Application of quantitative 31P NMR in biomass lignin a characterization

Energy and Environmental Science 4, 3154

DOI: 10.1039/c1ee01201k

Citation Report

#	Article	IF	CITATIONS
3	Biomass Characterization: Recent Progress in Understanding Biomass Recalcitrance. Industrial Biotechnology, 2012, 8, 191-208.	0.5	90
4	Chemical transformations of Populus trichocarpa during dilute acid pretreatment. RSC Advances, 2012, 2, 10925.	1.7	138
5	Structural Characterization of Switchgrass Lignin after Ethanol Organosolv Pretreatment. Energy & Ethanol Structural Characterization of Switchgrass Lignin after Ethanol Organosolv Pretreatment. Energy & Ethanol Organosolv Pretreatment.	2.5	127
6	Conversion of lignin to aromatic-based chemicals (L-chems) and biofuels (L-fuels). Bioresource Technology, 2012, 121, 328-334.	4.8	189
7	A high-resolution phosphorus-31 nuclear magnetic resonance (NMR) spectroscopic method for the non-phosphorus markers of chemical warfare agents. Analytical and Bioanalytical Chemistry, 2012, 402, 1643-1652.	1.9	14
8	Isolation and characterization of herbaceous lignins for applications in biomaterials. Industrial Crops and Products, 2013, 41, 356-364.	2.5	188
9	Hydrothermal deoxygenation of pyrolysis oil from Norwegian spruce: Picea abies. Biomass and Bioenergy, 2013, 56, 446-455.	2.9	10
10	Fractionation of bamboo culms by autohydrolysis, organosolv delignification and extended delignification: Understanding the fundamental chemistry of the lignin during the integrated process. Bioresource Technology, 2013, 150, 278-286.	4.8	95
11	Structural Elucidation of Lignin Polymers of <i>Eucalyptus</i> Chips during Organosolv Pretreatment and Extended Delignification. Journal of Agricultural and Food Chemistry, 2013, 61, 11067-11075.	2.4	109
12	Direct lignin fuel cell for power generation. RSC Advances, 2013, 3, 5083.	1.7	55
13	Free-Radical Analysis on Thermochemical Transformation of Lignin to Phenolic Compounds. Energy & Energ	2.5	99
14	NMR a critical tool to study the production of carbon fiber from lignin. Carbon, 2013, 52, 65-73.	5.4	103
15	Polymerization of Kraft lignin via ultrasonication for high-molecular-weight applications. Ultrasonics Sonochemistry, 2013, 20, 1463-1469.	3.8	63
16	Structure–Property Characteristics of Pyrolytic Lignins Derived from Fast Pyrolysis of a Lignin Rich Biomass Extract. ACS Sustainable Chemistry and Engineering, 2013, 1, 260-267.	3.2	36
17	Investigation of the fate of poplar lignin during autohydrolysis pretreatment to understand the biomass recalcitrance. RSC Advances, 2013, 3, 5305.	1.7	72
18	Hydrothermal upgrading of algae paste: Application of ³¹ Pâ€NMR. Environmental Progress and Sustainable Energy, 2013, 32, 1002-1012.	1.3	15
19	Structural Characterization of Lignin in Wild-Type versus COMT Down-Regulated Switchgrass. Frontiers in Energy Research, 2014, 1 , .	1.2	22
20	Partial depolymerization of enzymolysis lignin via mild hydrogenolysis over Raney Nickel. Bioresource Technology, 2014, 155, 422-426.	4.8	42

#	Article	IF	CITATIONS
21	Modification of lignin with dodecyl glycidyl ether and chlorosulfonic acid for preparation of anionic surfactant. RSC Advances, 2014, 4, 16944-16950.	1.7	31
22	Understanding the chemical and structural transformations of lignin macromolecule during torrefaction. Applied Energy, 2014, 121, 1-9.	5.1	190
23	Understanding the chemical transformations of lignin during ionic liquid pretreatment. Green Chemistry, 2014, 16, 181-190.	4.6	260
24	Characterisation of lignins isolated from sugarcane bagasse pretreated with acidified ethylene glycol and ionic liquids. Biomass and Bioenergy, 2014, 70, 498-512.	2.9	70
25	Evaluation of chemical processing impact on E. globulus wood lignin and comparison with bark lignin. Industrial Crops and Products, 2014, 61, 479-491.	2.5	38
26	Industrial Lignins. , 2014, , 315-336.		106
27	Structural Elucidation of Sorghum Lignins from an Integrated Biorefinery Process Based on Hydrothermal and Alkaline Treatments. Journal of Agricultural and Food Chemistry, 2014, 62, 8120-8128.	2.4	51
28	A Mechanistic Investigation of Acid-Catalyzed Cleavage of Aryl-Ether Linkages: Implications for Lignin Depolymerization in Acidic Environments. ACS Sustainable Chemistry and Engineering, 2014, 2, 472-485.	3.2	317
29	Integration of Ambient Formic Acid Process and Alkaline Hydrogen Peroxide Post-Treatment of Furfural Residue To Enhance Enzymatic Hydrolysis. Industrial & Engineering Chemistry Research, 2014, 53, 12935-12942.	1.8	16
30	Esterification of organosolv lignin under supercritical conditions. Industrial Crops and Products, 2014, 58, 287-297.	2.5	73
31	Structural characterization of lignins from hydroxycinnamoyl transferase (HCT) down-regulated transgenic poplars. Fuel, 2014, 134, 485-492.	3.4	24
32	Characteristics of wheat straw lignins from ethanol-based organosolv treatment. Industrial Crops and Products, 2014, 59, 85-95.	2.5	119
33	Lignin Modification for Biopolymer/Conjugated Polymer Hybrids as Renewable Energy Storage Materials. ChemSusChem, 2015, 8, 4081-4085.	3.6	41
34	Pyrolysis oil substituted epoxy resin: Improved ratio optimization and crosslinking efficiency. Journal of Applied Polymer Science, 2015, 132, .	1.3	17
35	Structural changes in softwood kraft lignin during nonoxidative thermal treatment. Nordic Pulp and Paper Research Journal, 2015, 30, 550-561.	0.3	20
36	Lignins of Bioenergy Crops: A Review. Natural Product Communications, 2015, 10, 1934578X1501000.	0.2	11
37	Catalytic cracking of jatropha-derived fast pyrolysis oils with VGO and their NMR characterization. RSC Advances, 2015, 5, 398-409.	1.7	26
38	Co- and Ca-phosphate-based catalysts for the depolymerization of organosolv eucalyptus lignin. RSC Advances, 2015, 5, 45618-45621.	1.7	4

#	ARTICLE	IF	Citations
39	Refining of Ethanol Biorefinery Residues to Isolate Value Added Lignins. ACS Sustainable Chemistry and Engineering, 2015, 3, 1632-1641.	3.2	23
40	Catalytic hydrothermal liquefaction of <scp><i>D</i></scp> <i>. tertiolecta</i> for the production of bioâ€oil over different acid/base catalysts. AICHE Journal, 2015, 61, 1118-1128.	1.8	78
41	Structural Transformation of Isolated Poplar and Switchgrass Lignins during Dilute Acid Treatment. ACS Sustainable Chemistry and Engineering, 2015, 3, 2203-2210.	3.2	35
42	Structural Analysis of Pyrolytic Lignins Isolated from Switchgrass Fast-Pyrolysis Oil. Energy & Camp; Fuels, 2015, 29, 8017-8026.	2.5	37
43	Comprehensive structural analysis of biorefinery lignins with a quantitative $<$ sup $>$ 13 $<$ /sup $>$ C NMR approach. RSC Advances, 2015, 5, 87187-87199.	1.7	80
44	Unraveling the Structural Modifications in Lignin of <i>Arundo donax</i> Linn. during Acid-Enhanced lonic Liquid Pretreatment. Journal of Agricultural and Food Chemistry, 2015, 63, 10747-10756.	2.4	23
45	Thermochemical conversion of low-lipid microalgae for the production of liquid fuels: challenges and opportunities. RSC Advances, 2015, 5, 18673-18701.	1.7	120
46	Effects of mesostructured silica catalysts on the depolymerization of organosolv lignin fractionated from woody eucalyptus. Bioresource Technology, 2015, 180, 222-229.	4.8	21
47	Genotype contribution to the chemical composition of banana rachis and implications for thermo/biochemical conversion. Biomass Conversion and Biorefinery, 2015, 5, 409-416.	2.9	6
48	Wet explosion pretreatment of loblolly pine leads to an increase in methoxylation of the lignin. Bioresources and Bioprocessing, 2015, 2, .	2.0	9
49	Alkaline Pretreatment of Switchgrass. ACS Sustainable Chemistry and Engineering, 2015, 3, 1479-1491.	3.2	94
50	UV Cross-Linkable Lignin Thermoplastic Graft Copolymers. ACS Sustainable Chemistry and Engineering, 2015, 3, 1839-1845.	3.2	44
51	Structural characterization of the solid residue produced by hydrothermal treatment of sunflower stalks and subsequent enzymatic hydrolysis. Journal of Industrial and Engineering Chemistry, 2015, 23, 72-78.	2.9	7
52	Structural elucidation of whole lignin from Eucalyptus based on preswelling and enzymatic hydrolysis. Green Chemistry, 2015, 17, 1589-1596.	4.6	157
53	On the Quantification of Lignin Hydroxyl Groups With ³¹ P and ¹³ C NMR Spectroscopy. Journal of Wood Chemistry and Technology, 2015, 35, 220-237.	0.9	160
54	Effect of structural changes of lignin during the autohydrolysis and organosolv pretreatment on Eucommia ulmoides Oliver for an effective enzymatic hydrolysis. Bioresource Technology, 2015, 185, 378-385.	4.8	65
55	Towards lignin valorisation: comparing homogeneous catalysts for the aerobic oxidation and depolymerisation of organosolv lignin. RSC Advances, 2015, 5, 70502-70511.	1.7	32
56	Structural transformations of triploid of Populus tomentosa Carr. lignin during auto-catalyzed ethanol organosolv pretreatment. Industrial Crops and Products, 2015, 76, 522-529.	2.5	65

#	Article	IF	CITATIONS
57	Structural changes in lignin during integrated process of steam explosion followed by alkaline hydrogen peroxide of Eucommia ulmoides Oliver and its effect on enzymatic hydrolysis. Applied Energy, 2015, 158, 233-242.	5.1	44
58	Structural changes in lignins isolated using an acidic ionic liquid water mixture. Green Chemistry, 2015, 17, 5019-5034.	4.6	159
59	Theory, practice and prospects of X-ray and neutron scattering for lignocellulosic biomass characterization: towards understanding biomass pretreatment. Energy and Environmental Science, 2015, 8, 436-455.	15.6	87
60	Understanding the Mechanism of Self-Bonding of Bamboo Binderless Boards: Investigating the Structural Changes of Lignin Macromolecule during the Molding Pressing Process. BioResources, 2016, 12, .	0.5	7
61	Applications of Molecular Spectroscopic Methods to the Elucidation of Lignin Structure. , 2016, , .		5
62	Wege zur Verwertung von Lignin: Fortschritte in der Biotechnik, der Bioraffination und der Katalyse. Angewandte Chemie, 2016, 128, 8296-8354.	1.6	159
63	Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis. Angewandte Chemie - International Edition, 2016, 55, 8164-8215.	7.2	1,576
64	Synergetic effect of dilute acid and alkali treatments on fractional application of rice straw. Biotechnology for Biofuels, 2016, 9, 217.	6.2	41
65	Appropriate biorefining strategies for multiple feedstocks: Critical evaluation for pretreatment methods, and hydrolysis with high solids loading. Renewable Energy, 2016, 96, 832-842.	4.3	26
66	Reinforcement of lignin-based carbon fibers with functionalized carbon nanotubes. Composites Science and Technology, 2016, 128, 116-122.	3.8	41
67	Green Epoxy Resin System Based on Lignin and Tung Oil and Its Application in Epoxy Asphalt. ACS Sustainable Chemistry and Engineering, 2016, 4, 2754-2761.	3.2	141
68	The strong association of condensed phenolic moieties in isolated lignins with their inhibition of enzymatic hydrolysis. Green Chemistry, 2016, 18, 4276-4286.	4.6	195
69	Understanding the structural changes and depolymerization of Eucalyptus lignin under mild conditions in aqueous AlCl ₃ . RSC Advances, 2016, 6, 45315-45325.	1.7	52
70	Sources of Lignin. , 2016, , 1-11.		23
71	Lignin Interunit Linkages and Model Compounds. , 2016, , 27-47.		14
72	Peroxidative Oxidation of Lignin and a Lignin Model Compound by a Manganese SALEN Derivative. ACS Sustainable Chemistry and Engineering, 2016, 4, 3212-3219.	3.2	20
73	Lignin Profiling: A Guide for Selecting Appropriate Lignins as Precursors in Biomaterials Development. ACS Sustainable Chemistry and Engineering, 2016, 4, 5090-5105.	3.2	49
74	Properties, Chemical Characteristics and Application of Lignin and Its Derivatives. Biofuels and Biorefineries, 2016, , 3-33.	0.5	14

#	ARTICLE	IF	Citations
75	Catalytic aerobic oxidation of lignin-derived bio-oils using oxovanadium and copper complex catalysts and ionic liquids. Journal of Molecular Catalysis A, 2016, 423, 414-422.	4.8	19
76	Review of NMR Characterization of Pyrolysis Oils. Energy & Energy & 2016, 30, 6863-6880.	2.5	94
77	Oxidative Depolymerization of Lignin Using a Novel Polyoxometalate-Protic Ionic Liquid System. ACS Sustainable Chemistry and Engineering, 2016, 4, 6031-6036.	3.2	89
78	Effects of organosolv fractionation time on thermal and chemical properties of lignins. RSC Advances, 2016, 6, 79228-79235.	1.7	31
79	Enhancing Aromatic Production from Reductive Lignin Disassembly: <i>in Situ</i> O-Methylation of Phenolic Intermediates. ACS Sustainable Chemistry and Engineering, 2016, 4, 6877-6886.	3.2	52
80	Structural Changes of Sugar Cane Bagasse Lignin during Cellulosic Ethanol Production Process. ACS Sustainable Chemistry and Engineering, 2016, 4, 5483-5494.	3.2	36
81	Mechanochemical Oleation of Lignin Through Ball Milling and Properties of its Blends with PLA. ChemistrySelect, 2016, 1, 3449-3454.	0.7	18
82	Assessment of the Lignin-Derived Inhibition of Enzymatic Hydrolysis by Adding Untreated and Ammonia-Fiber-Expansion-Treated Lignin Isolated from Switchgrass. Energy & Energy	2.5	22
83	Magnesium Oxideâ€catalyzed Oxidative Depolymerization of <scp>EFB</scp> Lignin. Bulletin of the Korean Chemical Society, 2016, 37, 515-521.	1.0	3
84	Dodecylated lignin-g-PLA for effective toughening of PLA. Green Chemistry, 2016, 18, 5008-5014.	4.6	68
85	A mild AlCl ₃ -catalyzed ethanol pretreatment and its effects on the structural changes of Eucalyptus wood lignin and the saccharification efficiency. RSC Advances, 2016, 6, 57986-57995.	1.7	27
86	Effect of pretreatment on the formation of 5-chloromethyl furfural derived from sugarcane bagasse. RSC Advances, 2016, 6, 5240-5248.	1.7	10
87	In-depth investigation on quantitative characterization of pyrolysis oil by ³¹ P NMR. RSC Advances, 2016, 6, 17567-17573.	1.7	29
88	Performance of Side-Streams from Eucalyptus Processing as Sources of Polysaccharides and Lignins by Kraft Delignification. Industrial & Engineering Chemistry Research, 2016, 55, 516-526.	1.8	7
89	Synergistic enzymatic and microbial lignin conversion. Green Chemistry, 2016, 18, 1306-1312.	4.6	172
90	Chemical structure characteristics of wood/lignin composites during mold pressing. Polymer Composites, 2017, 38, 955-965.	2.3	10
91	Conversion of corn stover alkaline pre-treatment waste streams into biodiesel via Rhodococci. RSC Advances, 2017, 7, 4108-4115.	1.7	51
92	Structural changes of poplar wood lignin after supercritical pretreatment using carbon dioxide and ethanol–water as co-solvents. RSC Advances, 2017, 7, 8314-8322.	1.7	67

#	Article	IF	Citations
93	Evaluation of organosolv pretreatment on the structural characteristics of lignin polymers and follow-up enzymatic hydrolysis of the substrates from Eucalyptus wood. International Journal of Biological Macromolecules, 2017, 97, 447-459.	3.6	42
94	A process for producing lignin and volatile compounds from hydrolysis liquor. Biotechnology for Biofuels, 2017, 10, 47.	6.2	14
95	Valorizing Recalcitrant Cellulolytic Enzyme Lignin via Lignin Nanoparticles Fabrication in an Integrated Biorefinery. ACS Sustainable Chemistry and Engineering, 2017, 5, 2702-2710.	3.2	115
96	Effect of steam explosion treatment on chemical composition and characteristic of organosolv fescue lignin. Industrial Crops and Products, 2017, 99, 79-85.	2.5	42
97	Catalytic hydrothermal liquefaction of D.Âtertiolecta over multifunctional mesoporous silica-based catalysts with high stability. Microporous and Mesoporous Materials, 2017, 250, 120-127.	2.2	13
98	³¹ P NMR Characterization of Tricin and Its Structurally Similar Flavonoids. ChemistrySelect, 2017, 2, 3557-3561.	0.7	14
99	Hydrothermal liquefaction phase behavior of microalgae & mp; model compounds in fused silica capillary reactor. International Journal of Green Energy, 2017, 14, 861-867.	2.1	3
100	Chemosynthesis and structural characterization of a novel lignin-based bio-sorbent and its strong adsorption for Pb (II). Industrial Crops and Products, 2017, 108, 72-80.	2.5	88
101	Evaluation of optical properties and chemical structure changes in enzymatic hydrolysis lignin during heat treatment. RSC Advances, 2017, 7, 20760-20765.	1.7	16
102	Comparative Study of the Structure of Hydroproducts Derived from Loblolly Pine and Straw Grass. ACS Sustainable Chemistry and Engineering, 2017, 5, 6131-6138.	3.2	2
103	Structural elucidation of hydro-products from hydrothermal carbonization of loblolly pine at different temperatures using NMR techniques. Energy, 2017, 133, 171-178.	4.5	9
104	Aqueous organic solvent fractionation as means to improve lignin homogeneity and purity. Industrial Crops and Products, 2017, 103, 51-58.	2.5	154
105	Effects of organosolv and ammonia pretreatments on lignin properties and its inhibition for enzymatic hydrolysis. Green Chemistry, 2017, 19, 2006-2016.	4.6	145
106	Lignin Films from Spruce, Eucalyptus, and Wheat Straw Studied with Electroacoustic and Optical Sensors: Effect of Composition and Electrostatic Screening on Enzyme Binding. Biomacromolecules, 2017, 18, 1322-1332.	2.6	33
107	Effect of molecular weight on the pyrolysis characteristics of alkali lignin. Fuel, 2017, 193, 45-53.	3.4	61
108	Advanced Chemical Design for Efficient Lignin Bioconversion. ACS Sustainable Chemistry and Engineering, 2017, 5, 2215-2223.	3.2	75
109	More sustainable energy storage: lignin based electrodes with glyoxal crosslinking. Journal of Materials Chemistry A, 2017, 5, 24344-24352.	5.2	33
110	Kraft Lignin as Electrode Material for Sustainable Electrochemical Energy Storage. Advanced Materials Interfaces, 2017, 4, 1700698.	1.9	48

#	Article	IF	CITATIONS
111	Catalytic Conversion of Structural Carbohydrates and Lignin to Chemicals. Advances in Catalysis, 2017, 60, 59-123.	0.1	61
112	Structural Characteristics of Lignin Macromolecules from Different <i>Eucalyptus</i> Species. ACS Sustainable Chemistry and Engineering, 2017, 5, 11618-11627.	3.2	122
114	Lignin valorization: lignin nanoparticles as high-value bio-additive for multifunctional nanocomposites. Biotechnology for Biofuels, 2017, 10, 192.	6.2	228
115	Synergistic maximization of the carbohydrate output and lignin processability by combinatorial pretreatment. Green Chemistry, 2017, 19, 4939-4955.	4.6	116
116	Characterization of products from hydrothermal carbonization of pine. Bioresource Technology, 2017, 244, 78-83.	4.8	72
117	Effect of in Vivo Deuteration on Structure of Switchgrass Lignin. ACS Sustainable Chemistry and Engineering, 2017, 5, 8004-8010.	3.2	11
118	Adsorption of cellobiohydrolases I onto lignin fractions from dilute acid pretreated Broussonetia papyrifera. Bioresource Technology, 2017, 244, 957-962.	4.8	25
119	Deconstruction of lignocellulosic biomass with hydrated cerium (III) chloride in water and ethanol. Applied Catalysis A: General, 2017, 546, 67-78.	2.2	12
120	Sequential solvent fractionation of lignin for selective production of monoaromatics by Ru catalyzed ethanolysis. RSC Advances, 2017, 7, 53117-53125.	1.7	33
121	Isolation and characterization of lignins from wheat straw: Application as binder in lithium batteries. International Journal of Biological Macromolecules, 2017, 104, 909-918.	3.6	59
122	Delignification and Saccharification Enhancement of Sugarcane Byproducts by a Laccase-Based Pretreatment. ACS Sustainable Chemistry and Engineering, 2017, 5, 7145-7154.	3.2	53
123	Distributions of organic compounds to the products from hydrothermal liquefaction of microalgae. Environmental Progress and Sustainable Energy, 2017, 36, 259-268.	1.3	30
124	Production of phenolic hydrocarbons using catalytic depolymerization of empty fruit bunch (EFB)-derived organosolv lignin on HÎ ² -supported Ru. Chemical Engineering Journal, 2017, 309, 187-196.	6.6	42
125	An Inâ€Depth Understanding of Biomass Recalcitrance Using Natural Poplar Variants as the Feedstock. ChemSusChem, 2017, 10, 139-150.	3.6	106
126	Quantitative NMR Studies of Multiple Compound Mixtures. Annual Reports on NMR Spectroscopy, 2017, 90, 85-143.	0.7	28
127	Reaction Behaviors of Bagasse Modified with Phthalic Anhydride in 1â€Allylâ€3â€Methylimidazolium Chloride with Catalyst 4â€Dimethylaminopyridine. , 2017, , .		0
128	Structural Characterization of Lignin Isolated from Wheat-Straw during the Alkali Cooking Process. BioResources, 2017, 12, .	0.5	4
129	Structural Characterization of Lignin and Its Degradation Products with Spectroscopic Methods. Journal of Spectroscopy, 2017, 2017, 1-15.	0.6	201

#	Article	IF	CITATIONS
130	Analytical Strategies Involved in the Detailed Componential Characterization of Biooil Produced from Lignocellulosic Biomass. International Journal of Analytical Chemistry, 2017, 2017, 1-19.	0.4	17
131	Inhibitory effects of lignin on enzymatic hydrolysis: The role of lignin chemistry and molecular weight. Renewable Energy, 2018, 123, 664-674.	4.3	121
132	A Sustainable Tandem Catalysis Approach to Plant Oilâ€Based Polyols via Schenckâ€Ene Reaction and Epoxidation. European Journal of Lipid Science and Technology, 2018, 120, 1800015.	1.0	7
133	Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass. Green Chemistry, 2018, 20, 2711-2721.	4.6	323
134	Microwave-assisted organosolv extraction of coconut shell lignin by BrÃ,nsted and Lewis acids catalysts. Journal of Cleaner Production, 2018, 189, 785-796.	4.6	55
135	Lignin-to-Liquid-Solvolysis (LtL) of Organosolv Extracted Lignin. ACS Sustainable Chemistry and Engineering, 2018, 6, 3102-3112.	3.2	21
136	Effects of high-lignin-loading on thermal, mechanical, and morphological properties of bioplastic composites. Composite Structures, 2018, 189, 349-356.	3.1	32
137	In Situ Lignin Bioconversion Promotes Complete Carbohydrate Conversion of Rice Straw by <i>Cupriavidus basilensis</i> B-8. ACS Sustainable Chemistry and Engineering, 2018, 6, 7969-7978.	3.2	62
138	Bio-based polyurethane foam preparation employing lignin from corn stalk enzymatic hydrolysis residues. RSC Advances, 2018, 8, 15754-15761.	1.7	30
139	Fractionating Wheat Straw via Phosphoric Acid with Hydrogen Peroxide Pretreatment and Structural Elucidation of the Derived Lignin. Energy & Elucidation of the Derived Lignin.	2.5	35
140	Fast Fractionation of Technical Lignins by Organic Cosolvents. ACS Sustainable Chemistry and Engineering, 2018, 6, 6064-6072.	3.2	84
141	Rice straw as a feedstock for biofuels: Availability, recalcitrance, and chemical properties. Biofuels, Bioproducts and Biorefining, 2018, 12, 83-107.	1.9	133
142	Aqueous acetone fractionation of kraft, organosolv and soda lignins. International Journal of Biological Macromolecules, 2018, 106, 979-987.	3.6	150
143	Amination of biorefinery technical lignins using Mannich reaction synergy with subcritical ethanol depolymerization. International Journal of Biological Macromolecules, 2018, 107, 426-435.	3.6	45
144	Mechanistic studies of base-catalysed lignin depolymerisation in dimethyl carbonate. Green Chemistry, 2018, 20, 170-182.	4.6	75
145	Fast pyrolysis bioâ€oil as precursor of thermosetting epoxy resins. Polymer Engineering and Science, 2018, 58, 1296-1307.	1.5	13
146	Editorial: Advancements in Biomass Recalcitrance: The Use of Lignin for the Production of Fuels and Chemicals. Frontiers in Energy Research, 2018, 6, .	1.2	15
147	Unmodified kraft lignin isolated at room temperature from aqueous solution for preparation of highly flexible transparent polyurethane coatings. RSC Advances, 2018, 8, 40765-40777.	1.7	39

#	ARTICLE	IF	CITATIONS
148	Demethylation and other modifications of industrial softwood kraft lignin by laccase-mediators. Holzforschung, 2018, 72, 357-365.	0.9	14
149	Preparation and characterization of thermo-sensitive gel with phenolated alkali lignin. Scientific Reports, 2018, 8, 14450.	1.6	42
150	Study on the Effect of 1-Butanol Soluble Lignin on Temperature-Sensitive Gel. Polymers, 2018, 10, 1109.	2.0	14
151	A commercial laccase-mediator system to delignify and improve saccharification of the fast-growing < i>Paulownia fortunei < /i> (Seem.) Hemsl Holzforschung, 2018, 73, 45-54.	0.9	13
152	Isolation of lignin from Ammonia Fiber Expansion (AFEX) pretreated biorefinery waste. Biomass and Bioenergy, 2018, 119, 446-455.	2.9	21
153	Insights of Ethanol Organosolv Pretreatment on Lignin Properties of <i>Broussonetia papyrifera</i> ACS Sustainable Chemistry and Engineering, 2018, 6, 14767-14773.	3.2	49
154	Revealing the Topochemistry and Structural Features of Lignin during the Growth of <i>Eucalyptus grandis</i> \tilde{A} — <i>Eucalyptus urophylla</i> ACS Sustainable Chemistry and Engineering, 2018, 6, 9198-9207.	3.2	13
155	Hybrid Catalytic Biorefining of Hardwood Biomass to Methylated Furans and Depolymerized Technical Lignin. ACS Sustainable Chemistry and Engineering, 2018, 6, 10587-10594.	3.2	33
156	Rapid pretreatment of <i>Miscanthus</i> using the low-cost ionic liquid triethylammonium hydrogen sulfate at elevated temperatures. Green Chemistry, 2018, 20, 3486-3498.	4.6	100
157	Characteristics of Lignin Fractions from Dilute Acid Pretreated Switchgrass and Their Effect on Cellobiohydrolase from Trichoderma longibrachiatum. Frontiers in Energy Research, 2018, 6, .	1.2	36
158	Characterization of Whole Biomasses in Pyridine Based Ionic Liquid at Low Temperature by 31P NMR: An Approach to Quantitatively Measure Hydroxyl Groups in Biomass As Their Original Structures. Frontiers in Energy Research, 2018, 6, .	1.2	14
159	Tuning hydroxyl groups for quality carbon fiber of lignin. Carbon, 2018, 139, 500-511.	5.4	48
160	A structured understanding of cellobiohydrolase I binding to poplar lignin fractions after dilute acid pretreatment. Biotechnology for Biofuels, 2018, 11, 96.	6.2	29
161	Uniform Chemical Functionality of Technical Lignin Using Ethylene Carbonate for Hydroxyethylation and Subsequent Greener Esterification. ACS Sustainable Chemistry and Engineering, 2018, 6, 12251-12260.	3.2	61
162	Ethanol: A Promising Green Solvent for the Deconstruction of Lignocellulose. ChemSusChem, 2018, 11, 3559-3575.	3.6	81
163	Coupling of hydrothermal and ionic liquid pretreatments for sequential biorefinery of Tamarix austromongolica. Applied Energy, 2018, 229, 745-755.	5.1	20
164	Layer-by-Layer Preparation of Microcapsules and Nanocapsules of Mixed Polyphenols with High Antioxidant and UV-Shielding Properties. Biomacromolecules, 2018, 19, 3883-3893.	2.6	40
165	Effects of phenolic hydroxyl functionality on lignin pyrolysis over zeolite catalyst. Fuel, 2018, 232, 81-89.	3.4	44

#	Article	IF	CITATIONS
166	Dual Catalytic Activity of an Ionic Liquid in Lignin Acetylation and Deacetylation. Chemistry Letters, 2018, 47, 860-863.	0.7	16
167	Cellulose triacetate synthesis via one-pot organocatalytic transesterification and delignification of pretreated bagasse. RSC Advances, 2018, 8, 21768-21776.	1.7	30
168	Molecular Sensors for NMR-Based Detection. Chemical Reviews, 2019, 119, 195-230.	23.0	82
169	Fractionation of three different lignins by thermal separation techniquesâ€"A comparative study. GCB Bioenergy, 2019, 11, 206-217.	2.5	28
170	Acidic Ionic Liquid as Both Solvent and Catalyst for Fast Chemical Esterification of Industrial Lignins: Performances and Regioselectivity. Frontiers in Chemistry, 2019, 7, 578.	1.8	21
171	Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy. Nature Protocols, 2019, 14, 2627-2647.	5.5	272
172	Structure-antioxidant activity relationship of active oxygen catalytic lignin and lignin-carbohydrate complex. International Journal of Biological Macromolecules, 2019, 139, 21-29.	3.6	51
173	A lignin-containing cellulose hydrogel for lignin fractionation. Green Chemistry, 2019, 21, 5222-5230.	4.6	89
174	Fractionational and structural characterization of lignin and its modification as biosorbents for efficient removal of chromium from wastewater: a review. Journal of Leather Science and Engineering, 2019, 1 , .	2.7	84
175	A Multifunctional Cosolvent Pair Reveals Molecular Principles of Biomass Deconstruction. Journal of the American Chemical Society, 2019, 141, 12545-12557.	6.6	7 3
176	Aqueous Dispersions of Esterified Lignin Particles for Hydrophobic Coatings. Frontiers in Chemistry, 2019, 7, 515.	1.8	29
177	Advances in lignin valorization towards bio-based chemicals and fuels: Lignin biorefinery. Bioresource Technology, 2019, 291, 121878.	4.8	177
178	Advances in the Characterization Methods of Biomass Pyrolysis Products. ACS Sustainable Chemistry and Engineering, 2019, 7, 12639-12655.	3.2	51
179	Valorizing Waste Lignocellulose-Based Furniture Boards by Phosphoric Acid and Hydrogen Peroxide (Php) Pretreatment for Bioethanol Production and High-Value Lignin Recovery. Sustainability, 2019, 11, 6175.	1.6	9
180	Probing the Lewis Acid Catalyzed Acyclic Pathway of Carbohydrate Conversion in Methanol by <i>In Situ</i> I) NMR. ChemCatChem, 2019, 11, 5077-5084.	1.8	10
181	From Lignin Waste to Efficient Catalyst: Illuminating the Impact of Lignin Structure on Catalytic Activity of Cycloaddition Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 16585-16594.	3.2	31
182	Contribution of Fourier transform mass spectrometry to bio-oil study., 2019,, 679-733.		7
183	In-depth study on the effect of oxygen-containing functional groups in pyrolysis oil by P-31 NMR. RSC Advances, 2019, 9, 27157-27166.	1.7	5

#	Article	IF	CITATIONS
184	Transparent Cellulose/Technical Lignin Composite Films for Advanced Packaging. Polymers, 2019, 11, 1455.	2.0	44
185	Preparation and toughening of mechanochemically modified lignin-based epoxy. Polymer, 2019, 183, 121859.	1.8	29
186	One-pot bio-derived ionic liquid conversion followed by hydrogenolysis reaction for biomass valorization: A promising approach affecting the morphology and quality of lignin of switchgrass and poplar. Bioresource Technology, 2019, 294, 122214.	4.8	34
187	Measurement of Physicochemical Properties of Lignin. ACS Symposium Series, 2019, , 33-47.	0.5	3
188	Premethylation of Lignin Hydroxyl Functionality for Improving Storage Stability of Oil from Solvent Liquefaction. Energy & Energy	2.5	10
189	Downregulation of pectin biosynthesis gene GAUT4 leads to reduced ferulate and lignin-carbohydrate cross-linking in switchgrass. Communications Biology, 2019, 2, 22.	2.0	35
190	Defining lignin nanoparticle properties through tailored lignin reactivity by sequential organosolv fragmentation approach (SOFA). Green Chemistry, 2019, 21, 245-260.	4.6	97
191	Synergistic effect of lignin incorporation into polystyrene for producing sustainable superadsorbent. RSC Advances, 2019, 9, 17639-17652.	1.7	13
192	Rhodococcus and Yarrowia-Based Lipid Production Using Lignin-Containing Industrial Residues. Methods in Molecular Biology, 2019, 1995, 103-120.	0.4	3
193	Investigating the correlation of biomass recalcitrance with pyrolysis oil using poplar as the feedstock. Bioresource Technology, 2019, 289, 121589.	4.8	18
194	A simple route to synthesize esterified lignin derivatives. Green Chemistry, 2019, 21, 3682-3692.	4.6	62
195	Mechanismâ€Guided Design of Highly Efficient Protein Secretion and Lipid Conversion for Biomanufacturing and Biorefining. Advanced Science, 2019, 6, 1801980.	5.6	51
196	Recent progress in the thermal and catalytic conversion of lignin. Renewable and Sustainable Energy Reviews, 2019, 111, 422-441.	8.2	141
197	One-pot transformation of lignocellulosic biomass into crude bio-oil with metal chlorides via hydrothermal and supercritical ethanol processing. Bioresource Technology, 2019, 288, 121500.	4.8	24
198	Liquid hot water extraction followed by mechanical extrusion as a chemical-free pretreatment approach for cellulosic ethanol production from rigid hardwood. Fuel, 2019, 252, 589-597.	3.4	51
199	Tailor-made organosolv lignins from coconut wastes: Effects of green solvents in microwave-assisted processes upon their structure and antioxidant activities. Bioresource Technology Reports, 2019, 7, 100219.	1.5	12
200	Recent Advances in Applications of Acidophilic Fungi to Produce Chemicals. Molecules, 2019, 24, 786.	1.7	10
201	Extraction and characterization of lignin from corncob residue after acid-catalyzed steam explosion pretreatment. Industrial Crops and Products, 2019, 133, 241-249.	2.5	54

#	Article	IF	CITATIONS
202	Comparing a deep eutectic solvent (DES) to a hydrotrope for their ability to enhance the fractionation and enzymatic hydrolysis of willow and corn stover. Sustainable Energy and Fuels, 2019, 3, 1329-1337.	2.5	45
203	Butanol-Based Organosolv Lignin and Reactive Modification of Poly(ethylene-glycidyl methacrylate). Industrial & Digineering Chemistry Research, 2019, 58, 20300-20308.	1.8	8
204	Microstructure defines the electroconductive and mechanical performance of plant-derived renewable carbon fiber. Chemical Communications, 2019, 55, 12655-12658.	2.2	9
205	Pretreatment of Wheat Straw with Phosphoric Acid and Hydrogen Peroxide to Simultaneously Facilitate Cellulose Digestibility and Modify Lignin as Adsorbents. Biomolecules, 2019, 9, 844.	1.8	14
206	From lignin to valuable products–strategies, challenges, and prospects. Bioresource Technology, 2019, 271, 449-461.	4.8	565
207	Organic solvent fractionation of acetosolv palm oil lignin: The role of its structure on the antioxidant activity. International Journal of Biological Macromolecules, 2019, 122, 1163-1172.	3.6	48
208	Codesign of Combinatorial Organosolv Pretreatment (COP) and Lignin Nanoparticles (LNPs) in Biorefineries. ACS Sustainable Chemistry and Engineering, 2019, 7, 2634-2647.	3.2	41
209	Green and Facile Preparation of Regular Lignin Nanoparticles with High Yield and Their Natural Broad-Spectrum Sunscreens. ACS Sustainable Chemistry and Engineering, 2019, 7, 2658-2666.	3.2	148
210	Solvent fractionation of softwood and hardwood kraft lignins for more efficient uses: Compositional, structural, thermal, antioxidant and adsorption properties. Industrial Crops and Products, 2019, 129, 123-134.	2.5	116
211	Structural Transformations of Hybrid <i>Pennisetum</i> Lignin: Effect of Microwave-Assisted Hydrothermal Pretreatment. ACS Sustainable Chemistry and Engineering, 2019, 7, 3073-3082.	3.2	15
212	Improving Lignin Homogeneity and Functionality via Ethanolysis for Production of Antioxidants. ACS Sustainable Chemistry and Engineering, 2019, 7, 3520-3526.	3.2	37
214	Unraveling the Fate of Lignin from Eucalyptus and Poplar during Integrated Delignification and Bleaching. ChemSusChem, 2019, 12, 1059-1068.	3.6	37
215	Lignin for white natural sunscreens. International Journal of Biological Macromolecules, 2019, 122, 549-554.	3.6	95
216	A Highâ€Ligninâ€Content, Removable, and Glycolâ€Assisted Repairable Coating Based on Dynamic Covalent Bonds. ChemSusChem, 2019, 12, 1049-1058.	3.6	89
217	Effect of molecular size of lignin on the formation of aromatic hydrocarbon during zeolite catalyzed pyrolysis. Fuel, 2019, 240, 92-100.	3.4	25
218	Effects of one-step alkaline and two-step alkaline/dilute acid and alkaline/steam explosion pretreatments on the structure of isolated pine lignin. Biomass and Bioenergy, 2019, 120, 350-358.	2.9	46
219	Characterization of fractional cuts of co-solvent enhanced lignocellulosic fractionation lignin isolated by sequential precipitation. Bioresource Technology, 2019, 272, 202-208.	4.8	80
220	Production of phenolic hydrocarbons from organosolv lignin and lignocellulose feedstocks of hardwood, softwood, grass and agricultural waste. Journal of Industrial and Engineering Chemistry, 2019, 69, 304-314.	2.9	27

#	Article	IF	CITATIONS
221	Comparative study of solvolysis of technical lignins in flow reactor. Biomass Conversion and Biorefinery, 2020, 10, 351-366.	2.9	16
222	Nanosecond pulsed fiber laser cleaning of natural marine micro-biofoulings from the surface of aluminum alloy. Journal of Cleaner Production, 2020, 244, 118724.	4.6	47
223	Acidic deep eutectic solvents pretreatment for selective lignocellulosic biomass fractionation with enhanced cellulose reactivity. International Journal of Biological Macromolecules, 2020, 142, 288-297.	3.6	127
224	A sustainable platform of lignin: From bioresources to materials and their applications in rechargeable batteries and supercapacitors. Progress in Energy and Combustion Science, 2020, 76, 100788.	15.8	191
225	Investigating the effects of activating agent morphology on the porosity and related capacitance of nanoporous carbons. CrystEngComm, 2020, 22, 1560-1567.	1.3	9
226	A novel environmentally friendly process for depolymerization of hydrolysis lignin using Kraft cooking liquor: chemicals recoverable by the Kraft recovery cycle. Biofuels, Bioproducts and Biorefining, 2020, 14, 138-151.	1.9	5
227	Successive Organic Solvent Fractionation and Characterization of Heterogeneous Lignin Extracted by <i>p-</i> Toluenesulfonic Acid from Hybrid Poplar. Energy & Energy	2.5	14
228	A Review on Lignin Liquefaction: Advanced Characterization of Structure and Microkinetic Modeling. Industrial & Characterization of Structure and Microkinetic Modeling.	1.8	45
229	Structural Variations of Lignin Macromolecules from Early Growth Stages of Poplar Cell Walls. ACS Sustainable Chemistry and Engineering, 2020, 8, 1813-1822.	3.2	56
230	Lewis Acid-Facilitated Deep Eutectic Solvent (DES) Pretreatment for Producing High-Purity and Antioxidative Lignin. ACS Sustainable Chemistry and Engineering, 2020, 8, 1050-1057.	3.2	117
231	Structural elucidation of lignin macromolecule from abaca during alkaline hydrogen peroxide delignification. International Journal of Biological Macromolecules, 2020, 144, 596-602.	3.6	51
232	Novel in-situ preparation of nano sized Ni (0) catalyst for depolymerization of lignin-rich waste from industrial biorefinery. Bioresource Technology Reports, 2020, 10, 100355.	1.5	4
233	Signally improvement of polyurethane adhesive with hydroxy-enriched lignin from bagasse. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124164.	2.3	46
234	Understanding the <i>in situ </i> state of lignocellulosic biomass during ionic liquids-based engineering of renewable materials and chemicals. Green Chemistry, 2020, 22, 6748-6766.	4.6	18
235	Non-productive celluase binding onto deep eutectic solvent (DES) extracted lignin from willow and corn stover with inhibitory effects on enzymatic hydrolysis of cellulose. Carbohydrate Polymers, 2020, 250, 116956.	5.1	58
236	A novel aqueous gallic acid-based natural deep eutectic solvent for delignification of hybrid poplar and enhanced enzymatic hydrolysis of treated pulp. Cellulose, 2020, 27, 8301-8315.	2.4	23
237	Alkaline sulfonation and thermomechanical pulping pretreatment of softwood chips and pellets to enhance enzymatic hydrolysis. Bioresource Technology, 2020, 315, 123789.	4.8	23
238	Oxidative depolymerization of lignins for producing aromatics: variation of botanical origin and extraction methods. Biomass Conversion and Biorefinery, 2022, 12, 3795-3808.	2.9	29

#	Article	IF	CITATIONS
239	Recent Advances in the Catalytic Depolymerization of Lignin towards Phenolic Chemicals: A Review. ChemSusChem, 2020, 13, 4296-4317.	3.6	207
240	Enhancing Enzyme-Mediated Cellulose Hydrolysis by Incorporating Acid Groups Onto the Lignin During Biomass Pretreatment. Frontiers in Bioengineering and Biotechnology, 2020, 8, 608835.	2.0	8
241	A Critical Review of the Physicochemical Properties of Lignosulfonates: Chemical Structure and Behavior in Aqueous Solution, at Surfaces and Interfaces. Surfaces, 2020, 3, 622-648.	1.0	70
242	Willow Lignin Recovered from Hotâ€Water Extraction for the Production of Hydrogels and Thermoplastic Blends. ChemSusChem, 2020, 13, 4702-4721.	3.6	13
243	Structural characterization of sugarcane lignins extracted from different protic ionic liquid pretreatments. Renewable Energy, 2020, 161, 579-592.	4.3	42
244	"Lignophines― lignin-based tertiary phosphines with metal-scavenging ability. Chemical Communications, 2020, 56, 10357-10360.	2.2	5
245	Phosphorylated kraft lignin with improved thermal stability. International Journal of Biological Macromolecules, 2020, 162, 1642-1652.	3.6	24
246	Fabrication of spherical lignin nanoparticles using acid-catalyzed condensed lignins. International Journal of Biological Macromolecules, 2020, 164, 3038-3047.	3.6	34
247	Progress in the solvent depolymerization of lignin. Renewable and Sustainable Energy Reviews, 2020, 133, 110359.	8.2	72
248	Production of Novolac Resin after Partial Substitution of Phenol from Bio-Oil. Transactions of the ASABE, 2020, 63, 901-912.	1.1	8
249	In-Situ Rheological Studies of Cationic Lignin Polymerization in an Acidic Aqueous System. Polymers, 2020, 12, 2982.	2.0	4
250	Sustainable Process for the Depolymerization/Oxidation of Softwood and Hardwood Kraft Lignins Using Hydrogen Peroxide under Ambient Conditions. Molecules, 2020, 25, 2329.	1.7	32
251	Increasing the Carbohydrate Output of Bamboo Using a Combinatorial Pretreatment. ACS Sustainable Chemistry and Engineering, 2020, 8, 7380-7393.	3.2	41
252	Hydrothermal Liquefaction of Lignin to Aromatic Chemicals: Impact of Lignin Structure. Industrial & Lignin Engineering Chemistry Research, 2020, 59, 16957-16969.	1.8	76
253	Systematic Diffusion-Ordered Spectroscopy for the Selective Determination of Molecular Weight in Real Lignins and Fractions Arising from Base-Catalyzed Depolymerization Reaction Mixtures. ACS Sustainable Chemistry and Engineering, 2020, 8, 8638-8647.	3.2	7
254	Kinetics of Secondary Reactions Affecting the Organosolv Lignin Structure. ChemSusChem, 2020, 13, 4557-4566.	3.6	18
255	Understanding and Suppression of Side Reaction during Transesterification of Phenolic Hydroxyl Groups of Lignin with Vinyl Ester. Chemistry Letters, 2020, 49, 900-904.	0.7	4
256	An Introduction to Model Compounds of Lignin Linking Motifs; Synthesis and Selection Considerations for Reactivity Studies. ChemSusChem, 2020, 13, 4238-4265.	3.6	50

#	Article	IF	CITATIONS
257	Fully Biobased Epoxy Resins from Fatty Acids and Lignin. Molecules, 2020, 25, 1158.	1.7	35
258	Quantitative analysis of pyrolysis bio-oils: A review. TrAC - Trends in Analytical Chemistry, 2020, 126, 115857.	5.8	44
259	Accelerating the formation of the conjugated ladder structure of Poly(acrylonitrile-co-vinyl acetate) by cross-linked poplar lignin doped with boron phosphate. Materials Research Express, 2020, 7, 055309.	0.8	7
260	Lignin Source and Structural Characterization. ChemSusChem, 2020, 13, 4385-4393.	3.6	150
261	Oxidation of phenolic compounds during autothermal pyrolysis of lignocellulose. Journal of Analytical and Applied Pyrolysis, 2020, 149, 104853.	2.6	16
262	Observation of Potential Contaminants in Processed Biomass Using Fourier Transform Infrared Spectroscopy. Applied Sciences (Switzerland), 2020, 10, 4345.	1.3	249
263	Current advancement on the isolation, characterization and application of lignin. International Journal of Biological Macromolecules, 2020, 162, 985-1024.	3.6	223
264	The effect of lignin degradation products on the generation of pseudo-lignin during dilute acid pretreatment. Industrial Crops and Products, 2020, 146, 112205.	2.5	49
265	Fractionation by Sequential Antisolvent Precipitation of Grass, Softwood, and Hardwood Lignins Isolated Using Low-Cost Ionic Liquids and Water. ACS Sustainable Chemistry and Engineering, 2020, 8, 3751-3761.	3.2	34
266	Effect of the interaction of phenolic hydroxyl with the benzene rings on lignin pyrolysis. Bioresource Technology, 2020, 309, 123351.	4.8	25
267	Structural characterization of the lignin from Saxifraga (Saxifraga oppositifolia L.) stems. International Journal of Biological Macromolecules, 2020, 155, 656-665.	3.6	13
268	Contribution to understanding the color development on wood surfaces treated with iron salts by a combination of analytical methods. Journal of Wood Chemistry and Technology, 2020, 40, 223-234.	0.9	11
269	Effect of soft segment molecular weight and NCO:OH ratio on thermomechanical properties of lignin-based thermoplastic polyurethane adhesive. European Polymer Journal, 2020, 131, 109690.	2.6	31
270	Characteristics of bioepoxy based on waste cooking oil and lignin and its effects on asphalt binder. Construction and Building Materials, 2020, 251, 118926.	3.2	27
271	Controlled acetylation of kraft lignin for tailoring polyacrylonitrile-kraft lignin interactions towards the production of quality carbon nanofibers. Chemical Engineering Journal, 2021, 405, 126640.	6.6	13
272	Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage. Journal of Energy Chemistry, 2021, 57, 247-280.	7.1	225
273	Demethylation of a methoxy group to inhibit repolymerization during alkaline lignin pyrolysis. Fuel, 2021, 286, 119394.	3.4	24
274	Synergistic Improvement of Carbohydrate and Lignin Processability by Biomimicking Biomass Processing. Frontiers in Energy Research, 2021, 8, .	1.2	3

#	Article	IF	CITATIONS
275	Influence of chain length in protic ionic liquids on physicochemical and structural features of lignins from sugarcane bagasse. Industrial Crops and Products, 2021, 159, 113080.	2.5	7
276	Synthesis and Characterization of Lignin-grafted-poly($\hat{l}\mu$ -caprolactone) from Different Biomass Sources. New Biotechnology, 2021, 60, 189-199.	2.4	18
277	Novel composite hydrogels containing fractionated, purified lignins for aqueous-based separations. Journal of Materials Chemistry A, 2021, 9, 1025-1038.	5.2	15
278	Electrochemical synthesis of biobased polymers and polymer building blocks from vanillin. RSC Advances, 2021, 11, 8970-8985.	1.7	9
279	Selective Modification of Aliphatic Hydroxy Groups in Lignin Using Ionic Liquid. Catalysts, 2021, 11, 120.	1.6	13
280	Organosolv Lignin for Non-Isocyanate Based Polyurethanes (NIPU) as Wood Adhesive. Journal of Renewable Materials, 2021, 9, 881-907.	1.1	39
281	Lignin characterization., 2021,, 147-182.		0
282	Selective lignin fractionation using CO ₂ -expanded 2-methyltetrahydrofuran (2-MTHF). Green Chemistry, 2021, 23, 6330-6336.	4.6	6
283	Enzymatic conversion of pretreated lignocellulosic biomass: A review on influence of structural changes of lignin. Bioresource Technology, 2021, 324, 124631.	4.8	109
284	Studying the Complexity of Biomass Derived Biofuels. Energies, 2021, 14, 2032.	1.6	3
285	Preparation of Molded Fiber Products from Hydroxylated Lignin Compounded with Lewis Acid-Modified Fibers Its Analysis. Polymers, 2021, 13, 1349.	2.0	4
286	Development and validation of timeâ€domain ¹ Hâ€NMR relaxometry correlation for highâ€throughput phenotyping method for lipid contents of lignocellulosic feedstocks. GCB Bioenergy, 2021, 13, 1179-1190.	2.5	5
287	Hydroxymethylation of softwood kraft lignin and phenol with paraformaldehyde. Sustainable Chemistry and Pharmacy, 2021, 20, 100376.	1.6	11
288	Revealing the structural characteristics of lignin macromolecules from perennial ryegrass during different integrated treatments. International Journal of Biological Macromolecules, 2021, 178, 373-380.	3.6	14
289	Production of polyurethane elastomer from highly reactive acetic acid ligninâ€derived polyols with reduced molecular weights. Biofuels, Bioproducts and Biorefining, 2021, 15, 1110-1125.	1.9	6
290	Identifying the Interunit Linkages Connecting Free Phenolic Terminal Units in Lignin. ChemSusChem, 2021, 14, 2554-2563.	3.6	2
291	Transforming biorefinery designs with â€~Plug-In Processes of Lignin' to enable economic waste valorization. Nature Communications, 2021, 12, 3912.	5.8	71
292	Efficient isolation of organosolv lignin-carbohydrate complexes (LCC) with high antioxidative activity via introducing LiCl/DMSO dissolving. International Journal of Biological Macromolecules, 2021, 181, 752-761.	3.6	12

#	Article	IF	CITATIONS
293	Phenolic Hydroxyl Groups in the Lignin Polymer Affect the Formation of Lignin Nanoparticles. Nanomaterials, 2021, 11, 1790.	1.9	21
294	Maleic acid hydrotropic fractionation of wheat straw to facilitate valueâ€added multiâ€product biorefinery at atmospheric pressure. GCB Bioenergy, 2021, 13, 1407-1424.	2.5	10
295	Facile synthesis of lignin-based epoxy resins with excellent thermal-mechanical performance. International Journal of Biological Macromolecules, 2021, 182, 276-285.	3.6	38
296	Mechanically robust, solar-driven, and degradable lignin-based polyurethane adsorbent for efficient crude oil spill remediation. Chemical Engineering Journal, 2021, 415, 128956.	6.6	83
297	Formation of pure nanoparticles with solvent-fractionated lignin polymers and evaluation of their biocompatibility. International Journal of Biological Macromolecules, 2021, 183, 660-667.	3.6	13
298	Lignin dissolution model in formic acid–acetic acid–water systems based on lignin chemical structure. International Journal of Biological Macromolecules, 2021, 182, 51-58.	3.6	10
299	Enhancement of the antioxidant abilities of lignin and lignin-carbohydrate complex from wheat straw by moderate depolymerization via LiCl/DMSO solvent catalysis. International Journal of Biological Macromolecules, 2021, 184, 369-379.	3.6	18
300	Characterization of Heavy Products from Lignocellulosic Biomass Pyrolysis by Chromatography and Fourier Transform Mass Spectrometry: A Review. Energy & Samp; Fuels, 2021, 35, 17979-18007.	2.5	22
301	Selective substitution of long-acyl groups into alcohols of kraft lignin over transesterification using ionic liquid. Journal of Wood Science, 2021, 67, .	0.9	7
302	A review on catalytic conversion of lignin into high-value chemicals over Ni-based catalysts. Biomass Conversion and Biorefinery, 2023, 13, 11339-11381.	2.9	7
303	Economical concerns of lignin in the energy sector. Cleaner Engineering and Technology, 2021, 4, 100258.	2.1	14
304	Chemical reactivity and sulfo-functionalization response of enzymatically produced lignin. Industrial Crops and Products, 2021, 172, 113950.	2.5	5
305	Structural characterization of poplar lignin based on the microwave-assisted hydrothermal pretreatment. International Journal of Biological Macromolecules, 2021, 190, 360-367.	3.6	11
306	Hydrothermal oxidative valorisation of lignin into functional chemicals: A review. Bioresource Technology, 2021, 342, 126016.	4.8	30
307	Value-added products from lignin: IsolationValue-added products from lignin: Isolation, characterization and applications., 2021,, 33-55.		2
308	Fractionation, Characterization, and Valorization of Lignin Derived from Engineered Plants. , 2021, , 245-288.		0
309	Efficient extracellular laccase secretion <i>via</i> bio-designed secretory apparatuses to enhance bacterial utilization of recalcitrant lignin. Green Chemistry, 2021, 23, 2079-2094.	4.6	17
310	Spectroscopy and Microscopy of Eco-friendly Polymer Composites. , 2019, , 105-141.		1

#	ARTICLE	IF	CITATIONS
311	Structure and Characteristics of Lignin. Springer Series on Polymer and Composite Materials, 2020, , 17-75.	0.5	10
312	Facile synthesis of vanillin from fractionated Kraft lignin. Industrial Crops and Products, 2020, 145, 112095.	2.5	27
313	Successive organic solvent fractionation and structural characterization of lignin extracted from hybrid poplar by deep eutectic solvent for improving the homogeneity and isolating narrow fractions. Renewable Energy, 2020, 157, 1025-1034.	4.3	28
314	³¹ P NMR Chemical Shifts of Solvents and Products Impurities in Biomass Pretreatments. ACS Sustainable Chemistry and Engineering, 2018, 6, 1265-1270.	3.2	32
315	Kraft lignin reaction with paraformaldehyde. Holzforschung, 2020, 74, 663-672.	0.9	4
316	Insights into alkaline choline chloride-based deep eutectic solvents pretreatment for Populus deltoides: Lignin structural features and modification mechanism. International Journal of Biological Macromolecules, 2021, 193, 319-327.	3.6	30
317	Recent advances in understanding the effects of lignin structural characteristics on enzymatic hydrolysis. Biotechnology for Biofuels, 2021, 14, 205.	6.2	94
318	Lignin structure defines the properties of asphalt binder as a modifier. Construction and Building Materials, 2021, 310, 125156.	3.2	12
319	Chemical and structural characterization of hardwood and softwood LignoForceâ,, lignins. Industrial Crops and Products, 2021, 173, 114138.	2.5	39
320	Green Processes for Lignin Conversion. Green Chemistry and Sustainable Technology, 2016, , 263-300.	0.4	0
321	COMPARATIVE ANALYSIS OF LIGNINS OF VARIOUS PLANT FORMS BY 31P-NMR. Khimiya Rastitel'nogo Syr'ya, 2020, , 57-64.	0.0	0
322	The Study of Water Sorption with Hydrolysis Lignin by Solid-State NMR Spectroscopy. Eurasian Chemico-Technological Journal, 2019, 21, 325.	0.3	1
323	Comparative Analysis of Lignins of Various Plant Forms by 31P NMR Spectroscopy. Russian Journal of Bioorganic Chemistry, 2020, 46, 1337-1342.	0.3	2
324	Lignin-based adsorbent for effective removal of toxic heavy metals from wastewater. Emergent Materials, 2022, 5, 923-943.	3.2	7
325	Green Conversion of Total Lignocellulosic Components of Sugarcane Bagasse to Thermoplastics Through Transesterification Using Ionic Liquid. ACS Sustainable Chemistry and Engineering, 2021, 9, 15249-15257.	3.2	12
326	Effect of Protic Ionic Liquids in Sugar Cane Bagasse Pretreatment for Lignin Valorization and Ethanol Production. ACS Sustainable Chemistry and Engineering, 2021, 9, 16965-16976.	3.2	7
327	Cationic Lignin Polymers as Flocculant for Municipal Wastewater. Polymers, 2021, 13, 3871.	2.0	6
328	Strikingly high amount of tricin-lignin observed from vanilla (<i>Vanilla planifolia</i>) aerial roots. Green Chemistry, 2022, 24, 259-270.	4.6	8

#	Article	IF	Citations
329	The Inhibition of $\langle i \rangle p \langle i \rangle$ -Hydroxyphenyl OH in Residual Lignin on Enzymatic Hydrolysis of Cellulose and its Underlying Mechanism. SSRN Electronic Journal, 0, , .	0.4	0
330	The inhibition of p-hydroxyphenyl hydroxyl group in residual lignin on enzymatic hydrolysis of cellulose and its underlying mechanism. Bioresource Technology, 2022, 346, 126585.	4.8	8
331	Light-colored lignin isolated from poplar by ultrasound-assisted ethanol extraction: Structural features and anti-ultraviolet and anti-oxidation activities. Industrial Crops and Products, 2022, 176, 114359.	2.5	16
332	Ambient-pressure lignin valorization to high-performance polymers by intensified reductive catalytic deconstruction. Science Advances, 2022, 8, eabj7523.	4.7	30
333	Solid-State Nuclear Magnetic Resonance as a Tool to Probe the Impact of Mechanical Preprocessing on the Structure and Arrangement of Plant Cell Wall Polymers. Frontiers in Plant Science, 2021, 12, 766506.	1.7	3
334	Application of Diffusion-Ordered NMR Spectroscopy to the Characterization of Sweet Sorghum Bagasse Lignin Isolated After Low Moisture Anhydrous Ammonia (LMAA) Pretreatment. Bioenergy Research, 0, , 1.	2.2	3
335	Structural and Thermal Characteristics of Novel Organosolv Lignins Extracted from Thai Biomass Residues: A Guide for Processing. Journal of Polymers and the Environment, 0 , , 1 .	2.4	2
336	Degradable Ti ₃ C ₂ T <i>_x</i> MXene Nanosheets Containing a Lignin Polyurethane Photothermal Foam (LPUF) for Rapid Crude Oil Cleanup. ACS Applied Nano Materials, 2022, 5, 2848-2858.	2.4	36
337	Antimicrobial Lignin-Based Polyurethane/Ag Composite Foams for Improving Wound Healing. Biomacromolecules, 2022, 23, 1622-1632.	2.6	51
338	The potential of Pinus armandii Franch for high-grade resource utilization. Biomass and Bioenergy, 2022, 158, 106345.	2.9	22
339	Lignin-Based Materials for Sustainable Rechargeable Batteries. Polymers, 2022, 14, 673.	2.0	16
340	Poly(Lactide)-Modified Lignin Nanofibers: Investigating the Role of Polymer Tacticity on Fiber Properties and Filtration Efficiency. ACS Sustainable Chemistry and Engineering, 2022, 10, 2772-2783.	3.2	5
341	Inâ€Depth Identification of Phenolics Fractionated from <i>Eucalyptus</i> Kraft Lignin. Advanced Sustainable Systems, 2022, 6, .	2.7	5
342	Isolation, Characterization, and Depolymerization of <scp>l</scp> ysteine Substituted <i>Eucalyptus</i> Lignin. Global Challenges, 2022, 6, 2100130.	1.8	2
343	Fractionation of birch wood biomass into valuable chemicals by the extraction and catalytic processes. Biomass Conversion and Biorefinery, 2024, 14, 2341-2355.	2.9	5
344	Conversion of Cellulose and Lignin Residues into Transparent UV-Blocking Composite Films. Molecules, 2022, 27, 1637.	1.7	7
345	Fabrication of a bi-hydroxyl-bi-DOPO compound with excellent quenching and charring capacities for lignin-based epoxy resin. International Journal of Biological Macromolecules, 2022, 205, 539-552.	3.6	19
346	One-step foam assisted synthesis of robust superhydrophobic lignin-based magnetic foams for highly efficient oil-water separation and rapid solar-driven heavy oil removal. Journal of Water Process Engineering, 2022, 46, 102643.	2.6	20

#	Article	IF	CITATIONS
347	Ultrafast alkaline deep eutectic solvent pretreatment for enhancing enzymatic saccharification and lignin fractionation from industrial xylose residue. Bioresource Technology, 2022, 352, 127065.	4.8	33
348	Characterization of alkali-lignin-grafted polyacrylamide synthesized by atom transfer radical polymerization. Journal of Wood Chemistry and Technology, 2022, 42, 58-68.	0.9	1
349	Recent Advances in the Valorization of Lignin: A Key Focus on Pretreatment, Characterization, and Catalytic Depolymerization Strategies for Future Biorefineries. Advanced Sustainable Systems, 2022, 6,	2.7	14
350	Factors Affecting the Sensitivity of Hydroxyl Group Content Analysis of Biocrude Products via Phosphitylation and ³¹ P NMR Spectroscopy. Energy & Description of Biocrude Products via Phosphitylation and ³¹ P NMR Spectroscopy. Energy & Description of Biocrude Products via Phosphitylation and ³¹ P NMR Spectroscopy. Energy & Description of Biocrude Products via Phosphitylation and ³¹ P NMR Spectroscopy. Energy & Description of Biocrude Products via Phosphitylation and ³¹ P NMR Spectroscopy. Energy & Description of Biocrude Products via Phosphitylation and ³¹ P NMR Spectroscopy. Energy & Description of Biocrude Products via Phosphitylation and ³¹ P NMR Spectroscopy. Energy & Description of Biocrude Products via Phosphitylation and ³¹ P NMR Spectroscopy. Energy & Description of Biocrude Products via Phosphitylation and ³¹ P NMR Spectroscopy. Energy & Description of Biocrude Products via Phosphitylation and ³¹ P NMR Spectroscopy. Energy & Description of Biocrude Products via Phosphitylation and Spectroscopy. Energy & Description of Biocrude Products via Phosphitylation of Bi	2.5	0
356	Thermoplasticity reinforcement of ethanol organosolv lignin to improve compatibility in PLA-based ligno-bioplastics: Focusing on the structural characteristics of lignin. International Journal of Biological Macromolecules, 2022, 209, 1638-1647.	3.6	10
357	Structural elucidation and targeted valorization of poplar lignin from the synergistic hydrothermal-deep eutectic solvent pretreatment. International Journal of Biological Macromolecules, 2022, 209, 1882-1892.	3.6	20
358	Ultrastructural elucidation of lignin macromolecule from different growth stages of Chinese pine. International Journal of Biological Macromolecules, 2022, 209, 1792-1800.	3.6	6
359	Valorization of industrial lignin as lubricating additives by C–C Bond Cleavage and doping heteroelement-rich groups. Biomass and Bioenergy, 2022, 161, 106470.	2.9	5
360	Extraction of lignin from corncob residue via a deep eutectic solvent for the preparation of nanoparticles by self-assembly. Chemical Engineering Science, 2022, 256, 117694.	1.9	12
361	Continuous recovery of high-purity Kraft lignin from black liquor via simultaneous, liquid-phase acidification and purification. Industrial Crops and Products, 2022, 184, 115084.	2.5	3
362	An overview on the analytical methods for characterization of biocrudes and their blends with petroleum. Fuel, 2022, 324, 124608.	3.4	5
363	Analysis of lignins using ³¹ P benchtop NMR spectroscopy: quantitative assessment of substructures and comparison to high-field NMR. Canadian Journal of Chemistry, 2022, 100, 799-808.	0.6	5
365	Lignin biorefinery: Lignin source, isolation, characterization, and bioconversion. Advances in Bioenergy, 2022, , 211-270.	0.5	2
366	Molecular Engineering of Biorefining Lignin Waste for Solid-State Electrolyte. ACS Sustainable Chemistry and Engineering, 2022, 10, 8704-8714.	3.2	7
367	Stabilization of Hybrid Adhesives and Sealants by Thermodynamic Tuning of Molecularly Optimized Lignin Bio-Additives: Small Changes, Big Effects. Biomacromolecules, 2022, 23, 3174-3185.	2.6	5
368	Physicochemical characteristics of organosolv lignins from different lignocellulosic agricultural wastes. International Journal of Biological Macromolecules, 2022, 216, 710-727.	3.6	14
369	On the Oxidative Valorization of Lignin to Highâ€Value Chemicals: A Critical Review of Opportunities and Challenges. ChemSusChem, 2022, 15, .	3.6	25
370	Tailored one-pot lignocellulose fractionation to maximize biorefinery toward controllable producing lignin nanoparticles and facilitating enzymatic hydrolysis. Chemical Engineering Journal, 2022, 450, 138315.	6.6	33

#	Article	IF	CITATIONS
371	Anticorrosive epoxy coatings from direct epoxidation of bioethanol fractionated lignin. International Journal of Biological Macromolecules, 2022, 221, 268-277.	3.6	16
372	Self-assembly of biomass-based hybrid hydrogel electrode for an additive-free flexible supercapacitor. Journal of Materials Chemistry A, 2022, 10, 16853-16865.	5 . 2	16
373	Simultaneous Strengthening and Toughening Lignin/Cellulose Nanofibril Composite Films: Effects from Flexible Hydrogen Bonds. SSRN Electronic Journal, 0, , .	0.4	0
374	Pathways and their usage in the conversion of carbohydrates by aqueous barium hydroxide: insights from hyperpolarized and quantitative NMR. Catalysis Science and Technology, 2023, 13, 362-371.	2.1	1
375	Preparation of Lignin Derivatives Substituted with 3,4-dihydroxybenzylamine and Their Application as a Biomaterial with Antioxidant and Ultraviolet Light Blocking Properties. Palpu Chongi Gisul/Journal of Korea Technical Association of the Pulp and Paper Industry, 2022, 54, 42-56.	0.1	1
376	Exploring the limits of toughness enhancers for <scp>3D</scp> printed photopolymers as bone replacement materials. Journal of Polymer Science, 2023, 61, 143-154.	2.0	4
377	Modification of lignin properties using alpha particles and gamma-rays for diverse applications. Radiation Physics and Chemistry, 2023, 202, 110562.	1.4	4
378	A facile and novel lignin isolation procedure – Methanolic hydrochloric acid treatment at ambient temperature. International Journal of Biological Macromolecules, 2022, 222, 1423-1432.	3.6	4
379	Revealing the Structural Influence on Lignin Phenolation and Its Nanoparticle Fabrication with Tunable Sizes. ACS Sustainable Chemistry and Engineering, 2022, 10, 14845-14854.	3.2	8
380	Simultaneous strengthening and toughening lignin/cellulose nanofibril composite films: Effects from flexible hydrogen bonds. Chemical Engineering Journal, 2023, 453, 139770.	6.6	31
381	Structural characterization of by-product lignins from organosolv rapeseed straw pulping and their application as biosorbents. Journal of Polymer Research, 2022, 29, .	1.2	1
382	Enabling efficient dissolution and fractionation of lignin by renewable and adjustable dimethyl isosorbide-based solvent systems. Separation and Purification Technology, 2023, 306, 122688.	3.9	7
383	Superhydrophobic lignin-based multifunctional polyurethane foam with SiO2 nanoparticles for efficient oil adsorption and separation. Science of the Total Environment, 2023, 860, 160276.	3.9	18
384	Conversion of agricultural and forestry biomass into bioethanol, water-soluble polysaccharides, and lignin nanoparticles by an integrated phosphoric acid plus hydrogen peroxide process. Industrial Crops and Products, 2023, 191, 115969.	2.5	5
385	High value valorization of lignin as environmental benign antimicrobial. Materials Today Bio, 2023, 18, 100520.	2.6	13
386	Emerging Lignin-Based Materials in Electrochemical Energy Systems. Energies, 2022, 15, 9450.	1.6	2
387	Next Challenges for the Comprehensive Molecular Characterization of Complex Organic Mixtures in the Field of Sustainable Energy. Molecules, 2022, 27, 8889.	1.7	4
388	Fabrication and Characterization of Lignin-Based, Thermoresponsive Soft Composites Containing Fractionated and Cleaned Lignin. ACS Applied Polymer Materials, 2023, 5, 342-354.	2.0	4

#	Article	IF	CITATIONS
389	Enhanced Mechanical Properties of Composite Hydrogels Containing Fractionated and Purified Lignin. ACS Applied Polymer Materials, 2023, 5, 201-213.	2.0	5
390	Fungal-Modified Lignin-Enhanced Physicochemical Properties of Collagen-Based Composite Films. Journal of Fungi (Basel, Switzerland), 2022, 8, 1303.	1.5	0
391	A Bibliometric Analysis and Disruptive Innovation Evaluation for the Field of Energy Security. Sustainability, 2023, 15, 969.	1.6	4
392	Enhanced production of sugars and UV-shielded lignin/PAN fiber mats from chemi-mechanical pulps. Science of the Total Environment, 2023, 861, 161090.	3.9	5
393	Potential of Staphylea holocarpa Wood for Renewable Bioenergy. Molecules, 2023, 28, 299.	1.7	0
394	Functional Lignin Building Blocks: Reactive Vinyl Esters with Acrylic Acid. Biomacromolecules, 2023, 24, 592-603.	2.6	3
395	Ethanol organosolv lignin as a substitute for commercial antioxidants, focusing on the structural properties and synergistic effect with myricetin. Food Chemistry, 2023, 418, 136009.	4.2	5
396	pH-Regulated lignin as a green catalyst for Highly-Efficient CO2 cycloaddition. Fuel, 2023, 346, 128353.	3.4	2
397	Synthesis of polyurea nanocomposite from industrial waste lignin: Classical curing of isocyanate by lignin-polyamine. Journal of the Indian Chemical Society, 2023, 100, 100932.	1.3	4
398	Bio-based lignin and its applications. , 2023, , 441-474.		0
399	Full Bio-Based Aerogel Incorporating Lignin for Excellent Flame Retardancy, Mechanical Resistance, and Thermal Insulation. ACS Sustainable Chemistry and Engineering, 2023, 11, 4473-4484.	3.2	14
400	Synthesis of a Liquid Lignin-Based Methacrylate Resin and Its Application in 3D Printing without Any Reactive Diluents. Biomacromolecules, 2023, 24, 1751-1762.	2.6	2
401	Mechanically Tunable and Reconstructable Lignin Thermosets via "Click―Chemistry and Surface Functionalization. Macromolecules, 2023, 56, 2831-2840.	2.2	4
402	Wood Chemistry. Springer Handbooks, 2023, , 179-279.	0.3	0
403	Engineering Innovations, Challenges, and Opportunities for Lignocellulosic Biorefineries: Leveraging Biobased Polymer Production. Annual Review of Chemical and Biomolecular Engineering, 2023, 14, 109-140.	3.3	10
405	Potential of lignin as biofuel substrate. , 2023, , 201-222.		0
433	Selective demethylation reactions of biomass-derived aromatic ether polymers for bio-based lignin chemicals. Green Chemistry, 2023, 25, 10117-10143.	4.6	4