Subthalamic nucleus stimulation reverses mediofronta threshold

Nature Neuroscience 14, 1462-1467 DOI: 10.1038/nn.2925

Citation Report

#	Article	IF	CITATIONS
1	Cortical electrophysiological network dynamics of feedback learning. Trends in Cognitive Sciences, 2011, 15, 558-566.	4.0	128
2	CNTRICS Imaging Biomarkers Final Task Selection: Long-Term Memory and Reinforcement Learning. Schizophrenia Bulletin, 2012, 38, 62-72.	2.3	21
3	Optimal decision making in neural inhibition models Psychological Review, 2012, 119, 201-215.	2.7	32
4	Reinforcement-Based Decision Making in Corticostriatal Circuits: Mutual Constraints by Neurocomputational and Diffusion Models. Neural Computation, 2012, 24, 1186-1229.	1.3	169
5	Changes in Neural Connectivity Underlie Decision Threshold Modulation for Reward Maximization. Journal of Neuroscience, 2012, 32, 14942-14950.	1.7	25
6	Evidence of Human Subthalamic Nucleus Involvement in Decision Making. Journal of Neuroscience, 2012, 32, 8753-8755.	1.7	3
7	Neuronal Activity in the Human Subthalamic Nucleus Encodes Decision Conflict during Action Selection. Journal of Neuroscience, 2012, 32, 2453-2460.	1.7	99
8	A Role for the Subthalamic Nucleus in Response Inhibition during Conflict. Journal of Neuroscience, 2012, 32, 13396-13401.	1.7	137
9	How Preparation Changes the Need for Top-Down Control of the Basal Ganglia When Inhibiting Premature Actions. Journal of Neuroscience, 2012, 32, 10870-10878.	1.7	121
10	An electrophysiological signal that precisely tracks the emergence of error awareness. Frontiers in Human Neuroscience, 2012, 6, 65.	1.0	68
11	Neurophysiology of Deep Brain Stimulation. International Review of Neurobiology, 2012, 107, 23-55.	0.9	37
12	Distinct roles of dopamine and subthalamic nucleus in learning and probabilistic decision making. Brain, 2012, 135, 3721-3734.	3.7	73
13	Linguistic Testing During ON/OFF States of Electrical Stimulation in the Associative Portion of the Subthalamic Nucleus. Neuromodulation, 2012, 15, 238-245.	0.4	7
14	What event-related potentials (ERPs) bring to social neuroscience?. Social Neuroscience, 2012, 7, 632-649.	0.7	90
15	Current advances and pressing problems in studies of stopping. Current Opinion in Neurobiology, 2012, 22, 1012-1021.	2.0	82
16	Impulsivities and Parkinson's Disease: Delay Aversion Is Not Worsened by Deep Brain Stimulation of the Subthalamic Nucleus. PLoS ONE, 2012, 7, e43261.	1.1	13
17	Building Bridges between Perceptual and Economic Decision-Making: Neural and Computational Mechanisms. Frontiers in Neuroscience, 2012, 6, 70.	1.4	129
18	Beta Reactivity, Prospective Facilitation of Executive Processing, and Its Dependence on Dopaminergic Therapy in Parkinson's Disease. Journal of Neuroscience, 2012, 32, 9909-9916.	1.7	54

#	Article	IF	CITATIONS
19	Theta lingua franca: A common midâ€frontal substrate for action monitoring processes. Psychophysiology, 2012, 49, 220-238.	1.2	521
20	Treatment of motor and non-motor features of Parkinson's disease with deep brain stimulation. Lancet Neurology, The, 2012, 11, 429-442.	4.9	343
21	The role of the subthalamic nucleus in cognition. Reviews in the Neurosciences, 2013, 24, 125-38.	1.4	42
22	Canceling actions involves a race between basal ganglia pathways. Nature Neuroscience, 2013, 16, 1118-1124.	7.1	351
23	Risky choices link the subthalamic nucleus with pathological gambling in Parkinson's disease. Movement Disorders, 2013, 28, 1617-1619.	2.2	4
24	Reduction of Influence of Task Difficulty on Perceptual Decision Making by STN Deep Brain Stimulation. Current Biology, 2013, 23, 1681-1684.	1.8	66
25	The Expected Value of Control: An Integrative Theory of Anterior Cingulate Cortex Function. Neuron, 2013, 79, 217-240.	3.8	1,585
26	The Basal Ganglia's Contributions to Perceptual Decision Making. Neuron, 2013, 79, 640-649.	3.8	149
27	A computational model of inhibitory control in frontal cortex and basal ganglia Psychological Review, 2013, 120, 329-355.	2.7	324
28	Common medial frontal mechanisms of adaptive control in humans and rodents. Nature Neuroscience, 2013, 16, 1888-1895.	7.1	260
29	Oh, rats! Post-error behavioral adjustment in creatures great and small. Nature Neuroscience, 2013, 16, 1715-1716.	7.1	4
30	Subthalamic stimulation modulates self-estimation of patients with Parkinson's disease and induces risk-seeking behaviour. Brain, 2013, 136, 3271-3281.	3.7	30
31	Frontal midline theta and <scp>N</scp> 200 amplitude reflect complementary information about expectancy and outcome evaluation. Psychophysiology, 2013, 50, 550-562.	1.2	119
32	Deep Brain Stimulation of the Subthalamic Nucleus, but not Dopaminergic Medication, Improves Proactive Inhibitory Control of Movement Initiation in Parkinson's Disease. Neurotherapeutics, 2013, 10, 154-167.	2.1	38
33	Synchronization of Medial Temporal Lobe and Prefrontal Rhythms in Human Decision Making. Journal of Neuroscience, 2013, 33, 442-451.	1.7	82
34	Frontal theta is a signature of successful working memory manipulation. Experimental Brain Research, 2013, 224, 255-262.	0.7	144
35	Stop! Stay tuned for more information. Experimental Neurology, 2013, 247, 289-291.	2.0	13
36	Stimulation of contacts in ventral but not dorsal subthalamic nucleus normalizes response switching in Parkinson's disease. Neuropsychologia, 2013, 51, 1302-1309.	0.7	32

#	Article	IF	CITATIONS
37	The Organization of Prefrontal-Subthalamic Inputs in Primates Provides an Anatomical Substrate for Both Functional Specificity and Integration: Implications for Basal Ganglia Models and Deep Brain Stimulation. Journal of Neuroscience, 2013, 33, 4804-4814.	1.7	441
38	The subthalamic nucleus is involved in successful inhibition in the stop-signal task: A local field potential study in Parkinson's disease. Experimental Neurology, 2013, 239, 1-12.	2.0	143
39	Bilateral stimulation of the subthalamic nucleus has differential effects on reactive and proactive inhibition and conflict-induced slowing in Parkinson's disease. Experimental Brain Research, 2013, 226, 451-462.	0.7	67
40	Frontal Theta Overrides Pavlovian Learning Biases. Journal of Neuroscience, 2013, 33, 8541-8548.	1.7	168
41	Subthalamic nucleus: A key structure for emotional component synchronization in humans. Neuroscience and Biobehavioral Reviews, 2013, 37, 358-373.	2.9	142
42	Oscillatory activity in the human basal ganglia: More than just beta, more than just Parkinson's disease. Experimental Neurology, 2013, 248, 183-186.	2.0	12
43	The neural oscillations of conflict adaptation in the human frontal region. Biological Psychology, 2013, 93, 364-372.	1.1	53
44	Pathological gambling in Parkinson's disease: Subthalamic oscillations during economics decisions. Movement Disorders, 2013, 28, 1644-1652.	2.2	51
46	Cognitive control over learning: Creating, clustering, and generalizing task-set structure Psychological Review, 2013, 120, 190-229.	2.7	331
47	Inhibiting Subthalamic D ₅ Receptor Constitutive Activity Alleviates Abnormal Electrical Activity and Reverses Motor Impairment in a Rat Model of Parkinson's Disease. Journal of Neuroscience, 2013, 33, 14840-14849.	1.7	23
48	Ultra-High 7T MRI of Structural Age-Related Changes of the Subthalamic Nucleus. Journal of Neuroscience, 2013, 33, 4896-4900.	1.7	116
49	Processing of emotional information in the human subthalamic nucleus. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 1331-1339.	0.9	32
50	Affective disorders in Parkinson's disease. Current Opinion in Neurology, 2013, 26, 339-344.	1.8	9
51	Subthalamic Nucleus Local Field Potential Activity during the Eriksen Flanker Task Reveals a Novel Role for Theta Phase during Conflict Monitoring. Journal of Neuroscience, 2013, 33, 14758-14766.	1.7	99
52	Dopamine Agonists Rather than Deep Brain Stimulation Cause Reflection Impulsivity in Parkinson's Disease. Journal of Parkinson's Disease, 2013, 3, 139-144.	1.5	39
53	HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python. Frontiers in Neuroinformatics, 2013, 7, 14.	1.3	627
54	Predeliberation activity in prefrontal cortex and striatum and the prediction of subsequent value judgment. Frontiers in Neuroscience, 2013, 7, 225.	1.4	17
55	The role of frontostriatal impairment in freezing of gait in Parkinson's disease. Frontiers in Systems Neuroscience, 2013, 7, 61.	1.2	77

#	Article	IF	Citations
56	Effects of deep brain stimulation of the subthalamic nucleus on inhibitory and executive control over prepotent responses in Parkinson's disease. Frontiers in Systems Neuroscience, 2013, 7, 118.	1.2	73
57	Computational models of basal-ganglia pathway functions: focus on functional neuroanatomy. Frontiers in Systems Neuroscience, 2013, 7, 122.	1.2	108
58	Brain networks of perceptual decision-making: an fMRI ALE meta-analysis. Frontiers in Human Neuroscience, 2014, 8, 445.	1.0	42
59	In a Rush to Decide: Deep Brain Stimulation and Dopamine Agonist Therapy in Parkinson's Disease. Journal of Parkinson's Disease, 2014, 4, 579-583.	1.5	9
60	The subthalamic nucleus and inhibitory control: impact of subthalamotomy in Parkinson's disease. Brain, 2014, 137, 1470-1480.	3.7	86
61	Stimulating the Self and Conceptual Frameworks: Brain Matters, and World-Views Are Deeply Rooted. AJOB Neuroscience, 2014, 5, 44-46.	0.6	Ο
62	Motivational Tuning of Fronto-Subthalamic Connectivity Facilitates Control of Action Impulses. Journal of Neuroscience, 2014, 34, 3210-3217.	1.7	66
63	Pupil-Linked Arousal Determines Variability in Perceptual Decision Making. PLoS Computational Biology, 2014, 10, e1003854.	1.5	122
64	Eye tracking and pupillometry are indicators of dissociable latent decision processes Journal of Experimental Psychology: General, 2014, 143, 1476-1488.	1.5	204
65	Ventral Striatum and the Evaluation of Memory Retrieval Strategies. Journal of Cognitive Neuroscience, 2014, 26, 1928-1948.	1.1	19
66	Could deep brain stimulation help with driving for patients with Parkinson's?. Expert Review of Medical Devices, 2014, 11, 427-429.	1.4	7
67	Neural bases of individual variation in decision time. Human Brain Mapping, 2014, 35, 2531-2542.	1.9	29
68	What's Holding Your Horses. Neurosurgery, 2014, 75, N13-N14.	0.6	0
69	Stimulating Good Practice: What an EEC Approach Could Actually Mean for DBS Practice. AJOB Neuroscience, 2014, 5, 46-48.	0.6	5
70	Effect of subthalamic nucleus deep brain stimulation on driving in Parkinson disease. Neurology, 2014, 82, 32-40.	1.5	19
71	Midline Frontal Cortex Low-Frequency Activity Drives Subthalamic Nucleus Oscillations during Conflict. Journal of Neuroscience, 2014, 34, 7322-7333.	1.7	133
72	Oscillatory subthalamic nucleus activity is modulated by dopamine during emotional processing in Parkinson's disease. Cortex, 2014, 60, 69-81.	1.1	38
73	Cortico-subthalamic connection predicts individual differences in value-driven choice bias. Brain Structure and Function, 2014, 219, 1239-1249.	1.2	16

#	Article	IF	CITATIONS
74	Genetic Overlap between Evoked Frontocentral Theta-Band Phase Variability, Reaction Time Variability, and Attention-Deficit/Hyperactivity Disorder Symptoms in a Twin Study. Biological Psychiatry, 2014, 75, 238-247.	0.7	89
75	Resting state functional MRI in Parkinson's disease: the impact of deep brain stimulation on â€~effective' connectivity. Brain, 2014, 137, 1130-1144.	3.7	196
76	Mood and behavioural effects of subthalamic stimulation in Parkinson's disease. Lancet Neurology, The, 2014, 13, 287-305.	4.9	259
77	Differential, but not opponent, effects of l-DOPA and citalopram on action learning with reward and punishment. Psychopharmacology, 2014, 231, 955-966.	1.5	89
78	Levodopa reinstates connectivity from prefrontal to premotor cortex during externally paced movement in Parkinson's disease. NeuroImage, 2014, 90, 15-23.	2.1	51
79	Neural Mechanisms for Perceptual Decision Making. , 2014, , 355-372.		8
80	Piéron's Law is not just an artifact of the response mechanism. Journal of Mathematical Psychology, 2014, 62-63, 22-32.	1.0	21
81	The Temporal Dynamics of Evidence Accumulation in the Brain. Journal of Neuroscience, 2014, 34, 13870-13871.	1.7	1
82	Inhibitory motor control based on complex stopping goals relies on the same brain network as simple stopping. NeuroImage, 2014, 103, 225-234.	2.1	41
83	Deep Brain Stimulation Abolishes Slowing of Reactions to Unlikely Stimuli. Journal of Neuroscience, 2014, 34, 10844-10852.	1.7	22
84	A novel method for removal of deep brain stimulation artifact from electroencephalography. Journal of Neuroscience Methods, 2014, 237, 33-40.	1.3	40
85	The Subthalamic Nucleus Contributes to Post-error Slowing. Journal of Cognitive Neuroscience, 2014, 26, 2637-2644.	1.1	46
86	Neurophysiology of Performance Monitoring and Adaptive Behavior. Physiological Reviews, 2014, 94, 35-79.	13.1	484
87	Closed-loop cortical neuromodulation in Parkinson's disease: An alternative to deep brain stimulation?. Clinical Neurophysiology, 2014, 125, 874-885.	0.7	91
88	Abnormal patterns of theta frequency oscillations during the temporal evolution of freezing of gait in Parkinson's disease. Clinical Neurophysiology, 2014, 125, 569-576.	0.7	95
89	Action versus valence in decision making. Trends in Cognitive Sciences, 2014, 18, 194-202.	4.0	223
90	Decision-making under risk is improved by both dopaminergic medication and subthalamic stimulation in Parkinson's disease. Experimental Neurology, 2014, 254, 70-77.	2.0	37
91	Error signals in the subthalamic nucleus are related to post-error slowing in patients with Parkinson's disease. Cortex, 2014, 60, 103-120.	1.1	42

		CITATION REPORT		
#	Article		IF	CITATIONS
92	Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 2014	, 18, 414-421.	4.0	1,661
93	An Update of the Impact of Deep Brain Stimulation on Non Motor Symptoms in Parkins Journal of Parkinson's Disease, 2014, 4, 289-300.	son's Disease.	1.5	29
94	Oscillations and the basal ganglia: Motor control and beyond. NeuroImage, 2014, 85, 6	37-647.	2.1	298
95	The subthalamic nucleus during decisionâ€making with multiple alternatives. Human B 2015, 36, 4041-4052.	rain Mapping,	1.9	31
96	Modulation of neuronal activity by reward identity in the monkey subthalamic nucleus. Journal of Neuroscience, 2015, 42, 1705-1717.	European	1.2	23
97	Load-Dependent Interference of Deep Brain Stimulation of the Subthalamic Nucleus wit from Automatic to Controlled Processing During Random Number Generation in Parkin Journal of Parkinson's Disease, 2015, 5, 321-331.		1.5	9
98	A perspective on neural and cognitive mechanisms of error commission. Frontiers in Be Neuroscience, 2015, 9, 50.	havioral	1.0	31
99	I Plan Therefore I Choose: Free-Choice Bias Due to Prior Action-Probability but Not Actic Frontiers in Behavioral Neuroscience, 2015, 9, 315.	on-Value.	1.0	4
101	The Subcortical Cocktail Problem; Mixed Signals from the Subthalamic Nucleus and Sub PLoS ONE, 2015, 10, e0120572.	ostantia Nigra.	1.1	46
102	A Biologically Inspired Computational Model of Basal Ganglia in Action Selection. Comp Intelligence and Neuroscience, 2015, 2015, 1-24.	outational	1.1	27
103	Value-based attentional capture influences context-dependent decision-making. Journa Neurophysiology, 2015, 114, 560-569.	l of	0.9	59
104	Dissociated stimulus and response conflict effect in the Stroop task: Evidence from ever potentials and brain oscillations. Biological Psychology, 2015, 104, 130-138.	oked brain	1.1	26
105	Content-specific evidence accumulation in inferior temporal cortex during perceptual decision-making. NeuroImage, 2015, 109, 35-49.		2.1	27
106	The subthalamic nucleus, oscillations, and conflict. Movement Disorders, 2015, 30, 328	3-338.	2.2	85
107	The modulatory role of subthalamic nucleus in cognitive functions – A viewpoint. Clir Neurophysiology, 2015, 126, 653-658.	nical	0.7	22
108	fMRI and EEG Predictors of Dynamic Decision Parameters during Human Reinforcement Journal of Neuroscience, 2015, 35, 485-494.	t Learning.	1.7	200
109	Ethical safety of deep brain stimulation: A study on moral decision-making in Parkinson Parkinsonism and Related Disorders, 2015, 21, 709-716.	's disease.	1.1	12
110	Unreliable Evidence: 2 Sources of Uncertainty During Perceptual Choice. Cerebral Corte 937-947.	ex, 2015, 25,	1.6	28

		CITATION RE	IPORT	
#	Article		IF	CITATIONS
111	Single trial beta oscillations index time estimation. Neuropsychologia, 2015, 75, 381-38	9.	0.7	92
112	Visual Information Shapes the Dynamics of Corticobasal Ganglia Pathways during Respondent and Inhibition. Journal of Cognitive Neuroscience, 2015, 27, 1344-1359.	bnse Selection	1.1	26
113	Informing cognitive abstractions through neuroimaging: The neural drift diffusion mode Psychological Review, 2015, 122, 312-336.	ł	2.7	127
114	Subthalamic involvement in monetary reward and its dysfunction in parkinsonian gamb of Neurology, Neurosurgery and Psychiatry, 2015, 86, 355-358.	lers. Journal	0.9	12
115	Modeling visual search using three-parameter probability functions in a hierarchical Bay framework. Attention, Perception, and Psychophysics, 2015, 77, 985-1010.	esian	0.7	2
117	In Parkinson's disease pallidal deep brain stimulation speeds up response initiation on reactive inhibition. Journal of Neurology, 2015, 262, 1741-1750.	out has no effect	1.8	11
118	Role of the Indirect Pathway of the Basal Ganglia in Perceptual Decision Making. Journa Neuroscience, 2015, 35, 4052-4064.	of	1.7	72
120	Toward a model-based cognitive neuroscience of mind wandering. Neuroscience, 2015,	310, 290-305.	1.1	23
121	Distinct dynamics of ramping activity in the frontal cortex and caudate nucleus in monk of Neurophysiology, 2015, 114, 1850-1861.	eys. Journal	0.9	24
122	An insula-frontostriatal network mediates flexible cognitive control by adaptively predic changing control demands. Nature Communications, 2015, 6, 8165.	ting	5.8	114
123	A fronto–striato–subthalamic–pallidal network for goal-directed and habitual inh Reviews Neuroscience, 2015, 16, 719-732.	ibition. Nature	4.9	427
124	Human Subthalamic Nucleus Theta and Beta Oscillations Entrain Neuronal Firing During Sensorimotor Conflict. Cerebral Cortex, 2017, 27, bhv244.		1.6	41
125	Temporally Dissociable Contributions of Human Medial Prefrontal Subregions to Reward Learning. Journal of Neuroscience, 2015, 35, 11209-11220.	d-Guided	1.7	45
126	Network effects of deep brain stimulation. Journal of Neurophysiology, 2015, 114, 210	5-2117.	0.9	58
127	Model-Based Cognitive Neuroscience Approaches to Computational Psychiatry. Clinical Science, 2015, 3, 378-399.	Psychological	2.4	127
128	Deep Brain Stimulation for Treatment-Refractory Mood and Obsessive-Compulsive Diso Behavioral Neuroscience Reports, 2015, 2, 187-197.	rders. Current	0.6	24
129	Parkinson's <scp>D</scp> isease, the <scp>S</scp> ubthalamic <scp>N</scp> ucleus, <scp>I</scp> nhibition, and <scp>I</scp> mpulsivity. Movement Disorders, 2015, 30, 12	8-140.	2.2	147
130	Lead-DBS: A toolbox for deep brain stimulation electrode localizations and visualization Neurolmage, 2015, 107, 127-135.	S.	2.1	488

#	Article	IF	CITATIONS
131	How cognitive theory guides neuroscience. Cognition, 2015, 135, 14-20.	1.1	32
132	Beyond trial types. Psychological Research, 2015, 79, 425-431.	1.0	0
133	Bridging the Gap between Perception and Cognition. , 2016, , 135-149.		1
134	Improving Out-of-Sample Predictions Using Response Times and a Model of the Decision Process. SSRN Electronic Journal, 2016, , .	0.4	4
135	Response Times in Economics: Looking Through the Lens of Sequential Sampling Models. SSRN Electronic Journal, 2016, , .	0.4	11
136	A Mathematical Model of Levodopa Medication Effect on Basal Ganglia in Parkinson's Disease: An Application to the Alternate Finger Tapping Task. Frontiers in Human Neuroscience, 2016, 10, 280.	1.0	20
137	Believer-Skeptic Meets Actor-Critic: Rethinking the Role of Basal Ganglia Pathways during Decision-Making and Reinforcement Learning. Frontiers in Neuroscience, 2016, 10, 106.	1.4	34
138	The Striatum and Subthalamic Nucleus as Independent and Collaborative Structures in Motor Control. Frontiers in Systems Neuroscience, 2016, 10, 17.	1.2	35
139	Eye movements and deep brain stimulation. Current Opinion in Neurology, 2016, 29, 69-73.	1.8	12
140	Abnormal white matter structural networks characterize heroin-dependent individuals: a network analysis. Addiction Biology, 2016, 21, 667-678.	1.4	26
141	No Effect of Subthalamic Deep Brain Stimulation on Intertemporal Decision-Making in Parkinson Patients. ENeuro, 2016, 3, ENEURO.0019-16.2016.	0.9	9
142	Management of impulse control disorders in Parkinson's disease. International Psychogeriatrics, 2016, 28, 1597-1614.	0.6	16
143	Reach tracking reveals dissociable processes underlying cognitive control. Cognition, 2016, 152, 114-126.	1.1	48
144	Dissociable Effects of Dopamine on the Initial Capture and the Reactive Inhibition of Impulsive Actions in Parkinson's Disease. Journal of Cognitive Neuroscience, 2016, 28, 710-723.	1.1	37
145	Subthalamic nucleus deep brain stimulation induces impulsive action when patients with Parkinson's disease act under speed pressure. Experimental Brain Research, 2016, 234, 1837-1848.	0.7	35
146	The human subthalamic nucleus encodes the subjective value of reward and the cost of effort during decision-making. Brain, 2016, 139, 1830-1843.	3.7	57
147	Dorsal anterior cingulate and ventromedial prefrontal cortex have inverse roles in both foraging and economic choice. Cognitive, Affective and Behavioral Neuroscience, 2016, 16, 1127-1139.	1.0	53
148	Modelling ADHD: A review of ADHD theories through their predictions for computational models of decision-making and reinforcement learning. Neuroscience and Biobehavioral Reviews, 2016, 71, 633-656.	2.9	86

#	Article	IF	CITATIONS
149	Neural and neurochemical basis of reinforcement-guided decision making. Journal of Neurophysiology, 2016, 116, 724-741.	0.9	21
150	Brain networks modulated by subthalamic nucleus deep brain stimulation. Brain, 2016, 139, 2503-2515.	3.7	119
151	Inhibitory Control in the Cortico-Basal Ganglia-Thalamocortical Loop: Complex Regulation and Interplay with Memory and Decision Processes. Neuron, 2016, 92, 1093-1105.	3.8	62
152	Deep brain stimulation of the subthalamic nucleus in obsessive-compulsive disorder: Neuroanatomical and pathophysiological considerations. European Neuropsychopharmacology, 2016, 26, 1909-1919.	0.3	30
153	Intralaminar and tectal projections to the subthalamus in the rat. European Journal of Neuroscience, 2016, 44, 2899-2908.	1.2	21
154	Frontosubthalamic Circuits for Control of Action and Cognition. Journal of Neuroscience, 2016, 36, 11489-11495.	1.7	198
155	Modulation of motor inhibition by subthalamic stimulation in obsessive-compulsive disorder. Translational Psychiatry, 2016, 6, e922-e922.	2.4	9
156	Deep brain stimulation of the subthalamic nucleus modulates sensitivity to decision outcome value in Parkinson's disease. Scientific Reports, 2016, 6, 32509.	1.6	17
157	Of monkeys and men: Impatience in perceptual decision-making. Psychonomic Bulletin and Review, 2016, 23, 738-749.	1.4	22
158	Patients with Parkinson's Disease Show Impaired Use of Priors in Conditions of Sensory Uncertainty. Current Biology, 2016, 26, 1902-1910.	1.8	43
159	Human subthalamic nucleus–medial frontal cortex theta phase coherence is involved in conflict and error related cortical monitoring. NeuroImage, 2016, 137, 178-187.	2.1	66
160	Different decision deficits impair response inhibition in progressive supranuclear palsy and Parkinson's disease. Brain, 2016, 139, 161-173.	3.7	88
161	Charting the landscape of priority problems in psychiatry, part 1: classification and diagnosis. Lancet Psychiatry,the, 2016, 3, 77-83.	3.7	143
162	Neural Correlates of Decision Thresholds in the Human Subthalamic Nucleus. Current Biology, 2016, 26, 916-920.	1.8	127
163	Neural underpinnings of the evidence accumulator. Current Opinion in Neurobiology, 2016, 37, 149-157.	2.0	155
164	Computational psychiatry as a bridge from neuroscience to clinical applications. Nature Neuroscience, 2016, 19, 404-413.	7.1	708
165	Different Ways of Linking Behavioral and Neural Data via Computational Cognitive Models. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2016, 1, 101-109.	1.1	22
166	In Parkinson's disease on a probabilistic Go/NoGo task deep brain stimulation of the subthalamic nucleus only interferes with withholding of the most prepotent responses. Experimental Brain Research, 2016, 234, 1133-1143.	0.7	34

ARTICLE IF CITATIONS Decisions Made with Less Evidence Involve Higher Levels of Corticosubthalamic Nucleus Theta Band 1.1 18 167 Synchrony. Journal of Cognitive Neuroscience, 2016, 28, 811-825. Sequential Sampling Models in Cognitive Neuroscience: Advantages, Applications, and Extensions. 391 Annual Review of Psychology, 2016, 67, 641-666. Approaches to analysis in model-based cognitive neuroscience. Journal of Mathematical Psychology, 169 1.0 128 2017, 76, 65-79. Variability in behavior that cognitive models do not explain can be linked to neuroimaging data. 170 Journal of Mathematical Psychology, 2017, 76, 104-116. Effects of binge drinking and hangover on response selection sub-processes-a study using EEG and 171 19 1.4 drift diffusion modeling. Addiction Biology, 2017, 22, 1355-1365. The Neuro-Computational Architecture of Value-Based Selection in the Human Brain. Cerebral Cortex, 2018, 28, 585-601. 1.6 Distinct cortico-striatal connections with subthalamic nucleus underlie facets of compulsivity. 173 1.1 30 Cortex, 2017, 88, 143-150. Decisional impulsivity and the associative-limbic subthalamic nucleus in obsessive-compulsive 174 3.7 60 disorder: stimulation and connectivity. Brain, 2017, 140, 442-456. 175 Responsibility and vigilance. Philosophical Studies, 2017, 174, 507-527. 0.5 31 Disentangling the mechanisms of cognitive changes after STNâ€DBS: A step forward. Movement 2.2 Disorders, 2017, 32, 366-367. Conceptualizing and investigating the contextual variability of stuttering: The speech and monitoring 178 0.6 16 interaction (SAMI) framework. Speech, Language and Hearing, 2017, 20, 15-28. Impulse control disorders and levodopa-induced dyskinesias in Parkinson's disease: an update. Lancet 179 280 Neurology, The, 2017, 16, 238-250. Bi-directional audiovisual influences on temporal modulation discrimination. Journal of the 180 0.5 5 Acoustical Society of America, 2017, 141, 2474-2488. Cognitive control in action: Tracking the dynamics of rule switching in 5- to 8-year-olds and adults. 1.1 Cognition, 2017, 164, 163-173. Antiarrhythmics cure brain arrhythmia: The imperativeness of subthalamic ERG K ⁺ 182 10 4.7 channels in parkinsonian discharges. Science Advances, 2017, 3, e1602272. Visual Hallucinations Are Characterized by Impaired Sensory Evidence Accumulation: Insights From Hierarchical Drift Diffusion Modeling in Parkinson's Disease. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2017, 2, 680-688. Toward a Rational and Mechanistic Account of Mental Effort. Annual Review of Neuroscience, 2017, 184 590 5.040, 99-124. Physiological Markers of Motor Inhibition during Human Behavior. Trends in Neurosciences, 2017, 40, 4.2 219-236.

#	Article	IF	CITATIONS
187	Effects of deep brain stimulation of the subthalamic nucleus on perceptual decision making. Neuroscience, 2017, 343, 140-146.	1.1	5
188	The drift diffusion model as the choice rule in reinforcement learning. Psychonomic Bulletin and Review, 2017, 24, 1234-1251.	1.4	186
189	Towards a mechanistic understanding of the human subcortex. Nature Reviews Neuroscience, 2017, 18, 57-65.	4.9	78
190	Subthalamic nucleus stimulation impairs emotional conflict adaptation in Parkinson's disease. Social Cognitive and Affective Neuroscience, 2017, 12, 1594-1604.	1.5	9
191	Metacognitive impairments extend perceptual decision making weaknesses in compulsivity. Scientific Reports, 2017, 7, 6614.	1.6	60
192	What Have We Learned About Movement Disorders from Functional Neurosurgery?. Annual Review of Neuroscience, 2017, 40, 453-477.	5.0	21
193	Slow Oscillation in Prefrontal Cortex Underlying Local Computations and Large-Scale Interactions. Springer Series in Cognitive and Neural Systems, 2017, , 233-245.	0.1	0
194	Lesions to the left lateral prefrontal cortex impair decision threshold adjustment for lexical selection. Cognitive Neuropsychology, 2017, 34, 1-20.	0.4	30
195	On the efficiency of neurally-informed cognitive models to identify latent cognitive states. Journal of Mathematical Psychology, 2017, 76, 142-155.	1.0	20
196	The rhythm of the executive gate of speech: subthalamic lowâ€frequency oscillations increase during verbal generation. European Journal of Neuroscience, 2017, 45, 1200-1211.	1.2	24
197	Increased decision thresholds trigger extended information gathering across the compulsivity spectrum. Translational Psychiatry, 2017, 7, 1296.	2.4	41
200	Imaging Genetics in Humans. , 2017, , 361-369.		0
201	Loss Aversion Reflects Information Accumulation, Not Bias: A Drift-Diffusion Model Study. Frontiers in Psychology, 2017, 8, 1708.	1.1	18
202	Local Fields in Human Subthalamic Nucleus Track the Lead-up to Impulsive Choices. Frontiers in Neuroscience, 2017, 11, 646.	1.4	11
203	Human subthalamic nucleus activity during non-motor decision making. ELife, 2017, 6, .	2.8	34
204	Increased decision thresholds enhance information gathering performance in juvenile Obsessive-Compulsive Disorder (OCD). PLoS Computational Biology, 2017, 13, e1005440.	1.5	54
205	Distinct mechanisms mediate speed-accuracy adjustments in cortico-subthalamic networks. ELife, 2017, 6, .	2.8	71
206	The Subthalamic Nucleus in Impulsivity. , 2017, , 315-325.		2

#	Article	IF	CITATIONS
207	Persistence of Mania After Cessation of Stimulation Following Subthalamic Deep Brain Stimulation. Journal of Neuropsychiatry and Clinical Neurosciences, 2018, 30, 246-249.	0.9	13
208	Beyond the FRN: Broadening the time-course of EEG and ERP components implicated in reward processing. International Journal of Psychophysiology, 2018, 132, 184-202.	0.5	207
209	Deep Brain Stimulation of the Subthalamic Nucleus Does Not Affect the Decrease of Decision Threshold during the Choice Process When There Is No Conflict, Time Pressure, or Reward. Journal of Cognitive Neuroscience, 2018, 30, 876-884.	1.1	7
210	Caregiver burden and caregiver appraisal of psychiatric symptoms are not modulated by subthalamic deep brain stimulation for Parkinson's disease. Npj Parkinson's Disease, 2018, 4, 12.	2.5	27
211	Mechanisms Underlying Decision-Making as Revealed by Deep-Brain Stimulation in Patients with Parkinson's Disease. Current Biology, 2018, 28, 1169-1178.e6.	1.8	66
212	A tutorial on joint models of neural and behavioral measures of cognition. Journal of Mathematical Psychology, 2018, 84, 20-48.	1.0	43
213	Improving out-of-sample predictions using response times and a model of the decision process. Journal of Economic Behavior and Organization, 2018, 148, 344-375.	1.0	66
214	Dopamine and proximity in motivation and cognitive control. Current Opinion in Behavioral Sciences, 2018, 22, 28-34.	2.0	39
215	Subthalamic stimulation, oscillatory activity and connectivity reveal functional role of STN and network mechanisms during decision making under conflict. NeuroImage, 2018, 171, 222-233.	2.1	22
216	A Role for the Superior Colliculus in Decision Criteria. Neuron, 2018, 97, 181-194.e6.	3.8	81
217	A human prefrontal-subthalamic circuit for cognitive control. Brain, 2018, 141, 205-216.	3.7	100
218	Computational Neuroscience Models of the Basal Ganglia. Cognitive Science and Technology, 2018, , .	0.2	12
219	Correlation of neural activity with behavioral kinematics reveals distinct sensory encoding and evidence accumulation processes during active tactile sensing. NeuroImage, 2018, 175, 12-21.	2.1	19
220	The site of stimulation moderates neuropsychiatric symptoms after subthalamic deep brain stimulation for Parkinson's disease. NeuroImage: Clinical, 2018, 18, 996-1006.	1.4	55
221	Improved information pooling for hierarchical cognitive models through multiple and covaried regression. Behavior Research Methods, 2018, 50, 989-1010.	2.3	5
222	Midfrontal theta and pupil dilation parametrically track subjective conflict (but also surprise) during intertemporal choice. NeuroImage, 2018, 172, 838-852.	2.1	48
223	An adaptive orienting theory of error processing. Psychophysiology, 2018, 55, e13041.	1.2	127
224	Complex Dynamics in the Basal Ganglia: Health and Disease Beyond the Motor System. Journal of Neuropsychiatry and Clinical Neurosciences, 2018, 30, 101-114.	0.9	17

ARTICLE IF CITATIONS # Impaired glutamatergic projection from the motor cortex to the subthalamic nucleus in 225 2.0 29 6-hydroxydopamine-lesioned hemi-parkinsonian rats. Experimental Neurology, 2018, 300, 135-148. Altered oscillatory brain dynamics of emotional processing in young binge drinkers. Cognitive, 1.0 Affective and Behavioral Neuroscience, 2018, 18, 43-57. Reach tracking reveals dissociable processes underlying inhibitory control in 5―to 10â€yearâ€olds and 227 1.3 26 adults. Developmental Science, 2018, 21, e12523. Cognitive control involves theta power within trials and beta power across trials in the prefrontal-subthalamic network. Brain, 2018, 141, 3361-3376. Frontal network dynamics reflect neurocomputational mechanisms for reducing maladaptive biases 230 2.6 35 in motivated action. PLoS Biology, 2018, 16, e2005979. Scene complexity modulates degree of feedback activity during object detection in natural scenes. PLoS Computational Biology, 2018, 14, e1006690. 1.5 How pupil responses track value-based decision-making during and after reinforcement learning. PLoS 232 1.5 55 Computational Biology, 2018, 14, e1006632. Response times in economics: Looking through the lens of sequential sampling models. Journal of 1.1 Economic Psychology, 2018, 69, 61-86. How the Level of Reward Awareness Changes the Computational and Electrophysiological Signatures 234 1.7 30 of Reinforcement Learning. Journal of Neuroscience, 2018, 38, 10338-10348. The Psychophysiology of Action: A Multidisciplinary Endeavor for Integrating Action and Cognition. 1.1 Frontiers in Psychology, 2018, 9, 1423. Eventâ€related deep brain stimulation of the subthalamic nucleus affects conflict processing. Annals of 236 2.8 23 Neurology, 2018, 84, 515-526. Expectations Do Not Alter Early Sensory Processing during Perceptual Decision-Making. Journal of Neuroscience, 2018, 38, 5632-5648. Mid-frontal theta activity is diminished during cognitive control in Parkinson's disease. 238 0.7 90 Neuropsychologia, 2018, 117, 113-122. Deconstructing the Gratton effect: Targeting dissociable trial sequence effects in children, pre-adolescents, and adults. Cognition, 2018, 179, 150-162. 1.1 Accounting for Taste: A Multi-Attribute Neurocomputational Model Explains the Neural Dynamics of 240 29 1.7 Choices for Self and Others. Journal of Neuroscience, 2018, 38, 7952-7968. Functional segregation of basal ganglia pathways in Parkinson's disease. Brain, 2018, 141, 2655-2669. 241 3.7 Deep Brain Stimulation of the Internal Globus Pallidus Improves Response Initiation and Proactive 242 1.1 9 Inhibition in Patients With Parkinson's Disease. Frontiers in Psychology, 2018, 9, 351. A 7-year observation of the effect of subthalamic deep brain stimulation on impulse control disorder 243 1.1 in patients with Parkinson's disease. Parkinsonism and Related Disorders, 2018, 56, 3-8.

#	Article	IF	CITATIONS
244	Effects of Deep Brain Stimulation on Eye Movements and Vestibular Function. Frontiers in Neurology, 2018, 9, 444.	1.1	13
245	Moving Beyond ERP Components: A Selective Review of Approaches to Integrate EEG and Behavior. Frontiers in Human Neuroscience, 2018, 12, 106.	1.0	61
246	Non-motor Characterization of the Basal Ganglia: Evidence From Human and Non-human Primate Electrophysiology. Frontiers in Neuroscience, 2018, 12, 385.	1.4	42
247	Electroencephalographic read-outs of the modulation of cortical network activity by deep brain stimulation. Bioelectronic Medicine, 2018, 4, 2.	1.0	9
248	The neuroanatomical and neurochemical basis of apathy and impulsivity in frontotemporal lobar degeneration. Current Opinion in Behavioral Sciences, 2018, 22, 14-20.	2.0	54
249	Paradoxical Decision-Making: A Framework for Understanding Cognition in Parkinson's Disease. Trends in Neurosciences, 2018, 41, 512-525.	4.2	22
250	Orthographic influence on spoken word identification: Behavioral and fMRI evidence. Neuropsychologia, 2018, 111, 103-111.	0.7	5
251	Removing deep brain stimulation artifacts from the electroencephalogram: Issues, recommendations and an open-source toolbox. Clinical Neurophysiology, 2018, 129, 2170-2185.	0.7	33
252	Striatal Microstimulation Induces Persistent and Repetitive Negative Decision-Making Predicted by Striatal Beta-Band Oscillation. Neuron, 2018, 99, 829-841.e6.	3.8	54
253	Cross-Task Contributions of Frontobasal Ganglia Circuitry in Response Inhibition and Conflict-Induced Slowing. Cerebral Cortex, 2019, 29, 1969-1983.	1.6	28
254	Tracking the Withinâ€Trial, Crossâ€Trial, and Developmental Dynamics of Cognitive Control: Evidence From the Simon Task. Child Development, 2019, 90, e831-e848.	1.7	19
255	Decoding task engagement from distributed network electrophysiology in humans. Journal of Neural Engineering, 2019, 16, 056015.	1.8	22
256	Altered Prefrontal Theta and Gamma Activity during an Emotional Face Processing Task in Parkinson Disease. Journal of Cognitive Neuroscience, 2019, 31, 1768-1776.	1.1	7
257	Evidence accumulation is biased by motivation: A computational account. PLoS Computational Biology, 2019, 15, e1007089.	1.5	27
258	New Onset On-Medication Freezing of Gait After STN-DBS in Parkinson's Disease. Frontiers in Neurology, 2019, 10, 659.	1.1	11
259	Subjective estimates of uncertainty during gambling and impulsivity after subthalamic deep brain stimulation for Parkinson's disease. Scientific Reports, 2019, 9, 14795.	1.6	15
260	Neuropsychiatric aspects of Parkinson disease psychopharmacology: Insights from circuit dynamics. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 165, 83-121.	1.0	12
261	Neither wrong nor right: Theta and delta power increase during performance monitoring under conditions of uncertainty. International Journal of Psychophysiology, 2019, 146, 225-239.	0.5	15

#	Article	IF	CITATIONS
262	Mid-Frontal Theta Modulates Response Inhibition and Decision Making Processes in Emotional Contexts. Brain Sciences, 2019, 9, 271.	1.1	13
263	Cost-benefit trade-offs in decision-making and learning. PLoS Computational Biology, 2019, 15, e1007326.	1.5	21
264	Unilateral Stimulation of Subthalamic Nucleus Does Not Affect Inhibitory Control. Frontiers in Neurology, 2018, 9, 1149.	1.1	34
265	Effects of subthalamic nucleus stimulation and levodopa on decisionâ€making in Parkinson's disease. Movement Disorders, 2019, 34, 377-385.	2.2	10
266	Advances in techniques for imposing reciprocity in brain-behavior relations. Neuroscience and Biobehavioral Reviews, 2019, 102, 327-336.	2.9	25
267	Modeling distracted performance. Cognitive Psychology, 2019, 112, 48-80.	0.9	21
268	Cognitive and White-Matter Compartment Models Reveal Selective Relations between Corticospinal Tract Microstructure and Simple Reaction Time. Journal of Neuroscience, 2019, 39, 5910-5921.	1.7	27
269	Dual-process theory, conflict processing, and delusional belief. Clinical Psychology Review, 2019, 72, 101748.	6.0	27
270	Enhanced Theta-Band Coherence Between Midfrontal and Posterior Parietal Areas Reflects Post-feedback Adjustments in the State of Outcome Uncertainty. Frontiers in Integrative Neuroscience, 2019, 13, 14.	1.0	11
271	Beyond Emotions: Oscillations of the Amygdala and Their Implications for Electrical Neuromodulation. Frontiers in Neuroscience, 2019, 13, 366.	1.4	14
272	Multi-factor analysis in language production: Sequential sampling models mimic and extend regression results. Cognitive Neuropsychology, 2019, 36, 234-264.	0.4	0
273	Subthalamic nucleus local field potentials recordings reveal subtle effects of promised reward during conflict resolution in Parkinson's disease. NeuroImage, 2019, 197, 232-242.	2.1	9
274	Deep Brain Stimulation of the Subthalamic Nucleus Induces Impulsive Responses to Bursts of Sensory Evidence. Frontiers in Neuroscience, 2019, 13, 270.	1.4	2
275	Neurobiological Mechanisms of Metacognitive Therapy – An Experimental Paradigm. Frontiers in Psychology, 2019, 10, 660.	1.1	7
276	Learning and forgetting using reinforced Bayesian change detection. PLoS Computational Biology, 2019, 15, e1006713.	1.5	16
277	The Case for Adaptive Neuromodulation to Treat Severe Intractable Mental Disorders. Frontiers in Neuroscience, 2019, 13, 152.	1.4	44
278	A hierarchical-drift diffusion model of the roles of hunger, caloric density and valence in food selection. Appetite, 2019, 138, 52-59.	1.8	5
279	When Conflict Cannot be Avoided: Relative Contributions of Early Selection and Frontal Executive Control in Mitigating Stroop Conflict. Cerebral Cortex, 2019, 29, 5037-5048.	1.6	11

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
280	Layers of latent effects in cognitive control: An EEG investigation. Acta Psychologica, 2019, 195, 1-11.	0.7	4
281	Associative priming and conflict differentially affect two processes underlying cognitive control: Evidence from reaching behavior. Psychonomic Bulletin and Review, 2019, 26, 1400-1410.	1.4	10
282	Deep brain stimulation of the internal capsule enhances human cognitive control and prefrontal cortex function. Nature Communications, 2019, 10, 1536.	5.8	97
283	Learning from the past and expecting the future in Parkinsonism: Dopaminergic influence on predictions about the timing of future events. Neuropsychologia, 2019, 127, 9-18.	0.7	13
284	Sleep Deprivation Selectively Upregulates an Amygdala–Hypothalamic Circuit Involved in Food Reward. Journal of Neuroscience, 2019, 39, 888-899.	1.7	46
285	Errors in Action Timing and Inhibition Facilitate Learning by Tuning Distinct Mechanisms in the Underlying Decision Process. Journal of Neuroscience, 2019, 39, 2251-2264.	1.7	11
286	Polymorphisms in dopaminergic genes predict proactive processes of response inhibition. European Journal of Neuroscience, 2019, 49, 1127-1148.	1.2	5
287	Cerebral Metabolic Changes Related to Freezing of Gait in Parkinson Disease. Journal of Nuclear Medicine, 2019, 60, 671-676.	2.8	20
288	Sensorimotor subthalamic stimulation restores riskâ€reward tradeâ€off in Parkinson's disease. Movement Disorders, 2019, 34, 366-376.	2.2	30
289	The Subthalamic Nucleus: Unravelling New Roles and Mechanisms in the Control of Action. Neuroscientist, 2019, 25, 48-64.	2.6	30
290	The Quality of Response Time Data Inference: A Blinded, Collaborative Assessment of the Validity of Cognitive Models. Psychonomic Bulletin and Review, 2019, 26, 1051-1069.	1.4	95
291	Midfrontal theta phase coordinates behaviorally relevant brain computations during cognitive control. NeuroImage, 2020, 207, 116340.	2.1	62
292	Subthalamic deep brain stimulation identifies frontal networks supporting initiation, inhibition and strategy use in Parkinson's disease. NeuroImage, 2020, 223, 117352.	2.1	6
293	Lexical-semantic and executive deficits revealed by computational modelling: A drift diffusion model perspective. Neuropsychologia, 2020, 146, 107560.	0.7	5
294	A study of individual differences in categorization with redundancy. Journal of Mathematical Psychology, 2020, 99, 102467.	1.0	4
295	Pavlovian bias in Parkinson's disease: an objective marker of impulsivity that modulates with deep brain stimulation. Scientific Reports, 2020, 10, 13448.	1.6	5
296	Functional segregation and integration within the human subthalamic nucleus from a micro- and meso-level perspective. Cortex, 2020, 131, 103-113.	1.1	13
297	Expecting social punishment facilitates control over a decision under uncertainty by recruiting medial prefrontal cortex. Social Cognitive and Affective Neuroscience, 2020, 15, 1260-1270.	1.5	2

#	Article	IF	CITATIONS
298	Bayesian Semiparametric Longitudinal Drift-Diffusion Mixed Models for Tone Learning in Adults. Journal of the American Statistical Association, 2021, 116, 1114-1127.	1.8	7
299	From Description to Explanation: Integrating Across Multiple Levels of Analysis to Inform Neuroscientific Accounts of Dimensional Personality Pathology. Journal of Personality Disorders, 2020, 34, 650-676.	0.8	11
300	Agitation and impulsivity in mid and late life as possible risk markers for incident dementia. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2020, 6, e12016.	1.8	25
301	Auditory information enhances post-sensory visual evidence during rapid multisensory decision-making. Nature Communications, 2020, 11, 5440.	5.8	22
302	Deep brain stimulation and recordings: Insights into the contributions of subthalamic nucleus in cognition. Neurolmage, 2020, 222, 117300.	2.1	8
303	A non-linear deterministic model of action selection in the basal ganglia to simulate motor fluctuations in Parkinson's disease. Chaos, 2020, 30, 083139.	1.0	4
304	The effect on deep brain stimulation of subthalamic nucleus and dopaminergic treatment in Parkinson disease. Medicine (United States), 2020, 99, e21578.	0.4	2
305	Cortical plasticity elicited by acoustically cued monetary losses: an ERP study. Scientific Reports, 2020, 10, 21161.	1.6	3
306	Simultaneous Hierarchical Bayesian Parameter Estimation for Reinforcement Learning and Drift Diffusion Models: a Tutorial and Links to Neural Data. Computational Brain & Behavior, 2020, 3, 458-471.	0.9	31
307	The structural connectivity of subthalamic deep brain stimulation correlates with impulsivity in Parkinson's disease. Brain, 2020, 143, 2235-2254.	3.7	52
308	The effect of STN DBS on modulating brain oscillations: consequences for motor and cognitive behavior. Experimental Brain Research, 2020, 238, 1659-1676.	0.7	11
309	The basal ganglia and the cerebellum in human emotion. Social Cognitive and Affective Neuroscience, 2020, 15, 599-613.	1.5	98
310	Error-related negativity and error awareness in a Go/No-go task. Scientific Reports, 2020, 10, 4026.	1.6	11
311	Prefrontal - subthalamic pathway supports action selection in a spatial working memory task. Scientific Reports, 2020, 10, 10497.	1.6	13
312	Inhibition of impulsive action by projection-defined prefrontal pyramidal neurons. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17278-17287.	3.3	41
313	Identifying and characterizing projections from the subthalamic nucleus to the cerebellum in humans. NeuroImage, 2020, 210, 116573.	2.1	16
314	Common and distinct brain activity associated with risky and ambiguous decision-making. Drug and Alcohol Dependence, 2020, 209, 107884.	1.6	31
315	Parkinsonism and subthalamic deep brain stimulation dysregulate behavioral motivation in a rodent model. Brain Research, 2020, 1736, 146776.	1.1	10

#	Article	IF	CITATIONS
316	The drift diffusion model as the choice rule in inter-temporal and risky choice: AÂcase study in medial orbitofrontal cortex lesion patients and controls. PLoS Computational Biology, 2020, 16, e1007615.	1.5	44
317	Single unit and beta oscillatory activities in subthalamic nucleus are modulated during visual choice preference. European Journal of Neuroscience, 2021, 53, 2220-2233.	1.2	9
318	Emotions Modulate Subthalamic Nucleus Activity: New Evidence in Obsessive-Compulsive Disorder and Parkinson's Disease Patients. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 556-567.	1.1	6
319	Decreased riskâ€ŧaking and lossâ€chasing after subthalamic nucleus lesion in rats. European Journal of Neuroscience, 2021, 53, 2362-2375.	1.2	5
320	Non-invasive brain stimulation for Parkinson's disease: Clinical evidence, latest concepts and future goals: A systematic review. Journal of Neuroscience Methods, 2021, 347, 108957.	1.3	37
321	Tracking continuities in the flanker task: From continuous flow to movement trajectories. Attention, Perception, and Psychophysics, 2021, 83, 731-747.	0.7	10
322	Breaking Deadlocks: Reward Probability and Spontaneous Preference Shape Voluntary Decisions and Electrophysiological Signals in Humans. Computational Brain & Behavior, 2021, 4, 191-212.	0.9	1
323	An integrative model of Parkinson's disease treatment including levodopa pharmacokinetics, dopamine kinetics, basal ganglia neurotransmission and motor action throughout disease progression. Journal of Pharmacokinetics and Pharmacodynamics, 2021, 48, 133-148.	0.8	12
324	Neuropsychiatric effects of subthalamic deep brain stimulation. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 180, 417-431.	1.0	10
326	Resting-State Phase-Amplitude Coupling Between the Human Subthalamic Nucleus and Cortical Activity: A Simultaneous Intracranial and Scalp EEG Study. Brain Topography, 2021, 34, 272-282.	0.8	5
327	Impaired sensory evidence accumulation and network function in Lewy body dementia. Brain Communications, 2021, 3, fcab089.	1.5	8
328	Oscillatory activity in the BNST/ALIC and the frontal cortex in OCD: acute effects of DBS. Journal of Neural Transmission, 2021, 128, 215-224.	1.4	7
329	Quantifying mechanisms of cognition with an experiment and modeling ecosystem. Behavior Research Methods, 2021, 53, 1833-1856.	2.3	1
330	Distinct Roles of the Human Subthalamic Nucleus and Dorsal Pallidum in Parkinson's Disease Impulsivity. Biological Psychiatry, 2022, 91, 370-379.	0.7	3
331	Cognitive effects of theta frequency bilateral subthalamic nucleus stimulation in Parkinson's disease: A pilot study. Brain Stimulation, 2021, 14, 230-240.	0.7	10
332	Experimental investigation into the role of the subthalamic nucleus (STN) in motor control using optogenetics in mice. Brain Research, 2021, 1755, 147226.	1.1	24
333	The Human Basal Ganglia Mediate the Interplay between Reactive and Proactive Control of Response through Both Motor Inhibition and Sensory Modulation. Brain Sciences, 2021, 11, 560.	1.1	11
334	Adjustments to Proactive Motor Inhibition without Effector-Specific Foreknowledge Are Reflected in a Bilateral Upregulation of Sensorimotor β-Burst Rates. Journal of Cognitive Neuroscience, 2021, 33, 784-798.	1.1	21

#	Article	IF	CITATIONS
335	Stimulation of Different Sectors of the Human Dorsal Premotor Cortex Induces a Shift from Reactive to Predictive Action Strategies and Changes in Motor Inhibition: A Dense Transcranial Magnetic Stimulation (TMS) Mapping Study. Brain Sciences, 2021, 11, 534.	1.1	8
336	Neuro-Immune Cross-Talk in the Striatum: From Basal Ganglia Physiology to Circuit Dysfunction. Frontiers in Immunology, 2021, 12, 644294.	2.2	16
337	Likelihood approximation networks (LANs) for fast inference of simulation models in cognitive neuroscience. ELife, 2021, 10, .	2.8	32
341	Evidence and Urgency Related EEG Signals during Dynamic Decision-Making in Humans. Journal of Neuroscience, 2021, 41, 5711-5722.	1.7	12
342	Brain-behavior relationships in the perceptual decision-making process through cognitive processing stages. Neuropsychologia, 2021, 155, 107821.	0.7	7
343	Computational phenotyping of brain-behavior dynamics underlying approach-avoidance conflict in major depressive disorder. PLoS Computational Biology, 2021, 17, e1008955.	1.5	20
344	Impaired reach-to-grasp kinematics in parkinsonian patients relates to dopamine-dependent, subthalamic beta bursts. Npj Parkinson's Disease, 2021, 7, 53.	2.5	14
345	Analogous computations in working memory input, output and motor gating: Electrophysiological and computational modeling evidence. PLoS Computational Biology, 2021, 17, e1008971.	1.5	24
349	Acute low frequency dorsal subthalamic nucleus stimulation improves verbal fluency in Parkinson's disease. Brain Stimulation, 2021, 14, 754-760.	0.7	12
350	Neurophysiology of Human Perceptual Decision-Making. Annual Review of Neuroscience, 2021, 44, 495-516.	5.0	40
351	Component processes underlying voluntary task selection: Separable contributions of task-set inertia and reconfiguration. Cognition, 2021, 212, 104685.	1.1	8
352	Alpha oscillations and event-related potentials reflect distinct dynamics of attribute construction and evidence accumulation in dietary decision making. ELife, 2021, 10, .	2.8	6
354	Towards real-world generalizability of a circuit for action-stopping. Nature Reviews Neuroscience, 2021, 22, 538-552.	4.9	62
355	Deep Brain Stimulation Reduces Conflict-Related Theta and Error-Related Negativity in Patients With Obsessive–Compulsive Disorder. Neuromodulation, 2022, 25, 245-252.	0.4	7
358	Fronto-subthalamic phase synchronization and cross-frequency coupling during conflict processing. NeuroImage, 2021, 238, 118205.	2.1	12
359	Computational Psychiatry Needs Time and Context. Annual Review of Psychology, 2022, 73, 243-270.	9.9	47
360	Investigating cognitive neuroscience concepts using connectomic DBS. , 2022, , 483-504.		0
375	Uncertainty promotes information-seeking actions, but what information?. Cognitive Research: Principles and Implications, 2020, 5, 42.	1.1	15

#	Article	IF	CITATIONS
376	Stimulation of Subthalamic Nuclei Restores a Near Normal Planning Strategy in Parkinson's Patients. PLoS ONE, 2013, 8, e62793.	1.1	64
377	Functional Dissociation of Î, Oscillations in the Frontal and Visual Cortices and Their Long-Range Network during Sustained Attention. ENeuro, 2019, 6, ENEURO.0248-19.2019.	0.9	16
378	Subthalamic Neural Activity Patterns Anticipate Economic Risk Decisions in Gambling. ENeuro, 2018, 5, ENEURO.0366-17.2017.	0.9	11
379	Distinct effects of prefrontal and parietal cortex inactivations on an accumulation of evidence task in the rat. ELife, 2015, 4, .	2.8	192
380	Competing basal ganglia pathways determine the difference between stopping and deciding not to go. ELife, 2015, 4, e08723.	2.8	72
381	Neural evidence accumulation persists after choice to inform metacognitive judgments. ELife, 2015, 4, .	2.8	129
382	Intermittent subthalamic nucleus deep brain stimulation induces risk-aversive behavior in human subjects. ELife, 2018, 7, .	2.8	10
383	Non-selective inhibition of inappropriate motor-tendencies during response-conflict by a fronto-subthalamic mechanism. ELife, 2019, 8, .	2.8	51
384	The caudate nucleus contributes causally to decisions that balance reward and uncertain visual information. ELife, 2020, 9, .	2.8	41
385	Globus pallidus dynamics reveal covert strategies for behavioral inhibition. ELife, 2020, 9, .	2.8	22
386	Unique patterns of hearing loss and cognition in older adults' neural responses to cues for speech recognition difficulty. Brain Structure and Function, 2022, 227, 203-218.	1.2	0
388	Theta and Alpha Oscillatory Activity During Working Memory Maintenance in Long-Term Cannabis Users: The Importance of the Polydrug Use Context. Frontiers in Human Neuroscience, 2021, 15, 740277.	1.0	4
390	Attention as a source of variability in decision-making: Accounting for overall-value effects with diffusion models. Journal of Mathematical Psychology, 2021, 105, 102594.	1.0	10
392	Local Field Potential and Deep Brain Stimulation (DBS). , 2014, , 1-20.		2
394	Local Field Potential and Deep Brain Stimulation (DBS). , 2015, , 1501-1517.		0
399	Studying the Effect of Dopaminergic Medication and STN–DBS on Cognitive Function Using a Spiking Basal Ganglia Model. Cognitive Science and Technology, 2018, , 197-214.	0.2	0
400	A Role for the Superior Colliculus in Decision Criteria. SSRN Electronic Journal, 0, , .	0.4	0
401	Non-Selective Suppression of Inappropriate Motor-Tendencies During Response-Conflict by a Fronto-Subthalamic Mechanism for Inhibitory Control. SSRN Electronic Journal, 0, , .	0.4	О

#	Article	IF	CITATIONS
415	Intrinsic timescales across the basal ganglia. Scientific Reports, 2021, 11, 21395.	1.6	8
424	Temporal dynamics of decision making: A synthesis of computational and neurophysiological approaches. Wiley Interdisciplinary Reviews: Cognitive Science, 2022, 13, e1586.	1.4	3
425	Neural Substrates of the Drift-Diffusion Model in Brain Disorders. Frontiers in Computational Neuroscience, 2021, 15, 678232.	1.2	13
426	Dopaminergic medication normalizes aberrant cognitive control circuit signalling in Parkinson's disease. Brain, 2022, 145, 4042-4055.	3.7	5
427	Aversive motivation and cognitive control. Neuroscience and Biobehavioral Reviews, 2022, 133, 104493.	2.9	24
428	A multidimensional evaluation of the benefits of an ecologically realistic training based on pretend play for preschoolers' cognitive control and self-regulation: From behavior to the underlying theta neuro-oscillatory activity. Journal of Experimental Child Psychology, 2022, 216, 105348.	0.7	3
429	Competition, Conflict and Change of Mind: A Role of GABAergic Inhibition in the Primary Motor Cortex. Frontiers in Human Neuroscience, 2021, 15, 736732.	1.0	0
430	Cognitive control in Parkinson's disease. Progress in Brain Research, 2022, 269, 137-152.	0.9	3
431	Cognitive Control as a Multivariate Optimization Problem. Journal of Cognitive Neuroscience, 2022, 34, 569-591.	1.1	15
432	Neurons in the Monkey's Subthalamic Nucleus Differentially Encode Motivation and Effort. Journal of Neuroscience, 2022, 42, 2539-2551.	1.7	15
433	Thunderstruck: The ACDC model of flexible sequences and rhythms in recurrent neural circuits. PLoS Computational Biology, 2022, 18, e1009854.	1.5	3
434	Neuromodulation of cognition in Parkinson's disease. Progress in Brain Research, 2022, 269, 435-455.	0.9	4
435	Filling the gaps: Cognitive control as a critical lens for understanding mechanisms of value-based decision-making. Neuroscience and Biobehavioral Reviews, 2022, 134, 104483.	2.9	19
436	OUP accepted manuscript. Cerebral Cortex, 2022, , .	1.6	3
438	Cortical dopamine reduces the impact of motivational biases governing automated behaviour. Neuropsychopharmacology, 2022, 47, 1503-1512.	2.8	2
439	Toward a Unifying Account of Dopamine's Role in Cost-Benefit Decision Making. Biological Psychiatry Global Open Science, 2023, 3, 179-186.	1.0	10
440	Pupil dilation and response slowing distinguish deliberate explorative choices in the probabilistic learning task. Cognitive, Affective and Behavioral Neuroscience, 2022, 22, 1108-1129.	1.0	6
441	Evidence for cortical adjustments to perceptual decision criteria during word recognition in noise. NeuroImage, 2022, 253, 119042.	2.1	3

#	Article	IF	CITATIONS
442	Transient beta modulates decision thresholds during human action-stopping. NeuroImage, 2022, 254, 119145.	2.1	8
444	Theta Oscillations at Subthalamic Region Predicts Hypomania State After Deep Brain Stimulation in Parkinson's Disease. Frontiers in Human Neuroscience, 2021, 15, 797314.	1.0	4
445	Advances in clinical basic research: Performance, treatments, and mechanisms of Parkinson disease. , 2021, 7, 362-378.		0
446	The pre-supplementary motor area achieves inhibitory control by modulating response thresholds. Cortex, 2022, 152, 98-108.	1.1	8
447	Forward planning driven by context-dependant conflict processing in anterior cingulate cortex. NeuroImage, 2022, 256, 119222.	2.1	0
449	Biophysical and Architectural Mechanisms of Subthalamic Theta under Response Conflict. Journal of Neuroscience, 2022, 42, 4470-4487.	1.7	6
450	The geometry of domain-general performance monitoring in the human medial frontal cortex. Science, 2022, 376, eabm9922.	6.0	41
451	Conflict Detection in a Sequential Decision Task Is Associated with Increased Cortico-Subthalamic Coherence and Prolonged Subthalamic Oscillatory Response in the β Band. Journal of Neuroscience, 2022, 42, 4681-4692.	1.7	2
452	Conflict and competition between model-based and model-free control. PLoS Computational Biology, 2022, 18, e1010047.	1.5	0
453	Essential tremor impairs the ability to suppress involuntary action impulses. Experimental Brain Research, 2022, 240, 1957-1966.	0.7	2
454	Are you confident enough to act? Individual differences in action control are associated with post-decisional metacognitive bias. PLoS ONE, 2022, 17, e0268501.	1.1	4
455	The influence of reward anticipation on conflict control in children and adolescents: Evidences from hierarchical drift-diffusion model and event-related potentials. Developmental Cognitive Neuroscience, 2022, 55, 101118.	1.9	7
456	Deep brain stimulation rectifies the noisy cortex and irresponsive subthalamus to improve parkinsonian locomotor activities. Npj Parkinson's Disease, 2022, 8, .	2.5	2
457	Fronto—Parietal Regions Predict Transient Emotional States in Emotion Modulated Response Inhibition via Low Frequency and Beta Oscillations. Symmetry, 2022, 14, 1244.	1.1	5
458	Drift-Diffusion Model Reveals Impaired Reward-Based Perceptual Decision-Making Processes Associated with Depression in Late Childhood and Early Adolescent Girls. Research on Child and Adolescent Psychopathology, 0, , .	1.4	0
460	Low-frequency oscillations link frontal and parietal cortex with subthalamic nucleus in conflicts. NeuroImage, 2022, 258, 119389.	2.1	3
461	Local Field Potential and Deep Brain Stimulation (DBS). , 2022, , 1801-1817.		0
462	Dynamic interaction between hippocampus, orbitofrontal cortex, and subthalamic nucleus during goal conflict in the stop signal task in rats. Neuroscience Research, 2022, , .	1.0	1

#	Article	IF	CITATIONS
463	Two Types of Motor Inhibition after Action Errors in Humans. Journal of Neuroscience, 2022, 42, 7267-7275.	1.7	6
466	Effects of deep brain stimulation target on the activation and suppression of action impulses. Clinical Neurophysiology, 2022, 144, 50-58.	0.7	1
468	Clinical neuroscience and neurotechnology: An amazing symbiosis. IScience, 2022, 25, 105124.	1.9	3
470	Internal Capsule/Nucleus Accumbens Deep Brain Stimulation Increases Impulsive Decision Making in Obsessive-Compulsive Disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2023, 8, 281-289.	1.1	Ο
471	Nigrostriatal dopamine pathway regulates auditory discrimination behavior. Nature Communications, 2022, 13, .	5.8	9
472	Explicit and implicit attitudes toward smoking: Dissociation of attitudes and different characteristics for an implicit attitude in smokers and nonsmokers. PLoS ONE, 2022, 17, e0275914.	1.1	3
473	Post-error adjustments depend causally on executive attention: Evidence from an intervention study. Frontiers in Psychology, 0, 13, .	1.1	0
474	Are you an empiricist or a believer? Neural signatures of predictive strategies in humans. Progress in Neurobiology, 2022, 219, 102367.	2.8	13
475	Neural Mechanisms That Make Perceptual Decisions Flexible. Annual Review of Physiology, 2023, 85, 191-215.	5.6	7
476	Moving beyond response times with accessible measures of manual dynamics. Scientific Reports, 2022, 12, .	1.6	1
477	A neurocomputational theory of action regulation predicts motor behavior in neurotypical individuals and patients with Parkinson's disease. PLoS Computational Biology, 2022, 18, e1010111.	1.5	1
478	Dynamic control of decision and movement speed in the human basal ganglia. Nature Communications, 2022, 13, .	5.8	10
479	No effect of subthalamic deep brain stimulation on metacognition in Parkinson's disease. Scientific Reports, 2023, 13, .	1.6	2
481	Anatomical Patterns Recognition of Impulse Control Disorders of Parkinsonian Patients Using Deep Learning of MRI structural images. , 2022, , .		0
483	Neurophysiological mechanisms of error monitoring in human and non-human primates. Nature Reviews Neuroscience, 2023, 24, 153-172.	4.9	17
484	Two modes of midfrontal theta suggest a role in conflict and error processing. NeuroImage, 2023, 273, 120107.	2.1	3
485	Modeling brain dynamics and gaze behavior: Starting point bias and drift rate relate to frontal midline theta oscillations. NeuroImage, 2023, 268, 119871.	2.1	3
486	Acute effects of deep brain stimulation on brain function in obsessive–compulsive disorder. Clinical Neurophysiology, 2023, 148, 109-117.	0.7	2

#	Article	IF	CITATIONS
487	Electrophysiological correlates of self-prioritization. Consciousness and Cognition, 2023, 108, 103475.	0.8	9
488	Elucidating medial temporal and frontal lobe contributions to approach-avoidance conflict decision-making using functional MRI and the hierarchical drift diffusion model. Cerebral Cortex, 0, ,	1.6	1
499	Uncovering the neurophysiology of mood, motivation and behavioral symptoms in Parkinson's disease through intracranial recordings. Npj Parkinson's Disease, 2023, 9, .	2.5	0
506	Action stopping. , 2023, , .		Ο
510	The medial frontal cortex, performance monitoring, cognitive control, and decision making. , 2024, , .		0