A natural polymorphism alters odour and DEET sensitiv

Nature 478, 511-514 DOI: 10.1038/nature10438

Citation Report

#	Article	IF	Citations
1	Chemosensory behaviors of parasites. Trends in Parasitology, 2012, 28, 427-436.	3.3	60
2	Odorant receptor modulation: Ternary paradigm for mode of action of insect repellents. Neuropharmacology, 2012, 62, 2086-2095.	4.1	77
3	Protective efficacy of menthol propylene glycol carbonate compared to N, N-diethyl-methylbenzamide against mosquito bites in Northern Tanzania. Parasites and Vectors, 2012, 5, 189.	2.5	25
4	Lipidomic Profiling of Phosphocholine Containing Brain Lipids in Mice with Sensorimotor Deficits and Anxiety-Like Features After Exposure to Gulf War Agents. NeuroMolecular Medicine, 2012, 14, 349-361.	3.4	79
5	Selectivity of odorant receptors in insects. Frontiers in Cellular Neuroscience, 2012, 6, 29.	3.7	35
6	Mini review: Mode of action of mosquito repellents. Pesticide Biochemistry and Physiology, 2013, 106, 149-155.	3.6	91
7	Gustatory receptor neuron responds to DEET and other insect repellents in the yellow-fever mosquito, Aedes aegypti. Die Naturwissenschaften, 2013, 100, 269-273.	1.6	63
8	Odour receptors and neurons for DEET and new insect repellents. Nature, 2013, 502, 507-512.	27.8	135
9	Varieties of behavioral natural variation. Current Opinion in Neurobiology, 2013, 23, 24-28.	4.2	6
10	Olfactory responses of the antennal trichoid sensilla to chemical repellents in the mosquito, Culex quinquefasciatus. Journal of Insect Physiology, 2013, 59, 1169-1177.	2.0	50
11	Four simple stimuli that induce host-seeking and blood-feeding behaviors in two mosquito species, with a clue to DEET's mode of action. Journal of Vector Ecology, 2013, 38, 143-153.	1.0	18
12	Interactions of Anopheles gambiae Odorant-binding Proteins with a Human-derived Repellent. Journal of Biological Chemistry, 2013, 288, 4475-4485.	3.4	42
13	orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature, 2013, 498, 487-491.	27.8	388
14	Nervous Systems. , 2013, , 529-602.		1
15	Molecular characterization and immunolocalization of the olfactory coâ€receptor <scp>O</scp> rco from two bloodâ€feeding muscid flies, the stable fly (<i><scp>S</scp>tomoxys calcitrans</i> ,) Tj ETQq0 0 0 rgB1 Malagular Bialogy, 2012, 22, 121, 142	Verlock	10 Tf 50 18
16	Molecular Biology, 2013, 22, 131-142. From Chemistry to Behavior. Molecular Structure and Bioactivity of Repellents against Ixodes ricinus Ticks. PLoS ONE, 2013, 8, e67832.	2.5	9
17	Locomotor Behaviour of Blattella germanica Modified by DEET. PLoS ONE, 2013, 8, e83433.	2.5	9
18	How Computational Studies of Mosquito Repellents Contribute to the Control of Vector Borne Diseases. Current Computer-Aided Drug Design, 2013, 9, 300-307.	1.2	6

ITATION REDO

	CITATION REPORT		
#	Article	IF	Citations
19	†Decision Making' in Larval Drosophila. Handbook of Behavioral Neuroscience, 2013, , 41-55.	0.7	12
20	Taste Sensation in <i>Drosophila melanoganster</i> . Hanyang Medical Reviews, 2014, 34, 130.	0.4	15
22	Sensory coding of olfaction and taste. , 0, , 49-65.		1
23	The enigmatic reception of DEET — the gold standard of insect repellents. Current Opinion in Insect Science, 2014, 6, 93-98.	4.4	102
24	Field Evaluation of Picaridin Repellents Reveals Differences in Repellent Sensitivity between Southeast Asian Vectors of Malaria and Arboviruses. PLoS Neglected Tropical Diseases, 2014, 8, e3326.	3.0	32
25	Repellence Produced by Monoterpenes on Rhodnius prolixus (Hemiptera: Reduviidae) Decreases After Continuous Exposure to These Compounds. Journal of Insect Science, 2014, 14, .	1.5	8
27	Olfactory learning and memory in the disease vector mosquito, <i>Aedes aegypti</i> . Journal of Experimental Biology, 2014, 217, 2321-30.	1.7	54
28	Antennal Olfactory Sensilla Responses to Insect Chemical Repellents in the Common Bed Bug, Cimex lectularius. Journal of Chemical Ecology, 2014, 40, 522-533.	1.8	24
29	Evolution of mosquito preference for humans linked to an odorant receptor. Nature, 2014, 515, 222-227.	27.8	389
30	A Determinant of Odorant Specificity Is Located at the Extracellular Loop 2-Transmembrane Domain 4 Interface of an Anopheles gambiae Odorant Receptor Subunit. Chemical Senses, 2014, 39, 761-769.	2.0	44
31	Drosophila Learn Opposing Components of a Compound Food Stimulus. Current Biology, 2014, 24, 1723-1730.	3.9	90
32	Bdor <mml:math <br="" altimg="si1.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mrow><mml:mo>â§1</mml:mo></mml:mrow></mml:math> Orco is important for oviposition-deterring behavior induced by both the volatile and non-volatile repellents in Bactrocera dorsalis (Diptera: Tephritidae). Journal of Insect Physiology, 2014, 65, 51-56.	2.0	32
33	Terminology of Insect Repellents. , 2014, , 3-30.		5
37	Cell-free expression, purification and ligand-binding analysis of Drosophila melanogaster olfactory receptors DmOR67a, DmOR85b and DmORCO. Scientific Reports, 2015, 5, 7867.	3.3	20
38	Insect olfaction and the evolution of receptor tuning. Frontiers in Ecology and Evolution, 2015, 3, .	2.2	139
39	Positive selection in extra cellular domains in the diversification of Strigamia maritima chemoreceptors. Frontiers in Ecology and Evolution, 2015, 3, .	2.2	3
40	Evolution of two receptors detecting the same pheromone compound in crop pest moths of the genus Spodoptera. Frontiers in Ecology and Evolution, 2015, 3, .	2.2	35
41	The Repellent DEET Potentiates Carbamate Effects via Insect Muscarinic Receptor Interactions: An Alternative Strategy to Control Insect Vector-Borne Diseases. PLoS ONE, 2015, 10, e0126406.	2.5	33

#	Article	IF	CITATIONS
42	Inhibition of Anopheles gambiae Odorant Receptor Function by Mosquito Repellents. Journal of Biological Chemistry, 2015, 290, 7961-7972.	3.4	32
43	Towards an understanding of the structural basis for insect olfaction by odorant receptors. Insect Biochemistry and Molecular Biology, 2015, 66, 31-41.	2.7	69
44	Olfactory Disruption. Progress in Molecular Biology and Translational Science, 2015, 130, 81-108.	1.7	11
45	Amino acid coevolution reveals three-dimensional structure and functional domains of insect odorant receptors. Nature Communications, 2015, 6, 6077.	12.8	113
46	Repellency of α-pinene against the house fly, Musca domestica. Phytochemistry, 2015, 117, 469-475.	2.9	29
47	Insensitivity to the Spatial Repellent Action of Transfluthrin in Aedes aegypti: A Heritable Trait Associated with Decreased Insecticide Susceptibility. PLoS Neglected Tropical Diseases, 2015, 9, e0003726.	3.0	56
48	The effect of DEET on chemosensing of the honey bee and its parasite Varroa destructor. Apidologie, 2015, 46, 380-391.	2.0	17
49	Rapid evolution of chemosensory receptor genes in a pair of sibling species of orchid bees (Apidae:) Tj ETQq1 1 (0.784314 3.2	rgBT /Overloc
50	Identification and functional analysis of olfactory receptor family reveal unusual characteristics of the olfactory system in the migratory locust. Cellular and Molecular Life Sciences, 2015, 72, 4429-4443.	5.4	107
51	The mysterious multi-modal repellency of DEET. Fly, 2015, 9, 45-51.	1.7	73
52	Diversification of the ant odorant receptor gene family and positive selection on candidate cuticular hydrocarbon receptors. BMC Research Notes, 2015, 8, 380.	1.4	58
53	Prior Exposure to DEET Interrupts Positive and Negative Responses to Olfactory Cues in Drosophila Melanogaster. Journal of Insect Behavior, 2015, 28, 1-14.	0.7	2
54	Modulation of the behavioral and electrical responses to the repellent DEET elicited by the pre-exposure to the same compound inBlattella germanica. PeerJ, 2016, 4, e2150.	2.0	7
55	Disruption of Mosquito Olfaction. , 2016, , 227-252.		0
56	A Sex Pheromone Receptor in the Hessian Fly Mayetiola destructor (Diptera, Cecidomyiidae). Frontiers in Cellular Neuroscience, 2016, 10, 212.	3.7	38
57	Neuroethology of Olfactory-Guided Behavior and Its Potential Application in the Control of Harmful Insects. Frontiers in Physiology, 2016, 7, 271.	2.8	42
58	On the Air: Broadcasting and Reception of Volatile Messages in Brood-Site Pollination Mutualisms. Signaling and Communication in Plants, 2016, , 227-255.	0.7	9
59	Antennal transcriptome analysis and expression profiles of odorant binding proteins in Eogystia hippophaecolus (Lepidoptera: Cossidae). BMC Genomics, 2016, 17, 651.	2.8	36

#	Article	IF	CITATIONS
60	Repellent activity of the creams formulated from Annona senegalensis and Boswellia dalzielii leaf fractions and essential oils against Anopheles gambiae (Diptera: Culicidae). Asian Pacific Journal of Tropical Disease, 2016, 6, 973-978.	0.5	5
61	Olfactory Mechanisms for Discovery of Odorants to Reduce Insect-Host Contact. Journal of Chemical Ecology, 2016, 42, 919-930.	1.8	28
62	Deciphering Chemical Language of Plant Communication. Signaling and Communication in Plants, 2016, , .	0.7	18
63	Effects of Preexposure to DEET on the Downstream Blood-Feeding Behaviors of <i>Aedes aegypti</i> (Diptera: Culicidae) Mosquitoes. Journal of Medical Entomology, 2016, 53, 1100-1104.	1.8	11
64	Efficacy of the repellent N,N-diethyl-3-methyl-benzamide (DEET) against tabanid flies on horses evaluated in a field test in Switzerland. Veterinary Parasitology, 2016, 221, 64-67.	1.8	6
65	Responses of the aquatic midge Chironomus riparius to DEET exposure. Aquatic Toxicology, 2016, 172, 80-85.	4.0	44
66	Are insect repellents toxic to freshwater insects? A case study using caddisflies exposed to DEET. Chemosphere, 2016, 149, 177-182.	8.2	26
67	Cambrian trilobites as archives for Anthropocene biomarkers and other chemical compounds. Anthropocene, 2017, 17, 99-106.	3.3	2
68	Quantitative structure–activity relationship study of amide mosquito repellents. SAR and QSAR in Environmental Research, 2017, 28, 341-353.	2.2	3
69	Mini review: Gustatory reception of chemicals affecting host feeding in aedine mosquitoes. Pesticide Biochemistry and Physiology, 2017, 142, 15-20.	3.6	14
70	Medicinal Plants and Environmental Challenges. , 2017, , .		37
71	Mutant cycle analysis identifies a ligand interaction site in an odorant receptor of the malaria vector Anopheles gambiae. Journal of Biological Chemistry, 2017, 292, 18916-18923.	3.4	15
72	Plant Derived Essential Oils Against Aedes aegypti L. and Their Biotechnological Production. , 2017, , 345-357.		4
73	Prospects for malaria control through manipulation of mosquito larval habitats and olfactory-mediated behavioural responses using plant-derived compounds. Parasites and Vectors, 2017, 10, 184.	2.5	32
74	The Evolutionary Dynamics of the Odorant Receptor Gene Family in Corbiculate Bees. Genome Biology and Evolution, 2017, 9, 2023-2036.	2.5	44
75	Molecular Basis of N,N-Diethyl-3-Methylbenzamide (DEET) in Repelling the Common Bed Bug, Cimex lectularius. Frontiers in Physiology, 2017, 8, 418.	2.8	10
76	Current and Future Repellent Technologies: The Potential of Spatial Repellents and Their Place in Mosquito-Borne Disease Control. International Journal of Environmental Research and Public Health, 2017, 14, 124.	2.6	112
77	Two single-point mutations shift the ligand selectivity of a pheromone receptor between two closely related moth species. ELife, 2017, 6, .	6.0	63

# 78	ARTICLE Endogenous insensitivity to the Orco agonist VUAA1 reveals novel olfactory receptor complex properties in the specialist fly Mayetiola destructor. Scientific Reports, 2018, 8, 3489.	IF 3.3	Citations 36
79	Unusual modes of action of the repellent DEET in insects highlight some human side effects. European Journal of Pharmacology, 2018, 825, 92-98.	3.5	29
80	Hemimetabolous genomes reveal molecular basis of termite eusociality. Nature Ecology and Evolution, 2018, 2, 557-566.	7.8	223
81	Comparison of single cell sensitivities to acetone, 1-octen-3-ol and 3-methylphenol in the riverine tsetse species Glossina fuscipes fuscipes and G. palpalis palpalis. Journal of Insect Physiology, 2018, 107, 144-151.	2.0	7
82	A natural variant and engineered mutation in a GPCR promote DEET resistance in C. elegans. Nature, 2018, 562, 119-123.	27.8	18
83	Evolutionary ecology of chemosensation and its role in sensory drive. Environmental Epigenetics, 2018, 64, 525-533.	1.8	42
84	Identification of novel bioinspired synthetic mosquito repellents by combined ligand-based screening and OBP-structure-based molecular docking. Insect Biochemistry and Molecular Biology, 2018, 98, 48-61.	2.7	32
85	Effect of the Topical Repellent para-Menthane-3,8-diol on Blood Feeding Behavior and Fecundity of the Dengue Virus Vector Aedes aegypti. Insects, 2018, 9, 60.	2.2	5
86	Scaling the interactive effects of attractive and repellent odours for insect search behaviour. Scientific Reports, 2019, 9, 15309.	3.3	13
87	Commonly Used Insect Repellents Hide Human Odors from Anopheles Mosquitoes. Current Biology, 2019, 29, 3669-3680.e5.	3.9	63
88	Aedes aegypti Mosquitoes Use Their Legs to Sense DEET on Contact. Current Biology, 2019, 29, 1551-1556.e5.	3.9	79
89	Cell-free expression, purification and characterization of Drosophila melanogaster odorant receptor OR42a and its co-receptor. Protein Expression and Purification, 2019, 159, 27-33.	1.3	5
90	Highâ€ŧhroughput screening method for evaluating spatial repellency and vapour toxicity to mosquitoes. Medical and Veterinary Entomology, 2019, 33, 388-396.	1.5	21
91	Use of machine learning to identify novel, behaviorally active antagonists of the insect odorant receptor co-receptor (Orco) subunit. Scientific Reports, 2019, 9, 4055.	3.3	31
92	Massive Loss of Olfactory Receptors But Not Trace Amine-Associated Receptors in the World's Deepest-Living Fish (Pseudoliparis swirei). Genes, 2019, 10, 910.	2.4	12
93	Molecular evidence for the inhibition of cytochrome p450s and cholinesterases in ticks by the repellent DEET. Ticks and Tick-borne Diseases, 2019, 10, 515-522.	2.7	12
94	Molecular Evolution of the Major Arthropod Chemoreceptor Gene Families. Annual Review of Entomology, 2019, 64, 227-242.	11.8	156
95	Multiple channels of DEET repellency in <i>Drosophila</i> . Pest Management Science, 2020, 76, 880-887.	3.4	16

	CITATION REPORT		
#	Article	IF	Citations
96	Natural insensitivity and the effects of concentration on the repellency and survival of American dog ticks (Dermacentor variabilis) by DEET. Experimental and Applied Acarology, 2020, 82, 379-395.	1.6	2
97	Carboxylic acid responses by a conserved odorant receptor in culicine vector mosquitoes. Insect Molecular Biology, 2020, 29, 523-530.	2.0	4
98	Chemosensory and Behavioural Responses of Ixodes scapularis to Natural Products: Role of Chemosensory Organs in Volatile Detection. Insects, 2020, 11, 502.	2.2	17
99	Cellular and molecular mechanisms of DEET toxicity and disease-carrying insect vectors: a review. Genes and Genomics, 2020, 42, 1131-1144.	1.4	11
100	Olfactory receptor and circuit evolution promote host specialization. Nature, 2020, 579, 402-408.	27.8	131
101	Orthosteric muscarinic receptor activation by the insect repellent IR3535 opens new prospects in insecticide-based vector control. Scientific Reports, 2020, 10, 6842.	3.3	15
102	Electroantennogram reveals a strong correlation between the passion of honeybee and the properties of the volatile. Brain and Behavior, 2020, 10, e01603.	2.2	9
103	Insect repellents mediate species-specific olfactory behaviours in mosquitoes. Malaria Journal, 2020, 19, 127.	2.3	39
104	Olfaction in <i>Anopheles</i> mosquitoes. Chemical Senses, 2021, 46, .	2.0	26
105	<i>Drosophila</i> sensory receptors—a set of molecular Swiss Army Knives. Genetics, 2021, 217, 1-34.	2.9	48
106	Putative ligand binding sites of two functionally characterized bark beetle odorant receptors. BMC Biology, 2021, 19, 16.	3.8	46
107	Firefly tourism: Advancing a global phenomenon toward a brighter future. Conservation Science and Practice, 2021, 3, e391.	2.0	17
108	Impacts of OrX and cAMP-insensitive Orco to the insect olfactory heteromer activity. Molecular Biology Reports, 2021, 48, 4549-4561.	2.3	4
109	Analysis by GC (Ir), GC/MS and mosquito repellent effect of essential oils against Anopheles gambiae: Case of stem bark of Sterculia tragacantha Lindl (Sterculiaceae) from Cte dlvoire. Journal of Medicinal Plants Research, 2021, 15, 309-320.	0.4	1
110	Sodium channel activation underlies transfluthrin repellency in Aedes aegypti. PLoS Neglected Tropical Diseases, 2021, 15, e0009546.	3.0	17
111	The Olfactory Chemosensation of Hematophagous Hemipteran Insects. Frontiers in Physiology, 2021, 12, 703768.	2.8	4
112	Insights into a receptor that lets insects sense scents. Nature, 2021, 597, 37-39.	27.8	0
113	Transcriptional profiling of Dermacentor variabilis (Acari: Ixodidae) provides insights into the role of the Haller's organ in spatial DEET recognition. Ticks and Tick-borne Diseases, 2022, 13, 101827.	2.7	6

#	Article	IF	CITATIONS
114	A single point mutation causes one-way alteration of pheromone receptor function in two Heliothis species. IScience, 2021, 24, 102981.	4.1	10
121	Identification of New Agonists and Antagonists of the Insect Odorant Receptor Co-Receptor Subunit. PLoS ONE, 2012, 7, e36784.	2.5	60
122	Extracellular Modulation of the Silkmoth Sex Pheromone Receptor Activity by Cyclic Nucleotides. PLoS ONE, 2013, 8, e63774.	2.5	7
123	Phenylthiophenecarboxamide Antagonists of the Olfactory Receptor Co-Receptor Subunit from a Mosquito. PLoS ONE, 2013, 8, e84575.	2.5	20
124	Identification and Differential Expression of a Candidate Sex Pheromone Receptor in Natural Populations of Spodoptera litura. PLoS ONE, 2015, 10, e0131407.	2.5	7
125	Inhibition of insect olfactory behavior by an airborne antagonist of the insect odorant receptor co-receptor subunit. PLoS ONE, 2017, 12, e0177454.	2.5	9
126	BiteOscope, an open platform to study mosquito biting behavior. ELife, 2020, 9, .	6.0	31
127	Molecular mechanism underlying CO ₂ sensing in the olfactory system. Journal of Japan Association on Odor Environment, 2015, 46, 209-217.	0.0	0
128	Arthropods of Medical Importance. , 0, , 2505-2525.		0
133	Cellular and molecular basis of <scp>IR3535</scp> perception in <scp><i>Drosophila</i></scp> . Pest Management Science, 2022, 78, 793-802.	3.4	11
134	Multimodal mechanisms of repellency in arthropods. , 2022, , 113-130.		2
135	Repellency Effect of Essential Oils of some Native Plants and Synthetic Repellents against Human Flea, (Siphonaptera: Pulicidae). Journal of Arthropod-Borne Diseases, 2017, 11, 105-115.	0.9	5
136	Cellulose Hydrogels Containing Geraniol and Icaridin Encapsulated in Zein Nanoparticles for Arbovirus Control. ACS Applied Bio Materials, 2022, 5, 1273-1283.	4.6	5
137	Computational investigation of aphid odorant receptor structure and binding function. Journal of Biomolecular Structure and Dynamics, 2023, 41, 3647-3658.	3.5	3
139	Protocol to identify ligands of odorant receptors using two-electrode voltage clamp combined with the Xenopus oocytes heterologous expression system. STAR Protocols, 2022, 3, 101249.	1.2	6
140	Repellent activity of transâ€anethole and tea tree oil against <i>Aedes aegypti</i> and their interaction with <scp>OBP1</scp> , a protein involved in olfaction. Entomologia Experimentalis Et Applicata, 2022, 170, 547-554.	1.4	4
141	Enantiomeric Discrimination in Insects: The Role of OBPs and ORs. Insects, 2022, 13, 368.	2.2	14
142	Genome-wide identification and expression profiling of odorant receptor genes in the malaria vector Anopheles sinensis. Parasites and Vectors, 2022, 15, 143.	2.5	4

#	Article	IF	CITATIONS
143	A Combined Computational Methodology for the Discovery of Hit Compounds with Putative Insect Repellency Properties. ChemMedChem, 2022, 17, .	3.2	3
144	Dual assessment of transcriptional and metabolomic responses in the American dog tick following exposure to different pesticides and repellents. Ticks and Tick-borne Diseases, 2022, 13, 102033.	2.7	2
145	Nervous systems. , 2023, , 527-605.		0
147	The oviposition cue indole inhibits animal host attraction in Aedes aegypti (Diptera: Culicidae) mosquitoes. Parasites and Vectors, 2022, 15, .	2.5	3
148	Functional conservation of Anopheline linalool receptors through 100 million years of evolution. Chemical Senses, 2022, 47, .	2.0	1
149	Differentiation of action mechanisms between natural and synthetic repellents through neuronal electroantennogram and proteomic in Aedes aegypti (Diptera: Culicidae). Scientific Reports, 2022, 12, .	3.3	0
150	<i>Drosophila</i> olfaction: past, present and future. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	2.6	6
151	Chapter 34: Repellents for mosquito-borne disease control: beyond the repellency effect. , 2022, , 879-911.		4
152	Single amino acid residue mediates reciprocal specificity in two mosquito odorant receptors. ELife, 0, 11, .	6.0	1
153	The structure of AgamOBP5 in complex with the natural insect repellents Carvacrol and Thymol: Crystallographic, fluorescence and thermodynamic binding studies. International Journal of Biological Macromolecules, 2023, 237, 124009.	7.5	6
154	A tale of two copies: Evolutionary trajectories of moth pheromone receptors. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	5
155	Combinatorial encoding of odors in the mosquito antennal lobe. Nature Communications, 2023, 14, .	12.8	0
156	Evolutionary shifts in pheromone receptors contribute to speciation in four Helicoverpa species. Cellular and Molecular Life Sciences, 2023, 80, .	5.4	0
157	DEET (N,N-Diethyl-m-toluamide). , 2024, , 497-509.		0
158	Carbonyl products of ozone oxidation of volatile organic compounds can modulate olfactory choice behavior in insects. Environmental Pollution, 2023, 337, 122542.	7.5	1
159	The power of Drosophila genetics in studying insect toxicology and chemical ecology. , 2023, 1, .		0
160	Diverse mechanisms of taste coding in <i>Drosophila</i> . Science Advances, 2023, 9, .	10.3	0
162	A single mutation in the mosquito (Aedes aegypti) olfactory receptor 8 causes loss of function to 1-octen-3-ol. Insect Biochemistry and Molecular Biology, 2024, 167, 104069.	2.7	0

		CITATION REPORT	
#	Article	IF	CITATIONS
163	Hydrophobic solution functions as a multifaceted mosquito repellent by enhancing chemical transfer, altering object tracking, and forming aversive memory. Scientific Reports, 2024, 14, .	3.3	0
164	iBio-GATS—A Semi-Automated Workflow for Structural Modelling of Insect Odorant Receptors. International Journal of Molecular Sciences, 2024, 25, 3055.	4.1	0