, 2023, 944, 159.	1.6	9
1095	Modelling supermassive primordial stars with <scp>mesa</scp> . Monthly Notices of the Royal Astronomical Society, 2023, 521, 463-473.	1.6	7
1096	The cosmic timeline implied by the <i>JWST</i> high-redshift galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 2023, 521, L85-L89.	1.2	12
1097	ALMA confirmation of an obscured hyperluminous radio-loud AGN at <i>z</i> Â= 6.853 associated with a dusty starburst in the 1.5Âdeg2 COSMOS field. Monthly Notices of the Royal Astronomical Society, 2023, 520, 4609-4620.	1.6	16
1098	Where intermediate-mass black holes could hide in the Galactic Centre. Astronomy and Astrophysics, 2023, 672, A63.	2.1	12
1099	eROSITA Final Equatorial-Depth Survey (eFEDS). Astronomy and Astrophysics, 2023, 672, A171.	2.1	0
1100	Probing the rapid formation of black holes and their Galaxy hosts in QSOs. Monthly Notices of the Royal Astronomical Society, 2023, 521, 3058-3076.	1.6	0
1101	Direct-collapse black hole formation induced by internal radiation of host haloes. Monthly Notices of the Royal Astronomical Society, 2023, 521, 2845-2859.	1.6	1
1102	A New Hydrodynamic Spherical Accretion Exact Solution and Its Quasi-spherical Perturbations. Astrophysical Journal, 2023, 945, 76.	1.6	1
1103	Astrophysics with the Laser Interferometer Space Antenna. Living Reviews in Relativity, 2023, 26, .	8.2	107
1104	The need for obscured supermassive black hole growth to explain quasar proximity zones in the epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2023, 521, 3108-3126.	1.6	7
1105	Formation of supermassive stars in the first star clusters. Monthly Notices of the Royal Astronomical Society, 2023, 521, 3553-3569.	1.6	4
1106	Role of Magnetic Fields in the Formation of Direct Collapse Black Holes. Astrophysical Journal, 2023, 945, 137.	1.6	2

0

#	Article	IF	CITATIONS
1107	3D hydrodynamics simulations of core convection in supermassive main-sequence stars. Monthly Notices of the Royal Astronomical Society, 2023, 521, 4605-4613.	1.6	2
1108	Tidal disruption events and quasiâ€periodic eruptions. Astronomische Nachrichten, 2023, 344, .	0.6	1
1109	Polarimetry of the potential binary supermassive black hole system in J1430+2303. Astronomy and Astrophysics, 0, , .	2.1	0
1110	Adiabatically compressed wave dark matter halo and intermediate-mass-ratio inspirals. Physical Review D, 2023, 107, .	1.6	6
1111	Accurate Dust Temperature and Star Formation Rate in the Most Luminous z > 6 Quasar in the Hyperluminous Quasars at the Epoch of Reionization (HYPERION) Sample. Astrophysical Journal Letters, 2023, 946, L45.	3.0	6
1112	Modelling the cosmological Lyman–Werner background radiation field in the early Universe. Monthly Notices of the Royal Astronomical Society, 2023, 522, 330-349.	1.6	5
1113	The morphology of reionization in a dynamically clumpy universe. Monthly Notices of the Royal Astronomical Society, 2023, 522, 2047-2064.	1.6	1
1114	Horizon scale tests of quantum gravity using the event horizon telescope observations. International Journal of Modern Physics D, 2023, 32, .	0.9	2
1115	A Machine-learning Approach to Assessing the Presence of Substructure in Quasar-host Galaxies Using the Hyper Suprime-cam Subaru Strategic Program. Astrophysical Journal, 2023, 947, 30.	1.6	1
1116	The most massive Population III stars. Monthly Notices of the Royal Astronomical Society, 2023, 522, 3256-3262.	1.6	4
1117	Snowmass2021 Cosmic Frontier White Paper: Primordial black hole dark matter. Physics of the Dark Universe, 2023, 41, 101231.	1.8	6
1121	The Dawn of Black Holes. , 2023, , 1-61.		1

1179 The Dawn of Black Holes. , 2024, , 4617-4677.