Short- and Long-Term Outcome of Patients with Pseud Treated with Calcitriol

Journal of Clinical Endocrinology and Metabolism 96, 82-89 DOI: 10.1210/jc.2010-1340

Citation Report

#	Article	IF	CITATIONS
1	Short- and Long-Term Outcome of Patients with Pseudo-Vitamin D Deficiency Rickets Treated with Calcitriol. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 82-89.	3.6	53
2	Rare variants in the <i>CYP27B1</i> gene are associated with multiple sclerosis. Annals of Neurology, 2011, 70, 881-886.	5.3	204
3	Vitamin D dependent rickets, diagnostic and therapeutic difficulties: two case reports. Journal of Pediatric Endocrinology and Metabolism, 2011, 24, 801-5.	0.9	6
4	Pseudo-vitamin D Deficiency. , 2011, , 1187-1195.		2
5	Rickets Due to Hereditary Abnormalities of Vitamin D Synthesis or Action. , 2012, , 679-698.		2
6	Vitamin D Metabolism or Action. , 2013, , 1-28.		0
7	Detecting Disorders of Vitamin D Deficiency in Children. Advances in Pediatrics, 2013, 60, 89-106.	1.4	10
8	Human cytochromes P450 in health and disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120431.	4.0	381
9	Steroid hormone synthesis in mitochondria. Molecular and Cellular Endocrinology, 2013, 379, 62-73.	3.2	321
10	Rickets: The Skeletal Disorders of Impaired Calcium or Phosphate Availability. , 2013, , 357-378.		2
11	Genetic Disorders of Vitamin D Synthesis and Action. , 2013, , 537-552.		2
12	Vitamin D Metabolism or Action. , 2014, , .		0
14	Disorders of mineral homeostasis in children and adolescents. , 2014, , 734-845.e1.		7
15	Vitamin D/dietary calcium deficiency rickets and pseudo-vitamin D deficiency rickets. BoneKEy Reports, 2014, 3, 524.	2.7	35
16	Targeted Sequencing of a Pediatric Metabolic Bone Gene Panel Using a Desktop Semiconductor Next-Generation Sequencer. Calcified Tissue International, 2014, 95, 323-331.	3.1	22
17	Case report: vitamin Dâ€dependent rickets type 1 caused by a novel <i><scp>CYP</scp>27B1</i> mutation. Clinical Case Reports (discontinued), 2015, 3, 1012-1016.	0.5	9
18	Urinary calcium to creatinine ratio: a potential marker of secondary hyperparathyroidism in patients with vitamin D-dependent rickets type 1A. Endocrine Journal, 2015, 62, 61-68.	1.6	5
19	Maternal Mineral and Bone Metabolism During Pregnancy, Lactation, and Post-Weaning Recovery. Physiological Reviews, 2016, 96, 449-547.	28.8	323

TION RE

#	Article	IF	CITATIONS
20	Fibroblast growth factor-23 and renin–angiotensin system levels in vitamin-D-dependent rickets type I. Pediatric Nephrology, 2016, 31, 1189-1193.	1.7	7
21	Effects of flavonoid derivatives on human microvascular endothelial cells. Natural Product Research, 2016, 30, 2831-2834.	1.8	10
22	Genetic Disorders of Vitamin D Metabolism. Clinical Pediatrics, 2016, 55, 404-414.	0.8	4
23	Genetic disorders of Vitamin D biosynthesis and degradation. Journal of Steroid Biochemistry and Molecular Biology, 2017, 165, 101-108.	2.5	51
24	Rickets. Nature Reviews Disease Primers, 2017, 3, 17101.	30.5	131
25	Rickets: The Skeletal Disorders of Impaired Calcium or Phosphate Availability. , 2018, , 497-524.		2
26	Genetic Disorders Of Vitamin D Synthesis and Action. , 2018, , 735-759.		1
27	Pregnancy, Lactation, and Postweaning Recovery. , 2018, , 755-782.		1
28	Vitamin D Hydroxylation–Deficient Rickets, Type 1A. , 2018, , 249-262.		3
29	Mutation update and long-term outcome after treatment with active vitamin D3 in Chinese patients with pseudovitamin D-deficiency rickets (PDDR). Osteoporosis International, 2019, 30, 481-489.	3.1	8
30	Disorders of Mineral and Bone Metabolism During Pregnancy and Lactation. , 2020, , 329-370.		1
31	50 Years Ago in T J P. Journal of Pediatrics, 2020, 221, 200.	1.8	0
32	Maternal and fetal vitamin D and their roles in mineral homeostasis and fetal bone development. Journal of Endocrinological Investigation, 2021, 44, 643-659.	3.3	12
33	Disorders of Mineral Metabolism II. Abnormalities of Mineral Homeostasis in the Newborn, Infant, Child, and Adolescent. , 2021, , 705-813.		4
34	Does Genotype–Phenotype Correlation Exist in Vitamin D-Dependent Rickets Type IA: Report of 13 New Cases and Review of the Literature. Calcified Tissue International, 2021, 108, 576-586.	3.1	17
35	P450 Enzymes in Steroid Processing. , 2015, , 851-879.		23
36	Screening for hypovitaminosis D: cost-effective or not?. European Journal of Endocrinology, 2019, 180, D1-D7.	3.7	9
37	A Case of Vitamin D-Dependent Rickets Type 1A with a Novel Mutation in the Uzbek Population. JCRPE Journal of Clinical Research in Pediatric Endocrinology, 2016, 8, 484-489.	0.9	5

CITATION REPORT

#	Article	IF	CITATIONS
38	Genetic and Clinical Characteristics of Patients with Vitamin D Dependent Rickets Type 1A. JCRPE Journal of Clinical Research in Pediatric Endocrinology, 2019, 11, 34-40.	0.9	18
39	A case of vitamin D hydroxylation-deficient rickets type 1A caused by 2 novel pathogenic variants in CYP27B1 gene. Annals of Pediatric Endocrinology and Metabolism, 2019, 24, 137-141.	2.3	7
40	Pediatric Bone Drugs: Calcium and Vitamin D. , 2014, , 153-181.		0
41	Vitamin D Dependent Rickets Type 1A Caused by <i>CYP27B1</i> Mutation. Childhood Kidney Diseases, 2019, 23, 111-115.	0.4	2
42	Hesperidin attenuates hepatic lipid accumulation in mice fed high-fat diet and oleic acid induced HepG2 via AMPK activation. Life Sciences, 2022, 296, 120428.	4.3	20
43	Benefits of Newborn Screening for Vitamin D-Dependant Rickets Type 1A in a Founder Population. Frontiers in Endocrinology, 2022, 13, .	3.5	3
44	Vitamin D Deficiency Mimicking Pseudohypoparathyroidism Type II in an Adolescent Boy: A Case Report. International Journal of Clinical Research, 2022, 3, 42-47.	0.0	1
45	Genotype-phenotype Description of Vitamin D–dependent Rickets 1A: CYP27B1 p.(Ala129Thr) Variant Induces a Milder Disease. Journal of Clinical Endocrinology and Metabolism, 2023, 108, 812-826.	3.6	1
46	Clinical characteristics and long-term outcomes of 12 children with vitamin D-dependent rickets type 1A: A retrospective study. Frontiers in Pediatrics, 0, 10, .	1.9	1
47	Hereditary Rickets: A Quick Guide for the Pediatrician. Current Pediatric Reviews, 2022, 19, .	0.8	0
48	An overview of CYP27B1 enzyme mutation and management: A case report and review of the literature. Clinical Case Reports (discontinued), 2023, 11, .	0.5	0
49	A Pair of Siblings with Vitamin D Dependent Rickets (VDDR) Type 1A: More Than Dairy and Sunshine. Malaysian Journal of Paediatrics and Child Health, 2023, 29, 1-5.	0.1	0
50	Refractory Rickets. Indian Journal of Pediatrics, 2023, 90, 574-581.	0.8	2
51	Vitamin D Hydroxylation-deficient Rickets Type 1A Misdiagnosed as Normocalcemic Primary Hyperparathyroidism. , 2023, 1, .		0
52	Vitamin D hydroxylation–deficient rickets, type 1A. , 2024, , 327-339.		0
53	The role of vitamin D physiology in regulating calcium and bone metabolism in mother and child. , 2024, , 693-759.		0

CITATION REPORT