Heterojunction BiVO4/WO3 electrodes for enhanced ph

Energy and Environmental Science 4, 1781 DOI: 10.1039/c0ee00743a

Citation Report

#	Article	IF	CITATIONS
10	Cobalt–phosphate complexes catalyze the photoelectrochemical water oxidation of BiVO4 electrodes. Physical Chemistry Chemical Physics, 2011, 13, 21392.	1.3	164
11	Near-Complete Suppression of Surface Recombination in Solar Photoelectrolysis by "Co-Pi― Catalyst-Modified W:BiVO ₄ . Journal of the American Chemical Society, 2011, 133, 18370-18377.	6.6	951
12	Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energy and Environmental Science, 2011, 4, 4046.	15.6	564
13	Surface modification of TiO2 with metal oxide nanoclusters: a route to composite photocatalytic materials. Chemical Communications, 2011, 47, 8617.	2.2	66
14	Combination of visible-light responsive heterogeneous and homogeneous photocatalysts for water oxidation. Physical Chemistry Chemical Physics, 2011, 13, 17960.	1.3	8
15	A novel tungsten trioxide (WO3)/ITO porous nanocomposite for enhanced photo-catalytic water splitting. Physical Chemistry Chemical Physics, 2011, 13, 19553.	1.3	36
16	Synthesis of novel visible light responding vanadate/TiO2 heterostructure photocatalysts for application of organic pollutants. Chemical Engineering Journal, 2011, 175, 76-83.	6.6	58
17	A perspective on solar-driven water splitting with all-oxide hetero-nanostructures. Energy and Environmental Science, 2011, 4, 3889.	15.6	219
18	Hydrophilicity Control of Visibleâ€Light Hydrogen Evolution and Dynamics of the Chargeâ€Separated State in Dye/TiO ₂ /Pt Hybrid Systems. Chemistry - A European Journal, 2012, 18, 15368-15381.	1.7	50
19	Photoelectrochemical cells with tungsten trioxide/Mo-doped BiVO4 bilayers. Physical Chemistry Chemical Physics, 2012, 14, 11119.	1.3	107
20	Effects of Surface Electrochemical Pretreatment on the Photoelectrochemical Performance of Mo-Doped BiVO ₄ . Journal of Physical Chemistry C, 2012, 116, 5076-5081.	1.5	172
21	A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation. Energy and Environmental Science, 2012, 5, 8553.	15.6	334
22	Nature and Light Dependence of Bulk Recombination in Co-Pi-Catalyzed BiVO ₄ Photoanodes. Journal of Physical Chemistry C, 2012, 116, 9398-9404.	1.5	503
23	Cu2O NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting. Chemical Science, 2012, 3, 3482.	3.7	240
24	Photocatalytic H2 and O2 evolution over tungsten oxide dispersed on silica. Journal of Catalysis, 2012, 293, 61-66.	3.1	51
25	Water Oxidation on a CuWO ₄ –WO ₃ Composite Electrode in the Presence of [Fe(CN) ₆] ^{3–} : Toward Solar Z-Scheme Water Splitting at Zero Bias. Journal of Physical Chemistry C, 2012, 116, 3200-3205.	1.5	86
27	A Facile Band Alignment of Polymeric Carbon Nitride Semiconductors to Construct Isotype Heterojunctions. Angewandte Chemie - International Edition, 2012, 51, 10145-10149.	7.2	632
28	Photocatalytic and Photoelectrochemical Water Oxidation over Metalâ€Doped Monoclinic BiVO ₄ Photoanodes. ChemSusChem, 2012, 5, 1926-1934.	3.6	311

	CITATION	Report	
#	Article	IF	CITATIONS
29	Catalytic water oxidation at single metal sites. Energy and Environmental Science, 2012, 5, 8134.	15.6	226
30	Molecular Metal Oxide Cluster-Surface Modified Titanium(IV) Dioxide Photocatalysts. Australian Journal of Chemistry, 2012, 65, 624.	0.5	36
31	In situ preparation of novel p–n junction photocatalyst BiOI/(BiO)2CO3 with enhanced visible light photocatalytic activity. Journal of Hazardous Materials, 2012, 239-240, 316-324.	6.5	204
32	Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting. Physical Chemistry Chemical Physics, 2012, 14, 7894.	1.3	409
33	First-Principles Prediction of New Photocatalyst Materials with Visible-Light Absorption and Improved Charge Separation: Surface Modification of Rutile TiO ₂ with Nanoclusters of MgO and Ga ₂ O ₃ . ACS Applied Materials & Interfaces, 2012, 4, 5863-5871.	4.0	41
34	Efficient and Stable Photo-Oxidation of Water by a Bismuth Vanadate Photoanode Coupled with an Iron Oxyhydroxide Oxygen Evolution Catalyst. Journal of the American Chemical Society, 2012, 134, 2186-2192.	6.6	743
35	Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO4/SnO2/WO3 multi-composite in a carbonate electrolyte. Chemical Communications, 2012, 48, 3833.	2.2	237
36	Transforming Anodized WO ₃ Films into Visible-Light-Active Bi ₂ WO ₆ Photoelectrodes by Hydrothermal Treatment. Journal of Physical Chemistry Letters, 2012, 3, 913-918.	2.1	86
39	Phosphate Doping into Monoclinic BiVO ₄ for Enhanced Photoelectrochemical Water Oxidation Activity. Angewandte Chemie - International Edition, 2012, 51, 3147-3151.	7.2	435
40	Freestanding Tin Disulfide Single‣ayers Realizing Efficient Visible‣ight Water Splitting. Angewandte Chemie - International Edition, 2012, 51, 8727-8731.	7.2	545
41	Heterojunction semiconductors: A strategy to develop efficient photocatalytic materials for visible light water splitting. Catalysis Today, 2012, 185, 270-277.	2.2	277
42	Thermodecomposition synthesis of WO3/H2WO4 heterostructures with enhanced visible light photocatalytic properties. Applied Catalysis B: Environmental, 2012, 111-112, 288-296.	10.8	249
43	Synthesis of MWNTs/g-C3N4 composite photocatalysts with efficient visible light photocatalytic hydrogen evolution activity. Applied Catalysis B: Environmental, 2012, 117-118, 268-274.	10.8	489
44	AgIO3-modified AgI/TiO2 composites for photocatalytic degradation of p-chlorophenol under visible light irradiation. Journal of Colloid and Interface Science, 2012, 378, 159-166.	5.0	41
45	Electrodeposited nanostructured WO3 thin films for photoelectrochemical applications. Electrochimica Acta, 2012, 75, 371-380.	2.6	112
46	Synthetic trends for BiVO4 photocatalysts: Molybdenum substitution vs. TiO2 and SnO2 heterojunctions. Journal of Solid State Chemistry, 2012, 189, 38-48.	1.4	25
47	Bi-component semiconductor oxide photoanodes for the photoelectrocatalytic oxidation of organic solutes and vapours: A short review with emphasis to TiO2–WO3 photoanodes. Journal of Hazardous Materials, 2012, 211-212, 30-46.	6.5	134
48	Improvement of visible light photocatalytic acetaldehyde decomposition of bismuth vanadate/silica nanocomposites by cocatalyst loading. Journal of Hazardous Materials, 2012, 211-212, 83-87.	6.5	26

	CITATION R	EPORT	
#	Article	IF	CITATIONS
49	Enhanced photocatalytic activity by the tunnel effect of microstructured InVO4/WO3 heterojunctions. Reaction Kinetics, Mechanisms and Catalysis, 2013, 108, 253-261.	0.8	5
50	Facile synthesis of composite g-C3N4/WO3: a nontoxic photocatalyst with excellent catalytic activity under visible light. RSC Advances, 2013, 3, 13646.	1.7	95
51	Graphene and g-C ₃ N ₄ Nanosheets Cowrapped Elemental α-Sulfur As a Novel Metal-Free Heterojunction Photocatalyst for Bacterial Inactivation under Visible-Light. Environmental Science & Technology, 2013, 47, 8724-8732.	4.6	383
52	Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nature Communications, 2013, 4, 2195.	5.8	1,137
53	Nanoporous Graphitic Carbon Nitride with Enhanced Photocatalytic Performance. Langmuir, 2013, 29, 10566-10572.	1.6	284
54	Enhancement of visible-light-driven O2 evolution from water oxidation on WO3 treated with hydrogen. Journal of Catalysis, 2013, 307, 148-152.	3.1	118
55	Selective Deposition of Ag ₃ PO ₄ on Monoclinic BiVO ₄ (040) for Highly Efficient Photocatalysis. Small, 2013, 9, 3951-3956.	5.2	215
56	Preparation and enhanced visible-light photocatalytic activity of graphitic carbon nitride/bismuth niobate heterojunctions. Journal of Hazardous Materials, 2013, 261, 235-245.	6.5	105
57	Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting. Scientific Reports, 2013, 3, 2681.	1.6	580
58	Nanostructured Bi2S3/WO3 heterojunction films exhibiting enhanced photoelectrochemical performance. Journal of Materials Chemistry A, 2013, 1, 12826.	5.2	134
59	Sol–gel synthesis of defect-pyrochlore structured CsTaWO6 and the tribochemical influences on photocatalytic activity. RSC Advances, 2013, 3, 18908.	1.7	34
60	Promoting water photooxidation on transparent WO3 thin films using an alumina overlayer. Energy and Environmental Science, 2013, 6, 3732.	15.6	134
61	Photoelectrochemical activity of NiWO4/WO3 heterojunction photoanode under visible light irradiation. Electrochimica Acta, 2013, 112, 191-198.	2.6	98
62	Reactive Sputtering of Bismuth Vanadate Photoanodes for Solar Water Splitting. Journal of Physical Chemistry C, 2013, 117, 21635-21642.	1.5	162
63	Surface tuning for oxide-based nanomaterials as efficient photocatalysts. Chemical Society Reviews, 2013, 42, 9509.	18.7	564
64	Rational and scalable fabrication of high-quality WO3/CdS core/shell nanowire arrays for photoanodes toward enhanced charge separation and transport under visible light. Nanoscale, 2013, 5, 11933.	2.8	66
65	Electrochemical reduction induced self-doping of Ti3+ for efficient water splitting performance on TiO2 based photoelectrodes. Physical Chemistry Chemical Physics, 2013, 15, 15637.	1.3	174
66	Lead oxide-modified TiO2 photocatalyst: tuning light absorption and charge carrier separation by lead oxidation state. Catalysis Science and Technology, 2013, 3, 2000.	2.1	36

#	Article	IF	CITATIONS
67	Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. Journal of Materials Chemistry A, 2013, 1, 14766.	5.2	1,080
68	To what extent do the nanostructured photoelectrodes perform better than their macrocrystalline counterparts?. Catalysis Science and Technology, 2013, 3, 1810.	2.1	6
69	SnO-nanocluster modified anatase TiO2 photocatalyst: exploiting the Sn(ii) lone pair for a new photocatalyst material with visible light absorption and charge carrier separation. Journal of Materials Chemistry A, 2013, 1, 6670.	5.2	50
70	One step fabrication of C-doped BiVO4 with hierarchical structures for a high-performance photocatalyst under visible light irradiation. Journal of Materials Chemistry A, 2013, 1, 8367.	5.2	142
71	A semiconductor/mixed ion and electron conductor heterojunction for elevated-temperature water splitting. Physical Chemistry Chemical Physics, 2013, 15, 15459.	1.3	18
72	Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy and Environmental Science, 2013, 6, 347-370.	15.6	969
73	TiO2 nanocluster modified-rutile TiO2 photocatalyst: a first principles investigation. Journal of Materials Chemistry A, 2013, 1, 2515.	5.2	45
74	Formation energy and photoelectrochemical properties of BiVO ₄ after doping at Bi ³⁺ or V ⁵⁺ sites with higher valence metal ions. Physical Chemistry Chemical Physics, 2013, 15, 1006-1013.	1.3	138
75	Microwave-assisted synthesis and photocatalytic properties of flower-like Bi2WO6 and Bi2O3–Bi2WO6 composite. Journal of Colloid and Interface Science, 2013, 394, 69-77.	5.0	66
76	Photoanode characteristics of multi-layer composite BiVO4 thin film in a concentrated carbonate electrolyte solution for water splitting. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 258, 51-60.	2.0	38
77	Enhanced visible light photocatalytic properties of AgNbO3/AgSbO3 composites. Materials Chemistry and Physics, 2013, 139, 1009-1013.	2.0	18
78	Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias. Physical Chemistry Chemical Physics, 2013, 15, 4589.	1.3	194
79	Fabrication of CaFe ₂ O ₄ /TaON Heterojunction Photoanode for Photoelectrochemical Water Oxidation. Journal of the American Chemical Society, 2013, 135, 5375-5383.	6.6	282
80	Strategic Modification of BiVO ₄ for Improving Photoelectrochemical Water Oxidation Performance. Journal of Physical Chemistry C, 2013, 117, 9104-9112.	1.5	191
81	Branched TiO2/Si nanostructures for enhanced photoelectrochemical water splitting. Nano Energy, 2013, 2, 351-360.	8.2	96
82	Computational and Photoelectrochemical Study of Hydrogenated Bismuth Vanadate. Journal of Physical Chemistry C, 2013, 117, 10957-10964.	1.5	222
83	Surface Interrogation Scanning Electrochemical Microscopy (SI-SECM) of Photoelectrochemistry at a W/Mo-BiVO ₄ Semiconductor Electrode: Quantification of Hydroxyl Radicals during Water Oxidation. Journal of Physical Chemistry C, 2013, 117, 12093-12102.	1.5	103
84	Highly Efficient and Stable Cadmium Chalcogenide Quantum Dot/ZnO Nanowires for Photoelectrochemical Hydrogen Generation. Chemistry of Materials, 2013, 25, 184-189.	3.2	106

#	Article	IF	CITATIONS
85	Efficient BiVO ₄ Thin Film Photoanodes Modified with Cobalt Phosphate Catalyst and Wâ€doping. ChemCatChem, 2013, 5, 490-496.	1.8	321
86	Origin of the Visible-Light Response of Nickel(II) Oxide Cluster Surface Modified Titanium(IV) Dioxide. Journal of Physical Chemistry C, 2013, 117, 2709-2718.	1.5	68
87	Efficient photoelectrochemical water oxidation over cobalt-phosphate (Co-Pi) catalyst modified BiVO4/1D-WO3 heterojunction electrodes. Physical Chemistry Chemical Physics, 2013, 15, 14723.	1.3	83
88	On the Substantially Improved Photoelectrochemical Properties of Nanoporous WO3 Through Surface Decoration with RuO2. Electrocatalysis, 2013, 4, 382-389.	1.5	21
89	Metal Doping of BiVO ₄ by Composite Electrodeposition with Improved Photoelectrochemical Water Oxidation. Journal of Physical Chemistry C, 2013, 117, 23048-23056.	1.5	94
90	BiVO4/CuWO4 heterojunction photoanodes for efficient solar driven water oxidation. Physical Chemistry Chemical Physics, 2013, 15, 3273.	1.3	140
91	Monoclinic–Tetragonal Heterostructured BiVO ₄ by Yttrium Doping with Improved Photocatalytic Activity. Journal of Physical Chemistry C, 2013, 117, 24479-24484.	1.5	134
92	Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chemical Society Reviews, 2013, 42, 2321-2337.	18.7	1,241
93	Long-lived charge separated states in nanostructured semiconductor photoelectrodes for the production of solar fuels. Chemical Society Reviews, 2013, 42, 2281-2293.	18.7	310
94	Improved visible light driven photoelectrochemical properties of 3C-SiC semiconductor with Pt nanoparticles for hydrogen generation. Applied Physics Letters, 2013, 103, .	1.5	20
95	CHAPTER 3. Structured Materials for Photoelectrochemical Water Splitting. RSC Energy and Environment Series, 0, , 52-82.	0.2	9
96	NOVEL HIERARCHICAL NANORODS OF SILICON-DOPED Bi ₂ O ₂ CO ₃ AND ITS PHOTOCATALYTIC ACTIVITY. Nano, 2014, 09, 1450094.	0.5	7
97	Enhancement of the photocatalytic efficiency of WO ₃ nanoparticles via hydrogen plasma treatment. Materials Research Express, 2014, 1, 045044.	0.8	64
98	Freestanding atomically-thin cuprous oxide sheets for improved visible-light photoelectrochemical water splitting. Nano Energy, 2014, 8, 205-213.	8.2	54
99	Synthesis of BiVO ₄ nanoflake array films for photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2014, 2, 9371-9379.	5.2	139
100	Enhancement of photocatalytic activity for WO3 by simple NaOH loading. Applied Catalysis A: General, 2014, 488, 183-188.	2.2	18
101	Formation of Mesoporous Heterostructured BiVO ₄ /Bi ₂ S ₃ Hollow Discoids with Enhanced Photoactivity. Angewandte Chemie - International Edition, 2014, 53, 5917-5921.	7.2	269
103	Pt co-catalyst effect on photoelectrochemical properties of 3C-SiC photo-anode. Japanese Journal of Applied Physics, 2014, 53, 05FZ04.	0.8	2

#	Article	IF	CITATIONS
104	3C-SiC on Si: A Versatile Material for Electronic, Biomedical and Clean Energy Applications. Materials Research Society Symposia Proceedings, 2014, 1693, 61.	0.1	4
105	Heterostructured Er3+ doped BiVO4 with exceptional photocatalytic performance by cooperative electronic and luminescence sensitization mechanism. Applied Catalysis B: Environmental, 2014, 158-159, 242-249.	10.8	94
106	A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 20, 33-50.	5.6	826
107	Nb2O5/TiO2 heterojunctions: Synthesis strategy and photocatalytic activity. Applied Catalysis B: Environmental, 2014, 152-153, 280-288.	10.8	207
108	Effective signal-on photoelectrochemical immunoassay of subgroup J avian leukosis virus based on Bi2S3 nanorods as photosensitizer and in situ generated ascorbic acid for electron donating. Biosensors and Bioelectronics, 2014, 54, 237-243.	5.3	55
109	Allâ€Surfaceâ€Atomicâ€Metal Chalcogenide Sheets for Highâ€Efficiency Visibleâ€Light Photoelectrochemical Water Splitting. Advanced Energy Materials, 2014, 4, 1300611.	10.2	154
110	Hydrogen evolution from water using AgxCu1â^'xGaSe2 photocathodes under visible light. Physical Chemistry Chemical Physics, 2014, 16, 6167.	1.3	66
111	WO3/BiVO4 composite photoelectrode prepared by improved auto-combustion method for highly efficient water splitting. International Journal of Hydrogen Energy, 2014, 39, 2454-2461.	3.8	86
112	Multi-shelled CeO ₂ hollow microspheres as superior photocatalysts for water oxidation. Nanoscale, 2014, 6, 4072-4077.	2.8	262
113	1D Coâ€Pi Modified BiVO ₄ /ZnO Junction Cascade for Efficient Photoelectrochemical Water Cleavage. Advanced Energy Materials, 2014, 4, 1301590.	10.2	226
114	Monoclinic Porous BiVO ₄ Networks Decorated by Discrete gâ€C ₃ N ₄ Nanoâ€Islands with Tunable Coverage for Highly Efficient Photocatalysis. Small, 2014, 10, 2783-2790.	5.2	209
115	Simultaneously Efficient Light Absorption and Charge Separation in WO ₃ /BiVO ₄ Core/Shell Nanowire Photoanode for Photoelectrochemical Water Oxidation. Nano Letters, 2014, 14, 1099-1105.	4.5	652
116	Research Update: Strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes. APL Materials, 2014, 2, .	2.2	120
117	Non-metal doping of transition metal oxides for visible-light photocatalysis. Catalysis Today, 2014, 225, 111-135.	2.2	311
118	PbO-Modified TiO ₂ Thin Films: A Route to Visible Light Photocatalysts. Langmuir, 2014, 30, 624-630.	1.6	50
119	Efficient solar photoelectrolysis by nanoporous Mo:BiVO ₄ through controlled electron transport. Physical Chemistry Chemical Physics, 2014, 16, 1121-1131.	1.3	164
120	Chemically modified nanostructures for photoelectrochemical water splitting. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 19, 35-51.	5.6	156
121	A simple, low-cost CVD route to thin films of BiFeO3 for efficient water photo-oxidation. Journal of Materials Chemistry A, 2014, 2, 2922.	5.2	89

#	Article	IF	CITATIONS
122	Synthesis and photoactivity of nanostructured CdS–TiO2 composite catalysts. Catalysis Today, 2014, 225, 64-73.	2.2	159
123	Dendritic TiO ₂ /ln ₂ S ₃ /AgInS ₂ Trilaminar Core–Shell Branched Nanoarrays and the Enhanced Activity for Photoelectrochemical Water Splitting. Small, 2014, 10, 3153-3161.	5.2	76
124	Facile synthesis of V ⁴⁺ self-doped, [010] oriented BiVO ₄ nanorods with highly efficient visible light-induced photocatalytic activity. Physical Chemistry Chemical Physics, 2014, 16, 24519-24526.	1.3	134
125	Synthesis and characterization of g-C3N4/BiVO4 composite photocatalysts with improved visible-light-driven photocatalytic performance. Journal of Sol-Gel Science and Technology, 2014, 72, 443-454.	1.1	48
126	Construction of Teethlike Homojunction BiOCl (001) Nanosheets by Selective Etching and Its High Photocatalytic Activity. ACS Applied Materials & Interfaces, 2014, 6, 18423-18428.	4.0	77
127	A ternary Er3+-BiVO4/TiO2 complex heterostructure with excellent photocatalytic performance. RSC Advances, 2014, 4, 6920.	1.7	40
128	The synergistic effect between WO ₃ and g-C ₃ N ₄ towards efficient visible-light-driven photocatalytic performance. New Journal of Chemistry, 2014, 38, 5462-5469.	1.4	69
129	ZnO nanorods/ZnSe heteronanostructure arrays with a tunable microstructure of ZnSe shell for visible light photocatalysis. Journal of Materials Chemistry A, 2014, 2, 17502-17510.	5.2	43
130	Controlled in situ fabrication of Ag ₂ O/AgO thin films by a dry chemical route at room temperature for hybrid solar cells. Dalton Transactions, 2014, 43, 11333-11338.	1.6	43
131	Cu2O nanoparticles decorated BiVO4 as an effective visible-light-driven p-n heterojunction photocatalyst for methylene blue degradation. Superlattices and Microstructures, 2014, 74, 294-307.	1.4	66
132	Bio-Template Mediated In Situ Phosphate Transfer to Hierarchically Porous TiO2 with Localized Phosphate Distribution and Enhanced Photoactivities. Journal of Physical Chemistry C, 2014, 118, 4607-4617.	1.5	15
133	A Novel Method to Synthesize Highly Photoactive Cu ₂ O Microcrystalline Films for Use in Photoelectrochemical Cells. ACS Applied Materials & Interfaces, 2014, 6, 480-486.	4.0	107
134	Plasmonic enhancement of the optical absorption and catalytic efficiency of BiVO4 photoanodes decorated with Ag@SiO2 core–shell nanoparticles. Physical Chemistry Chemical Physics, 2014, 16, 15272-15277.	1.3	61
135	Al-doped ZnO inverse opal networks as efficient electron collectors in BiVO ₄ photoanodes for solar water oxidation. Energy and Environmental Science, 2014, 7, 1402-1408.	15.6	220
136	Towards highly efficient photoanodes: boosting sunlight-driven semiconductor nanomaterials for water oxidation. Nanoscale, 2014, 6, 7142.	2.8	173
137	Enhanced visible photocatalytic activity of a BiVO4@β-AgVO3 composite synthesized by an in situ growth method. RSC Advances, 2014, 4, 20058-20061.	1.7	30
138	High-efficiency water oxidation and energy storage utilizing various reversible redox mediators under visible light over surface-modified WO3. RSC Advances, 2014, 4, 8308-8316.	1.7	29
139	Synthesis and characterization of Bi(VO4)1â^'m(PO4)mnanofibers by electrospinning process with enhanced photocatalytic activity under visible light. RSC Advances, 2014, 4, 33695.	1.7	11

#	Article	IF	CITATIONS
140	A Bismuth Vanadate–Cuprous Oxide Tandem Cell for Overall Solar Water Splitting. Journal of Physical Chemistry C, 2014, 118, 16959-16966.	1.5	226
141	Advanced chemical compositions and nanoarchitectures of bismuth based complex oxides for solar photocatalytic application. RSC Advances, 2014, 4, 47136-47152.	1.7	132
142	Palladium oxide as a novel oxygen evolution catalyst on BiVO4 photoanode for photoelectrochemical water splitting. Journal of Catalysis, 2014, 317, 126-134.	3.1	65
143	BiVO ₄ /cobalt phthalocyanine (CoPc) nanofiber heterostructures: synthesis, characterization and application in photodegradation of methylene blue. RSC Advances, 2014, 4, 53402-53406.	1.7	36
144	Photoelectrodes Based upon Mo:BiVO ₄ Inverse Opals for Photoelectrochemical Water Splitting. ACS Nano, 2014, 8, 7088-7098.	7.3	289
145	Morphology control of one-dimensional heterojunctions for highly efficient photoanodes used for solar water splitting. Journal of Materials Chemistry A, 2014, 2, 11408.	5.2	52
146	Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress. Nanoscale, 2014, 6, 14044-14063.	2.8	426
147	Synthesis and characterization of the ZnO/mpg-C ₃ N ₄ heterojunction photocatalyst with enhanced visible light photoactivity. Dalton Transactions, 2014, 43, 13105-13114.	1.6	116
148	High-performance p-Cu ₂ O/n-TaON heterojunction nanorod photoanodes passivated with an ultrathin carbon sheath for photoelectrochemical water splitting. Energy and Environmental Science, 2014, 7, 3758-3768.	15.6	170
149	Efficient Waterâ€Splitting Device Based on a Bismuth Vanadate Photoanode and Thinâ€Film Silicon Solar Cells. ChemSusChem, 2014, 7, 2832-2838.	3.6	149
150	A Multi-Heme Flavoenzyme as a Solar Conversion Catalyst. Journal of the American Chemical Society, 2014, 136, 12876-12879.	6.6	34
151	Improved Visible Light Harvesting of WO ₃ by Incorporation of Sulfur or Iodine: A Tale of Two Impurities. Chemistry of Materials, 2014, 26, 1670-1677.	3.2	83
152	Dynamics of photogenerated holes in undoped BiVO ₄ photoanodes for solar water oxidation. Chemical Science, 2014, 5, 2964-2973.	3.7	317
153	Improved Photoelectrochemical Activity of CaFe ₂ O ₄ /BiVO ₄ Heterojunction Photoanode by Reduced Surface Recombination in Solar Water Oxidation. ACS Applied Materials & Interfaces, 2014, 6, 17762-17769.	4.0	114
154	Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Nature Communications, 2014, 5, 4775.	5.8	367
155	Photovoltaic effect of TiO2 thick films with an ultrathin BiFeO3 as buffer layer. Applied Physics A: Materials Science and Processing, 2014, 117, 1301-1306.	1.1	4
156	Synthesis of ZnO/Cu2S core/shell nanorods and their enhanced photoelectric performance. Journal of Sol-Gel Science and Technology, 2014, 72, 92-99.	1.1	18
157	Wafer-Scale Fabrication of Self-Catalyzed 1.7 eV GaAsP Core–Shell Nanowire Photocathode on Silicon Substrates. Nano Letters, 2014, 14, 2013-2018.	4.5	58

#	Article	IF	CITATIONS
158	Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chemical Society Reviews, 2014, 43, 5234.	18.7	3,257
159	Antimony-Doped Tin Oxide Nanorods as a Transparent Conducting Electrode for Enhancing Photoelectrochemical Oxidation of Water by Hematite. ACS Applied Materials & Interfaces, 2014, 6, 5494-5499.	4.0	63
160	WO3 nanoneedles/α-Fe2O3/cobalt phosphate composite photoanode for efficient photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2014, 148-149, 304-310.	10.8	88
162	Longâ€Lived, Visibleâ€Lightâ€Excited Charge Carriers of TiO ₂ /BiVO ₄ Nanocomposites and their Unexpected Photoactivity for Water Splitting. Advanced Energy Materials, 2014, 4, 1300995.	10.2	268
163	A versatile photoanode-driven photoelectrochemical system for conversion of CO2 to fuels with high faradaic efficiencies at low bias potentials. Journal of Materials Chemistry A, 2014, 2, 2044.	5.2	85
165	Solid-base loaded WO ₃ photocatalyst for decomposition of harmful organics under visible light irradiation. APL Materials, 2015, 3, 104411.	2.2	13
167	Conversion of Biomass Derivatives to Electricity in Photo Fuel Cells using Undoped and Tungstenâ€doped Bismuth Vanadate Photoanodes. ChemSusChem, 2015, 8, 4049-4055.	3.6	41
168	Enhancing the Performance of Amorphousâ€Silicon Photoanodes for Photoelectrocatalytic Water Oxidation. ChemSusChem, 2015, 8, 3987-3991.	3.6	17
169	Efficient Photoelectrochemical Water Oxidation over Hydrogenâ€Reduced Nanoporous BiVO ₄ with Ni–B _i Electrocatalyst. ChemElectroChem, 2015, 2, 1385-1395.	1.7	50
170	Solar Water Splitting by TiO ₂ /CdS/Co–Pi Nanowire Array Photoanode Enhanced with Co–Pi as Hole Transfer Relay and CdS as Light Absorber. Advanced Functional Materials, 2015, 25, 5706-5713.	7.8	240
172	A facile one-step fabrication of novel WO ₃ /Fe ₂ (WO ₄) ₃ ·10.7H ₂ O porous microplates with remarkable photocatalytic activities. CrystEngComm, 2015, 17, 4809-4817.	1.3	16
173	Ni-Ci oxygen evolution catalyst integrated BiVO ₄ photoanodes for solar induced water oxidation. RSC Advances, 2015, 5, 47080-47089.	1.7	15
174	New Insights Into BiVO ₄ Properties as Visible Light Photocatalyst. Journal of Physical Chemistry C, 2015, 119, 12967-12977.	1.5	134
175	Carbonate-coordinated cobalt co-catalyzed BiVO4/WO3 composite photoanode tailored for CO2 reduction to fuels. Nano Energy, 2015, 15, 153-163.	8.2	113
176	Synthesis of Hollow BiVO ₄ /Ag Composite Microspheres and Their Photocatalytic and Surfaceâ€Enhanced Raman Scattering Properties. ChemPlusChem, 2015, 80, 871-877.	1.3	19
177	Photovoltaic device based on TiO2 rutile/anatase phase junctions fabricated in coaxial nanorod arrays. Nano Energy, 2015, 15, 406-412.	8.2	54
178	Electrosprayed heterojunction WO3/BiVO4 films with nanotextured pillar structure for enhanced photoelectrochemical water splitting. Applied Physics Letters, 2015, 106, .	1.5	49
179	Nanotextured Pillars of Electrosprayed Bismuth Vanadate for Efficient Photoelectrochemical Water Splitting. Langmuir, 2015, 31, 3727-3737.	1.6	59

#	Article	IF	CITATIONS
180	Fabrication of Y _x Bi _{1â^'x} VO ₄ solid solutions for efficient C ₂ H ₄ photodegradation. Journal of Materials Chemistry A, 2015, 3, 4163-4169.	5.2	19
181	Semiconductors for Photocatalytic and Photoelectrochemical Solar Water Splitting. , 2015, , 1-56.		5
182	Phase-controlled microwave synthesis of pure monoclinic BiVO4 nanoparticles for photocatalytic dye degradation. Applied Materials Today, 2015, 1, 67-73.	2.3	33
183	Unique 3D heterojunction photoanode design to harness charge transfer for efficient and stable photoelectrochemical water splitting. Energy and Environmental Science, 2015, 8, 1348-1357.	15.6	104
184	Recent progress in enhancing solar-to-hydrogen efficiency. Journal of Power Sources, 2015, 280, 649-666.	4.0	112
185	Hierarchically Z-scheme photocatalyst of Ag@AgCl decorated on BiVO4 (0 4 0) with enhancing photoelectrochemical and photocatalytic performance. Applied Catalysis B: Environmental, 2015, 170-171, 206-214.	10.8	325
186	Photoelectrochemical Water Splitting Promoted with a Disordered Surface Layer Created by Electrochemical Reduction. ACS Applied Materials & amp; Interfaces, 2015, 7, 3791-3796.	4.0	75
187	An anion-exchange strategy for 3D hierarchical (BiO) ₂ CO ₃ /amorphous Bi ₂ S ₃ heterostructures with increased solar absorption and enhanced visible light photocatalysis. RSC Advances, 2015, 5, 11714-11723.	1.7	56
188	Phosphate-bridged TiO2–BiVO4 nanocomposites with exceptional visible activities for photocatalytic water splitting. Journal of Alloys and Compounds, 2015, 631, 120-124.	2.8	74
189	Fe2O3–AgBr nonwoven cloth with hierarchical nanostructures as efficient and easily recyclable macroscale photocatalysts. RSC Advances, 2015, 5, 10951-10959.	1.7	34
190	Visible-light driven heterojunction photocatalysts for water splitting – a critical review. Energy and Environmental Science, 2015, 8, 731-759.	15.6	1,985
191	Aerosolâ€Assisted CVD of Bismuth Vanadate Thin Films and Their Photoelectrochemical Properties. Chemical Vapor Deposition, 2015, 21, 41-45.	1.4	55
192	Synthesis of three-dimensional hyperbranched TiO ₂ nanowire arrays with significantly enhanced photoelectrochemical hydrogen production. Journal of Materials Chemistry A, 2015, 3, 4004-4009.	5.2	43
193	Facile Synthesis and Enhanced Visibleâ€Light Photocatalysis of Graphitic Carbon Nitride Composite Semiconductors. ChemSusChem, 2015, 8, 1189-1196.	3.6	116
194	Photo-catalytic activity of BiVO4 thin-film electrodes for solar-driven water splitting. Applied Catalysis A: General, 2015, 504, 266-271.	2.2	58
195	Photochemical Charge Separation at Particle Interfaces: The n-BiVO ₄ –p-Silicon System. ACS Applied Materials & Interfaces, 2015, 7, 5959-5964.	4.0	43
196	Unassisted photoelectrochemical water splitting beyond 5.7% solar-to-hydrogen conversion efficiency by a wireless monolithic photoanode/dye-sensitised solar cell tandem device. Nano Energy, 2015, 13, 182-191.	8.2	138
197	SnS ₂ nanosheet-based microstructures with high adsorption capabilities and visible light photocatalytic activities. RSC Advances, 2015, 5, 24640-24648.	1.7	66

ARTICLE IF CITATIONS Effect of the Si/TiO₂/BiVO₄ Heterojunction on the Onset Potential of 198 4.0 60 Photocurrents for Solar Water Oxidation. ACS Applied Materials & amp; Interfaces, 2015, 7, 5788-5796. Enhanced visible-light activities for PEC water reduction of CuO nanoplates by coupling with anatase 199 3.1 TiO2 and mechanism. Applied Surface Science, 2015, 351, 681-685. 2D double-layer-tube-shaped structure Bi2S3/ZnS heterojunction with enhanced photocatalytic 200 1.3 27 activities. Physica B: Condensed Matter, 2015, 474, 81-89. Fabrication of BiVO4 nanoplates with active facets on graphene sheets for visible-light photocatalyst. Carbon, 2015, 94, 599-606. Tuning of the crystal engineering and photoelectrochemical properties of crystalline tungsten oxide 202 1.3 116 for optoelectronic device applications. CrystEngComm, 2015, 17, 6070-6093. Multi-shelled hollow micro-/nanostructures. Chemical Society Reviews, 2015, 44, 6749-6773. 18.7 603 Ternary mesoporous WO₃/Mn₃O₄/N-doped graphene 204 nanocomposite for enhanced photocatalysis under visible light irradiation. Catalysis Science and 2.1 28 Technology, 2015, 5, 3375-3382. Recent progress in photoelectrochemical water splitting for solar hydrogen production. Annals of 1.0 Physics, 2015, 358, 236-247. Improved Photocurrents for Water Oxidation by Using Metal–Organic Framework Derived Hybrid 206 Porous Co₃O₄@Carbon/BiVO₄ as a Photoanode. ChemPlusChem, 1.3 15 2015, 80, 1465-1471. Synthesis of BiVO4-g-C3N4 composite photocatalyst with improved visible light-induced photocatalytic activity. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 0.4 217-222. Tantalum Nitride Nanorod Arrays: Introducing Ni–Fe Layered Double Hydroxides as a Cocatalyst 208 3.2 158 Strongly Stabilizing Photoanodes in Water Splitting. Chemistry of Materials, 2015, 27, 2360-2366. Facile hydrothermal-carbonization approach to carbon-modified BiVO4 composites with enhanced 209 photocátalytic activity. Materials Science in Semiconductor Processing, 2015, 35, 90-95. Enhanced Visible-Light Photocatalytic Activity of BiOI/BiOCl Heterojunctions: Key Role of Crystal 210 5.5 307 Facet Combination. ACS Catalysis, 2015, 5, 3540-3551. Facile structure design based on C₃N₄ for mediator-free Z-scheme water splitting under visible light. Catalysis Science and Technology, 2015, 5, 3416-3422. 2.1 Band alignment and enhanced photocatalytic activation of $\hat{l} \pm (\hat{l}^2-Bi < sub > 2 < |sub > 0 < sub > 3 < |sub > 1 < sub > 2 < |sub > 2 < |sub$ 212 1.6 61 heterojunctions via in situ phase transformation. Dalton Transactions, 2015, 44, 7835-7843. BiVO4 semiconductor sensitized solar cells. Science China Chemistry, 2015, 58, 1489-1493. Graphene-modified BiMo_{0.03}V_{0.97}O₄ thin-film photoanode for 214 1.7 3 enhanced photoelectrochemical water splitting performance. RSC Advances, 2015, 5, 77823-77830. Synthesis of Mo-doped WO₃ nanosheets with enhanced visible-light-driven photocatalytic properties. RSC Advances, 2015, 5, 95394-95400.

#	Article	IF	CITATIONS
216	Phase transition-induced band edge engineering of BiVO ₄ to split pure water under visible light. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13774-13778.	3.3	116
217	Assembly and Photocarrier Dynamics of Heterostructured Nanocomposite Photoanodes from Multicomponent Colloidal Nanocrystals. Nano Letters, 2015, 15, 7347-7354.	4.5	26
218	Molecular Chromophore–Catalyst Assemblies for Solar Fuel Applications. Chemical Reviews, 2015, 115, 13006-13049.	23.0	412
219	Efficient and Stable Photoelectrochemical Seawater Splitting with TiO ₂ @ <i>g</i> -C ₃ N ₄ Nanorod Arrays Decorated by Co-Pi. Journal of Physical Chemistry C, 2015, 119, 20283-20292.	1.5	161
220	Hierarchical hybrid nanostructures of Sn ₃ O ₄ on N doped TiO ₂ nanotubes with enhanced photocatalytic performance. Journal of Materials Chemistry A, 2015, 3, 19129-19136.	5.2	70
221	In situ preparation of novel heterojunction BiOBr/BiVO ₄ photocatalysts with enhanced visible light photocatalytic activity. RSC Advances, 2015, 5, 92769-92777.	1.7	26
222	Selective construction of junctions on different facets of BiVO ₄ for enhancing photo-activity. New Journal of Chemistry, 2015, 39, 9918-9925.	1.4	28
223	Enhanced visible-light-driven photocatalytic activity of WO3/BiOI heterojunction photocatalysts. Journal of Molecular Catalysis A, 2015, 410, 168-176.	4.8	80
224	Microwave-assisted synthesis of monoclinic–tetragonal BiVO ₄ heterojunctions with enhanced visible-light-driven photocatalytic degradation of tetracycline. RSC Advances, 2015, 5, 90255-90264.	1.7	47
225	Magnetically separable Ag ₃ PO ₄ /NiFe ₂ O ₄ composites with enhanced photocatalytic activity. Dalton Transactions, 2015, 44, 20426-20434.	1.6	57
226	ZnO nanorod/nickel phthalocyanine hierarchical hetero-nanostructures with superior visible light photocatalytic properties assisted by H ₂ O ₂ . RSC Advances, 2015, 5, 87233-87240.	1.7	25
227	Epitaxial growth of Bi ₂ S ₃ nanowires on BiVO ₄ nanostructures for enhancing photoelectrochemical performance. RSC Advances, 2015, 5, 71692-71698.	1.7	41
228	Scaffolding an ultrathin CdS layer on a ZnO nanorod array using pulsed electrodeposition for improved photocharge transport under visible light illumination. Journal of Materials Chemistry A, 2015, 3, 19582-19587.	5.2	55
229	The enhanced photocatalytic properties of BiOCl/BiVO ₄ p–n heterojunctions via plasmon resonance of metal Bi. RSC Advances, 2015, 5, 75947-75952.	1.7	48
230	Enhanced visible-light-driven photocatalytic performance of porous graphitic carbon nitride. Applied Surface Science, 2015, 358, 270-277.	3.1	50
231	Dynamics of Photogenerated Charge Carriers in WO ₃ /BiVO ₄ Heterojunction Photoanodes. Journal of Physical Chemistry C, 2015, 119, 20792-20800.	1.5	203
232	Improvement of photocatalytic oxidation activity on a WO ₃ /TiO ₂ heterojunction composite photocatalyst with broad spectral response. RSC Advances, 2015, 5, 79815-79819.	1.7	30
233	Hydrothermal Synthesis of Novel MoS ₂ /BiVO ₄ Hetero-Nanoflowers with Enhanced Photocatalytic Activity and a Mechanism Investigation. Journal of Physical Chemistry C, 2015, 119, 22681-22689.	1.5	189

#	Article	IF	CITATIONS
234	Discovery of Overcoating Metal Oxides on Photoelectrode for Water Splitting by Automated Screening. ACS Combinatorial Science, 2015, 17, 592-599.	3.8	12
235	Metal–organic framework immobilized cobalt oxide nanoparticles for efficient photocatalytic water oxidation. Journal of Materials Chemistry A, 2015, 3, 20607-20613.	5.2	57
236	A facile approach to construct BiOI/Bi ₅ O ₇ I composites with heterostructures: efficient charge separation and enhanced photocatalytic activity. RSC Advances, 2015, 5, 74174-74179.	1.7	38
237	Cu ₂ O Homojunction Solar Cells: F-Doped N-type Thin Film and Highly Improved Efficiency. Journal of Physical Chemistry C, 2015, 119, 22803-22811.	1.5	68
238	Improved Photoelectrochemical Water Oxidation by the WO ₃ /CuWO ₄ Composite with a Manganese Phosphate Electrocatalyst. Langmuir, 2015, 31, 10897-10903.	1.6	79
239	An efficient method to enhance the stability of sulphide semiconductor photocatalysts: a case study of N-doped ZnS. Physical Chemistry Chemical Physics, 2015, 17, 1870-1876.	1.3	79
240	Photocatalysis from UV/Vis to Nearâ€Infrared Light: Towards Full Solarâ€Light Spectrum Activity. ChemCatChem, 2015, 7, 559-573.	1.8	148
241	Influence of electronic structures of doped TiO ₂ on their photocatalysis. Physica Status Solidi - Rapid Research Letters, 2015, 9, 10-27.	1.2	49
242	Engineering heterogeneous semiconductors for solar water splitting. Journal of Materials Chemistry A, 2015, 3, 2485-2534.	5.2	1,609
243	Visible light photoactivity enhancement via CuTCPP hybridized g-C3N4 nanocomposite. Applied Catalysis B: Environmental, 2015, 166-167, 366-373.	10.8	193
243 244	Visible light photoactivity enhancement via CuTCPP hybridized g-C3N4 nanocomposite. Applied Catalysis B: Environmental, 2015, 166-167, 366-373. Electron small polarons and their transport in bismuth vanadate: a first principles study. Physical Chemistry Chemical Physics, 2015, 17, 256-260.	10.8 1.3	193 81
	Catalysis B: Environmental, 2015, 166-167, 366-373. Electron small polarons and their transport in bismuth vanadate: a first principles study. Physical		
244	Catalysis B: Environmental, 2015, 166-167, 366-373. Electron small polarons and their transport in bismuth vanadate: a first principles study. Physical Chemistry Chemical Physics, 2015, 17, 256-260. Effective charge separation in the rutile TiO2 nanorod-coupled α-Fe2O3 with exceptionally high visible	1.3	81
244 245	Catalysis B: Environmental, 2015, 166-167, 366-373. Electron small polarons and their transport in bismuth vanadate: a first principles study. Physical Chemistry Chemical Physics, 2015, 17, 256-260. Effective charge separation in the rutile TiO2 nanorod-coupled α-Fe2O3 with exceptionally high visible activities. Scientific Reports, 2014, 4, 6180. Synthesis of one-dimensional WO ₃ –Bi ₂ WO ₆ heterojunctions	1.3 1.6	81 95
244 245 246	Catalysis B: Environmental, 2015, 166-167, 366-373. Electron small polarons and their transport in bismuth vanadate: a first principles study. Physical Chemistry Chemical Physics, 2015, 17, 256-260. Effective charge separation in the rutile TiO2 nanorod-coupled α-Fe2O3 with exceptionally high visible activities. Scientific Reports, 2014, 4, 6180. Synthesis of one-dimensional WO ₃ –Bi ₂ WO ₆ heterojunctions with enhanced photocatalytic activity. CrystEngComm, 2015, 17, 569-576. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a	1.3 1.6 1.3	81 95 99
244 245 246 247	Catalysis B: Environmental, 2015, 166-167, 366-373. Electron small polarons and their transport in bismuth vanadate: a first principles study. Physical Chemistry Chemical Physics, 2015, 17, 256-260. Effective charge separation in the rutile TiO2 nanorod-coupled α-Fe2O3 with exceptionally high visible activities. Scientific Reports, 2014, 4, 6180. Synthesis of one-dimensional WO ₃ –Bi ₂ WO ₆ heterojunctions with enhanced photocatalytic activity. CrystEngComm, 2015, 17, 569-576. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catalysis Science and Technology, 2015, 5, 1360-1384.	1.3 1.6 1.3	81 95 99 824
244 245 246 247 248	Catalysis B: Environmental, 2015, 166-167, 366-373. Electron small polarons and their transport in bismuth vanadate: a first principles study. Physical Chemistry Chemical Physics, 2015, 17, 256-260. Effective charge separation in the rutile TiO2 nanorod-coupled α-Fe2O3 with exceptionally high visible activities. Scientific Reports, 2014, 4, 6180. Synthesis of one-dimensional WO ₃ –Bi ₂ WO ₆ heterojunctions with enhanced photocatalytic activity. CrystEngComm, 2015, 17, 569-576. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catalysis Science and Technology, 2015, 5, 1360-1384. Typical Non–TiO2-Based Visible-Light Photocatalysts. , 0, , . Photoelectrochemical Performance Observed in Mn-Doped BiFeO3 Heterostructured Thin Films.	1.3 1.6 1.3 2.1	 81 95 99 824 6

#	Article	IF	CITATIONS
252	Solvothermal synthesis of Bi ₂ O ₃ /BiVO ₄ heterojunction with enhanced visible-light photocatalytic performances. Journal of Semiconductors, 2016, 37, 083004.	2.0	10
253	Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting. Nature Communications, 2016, 7, 13380.	5.8	263
254	Enhanced photoelectrochemical and photocatalytic activity in visible-light-driven Ag/BiVO4 inverse opals. Applied Physics Letters, 2016, 108, .	1.5	30
255	Overall Photoelectrochemical Water Splitting using Tandem Cell under Simulated Sunlight. ChemSusChem, 2016, 9, 61-66.	3.6	112
256	Pd cocatalyst on Sm-doped BiFeO ₃ nanoparticles: synergetic effect of a Pd cocatalyst and samarium doping on photocatalysis. RSC Advances, 2016, 6, 34574-34587.	1.7	41
257	Preparation of self-assembled hollow microsphere CdS via solvothermal method and its optical properties. Journal of Materials Science: Materials in Electronics, 2016, 27, 9725-9733.	1.1	11
258	Visible light activity of pulsed layer deposited BiVO4/MnO2 films decorated with gold nanoparticles: The evidence for hydroxyl radicals formation. Applied Surface Science, 2016, 385, 199-208.	3.1	62
259	Er3+, Yb3+ doping induced core–shell structured BiVO4 and near-infrared photocatalytic properties. Journal of Molecular Catalysis A, 2016, 416, 1-9.	4.8	64
260	Dual Extraction of Photogenerated Electrons and Holes from a Ferroelectric Sr _{0.5} Ba _{0.5} Nb ₂ O ₆ Semiconductor. ACS Applied Materials & Interfaces, 2016, 8, 13857-13864.	4.0	16
261	High Light Absorption and Charge Separation Efficiency at Low Applied Voltage from Sb-Doped SnO ₂ /BiVO ₄ Core/Shell Nanorod-Array Photoanodes. Nano Letters, 2016, 16, 3463-3474.	4.5	166
262	Novel Y doped BiVO4 thin film electrodes for enhanced photoelectric and photocatalytic performance. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 327, 25-32.	2.0	23
263	Understanding the synergistic effect of WO3–BiVO4 heterostructures by impedance spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 9255-9261.	1.3	41
264	Comparison of sandwich and fingers-crossing type WO ₃ /BiVO ₄ multilayer heterojunctions for photoelectrochemical water oxidation. RSC Advances, 2016, 6, 27557-27565.	1.7	34
265	CdS and SnS2 nanoparticles co-sensitized TiO2 nanotube arrays and the enhanced photocatalytic property. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 325, 55-61.	2.0	23
266	Superior photoelectrochemical activity of self-assembled NiWO4–WO3 heteroepitaxy. Nano Energy, 2016, 23, 153-160.	8.2	39
267	P-Type Cu-Doped Zn _{0.3} Cd _{0.7} S/Graphene Photocathode for Efficient Water Splitting in a Photoelectrochemical Tandem Cell. ACS Sustainable Chemistry and Engineering, 2016, 4, 2569-2577.	3.2	41
268	Gold/WO3 nanocomposite photoanodes for plasmonic solar water splitting. Nano Research, 2016, 9, 1735-1751.	5.8	83
269	Enhancing visible light photocatalytic activity of direct Z-scheme SnS2/Ag3PO4 heterojunction photocatalysts. Materials Research Bulletin, 2016, 81, 16-26.	2.7	55

ARTICLE

IF CITATIONS

270	Multinary Metal Oxide Photoelectrodes. , 2016, , 355-391.		11
271	Analysis of Photoelectrochemical Systems by Impedance Spectroscopy. , 2016, , 281-321.		9
272	Improving the photoactivity of bismuth vanadate thin film photoanodes through doping and surface modification strategies. Applied Catalysis B: Environmental, 2016, 194, 141-149.	10.8	45
273	g-C 3 N 4 /Bi 4 O 5 I 2 heterojunction with I 3 â^' /I â^' redox mediator for enhanced photocatalytic CO 2 conversion. Applied Catalysis B: Environmental, 2016, 194, 98-104.	10.8	250
274	Graphene-decorated 3D BiVO4 superstructure: Highly reactive (040) facets formation and enhanced visible-light-induced photocatalytic oxidation of NO in gas phase. Applied Catalysis B: Environmental, 2016, 193, 160-169.	10.8	64
275	Synthesis, characterization, and visible-light-driven photocatalytic performance of W-SBA15. Journal of Colloid and Interface Science, 2016, 468, 284-291.	5.0	15
276	Electro-response of MoS ₂ Nanosheets-Based Smart Fluid with Tailorable Electrical Conductivity. ACS Applied Materials & Interfaces, 2016, 8, 24221-24229.	4.0	46
277	Conformally coated BiVO4 nanodots on porosity-controlled WO3 nanorods as highly efficient type II heterojunction photoanodes for water oxidation. Nano Energy, 2016, 28, 250-260.	8.2	158
278	Metal Oxide BiVO ₄ as Photoelectrode in Photoelectrochemical Solar Water Oxidation. Solid State Phenomena, 0, 253, 41-58.	0.3	3
279	Elastic strain effects on the photocatalytic TiO2 nanofilm: Utilizing the martensitic surface relief of FeNiCoTi alloy substrate. Chemical Physics Letters, 2016, 658, 130-133.	1.2	2
280	Microwave synthesis and photocatalytic activity of Tb 3+ doped BiVO 4 microcrystals. Journal of Colloid and Interface Science, 2016, 483, 307-313.	5.0	29
281	Facet-Dependent Photocatalytic N ₂ Fixation of Bismuth-Rich Bi ₅ O ₇ I Nanosheets. ACS Applied Materials & Interfaces, 2016, 8, 27661-27668.	4.0	320
282	Fabrication of metallic charge transfer channel between photoanode Ti/Fe ₂ O ₃ and cocatalyst CoO _x : an effective strategy for promoting photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2016, 4, 16661-16669.	5.2	69
283	Layered crystalline ZnIn ₂ S ₄ nanosheets: CVD synthesis and photo-electrochemical properties. Nanoscale, 2016, 8, 18197-18203.	2.8	42
284	Ultrathin BiVO ₄ nanobelts: controllable synthesis and improved photocatalytic oxidation of water. RSC Advances, 2016, 6, 73136-73139.	1.7	10
285	In-situ construction of all-solid-state Z-scheme g-C3N4/TiO2 nanotube arrays photocatalyst with enhanced visible-light-induced properties. Solar Energy Materials and Solar Cells, 2016, 157, 399-405.	3.0	117
286	Facile Construction of gâ€C ₃ N ₄ Nanosheets/TiO ₂ Nanotube Arrays as Z‣cheme Photocatalyst with Enhanced Visibleâ€Light Performance. ChemCatChem, 2016, 8, 3064-3073.	1.8	81
287	Fe/W Coâ€Doped BiVO ₄ Photoanodes with a Metal–Organic Framework Cocatalyst for Improved Photoelectrochemical Stability and Activity. ChemSusChem, 2016, 9, 2824-2831.	3.6	81

#	Article	IF	CITATIONS
288	A polarized liquid–liquid interface meets visible light-driven catalytic water oxidation. Chemical Communications, 2016, 52, 11382-11385.	2.2	30
289	Enhanced Activity and Stability of Carbon-Decorated Cuprous Oxide Mesoporous Nanorods for CO ₂ Reduction in Artificial Photosynthesis. ACS Catalysis, 2016, 6, 6444-6454.	5.5	201
290	Tungsten Oxide Materials for Optoelectronic Applications. Advanced Materials, 2016, 28, 10518-10528.	11.1	222
291	Enhanced charge separation in copper incorporated BiVO4 with gradient doping concentration profile for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2016, 41, 12842-12851.	3.8	33
292	Exposure of WO ₃ Photoanodes to Ultraviolet Light Enhances Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2016, 8, 25010-25013.	4.0	26
293	One-step construction of {001} facet-exposed BiOCl hybridized with Al ₂ O ₃ for enhanced molecular oxygen activation. Catalysis Science and Technology, 2016, 6, 7985-7995.	2.1	45
294	Finding the Way to Solar Fuels with Dye-Sensitized Photoelectrosynthesis Cells. Journal of the American Chemical Society, 2016, 138, 13085-13102.	6.6	317
295	WO ₃ @αâ€Fe ₂ O ₃ Heterojunction Arrays with Improved Photoelectrochemical Behavior for Neutral pH Water Splitting. ChemCatChem, 2016, 8, 2765-2770.	1.8	55
296	Facile synthesis and characterization of ZnS nano/microcrystallites with enhanced photocatalytic activity. Powder Technology, 2016, 301, 1085-1091.	2.1	28
297	Mediator-free Z-scheme photocatalytic system based on ultrathin CdS nanosheets for efficient hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 13626-13635.	5.2	71
298	Catalytic effect of Bi 5+ in enhanced solar water splitting of tetragonal BiV 0.8 Mo 0.2 O 4. Applied Catalysis A: General, 2016, 526, 21-27.	2.2	12
299	Preparation, characterization, and photocatalytic activity of CdV2O6 nanorods decorated g-C3N4 composite. Journal of Molecular Catalysis A, 2016, 423, 240-247.	4.8	16
300	Enhanced visible light photocatalytic activity of Gd-doped BiFeO3 nanoparticles and mechanism insight. Scientific Reports, 2016, 6, 26467.	1.6	212
301	Enhanced Photocatalytic Degradation of Tetracycline by AgI/BiVO ₄ Heterojunction under Visible-Light Irradiation: Mineralization Efficiency and Mechanism. ACS Applied Materials & Interfaces, 2016, 8, 32887-32900.	4.0	407
302	Morphology engineering of WO ₃ /BiVO ₄ heterojunctions for efficient photocatalytic water oxidation. CrystEngComm, 2016, 18, 8961-8970.	1.3	42
303	Enhanced photoelectrochemical water oxidation of bismuth vanadate via a combined strategy of W doping and surface RGO modification. Physical Chemistry Chemical Physics, 2016, 18, 31803-31810.	1.3	35
304	Electronic, optical and vibrational features of BiVO4 nanostructures investigated by first-principles calculations. RSC Advances, 2016, 6, 110695-110705.	1.7	12
305	One-Pot Solvothermal Synthesis of Bi4V2O11 as A New Solar Water Oxidation Photocatalyst. Scientific Reports, 2016, 6, 22727.	1.6	35

#	Article	IF	CITATIONS
306	Preparation of Bi _{1-x} La _x VO ₄ and its Photocatalytic Degradation on Rhodamine B. Materials Science Forum, 2016, 852, 1473-1476.	0.3	0
307	The Future of Using Earthâ€Abundant Elements in Counter Electrodes for Dyeâ€Sensitized Solar Cells. Advanced Materials, 2016, 28, 3802-3813.	11.1	98
308	A Frontâ€Illuminated Nanostructured Transparent BiVO ₄ Photoanode for >2% Efficient Water Splitting. Advanced Energy Materials, 2016, 6, 1501645.	10.2	313
309	Band Edge Engineering in BiVO ₄ /TiO ₂ Heterostructure: Enhanced Photoelectrochemical Performance through Improved Charge Transfer. ACS Catalysis, 2016, 6, 5311-5318.	5.5	117
310	Au Nanoparticles Supported on BiVO ₄ : Effective Inorganic Photocatalysts for H ₂ O ₂ Production from Water and O ₂ under Visible Light. ACS Catalysis, 2016, 6, 4976-4982.	5.5	272
311	Accessible fabrication of Bi ₂ MoO ₆ /BiOCl for effectively conducting thermally-responsive catalytic decontamination of model pollutants. RSC Advances, 2016, 6, 58371-58379.	1.7	10
312	Electrospinning Directly Synthesized Porous TiO ₂ Nanofibers Modified by Graphitic Carbon Nitride Sheets for Enhanced Photocatalytic Degradation Activity under Solar Light Irradiation. Langmuir, 2016, 32, 6163-6175.	1.6	65
313	Heterojunction Cr2O3/CuO:Ni photocathodes for enhanced photoelectrochemical performance. RSC Advances, 2016, 6, 56885-56891.	1.7	25
314	Photoelectrochemical water splitting strongly enhanced in fast-grown ZnO nanotree and nanocluster structures. Journal of Materials Chemistry A, 2016, 4, 10203-10211.	5.2	67
315	Heterogeneous photocatalysts BiOX/NaBiO 3 (X = Cl, Br, I): Photo-generated charge carriers transfer property and enhanced photocatalytic activity. Chemical Physics, 2016, 478, 14-22.	0.9	16
316	Understanding the anatase–rutile phase junction in charge separation and transfer in a TiO ₂ electrode for photoelectrochemical water splitting. Chemical Science, 2016, 7, 6076-6082.	3.7	138
317	Preparation of hierarchical CdS structures and effect of sodium dodecyl benzene sulfonate (SDBS) on the morphologies. Journal of Materials Science: Materials in Electronics, 2016, 27, 6750-6756.	1.1	0
318	Ionic liquid-assisted bidirectional regulation strategy for carbon quantum dots (CQDs)/Bi4O5I2 nanomaterials and enhanced photocatalytic properties. Journal of Colloid and Interface Science, 2016, 478, 324-333.	5.0	51
319	Photo-reduction of bromate in drinking water by metallic Ag and reduced graphene oxide (RGO) jointly modified BiVO4 under visible light irradiation. Water Research, 2016, 101, 555-563.	5.3	170
320	Enhanced Photocatalytic Performance in Ag+-Induced BiVO4/β-Bi2O3Heterojunctions. European Journal of Inorganic Chemistry, 2016, 2016, 232-239.	1.0	14
321	Electrostatic spray deposition of transparent tungsten oxide thin-film photoanodes for solar water splitting. Catalysis Today, 2016, 260, 89-94.	2.2	50
322	Open porous BiVO4 nanomaterials: Electronspinning fabrication and enhanced visible light photocatalytic activity. Materials Research Bulletin, 2016, 74, 258-264.	2.7	26
323	Preparation of CdS/TiO 2 nanotube arrays and the enhanced photocatalytic property. Ceramics International, 2016, 42, 7192-7202.	2.3	56

#	Article	IF	CITATIONS
324	An electrochemical method to enhance the performance of metal oxides for photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2016, 4, 2849-2855.	5.2	114
325	Facile surfactant driven fabrication of transparent WO3 photoanodes for improved photoelectrochemical properties. Applied Catalysis A: General, 2016, 521, 233-239.	2.2	10
326	The effect of crystallinity on photocatalytic performance of Co ₃ O ₄ water-splitting cocatalysts. Physical Chemistry Chemical Physics, 2016, 18, 5172-5178.	1.3	50
327	Tailoring Multilayered BiVO ₄ Photoanodes by Pulsed Laser Deposition for Water Splitting. ACS Applied Materials & Interfaces, 2016, 8, 4076-4085.	4.0	71
328	Fabrication, modification and application of (BiO)2CO3-based photocatalysts: A review. Applied Surface Science, 2016, 365, 314-335.	3.1	147
329	A 3D triple-deck photoanode with a strengthened structure integrality: enhanced photoelectrochemical water oxidation. Nanoscale, 2016, 8, 3474-3481.	2.8	29
330	Enhanced Photoelectrocatalytic Activity of a Novel Bi ₂ O ₃ –BiPO ₄ Composite Electrode for the Degradation of Refractory Pollutants under Visible Light Irradiation. Industrial & Engineering Chemistry Research, 2016, 55, 1221-1228.	1.8	33
331	A highly efficient BiVO 4 /WO 3 /W heterojunction photoanode for visible-light responsive dual photoelectrode photocatalytic fuel cell. Applied Catalysis B: Environmental, 2016, 183, 224-230.	10.8	151
332	Development of solar fuels photoanodes through combinatorial integration of Ni–La–Co–Ce oxide catalysts on BiVO ₄ . Energy and Environmental Science, 2016, 9, 565-580.	15.6	61
333	Enhanced photoelectrochemical performance of inorganic–organic hybrid consisting of BiVO4 and PEDOT:PSS. Applied Surface Science, 2016, 388, 753-761.	3.1	23
334	BiVO ₄ {010} and {110} Relative Exposure Extent: Governing Factor of Surface Charge Population and Photocatalytic Activity. Journal of Physical Chemistry Letters, 2016, 7, 1400-1405.	2.1	231
335	Improved photoelectrocatalytic properties of Ti-doped BiFeO3 films for water oxidation. Journal of Materials Science, 2016, 51, 5712-5723.	1.7	46
336	CuWO ₄ Nanoflake Array-Based Single-Junction and Heterojunction Photoanodes for Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2016, 8, 9211-9217.	4.0	81
337	Construction of novel Bi2S3 nanobelt @ WO3 nanoplate arrays on FTO glass with high photoelectrochemical activity. International Journal of Hydrogen Energy, 2016, 41, 5878-5886.	3.8	18
338	Silver-modified specific (040) facet of BiVO4 with enhanced photoelectrochemical performance. Materials Letters, 2016, 170, 163-166.	1.3	25
339	Electricity generation and bivalent copper reduction as a function of operation time and cathode electrode material in microbial fuel cells. Journal of Power Sources, 2016, 307, 705-714.	4.0	68
340	Solar Hydrogen Production on Photocatalysis-Electrolysis Hybrid System Using Redox Mediator and Porous Oxide Photoelectrodes. Lecture Notes in Energy, 2016, , 345-365.	0.2	0
341	Preparation of point-line Bi2WO6@TiO2 nanowires composite photocatalysts with enhanced UV/visible-light-driven photocatalytic activity. Materials Science in Semiconductor Processing, 2016, 45, 51-56.	1.9	20

#	Article	IF	CITATIONS
342	Fabrication of TiO ₂ –Bi ₂ WO ₆ Binanosheet for Enhanced Solar Photocatalytic Disinfection of <i>E. coli</i> : Insights on the Mechanism. ACS Applied Materials & Interfaces, 2016, 8, 6841-6851.	4.0	200
343	Substrate–Electrode Interface Engineering by an Electron-Transport Layer in Hematite Photoanode. ACS Applied Materials & Interfaces, 2016, 8, 7086-7091.	4.0	30
344	Synthesis of BiOI nanosheet/coarsened TiO ₂ nanobelt heterostructures for enhancing visible light photocatalytic activity. RSC Advances, 2016, 6, 30037-30047.	1.7	43
345	Photoelectrochemical Water Splitting System—A Study of Interfacial Charge Transfer with Scanning Electrochemical Microscopy. ACS Applied Materials & Interfaces, 2016, 8, 1606-1614.	4.0	38
346	Synthesis and Characterization of Novel BiVO ₄ /Ag ₃ VO ₄ Heterojunction with Enhanced Visible-Light-Driven Photocatalytic Degradation of Dyes. ACS Sustainable Chemistry and Engineering, 2016, 4, 757-766.	3.2	169
347	MoS ₂ nanodot decorated In ₂ S ₃ nanoplates: a novel heterojunction with enhanced photoelectrochemical performance. Chemical Communications, 2016, 52, 1867-1870.	2.2	46
348	Photoelectrochemical performance of ZnCdSe-sensitized WO3 thin films. Solar Energy Materials and Solar Cells, 2016, 144, 707-712.	3.0	15
349	A new medium for triplet–triplet annihilated upconversion and photocatalytic application. Physical Chemistry Chemical Physics, 2016, 18, 3430-3437.	1.3	42
350	Photoelectrochemical water oxidation over fibrous and sponge-like BiVO4/β-Bi4V2O11 photoanodes fabricated by spray pyrolysis. Applied Catalysis B: Environmental, 2016, 182, 247-256.	10.8	49
351	A shuriken-shaped m-BiVO4/{0 0 1}–TiO2 heterojunction: Synthesis, structure and enhanced visible light photocatalytic activity. Applied Catalysis A: General, 2016, 521, 42-49.	2.2	42
352	Enhanced photoelectrochemical processes by interface engineering, using Cu 2 O nanorods. Materials Letters, 2016, 163, 81-84.	1.3	18
353	A NIR-driven photocatalyst based on α-NaYF 4 :Yb,Tm@TiO 2 core–shell structure supported on reduced graphene oxide. Applied Catalysis B: Environmental, 2016, 182, 184-192.	10.8	126
354	Effects of La-doping on charge separation behavior of ZnO:GaN for its enhanced photocatalytic performance. Catalysis Science and Technology, 2016, 6, 1033-1041.	2.1	13
355	Solution based CVD of main group materials. Chemical Society Reviews, 2016, 45, 1036-1064.	18.7	141
356	Mesoporous thin film WO ₃ photoanode for photoelectrochemical water splitting: a sol–gel dip coating approach. Sustainable Energy and Fuels, 2017, 1, 145-153.	2.5	65
357	Photocatalytic water oxidation at bismuth vanadate thin film electrodes grown by direct liquid injection chemical vapor deposition method. International Journal of Hydrogen Energy, 2017, 42, 8475-8485.	3.8	24
358	Compound Homojunction:Heterojunction Reduces Bulk and Interface Recombination in ZnO Photoanodes for Water Splitting. Small, 2017, 13, 1603527.	5.2	29
359	Particulate Photocatalyst Sheets Based on Carbon Conductor Layer for Efficient Z-Scheme Pure-Water Splitting at Ambient Pressure. Journal of the American Chemical Society, 2017, 139, 1675-1683.	6.6	322

#	Article	IF	CITATIONS
360	WO ₃ /W:BiVO ₄ /BiVO ₄ graded photoabsorber electrode for enhanced photoelectrocatalytic solar light driven water oxidation. Physical Chemistry Chemical Physics, 2017, 19, 4648-4655.	1.3	38
361	Preparation of BiVO4/BiOCl heterojunction photocatalyst by in-situ transformation method for norfloxacin photocatalytic degradation. Journal of Alloys and Compounds, 2017, 702, 68-74.	2.8	54
362	Facile constructing novel 2D porous g-C3N4/BiOBr hybrid with enhanced visible-light-driven photocatalytic activity. Separation and Purification Technology, 2017, 178, 6-17.	3.9	122
363	Heterojunction Photocatalysts. Advanced Materials, 2017, 29, 1601694.	11.1	3,143
364	Enhanced photoelectrochemical properties of ZnO/ZnSe/CdSe/Cu 2-x Se core–shell nanowire arrays fabricated by ion-replacement method. Applied Catalysis B: Environmental, 2017, 209, 110-117.	10.8	98
365	New Insights into Se/BiVO ₄ Heterostructure for Photoelectrochemical Water Splitting: A Combined Experimental and DFT Study. Journal of Physical Chemistry C, 2017, 121, 6218-6228.	1.5	96
366	Coupling polymorphic nanostructured carbon nitrides into an isotype heterojunction with boosted photocatalytic H ₂ evolution. Chemical Communications, 2017, 53, 2978-2981.	2.2	80
367	Analysis of charge separation processes in WO 3 -BiVO 4 composite for efficient photoelectrochemical water oxidation. Journal of Electroanalytical Chemistry, 2017, 789, 17-23.	1.9	22
368	Enhanced photoelectrocatalytic performance for water oxidation by polyoxometalate molecular doping in BiVO 4 photoanodes. Applied Catalysis A: General, 2017, 536, 67-74.	2.2	37
369	Probing interfacial energetics and charge transfer kinetics in semiconductor nanocomposites: New insights into heterostructured TiO2/BiVO4 photoanodes. Nano Energy, 2017, 34, 375-384.	8.2	36
370	3D WO ₃ /BiVO ₄ /Cobalt Phosphate Composites Inverse Opal Photoanode for Efficient Photoelectrochemical Water Splitting. Small, 2017, 13, 1603840.	5.2	105
371	Recent developments in complex metal oxide photoelectrodes. Journal Physics D: Applied Physics, 2017, 50, 193002.	1.3	127
372	A P25/(NH4)xWO3 hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation. Scientific Reports, 2017, 7, 45715.	1.6	30
373	The Controllable Synthesis of Octadecahedral BiVO ₄ with Exposed {111} Facets. European Journal of Inorganic Chemistry, 2017, 2017, 2990-2997.	1.0	21
374	Effects of oxygen vacancy on the mechanical, electronic and optical properties of monoclinic BiVO4. Journal of Materials Science, 2017, 52, 8546-8555.	1.7	32
375	Layer-by-layer assembled photocatalysts for environmental remediation and solar energy conversion. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 32, 1-20.	5.6	36
376	Interface optimization of ZnO nanorod/CdS quantum dots heterostructure by a facile two-step low-temperature thermal treatment for improved photoelectrochemical water splitting. Chemical Engineering Journal, 2017, 325, 151-159.	6.6	65
377	Wavelength-Dependent Ultrafast Charge Carrier Separation in the WO ₃ /BiVO ₄ Coupled System. ACS Energy Letters, 2017, 2, 1362-1367.	8.8	103

#	Article	IF	CITATIONS
378	Degradation of Chloramphenicol with Novel Metal Foam Electrodes in Bioelectrochemical Systems. Electrochimica Acta, 2017, 240, 136-145.	2.6	32
379	Fabrication of ternary g-C 3 N 4 /Al 2 O 3 /ZnO heterojunctions based on cascade electron transfer toward molecular oxygen activation. Applied Catalysis B: Environmental, 2017, 212, 115-128.	10.8	89
380	Novel AuPd bimetallic alloy decorated 2D BiVO4 nanosheets with enhanced photocatalytic performance under visible light irradiation. Applied Catalysis B: Environmental, 2017, 204, 385-393.	10.8	95
381	Preparation of a p-n heterojunction BiFeO3@TiO2 photocatalyst with a core–shell structure for visible-light photocatalytic degradation. Chinese Journal of Catalysis, 2017, 38, 1052-1062.	6.9	70
382	Oriented epitaxial TiO ₂ nanowires for water splitting. Nanotechnology, 2017, 28, 265602.	1.3	7
383	Carbon Quantum Dots Decorated C ₃ N ₄ /TiO ₂ Heterostructure Nanorod Arrays for Enhanced Photoelectrochemical Performance. Journal of the Electrochemical Society, 2017, 164, H515-H520.	1.3	22
384	Highly enhanced photocatalytic activity of CaSn(OH)6 through tuning CaSn(OH)6/SnO2 heterostructural interaction and optimizing Fe3+ doping concentration. Applied Catalysis B: Environmental, 2017, 217, 256-264.	10.8	18
385	An in situ transformation approach for fabrication of BiVO4/WO3 heterojunction photoanode with high photoelectrochemical activity. Chemical Engineering Journal, 2017, 326, 603-611.	6.6	73
386	Highly sensitive and selective NO2 sensor based on Au-impregnated WO3 nanorods. Sensors and Actuators B: Chemical, 2017, 252, 523-536.	4.0	74
387	3D nanostructured WO ₃ /BiVO ₄ heterojunction derived from Papilio paris for efficient water splitting. RSC Advances, 2017, 7, 27354-27360.	1.7	27
388	Enhanced photocatalytic activity with a heterojunction between BiVO4 and BiOI. Journal of Alloys and Compounds, 2017, 721, 784-794.	2.8	32
389	Insight into Charge Separation in WO ₃ /BiVO ₄ Heterojunction for Solar Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 19780-19790.	4.0	142
390	Synthesis of WO3/BiVO4 photoanode using a reaction of bismuth nitrate with peroxovanadate on WO3 film for efficient photoelectrocatalytic water splitting and organic pollutant degradation. Applied Catalysis B: Environmental, 2017, 217, 21-29.	10.8	134
391	Photocatalytic performance of different exposed crystal facets of BiOCl. Current Opinion in Green and Sustainable Chemistry, 2017, 6, 48-56.	3.2	55
392	Progress in Developing Metal Oxide Nanomaterials for Photoelectrochemical Water Splitting. Advanced Energy Materials, 2017, 7, 1700555.	10.2	455
393	Solvent-engineering assisted synthesis and characterization of BiVO4 photoanode for boosting the efficiency of photoelectrochemical water splitting. Solar Energy Materials and Solar Cells, 2017, 166, 212-221.	3.0	21
394	Solarâ€Waterâ€Splitting BiVO ₄ Thinâ€Film Photoanodes Prepared By Using a Sol–Gel Dipâ€Coati Technique. ChemPhotoChem, 2017, 1, 273-280.	ng 1.5	31
395	Effects of a SnO ₂ hole blocking layer in a BiVO ₄ -based photoanode on photoelectrocatalytic water oxidation. Journal of Materials Chemistry A, 2017, 5, 6905-6913.	5.2	107

#	Article	IF	CITATIONS
396	Three-Dimensional FTO/TiO ₂ /BiVO ₄ Composite Inverse Opals Photoanode with Excellent Photoelectrochemical Performance. ACS Energy Letters, 2017, 2, 813-821.	8.8	143
397	Oxygen defective metal oxides for energy conversion and storage. Nano Today, 2017, 13, 23-39.	6.2	266
398	WO3 mesocrystal-assisted photoelectrochemical activity of BiVO4. NPG Asia Materials, 2017, 9, e357-e357.	3.8	52
399	Simple preparation of highly active water splitting FTO/BiVO ₄ photoanode modified with tri-layer water oxidation catalysts. Journal of Materials Chemistry A, 2017, 5, 6825-6831.	5.2	36
400	Photoelectrochemical Properties and Behavior of α-SnWO ₄ Photoanodes Synthesized by Hydrothermal Conversion of WO ₃ Films. ACS Applied Materials & Interfaces, 2017, 9, 1459-1470.	4.0	42
401	Hydrothermal synthesis of In 2 O 3 -loaded BiVO 4 with exposed {010}{110} facets for enhanced visible-light photocatalytic activity. Materials Research Bulletin, 2017, 87, 114-118.	2.7	16
402	Photoelectrocatalytic Water Splitting: Significance of Cocatalysts, Electrolyte, and Interfaces. ACS Catalysis, 2017, 7, 675-688.	5.5	488
403	RGO/Ag2S/TiO2 ternary heterojunctions with highly enhanced UV-NIR photocatalytic activity and stability. Applied Catalysis B: Environmental, 2017, 204, 593-601.	10.8	108
404	Mechanism of enhancing visible-light photocatalytic activity of BiVO ₄ via hybridization of graphene based on a first-principles study. RSC Advances, 2017, 7, 4395-4401.	1.7	26
405	The Bi 3+ 6s and 6p electron binding energies in relation to the chemical environment of inorganic compounds. Journal of Luminescence, 2017, 184, 221-231.	1.5	115
406	BiVO ₄ /WO ₃ /SnO ₂ Double-Heterojunction Photoanode with Enhanced Charge Separation and Visible-Transparency for Bias-Free Solar Water-Splitting with a Perovskite Solar Cell. ACS Applied Materials & Interfaces, 2017, 9, 1479-1487.	4.0	158
407	Gradient Self-Doped CuBi ₂ O ₄ with Highly Improved Charge Separation Efficiency. Journal of the American Chemical Society, 2017, 139, 15094-15103.	6.6	187
408	Preparation of WO3, BiVO4 and reduced graphene oxide composite thin films and their photoelectrochemical performance. Korean Journal of Chemical Engineering, 2017, 34, 3220-3225.	1.2	18
409	Improved Surface Charge Transfer in MoO3/BiVO4 Heterojunction Film for Photoelectrochemical Water Oxidation. Electrochimica Acta, 2017, 257, 181-191.	2.6	53
410	Self-assembly of metal/semiconductor heterostructures via ligand engineering: unravelling the synergistic dual roles of metal nanocrystals toward plasmonic photoredox catalysis. Nanoscale, 2017, 9, 16922-16936.	2.8	50
411	One-pot synthesis of MoS ₂ /WS ₂ ultrathin nanoflakes with vertically aligned structure on indium tin oxide as a photocathode for enhanced photo-assistant electrochemical hydrogen evolution reaction. RSC Advances, 2017, 7, 49309-49319.	1.7	29
412	Dominance of Plasmonic Resonant Energy Transfer over Direct Electron Transfer in Substantially Enhanced Water Oxidation Activity of BiVO ₄ by Shapeâ€Controlled Au Nanoparticles. Small, 2017, 13, 1701644.	5.2	52
413	Oxygen vacancies induced by zirconium doping in bismuth ferrite nanoparticles for enhanced photocatalytic performance. Journal of Colloid and Interface Science, 2017, 508, 237-247.	5.0	70

#	Article	IF	CITATIONS
414	One-step synthesis of CoO/g-C ₃ N ₄ composites by thermal decomposition for overall water splitting without sacrificial reagents. Inorganic Chemistry Frontiers, 2017, 4, 1691-1696.	3.0	53
415	Rational Interpretation of Correlated Kinetics of Mobile and Trapped Charge Carriers: Analysis of Ultrafast Carrier Dynamics in BiVO4. Journal of Physical Chemistry C, 2017, 121, 19044-19052.	1.5	39
416	TiO ₂ -Loaded WO ₃ Composite Films for Enhancement of Photocurrent Density. Chinese Physics Letters, 2017, 34, 028201.	1.3	2
417	Combination of photocatalytic and electrochemical degradation of organic pollutants from water. Current Opinion in Green and Sustainable Chemistry, 2017, 6, 78-84.	3.2	50
418	Composite Photocatalysts Containing BiVO4 for Degradation of Cationic Dyes. Scientific Reports, 2017, 7, 8929.	1.6	82
419	Photoelectrochemical Oxidation of Benzylic Alcohol Derivatives on BiVO ₄ /WO ₃ under Visible Light Irradiation. ChemElectroChem, 2017, 4, 3283-3287.	1.7	44
420	Charge Carrier Dynamics in Metal Oxide Photoelectrodes for Water Oxidation. Semiconductors and Semimetals, 2017, , 3-46.	0.4	16
421	Laserâ€Induced Graphene Formation on Wood. Advanced Materials, 2017, 29, 1702211.	11.1	397
422	Visible-light-promoted gas-phase water splitting using porous WO3/BiVO4 photoanodes. Electrochemistry Communications, 2017, 82, 47-51.	2.3	42
423	Bi metal-modified Bi ₄ O ₅ I ₂ hierarchical microspheres with oxygen vacancies for improved photocatalytic performance and mechanism insights. Catalysis Science and Technology, 2017, 7, 3580-3590.	2.1	68
424	Thin-Layer Indium Oxide and Cobalt Oxyhydroxide Cobalt-Modified BiVO ₄ Photoanode for Solar-Assisted Water Electrolysis. Journal of Physical Chemistry C, 2017, 121, 17150-17159.	1.5	39
425	Carbon Quantum Dots/Bi ₂ WO ₆ Composites for Efficient Photocatalytic Pollutant Degradation and Hydrogen Evolution. Nano, 2017, 12, 1750082.	0.5	19
426	Template-engineered epitaxial BiVO ₄ photoanodes for efficient solar water splitting. Journal of Materials Chemistry A, 2017, 5, 18831-18838.	5.2	42
427	Nucleation Mechanism and Optoelectronic Properties of Cu ₂ O onto ITO Electrode in the Electrochemical Deposition Process. Journal of the Electrochemical Society, 2017, 164, D999-D1005.	1.3	13
428	Highly Efficient Photoelectrochemical Water Splitting from Hierarchical WO ₃ /BiVO ₄ Nanoporous Sphere Arrays. Nano Letters, 2017, 17, 8012-8017.	4.5	164
429	Characterization of Photoactivity of Nanostructured BiVO ₄ at Polarized Liquid–Liquid Interfaces by Scanning Electrochemical Microscopy. Journal of Physical Chemistry C, 2017, 121, 25941-25948.	1.5	20
430	Efficient Photoelectrochemical O ₂ and CO Production Using BiVO ₄ Water Oxidation Photoanode and CO ₂ Reduction Au Nanoparticle Cathode Prepared by In Situ Deposition from Au ³⁺ Containing Solution. Advanced Sustainable Systems, 2017, 1, 1700111.	2.7	11
431	Photodeposited FeOOH vs electrodeposited Co-Pi to enhance nanoporous BiVO ₄ for photoelectrochemical water splitting. Journal of Semiconductors, 2017, 38, 053004.	2.0	8

#	Article	IF	CITATIONS
432	Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO ₄ : a review. Journal of Materials Chemistry A, 2017, 5, 16498-16521.	5.2	364
433	Au Nanoparticles coupled Three-dimensional Macroporous BiVO4/SnO2 Inverse Opal Heterostructure For Efficient Photoelectrochemical Water Splitting. Electrochimica Acta, 2017, 248, 593-602.	2.6	50
434	Nanomaterials for photocatalytic hydrogen production: from theoretical perspectives. RSC Advances, 2017, 7, 34875-34885.	1.7	51
435	Sputtering gold nanoparticles on nanoporous bismuth vanadate for sensitive and selective photoelectrochemical aptasensing of thrombin. Chemical Communications, 2017, 53, 8898-8901.	2.2	32
436	Microstructure evolution with composition ratio in self-assembled WO ₃ –BiVO ₄ hetero nanostructures for water splitting. Journal of Materials Research, 2017, 32, 2790-2799.	1.2	12
437	α-Fe2O3/TiO2 heterostructured photoanode on titanium substrate for photoelectrochemical water electrolysis. Materials Chemistry and Physics, 2017, 199, 249-256.	2.0	9
438	Vertically Aligned Core–Shell PbTiO ₃ @TiO ₂ Heterojunction Nanotube Array for Photoelectrochemical and Photocatalytic Applications. Journal of Physical Chemistry C, 2017, 121, 15063-15070.	1.5	39
439	High Efficient Photodegradation and Photocatalytic Hydrogen Production of CdS/BiVO ₄ Heterostructure through <i>Z</i> -Scheme Process. ACS Sustainable Chemistry and Engineering, 2017, 5, 303-309.	3.2	178
440	Facile synthesis of tungsten oxide – Bismuth vanadate nanoflakes as photoanode material for solar water splitting. International Journal of Hydrogen Energy, 2017, 42, 3423-3430.	3.8	45
441	Recent Progress on Visible Light Responsive Heterojunctions for Photocatalytic Applications. Journal of Materials Science and Technology, 2017, 33, 1-22.	5.6	176
442	Insights into the electronic bands of WO ₃ /BiVO ₄ /TiO ₂ , revealing high solar water splitting efficiency. Journal of Materials Chemistry A, 2017, 5, 1455-1461.	5.2	76
443	Unexpected rapid photo-catalytic decolourisation/degradation of organic pollutants over highly active hetero junction based vanadium phosphate catalyst. Catalysis Today, 2017, 284, 84-91.	2.2	10
444	Facile synthesis of CdS ZnWO4 composite photocatalysts for efficient visible light driven hydrogen evolution. International Journal of Hydrogen Energy, 2017, 42, 1962-1969.	3.8	28
445	Photocatalytic materials and technologies for air purification. Journal of Hazardous Materials, 2017, 325, 340-366.	6.5	276
446	A Green Desulfurization Technique: Utilization of Flue Gas SO2 to Produce H2 via a Photoelectrochemical Process Based on Mo-Doped BiVO4. Frontiers in Chemistry, 2017, 5, 114.	1.8	12
447	Challenges and Prospects in Solar Water Splitting and CO ₂ Reduction with Inorganic and Hybrid Nanostructures. ACS Catalysis, 2018, 8, 3602-3635.	5.5	365
448	Extended visible to near-infrared harvesting of earth-abundant FeS ₂ –TiO ₂ heterostructures for highly active photocatalytic hydrogen evolution. Green Chemistry, 2018, 20, 1640-1647.	4.6	75
449	Iodide-modified Bi4O5Br2 photocatalyst with tunable conduction band position for efficient visible-light decontamination of pollutants. Chemical Engineering Journal, 2018, 339, 42-50.	6.6	86

#	Article	IF	CITATIONS
450	Enhanced photoelectrocatalytic degradation of norfloxacin by an Ag3PO4/BiVO4 electrode with low bias. Journal of Catalysis, 2018, 360, 240-249.	3.1	114
451	Oneâ€pot combustion synthesis and efficient broad spectrum photoactivity of Bi/Bi <scp>OB</scp> r:Yb,Er/C photocatalyst. Journal of the American Ceramic Society, 2018, 101, 3424-3436.	1.9	74
454	Porous ZnO@ZnSe nanosheet array for photoelectrochemical reduction of CO2. Electrochimica Acta, 2018, 274, 298-305.	2.6	32
455	Graphene quantum dots modified Ag ₃ PO ₄ for facile synthesis and the enhanced photocatalytic performance. Journal of the Chinese Advanced Materials Society, 2018, 6, 255-269.	0.7	8
456	Chapter 6. Emerging Semiconductor Oxides for Direct Solar Water Splitting. RSC Energy and Environment Series, 2018, , 163-182.	0.2	3
457	Polyaniline as a new type of hole-transporting material to significantly increase the solar water splitting performance of BiVO4 photoanodes. Journal of Power Sources, 2018, 391, 34-40.	4.0	38
458	Promising Three-Dimensional Flowerlike CuWO ₄ Photoanode Modified with CdS and FeOOH for Efficient Photoelectrochemical Water Splitting. Industrial & Engineering Chemistry Research, 2018, 57, 6210-6217.	1.8	42
459	Photoactivity and Stability of WO ₃ /BiVO ₄ Photoanodes: Effects of the Contact Electrolyte and of Ni/Fe Oxyhydroxide Protection. Journal of Physical Chemistry C, 2018, 122, 13969-13978.	1.5	22
460	Electronic properties of g-C3N4/CdS heterojunction from the first-principles. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 103, 459-463.	1.3	26
461	Revealing the Doubleâ€Edged Sword Role of Graphene on Boosted Charge Transfer versus Active Site Control in TiO ₂ Nanotube Arrays@RGO/MoS ₂ Heterostructure. Small, 2018, 14, e1704531.	5.2	49
462	ZnS@ reduced graphene oxide nanocomposite as an effective sunlight driven photocatalyst for degradation of reactive black 5: A mechanistic approach. Separation and Purification Technology, 2018, 202, 326-334.	3.9	50
463	One‣tep Rapid and Scalable Flame Synthesis of Efficient WO ₃ Photoanodes for Water Splitting. ChemPlusChem, 2018, 83, 569-576.	1.3	31
464	Composition and Band Gap Tailoring of Crystalline (GaN) _{1–<i>x</i>} (ZnO) _{<i>x</i>} Solid Solution Nanowires for Enhanced Photoelectrochemical Performance. Inorganic Chemistry, 2018, 57, 5240-5248.	1.9	31
465	Composite structures for enhanced photoelectrochemical activity: WS2 quantum dots with oriented WO3 arrays. Journal of Materials Science, 2018, 53, 10338-10350.	1.7	7
466	Highly loaded PbS/Mn-doped CdS quantum dots for dual application in solar-to-electrical and solar-to-chemical energy conversion. Applied Catalysis B: Environmental, 2018, 227, 409-417.	10.8	59
467	Multichannel Charge Transport of a BiVO4/(RGO/WO3)/W18O49 Three-Storey Anode for Greatly Enhanced Photoelectrochemical Efficiency. ACS Applied Materials & Interfaces, 2018, 10, 6218-6227.	4.0	32
468	Surface-Dependence of Adsorption and Its Influence on Heterogeneous Photocatalytic Reaction: A Case of Photocatalytic Degradation of Linuron on Zinc Oxide. Catalysis Letters, 2018, 148, 873-881.	1.4	7
469	Recent Progress on Photoâ€Electrocatalytic Reduction of Carbon Dioxide. Particle and Particle Systems Characterization, 2018, 35, 1700371.	1.2	79

#	Article	IF	CITATIONS
470	Determination of the Flat Band Potential of Nanoparticles in Porous Electrodes by Blocking the Substrate–Electrolyte Contact. Journal of Physical Chemistry C, 2018, 122, 2796-2805.	1.5	27
471	Preparation of BiVO ₄ /MILâ€125(Ti) composite with enhanced visibleâ€light photocatalytic activity for dye degradation. Applied Organometallic Chemistry, 2018, 32, e4285.	1.7	38
473	Low-dimensional Mo:BiVO ₄ photoanodes for enhanced photoelectrochemical activity. Journal of Materials Chemistry A, 2018, 6, 3602-3609.	5.2	86
474	Sub-nanometer Co ₃ O ₄ clusters anchored on TiO ₂ (B) nano-sheets: Pt replaceable Co-catalysts for H ₂ evolution. Nanoscale, 2018, 10, 2596-2602.	2.8	50
475	Visibleâ€Lightâ€Responsive Photoanodes for Highly Active, Stable Water Oxidation. Angewandte Chemie - International Edition, 2018, 57, 8396-8415.	7.2	145
476	Auf sichtbares Licht ansprechende Photoanoden für hochaktive, dauerhafte Wasseroxidation. Angewandte Chemie, 2018, 130, 8530-8550.	1.6	22
477	Tunable Electrodeposition of Ni Electrocatalysts onto Si Microwires Array for Photoelectrochemical Water Oxidation. Particle and Particle Systems Characterization, 2018, 35, 1700321.	1.2	10
478	Heterojunction ZnWO ₄ /ZnFe ₂ O ₄ composites with concerted effects and integrated properties for enhanced photocatalytic hydrogen evolution. Catalysis Science and Technology, 2018, 8, 1083-1093.	2.1	61
479	ZnS nanospheres/reduced graphene oxide photoanode for highly efficient solar water oxidation. Solar Energy, 2018, 161, 226-234.	2.9	34
480	Nanomaterials for Environmental Solar Energy Technologies: Applications & Limitations. KONA Powder and Particle Journal, 2018, 35, 14-31.	0.9	10
481	Room temperature synthesized BaTiO 3 for photocatalytic hydrogen evolution. Journal of Alloys and Compounds, 2018, 754, 184-189.	2.8	60
482	Facile hydrolysis synthesis of novel Bi12O17Br2 photocatalyst with superior reduction ability and photocatalytic activity. Materials Letters, 2018, 224, 5-8.	1.3	15
483	Solvothermal-Assisted Synthesis of Biomass Carbon Quantum Dots/Bismuth Oxyiodide Microflower for Enhanced Photocatalytic Activity. Nano, 2018, 13, 1850031.	0.5	14
484	Boosting the solar water oxidation performance of a BiVO ₄ photoanode by crystallographic orientation control. Energy and Environmental Science, 2018, 11, 1299-1306.	15.6	330
485	Facile synthesis of CoO nanorod/C 3 N 4 heterostructure photocatalyst for an enhanced pure water splitting activity. Inorganic Chemistry Communication, 2018, 92, 14-17.	1.8	21
486	WO3 nanofibrous backbone scaffolds for enhanced optical absorbance and charge transport in metal oxide (Fe2O3, BiVO4) semiconductor photoanodes towards solar fuel generation. Applied Surface Science, 2018, 447, 331-337.	3.1	18
487	Increasing Effectiveness of Photogenerated Carriers by in Situ Anchoring of Cu ₂ O Nanoparticles on a Nitrogen-Doped Porous Carbon Yolk–Shell Cuboctahedral Framework. ACS Catalysis, 2018, 8, 3348-3356.	5.5	112
488	Toward designing semiconductor-semiconductor heterojunctions for photocatalytic applications. Applied Surface Science, 2018, 430, 2-17.	3.1	211

#	Article	IF	CITATIONS
489	Photophysical properties and photoelectrochemical performances of sol-gel derived copper stannate (CuSnO3) amorphous semiconductor for solar water splitting application. Ceramics International, 2018, 44, 1843-1849.	2.3	13
490	Comparison of Synthetic Routes for Large-scale Synthesis of Spherical BiVO ₄ with Photocatalytic and Superhydrophobic Properties. Chemistry Letters, 2018, 47, 148-151.	0.7	5
491	A novel and facile solvothermal-and-hydrothermal method for synthesis of uniform BiVO4 film with high photoelectrochemical performance. Journal of Alloys and Compounds, 2018, 732, 593-602.	2.8	18
492	Activation of a particulate Ta ₃ N ₅ water-oxidation photoanode with a GaN hole-blocking layer. Sustainable Energy and Fuels, 2018, 2, 73-78.	2.5	23
493	The iron oxyhydroxide role in the mediation of charge transfer for water splitting using bismuth vanadate photoanodes. Journal of Solid State Electrochemistry, 2018, 22, 1539-1548.	1.2	11
494	Synthesis of butterfly-like BiVO 4 /RGO nanocomposites and their photocatalytic activities. Chinese Journal of Chemical Engineering, 2018, 26, 667-674.	1.7	16
495	Photocatalytic reduction of CO2 to CO over copper decorated g-C3N4 nanosheets with enhanced yield and selectivity. Applied Surface Science, 2018, 427, 1165-1173.	3.1	136
496	Compositional engineering of solution-processed BiVO4 photoanodes toward highly efficient photoelectrochemical water oxidation. Nano Energy, 2018, 43, 244-252.	8.2	57
497	Design of continuous built-in band bending in self-supported CdS nanorod-based hierarchical architecture for efficient photoelectrochemical hydrogen production. Nano Energy, 2018, 43, 236-243.	8.2	58
498	Synthesis of direct Z-scheme g-C3N4/Ag2VO2PO4 photocatalysts with enhanced visible light photocatalytic activity. Separation and Purification Technology, 2018, 195, 332-338.	3.9	59
499	PHOTOANODIC AND PHOTOCATHODIC MATERIALS APPLIED FOR FREE-RUNNING SOLAR WATER SPLITTING DEVICES. , 2018, , 251-289.		0
500	Constructing 1D hierarchical heterostructures of MoS2/In2S3 nanosheets on CdS nanorod arrays for enhanced photoelectrocatalytic H2 evolution. Applied Surface Science, 2018, 436, 613-623.	3.1	42
501	Facile formation of metallic bismuth/bismuth oxide heterojunction on porous carbon with enhanced photocatalytic activity. Journal of Colloid and Interface Science, 2018, 513, 82-91.	5.0	65
502	The excellent dye-photosensitized degradation performance over hierarchical BiOCl nanostructures fabricated <i>via</i> a facile microwave-hydrothermal process. New Journal of Chemistry, 2018, 42, 137-149.	1.4	28
503	Creation of oxygen vacancies to activate WO ₃ for higher efficiency dye-sensitized solar cells. Sustainable Energy and Fuels, 2018, 2, 403-412.	2.5	45
504	Comparison of importance between separation efficiency and valence band position: The case of heterostructured Bi3O4Br/α-Bi2O3 photocatalysts. Applied Catalysis B: Environmental, 2018, 224, 841-853.	10.8	99
505	Photocatalytic Hydrogen Evolution via Water Splitting: A Short Review. Catalysts, 2018, 8, 655.	1.6	49
506	Enhanced photocatalytic performance of bismuth vanadate assisted by polyoxometalates and phthalocyanine. New Journal of Chemistry, 2018, 42, 19678-19684.	1.4	9

#	Article	IF	CITATIONS
507	<i>Z</i> -Scheme MoS ₂ /g-C ₃ N ₄ heterojunction for efficient visible light photocatalytic CO ₂ reduction. Dalton Transactions, 2018, 47, 15155-15163.	1.6	81
508	Expansion of the photoresponse window of a BiVO ₄ photocatalyst by doping with chromium(<scp>vi</scp>). RSC Advances, 2018, 8, 38140-38145.	1.7	13
510	Theory-Driven Heterojunction Photocatalyst Design with Continuously Adjustable Band Gap Materials. Journal of Physical Chemistry C, 2018, 122, 28065-28074.	1.5	20
511	All in One: Contributions of Ni Dopants and Ni/NiS Dual Cocatalysts to the Enhanced Efficiency of TiO ₂ Photocatalyst for the Degradation of Organic Pollutants. ACS Applied Nano Materials, 2018, 1, 6864-6873.	2.4	16
512	Network Structured CuWO4/BiVO4/Co-Pi Nanocomposite for Solar Water Splitting. Catalysts, 2018, 8, 663.	1.6	14
513	Hierarchical Ta-Doped TiO2 Nanorod Arrays with Improved Charge Separation for Photoelectrochemical Water Oxidation under FTO Side Illumination. Nanomaterials, 2018, 8, 983.	1.9	12
514	Photoelectrochemical reduction of Cr (VI) on plate-like WO3/BiVO4 composite electrodes under visible-light irradiation: characteristics and kinetic study. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 367, 438-445.	2.0	13
515	Photoinduced Charge-Transfer Dynamics in WO ₃ /BiVO ₄ Photoanodes Probed through Midinfrared Transient Absorption Spectroscopy. Journal of the American Chemical Society, 2018, 140, 14042-14045.	6.6	74
516	Fluorine Modified Boron Carbon Nitride Semiconductors for Improved Photocatalytic CO ₂ Reduction under Visible Light. ChemCatChem, 2018, 10, 5270-5279.	1.8	56
517	Three-Dimensional Bicontinuous BiVO ₄ /ZnO Photoanodes for High Solar Water-Splitting Performance at Low Bias Potential. ACS Applied Materials & Interfaces, 2018, 10, 34238-34244.	4.0	35
518	Photocatalytic properties of intrinsically defective undoped bismuth vanadate (BiVO4) photocatalyst: A DFT study. Journal of Electroanalytical Chemistry, 2018, 828, 97-101.	1.9	5
519	Assembly of β-Cu ₂ V ₂ O ₇ /WO ₃ heterostructured nanocomposites and the impact of their composition on structure and photoelectrochemical properties. Journal of Materials Chemistry C, 2018, 6, 12062-12069.	2.7	9
520	Triple Planar Heterojunction of SnO2/WO3/BiVO4 with Enhanced Photoelectrochemical Performance under Front Illumination. Applied Sciences (Switzerland), 2018, 8, 1765.	1.3	17
521	π onjugated Organic–Inorganic Hybrid Photoanodes: Revealing the Photochemical Behavior through In Situ Xâ€Ray Absorption Spectroscopy. Chemistry - A European Journal, 2018, 24, 18419-18423.	1.7	1
522	Water Oxidation and Electron Extraction Kinetics in Nanostructured Tungsten Trioxide Photoanodes. Journal of the American Chemical Society, 2018, 140, 16168-16177.	6.6	105
523	Selective growth of vertically aligned two-dimensional MoS2/WS2 nanosheets with decoration of Bi2S3 nanorods by microwave-assisted hydrothermal synthesis: Enhanced photo-and electrochemical performance for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 21290-21298.	3.8	26
524	Carbon-nitride-based core–shell nanomaterials: synthesis and applications. Journal of Materials Science: Materials in Electronics, 2018, 29, 20280-20301.	1.1	9
525	The role of defects and excess surface charges at finite temperature for optimizing oxide photoabsorbers. Nature Materials, 2018, 17, 1122-1127.	13.3	61

#	Article	IF	CITATIONS
526	Enhanced photoelectrochemical performance of black Si electrode by forming a pn junction. Journal of Materials Science: Materials in Electronics, 2018, 29, 20734-20741.	1.1	1
527	Ternary WO ₃ /Porousâ€BiVO ₄ /FeOOH Hierarchical Architectures: Towards Highly Efficient Photoelectrochemical Performance. ChemElectroChem, 2018, 5, 3660-3667.	1.7	22
528	Effects of cathodic electrodeposition conditions on morphology and photoelectrochemical response of α-Fe2O3 photoanode. Thin Solid Films, 2018, 666, 161-171.	0.8	13
529	Recent Advances in BiVO4- and Bi2Te3-Based Materials for High Efficiency-Energy Applications. , 0, , .		1
530	Enhanced photoelectric performance of rutile SnO2 by double-hole-assisted coupling of carbon and sulfur. Electrochimica Acta, 2018, 289, 283-291.	2.6	6
531	Ta-Doped porous TiO ₂ nanorod arrays by substrate-assisted synthesis: efficient photoelectrocatalysts for water oxidation. Nanoscale, 2018, 10, 19367-19374.	2.8	15
532	Ferroelectric Materials: A Novel Pathway for Efficient Solar Water Splitting. Applied Sciences (Switzerland), 2018, 8, 1526.	1.3	27
533	A ternary Z-scheme WO3–Pt–CdS composite for improved visible-light photocatalytic H2 production activity. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	11
534	Boosting Charge-Transfer Efficiency by Simultaneously Tuning Double Effects of Metal Nanocrystal in Z-Scheme Photocatalytic Redox System. Journal of Physical Chemistry C, 2018, 122, 12291-12306.	1.5	28
535	One-dimensional WO3/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting. Chemical Engineering Journal, 2018, 349, 368-375.	6.6	114
536	Tailoring Crystallographic Orientations to Substantially Enhance Charge Separation Efficiency in Anisotropic BiVO ₄ Photoanodes. ACS Catalysis, 2018, 8, 5952-5962.	5.5	85
537	A hybrid molecular photoanode for efficient light-induced water oxidation. Sustainable Energy and Fuels, 2018, 2, 1979-1985.	2.5	20
538	Recent developments in photoelectrochemical water-splitting using WO 3 /BiVO 4 heterojunction photoanode: A review. Materials Science for Energy Technologies, 2018, 1, 49-62.	1.0	59
539	Synergetic photocatalytic effect between 1 T@2H-MoS ₂ and plasmon resonance induced by Ag quantum dots. Nanotechnology, 2018, 29, 285402.	1.3	30
540	Preparation, characterization, and mechanistic analysis of BiVO4/Caln2S4 hybrids that photocatalyze NO removal under visible light. Journal of Physics and Chemistry of Solids, 2018, 122, 239-245.	1.9	14
541	Visible light assisted photocatalytic degradation of crystal violet dye and electrochemical detection of ascorbic acid using a BiVO ₄ /FeVO ₄ heterojunction composite. RSC Advances, 2018, 8, 23489-23498.	1.7	86
542	FeCoW multimetal oxide-coatedÂW:BiVO ₄ photoanode for efficient oxygen evolution. Sustainable Energy and Fuels, 2018, 2, 2053-2059.	2.5	9
543	Role of Oxygen Vacancies in the Electrical Properties of WO _{3â^'<i>x</i>} Nano/Microrods with Identical Morphology. Journal of Nanomaterials, 2018, 2018, 1-12.	1.5	27

#	Article	IF	CITATIONS
544	Photocatalytic hydrogen evolution and bacterial inactivation utilizing sonochemical-synthesized g-C3N4/red phosphorus hybrid nanosheets as a wide-spectral-responsive photocatalyst: The role of type I band alignment. Applied Catalysis B: Environmental, 2018, 238, 126-135.	10.8	209
545	Boosting interfacial charge transfer for efficient water-splitting photoelectrodes: progress in bismuth vanadate photoanodes using various strategies. MRS Communications, 2018, 8, 809-822.	0.8	8
546	Oxygen vacancies confined in SnO ₂ nanoparticles for glorious photocatalytic activities from the UV, visible to near-infrared region. New Journal of Chemistry, 2018, 42, 15253-15262.	1.4	33
547	Nonequilibrium Deposition in Epitaxial BiVO ₄ Thin Film Photoanodes for Improving Solar Water Oxidation Performance. Chemistry of Materials, 2018, 30, 5673-5681.	3.2	20
548	Simultaneous enhancement in charge separation and onset potential for water oxidation in a BiVO ₄ photoanode by W–Ti codoping. Journal of Materials Chemistry A, 2018, 6, 16965-16974.	5.2	27
549	Chemical bath deposition synthesis of TiO2/Cu2O core/shell nanowire arrays with enhanced photoelectrochemical water splitting for H2 evolution and photostability. International Journal of Hydrogen Energy, 2018, 43, 15907-15917.	3.8	35
550	Enabling Solar Water Oxidation by BiVO ₄ Photoanodes in Basic Media. Chemistry of Materials, 2018, 30, 4704-4712.	3.2	65
551	A Direct Z‣cheme Van Der Waals Heterojunction (WO ₃ ·H ₂ O/gâ€C ₃ N ₄) for High Efficient Overall Water Splitting under Visibleâ€Light. Solar Rrl, 2018, 2, 1800148.	3.1	60
552	Influence of Magnesium Ions in the Seawater Environment on the Improvement of the Corrosion Resistance of Low-Chromium-Alloy Steel. Materials, 2018, 11, 162.	1.3	9
553	New Insights into Mn1â^'xZnxFe2O4 via Fabricating Magnetic Photocatalyst Material BiVO4/Mn1â^'xZnxFe2O4. Materials, 2018, 11, 335.	1.3	13
554	Efficient visible-light driven photocatalyst, silver (meta)vanadate: Synthesis, morphology and modification. Chemical Engineering Journal, 2018, 352, 782-802.	6.6	65
555	A novel visible-light responsive photocatalytic fuel cell with a heterostructured BiVO4/WO3 photoanode and a Pt/C air-breathing cathode. Journal of Colloid and Interface Science, 2018, 532, 758-766.	5.0	32
556	Wavelength dependent photochemical charge transfer at the Cu ₂ O–BiVO ₄ particle interface – evidence for tandem excitation. Chemical Communications, 2018, 54, 9023-9026.	2.2	13
557	Rapid Screening of Photoanode Materials Using Scanning Photoelectrochemical Microscopy Technique and Formation of Z-Scheme Solar Water Splitting System by Coupling p- and n-type Heterojunction Photoelectrodes. ACS Applied Energy Materials, 2018, 1, 2283-2294.	2.5	24
558	Boosting the photoelectrochemical activities of all-inorganic perovskite SrTiO ₃ nanofibers by engineering homo/hetero junctions. Journal of Materials Chemistry A, 2018, 6, 17530-17539.	5.2	13
559	Rational construction of oxygen vacancies onto tungsten trioxide to improve visible light photocatalytic water oxidation reaction. Applied Catalysis B: Environmental, 2018, 239, 398-407.	10.8	183
560	Nanocrystalline Boron-Doped Diamond as a Corrosion-Resistant Anode for Water Oxidation via Si Photoelectrodes. ACS Applied Materials & Interfaces, 2018, 10, 29552-29564.	4.0	23
561	Efficient Water Splitting Cascade Photoanodes with Ligandâ€Engineered MnO Cocatalysts. Advanced Science, 2018, 5, 1800727.	5.6	30

#	Article	IF	CITATIONS
562	Energy-Band Alignment of BiVO ₄ from Photoelectron Spectroscopy of Solid-State Interfaces. Journal of Physical Chemistry C, 2018, 122, 20861-20870.	1.5	38
563	Dual Modification of a BiVO ₄ Photoanode for Enhanced Photoelectrochemical Performance. ChemSusChem, 2018, 11, 2502-2509.	3.6	84
564	Nanostructured TaON/Ta ₃ N ₅ as a highly efficient type-II heterojunction photoanode for photoelectrochemical water splitting. Dalton Transactions, 2018, 47, 8949-8955.	1.6	43
565	Modification of BiVO ₄ /WO ₃ composite photoelectrodes with Al ₂ O ₃ <i>via</i> chemical vapor deposition for highly efficient oxidative H ₂ O ₂ production from H ₂ O. Sustainable Energy and Fuels, 2018, 2. 1621-1629.	2.5	44
566	Rational Design of Ternary Composite Photoanode BiVO 4 /PW 12 /NiTsPc for Improved	1.7	16
567	An antenna/spacer/reflector based Au/BiVO4/WO3/Au nanopatterned photoanode for plasmon-enhanced photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2018, 237, 763-771.	10.8	70
568	Efficient solar-driven conversion of nitrogen to ammonia in pure water <i>via</i> hydrogenated bismuth oxybromide. RSC Advances, 2018, 8, 21871-21878.	1.7	37
569	Photoelectrocatalytic degradation of amoxicillin overÂquaternary ZnO/ZnSe/CdSe/MoS2 hierarchical nanorods. International Journal of Hydrogen Energy, 2019, 44, 20826-20838.	3.8	37
570	Simultaneous SO2 removal and CO2 reduction in a nano-BiVO4 Cu-In nanoalloy photoelectrochemical cell. Chemical Engineering Journal, 2019, 355, 11-21.	6.6	41
571	One-pot synthesis of potassium and phosphorus-doped carbon nitride catalyst derived from urea for highly efficient visible light-driven hydrogen peroxide production. Catalysis Today, 2019, 330, 171-178.	2.2	42
572	In Operando Photoelectrochemical Femtosecond Transient Absorption Spectroscopy of WO ₃ /BiVO ₄ Heterojunctions. ACS Energy Letters, 2019, 4, 2213-2219.	8.8	42
573	Direct Z-scheme CaTiO3@BiOBr composite photocatalysts with enhanced photodegradation of dyes. Environmental Science and Pollution Research, 2019, 26, 29020-29031.	2.7	81
574	Construction of ZnIn ₂ S ₄ â€RGOâ€BiVO ₄ Zâ€Scheme System: Influence of the RGO loading and Co–Catalysts Types. ChemistrySelect, 2019, 4, 8815-8821.	0.7	12
575	The promotion of the photocatalytic nitrogen fixation ability of nitrogen vacancy-embedded graphitic carbon nitride by replacing the corner-site carbon atom with phosphorus. Dalton Transactions, 2019, 48, 11724-11731.	1.6	40
576	PINO/NHPI-mediated selective oxidation of cycloalkenes to cycloalkenones <i>via</i> a photo-electrochemical method. Chemical Communications, 2019, 55, 9339-9342.	2.2	20
577	Large-Area CVD MoS ₂ /WS ₂ Heterojunctions as a Photoelectrocatalyst for Salt-Water Oxidation. ACS Applied Energy Materials, 2019, 2, 5877-5882.	2.5	23
578	Room-temperature hydrolysis fabrication of BiOBr/Bi12O17Br2 Z-Scheme photocatalyst with enhanced resorcinol degradation and NO removal activity. Chemosphere, 2019, 235, 767-775.	4.2	34
579	Efficient BiVO ₄ Photoanodes by Postsynthetic Treatment: Remarkable Improvements in Photoelectrochemical Performance from Facile Borate Modification. Angewandte Chemie - International Edition, 2019, 58, 19027-19033.	7.2	108

#	Article	IF	CITATIONS
580	Ultrathin g-C3N4/Mo:BiVO4 photoanode for enhanced photoelectrochemical water oxidation. Journal of Power Sources, 2019, 444, 227300.	4.0	34
581	Chitosan as a promising hole-scavenger for photoelectrochemical monitoring of cobalt(II) ions in water. Journal of Electroanalytical Chemistry, 2019, 851, 113470.	1.9	7
582	Plate-like WO3 inserting into I-deficient BiO1.210.6 microsphere for highly efficient photocatalytic degradation of VOCs. Journal of the Taiwan Institute of Chemical Engineers, 2019, 105, 96-103.	2.7	5
583	Synthesis of Bismuth Vanadate by a Novel Process and Its Enhanced Photoelectrochemical Performance. IOP Conference Series: Materials Science and Engineering, 2019, 562, 012097.	0.3	1
584	Efficient BiVO ₄ Photoanodes by Postsynthetic Treatment: Remarkable Improvements in Photoelectrochemical Performance from Facile Borate Modification. Angewandte Chemie, 2019, 131, 19203-19209.	1.6	35
585	Recent advances in dye-sensitized photoelectrochemical cells for water splitting. EnergyChem, 2019, 1, 100015.	10.1	73
586	Design and Verification of Integrated Ship Monitoring Network with High Reliability and Zero-time Self-healing. , 2019, , .		1
587	Multilayered Fluorine Doped SnO2 Inverse Opal/WO3/BiVO4 Film for Solar Water Oxidation: Systematic Development and Defined Role of Each Layer. Journal of the Electrochemical Society, 2019, 166, H750-H763.	1.3	4
588	Effective Photocatalytic Activity of Sulfate-Modified BiVO4 for the Decomposition of Methylene Blue Under LED Visible Light. Materials, 2019, 12, 2681.	1.3	21
589	Serendipitous Assembly of Mixed Phase BiVO ₄ on B-Doped g-C ₃ N ₄ : An Appropriate p–n Heterojunction for Photocatalytic O ₂ evolution and Cr(VI) reduction. Inorganic Chemistry, 2019, 58, 12480-12491.	1.9	85
590	Construction of a Z-Scheme Dictated WO _{3–<i>X</i>} /Ag/ZnCr LDH Synergistically Visible Light-Induced Photocatalyst towards Tetracycline Degradation and H ₂ Evolution. ACS Omega, 2019, 4, 14721-14741.	1.6	129
591	Novel semiconducting iron–quinizarin metal–organic framework for application in supercapacitors. Molecular Physics, 2019, 117, 3424-3433.	0.8	4
592	An integrating photoanode consisting of BiVO ₄ , rGO and LDH for photoelectrochemical water splitting. Dalton Transactions, 2019, 48, 16091-16098.	1.6	37
593	State-of-the-art progress in the use of ternary metal oxides as photoelectrode materials for water splitting and organic synthesis. Nano Today, 2019, 28, 100763.	6.2	67
594	NiSe ₂ Nanoparticles Grown in Situ on CdS Nanorods for Enhanced Photocatalytic Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2019, 7, 16720-16728.	3.2	75
595	Constructing a novel hierarchical β-Ag2MoO4/BiVO4 photocatalyst with Z-scheme heterojunction utilizing Ag as an electron mediator. Applied Surface Science, 2019, 498, 143860.	3.1	51
596	Preparation of Helical BiVO ₄ /Ag/C ₃ N ₄ for Selective Oxidation of C–H Bond under Visible Light Irradiation. ACS Sustainable Chemistry and Engineering, 2019, 7, 17500-17506.	3.2	36
597	Hexagonal Boron Nitride Quantum Dots as a Superior Hole Extractor for Efficient Charge Separation in WO ₃ -Based Photoelectrochemical Water Oxidation. ACS Applied Energy Materials, 2019, 2, 7457-7466.	2.5	37

#	Article	IF	CITATIONS
598	Photoanode of LDH catalyst decorated semiconductor heterojunction of BiVO4/CdS to enhance PEC water splitting efficiency. International Journal of Hydrogen Energy, 2019, 44, 24642-24652.	3.8	46
599	Photothermal effect promoting CO2 conversion over composite photocatalyst with high graphene content. Journal of Catalysis, 2019, 377, 652-661.	3.1	74
600	Hollow BiVO4/Bi2S3 cruciate heterostructures with enhanced visible-light photoactivity. Catalysis Science and Technology, 2019, 9, 182-187.	2.1	13
601	Regulating the Silicon/Hematite Microwire Photoanode by the Conformal Al ₂ O ₃ Intermediate Layer for Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 5978-5988.	4.0	33
602	Layer-by-layer assembly for photoelectrochemical nanoarchitectonics. Molecular Systems Design and Engineering, 2019, 4, 65-77.	1.7	25
603	Beyond band bending in the WO ₃ /BiVO ₄ heterojunction: insight from DFT and experiment. Sustainable Energy and Fuels, 2019, 3, 264-271.	2.5	17
604	Growth of BiVO ₄ nanoparticles on a WO ₃ porous scaffold: improved water-splitting by high band-edge light harvesting. Journal of Materials Chemistry A, 2019, 7, 4480-4485.	5.2	16
605	Solution-processed TiO2/BiVO4/SnO2 triple-layer photoanode with enhanced photoelectrochemical performance. Journal of Alloys and Compounds, 2019, 785, 1245-1252.	2.8	27
606	WO ₃ /BiVO ₄ : impact of charge separation at the timescale of water oxidation. Chemical Science, 2019, 10, 2643-2652.	3.7	59
607	A Type II n-n staggered orthorhombic V2O5/monoclinic clinobisvanite BiVO4 heterojunction photoanode for photoelectrochemical water oxidation: Fabrication, characterisation and experimental validation. Chemical Engineering Journal, 2019, 364, 177-185.	6.6	81
608	NiSe as an effective co-catalyst coupled with TiO2 for enhanced photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 4821-4831.	3.8	66
609	Boosting interfacial charge migration of TiO2/BiVO4 photoanode by W doping for photoelectrochemical water splitting. Electrochimica Acta, 2019, 300, 138-144.	2.6	36
610	Intimate Interfacial Interaction between Aminoâ€Modified Ti ₅ Clusters and BiVO ₄ towards Efficient Photoelectrochemical Water Splitting. ChemNanoMat, 2019, 5, 1110-1114.	1.5	6
611	An Allâ€Organic Semiconductor C ₃ N ₄ /PDINH Heterostructure with Advanced Antibacterial Photocatalytic Therapy Activity. Advanced Materials, 2019, 31, e1901965.	11.1	215
612	Phase controlled synthesis and the phase dependent photo-and electrocatalysis of CdS@CoMo2S4/MoS2 catalyst for HER. International Journal of Hydrogen Energy, 2019, 44, 19890-19899.	3.8	11
613	Amorphous TiO2 coated hierarchical WO3 Nanosheet/CdS Nanorod arrays for improved photoelectrochemical performance. Applied Surface Science, 2019, 490, 411-419.	3.1	21
614	Photocatalytic degradation of ciprofloxacin using Zn-doped Cu2O particles: Analysis of degradation pathways and intermediates. Chemical Engineering Journal, 2019, 374, 316-327.	6.6	332
615	Enhanced NIR photocatalytic of Ag-RGO@{010}BiVO4/RGO@{110} BiVO4 photocatalysts induced by resonance effect of transverse electric of RGO and transverse magnetic of Ag. Applied Surface Science, 2019, 489, 1-12.	3.1	29

#	Article	IF	CITATIONS
616	Rational Design of Branched WO ₃ Nanorods Decorated with BiVO ₄ Nanoparticles by All-Solution Processing for Efficient Photoelectrochemical Water Splitting. ACS Applied Energy Materials, 2019, 2, 4535-4543.	2.5	36
617	Magnetic ZnFe2O4@ZnSe hollow nanospheres for photocatalytic hydrogen production application. Composites Part B: Engineering, 2019, 173, 106891.	5.9	30
618	A Co(OH) _x nanolayer integrated planar WO ₃ /Fe ₂ O ₃ photoanode for efficient photoelectrochemical water splitting. Sustainable Energy and Fuels, 2019, 3, 2135-2141.	2.5	12
619	Effect of pH Value and Glycine in Alkaline CMP Slurry on the Corrosion of Aluminum by Electrochemical Analysis. ECS Journal of Solid State Science and Technology, 2019, 8, P332-P340.	0.9	14
620	<i>In situ</i> synthesis of C-doped BiVO ₄ with natural leaf as a template under different calcination temperatures. RSC Advances, 2019, 9, 14004-14010.	1.7	19
621	Enhancement of the degradation ability for organic pollutants via the synergistic effect of photoelectrocatalysis on a self-assembled perylene diimide (SA-PDI) thin film. Science Bulletin, 2019, 64, 896-903.	4.3	34
622	All-Solution-Processed WO ₃ /BiVO ₄ Core–Shell Nanorod Arrays for Highly Stable Photoanodes. ACS Applied Materials & Interfaces, 2019, 11, 20004-20012.	4.0	57
623	Visible Light Driven Photocatalytic Activity of Granular Pr Doped LaFeO3. Journal of Electronic Materials, 2019, 48, 4856-4865.	1.0	22
624	Metal (Ni2+/Co2+) sulfides modified BiVO4 for effective improvement in photoelectrochemical water splitting. Journal of Colloid and Interface Science, 2019, 549, 80-88.	5.0	36
625	Perovskite-type LaFeO3: Photoelectrochemical Properties and Photocatalytic Degradation of Organic Pollutants Under Visible Light Irradiation. Catalysts, 2019, 9, 342.	1.6	110
626	The Role of Underlayers and Overlayers in Thin Film BiVO ₄ Photoanodes for Solar Water Splitting. Advanced Materials Interfaces, 2019, 6, 1900299.	1.9	28
627	Highly efficient and stable p-type ZnO nanowires with piezotronic effect for photoelectrochemical water splitting. Nano Energy, 2019, 61, 550-558.	8.2	57
628	Recent progress of tungsten- and molybdenum-based semiconductor materials for solar-hydrogen production. Tungsten, 2019, 1, 19-45.	2.0	27
629	Stepping towards Solar Water Splitting: Recent Progress in Bismuth Vanadate Photoanodes. ChemElectroChem, 2019, 6, 3227-3243.	1.7	42
630	Semiconductor polymeric graphitic carbon nitride photocatalysts: the "holy grail―for the photocatalytic hydrogen evolution reaction under visible light. Energy and Environmental Science, 2019, 12, 2080-2147.	15.6	803
631	The precursor solution effect on the synthesis, structure, and optical properties of the WO3–TeO2 binary compound. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	8
632	A Zn:BiVO ₄ /Mo:BiVO ₄ homojunction as an efficient photoanode for photoelectrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 9019-9024.	5.2	86
633	Synergetic effect of Fe2O3 and BiVO4 as photocatalyst nanocomposites for improved photo-Fenton catalytic activity. Journal of Materials Science, 2019, 54, 8236-8246.	1.7	22

#	Article	IF	CITATIONS
634	Aqueous synthesis of core/shell/shell CdSe/CdS/ZnS quantum dots for photocatalytic hydrogen generation. Journal of Materials Science, 2019, 54, 8571-8580.	1.7	36
635	Mechanistic understanding of enhanced photocatalytic activity of N-doped BiVO4 towards degradation of ibuprofen: An experimental and theoretical approach. Molecular Catalysis, 2019, 470, 8-18.	1.0	27
636	Tetragonal to Monoclinic Crystalline Phases Change of BiVO ₄ via Microwave-Hydrothermal Reaction: In Correlation with Visible-Light-Driven Photocatalytic Performance. Inorganic Chemistry, 2019, 58, 5096-5110.	1.9	79
637	Engineering organic/inorganic hierarchical photocathode for efficient and stable quasi-solid-state photoelectrochemical fuel cells. Applied Catalysis B: Environmental, 2019, 250, 171-180.	10.8	29
638	Tungsten Trioxide Nanostructures for Photoelectrochemical Water Splitting: Material Engineering and Charge Carrier Dynamic Manipulation. Advanced Functional Materials, 2019, 29, 1809036.	7.8	122
639	Toward practical solar hydrogen production – an artificial photosynthetic leaf-to-farm challenge. Chemical Society Reviews, 2019, 48, 1908-1971.	18.7	781
640	Photostable 3D heterojunction photoanode made of ZnO nanosheets coated onto TiO ₂ nanowire arrays for photoelectrochemical solar hydrogen generation. Catalysis Science and Technology, 2019, 9, 1989-1997.	2.1	21
641	A Self-Assembled Organic/Metal Junction for Water Photo-Oxidation. Journal of the American Chemical Society, 2019, 141, 6765-6774.	6.6	14
642	Synthesis and photocatalytic property of cubic phase CdS. Solid State Sciences, 2019, 92, 31-35.	1.5	38
643	Synthesis of Au-nanoparticle-loaded 1T@2H-MoS2 nanosheets with high photocatalytic performance. Journal of Materials Science, 2019, 54, 9656-9665.	1.7	44
644	Electrochemical investigation of hybridized WO3–CdS semiconducting nanostructures prepared by microwave-assisted wet chemical route for supercapacitor application. Journal of Materials Science: Materials in Electronics, 2019, 30, 9231-9244.	1.1	6
645	Construction of an artificial inorganic leaf CdS–BiVO ₄ Z-scheme and its enhancement activities for pollutant degradation and hydrogen evolution. Catalysis Science and Technology, 2019, 9, 2426-2437.	2.1	23
646	Synthesis flower-like BiVO4/BiOI core/shell heterostructure photocatalyst for tetracycline degradation under visible-light irradiation. Journal of Materials Science: Materials in Electronics, 2019, 30, 9311-9321.	1.1	26
647	Colloidal synthesis of SnS nanocrystals with dimension-dependent photoelectrochemical properties. New Journal of Chemistry, 2019, 43, 7457-7462.	1.4	15
648	Facile synthesis of Er-doped BiFeO3 nanoparticles for enhanced visible light photocatalytic degradation of tetracycline hydrochloride. Journal of Sol-Gel Science and Technology, 2019, 90, 535-546.	1.1	22
649	A novel visible-light responsive photocatalytic fuel cell with a highly efficient BiVO4/WO3 inverse opal photoanode and a MnO2/graphene oxide nanocomposite modified cathode. International Journal of Hydrogen Energy, 2019, 44, 7288-7299.	3.8	56
650	Elaborately Modified BiVO ₄ Photoanodes for Solar Water Splitting. Advanced Materials, 2019, 31, e1806938.	11.1	333
651	Hierarchical TiO2@In2O3 heteroarchitecture photoanodes: Mechanistic study on interfacial charge carrier dynamics through water splitting and organic decomposition. Applied Surface Science, 2019, 480, 1-12.	3.1	37

#	Article	IF	CITATIONS
652	Integration of Molybdenum-Doped, Hydrogen-Annealed BiVO ₄ with Silicon Microwires for Photoelectrochemical Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 5034-5044.	3.2	8
653	Construction of BiOF/BiOI nanocomposites with tunable band gaps as efficient visible-light photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 375, 30-39.	2.0	31
654	Novel indigo-dye-doped graphene-supported Mn/WO ₃ nanocomposite as visible light photocatalyst for degradation of methylene blue dye. Materials Research Express, 2019, 6, 055050.	0.8	8
655	Cooperative Catalytic Behavior of SnO2 and NiWO4 over BiVO4 Photoanodes for Enhanced Photoelectrochemical Water Splitting Performance. Catalysts, 2019, 9, 879.	1.6	13
656	Enhancement of photocatalytic hydrogen production of BiFeO3 by Gd3+ doping. Ceramics International, 2019, 45, 8017-8022.	2.3	125
657	Facet effect on the photoelectrochemical performance of a WO3/BiVO4 heterojunction photoanode. Applied Catalysis B: Environmental, 2019, 245, 227-239.	10.8	141
658	Effect of Mo doping and NiFe-LDH cocatalyst on PEC water oxidation efficiency. Journal of Colloid and Interface Science, 2019, 540, 9-19.	5.0	43
659	Synergistic Effect Between WO3/Activated Carbon and BiVO4 Nanoparticles for Improved Photocatalytic Hydrogen Evolution. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 869-875.	1.9	6
660	WO ₃ /BiVO ₄ Type-II Heterojunction Arrays Decorated with Oxygen-Deficient ZnO Passivation Layer: A Highly Efficient and Stable Photoanode. ACS Applied Materials & Interfaces, 2019, 11, 889-897.	4.0	86
661	Improved photoelectrochemical properties of tungsten oxide by modification with plasmonic gold nanoparticles for the non-enzymatic sensing of ethanol. Journal of Colloid and Interface Science, 2019, 537, 528-535.	5.0	13
662	Rational Design and Construction of Cocatalysts for Semiconductorâ€Based Photoâ€Electrochemical Oxygen Evolution: A Comprehensive Review. Advanced Science, 2019, 6, 1801505.	5.6	120
663	Construction of CdS quantum dots modified g-C3N4/ZnO heterostructured photoanode for efficient photoelectrochemical water splitting. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 371, 109-117.	2.0	36
664	A sandwich-type polyoxometalate for efficient noble-metal-free hydrogen evolution upon visible light irradiation. Journal of Catalysis, 2019, 369, 54-59.	3.1	16
665	A new photocatalyst based on Co(CO3)0.5(OH)·0.11H2O/Bi2WO6 nanocomposites for high-efficiency cocatalyst-free O2 evolution. Chemical Engineering Journal, 2019, 359, 924-932.	6.6	59
666	Carbon quantum dots/BiVO4 composite with enhanced photocatalytic activity. Science China Technological Sciences, 2019, 62, 356-360.	2.0	13
667	Nanoporous Fe-doped BiVO4 Modified with MIL-53 (Fe) for Enhanced Photoelectrochemical Stability and Water Splitting Perfromances. Catalysis Letters, 2019, 149, 870-875.	1.4	17
668	Au/Pd/g-C3N4 nanocomposites for photocatalytic degradation of tetracycline hydrochloride. Journal of Materials Science, 2019, 54, 5445-5456.	1.7	93
669	Improved photoelectrochemical performance of molybdenum (Mo)-doped monoclinic bismuth vanadate with increasing donor concentration. Catalysis Today, 2019, 328, 35-42.	2.2	38

#	Article	IF	CITATIONS
670	Synthesis of CdSe/SrTiO3 nanocomposites with enhanced photocatalytic hydrogen production activity. Applied Surface Science, 2019, 467-468, 1033-1039.	3.1	70
671	BiVO4/RGO hybrid nanostructure for high performance electrochemical supercapacitor. Journal of Solid State Chemistry, 2019, 269, 409-418.	1.4	45
672	Investigation of concentration dependent electrical and photocatalytic properties of Mn doped SmFeO3. Materials Chemistry and Physics, 2019, 223, 78-87.	2.0	46
673	Synthesis of SPR Au/BiVO4 quantum dot/rutile-TiO2 nanorod array composites as efficient visible-light photocatalysts to convert CO2 and mechanism insight. Applied Catalysis B: Environmental, 2019, 244, 641-649.	10.8	94
674	Turning the unwanted surface bismuth enrichment to favourable BiVO4/BiOCl heterojunction for enhanced photoelectrochemical performance. Applied Catalysis B: Environmental, 2019, 241, 506-513.	10.8	84
675	Construction of In2Se3/MoS2 heterojunction as photoanode toward efficient photoelectrochemical water splitting. Chemical Engineering Journal, 2019, 358, 752-758.	6.6	42
676	Solution combustion synthesis of Ag-decorated Bi5O7NO3 composites with enhanced photocatalytic properties. Ceramics International, 2019, 45, 1409-1411.	2.3	12
677	Influence of calcination temperature on the photocatalytic performance of the hierarchical TiO2 pinecone-like structure decorated with CdS nanoparticles. Ceramics International, 2019, 45, 767-776.	2.3	21
678	Enhanced Sunlight driven photocatalytic performance and visualization of latent fingerprint by green mediated ZnFe2O4–RGO nanocomposite. Arabian Journal of Chemistry, 2020, 13, 1449-1465.	2.3	20
679	An alternative method for the synthesis of functional Au/WO3 materials and their use in the photocatalytic production of hydrogen. Catalysis Today, 2020, 341, 49-58.	2.2	18
680	Aging of a Vanadium Precursor Solution: Influencing Material Properties and Photoelectrochemical Water Oxidation Performance of Solutionâ€Processed BiVO ₄ Photoanodes. Advanced Functional Materials, 2020, 30, 1806662.	7.8	16
681	Oxygen-deficient WO3â^'x nanoplate array film photoanode for efficient photoelectrocatalytic water decontamination. Chemical Engineering Journal, 2020, 381, 122740.	6.6	45
682	Construction of ternary CdxMo1â^'xSe quantum dots for enhanced photocatalytic hydrogen production. Journal of Materials Science, 2020, 55, 1117-1125.	1.7	13
683	Theoretical prediction of two-dimensional ZnO/GaN van der Waals heterostructure as a photocatalyst for water splitting. Chemical Physics, 2020, 528, 110539.	0.9	73
684	Photocatalytic reduction of CO2 into CO over nanostructure Bi2S3 quantum dots/g-C3N4 composites with Z-scheme mechanism. Applied Surface Science, 2020, 500, 144059.	3.1	99
685	Impacts of subtidal motions and the earth rotation on modal characteristics of the semidiurnal internal tide. Journal of Oceanography, 2020, 76, 15-27.	0.7	1
686	Hollow Micro- and Nanomaterials: Synthesis and Applications. , 2020, , 1-38.		14
687	Facile synthesis of Bi5O7Br/BiOBr 2D/3D heterojunction as efficient visible-light-driven photocatalyst for pharmaceutical organic degradation. Separation and Purification Technology, 2020, 231, 115917.	3.9	77

#	Article	IF	CITATIONS
688	Highly durable isotypic heterojunction generated by covalent cross-linking with organic linkers for improving visible-light-driven photocatalytic performance. Applied Catalysis B: Environmental, 2020, 260, 118182.	10.8	20
689	Structural design of hexagonal/monoclinic WO3 phase junction for photocatalytic degradation. Materials Research Bulletin, 2020, 121, 110614.	2.7	63
690	Z-scheme hierarchical Cu2S/Bi2WO6 composites for improved photocatalytic activity of glyphosate degradation under visible light irradiation. Separation and Purification Technology, 2020, 236, 116243.	3.9	45
691	Charge Transport Surmounting Hierarchical Ligand Confinement toward Multifarious Photoredox Catalysis. Inorganic Chemistry, 2020, 59, 1364-1375.	1.9	11
692	First-principles investigation of the electronic properties of the Bi ₂ O ₄ (101)/BiVO ₄ (010) heterojunction towards more efficient solar water splitting. Physical Chemistry Chemical Physics, 2020, 22, 2449-2456.	1.3	18
693	Catalytic reduction of nitrogen to produce ammonia by bismuth-based catalysts: state of the art and future prospects. Materials Horizons, 2020, 7, 1014-1029.	6.4	134
694	Fabricating highly efficient heterostructured CuBi ₂ O ₄ photocathodes for unbiased water splitting. Journal of Materials Chemistry A, 2020, 8, 2498-2504.	5.2	57
695	Branched polymer-incorporated multi-layered heterostructured photoanode: precisely tuning directional charge transfer toward solar water oxidation. Journal of Materials Chemistry A, 2020, 8, 177-189.	5.2	65
696	Preparation and photocatalytic application of ternary n-BaTiO3/Ag/p-AgBr heterostructured photocatalysts for dye degradation. Materials Research Bulletin, 2020, 124, 110754.	2.7	106
697	Pulse-Plating Electrodeposition of Metallic Bi in an Organic-Free Aqueous Electrolyte and Its Conversion into BiVO ₄ To Improve Photoelectrochemical Activity toward Pollutant Degradation under Visible Light. Journal of Physical Chemistry C, 2020, 124, 1421-1428.	1.5	10
698	Electrochemically controlled CdS@CdSe nanoparticles on ITO@TiO2 dual core–shell nanowires for enhanced photoelectrochemical hydrogen production. Applied Surface Science, 2020, 505, 144569.	3.1	11
699	Photocatalysis: an overview of recent developments and technological advancements. Science China Chemistry, 2020, 63, 149-181.	4.2	107
700	Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications. ACS Applied Energy Materials, 2020, 3, 66-98.	2.5	540
701	One step preparation of in-situ carbon-modified artificial leaf BiVO4 for photocatalytic pollutants degradation. Materials Research Bulletin, 2020, 124, 110756.	2.7	12
702	Toward enhancing the photoelectrochemical water splitting efficiency of organic acid doped polyaniline-WO3 photoanode by photo-assisted electrochemically reduced graphene oxide. Electrochimica Acta, 2020, 333, 135475.	2.6	36
703	Facet-Engineered Surface and Interface Design of Monoclinic Scheelite Bismuth Vanadate for Enhanced Photocatalytic Performance. ACS Catalysis, 2020, 10, 1024-1059.	5.5	105
704	Fabrication of core-shell BiVO4@Fe2O3 heterojunctions for realizing photocatalytic hydrogen evolution via conduction band elevation. Materials and Design, 2020, 187, 108379.	3.3	49
705	Role of rGO to improve the performance of BiVO4 nanostructures for efficient removal of heavy metals. Applied Nanoscience (Switzerland), 2020, 10, 1421-1432.	1.6	7

ARTICLE IF CITATIONS # Growth of NiMn layered double hydroxides on nanopyramidal BiVO₄ photoanode for 706 1.3 4 enhanced photoelectrochemical performance. Nanotechnology, 2020, 31, 115707. Moâ€Doped ZnIn₂S₄ Flowerâ€Like Hollow Microspheres for Improved Visible 3.1 Lightâ€Driven Hydrogen Evolution. Solar Rrl, 2020, 4, 1900483. Efficient solar-to-acetate conversion from CO2 through microbial electrosynthesis coupled with 708 5.1 30 stable photoanode. Applied Energy, 2020, 278, 115684. Core-shell particles of C-doped CdS and graphene: A noble metal-free approach for efficient photocatalytic H2 generation. Green Energy and Environment, 2020, 5, 461-472. Recent Advancements and Future Prospects in Ultrathin 2D Semiconductor-Based Photocatalysts for 710 1.6 35 Water Splitting. Catalysts, 2020, 10, 1111. Selective oxidation of toluene to benzaldehyde over Pd/BiVO4 particles under blue to green light irradiation. Journal of Catalysis, 2020, 391, 480-484. 3.1 24 712 Photoactive Tungsten-Oxide Nanomaterials for Water-Splitting. Nanomaterials, 2020, 10, 1871. 1.9 44 The role of oxygen vacancies in water splitting photoanodes. Sustainable Energy and Fuels, 2020, 4, 2.5 5916-5926. Effects of native defects and cerium impurity on the monoclinic BiVO₄ photocatalyst 714 obtained <i>via</i> PBE+<i>U</i> calculations. Physical Chemistry Chemical Physics, 2020, 22, 1.3 17 25297-25305. Tuning the Electronic Structure of Monoclinic Tungsten Oxide Nanoblocks by Indium Doping for 1.7 Boosted Photoelectrochemical Performance. Chemistry - an Asian Journal, 2020, 15, 3886-3896. WO3/ZnIn2S4 heterojunction photoanodes grafting silane molecule for efficient 716 2.6 23 photoelectrochemical water splitting. Electrochimica Acta, 2020, 361, 137017. Microwave-Assisted Synthesis of Bismuth Niobate/Tungsten Oxide Photoanodes for Water Splitting. 1.3 Topics in Catalysis, 2021, 64, 748-757. Preparation of nitrogen-doped aluminium titanate (Al2TiO5) nanostructures: Application to removal 718 2.0 14 of organic pollutants from aqueous media. Advanced Powder Technology, 2020, 31, 3328-3341. Construction of heterojunction g-C3N4/CoAl hydrotalcites for high-efficient Cr(VI) reduction under visible light. Applied Clay Science, 2020, 193, 105669. 2.6 29 A Z-scheme photocatalyst for enhanced photocatalytic H2 evolution, constructed by growth of 2D plasmonic MoO3-x nanoplates onto 2D g-C3N4 nanosheets. Journal of Colloid and Interface Science, 720 5.077 2020, 567, 213-223. Overall photocatalytic water splitting by an organolead iodide crystalline material. Nature Catalysis, 16.1 2020, 3, 1027-1033. Visible light-driven oxidant-free dehydrogenation of alcohols in water using porous ultrathin g-C3N4 722 4.7 17 nanosheets. Green Energy and Environment, 2022, 7, 712-722. Role of Alkali Metal in BiVO₄ Crystal Structure for Enhancing Charge Separation and Diffusion Length for Photoelectrochemical Water Splitting. ACS Applied Materials & amp; Interfaces, 2020, 12, 52808-52818.

#	Article	IF	CITATIONS
724	Surface Potential/Wettability and Interface Charge Transfer Engineering of Copper-Oxide (Cu–MO <i>_x</i> , M = W, Ti, and Ce) Hybrids for Efficient Wastewater Treatment through Adsorption–Photocatalysis Synergy. Industrial & Engineering Chemistry Research, 2020, 59, 15454-15463.	1.8	12
726	Modified synthesis of BiVO4 and effect of doping (Mo or W) on its photoelectrochemical performance for water splitting. Energy Reports, 2020, 6, 1963-1972.	2.5	51
727	Promoting Photoelectrochemical Activity and Stability of WO ₃ /BiVO ₄ Heterojunctions by Coating a Tannin Nickel Iron Complex. ACS Sustainable Chemistry and Engineering, 2020, 8, 12637-12645.	3.2	26
728	Electronic and optical competence of TiO2/BiVO4 nanocomposites in the photocatalytic processes. Scientific Reports, 2020, 10, 13507.	1.6	30
729	Functions of MnOx in NaCl Aqueous Solution for Artificial Photosynthesis. IScience, 2020, 23, 101540.	1.9	12
730	Piezo-photocatalytic Activity of Bi _{0.5} Na _{0.5} TiO ₃ @TiO ₂ Composite Catalyst with Heterojunction for Degradation of Organic Dye Molecule. Journal of Physical Chemistry C, 2020, 124, 24126-24134.	1.5	58
731	Bismuth-based photocatalysts for solar energy conversion. Journal of Materials Chemistry A, 2020, 8, 24307-24352.	5.2	200
732	A novel approach to photoelectrochemical immunoassay for procalcitonin on the basis of SnS ₂ /CdS. New Journal of Chemistry, 2020, 44, 15281-15288.	1.4	5
733	Cu ₃ Mo ₂ O ₉ /BiVO ₄ Heterojunction Films with Integrated Thermodynamic and Kinetic Advantages for Solar Water Oxidation. ACS Sustainable Chemistry and Engineering, 2020, 8, 14082-14090.	3.2	21
734	Tailoring the Surface Properties of Bi ₂ O ₂ NCN by <i>in Situ</i> Activation for Augmented Photoelectrochemical Water Oxidation on WO ₃ and CuWO ₄ Heterojunction Photoanodes. Inorganic Chemistry, 2020, 59, 13589-13597.	1.9	7
735	Relating the 3D Geometry and Photoelectrochemical Activity of WO ₃ -Loaded n-Si Nanowires: Design Rules for Photoelectrodes. ACS Applied Energy Materials, 2020, 3, 9628-9634.	2.5	3
736	Chemophysical acetylene-sensing mechanisms of Sb ₂ O ₃ /NaWO ₄ -doped WO ₃ heterointerfaces. Physical Chemistry Chemical Physics, 2020, 22, 20482-20498.	1.3	1
737	In situ reorganization of Bi3O4Br nanosheet on the Bi24O31Br10 ribbon structure for superior visible-light photocatalytic capability. Separation and Purification Technology, 2020, 247, 117007.	3.9	35
738	Unveiling the Effects of Nanostructures and Core Materials on Charge-Transport Dynamics in Heterojunction Electrodes for Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 21894-21902.	4.0	9
739	Amorphous co-doped MoSex effectively enhances photocatalysis in visible light. Dalton Transactions, 2020, 49, 7451-7458.	1.6	3
740	Sequential ionic layer adsorption reaction formation of LaVO ₄ –TiO ₂ nanocomposites for photocatalytic water treatment. Materials Advances, 2020, 1, 271-280.	2.6	3
741	Microemulsion synthesis of ms/tz-BiVO4 composites: The effect of pH on crystal structure and photocatalytic performance. Ceramics International, 2020, 46, 20788-20797.	2.3	21
742	A Macroporous-Structured WO ₃ /Mo-Doped BiVO ₄ Photoanode for Vapor-Fed Water Splitting under Visible Light Irradiation. ACS Sustainable Chemistry and Engineering, 2020, 8, 9456-9463.	3.2	29

#	Article	IF	CITATIONS
743	Boosted photo-electro-catalytic hydrogen evolution over the MoS2/MoO2 Schottky heterojunction by accelerating photo-generated charge kinetics. Journal of Alloys and Compounds, 2020, 832, 154970.	2.8	14
744	Facile synthesis of 2D Bi4O5Br2/2D thin layer-Ti3C2 for improved visible-light photocatalytic hydrogen evolution. Journal of Solid State Chemistry, 2020, 289, 121470.	1.4	26
745	The role of doping molybdenum (Mo) and back-front side illumination in enhancing the charge separation of l±-Fe2O3 nanorod photoanode for solar water splitting. Solar Energy, 2020, 205, 126-134.	2.9	34
746	A ternary photocatalyst of all-solid-state Z-scheme TiO2–Au–BiOBr for efficiently degrading various dyes. Journal of Alloys and Compounds, 2020, 839, 155597.	2.8	31
747	Simultaneous formation of Bi2O2(OH)(NO3)/BiOBr ultrathin hierarchical microspheres for effectively promoting visible-light-driven photocatalytic activity in environmental remediation. Chemosphere, 2020, 258, 127384.	4.2	19
748	(0 2 0)-Textured tungsten trioxide nanostructure with enhanced photoelectrochemical activity. Journal of Catalysis, 2020, 389, 328-336.	3.1	27
749	Bi electrodeposition on WO3 photoanode to improve the photoactivity of the WO3/BiVO4 heterostructure to water splitting. Chemical Engineering Journal, 2020, 399, 125836.	6.6	41
750	Multilayer WO3/BiVO4 Photoanodes for Solar-Driven Water Splitting Prepared by RF-Plasma Sputtering. Surfaces, 2020, 3, 105-115.	1.0	6
751	Fabrication of Z-Scheme WO3/KNbO3 Photocatalyst with Enhanced Separation of Charge Carriers. Chemical Research in Chinese Universities, 2020, 36, 901-907.	1.3	14
752	Solar-Light-Responsive Titanium-Sheet-Based Carbon Nanoparticles/B-BiVO ₄ /WO ₃ Photoanode for the Photoelectrocatalytic Degradation of Orange II Dye Water Pollutant. ACS Omega, 2020, 5, 4743-4750.	1.6	27
753	Boosting electrosynthesis of ammonia on surface-engineered MXene Ti3C2. Nano Energy, 2020, 72, 104681.	8.2	82
754	Layer-by-Layer Self-Assembly of Metal/Metal Oxide Superstructures: Self-Etching Enables Boosted Photoredox Catalysis. Inorganic Chemistry, 2020, 59, 4129-4139.	1.9	12
755	Engineering the interfaces in water-splitting photoelectrodes – an overview of the technique development. Journal of Materials Chemistry A, 2020, 8, 6984-7002.	5.2	44
756	The Improved Photoelectrochemical Performance of WO 3 /BiVO 4 Heterojunction Thinâ€Film Photoanodes via Thermal Treatment. Energy Technology, 2020, 8, 2000147.	1.8	10
757	Characteristics of crystalline sputtered LaFeO ₃ thin films as photoelectrochemical water splitting photocathodes. Nanoscale, 2020, 12, 9653-9660.	2.8	23
758	Field emission behaviors of CsPbI ₃ nanobelts. Journal of Materials Chemistry C, 2020, 8, 5156-5162.	2.7	8
759	Synthesis and photocatalytic activity of BiFeO ₃ and Bi/BiFeO ₃ cubic microcrystals. Journal of the American Ceramic Society, 2020, 103, 4122-4128.	1.9	7
760	Wet chemical epitaxial growth of a cactus-like CuFeO ₂ /ZnO heterojunction for improved photocatalysis. Dalton Transactions, 2020, 49, 9574-9578.	1.6	7

#	Article	IF	CITATIONS
761	Hybrid nanocomposites and their potential applications in the field of nanosensors/gas and biosensors. , 2020, , 253-280.		11
762	A direct Z-scheme PtS ₂ /arsenene van der Waals heterostructure with high photocatalytic water splitting efficiency. Nanoscale, 2020, 12, 17281-17289.	2.8	108
763	Defect-enhanced photocatalytic removal of dimethylarsinic acid over mixed-phase mesoporous TiO2. Journal of Environmental Sciences, 2020, 91, 35-42.	3.2	15
764	Synergy of charge pre-separation and direct Z-scheme bridge in BiVO4{0Â4Â0}/Ag6Si2O7 photocatalyst boosting organic pollutant degradation. Applied Surface Science, 2020, 513, 145832.	3.1	34
765	Effect of mixed Mo/W polyoxometalate modification on photoelectrocatalytic activity of CdS nanocrystals for arsenic(III) oxidation. Journal of Physics and Chemistry of Solids, 2020, 141, 109395.	1.9	14
766	An intensity-modulated photocurrent spectroscopy study of the charge carrier dynamics of WO3/BiVO4 heterojunction systems. Solar Energy Materials and Solar Cells, 2020, 208, 110378.	3.0	31
767	Facile one-pot microwave-assisted synthesis of tungsten-doped BiVO4/WO3 heterojunctions with enhanced photocatalytic activity. Materials Research Bulletin, 2020, 125, 110783.	2.7	39
768	Visible-Light-Driven Hydrogen Peroxide Synthesis by a Hybrid Photocatalyst Consisting of Bismuth Vanadate and Bis(hexafluoroacetylacetonato)copper(II) Complex. Journal of Physical Chemistry C, 2020, 124, 3715-3721.	1.5	17
769	Theoretical and electrochemical analysis on inhibition effect of benzotriazole and 1,2,4-triazole on cobalt surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 591, 124516.	2.3	28
770	Understanding the potential band position and e–/h+ separation lifetime for Z-scheme and type-II heterojunction mechanisms for effective micropollutant mineralization: Comparative experimental and DFT studies. Applied Catalysis B: Environmental, 2020, 273, 119034.	10.8	41
771	Operando time-resolved diffuse reflection spectroscopy: The origins of photocatalytic water-oxidation activity of bismuth vanadate. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 395, 112493.	2.0	2
772	Seed layer effect on morphological, structural, and optical properties of electrochemically grown ZnO nanowires over different SnO2:F/glass substrates. Journal of Solid State Electrochemistry, 2020, 24, 797-808.	1.2	6
773	Structure, morphology and photocatalytic performance of BiVO4 nanoislands covered with ITO thin film. Journal of Materials Science: Materials in Electronics, 2020, 31, 7035-7043.	1.1	3
774	Surface heterojunction of photocatalysts. Interface Science and Technology, 2020, 31, 161-191.	1.6	4
775	Controllable self-assembly of BiOI/oxidized mesocarbon microbeads core-shell composites: A novel hierarchical structure facilitated photocatalytic activities. Chemical Engineering Science, 2020, 221, 115653.	1.9	14
776	Hierarchical p-n heterostructure BiOI@ZnTi-LDH for Cr(VI) reduction under visible light. Journal of Alloys and Compounds, 2020, 833, 154898.	2.8	40
777	Facile assembly of a graphitic carbon nitride film at an air/water interface for photoelectrochemical NADH regeneration. Inorganic Chemistry Frontiers, 2020, 7, 2434-2442.	3.0	23
778	Photoinduced electron transfer in WO ₃ /BiVO ₄ heterojunction photoanodes: effects of the WO ₃ layer thickness. Journal of Physics Condensed Matter, 2020, 32, 014001.	0.7	12

#	Article	IF	CITATIONS
779	Enhancing the PEC water splitting performance of BiVO4 co-modifying with NiFeOOH and Co-Pi double layer cocatalysts. Applied Surface Science, 2020, 515, 146095.	3.1	165
780	SnS2 and SnS/SnS2 heterojunction nanosheets prepared by in-situ one-step sulfurization and visible light-assisted electrochemical water splitting properties. Journal of Alloys and Compounds, 2020, 834, 155174.	2.8	23
781	Low-Temperature Methane Oxidation Triggered by Peroxide Radicals over Noble-Metal-Free MgO Catalyst. ACS Applied Materials & Interfaces, 2020, 12, 21761-21771.	4.0	18
782	NiSe/Cd _{0.5} Zn _{0.5} S Composite Nanoparticles for Use in p–n Heterojunction-Based Photocatalysts for Solar Energy Harvesting. ACS Applied Nano Materials, 2020, 3, 3665-3674.	2.4	75
783	Pressure-induced structural transformations and new polymorphs in BiVO ₄ . Physical Chemistry Chemical Physics, 2020, 22, 10238-10246.	1.3	9
784	Core-Shell Nanostructures of Graphene-Wrapped CdS Nanoparticles and TiO2 (CdS@G@TiO2): The Role of Graphene in Enhanced Photocatalytic H2 Generation. Catalysts, 2020, 10, 358.	1.6	19
785	High photocatalytic activity over starfish-like La-doped ZnO/SiO2 photocatalyst for malachite green degradation under visible light. Journal of Rare Earths, 2021, 39, 772-780.	2.5	34
786	Construction of full spectrum-driven CsxWO3/g-C3N4 heterojunction catalyst for efficient photocatalytic CO2 reduction. Applied Surface Science, 2021, 540, 148316.	3.1	57
787	Synthesis of sponge-like TiO2 with surface-phase junctions for enhanced visible-light photocatalytic performance. Chinese Chemical Letters, 2021, 32, 1823-1826.	4.8	21
788	Oxygen vacancy modified Bi2MoO6/WO3 electrode with enhanced photoelectrocatalytic degradation activity toward RhB. Fuel, 2021, 285, 119171.	3.4	30
789	Study on cobalt-phosphate (Co-Pi) modified BiVO4/Cu2O photoanode to significantly inhibit photochemical corrosion and improve the photoelectrochemical performance. Chemical Engineering Journal, 2021, 404, 127054.	6.6	50
790	Synthesis of heterojunction tungsten oxide (WO3) and Bismuth vanadate (BiVO4) photoanodes by spin coating method for solar water splitting applications. Materials Today: Proceedings, 2021, 45, 3920-3926.	0.9	9
791	Integrated heterostructure of PZT/CdS containing the synergistic effect between heterojunction structure and ferroelectric polarization for photoelectrochemical applications. Materials Science in Semiconductor Processing, 2021, 121, 105351.	1.9	11
792	Mo-doping induced crystal orientation reconstruction and oxygen vacancy on BiVO4 homojunction for enhanced solar-driven water splitting. Chemical Engineering Journal, 2021, 421, 127796.	6.6	45
793	Photocatalytic Oxygen Evolution from Water Splitting. Advanced Science, 2021, 8, 2002458.	5.6	98
794	p-Cu2O/n-ZnO heterojunction thin films with enhanced photoelectrochemical properties and photocatalytic activities for norfloxacin. Chemosphere, 2021, 267, 129285.	4.2	57
795	Constructing Z-scheme heterojunction with a special electron transfer path and more active sites over MnS/D-PCN for photocatalytic H2 evolution. Applied Surface Science, 2021, 542, 148707.	3.1	18
796	A "concentration-induced self-assembly―strategy for Ag _x H _{3â^x} PMo ₁₂ O ₄₀ nanorods: synthesis, photoelectric properties and photocatalytic applications. Nanoscale Advances, 2021, 3, 446-454.	2.2	6

#	Article	IF	CITATIONS
797	Efficient ammonia removal and toxic chlorate control by using BiVO4/WO3 heterojunction photoanode in a self-driven PEC-chlorine system. Journal of Hazardous Materials, 2021, 402, 123725.	6.5	40
798	Monolithically-integrated BiVO4/p+-n GaAs1-xPx tandem photoanodes capable of unassisted solar water splitting. International Journal of Hydrogen Energy, 2021, 46, 1642-1655.	3.8	6
799	Functional facet isotype junction and semiconductor/r-GO minor Schottky barrier tailored In2S3@r-GO@(040/110)-BiVO4 ternary hybrid. Journal of Colloid and Interface Science, 2021, 585, 519-537.	5.0	27
800	Recent Advances in the Fabrication of BiVO4 Photoanodes and CuBi2O4 Photocathodes for the Photoelectrochemical Water Splitting. Engineering Materials, 2021, , 271-287.	0.3	0
801	Reinforcement of a BiVO ₄ anode with an Fe ₂ O ₃ underlayer for photoelectrochemical water splitting. Sustainable Energy and Fuels, 2021, 5, 3102-3114.	2.5	17
802	Z-Scheme <i>versus</i> type-II junction in g-C ₃ N ₄ /TiO ₂ and g-C ₃ N ₄ /SrTiO ₃ /TiO ₂ heterostructures. Catalysis Science and Technology, 2021, 11, 3589-3598.	2.1	25
803	Enhanced visible-light photocatalytic activity of perylene diimide (PDI) supramolecular nanorods with Pt QDs deposited <i>in situ</i> . Dalton Transactions, 2021, 50, 4008-4016.	1.6	20
804	Artificial Z-scheme-based photocatalysts: design strategies and approaches. , 2021, , 165-186.		0
805	Photoelectrochemical oxidation of water and degradation of pollutants using simple Bi-based metal oxide semiconductors under visible light irradiation. , 2021, , 279-303.		0
806	Efficient charge separation and transfer of a TaON/BiVO ₄ heterojunction for photoelectrochemical water splitting. RSC Advances, 2021, 11, 13269-13273.	1.7	12
807	Efficiency enhancement in a stoichiometrically stable CdS/TiO2 nanotube heterostructure electrode for sunlight-driven hydrogen generation. New Journal of Chemistry, 2021, 45, 12838-12847.	1.4	1
808	Metal oxide catalysts for photoelectrochemical water splitting. , 2021, , 105-138.		1
809	Enhanced photocatalytic activity, transport properties and electronic structure of Mn doped GdFeO ₃ synthesized using the sol–gel process. Physical Chemistry Chemical Physics, 2021, 23, 16060-16076.	1.3	19
810	Fabrication of flower-like bismuth vanadate hierarchical spheres for an improved supercapacitor efficiency. Materials Advances, 2022, 3, 254-264.	2.6	6
811	A C ₂ N/ZnSe heterostructure with type-II band alignment and excellent photocatalytic water splitting performance. New Journal of Chemistry, 2021, 45, 13571-13578.	1.4	10
812	Construction of BiVO4 nanosheets@WO3 arrays heterojunction photoanodes by versatile phase transformation strategy. Transactions of Nonferrous Metals Society of China, 2021, 31, 533-544.	1.7	18
813	Revealing Surface Charge Population on Flake-Like BiVO ₄ Photocatalysts by Single Particle Imaging Spectroscopies. ACS Applied Energy Materials, 2021, 4, 2543-2551.	2.5	16
814	Surface polarization enables high charge separation in TiO2 nanorod photoanode. Nano Research, 2021, 14, 4056-4062.	5.8	20

#	Article	IF	CITATIONS
815	PI/g-C3N4 composite photocatalyst with enhanced activity of degrading pollutants under visible light. Journal of Materials Science, 2021, 56, 9122-9133.	1.7	4
816	Completeâ€Lifecycleâ€Available, Lightweight and Flexible Hierarchical Structured Bi ₂ WO ₆ /WO ₃ /PAN Nanofibrous Membrane for Xâ€Ray Shielding and Photocatalytic Degradation. Advanced Materials Interfaces, 2021, 8, 2002131.	1.9	17
817	Photocatalytic Application of Ag-Decorated CuS/BaTiO3 Composite Photocatalysts for Degrading RhB. Journal of Electronic Materials, 2021, 50, 2674-2686.	1.0	36
818	Granular Polymeric Carbon Nitride with Carbon Vacancies for Enhanced Photocatalytic Hydrogen Evolution. Solar Rrl, 2021, 5, 2000796.	3.1	23
819	In-situ utilization of piezo-generated hydrogen peroxide for efficient p-chlorophenol degradation by Fe loading bismuth vanadate. Applied Surface Science, 2021, 543, 148791.	3.1	29
820	Nature and Role of Surface Junctions in BiOIO ₃ Photocatalysts. Advanced Functional Materials, 2021, 31, 2009472.	7.8	20
821	Oxygen Vacancies Enhanced WO ₃ /BiVO ₄ Photoanodes Modified by Cobalt Phosphate for Efficient Photoelectrochemical Water Splitting. ACS Applied Energy Materials, 2021, 4, 2864-2872.	2.5	42
822	Tuning of surface characteristics of composite (WO3/BiVO4) zinc phosphate coatings for industrial applications. Applied Surface Science, 2021, 543, 148822.	3.1	15
824	Research Progress in Organic Synthesis by Means of Photoelectrocatalysis. Chemical Record, 2021, 21, 841-857.	2.9	60
825	CuO/CuBi2O4 bilayered heterojunction as an efficient photocathode for photoelectrochemical hydrogen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 11607-11620.	3.8	24
827	Enhanced interfacial electronic transfer of BiVO ₄ coupled with 2D gâ€C ₃ N ₄ for visibleâ€light photocatalytic performance. Journal of the American Ceramic Society, 2021, 104, 3004-3018.	1.9	13
828	Hierarchical OD NiSe ₂ /2D ZnIn ₂ S ₄ Nanosheetâ€Assembled Microflowers for Enhanced Photocatalytic Hydrogen Evolution. Advanced Materials Interfaces, 2021, 8, 2100052.	1.9	34
829	Novel Magnetic Fe ₃ O ₄ /α-FeOOH Nanocomposites and Their Enhanced Mechanism for Tetracycline Hydrochloride Removal in the Visible Photo-Fenton Process. ACS Omega, 2021, 6, 9095-9103.	1.6	24
830	An excellent Z-scheme Ag2MoO4/Bi4Ti3O12 heterojunction photocatalyst: Construction strategy and application in environmental purification. Advanced Powder Technology, 2021, 32, 951-962.	2.0	96
831	Low Temperature Aqueous Chemical Growth Method for the Doping of W into ZnO Nanostructures and Their Photocatalytic Role in the Degradration of Methylene Blue. Journal of Cluster Science, 2022, 33, 1445-1456.	1.7	14
832	Facile Hydrothermal Synthesis of Tungsten Tri-oxide/Titanium Di-oxide Nanohybrid Structures as Photocatalyst for Wastewater Treatment Application. Journal of Cluster Science, 2022, 33, 1327-1336.	1.7	2
833	BiVO ₄ /Cs ₂ PtI ₆ Vacancy-Ordered Halide Perovskite Heterojunction for Panchromatic Light Harvesting and Enhanced Charge Separation in Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2021, 13, 16267-16278.	4.0	17
834	Bendable BiVO ₄ -Based Photoanodes on a Metal Substrate Realized through Template Engineering for Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 16478-16484.	4.0	3

#	Article	IF	CITATIONS
835	Photothermal Effect: The Amygdaloidal Nano-Structure Based on Bi2S3 for the Enhanced Degradation of Rhodamine B Under Irradiation by NIR. Frontiers in Chemistry, 2021, 9, 680632.	1.8	1
836	Theoretical insights into the mechanism of oxygen evolution reaction (OER) on pristine BiVO ₄ (001) and BiVO ₄ (110) surfaces in acidic medium both in the gas and solution (water) phases. Nanotechnology, 2021, 32, 335401.	1.3	3
837	Composite magnetic photocatalyst Bi24O31Br10/NiFe2O4: Hydrothermal preparation, characterization and photocatalytic mechanism. Materials Science in Semiconductor Processing, 2021, 126, 105669.	1.9	19
838	Rapid Microwave Synthesis of Mesoporous Oxygen-Doped g-C ₃ N ₄ with Carbon Vacancies for Efficient Photocatalytic H ₂ O ₂ Production. ACS Sustainable Chemistry and Engineering, 2021, 9, 6788-6798.	3.2	71
839	Noble-Metal-Free Bi/g-C ₃ N ₄ Nanohybrids for Efficient Photocatalytic CO ₂ Reduction under Simulated Irradiation. Energy & Fuels, 2021, 35, 10102-10112.	2.5	34
840	Superior photocatalytic performance of mechanosynthesized Bi2O3–Bi2WO6 nanocomposite in wastewater treatment. Solid State Sciences, 2021, 115, 106587.	1.5	15
841	The significant role of the chemically bonded interfaces in BiVO4/ZnO heterostructures for photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2021, 285, 119833.	10.8	50
842	Structural and Electronic Properties of MgO/TiO ₂ Interfaces: A First-Principles Molecular-Simulation Study. Journal of Physical Chemistry C, 2021, 125, 10795-10802.	1.5	2
843	Tailoring phenol photomineralization pathway over polymeric carbon nitride with cyano group multifunctional active sites. Applied Catalysis B: Environmental, 2021, 284, 119710.	10.8	21
844	The enhanced photocatalytic activity of ultrasonic spray reduction of silver nanoclusters over lamellar graphite carbon nitride: Interface reaction, theoretical calculation and degradation pathway. Advanced Powder Technology, 2021, 32, 1641-1652.	2.0	8
845	Nanostructured WO3/BiVO4 heterojunction films embedded with Au nanoparticles for efficient photoelectrochemical water splitting. MRS Communications, 2021, 11, 295-301.	0.8	1
846	Efficient photocatalysis performance and recyclability of MoO3/BiVO4 heterostructure under visible light. Applied Nanoscience (Switzerland), 2021, 11, 2085-2094.	1.6	9
847	Highly efficient flower-like Dy3+-doped Bi2MoO6 photocatalyst under simulated sunlight: Design, fabrication and characterization. Optical Materials, 2021, 116, 111094.	1.7	10
848	Dual-sensitized modification engineering with enhanced photocatalytic degradation for organic dye. Journal of Materials Science: Materials in Electronics, 2021, 32, 19380-19389.	1.1	0
849	Influence of exposed facets, morphology and hetero-interfaces of BiVO4 on photocatalytic water oxidation: A review. International Journal of Hydrogen Energy, 2021, 46, 21866-21888.	3.8	44
850	In-situ synthesis of WO3–x/MoO3–x heterojunction with abundant oxygen vacancies for efficient photocatalytic reduction of CO2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 621, 126582.	2.3	30
851	Cube <scp> Cu ₂ O </scp> modified <scp>CoAL‣DH</scp> pâ€n heterojunction for photocatalytic hydrogen evolution. International Journal of Energy Research, 2021, 45, 19014-19027.	2.2	12
852	Ultrafast Microwave Synthesis of WO ₃ Nanostructured Films for Solar Photocatalysis. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100196.	1.2	12

ARTICLE IF CITATIONS A New WO3/FeVO4 Nanostructured Heterojunction for Solar-driven Water Oxidation. IOP Conference 853 0.2 1 Series: Earth and Environmental Science, 2021, 813, 012011. Ag3VO4 anchored ZnTi hydrotalcite microspheres with rosette-like structure for tetracycline 854 2.6 23 degradation. Applied Clay Science, 2021, 208, 106118. Electronic Structure of Bi-Activated Luminescent Compounds and Pure Bismuth Photocatalytic 855 0.9 9 Compounds. ECS Journal of Solid State Science and Technology, 2021, 10, 086002. Improvement of CuO photostability with the help of a BiVO4 capping layer by preventing self-reduction 856 of CuO to Cu2O. Journal of Industrial and Engineering Chemistry, 2021, 104, 416-426. Band offset in semiconductor heterojunctions. Journal of Physics Condensed Matter, 2021, 33, 415002. 857 0.7 19 2D/3D WO3/BiVO4 heterostructures for efficient photoelectrocatalytic water splitting. International 3.8 Journal of Hydrogen Energy, 2021, 46, 27506-27515. WO₃/BiVO₄ Photoanodes: Facets Matching at the Heterojunction and 859 2.5 22 BiVO₄ Layer Thickness Effects. ACS Applied Energy Materials, 2021, 4, 8421-8431. Fabrication of titanium doped BiVO4 as a novel visible light driven photocatalyst for degradation of 860 2.3 26 residual tetracycline pollutant. Ceramics International, 2021, 47, 34253-34259. PDI Supermolecule-Encapsulated 3D BiVO₄ toward Unobstructed Interfacial Charge 861 Transfer for Enhanced Visible-Light Photocatalytic Activity. Journal of Physical Chemistry C, 2021, 125, 1.5 8 18693-18707. Rational Design of Semiconductor Heterojunctions for Photocatalysis. Chemistry - A European 1.7 44 Journal, 2021, 27, 13306-13317. CdSe QDs@ Fe-based metal organic framework composites for improved photocatalytic RhB 863 2.2 22 degradation under visible light. Microporous and Mesoporous Materials, 2021, 324, 111291. Improving the photoelectrochemical performance of spin-coated WO3/BiVO4/ZnO photoanodes by maximizing charge transfer using an optimized ZnO decoration layer. Ceramics International, 2021, 47, 864 2.3 26260-26270. Shining photocatalysis by gold-based nanomaterials. Nano Energy, 2021, 88, 106306. 865 8.2 64 A novel Hf2CO2/WS2 van der Waals heterostructure as a potential candidate for overall water splitting photocatalyst. Materials Science in Semiconductor Processing, 2021, 133, 105947. A short review on heterojunction photocatalysts: Carrier transfer behavior and photocatalytic 867 2.7 256 mechanisms. Materials Research Bulletin, 2021, 142, 111406. Flexoelectricity-induced enhancement in carrier separation and photocatalytic activity of a 3.1 98 photocatalyst. Applied Surface Science, 2021, 566, 150669. Step-scheme BiVO4/WO3 heterojunction photocatalyst under visible LED light irradiation removing 869 3.8 22 4-chlorophenol in aqueous solutions. Journal of Environmental Management, 2021, 297, 113338. The ClOA generation and chlorate suppression in photoelectrochemical reactive chlorine species 870 24 systems on BiVO4 photoanodes. Applied Catalysis B: Environmental, 2021, 296, 120387.

ARTICLE

IF CITATIONS

Theoretical and electrochemical analysis on inhibition effects of benzotriazole derivatives (un- and) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

872	Tungsten induced defects control on BiVO4 photoanodes for enhanced solar water splitting performance and photocorrosion resistance. Applied Catalysis B: Environmental, 2021, 298, 120610.	10.8	32
873	Heterostructure between WO3 and metal organic framework-derived BiVO4 nanoleaves for enhanced photoelectrochemical performances. Chemical Engineering Journal, 2021, 425, 131496.	6.6	27
874	Bifunctional catalysts AC/Cu2O/CuO for removal of organic pollutant with enhanced visible light photocatalysis. Chemical Physics Impact, 2021, 3, 100041.	1.7	5
875	Influence of alkali metal cations on the photoactivity of crystalline and exfoliated amorphous WO3 – photointercalation phenomenon. Applied Catalysis B: Environmental, 2021, 298, 120527.	10.8	13
876	The preparation of visible light-driven ZnO/Ag2MoO4/Ag nanocomposites with effective photocatalytic and antibacterial activity. Journal of Alloys and Compounds, 2022, 891, 161898.	2.8	42
877	Hybrid Nanomaterials for Advanced Photocatalysis. Materials Horizons, 2021, , 117-132.	0.3	0
878	Improvement of photoelectrochemical HClO production under visible light irradiation by loading cobalt oxide onto a BiVO ₄ photoanode. Catalysis Science and Technology, 2021, 11, 5467-5471.	2.1	13
879	Remarkable synergy of borate and interfacial hole transporter on BiVO ₄ photoanodes for photoelectrochemical water oxidation. Materials Advances, 2021, 2, 4323-4332.	2.6	12
880	Efficient solar photocatalytic hydrogen production using direct Z-scheme heterojunctions. Physical Chemistry Chemical Physics, 2021, 23, 22743-22749.	1.3	7
881	Growth of narrow-bandgap Cl-doped carbon nitride nanofibers on carbon nitride nanosheets for high-efficiency photocatalytic H ₂ O ₂ generation. RSC Advances, 2021, 11, 31385-31394.	1.7	4
882	A facile sol–gel spin-coating fabrication of Ni@WO3 thin films and highly rectifying p-Si/n-Ni@WO3 heterojunction for optoelectronic applications. Journal of Materials Science: Materials in Electronics, 2021, 32, 1582-1592.	1.1	1
883	Investigation of the properties of oxide-based multilayer thin films and their use in the photocatalytic applications. , 2021, , 697-715.		0
884	Earth-abundant iron(<scp>iii</scp>) species serves as a cocatalyst boosting the multielectron reduction of IO ₃ ^{â^'} /I ^{â^'} redox shuttle in Z-scheme photocatalytic water splitting. Journal of Materials Chemistry A, 2021, 9, 11718-11725.	5.2	8
885	Solar water oxidation using TaON–BiVO ₄ photoanodes functionalized with WO ₃ . Dalton Transactions, 2021, 50, 1780-1787.	1.6	4
886	Lightâ€Driven BiVO ₄ –C Fuel Cell with Simultaneous Production of H ₂ O ₂ . Advanced Energy Materials, 2018, 8, 1801158.	10.2	107
887	Simple and Enhanced Thermal Immobilization of Gold Nanoparticles on TiO ₂ coated ITO Electrodes for Photoelectrochemical Water Oxidation. ChemistrySelect, 2017, 2, 7678-7683.	0.7	5
889	Ball-flower like NiO/g-C3N4 heterojunction for efficient visible light photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2018, 237, 802-810.	10.8	246

#	Article	IF	CITATIONS
890	An antifouling peptide-based biosensor for determination of Streptococcus pneumonia markers in human serum. Biosensors and Bioelectronics, 2020, 151, 111969.	5.3	22
891	In Situ Synthesis of Hydrangea Finch Coral-like Bi ₁₂ SiO ₂₀ Film with Highly Effective Photocatalytic CO ₂ Reduction Performance. ACS Applied Energy Materials, 2021, 4, 15-19.	2.5	10
892	Role of surface termination in forming type-II photocatalyst heterojunctions: the case of TiO ₂ /BiVO ₄ . Journal of Physics Condensed Matter, 2021, 33, 075001.	0.7	18
893	Visible Light Responsive Metal Oxide Photoanodes for Photoelectrochemical Water Splitting: a Comprehensive Review on Rational Materials Design. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2018, 33, 173.	0.6	23
894	Nanoworm BiVO4 Photoelectrochemical Sensor Prepared by a Cyanuric-Chloride-Assisted Sol-Gel Process and Its Sensing Property for Ascorbic Acid. International Journal of Electrochemical Science, 2019, 14, 1684-1697.	0.5	5
895	Photoelectrochemical solar water splitting: From basic principles to advanced devices. , 2018, 2, BDJOC3.		53
896	Role of sputtered WO3 underlayer and NiFeCr-LDH co-catalyst in WO3–BiVO4 heterojunction for enhanced photoelectrochemical water oxidation. International Journal of Hydrogen Energy, 2021, 46, 39868-39881.	3.8	21
897	All-solid-state Z-scheme plasmonic Si@Au nanoparticles on CuBi2O4/BiVO4 for efficient photocatalytic activity. Advanced Powder Technology, 2021, 32, 4330-4342.	2.0	5
898	Photoelectrochemical Water Splitting for Solar Hydrogen Production over Semiconductor Nanostructures. Rapid Communication in Photoscience, 2012, 1, 39-39.	0.1	0
899	Design of a Monolithic Photoelectrochemical Tandem Cell for Solar Water Splitting with a Dye-sensitized Solar Cell and WO3/BiVO4Photoanode. Rapid Communication in Photoscience, 2015, 4, 82-85.	0.1	0
900	A Multi-haem Flavoenzyme as a Solar Conversion Catalyst. Springer Theses, 2017, , 193-206.	0.0	1
902	Water-Splitting Technologies for Hydrogen Generation. Electrochemical Energy Storage and Conversion, 2017, , 85-124.	0.0	0
904	3D Catalysts of Mo(W) Carbide, Nitride, Oxide, Phosphide, and Boride. Advances in Chemical and Materials Engineering Book Series, 2017, , 53-99.	0.2	0
905	Oxide Semiconductors (ZnO, TiO2, Fe2O3, WO3, etc.) as Photocatalysts for Water Splitting. Electrochemical Energy Storage and Conversion, 2017, , 161-222.	0.0	1
906	Fabrication of a stable light-activated and p/n type AgVO3/V2O5-TiO2 heterojunction for pollutants removal and photoelectrochemical water splitting. Journal of Alloys and Compounds, 2022, 894, 162500.	2.8	17
907	Direct Zâ€Scheme Structure <i>g</i> â€C ₃ N ₄ â€BiOI with Highly Efficient Visibleâ€Lightâ€Driven Photocatalytic Activity for Bacteria Inactivation. ChemistrySelect, 2020, 5, 15084-15090.	0.7	4
908	Facile fabrication of BiVO4/Bi2S3/NiCoO2 for significant photoelectrochemical water splitting. Applied Surface Science, 2022, 574, 151562.	3.1	38
909	Facile morphology control strategy to enhance charge separation efficiency of Mo:BiVO4 photoanodes for efficient photoelectrochemical water splitting. Chemical Engineering Journal, 2022, 430. 133061.	6.6	40

#	Article	IF	CITATIONS
910	Faradaic junction and isoenergetic charge transfer mechanism on semiconductor/semiconductor interfaces. Nature Communications, 2021, 12, 6363.	5.8	14
911	Preparation of core-shell heterojunction photocatalysts by coating CdS nanoparticles onto Bi4Ti3O12 hierarchical microspheres and their photocatalytic removal of organic pollutants and Cr(VI) ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 633, 127918.	2.3	189
912	Visible-Light-Driven Water Oxidation on Self-Assembled Metal-Free Organic@Carbon Junctions at Neutral pH. Jacs Au, 2021, 1, 2294-2302.	3.6	5
913	Interstitial M ⁺ (M ⁺ = Li ⁺ or Sn ⁴⁺) Doping at Interfacial BiVO ₄ /WO ₃ to Promote Photoelectrochemical Hydrogen Production. ACS Applied Energy Materials, 2021, 4, 13636-13645.	2.5	4
914	Spatial Separation of Photogenerated Charges on Wellâ€Đefined Bismuth Vanadate Square Nanocrystals. Small, 2022, 18, e2103245.	5.2	23
915	Construction of SbVO4@Co Foam Heterostructure as Efficient (Photo)electrocatalyst for Oxygen Evolution Reaction. Journal of Electronic Materials, 0, , 1.	1.0	1
916	Polydopamine assisted transformation of ZnO from nanospheres to nanosheets grown in nanoporous BiVO4 films for improved photocatalytic performance. Catalysis Science and Technology, 0, , .	2.1	1
917	Enhancement of redox capacity derived from O-doping of g-C ₃ N ₄ /WO ₃ nanosheets for the photocatalytic degradation of tetracycline under different dissolved oxygen concentration. Dalton Transactions, 2022, 51, 1086-1098.	1.6	16
918	Surface doping of Bi4Ti3O12 with S: Enhanced photocatalytic activity, mechanism and potential photodegradation application. Materials Research Bulletin, 2022, 149, 111711.	2.7	53
920	Facile fabrication of CdSe/CuInS2 microflowers with efficient photocatalytic hydrogen production activity. International Journal of Hydrogen Energy, 2022, 47, 8294-8302.	3.8	49
921	Ternary Oxide CuWO ₄ /BiVO ₄ /FeCoO _{<i>x</i>} Films for Photoelectrochemical Water Oxidation: Insights into the Electronic Structure and Interfacial Band Alignment. ACS Applied Materials & Interfaces, 2022, 14, 22858-22869.	4.0	21
922	Regulating the Built-In Electric Field of BiOBr by a Piezoelectric Mineral Tourmaline and the Enhanced Photocatalytic Property. Industrial & Engineering Chemistry Research, 2022, 61, 1704-1714.	1.8	12
924	Analysis of photoelectrochemical water splitting using machine learning. International Journal of Hydrogen Energy, 2022, 47, 19633-19654.	3.8	15
925	Effect of Mn ²⁺ incorporation on the photoelectrochemical properties of BiVO ₄ . New Journal of Chemistry, 2022, 46, 2875-2886.	1.4	6
926	Bilayered nano-hetero-structured n/n junction thin-film electrodes, WO3/Yb-Mo-BiVO4, for efficient photoelectrochemical water splitting. Journal of Applied Electrochemistry, 2022, 52, 535-558.	1.5	4
927	Manipulating a TiO2-graphene-Ta3N5 heterojunction for efficient Z-scheme photocatalytic pure water splitting. Materials Research Bulletin, 2022, 150, 111782.	2.7	7
928	Graphdiyne (g-C _{<i>n</i>} H _{2<i>n</i>–2}) Coupled with Co ₃ O ₄ Formed a Zero-Dimensional/Two-Dimensional p–n Heterojunction for Efficient Hydrogen Evolution. Industrial & Engineering Chemistry Research, 2021, 60, 18397-18407.	1.8	15
929	Template-free synthesis of Bi ₂ O ₂ CO ₃ hierarchical nanotubes self-assembled from ordered nanoplates for promising photocatalytic applications. Physical Chemistry Chemical Physics, 2022, 24, 8279-8295.	1.3	100

#	Article	IF	CITATIONS
930	Interface Engineering Âof GeP/Graphene/BiVO4ÂHeterostructureÂforÂPhotocatalyticÂApplication: A ComputationalÂstudy. SSRN Electronic Journal, 0, , .	0.4	0
931	Bifacial Modulation of Carrier Transport in BiVO ₄ Photoanode for Stable Photoelectrochemical Water Splitting via Interface Engineering. Advanced Sustainable Systems, 2022, 6, .	2.7	3
932	Synthesis of carnation flower-like Bi2O2CO3 photocatalyst and its promising application for photoreduction of Cr(VI). Advanced Powder Technology, 2022, 33, 103481.	2.0	124
933	Bi2S3 entrenched BiVO4/WO3 multidimensional triadic photoanode for enhanced photoelectrochemical hydrogen evolution applications. International Journal of Hydrogen Energy, 2022, 47, 14528-14541.	3.8	10
934	Water photo-oxidation on self-assembled organic/Co3O4 metal junctions in biphasic systems. Electrochimica Acta, 2022, 414, 140166.	2.6	3
935	A visible-light-driven photocatalytic fuel cell/peroxymonosulfate (PFC/PMS) system using blue TiO2 nanotube arrays (TNA) anode and Cu-Co-WO3 cathode for enhanced oxidation of organic pollutant and ammonium nitrogen in real seawater. Applied Catalysis B: Environmental, 2022, 308, 121215.	10.8	43
936	Comparative investigation on synthesis, morphological tailoring and photocatalytic activities of Bi2O2CO3 nanostructures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 644, 128758.	2.3	95
937	Recent development on core-shell photo(electro)catalysts for elimination of organic compounds from pharmaceutical wastewater. Chemosphere, 2022, 298, 134311.	4.2	21
938	Schottky barrier tuning via surface plasmon and vacancies for enhanced photocatalytic H2 evolution in seawater. Applied Catalysis B: Environmental, 2022, 310, 121321.	10.8	63
939	Temperature Effect on Photoelectrochemical Water Splitting: A Model Study Based on BiVO ₄ Photoanodes. ACS Applied Materials & Interfaces, 2021, 13, 61227-61236.	4.0	21
940	Facile Synthesis of BiVO4@ZIFâ^'8 Composite with Heterojunction Structure for Photocatalytic Wastewater Treatment. Materials, 2021, 14, 7424.	1.3	5
941	Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. Chemical Society Reviews, 2022, 51, 3561-3608.	18.7	273
943	Graphene Triggered Hole Activation Strategy for 2d/2d-Layered (001)/(100)Wo3 Facet Junction Towards Enhanced Photocatalytic Water Oxidation Kinetics. SSRN Electronic Journal, 0, , .	0.4	0
944	BiVO ₄ -Dotted WO ₃ Photoanode with an Inverse Opal Underlayer for Photoelectrochemical Water Splitting. ACS Applied Energy Materials, 2022, 5, 5750-5755.	2.5	7
945	Preparation and characterization of Ppy/Bi2MoO6 microspheres with highly photocatalytic performance for removal of highly concentrated organic dyes. Materials Today Sustainability, 2022, 19, 100154.	1.9	11
946	Unleashing Insulating Polymer as Charge Transport Cascade Mediator. Advanced Functional Materials, 2022, 32, .	7.8	30
947	Hydrothermally synthesized Gd-doped BiSbO4 nanoparticles and their graphene-based composite: A novel photocatalytic material. Journal of Solid State Chemistry, 2022, 312, 123217.	1.4	15
948	Hierarchical mesoporous SnO2/BiVO4 photoanode decorated with Ag nanorods for efficient photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2022, 47, 18992-19004.	3.8	6

# 949	ARTICLE Nanoporous MoO3â^'x/BiVO4 photoanodes promoting charge separation for efficient photoelectrochemical water splitting. Nano Research, 2022, 15, 7026-7033.	IF 5.8	Citations 30
950	Insight into the Synthesis and Photocatalytic Applications of Bismuth Vanadate-based Nanocomposites. Current Nanoscience, 2023, 19, 697-714.	0.7	3
951	Growth of nano-branches on 1-D WO3 nanotrees by flame process and its photoelectrochemical performances. Journal of Alloys and Compounds, 2022, 912, 165202.	2.8	3
952	High-performance and stable BiVO ₄ photoanodes for solar water splitting <i>via</i> phosphorus–oxygen bonded FeNi catalysts. Energy and Environmental Science, 2022, 15, 2867-2873.	15.6	56
953	Exploring the Role of Graphene Oxide as a Co-Catalyst in the CZTS Photocathodes for Improved Photoelectrochemical Properties. ACS Applied Energy Materials, 2022, 5, 7538-7549.	2.5	1
954	Black TiO ₂ Nanotube Array/BiVO ₄ Heterojunction Photocatalysts for Tetracycline Removal with High Solution Detoxification Efficiency. ACS Applied Nano Materials, 2022, 5, 7161-7174.	2.4	16
955	Ce2S3/PMo3W9/polypyrrole ternary nanocomposit: Facile synthesis, photoelectric characteristics and photocatalytic applications. Inorganic Chemistry Communication, 2022, 141, 109576.	1.8	2
956	Enhanced photocurrent density for photoelectrochemical catalyzing water oxidation using novel W-doped BiVO4 and metal organic framework composites. Journal of Colloid and Interface Science, 2022, 624, 515-526.	5.0	17
957	Fabrication of Zn1â^'xNixWO4 nanorods with superior photoelectrochemical and photocatalytic performances. Ceramics International, 2022, 48, 29438-29444.	2.3	3
958	High-efficiency hollow Zn0.98Cu0.02Se/ZnS/ZnTiO3 photocatalyst for hydrogen production application. Fuel, 2022, 325, 124937.	3.4	8
959	Feooh Nanolayers Decorated on Oxygen-Vacancy-Containing Bivo4 for Efficient Photoelectrochemical Degradation of Rhodamine B. SSRN Electronic Journal, 0, , .	0.4	0
960	Approaches for Modifying Oxide-Semiconductor Materials to Increase the Efficiency of Photocatalytic Water Splitting. Materials, 2022, 15, 4915.	1.3	12
961	Controlling the selectivity of solar O ₂ /HClO production from seawater by simple surface modification of visible-light responsible photoelectrodes. Journal of the Ceramic Society of Japan, 2022, 130, 395-402.	0.5	5
962	The coupled BiOI/(BiO)2CO3 catalyst: Brief characterization, and study of its photocatalytic kinetics. Journal of Solid State Chemistry, 2022, 314, 123405.	1.4	37
963	Structural, optical and photo-induced catalytic properties of derived-Leucoxene /BiVO4 composite prepared by sonochemical process. Optik, 2022, 267, 169665.	1.4	1
964	Resorcinol-formaldehyde resin nanoparticles as surface charge transfer and separation sites for the improvement of BiVO4 film photoanodes' performance in solar water oxidation. Applied Surface Science, 2022, 601, 154236.	3.1	6
965	Interface engineering of GeP/Graphene/BiVO4 heterostructure for photocatalytic Application: A computational study. Applied Surface Science, 2022, 601, 154243.	3.1	5
966	In situ preparation of novel p–n junction photocatalyst MgAl-LDH/(BiO)2CO3 for enhanced photocatalytic degradation of tetracycline. Materials Science in Semiconductor Processing, 2022, 150, 106939.	1.9	13

#	Article	IF	CITATIONS
967	Ag2O modified CuO nanosheets as efficient difunctional water oxidation catalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 433, 114166.	2.0	0
968	Influence of the Solvent Used for Microwaveâ€Assisted Synthesis of Wâ^'BiVO ₄ on Properties and Photoelectroactivity of Wâ^BiVO ₄ /WO ₃ . ChemElectroChem, 2022, 9, .	1.7	1
969	Graphene triggered hole activation strategy for 2D/2D-Layered (0 0 1)/(1 0 0)WO3 facet junction towards enhanced photocatalytic water oxidation kinetics. Chemical Engineering Journal, 2022, 450, 138166.	6.6	4
970	A self-powered photoelectrochemical molecular imprinted sensor for chloroquine phosphate with enhanced cathodic photocurrent via stepped energy band alignment engineering. Chemical Engineering Journal, 2023, 451, 138748.	6.6	11
971	Overview of Catalytic Removal of Parabens from Water and Wastewater. ACS ES&T Water, 2022, 2, 1475-1499.	2.3	5
973	Photostability improvement by the suppression of photocorrosion with a NiOx capping layer on CuO photoelectrodes. Optik, 2022, 268, 169806.	1.4	1
974	Solar-light-driven ternary MgO/TiO2/g-C3N4 heterojunction photocatalyst with surface defects for dinitrobenzene pollutant reduction. Chemosphere, 2022, 307, 135939.	4.2	18
975	Investigation of electrochemical synthesis temperature effect of the binary transition metals sulfide on nickel foam in water oxidation study. Materials Chemistry and Physics, 2022, 291, 126670.	2.0	0
976	Recent advancements in bismuth vanadate photoanodes for photoelectrochemical water splitting. Materials Today Chemistry, 2022, 26, 101060.	1.7	11
977	MIL-68 (In)-derived In2O3@TiO2 S-scheme heterojunction with hierarchical hollow structure for selective photoconversion of CO2 to hydrocarbon fuels. Fuel, 2023, 331, 125719.	3.4	2
978	A biophotoelectrocatalytic system for pollutant removal based on carbon fiber cloth supported TiO2 photoanode with oxygen vacancy defects and CuO/g-C3N4 photocathode. Carbon, 2022, 200, 410-421.	5.4	11
979	Synthesis of MoS2/Mg(OH)2/BiVO4 hybrid photocatalyst by ultrasonic homogenization assisted hydrothermal methods and its application as sunlight active photocatalyst for water decontamination. Chemosphere, 2022, 308, 136406.	4.2	13
980	Enhancement of photoelectrochemical performance of Bismuth vanadate (BiVO4)-Based photoanode by building phase-junction configurations. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 434, 114252.	2.0	7
981	Interfacial Engineering Over Tungsten Oxide by Constructing Z-Scheme Interatomic Junction for Efficient Photocatalytic Tetrachlorophenol Degradation. SSRN Electronic Journal, 0, , .	0.4	0
982	Defect-engineered WO3-x@MoS2 hollow tube exhibiting enhanced Fenton-like and photocatalytic activities via electric field rearrangement and band alignment. Applied Catalysis B: Environmental, 2023, 320, 122013.	10.8	20
983	The GaSe/g-C6N6 type-II van der Waals heterostructure: A prospective water-splitting photocatalyst under acidic, alkaline and neutral conditions. Thin Solid Films, 2022, 758, 139419.	0.8	4
984	Enhanced Charge Carrier Separation in WO ₃ /BiVO ₄ Photoanodes Achieved via Light Absorption in the BiVO ₄ Layer. ACS Applied Energy Materials, 2022, 5, 13142-13148.	2.5	6
985	Photogenerated charge separation and transfer across interfaces during photocatalytic water splitting. , 2024, , 53-64.		0

#	Article	IF	CITATIONS
986	Defect-engineered plasmonic Z-scheme heterostructures for superior photoelectrochemical water oxidation. Applied Surface Science, 2023, 610, 155454.	3.1	1
987	BiVO4/Rh–Ci/HCO3â^' hetero-/homogeneous dual co-catalyst-decorated photoanode system for photoelectrochemical water oxidation. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 436, 114414.	2.0	1
988	Effect of CoO _{<i>x</i>} and Rh Cocatalysts on Local Charge Carrier Dynamics of BiVO ₄ Particles by Pattern-Illumination Time-Resolved Phase Microscopy. Journal of Physical Chemistry C, 2022, 126, 19319-19326.	1.5	3
989	Construction of multi-homojunction TiO2 nanotubes for boosting photocatalytic hydrogen evolution by steering photogenerated charge transfer. Nano Research, 2023, 16, 2259-2270.	5.8	13
990	Facile Synthesis of Cr ₂ O ₃ Embedded g-C ₃ N ₄ Composites with Excellent Visible-Light Photocatalytic. Nano, 0, , .	0.5	0
991	Effects of Cu2O thickness on the photoelectrochemical properties of Cu2O/WO3 heterostructure. Vacuum, 2023, 207, 111680.	1.6	0
992	Band Edges Engineering of 2D/2D Heterostructures: The C ₃ N ₄ /Phosphorene Interface. ChemPhysChem, 2023, 24, .	1.0	2
993	Two-dimensional Cs ₃ Sb ₂ I ₉ /C ₂ N van der Waals type-II heterostructure: a promising photocatalyst for high efficiency water splitting. Physical Chemistry Chemical Physics, 2022, 25, 486-493.	1.3	7
994	Fabrication of Ag-doped magnesium aluminate/ rGO composite: A highly efficient photocatalyst for visible light-driven photodegradation of crystal violet and phenol. Physica B: Condensed Matter, 2023, 650, 414508.	1.3	14
995	Boosting solar fuel production of bismuth ferrite thin film by incorporating reduced graphene oxide. Journal of Alloys and Compounds, 2023, 936, 168300.	2.8	3
996	One-step nitrogen defect engineering of polymeric carbon nitride for visible light-driven photocatalytic O2 reduction to H2O2. Journal of Colloid and Interface Science, 2023, 634, 138-147.	5.0	6
997	Nanomaterials design for photoelectrochemical water oxidation. , 2023, , 515-532.		1
998	Effect of the microwave-assisted hydrothermal synthesis conditions on the photocatalytic properties of BiNbO4 and silver nanocomposites. Ceramics International, 2022, 49, 10795-10795.	2.3	1
999	Efficient photoelectrochemical Kolbe C–C coupling at BiVO ₄ electrodes under visible light irradiation. Green Chemistry, 2023, 25, 1067-1077.	4.6	2
1000	Design of novel type-I (type-II) band alignment in GeC-VXY (VÂ=ÂCl, Br; YÂ=ÂSe, Te) van der Waals heterostructure for optoelectronic and renewable energy application. Applied Surface Science, 2023, 615, 156260.	3.1	8
1001	Characterization and Visible Lightâ€driven Photocatalytic Activity of BiVO ₄ /BiOCl/Bi ₂ S ₃ Nanocomposites prepared by Sonochemical Process. Physica Status Solidi (A) Applications and Materials Science, 0, , .	0.8	0
1002	Selective photoelectrocatalytic transformations of organic compounds. , 2023, , 361-420.		1

1003 Fundamentals of photoelectrocatalysis. , 2023, , 7-81.

#	Article	IF	CITATIONS
1004	Structure, materials, and preparation of photoelectrodes. , 2023, , 83-174.		1
1005	Photoelectrocatalysis for hydrogen production devices. , 2023, , 307-334.		0
1006	Enhanced photoelectrochemical response of reduced graphene oxide covered inexpensive TiO2-BiFeO3 composite photoanodes. Materials Research Bulletin, 2023, 162, 112183.	2.7	3
1007	Photoelectrochemical Water Splitting with ITO/WO ₃ /BiVO ₄ /CoPi Multishell Nanotubes Enabled by a Vacuum and Plasma Soft-Template Synthesis. ACS Applied Materials & Interfaces, 2023, 15, 9250-9262.	4.0	6
1008	Photoelectrochemical water splitting with dual-photoelectrode tandem and parallel configurations: Enhancing light harvesting and carrier collection efficiencies. Surfaces and Interfaces, 2023, 38, 102813.	1.5	0
1009	Photoelectrochemical activity of visible light-responsive BiVO4@La1-xSrxFeO3-l̂´ (xÂ=Â0, 0.2, 0.4) heterojunction architectures – Optimizing activity by tuning Fe O bond in perovskites. Applied Surface Science, 2023, 616, 156513.	3.1	1
1010	Upgrading of g-C3N4 semiconductor by a Nitrogen-doped carbon material: A photocatalytic degradation application. Journal of Environmental Chemical Engineering, 2023, 11, 109381.	3.3	6
1011	Pd nanoparticles decorated BiVO4 pine architectures for photocatalytic degradation of sulfamethoxazole. Chemosphere, 2023, 321, 138118.	4.2	7
1012	Insights into oxygen defect enriched and non-metal dopant co modulated Fe3O4 nanospheres embedded WO3 nanorods for ameliorated photodegradation of doxycycline, Cr(VI) reduction and its genotoxicity. Journal of Cleaner Production, 2023, 398, 136549.	4.6	12
1013	In-situ construction of Mn0.2Cd0.8S/NiB composite for highly efficient full spectrum-driven photocatalytic H2 evolution. Journal of Environmental Chemical Engineering, 2023, 11, 109522.	3.3	1
1014	Microwave Synthesis of Visible-Light-Activated g-C3N4/TiO2 Photocatalysts. Nanomaterials, 2023, 13, 1090.	1.9	7
1015	Stored photoelectrons in a faradaic junction for decoupled solar hydrogen production in the dark. CheM, 2023, 9, 1850-1864.	5.8	9
1016	Synthesis of rod-like PANI/α-Fe ₂ O ₃ composite catalysts with excellent photo-Fenton catalytic performance. New Journal of Chemistry, 2023, 47, 8538-8548.	1.4	2
1017	Au-based heterostructure composites for photo and electro catalytic energy conversions. Sustainable Materials and Technologies, 2023, 36, e00609.	1.7	4
1022	Dye-sensitized photoelectrochemical cells in water splitting. , 2023, , 157-191.		2
1048	Revisiting the Underlying Chemistry Enhancing the Activity of Photoelectro- and Photo-Catalysts Concerning H2 Production. Engineering Materials, 2024, , 119-150.	0.3	0
1051	Recent advances on three-dimensional ordered macroporous metal oxide-based photoelectrodes for photoelectrochemical water splitting. Materials Chemistry Frontiers, 2024, 8, 1230-1249.	3.2	0