In vitro centromere and kinetochore assembly on defin

Nature 477, 354-358 DOI: 10.1038/nature10379

Citation Report

#	Article	IF	CITATIONS
1	<i>Drosophila</i> CENH3 Is Sufficient for Centromere Formation. Science, 2011, 334, 686-690.	6.0	252
2	Structure of the CENP-A nucleosome and its implications for centromeric chromatin architecture. Genes and Genetic Systems, 2011, 86, 357-364.	0.2	7
3	CENPA's tail rules the centromere. Nature Reviews Molecular Cell Biology, 2011, 12, 626-626.	16.1	3
4	Six degrees of separation. Nature, 2011, 477, 283-284.	13.7	0
5	Starting from scratch: <i>de novo</i> kinetochore assembly in vertebrates. EMBO Journal, 2011, 30, 3882-3884.	3.5	1
6	The nonhistone, N-terminal tail of an essential, chimeric H2A variant regulates mitotic H3-S10 dephosphorylation. Genes and Development, 2012, 26, 615-629.	2.7	7
7	Formation of a centromere-specific chromatin structure. Epigenetics, 2012, 7, 672-675.	1.3	3
8	CENP-C facilitates the recruitment of M18BP1 to centromeric chromatin. Nucleus, 2012, 3, 101-110.	0.6	111
9	Comparison between the CENP-A and histone H3 structures in nucleosomes. Nucleus, 2012, 3, 6-11.	0.6	27
10	Sowing the Seeds of Centromeres. Science, 2012, 335, 299-300.	6.0	1
11	The smooth and stable operation of centromeres. Genes and Genetic Systems, 2012, 87, 63-73.	0.2	3
12	Establishment of the vertebrate kinetochores. Chromosome Research, 2012, 20, 547-561.	1.0	36
13	Evolutionary insights into the role of the essential centromere protein CAL1 in Drosophila. Chromosome Research, 2012, 20, 493-504.	1.0	35
14	Human centromere genomics: now it's personal. Chromosome Research, 2012, 20, 621-633.	1.0	38
15	A cell-free system for functional centromere and kinetochore assembly. Nature Protocols, 2012, 7, 1847-1869.	5.5	42
16	Centromeric chromatin and the pathway that drives its propagation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 313-321.	0.9	9
17	Cdk Activity Couples Epigenetic Centromere Inheritance to Cell Cycle Progression. Developmental Cell, 2012, 22, 52-63.	3.1	157
18	HJURP Uses Distinct CENP-A Surfaces to Recognize and to Stabilize CENP-A/Histone H4 for Centromere Assembly. Developmental Cell, 2012, 22, 749-762.	3.1	106

ATION RED

#	Article	IF	CITATIONS
19	CENP-T-W-S-X Forms a Unique Centromeric Chromatin Structure with a Histone-like Fold. Cell, 2012, 148, 487-501.	13.5	229
20	Structure, assembly and reading of centromeric chromatin. Current Opinion in Genetics and Development, 2012, 22, 139-147.	1.5	31
21	Centromere-associated repeat arrays on Trypanosoma brucei chromosomes are much more extensive than predicted. BMC Genomics, 2012, 13, 29.	1.2	25
22	CENP-T proteins are conserved centromere receptors of the Ndc80 complex. Nature Cell Biology, 2012, 14, 604-613.	4.6	168
23	Reconstituting the kinetochore–microtubule interface: what, why, and how. Chromosoma, 2012, 121, 235-250.	1.0	16
24	Structural organization of the kinetochore–microtubule interface. Current Opinion in Cell Biology, 2012, 24, 48-56.	2.6	104
25	Molecular underpinnings of centromere identity and maintenance. Trends in Biochemical Sciences, 2012, 37, 220-229.	3.7	39
26	Flexibility of centromere and kinetochore structures. Trends in Genetics, 2012, 28, 204-212.	2.9	49
27	Molecular architecture of vertebrate kinetochores. Experimental Cell Research, 2012, 318, 1367-1374.	1.2	55
28	Mitosis puts sisters in a strained relationship: Force generation at the kinetochore. Experimental Cell Research, 2012, 318, 1361-1366.	1.2	6
29	CENP-E hangs on at dynamic microtubule ends. Nature Cell Biology, 2013, 15, 1030-1032.	4.6	0
30	Nucleosomal composition at the centromere: a numbers game. Chromosome Research, 2013, 21, 27-36.	1.0	9
31	A two-step mechanism for epigenetic specification of centromere identity and function. Nature Cell Biology, 2013, 15, 1056-1066.	4.6	226
32	Functions of the centromere and kinetochore in chromosome segregation. Current Opinion in Cell Biology, 2013, 25, 334-340.	2.6	108
33	Basic properties of epigenetic systems: lessons from the centromere. Current Opinion in Genetics and Development, 2013, 23, 219-227.	1.5	16
34	Plasmodium falciparum CENH3 is able to functionally complement Cse4p and its, C-terminus is essential for centromere function. Molecular and Biochemical Parasitology, 2013, 192, 21-29.	0.5	17
35	Swapping CENP-A at the centromere. Nature Cell Biology, 2013, 15, 1028-1030.	4.6	5
36	Reductionism at the vertebrate kinetochore. Journal of Cell Biology, 2013, 200, 7-8.	2.3	1

#	Article	IF	Citations
37	Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nature Reviews Molecular Cell Biology, 2013, 14, 25-37.	16.1	563
38	Making an effective switch at the kinetochore by phosphorylation and dephosphorylation. Chromosoma, 2013, 122, 135-158.	1.0	115
39	The CENP-A nucleosome. Nucleus, 2013, 4, 37-42.	0.6	19
40	Family matters: structural and functional conservation of centromere-associated proteins from yeast to humans. Trends in Cell Biology, 2013, 23, 260-269.	3.6	79
41	The functions and consequences of force at kinetochores. Journal of Cell Biology, 2013, 200, 557-565.	2.3	44
42	Tracking spindle checkpoint signals from kinetochores to APC/C. Trends in Biochemical Sciences, 2013, 38, 302-311.	3.7	124
43	The octamer is the major form of CENP-A nucleosomes at human centromeres. Nature Structural and Molecular Biology, 2013, 20, 687-695.	3.6	193
44	Putting CENP-A in its place. Cellular and Molecular Life Sciences, 2013, 70, 387-406.	2.4	68
45	Centromere-Like Regions in the Budding Yeast Genome. PLoS Genetics, 2013, 9, e1003209.	1.5	38
46	A structural basis for kinetochore recruitment of the Ndc80 complex via two distinct centromere receptors. EMBO Journal, 2013, 32, 409-423.	3.5	128
47	Assembly in G1 phase and long-term stability are unique intrinsic features of CENP-A nucleosomes. Molecular Biology of the Cell, 2013, 24, 923-932.	0.9	94
48	Nap1 regulates proper CENP-B binding to nucleosomes. Nucleic Acids Research, 2013, 41, 2869-2880.	6.5	19
49	Rise and fall of the kinetochore. Journal of Cell Biology, 2013, 201, 3-3.	2.3	0
50	The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly. Journal of Cell Biology, 2013, 200, 45-60.	2.3	182
51	CDK-dependent phosphorylation and nuclear exclusion coordinately control kinetochore assembly state. Journal of Cell Biology, 2013, 201, 23-32.	2.3	84
52	A Conserved Mechanism for Centromeric Nucleosome Recognition by Centromere Protein CENP-C. Science, 2013, 340, 1110-1113.	6.0	290
53	De novo centromere formation on a chromosome fragment in maize. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6033-6036.	3.3	62
54	The quantitative architecture of centromeric chromatin. ELife, 2014, 3, e02137.	2.8	179

#	Article	IF	CITATIONS
55	A cooperative mechanism drives budding yeast kinetochore assembly downstream of CENP-A. Journal of Cell Biology, 2014, 206, 509-524.	2.3	99
56	Mitotic Regulator Mis18β Interacts with and Specifies the Centromeric Assembly of Molecular Chaperone Holliday Junction Recognition Protein (HJURP). Journal of Biological Chemistry, 2014, 289, 8326-8336.	1.6	78
57	CENP-A octamers do not confer a reduction in nucleosome height by AFM. Nature Structural and Molecular Biology, 2014, 21, 2-3.	3.6	21
58	KSHV LANA—The Master Regulator of KSHV Latency. Viruses, 2014, 6, 4961-4998.	1.5	115
59	An integrated overview of spatiotemporal organization and regulation in mitosis in terms of the proteins in the functional supercomplexes. Frontiers in Microbiology, 2014, 5, 573.	1.5	4
60	The dimerization domain of Pf CENP-C is required for its functions as a centromere protein in human malaria parasite Plasmodium falciparum. Malaria Journal, 2014, 13, 475.	0.8	13
61	Scm3 deposits a (Cse4–H4)2 tetramer onto DNA through a Cse4–H4 dimer intermediate. Nucleic Acids Research, 2014, 42, 5532-5542.	6.5	14
63	Anarchic centromeres: deciphering order from apparent chaos. Current Opinion in Cell Biology, 2014, 26, 41-50.	2.6	23
64	Systems and synthetic biology approaches to cell division. Systems and Synthetic Biology, 2014, 8, 173-178.	1.0	5
65	Nucleosomal regulation of chromatin composition and nuclear assembly revealed by histone depletion. Nature Structural and Molecular Biology, 2014, 21, 617-625.	3.6	93
66	The Centromere: Chromatin Foundation for the Kinetochore Machinery. Developmental Cell, 2014, 30, 496-508.	3.1	355
67	Kinetochore composition and its function: lessons from yeasts. FEMS Microbiology Reviews, 2014, 38, 185-200.	3.9	40
68	Histone H4 Lys 20 Monomethylation of the CENP-A Nucleosome Is Essential for Kinetochore Assembly. Developmental Cell, 2014, 29, 740-749.	3.1	101
69	Chromatin dynamics from S-phase to mitosis: contributions of histone modifications. Cell and Tissue Research, 2014, 356, 467-475.	1.5	12
70	CENP-A Arrays Are More Condensed than Canonical Arrays at Low Ionic Strength. Biophysical Journal, 2014, 106, 875-882.	0.2	15
71	The right place at the right time: chaperoning core histone variants. EMBO Reports, 2015, 16, 1454-1466.	2.0	55
72	The CENP-L-N Complex Forms a Critical Node in an Integrated Meshwork of Interactions at the Centromere-Kinetochore Interface. Molecular Cell, 2015, 60, 886-898.	4.5	146
73	HJURP Involvement in De Novo CenH3CENP-A and CENP-C Recruitment. Cell Reports, 2015, 11, 22-32.	2.9	80

	Сітат	tion Report	
#	Article	IF	CITATIONS
74	Histone Variants and Epigenetics. Cold Spring Harbor Perspectives in Biology, 2015, 7, a019364.	2.3	275
75	Both tails and the centromere targeting domain of CENP-A are required for centromere establishment. Journal of Cell Biology, 2015, 208, 521-531.	2.3	97
76	The CENP-T C-Terminus Is Exclusively Proximal to H3.1 and not to H3.2 or H3.3. International Journal of Molecular Sciences, 2015, 16, 5839-5863.	1.8	7
77	A cell-free CENP-A assembly system defines the chromatin requirements for centromere maintenance. Journal of Cell Biology, 2015, 209, 789-801.	2.3	38
78	CENP-C is a blueprint for constitutive centromere–associated network assembly within human kinetochores. Journal of Cell Biology, 2015, 210, 11-22.	2.3	141
79	CENP-A nucleosomes localize to transcription factor hotspots and subtelomeric sites in human cancer cells. Epigenetics and Chromatin, 2015, 8, 2.	1.8	110
80	Structural transitions of centromeric chromatin regulate the cell cycle-dependent recruitment of CENP-N. Genes and Development, 2015, 29, 1058-1073.	2.7	65
81	DNA Sequence-Specific Binding of CENP-B Enhances the Fidelity of Human Centromere Function. Developmental Cell, 2015, 33, 314-327.	3.1	207
82	CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere. Science, 2015, 348, 699-703.	6.0	186
83	Stable complex formation of CENP-B with the CENP-A nucleosome. Nucleic Acids Research, 2015, 43, 4909-4922.	6.5	59
84	The Centromere: Epigenetic Control of Chromosome Segregation during Mitosis. Cold Spring Harbor Perspectives in Biology, 2015, 7, a015818.	2.3	131
85	KSHV Genome Replication and Maintenance. Frontiers in Microbiology, 2016, 7, 54.	1.5	72
86	Repeat-Associated Fission Yeast-Like Regional Centromeres in the Ascomycetous Budding Yeast Candida tropicalis. PLoS Genetics, 2016, 12, e1005839.	1.5	56
87	Chromatin assembly: Journey to the CENter of the chromosome. Journal of Cell Biology, 2016, 214, 13-24.	2.3	31
88	Progress in the structural and functional characterization of kinetochores. Current Opinion in Structural Biology, 2016, 37, 152-163.	2.6	101
89	In Vitro Kinetochore Assembly. Methods in Molecular Biology, 2016, 1413, 111-133.	0.4	3
90	Assays to Study Mitotic Centrosome and Spindle Pole Assembly and Regulation. Methods in Molecular Biology, 2016, 1413, 207-235.	0.4	1
91	Licensing of Centromeric Chromatin Assembly through the Mis18α-Mis18β Heterotetramer. Molecular Cell, 2016, 61, 774-787.	4.5	80

#	Article	IF	CITATIONS
92	Chromosome missegregation during anaphase triggersÂp53 cell cycle arrest through histone H3.3 Ser31Âphosphorylation. Nature Cell Biology, 2016, 18, 668-675.	4.6	69
93	Preparation of Recombinant Centromeric Nucleosomes and Formation of Complexes with Nonhistone Centromere Proteins. Methods in Enzymology, 2016, 573, 67-96.	0.4	10
94	The Flexible Ends of CENP-A Nucleosome Are Required for Mitotic Fidelity. Molecular Cell, 2016, 63, 674-685.	4.5	72
95	Insights from biochemical reconstitution into the architecture of human kinetochores. Nature, 2016, 537, 249-253.	13.7	148
96	Dynamic chromatin changes associated with <i>de novo</i> centromere formation in maize euchromatin. Plant Journal, 2016, 88, 854-866.	2.8	23
97	CENP-A Is Dispensable for Mitotic Centromere Function after Initial Centromere/Kinetochore Assembly. Cell Reports, 2016, 17, 2394-2404.	2.9	89
98	Gene knockdown of CENPA reduces sphere forming ability and stemness of glioblastoma initiating cells. Neuroepigenetics, 2016, 7, 6-18.	2.8	16
99	Acetylation of histone H4 lysine 5 and 12 is required for CENP-A deposition into centromeres. Nature Communications, 2016, 7, 13465.	5.8	66
100	CENP-C directs a structural transition of CENP-A nucleosomes mainly through sliding of DNA gyres. Nature Structural and Molecular Biology, 2016, 23, 204-208.	3.6	73
101	The molecular basis for centromere identity and function. Nature Reviews Molecular Cell Biology, 2016, 17, 16-29.	16.1	474
102	Drosophila Nnf1 paralogs are partially redundant for somatic and germ line kinetochore function. Chromosoma, 2017, 126, 145-163.	1.0	2
103	Variations on a nucleosome theme: The structural basis of centromere function. BioEssays, 2017, 39, 1600241.	1.2	4
104	Neuroblastoma cells depend on HDAC11 for mitotic cell cycle progression and survival. Cell Death and Disease, 2017, 8, e2635-e2635.	2.7	48
105	Critical histone post-translational modifications for centromere function and propagation. Cell Cycle, 2017, 16, 1259-1265.	1.3	18
106	α-amino trimethylation of CENP-A by NRMT is required for full recruitment of the centromere. Nature Communications, 2017, 8, 14678.	5.8	63
107	Dual recognition of chromatin and microtubules by INCENP is important for mitotic progression. Journal of Cell Biology, 2017, 216, 925-941.	2.3	36
108	Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining. Nature Cell Biology, 2017, 19, 68-75.	4.6	207
109	A Dual Inhibitory Mechanism Sufficient to Maintain Cell-Cycle-Restricted CENP-A Assembly. Molecular Cell, 2017, 65, 231-246.	4.5	71

#	Article	IF	CITATIONS
110	Molecular basis of CENP-C association with the CENP-A nucleosome at yeast centromeres. Genes and Development, 2017, 31, 1958-1972.	2.7	45
111	Kinetochore–microtubule interactions in chromosome segregation: lessons from yeast and mammalian cells. Biochemical Journal, 2017, 474, 3559-3577.	1.7	13
112	Artificial Chromosomes and Strategies to Initiate Epigenetic Centromere Establishment. Progress in Molecular and Subcellular Biology, 2017, 56, 193-212.	0.9	9
113	Orchestrating the Specific Assembly of Centromeric Nucleosomes. Progress in Molecular and Subcellular Biology, 2017, 56, 165-192.	0.9	27
114	The Power of Xenopus Egg Extract for Reconstitution of Centromere and Kinetochore Function. Progress in Molecular and Subcellular Biology, 2017, 56, 59-84.	0.9	10
115	Centromere Structure and Function. Progress in Molecular and Subcellular Biology, 2017, 56, 515-539.	0.9	40
116	Xenopus laevis M18BP1 Directly Binds Existing CENP-A Nucleosomes to Promote Centromeric Chromatin Assembly. Developmental Cell, 2017, 42, 190-199.e10.	3.1	56
117	Centromere inheritance through the germline. Chromosoma, 2017, 126, 595-604.	1.0	20
118	Epigenetic Regulation of Centromere Chromatin Stability by Dietary and Environmental Factors. Advances in Nutrition, 2017, 8, 889-904.	2.9	13
119	Structure of centromere chromatin: from nucleosome to chromosomal architecture. Chromosoma, 2017, 126, 443-455.	1.0	44
120	Chromatin Dynamics During the Cell Cycle. , 2017, , 117-139.		0
121	Decoding the centromeric nucleosome through CENP-N. ELife, 2017, 6, .	2.8	101
122	Evolving Centromeres and Kinetochores. Advances in Genetics, 2017, 98, 1-41.	0.8	8
123	A Molecular View of Kinetochore Assembly and Function. Biology, 2017, 6, 5.	1.3	432
124	Regulation of Centromeric Chromatin. , 2017, , 303-324.		0
125	The localization and function of p38α mitogenâ€activated protein kinase in rat oocytes. Reproduction in Domestic Animals, 2018, 53, 636-643.	0.6	0
126	Posttranslational mechanisms controlling centromere function and assembly. Current Opinion in Cell Biology, 2018, 52, 126-135.	2.6	21
127	Structural mechanisms of centromeric nucleosome recognition by the kinetochore protein CENP-N. Science, 2018, 359, 339-343.	6.0	98

#	Article	IF	CITATIONS
128	Prolyl isomerization of the CENP-A N-terminus regulates centromeric integrity in fission yeast. Nucleic Acids Research, 2018, 46, 1167-1179.	6.5	12
129	Posttranslational modifications of CENP-A: marks of distinction. Chromosoma, 2018, 127, 279-290.	1.0	39
130	Centromere and Pericentromere Transcription: Roles and Regulation … in Sickness and in Health. Frontiers in Genetics, 2018, 9, 674.	1.1	69
131	High-resolution mapping of centromeric protein association using APEX-chromatin fibers. Epigenetics and Chromatin, 2018, 11, 68.	1.8	18
132	Constitutive centromere-associated network contacts confer differential stability on CENP-A nucleosomes in vitro and in the cell. Molecular Biology of the Cell, 2018, 29, 751-762.	0.9	27
133	Centromere and Kinetochore Assembly in <i>Xenopus laevis</i> Egg Extract. Cold Spring Harbor Protocols, 2018, 2018, pdb.prot102509.	0.2	1
134	<scp>hDNA</scp> 2 nuclease/helicase promotes centromeric <scp>DNA</scp> replication and genome stability. EMBO Journal, 2018, 37, .	3.5	42
135	Understanding eukaryotic chromosome segregation from a comparative biology perspective. Journal of Cell Science, 2018, 131, .	1.2	8
136	Aurora-PLK1 cascades as key signaling modules in the regulation of mitosis. Science Signaling, 2018, 11, .	1.6	146
137	CENP-C/H/I/K/M/T/W/N/L and hMis12 but not CENP-S/X participate in complex formation in the nucleoplasm of living human interphase cells outside centromeres. PLoS ONE, 2018, 13, e0192572.	1.1	9
138	The Cytoplasmic DNA Sensor cGAS Promotes Mitotic Cell Death. Cell, 2019, 178, 302-315.e23.	13.5	267
139	Reconstituting Drosophila Centromere Identity in Human Cells. Cell Reports, 2019, 29, 464-479.e5.	2.9	24
140	The Kinetochore Protein Spc105, a Novel Interaction Partner of LaeA, Regulates Development and Secondary Metabolism in Aspergillus flavus. Frontiers in Microbiology, 2019, 10, 1881.	1.5	14
141	Structure of the inner kinetochore CCAN complex assembled onto a centromeric nucleosome. Nature, 2019, 574, 278-282.	13.7	113
142	DNA replication acts as an error correction mechanism to maintain centromere identity by restricting CENP-A to centromeres. Nature Cell Biology, 2019, 21, 743-754.	4.6	65
143	The CENP-A centromere targeting domain facilitates H4K20 monomethylation in the nucleosome by structural polymorphism. Nature Communications, 2019, 10, 576.	5.8	28
144	<scp>CDK</scp> phosphorylation of <i>Xenopus laevis</i> M18 <scp>BP</scp> 1 promotes its metaphase centromere localization. EMBO Journal, 2019, 38, .	3.5	18
145	Structural analysis of fungal CENP-H/I/K homologs reveals a conserved assembly mechanism underlying proper chromosome alignment. Nucleic Acids Research, 2019, 47, 468-479.	6.5	22

#	Article	IF	CITATIONS
146	Reconstituting Nuclear and Chromosome Dynamics Using <i>Xenopus</i> Extracts. Cold Spring Harbor Protocols, 2019, 2019, pdb.top097105.	0.2	4
147	Phosphorylation of CENP-A on serine 7 does not control centromere function. Nature Communications, 2019, 10, 175.	5.8	17
148	Cryo-EM Structures of Centromeric Tri-nucleosomes Containing a Central CENP-A Nucleosome. Structure, 2020, 28, 44-53.e4.	1.6	47
149	Human chromosomeâ€specific aneuploidy is influenced by <scp>DNA</scp> â€dependent centromeric features. EMBO Journal, 2020, 39, e102924.	3.5	79
150	Essentiality of CENP-A Depends on Its Binding Mode to HJURP. Cell Reports, 2020, 33, 108388.	2.9	9
151	Maternal inheritance of centromeres through the germline. Current Topics in Developmental Biology, 2020, 140, 35-54.	1.0	4
152	Long transposon-rich centromeres in an oomycete reveal divergence of centromere features in Stramenopila-Alveolata-Rhizaria lineages. PLoS Genetics, 2020, 16, e1008646.	1.5	29
153	H3K9me3 maintenance on a Human Artificial Chromosome is required for segregation but not centromere epigenetic memory. Journal of Cell Science, 2020, 133, .	1.2	15
154	From evolution to function: Two sides of the same CENP-B coin?. Experimental Cell Research, 2020, 390, 111959.	1.2	33
155	Phase-plate cryo-EM structure of the Widom 601 CENP-A nucleosome core particle reveals differential flexibility of the DNA ends. Nucleic Acids Research, 2020, 48, 5735-5748.	6.5	27
156	Formation of the CenH3-Deficient Holocentromere in Lepidoptera Avoids Active Chromatin. Current Biology, 2021, 31, 173-181.e7.	1.8	36
157	CENP-A overexpression promotes aneuploidy with karyotypic heterogeneity. Journal of Cell Biology, 2021, 220, .	2.3	28
158	Identification and characterization of centromeric sequences in <i>Xenopus laevis</i> . Genome Research, 2021, 31, 958-967.	2.4	12
159	Molecular Complexes at Euchromatin, Heterochromatin and Centromeric Chromatin. International Journal of Molecular Sciences, 2021, 22, 6922.	1.8	35
161	Centromeric chromatin integrity is compromised by loss of Cdk5rap2, a transcriptional activator of CENP-A. Biomedicine and Pharmacotherapy, 2021, 138, 111463.	2.5	5
162	Permitted and restricted steps of human kinetochore assembly in mitotic cell extracts. Molecular Biology of the Cell, 2021, 32, 1241-1255.	0.9	4
163	Suv420 enrichment at the centromere limits Aurora B localization and function. Journal of Cell Science, 2021, 134, .	1.2	7
164	Linker histone H1.8 inhibits chromatin binding of condensins and DNA topoisomerase II to tune chromosome length and individualization. ELife, 2021, 10, .	2.8	29

#	Article	IF	CITATIONS
165	Kinetochore assembly throughout the cell cycle. Seminars in Cell and Developmental Biology, 2021, 117, 62-74.	2.3	38
166	Quantitative Microscopy Reveals Centromeric Chromatin Stability, Size, and Cell Cycle Mechanisms to Maintain Centromere Homeostasis. Progress in Molecular and Subcellular Biology, 2017, 56, 139-162.	0.9	5
167	CENP-A nucleosome—a chromatin-embedded pedestal for the centromere: lessons learned from structural biology. Essays in Biochemistry, 2020, 64, 205-221.	2.1	15
168	Stable inheritance of CENP-A chromatin: Inner strength versus dynamic control. Journal of Cell Biology, 2020, 219, .	2.3	24
173	CENP â€R acts bilaterally as a tumor suppressor and as an oncogene in the twoâ€stage skin carcinogenesis model. Cancer Science, 2017, 108, 2142-2148.	1.7	9
174	Step-Wise Assembly, Maturation and Dynamic Behavior of the Human CENP-P/O/R/Q/U Kinetochore Sub-Complex. PLoS ONE, 2012, 7, e44717.	1.1	32
175	Autoâ€inhibition of Mif2/CENPâ€C ensures centromereâ€dependent kinetochore assembly in budding yeast. EMBO Journal, 2020, 39, e102938.	3.5	21
176	A genetic memory initiates the epigenetic loop necessary to preserve centromere position. EMBO Journal, 2020, 39, e105505.	3.5	26
177	Molecular basis of outer kinetochore assembly on CENP-T. ELife, 2016, 5, .	2.8	113
178	An assay for de novo kinetochore assembly reveals a key role for the CENP-T pathway in budding yeast. ELife, 2018, 7, .	2.8	46
179	The COMA complex interacts with Cse4 and positions Sli15/Ipl1 at the budding yeast inner kinetochore. ELife, 2019, 8, .	2.8	64
180	Kinetochore protein depletion underlies cytokinesis failure and somatic polyploidization in the moss Physcomitrella patens. ELife, 2019, 8, .	2.8	22
181	Reconstitution reveals two paths of force transmission through the kinetochore. ELife, 2020, 9, .	2.8	14
182	Structure and Function of Centromeric Nucleosomes Containing CENP-A. Seibutsu Butsuri, 2012, 52, 220-225.	0.0	0
183	The Kinetochore and Mitosis: Focus on the Regulation and Correction Mechanisms of Chromosome-to-Microtubule Attachments. , 0, , .		0
195	Evolution of holocentric chromosomes: Drivers, diversity, and deterrents. Seminars in Cell and Developmental Biology, 2022, 127, 90-99.	2.3	15
197	E3 Ligase for CENP-A (Part 2). Biochemistry, 0, , .	0.8	0
199	The ins and outs of CENP-A: Chromatin dynamics of the centromere-specific histone. Seminars in Cell and Developmental Biology, 2023, 135, 24-34.	2.3	8

#	Article	IF	CITATIONS
200	Structure of the human inner kinetochore bound to a centromeric CENP-A nucleosome. Science, 2022, 376, 844-852.	6.0	40
212	Dynamic cell cycle–dependent phosphorylation modulates CENP-L–CENP-N centromere recruitment. Molecular Biology of the Cell, 2022, 33, .	0.9	8
213	GRANT Motif Regulates CENP-A Incorporation and Restricts RNA Polymerase II Accessibility at Centromere. Genes, 2022, 13, 1697.	1.0	2
214	LncRNA CCTT-mediated RNA-DNA and RNA-protein interactions facilitate the recruitment of CENP-C to centromeric DNA during kinetochore assembly. Molecular Cell, 2022, 82, 4018-4032.e9.	4.5	9
215	Induction of chromosome-specific micronuclei and chromothripsis by centromere inactivation. Methods in Cell Biology, 2024, , 1-20.	0.5	1
216	Unraveling the kinetochore nanostructure in <i>Schizosaccharomyces pombe</i> using multi-color SMLM imaging. Journal of Cell Biology, 2023, 222, .	2.3	3
217	Nanoscale structural organization and stoichiometry of the budding yeast kinetochore. Journal of Cell Biology, 2023, 222, .	2.3	8