Adenovirus-Associated Virus Vector–Mediated Gene

New England Journal of Medicine 365, 2357-2365 DOI: 10.1056/nejmoa1108046

Citation Report

#	Article	IF	CITATIONS
1	Merry Christmas for Patients with Hemophilia B. New England Journal of Medicine, 2011, 365, 2424-2425.	13.9	23
2	Retention Behavior Using SiN Spacers Charging on nMOSFETs for Future Nonvolatile Memory Application. Journal of the Electrochemical Society, 2011, 158, H536.	1.3	0
3	The Threefold Protrusions of Adeno-Associated Virus Type 8 Are Involved in Cell Surface Targeting as Well as Postattachment Processing. Journal of Virology, 2012, 86, 9396-9408.	1.5	40
4	New treatments in hemophilia: insights for the clinician. Therapeutic Advances in Hematology, 2012, 3, 165-175.	1.1	12
5	Phoenix rising: gene therapy makes a comeback. Acta Biochimica Et Biophysica Sinica, 2012, 44, 632-640.	0.9	8
6	Single Amino Acid Modification of Adeno-Associated Virus Capsid Changes Transduction and Humoral Immune Profiles. Journal of Virology, 2012, 86, 7752-7759.	1.5	84
7	Parvoviruses: structure and infection. Future Virology, 2012, 7, 253-278.	0.9	49
8	AAV Vectors Containing rDNA Homology Display Increased Chromosomal Integration and Transgene Persistence. Molecular Therapy, 2012, 20, 1902-1911.	3.7	36
9	A Capillary Electrophoresis Sequencing Method for the Identification of Mutations in the Inverted Terminal Repeats of Adeno-Associated Virus. Human Gene Therapy Methods, 2012, 23, 128-136.	2.1	10
10	Recent drug news. European Journal of Hospital Pharmacy, 2012, 19, 392-392.	0.5	0
11	Discovery of epilepsy susceptibility genes: implications for therapy development and pharmacogenomics. Pharmacogenomics, 2012, 13, 731-734.	0.6	6
12	Signs of Progress in Gene Therapy for Muscular Dystrophy Also Warrant Caution. Molecular Therapy, 2012, 20, 249-251.	3.7	2
14	Single Tyrosine Mutation in AAV8 and AAV9 Capsids Is Insufficient to Enhance Gene Delivery to Skeletal Muscle and Heart. Human Gene Therapy Methods, 2012, 23, 29-37.	2.1	16
15	Role of Molecular Genetics in Hemophilia: From Diagnosis to Therapy. Seminars in Thrombosis and Hemostasis, 2012, 38, 64-78.	1.5	28
16	Ribosomal DNA Integrating rAAV-rDNA Vectors Allow for Stable Transgene Expression. Molecular Therapy, 2012, 20, 1912-1923.	3.7	27
17	Personalized oral health care. Journal of the American Dental Association, 2012, 143, 102-104.	0.7	7
18	Sustained Reduction of Hyperbilirubinemia in Gunn Rats After Adeno-Associated Virus-Mediated Gene Transfer of Bilirubin UDP-Glucuronosyltransferase Isozyme 1A1 to Skeletal Muscle. Human Gene Therapy, 2012, 23, 1082-1089.	1.4	7
19	Gene Delivery Improvement for Treating the Lysosomal Storage Disorder Metachromatic Leukodystrophy. Human Gene Therapy, 2012, 23, 793-795.	1.4	2

TION RED

#	Article	IF	Citations
20	An Unparalleled Engine for Discovery and Clinical Introduction: The Clinical and Translational Science Awards and Gene Therapy. Human Gene Therapy, 2012, 23, 251-253.	1.4	3
21	A Personal Perspective on the Early, Early History ofIn Vivo(DNA-Based) Gene Therapy. Human Gene Therapy, 2012, 23, 541-546.	1.4	2
22	Delivery of AAV2-CYP2J2 Protects Remnant Kidney in the 5/6-Nephrectomized Rat via Inhibition of Apoptosis and Fibrosis. Human Gene Therapy, 2012, 23, 688-699.	1.4	56
23	Gene-based passive antibody protection from HIV. Nature Biotechnology, 2012, 30, 156-157.	9.4	4
24	Safe, Long-term Hepatic Expression of Anti-HCV shRNA in a Nonhuman Primate Model. Molecular Therapy, 2012, 20, 1737-1749.	3.7	46
25	Pharmacological Modulation of Humoral Immunity in a Nonhuman Primate Model of AAV Gene Transfer for Hemophilia B. Molecular Therapy, 2012, 20, 1410-1416.	3.7	90
26	Recombinant adeno-associated virus: clinical application and development as a gene-therapy vector. Therapeutic Delivery, 2012, 3, 835-856.	1.2	27
27	Encapsulation of factor IX–engineered mesenchymal stem cells in fibrinogen–alginate microcapsules enhances their viability and transgene secretion. Journal of Tissue Engineering, 2012, 3, 204173141246201.	2.3	24
28	Double-Blinded, Placebo-Controlled, Randomized Gene Therapy Using Surgery for Vector Delivery. Human Gene Therapy, 2012, 23, 438-441.	1.4	11
29	The Liver as a Target Organ for Gene Therapy: State of the Art, Challenges, and Future Perspectives. Pharmaceuticals, 2012, 5, 1372-1392.	1.7	33
30	Cytoplasmic Trafficking, Endosomal Escape, and Perinuclear Accumulation of Adeno-Associated Virus Type 2 Particles Are Facilitated by Microtubule Network. Journal of Virology, 2012, 86, 10462-10473.	1.5	112
31	rAAV-Mediated Tumorigenesis: Still Unresolved After an AAV Assault. Molecular Therapy, 2012, 20, 2014-2017.	3.7	33
32	In Vivo, Cardiac-Specific Knockdown of a Target Protein, Malic Enzyme- 1, in Rat via Adenoviral Delivery of DNA for Non-Native miRNA. Current Gene Therapy, 2012, 12, 454-462.	0.9	10
33	Gene Therapy in Liver Diseases: State-of-the-Art and Future Perspectives. Current Gene Therapy, 2012, 12, 463-483.	0.9	11
34	Adeno-Associated Virus Vectors: Immunobiology and Potential Use for Immune Modulation. Current Gene Therapy, 2012, 12, 333-343.	0.9	9
35	RNAi-based Gene Therapy for Dominant Limb Girdle Muscular Dystrophies. Current Gene Therapy, 2012, 12, 307-314.	0.9	8
36	Serotype-independent Method of Recombinant Adeno-associated Virus (AAV) Vector Production and Purification. Journal of Nippon Medical School, 2012, 79, 394-402.	0.3	40
37	Gene therapy in neurology: review of ongoing clinical trials. Clinical Investigation, 2012, 2, 639-652.	0.0	1

#	Article	IF	CITATIONS
38	The efficacy and the risk of immunogenicity of FIX Padua (R338L) in hemophilia B dogs treated by AAV muscle gene therapy. Blood, 2012, 120, 4521-4523.	0.6	100
39	Gene therapy, an ongoing revolution. Blood, 2012, 119, 2973-2974.	0.6	5
40	The gene therapy journey for hemophilia: are we there yet?. Blood, 2012, 120, 4482-4487.	0.6	57
41	Factor IX Padua: them that have, give. Blood, 2012, 120, 4452-4453.	0.6	6
42	New developments in the diagnosis and treatment of von Willebrand disease. Clinical Investigation, 2012, 2, 781-795.	0.0	2
43	Lentivirusâ€mediated platelet gene therapy of murine hemophiliaÂA with preâ€existing antiâ€factorÂVIII immunity. Journal of Thrombosis and Haemostasis, 2012, 10, 1570-1580.	1.9	98
44	Platelet-directed gene therapy overcomes inhibitory antibodies to factor VIII. Journal of Thrombosis and Haemostasis, 2012, 10, 1566-1569.	1.9	1
45	Intraâ€articular injection of mesenchymal stem cells expressing coagulation factor ameliorates hemophilic arthropathy in factorÂVIIIâ€deficient mice. Journal of Thrombosis and Haemostasis, 2012, 10, 1802-1813.	1.9	24
46	Correction of Pathological Accumulation of Glycosaminoglycans in Central Nervous System and Peripheral Tissues of MPSIIIA Mice Through Systemic AAV9 Gene Transfer. Human Gene Therapy, 2012, 23, 1237-1246.	1.4	102
47	Adeno-associated virus gene therapy prevents hepatocellular adenoma in murine model of glycogen storage disease type Ia. Hepatology, 2012, 56, 1593-1595.	3.6	2
49	Genetic Therapeutic Approaches for Duchenne Muscular Dystrophy. Human Gene Therapy, 2012, 23, 676-687.	1.4	44
50	How we choose factor VIII to treat hemophilia. Blood, 2012, 119, 4108-4114.	0.6	74
51	Advanced therapies for hemophilia: reality or fantasy?. Expert Review of Hematology, 2012, 5, 245-247.	1.0	2
52	Diagnosis and management of haemophilia. BMJ, The, 2012, 344, e2707-e2707.	3.0	82
53	Platelet and endothelial expression of clotting factors for the treatment of hemophilia. Thrombosis Research, 2012, 129, S46-S48.	0.8	33
54	A review of current methods for assessing hemostasis in vivo and introduction to a potential alternative approach. Thrombosis Research, 2012, 129, S57-S61.	0.8	8
55	Hemophilia management in transfusion medicine. Transfusion and Apheresis Science, 2012, 46, 299-307.	0.5	5
56	Quantification of AAV Particle Titers by Infrared Fluorescence Scanning of Coomassie-Stained Sodium Dodecyl Sulfate–Polyacrylamide Gels. Human Gene Therapy Methods, 2012, 23, 198-203.	2.1	33

#	Article	IF	CITATIONS
57	Metabolic Correction of Congenital Erythropoietic Porphyria with iPSCs Free of Reprogramming Factors. American Journal of Human Genetics, 2012, 91, 109-121.	2.6	19
58	Regulated protein expression for in vivo gene therapy for neurological disorders: Progress, strategies, and issues. Neurobiology of Disease, 2012, 48, 212-221.	2.1	23
59	Ezetimibe: A biomarker for efficacy of liver directed UGT1A1 gene therapy for inherited hyperbilirubinemia. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1223-1229.	1.8	5
60	Hyperfunctional coagulation factor IX improves the efficacy of gene therapy in hemophilic mice. Blood, 2012, 120, 4517-4520.	0.6	84
61	Structure of AAV-DJ, a Retargeted Gene Therapy Vector: Cryo-Electron Microscopy at 4.5ÂÃ Resolution. Structure, 2012, 20, 1310-1320.	1.6	63
62	Effective AAVâ€mediated gene therapy in a mouse model of ethylmalonic encephalopathy. EMBO Molecular Medicine, 2012, 4, 1008-1014.	3.3	72
63	Transient and intensive pharmacological immunosuppression fails to improve AAV-based liver gene transfer in non-human primates. Journal of Translational Medicine, 2012, 10, 122.	1.8	58
64	Advanced therapies for the treatment of hemophilia: future perspectives. Orphanet Journal of Rare Diseases, 2012, 7, 97.	1.2	10
65	Personalizing rare disease research: how genomics is revolutionizing the diagnosis and treatment of rare disease. Personalized Medicine, 2012, 9, 805-819.	0.8	8
66	<i>In Vivo</i> Gene Transfer Strategies to Achieve Partial Correction of von Willebrand Disease. Human Gene Therapy, 2012, 23, 576-588.	1.4	16
67	Merry Christmas pour les hémophilesÂB. Kinesitherapie, 2012, 12, 6.	0.0	0
68	L'avenir de l'assurance maladie. Kinesitherapie, 2012, 12, 6-7.	0.0	0
69	Ethical issues in the diagnosis and management of fetal disorders. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2012, 26, 541-550.	1.4	3
70	The case for intrauterine gene therapy. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2012, 26, 697-709.	1.4	15
71	Sustained expression and safety of human GNE in normal mice after gene transfer based on AAV8 systemic delivery. Neuromuscular Disorders, 2012, 22, 1015-1024.	0.3	27
72	Targeted Delivery of Self-Complementary Adeno-Associated Virus Serotype 9 to the Brain, Using Magnetic Resonance Imaging-Guided Focused Ultrasound. Human Gene Therapy, 2012, 23, 1144-1155.	1.4	164
73	Recent Progress in Gene Therapy for Hemophilia. Human Gene Therapy, 2012, 23, 557-565.	1.4	31
74	Current translational and clinical practices in hematopoietic cell and gene therapy. Cytotherapy, 2012, 14, 775-790.	0.3	8

ARTICLE IF CITATIONS # The application of gene therapy in lipid disorders: where are we now?. Clinical Lipidology, 2012, 7, 75 0.4 1 419-429. TAL effector RVD specificities and efficiencies. Nature Biotechnology, 2012, 30, 593-595. 9.4 Haemophilia B: current pharmacotherapy and future directions. Expert Opinion on Pharmacotherapy, 77 0.9 22 2012, 13, 2053-2063. It's Time for Gene Therapy to Get Disruptive!. Human Gene Therapy, 2012, 23, 1-3. Transient B Cell Depletion or Improved Transgene Expression by Codon Optimization Promote 79 1.1 73 Tolerance to Factor VIII in Gene Therapy. PLoS ONE, 2012, 7, e37671. Porcine Model of Hemophilia A. PLoS ONE, 2012, 7, e49450. 1.1 Adeno-associated virus mediated delivery of Tregitope 167 ameliorates experimental colitis. World 81 1.4 18 Journal of Gastroenterology, 2012, 18, 4288. HIV antibodies and athletes. Reviews in Medical Virology, 2012, 22, 211-213. 83 Gene Therapy for Heart Failure. Circulation Research, 2012, 110, 777-793. 2.0 130 84 Prospects for gene transfer for clinical heart failure. Gene Therapy, 2012, 19, 606-612. 2.3 Radio-Wave Heating of Iron Oxide Nanoparticles Can Regulate Plasma Glucose in Mice. Science, 2012, 85 6.0 428 336, 604-608. Mapping a Neutralizing Epitope onto the Capsid of Adeno-Associated Virus Serotype 8. Journal of 1.5 86 Virology, 2012, 86, 7739-7751. Directed evolution of novel adeno-associated viruses for therapeutic gene delivery. Gene Therapy, 87 2.3 136 2012, 19, 694-700. Targeted DNA Mutagenesis for the Cure of Chronic Viral Infections. Journal of Virology, 2012, 86, 1.5 100 8920-8936. Should clinicians edit Wikipedia to engage a wider world web?. BMJ, The, 2012, 345, e4275-e4275. 89 3.0 9 Gene therapy matures in the clinic. Nature Biotechnology, 2012, 30, 588-593. 9.4 The myth of genetic enhancement. Theoretical Medicine and Bioethics, 2012, 33, 163-178. 91 0.4 12 In search of proofâ€ofâ€concept: gene therapy for glycogen storage disease type Ia. Journal of Inherited Metabolic Disease, 2012, 35, 671-678.

#	Article	IF	CITATIONS
93	Gene therapy for metabolic disorders: an overview with a focus on urea cycle disorders. Journal of Inherited Metabolic Disease, 2012, 35, 641-645.	1.7	13
94	Gene therapy for haemophilia: prospects and challenges to prevent or reverse inhibitor formation. British Journal of Haematology, 2012, 156, 295-302.	1.2	21
95	Nouvelle thérapie génique contre l'hémophilie B. Option/Bio, 2012, 23, 6.	0.0	0
96	Gene therapy for haemophilia B. Haemophilia, 2012, 18, 13-17.	1.0	19
97	The World Federation of Hemophilia and research. Haemophilia, 2012, 18, 24-27.	1.0	3
98	2012 and beyond. Transfusion Medicine, 2012, 22, 1-2.	0.5	0
99	New genes for old: successful gene therapy for haemophilia B. Transfusion Medicine, 2012, 22, 3-4.	0.5	2
100	The hope and reality of longâ€acting hemophilia products. American Journal of Hematology, 2012, 87, S33-9.	2.0	45
101	Endocytic processing of adeno-associated virus type 8 vectors for transduction of target cells. Gene Therapy, 2013, 20, 308-317.	2.3	59
102	Issues in pediatric haemophilia care. Italian Journal of Pediatrics, 2013, 39, 24.	1.0	25
104	Generation and Characterization of Adeno-Associated Virus Producer Cell Lines for Research and Preclinical Vector Production. Human Gene Therapy Methods, 2013, 24, 253-269.	2.1	63
105	Bioengineering of AAV2 Capsid at Specific Serine, Threonine, or Lysine Residues Improves Its Transduction Efficiency <i>in Vitro</i> and <i>in Vivo</i> . Human Gene Therapy Methods, 2013, 24, 80-93.	2.1	73
106	Vector Production in an Academic Environment: A Tool to Assess Production Costs. Human Gene Therapy Methods, 2013, 24, 49-57.	2.1	9
107	Gene therapy clinical trials worldwide to 2012 – an update. Journal of Gene Medicine, 2013, 15, 65-77.	1.4	1,057
108	Systemic Delivery of MeCP2 Rescues Behavioral and Cellular Deficits in Female Mouse Models of Rett Syndrome. Journal of Neuroscience, 2013, 33, 13612-13620.	1.7	194
109	Pre-existing Anti–Adeno-Associated Virus Antibodies as a Challenge in AAV Gene Therapy. Human Gene Therapy Methods, 2013, 24, 59-67.	2.1	241
110	Generating SM(a)RTer Compounds for Translation Termination Suppression in A-T and Other Genetic Disorders. Molecular Therapy, 2013, 21, 1650-1652.	3.7	1
112	Hemophilias and Other Disorders of Hemostasis. , 2013, , 1-33.		12

#	Article	IF	CITATIONS
113	Characterization of Interactions between Heparin/Clycosaminoglycan and Adeno-Associated Virus. Biochemistry, 2013, 52, 6275-6285.	1.2	32
114	Development of an anti-angiogenic therapeutic model combining scAAV2-delivered siRNAs and noninvasive photoacoustic imaging of tumor vasculature development. Cancer Letters, 2013, 332, 120-129.	3.2	26
115	Animal Models of Hemophilia and Related Bleeding Disorders. Seminars in Hematology, 2013, 50, 175-184.	1.8	34
117	Is cancer gene therapy an empty suit?. Lancet Oncology, The, 2013, 14, e447-e456.	5.1	48
118	Improved Efficacy and Reduced Toxicity by Ultrasound-Guided Intrahepatic Injections of Helper-Dependent Adenoviral Vector in Gunn Rats. Human Gene Therapy Methods, 2013, 24, 321-327.	2.1	10
119	Adeno-associated Virus-mediated Rescue of Neonatal Lethality in Argininosuccinate Synthetase-deficient Mice. Molecular Therapy, 2013, 21, 1823-1831.	3.7	39
120	Polyinosinic Acid Blocks Adeno-Associated Virus Macrophage Endocytosis <i>In Vitro</i> and Enhances Adeno-Associated Virus Liver-Directed Gene Therapy <i>In Vivo</i> . Human Gene Therapy, 2013, 24, 807-813.	1.4	21
121	TALENs Targeting HBV: Designer Endonuclease Therapies for Viral Infections. Molecular Therapy, 2013, 21, 1819-1821.	3.7	7
122	Ability of plasmid DNA complexed with histidinylated IPEI and IPEI to cross in vitro lung and muscle vascular endothelial barriers. Gene, 2013, 525, 182-190.	1.0	9
123	<i>SUMO-1</i> Gene Transfer Improves Cardiac Function in a Large-Animal Model of Heart Failure. Science Translational Medicine, 2013, 5, 211ra159.	5.8	96
124	Modulation of CD8+ T cell responses to AAV vectors with IgG-derived MHC class II epitopes. Molecular Therapy, 2013, 21, 1727-1737.	3.7	38
125	Hepatic gene therapy using lentiviral vectors: Has safety been established?. Hepatology, 2013, 58, 13-14.	3.6	5
126	Bulls, Bubbles, and Biotech. Human Gene Therapy, 2013, 24, 715-716.	1.4	6
127	Overexpression of factor VII ameliorates bleeding diathesis of factor VIII-deficient mice with inhibitors. Thrombosis Research, 2013, 131, 444-449.	0.8	1
128	Molecular approaches for improved clotting factors for hemophilia. Blood, 2013, 122, 3568-3574.	0.6	40
129	Birth of a New Therapeutic Platform: 47 Years of Adeno-associated Virus Biology From Virus Discovery to Licensed Gene Therapy. Molecular Therapy, 2013, 21, 1976-1981.	3.7	16
130	Building better drugs: developing and regulating engineered therapeutic proteins. Trends in Pharmacological Sciences, 2013, 34, 534-548.	4.0	77
131	Optical inhibition of motor nerve and muscle activity <i>in vivo</i> . Muscle and Nerve, 2013, 47, 916-921.	1.0	32

#	Article	IF	CITATIONS
132	DNA transposon-based gene vehicles - scenes from an evolutionary drive. Journal of Biomedical Science, 2013, 20, 92.	2.6	65
133	An adaptable system for improving transposonâ€based gene expression in vivo via transient transgene repression. FASEB Journal, 2013, 27, 3753-3762.	0.2	8
134	Gene Transfer in the Liver Using Recombinant Adenoâ€Associated Virus. Current Protocols in Microbiology, 2013, 29, Unit14D.6.	6.5	10
135	Electron microscopy analysis of a disaccharide analog complex reveals receptor interactions of adeno-associated virus. Journal of Structural Biology, 2013, 184, 129-135.	1.3	15
136	Hemophilia A in the third millennium. Blood Reviews, 2013, 27, 179-184.	2.8	127
137	Gene therapy on the move. EMBO Molecular Medicine, 2013, 5, 1642-1661.	3.3	238
138	Examination of the effect of increasing the number of intra-disulfide amino functional groups on the performance of small molecule cyclic polyamine disulfide vectors. Journal of Controlled Release, 2013, 171, 81-90.	4.8	28
139	Targeted Modifications in Adeno-Associated Virus Serotype 8 Capsid Improves Its Hepatic Gene Transfer Efficiency <i>In Vivo</i> . Human Gene Therapy Methods, 2013, 24, 104-116.	2.1	43
140	Gene Therapy for Mucopolysaccharidosis Type VI Is Effective in Cats Without Pre-Existing Immunity to AAV8. Human Gene Therapy, 2013, 24, 163-169.	1.4	38
141	Liver gene therapy by lentiviral vectors reverses antiâ€factor <scp>IX</scp> preâ€existing immunity in haemophilic mice. EMBO Molecular Medicine, 2013, 5, 1684-1697.	3.3	55
142	Phase 3 Study of Recombinant Factor IX Fc Fusion Protein in Hemophilia B. New England Journal of Medicine, 2013, 369, 2313-2323.	13.9	307
143	Minimal modification in the factor VIII B-domain sequence ameliorates the murine hemophilia A phenotype. Blood, 2013, 121, 4396-4403.	0.6	70
144	Robust ZFN-mediated genome editing in adult hemophilic mice. Blood, 2013, 122, 3283-3287.	0.6	159
145	Therapeutic levels of FVIII following a single peripheral vein administration of rAAV vector encoding a novel human factor VIII variant. Blood, 2013, 121, 3335-3344.	0.6	236
147	Preclinical Evaluation of An Anti-HCV miRNA Cluster for Treatment of HCV Infection. Molecular Therapy, 2013, 21, 588-601.	3.7	25
148	Development of hybrid viral vectors for gene therapy. Biotechnology Advances, 2013, 31, 208-223.	6.0	135
149	Gene therapy enters the pharma market: The short story of a long journey. EMBO Molecular Medicine, 2013, 5, 1-3.	3.3	103
150	The future of hemostasis management. Pediatric Blood and Cancer, 2013, 60, S44-7.	0.8	4

#	Article	IF	CITATIONS
151	Ultrasound Directs a Transposase System for Durable Hepatic Gene Delivery in Mice. Ultrasound in Medicine and Biology, 2013, 39, 2351-2361.	0.7	12
152	Safe and efficacious delivery of the human clotting factor IX gene to non human primates using a recombinant AAV vector produced in a fully-scalable GMP-compliant production system. Toxicology Letters, 2013, 221, S60.	0.4	0
153	Chaperone-mediated gene therapy with recombinant AAV-PPCA in a new mouse model of type I sialidosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1784-1792.	1.8	26
154	A wise consistency: engineering biology for conformity, reliability, predictability. Current Opinion in Chemical Biology, 2013, 17, 893-901.	2.8	50
155	Kinetics of Adeno-Associated Virus Serotype 2 (AAV2) and AAV8 Capsid Antigen Presentation <i>In Vivo</i> Are Identical. Human Gene Therapy, 2013, 24, 545-553.	1.4	23
156	Inherited Abnormalities of Coagulation. Pediatric Clinics of North America, 2013, 60, 1419-1441.	0.9	34
157	Hydrogels for lentiviral gene delivery. Expert Opinion on Drug Delivery, 2013, 10, 499-509.	2.4	56
158	Will gene therapy trump factor treatment in hemophilia?. Expert Review of Hematology, 2013, 6, 43-48.	1.0	1
159	Immune responses in liver-directed lentiviral gene therapy. Translational Research, 2013, 161, 230-240.	2.2	21
160	Gene Therapy for Hemophilia: Addressing the Coming Challenges of Affordability and Accessibility. Molecular Therapy, 2013, 21, 1-2.	3.7	23
161	Gene doping: gene delivery for olympic victory. British Journal of Clinical Pharmacology, 2013, 76, 292-298.	1.1	11
162	Comparison of gene transfer to the murine liver following intraperitoneal and intraportal delivery of hepatotropic AAV pseudo-serotypes. Gene Therapy, 2013, 20, 460-464.	2.3	57
163	Gene Therapy for Type 1 Diabetes Moves a Step Closer to Reality. Diabetes, 2013, 62, 1396-1397.	0.3	1
164	Treatment of Diabetes and Long-Term Survival After Insulin and Glucokinase Gene Therapy. Diabetes, 2013, 62, 1718-1729.	0.3	59
165	No tumour-initiating risk associated with scAAV transduction in newborn rat liver. Gene Therapy, 2013, 20, 779-784.	2.3	21
167	Intranasal Antibody Gene Transfer in Mice and Ferrets Elicits Broad Protection Against Pandemic Influenza. Science Translational Medicine, 2013, 5, 187ra72.	5.8	99
168	Broad protection against influenza infection by vectored immunoprophylaxis in mice. Nature Biotechnology, 2013, 31, 647-652.	9.4	121
169	Mirâ€142â€3p target sequences reduce transgeneâ€directed immunogenicity following intramuscular adenoâ€associated virus 1 vectorâ€mediated gene delivery. Journal of Gene Medicine, 2013, 15, 219-232.	1.4	49

#	Article	IF	CITATIONS
170	An E3â€14.7K Peptide that Promotes Microtubulesâ€Mediated Transport of Plasmid DNA Increases Polyplexes Transfection Efficiency. Small, 2013, 9, 3845-3851.	5.2	24
171	Adenoâ€associated virus (AAV) vectors in gene therapy: immune challenges and strategies to circumvent them. Reviews in Medical Virology, 2013, 23, 399-413.	3.9	78
172	Microfluidic Preparation of Polymer-Nucleic Acid Nanocomplexes Improves Nonviral Gene Transfer. Scientific Reports, 2013, 3, 3155.	1.6	36
173	The hemophilias and their clinical management. Hematology American Society of Hematology Education Program, 2013, 2013, 261-267.	0.9	22
174	Gene Therapy Researchers' Assessments Of Risks And Perceptions Of Risk Acceptability In Clinical Trials. Molecular Therapy, 2013, 21, 806-815.	3.7	10
175	Targeted Gene Addition in Human Epithelial Stem Cells by Zinc-finger Nuclease-mediated Homologous Recombination. Molecular Therapy, 2013, 21, 1695-1704.	3.7	53
176	Minimizing the Inhibitory Effect of Neutralizing Antibody for Efficient Gene Expression in the Liver With Adeno-associated Virus 8 Vectors. Molecular Therapy, 2013, 21, 318-323.	3.7	70
177	AAV2/8 Vectors Purified from Culture Medium with a Simple and Rapid Protocol Transduce Murine Liver, Muscle, and Retina Efficiently. Human Gene Therapy Methods, 2013, 24, 392-398.	2.1	39
178	Differential Type I Interferon-dependent Transgene Silencing of Helper-dependent Adenoviral vs. Adeno-associated Viral Vectors In Vivo. Molecular Therapy, 2013, 21, 796-805.	3.7	40
179	Covert Warfare Against the Immune System: Decoy Capsids, Stealth Genomes, and Suppressors. Molecular Therapy, 2013, 21, 1648-1650.	3.7	17
180	Flushing Out Antibodies to Make AAV Gene Therapy Available to More Patients. Molecular Therapy, 2013, 21, 269-271.	3.7	5
181	A phase I dose escalation study of Ad GV.EGR.TNF.11D (TNFeradeâ,,¢ Biologic) with concurrent chemoradiotherapy in patients with recurrent head and neck cancer undergoing reirradiation. Annals of Oncology, 2013, 24, 769-776.	0.6	25
182	Liver Gene Therapy Approaches for Acute Intermittent Porphyria: Metabolic Correction and Immunological Hurdles. Handbook of Porphyrin Science, 2013, , 415-450.	0.3	0
183	Haemophilia part 1: an introduction. British Journal of Nursing, 2013, 22, 620-620.	0.3	1
184	Adeno-associated virus structural biology as a tool in vector development. Future Virology, 2013, 8, 1183-1199.	0.9	68
185	Impaired viability of muscle precursor cells in muscular dystrophy with glycosylation defects and amelioration of its severe phenotype by limited gene expression. Human Molecular Genetics, 2013, 22, 3003-3015.	1.4	40
186	Predictors of Hepatitis B Cure Using Gene Therapy to Deliver DNA Cleavage Enzymes: A Mathematical Modeling Approach. PLoS Computational Biology, 2013, 9, e1003131.	1.5	36
187	Too New for Textbooks. American Biology Teacher, 2013, 75, 480-485.	0.1	0

#	Article	IF	Citations
188	Molecular approaches for improved clotting factors for hemophilia. Hematology American Society of Hematology Education Program, 2013, 2013, 30-36.	0.9	11
189	Platelet-targeted gene therapy with human factor VIII establishes haemostasis in dogs with haemophilia A. Nature Communications, 2013, 4, 2773.	5.8	102
190	Immunological Monitoring to Rationally Guide AAV Gene Therapy. Frontiers in Immunology, 2013, 4, 273.	2.2	14
191	Identifying Nongenetic Risk Factors for Inhibitor Development in Severe Hemophilia A. Seminars in Thrombosis and Hemostasis, 2013, 39, 740-751.	1.5	24
192	Hemophilia A and Hemophilia B: Different Types of Diseases?. Seminars in Thrombosis and Hemostasis, 2013, 39, 697-701.	1.5	29
193	What nurse practitioners should know about gene therapy. Nurse Practitioner, 2013, 38, 16-22.	0.2	1
194	Gene therapy for hemophilia. Current Opinion in Hematology, 2013, 20, 410-416.	1.2	6
195	New developments in the treatment of pediatric hemophilia and bleeding disorders. Current Opinion in Pediatrics, 2013, 25, 23-30.	1.0	6
196	Arsenic Trioxide Stabilizes Accumulations of Adeno-Associated Virus Virions at the Perinuclear Region, Increasing Transduction <i>In Vitro</i> and <i>In Vivo</i> . Journal of Virology, 2013, 87, 4571-4583.	1.5	35
197	Vector Decoys Trick the Immune Response. Science Translational Medicine, 2013, 5, 194fs28.	5.8	4
198	Recombinant Adeno-Associated Virus Integration Sites in Murine Liver After Ornithine Transcarbamylase Gene Correction. Human Gene Therapy, 2013, 24, 520-525.	1.4	40
199	Biodistribution of AAV8 Vectors Expressing Human Low-Density Lipoprotein Receptor in a Mouse Model of Homozygous Familial Hypercholesterolemia. Human Gene Therapy Clinical Development, 2013, 24, 154-160.	3.2	34
200	Current Challenges and Future Directions in Recombinant AAV-Mediated Gene Therapy of Duchenne Muscular Dystrophy. Pharmaceuticals, 2013, 6, 813-836.	1.7	31
201	"Model T―Cells: A Time-Tested Vehicle for Gene Therapy. Frontiers in Immunology, 2013, 4, 304.	2.2	8
202	Gene therapy in the clinics: shifting into the next gear. Therapeutic Delivery, 2013, 4, 1359-1363.	1.2	1
203	Hemophilia B. , 2013, , 705-710.		0
204	Gene therapy for hemophilia. Journal of Thrombosis and Haemostasis, 2013, 11, 99-110.	1.9	41
205	Lysosomal NEU1 deficiency affects amyloid precursor protein levels and amyloid-β secretion via deregulated lysosomal exocytosis. Nature Communications, 2013, 4, 2734.	5.8	109

#	Article	IF	CITATIONS
206	Suppression of lymph node and lung metastases of endometrial cancer by muscleâ€mediated expression of soluble vascular endothelial growth factor receptorâ€3. Cancer Science, 2013, 104, 1107-1111.	1.7	9
207	Effects of Immunosuppression on Circulating Adeno-Associated Virus Capsid-Specific T cells in Humans. Human Gene Therapy, 2013, 24, 431-442.	1.4	17
208	Adeno-Associated Virus Serotype 8 Gene Therapy Leads to Significant Lowering of Plasma Cholesterol Levels in Humanized Mouse Models of Homozygous and Heterozygous Familial Hypercholesterolemia. Human Gene Therapy, 2013, 24, 19-26.	1.4	65
209	Gene transfer of master autophagy regulator TFEB results in clearance of toxic protein and correction of hepatic disease in alphaâ€lâ€antiâ€trypsin deficiency. EMBO Molecular Medicine, 2013, 5, 397-412.	3.3	134
210	Perioperative haemostatic management of haemophilic mice using normal mouse plasma. Haemophilia, 2013, 19, e335-e343.	1.0	2
211	Safety and Liver Transduction Efficacy of rAAV5- <i>cohPBGD</i> in Nonhuman Primates: A Potential Therapy for Acute Intermittent Porphyria. Human Gene Therapy, 2013, 24, 1007-1017.	1.4	50
212	Effective gene therapy for haemophilic mice with pathogenic factor <scp>IX</scp> antibodies. EMBO Molecular Medicine, 2013, 5, 1698-1709.	3.3	108
213	A highly secreted sulphamidase engineered to cross the bloodâ€brain barrier corrects brain lesions of mice with mucopolysaccharidoses type IIIA. EMBO Molecular Medicine, 2013, 5, 675-690.	3.3	96
214	AAV-mediated expression of an ADAMTS13 variant prevents shigatoxin-induced thrombotic thrombocytopenic purpura. Blood, 2013, 121, 3825-3829.	0.6	40
215	Enhanced T Cell Function in a Mouse Model of Human Glycosylation. Journal of Immunology, 2013, 191, 228-237.	0.4	20
216	Intravenous Adeno-Associated Virus Serotype 8 Encoding Urocortin-2 Provides Sustained Augmentation of Left Ventricular Function in Mice. Human Gene Therapy, 2013, 24, 777-785.	1.4	19
217	The clot thickens for long-lasting drugs that stop hemophilia short. Nature Medicine, 2013, 19, 121-121.	15.2	0
218	Optimization of scAAVIL-1ra In Vitro and In Vivo to Deliver High Levels of Therapeutic Protein for Treatment of Osteoarthritis. Molecular Therapy - Nucleic Acids, 2013, 2, e70.	2.3	45
219	Overcoming Preexisting Humoral Immunity to AAV Using Capsid Decoys. Science Translational Medicine, 2013, 5, 194ra92.	5.8	267
220	Toward a gene therapy for neurological and somatic MPSIIIA. Rare Diseases (Austin, Tex), 2013, 1, e27209.	1.8	7
221	Recent advances in developing nucleic acid-based HBV therapy. Future Microbiology, 2013, 8, 1489-1504.	1.0	6
222	Turning the Corner with Viral-based Gene Therapy—Development of the Rogue Biopharmaceutical. , 2013, , 259-285.		1
223	Improved adeno-associated virus (AAV) serotype 1 and 5 vectors for gene therapy. Scientific Reports, 2013, 3, 1832.	1.6	43

ARTICLE IF CITATIONS # Engineered AAV vector minimizes in vivo targeting of transduced hepatocytes by capsid-specific CD8+ T 225 0.6 149 cells. Blood, 2013, 121, 2224-2233. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood, 2013, 122, 23-36. 227 Progress toward inducing immunologic tolerance to factor VIII. Blood, 2013, 121, 4449-4456. 0.6 52 Stealth gene therapy. Blood, 2013, 121, 2168-2169. Development of gene therapy for blood disorders: an update. Blood, 2013, 122, 1556-1564. 229 0.6 44 Incorporation of the factor IX Padua mutation into FIX-Triple improves clotting activity in vitro and in 1.8 vivo. Thrombosis and Haemostasis, 2013, 110, 244-256. Extracorporeal Delivery of rAAV with Metabolic Exchange and Oxygenation. Scientific Reports, 2013, 3, 231 1.6 2 1538. New Advances in the Treatment of Children with Hemophilia. Pediatric and Adolescent Medicine, 2013, , 0.4 67-80. 233 Interleukin-15 in Gene Therapy of Cancer. Current Gene Therapy, 2013, 13, 15-30. 0.9 37 Christmas Disease., 2013, , 530-533. Developments in the treatment of hemophilia B: focus on emerging gene therapy. The Application of 236 1.4 11 Clinical Genetics, 2013, 6, 91. Hemophilia A and B., 2013, , 45-59. Human Pluripotent Stem Cells for Modelling Human Liver Diseases and Cell Therapy. Current Gene 238 0.9 55 Therapy, 2013, 13, 120-132. Adeno-associated virus capsid antigen presentation is dependent on endosomal escape. Journal of Clinical Investigation, 2013, 123, 1390-1401. High-Efficiency Transduction of Primary Human Hematopoietic Stem Cells and Erythroid 240 Lineage-Restricted Expression by Optimized AAV6 Serotype Vectors In Vitro and in a Murine Xenograft 43 1.1 Model In Vivo. PLoS ONE, 2013, 8, e58757. Characterization of Naturally-Occurring Humoral Immunity to AAV in Sheep. PLoS ONE, 2013, 8, e75142. 241 Adeno-Associated Viral Vector Serotype 5 Poorly Transduces Liver in Rat Models. PLoS ONE, 2013, 8, 242 1.1 17 e82597. A Novel Cell-Sheet Technology That Achieves Durable Factor VIII Delivery in a Mouse Model of 243 1.1 Hemophilia A. PLoS ONE, 2013, 8, e83280.

#	Article	IF	CITATIONS
244	Recombinant Vectors Based on Porcine Adeno-Associated Viral Serotypes Transduce the Murine and Pig Retina. PLoS ONE, 2013, 8, e59025.	1.1	13
246	Mesenchymal Stem Cells as Gene Delivery Vehicles. , 2013, , .		0
247	Induced Pluripotent Stem Cells: Therapeutic Applications in Monogenic and Metabolic Diseases, and Regulatory and Bioethical Considerations. , 2013, , .		4
249	piggyBac-mediated phenotypic correction of factor VIII deficiency. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14042.	1.8	10
250	AAV-Mediated Delivery of Zinc Finger Nucleases Targeting Hepatitis B Virus Inhibits Active Replication. PLoS ONE, 2014, 9, e97579.	1.1	95
251	Delivery of Full-Length Factor VIII Using a piggyBac Transposon Vector to Correct a Mouse Model of Hemophilia A. PLoS ONE, 2014, 9, e104957.	1.1	44
252	Intramuscular Injection of AAV8 in Mice and Macaques Is Associated with Substantial Hepatic Targeting and Transgene Expression. PLoS ONE, 2014, 9, e112268.	1.1	47
253	Comparative next-generation sequencing of adeno-associated virus inverted terminal repeats. BioTechniques, 2014, 56, 269-273.	0.8	8
254	Influence of Immune Responses in Gene/Stem Cell Therapies for Muscular Dystrophies. BioMed Research International, 2014, 2014, 1-16.	0.9	8
255	Product-Related Impurities in Clinical-Grade Recombinant AAV Vectors: Characterization and Risk Assessment. Biomedicines, 2014, 2, 80-97.	1.4	115
256	Challenges and Prospects for Helper-Dependent Adenoviral Vector-Mediated Gene Therapy. Biomedicines, 2014, 2, 132-148.	1.4	9
257	Immune Responses to AAV-Vectors, the Glybera Example from Bench to Bedside. Frontiers in Immunology, 2014, 5, 82.	2.2	91
258	Perinatal systemic gene delivery using adeno-associated viral vectors. Frontiers in Molecular Neuroscience, 2014, 7, 89.	1.4	18
260	A Novel Homologous Model for Gene Therapy of Dwarfism by Non-Viral Transfer of the Mouse Growth Hormone Gene into Immunocompetent Dwarf Mice. Current Gene Therapy, 2014, 14, 44-51.	0.9	10
262	Factor IX. Japanese Journal of Thrombosis and Hemostasis, 2014, 25, 458-464.	0.1	0
263	Dental pulp cells that express adeno-associated virus serotype 2-mediated BMP-7 gene enhanced odontoblastic differentiation. Dental Materials Journal, 2014, 33, 656-662.	0.8	2
265	Perspective: The fix is in. Scientific American, 2014, 312, S11-S11.	1.0	0
266	Gene therapy: Genie in a vector. Scientific American, 2014, 312, S6-S7.	1.0	Ο

#	Article	IF	CITATIONS
267	Pushing the frontiers of medicine: innovations in haemophilia care. Scientific American, 2014, 312, W1-W4.	1.0	1
268	Treating hearing disorders with cell and gene therapy. Journal of Neural Engineering, 2014, 11, 065001.	1.8	13
269	Parvovirus glycan interactions. Current Opinion in Virology, 2014, 7, 108-118.	2.6	101
270	Perspective: The fix is in. Nature, 2014, 515, S165-S165.	13.7	0
271	Improving clinical efficacy of adeno associated vectors by rational capsid bioengineering. Journal of Biomedical Science, 2014, 21, 103.	2.6	20
272	Current Management of the Hemophilic Child: A Demanding Interlocutor. Quality of Life and Adequate Cost-Efficacy Analysis. Pediatric Hematology and Oncology, 2014, 31, 687-702.	0.3	26
274	Sequence-defined shuttles for targeted nucleic acid and protein delivery. Therapeutic Delivery, 2014, 5, 1025-1045.	1.2	3
275	Preclinical Toxicity Evaluation of AAV for Pain: Evidence from Human AAV Studies and from the Pharmacology of Analgesic Drugs. Molecular Pain, 2014, 10, 1744-8069-10-54.	1.0	20
280	Gene therapy for haemophilia. , 2014, , CD010822.		2
281	Translational Data from AAV-Mediated Gene Therapy of Hemophilia B in Dogs. Human Gene Therapy Clinical Development, 2014, , 150127063140004.	3.2	2
282	Development of a Web Course on Gene Therapy by the International Consortium of Gene Therapy. Molecular Therapy, 2014, 22, 482.	3.7	0
283	The role of Rixubisâ,"¢ in the treatment of hemophilia B. Immunotherapy, 2014, 6, 381-394.	1.0	5
284	Positive Selection during the Evolution of the Blood Coagulation Factors in the Context of Their Disease-Causing Mutations. Molecular Biology and Evolution, 2014, 31, 3040-3056.	3.5	22
285	Pre-Clinical Assessment of Immune Responses to Adeno-Associated Virus (AAV) Vectors. Frontiers in Immunology, 2014, 5, 28.	2.2	31
286	Hemophilia A: an ideal disease to correct in utero. Frontiers in Pharmacology, 2014, 5, 276.	1.6	16
287	Passive Immunization against HIV/AIDS by Antibody Gene Transfer. Viruses, 2014, 6, 428-447.	1.5	12
288	Cell-Mediated Immunity to AAV Vectors, Evolving Concepts and Potential Solutions. Frontiers in Immunology, 2014, 5, 350.	2.2	69
289	Hemophilias and Other Disorders of Hemostasis. , 2014, , .		2

	CHATON		
#	Article	IF	CITATIONS
290	The History of Hemophilia. Seminars in Thrombosis and Hemostasis, 2014, 40, 571-576.	1.5	69
291	AAV Vectors Expressing LDLR Gain-of-Function Variants Demonstrate Increased Efficacy in Mouse Models of Familial Hypercholesterolemia. Circulation Research, 2014, 115, 591-599.	2.0	44
292	Clinical utility and patient perspectives on the use of extended half-life rFIXFc in the management of hemophilia B. Patient Preference and Adherence, 2014, 8, 1073.	0.8	12
293	Mapping the AAV Capsid Host Antibody Response toward the Development of Second Generation Gene Delivery Vectors. Frontiers in Immunology, 2014, 5, 9.	2.2	93
294	Clinical Applications Involving CNS Gene Transfer. Advances in Genetics, 2014, 87, 71-124.	0.8	54
295	In utero therapy for congenital disorders using amniotic fluid stem cells. Frontiers in Pharmacology, 2014, 5, 270.	1.6	29
296	Cellular unfolded protein response against viruses used in gene therapy. Frontiers in Microbiology, 2014, 5, 250.	1.5	15
297	Preclinical Safety Evaluation of a Recombinant AAV8 Vector for X-Linked Retinoschisis After Intravitreal Administration in Rabbits. Human Gene Therapy Clinical Development, 2014, 25, 202-211.	3.2	28
298	Is Virology Dead?. MBio, 2014, 5, e01003-14.	1.8	11
299	Promyelocytic Leukemia Protein Is a Cell-Intrinsic Factor Inhibiting Parvovirus DNA Replication. Journal of Virology, 2014, 88, 925-936.	1.5	23
300	Reprogramming Adipose Tissue-Derived Mesenchymal Stem Cells into Pluripotent Stem Cells by a Mutant Adeno-Associated Viral Vector. Human Gene Therapy Methods, 2014, 25, 72-82.	2.1	10
301	Drawing a high-resolution functional map of adeno-associated virus capsid by massively parallel sequencing. Nature Communications, 2014, 5, 3075.	5.8	116
302	Lasting power of new clotting proteins. Hematology American Society of Hematology Education Program, 2014, 2014, 355-363.	0.9	10
303	Toward optimal therapy for inhibitors in hemophilia. Hematology American Society of Hematology Education Program, 2014, 2014, 364-371.	0.9	20
304	Replacing bad (F)actors: hemophilia. Hematology American Society of Hematology Education Program, 2014, 2014, 461-467.	0.9	9
305	Diagnosis and management of glycogen storage disease type I: a practice guideline of the American College of Medical Genetics and Genomics. Genetics in Medicine, 2014, 16, e1-e29.	1.1	318
306	Engineering the Human Genome: Reflections on the Beginning. Human Gene Therapy, 2014, 25, 395-400.	1.4	0
307	In the rat liver, Adenoviral gene transfer efficiency is comparable to AAV. Gene Therapy, 2014, 21, 168-174.	2.3	15

ATION P

#	Article	IF	CITATIONS
308	What Is Suppression of Anti–Adeno-Associated Virus Capsid T-Cells Achieving?. Human Gene Therapy, 2014, 25, 178-179.	1.4	3
309	Long-Term Safety and Efficacy of Factor IX Gene Therapy in Hemophilia B. New England Journal of Medicine, 2014, 371, 1994-2004.	13.9	1,063
310	Effect of bortezomib on the efficacy of AAV9.SERCA2a treatment to preserve cardiac function in a rat pressure-overload model of heart failure. Gene Therapy, 2014, 21, 379-386.	2.3	21
311	Genetic Diseases, Immunology, Viruses, and Gene Therapy. Human Gene Therapy, 2014, 25, 257-261.	1.4	8
312	Long-term correction of biochemical and neurological abnormalities in MLD mice model by neonatal systemic injection of an AAV serotype 9 vector. Gene Therapy, 2014, 21, 427-433.	2.3	32
313	Parkinson's Disease Gene Therapy: Success by Design Meets Failure by Efficacy. Molecular Therapy, 2014, 22, 487-497.	3.7	141
314	Gene therapy: Genie in a vector. Nature, 2014, 515, S160-S161.	13.7	6
315	Exploiting the unique regenerative capacity of the liver to underpin cell and gene therapy strategies for genetic and acquired liver disease. International Journal of Biochemistry and Cell Biology, 2014, 56, 141-152.	1.2	5
316	An engineered U1 small nuclear RNA rescues splicingâ€defective coagulation F7 gene expression in mice. Journal of Thrombosis and Haemostasis, 2014, 12, 177-185.	1.9	42
318	A robust transfection reagent for the transfection of CHO and HEK293 cells and production of recombinant proteins and lentiviral particles – PTG1. Biotechnology Journal, 2014, 9, 1380-1388.	1.8	8
319	Our Journey to Successful Gene Therapy for Hemophilia B. Human Gene Therapy, 2014, 25, 923-926.	1.4	13
320	Targeted inversion and reversion of the blood coagulation factor 8 gene in human iPS cells using TALENs. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9253-9258.	3.3	129
321	Channeling postmarketing patient data into pharmaceutical regulatory systems. Drug Discovery Today, 2014, 19, 1897-1912.	3.2	2
322	Gene Therapy for Hemophilia: The Clot Thickens. Human Gene Therapy, 2014, 25, 915-922.	1.4	14
323	Production of functional coagulation factor VIII from iPSCs using a lentiviral vector. Haemophilia, 2014, 20, e40-4.	1.0	6
324	The prevalence of neutralizing antibodies against adenoâ€associated virus capsids is reduced in young Japanese individuals. Journal of Medical Virology, 2014, 86, 1990-1997.	2.5	54
325	Novel Adenoâ€Associated Viral Vector Delivering the Utrophin Gene Regulator Jazz Counteracts Dystrophic Pathology in mdx Mice. Journal of Cellular Physiology, 2014, 229, 1283-1291.	2.0	25
326	Factor VIII therapy for hemophilia A: current and future issues. Expert Review of Hematology, 2014, 7, 373-385.	1.0	27

#	Article	IF	CITATIONS
327	Genome Editing of Mouse Fibroblasts by Homologous Recombination for Sustained Secretion of PDGF-B and Augmentation of Wound Healing. Plastic and Reconstructive Surgery, 2014, 134, 389e-401e.	0.7	12
328	Alprolix (recombinant Factor IX Fc fusion protein): extended half-life product for the prophylaxis and treatment of hemophilia B. Expert Review of Hematology, 2014, 7, 559-571.	1.0	20
329	Gene Therapy Prolongs Survival and Restores Function in Murine and Canine Models of Myotubular Myopathy. Science Translational Medicine, 2014, 6, 220ra10.	5.8	141
330	Feasibility and Safety of Systemic rAAV9-h <i>NAGLU</i> Delivery for Treating Mucopolysaccharidosis IIIB: Toxicology, Biodistribution, and Immunological Assessments in Primates. Human Gene Therapy Clinical Development, 2014, 25, 72-84.	3.2	79
331	K137R Mutation on Adeno-Associated Viral Capsids Had Minimal Effect on Enhancing Gene Delivery <i>In Vivo</i> . Human Gene Therapy Methods, 2014, 25, 33-39.	2.1	5
332	Electroacoustic Stimulation: Now and into the Future. BioMed Research International, 2014, 2014, 1-17.	0.9	29
333	Current management of hemophilia B: recommendations, complications and emerging issues. Expert Review of Hematology, 2014, 7, 573-581.	1.0	24
334	Next generation FIX muteins with FVIIIâ€independent activity for alternative treatment of hemophilia A. Journal of Thrombosis and Haemostasis, 2014, 12, 1861-1873.	1.9	7
335	Cell-matrix Interactions of Factor IX (FIX)-engineered human mesenchymal stromal cells encapsulated in RGD-alginate vs. Fibrinogen-alginate microcapsules. Artificial Cells, Nanomedicine and Biotechnology, 2014, 42, 102-109.	1.9	14
336	Platelet Gene Therapy by Lentiviral Gene Delivery to Hematopoietic Stem Cells Restores Hemostasis and Induces Humoral Immune Tolerance in FIXnull Mice. Molecular Therapy, 2014, 22, 169-177.	3.7	53
337	Plasmapheresis Eliminates the Negative Impact of AAV Antibodies on Microdystrophin Gene Expression Following Vascular Delivery. Molecular Therapy, 2014, 22, 338-347.	3.7	124
339	Dual Adeno-Associated Virus Vectors Result in Efficient <i>In Vitro</i> and <i>In Vivo</i> Expression of an Oversized Gene, <i>MYO7A</i> . Human Gene Therapy Methods, 2014, 25, 166-177.	2.1	105
340	Mesenchymal stem cells, cancer challenges and new directions. European Journal of Cancer, 2014, 50, 1522-1530.	1.3	55
341	Progress towards gene therapy for haemophilia B. International Journal of Hematology, 2014, 99, 372-376.	0.7	8
342	Role of the vector genome and underlying factor IX mutation in immune responses to AAV gene therapy for hemophilia B. Journal of Translational Medicine, 2014, 12, 25.	1.8	35
343	Safety profile of recombinant adeno-associated viral vectors: focus on alipogene tiparvovec (Clybera [®]). Expert Review of Clinical Pharmacology, 2014, 7, 53-65.	1.3	81
344	Nature Biotechnology's academic spinouts of 2013. Nature Biotechnology, 2014, 32, 229-238.	9.4	9
345	Gene Therapy Using a Liver-targeted AAV Vector Restores Nucleoside and Nucleotide Homeostasis in a Murine Model of MNGIE. Molecular Therapy, 2014, 22, 901-907.	3.7	55

#	ARTICLE	IF	CITATIONS
346	Gene Therapy in Articular Cartilage Repair. , 2014, , 21-41.		1
347	Developing Insights in Cartilage Repair. , 2014, , .		3
348	Engineering adeno-associated viruses for clinical gene therapy. Nature Reviews Genetics, 2014, 15, 445-451.	7.7	641
349	Similar Therapeutic Efficacy Between a Single Administration of Gene Therapy and Multiple Administrations of Recombinant Enzyme in a Mouse Model of Lysosomal Storage Disease. Human Gene Therapy, 2014, 25, 609-618.	1.4	30
350	Inhibitor development: The last enemy to be defeated in hemophilia A and B. American Journal of Hematology, 2014, 89, 569-570.	2.0	0
351	Management of acute intermittent porphyria. Expert Opinion on Orphan Drugs, 2014, 2, 349-368.	0.5	22
352	The potential of adeno-associated viral vectors for gene delivery to muscle tissue. Expert Opinion on Drug Delivery, 2014, 11, 345-364.	2.4	80
353	Why commercialization of gene therapy stalled; examining the life cycles of gene therapy technologies. Gene Therapy, 2014, 21, 188-194.	2.3	31
354	OneBac: Platform for Scalable and High-Titer Production of Adeno-Associated Virus Serotype 1–12 Vectors for Gene Therapy. Human Gene Therapy, 2014, 25, 212-222.	1.4	117
355	Gene therapy as a new treatment option for inherited monogenic diseases. European Journal of Internal Medicine, 2014, 25, 31-36.	1.0	20
356	DNA cleavage enzymes for treatment of persistent viral infections: Recent advances and the pathway forward. Virology, 2014, 454-455, 353-361.	1.1	26
357	Selection and evaluation of clinically relevant AAV variants in a xenograft liver model. Nature, 2014, 506, 382-386.	13.7	376
358	A novel gene therapy strategy using secreted multifunctional anti-HIV proteins to confer protection to gene-modified and unmodified target cells. Gene Therapy, 2014, 21, 175-187.	2.3	10
359	AAV-mediated Liver-specific MPV17 Expression Restores mtDNA Levels and Prevents Diet-induced Liver Failure. Molecular Therapy, 2014, 22, 10-17.	3.7	47
360	The emergence of gene therapy for rare diseases. Expert Opinion on Orphan Drugs, 2014, 2, 1197-1209.	0.5	2
361	AAV-Mediated Gene Therapy for Research and Therapeutic Purposes. Annual Review of Virology, 2014, 1, 427-451.	3.0	400
362	The isolated carboxyâ€ŧerminal domain of human mitochondrial leucylâ€ <scp>tRNA</scp> synthetase rescues the pathological phenotype of mitochondrial <scp>tRNA</scp> mutations in human cells. EMBO Molecular Medicine, 2014, 6, 169-182.	3.3	43
363	Clinical potential of gene therapy: towards meeting the demand. Internal Medicine Journal, 2014, 44, 224-233	0.5	10

#	Article	IF	CITATIONS
364	Immunological Ignorance Allows Long-Term Gene Expression After Perinatal Recombinant Adeno-Associated Virus-Mediated Gene Transfer to Murine Airways. Human Gene Therapy, 2014, 25, 517-528.	1.4	16
365	SR-A and SREC-I binding peptides increase HDAd-mediated liver transduction. Gene Therapy, 2014, 21, 950-957.	2.3	18
366	Gene Transfer Properties and Structural Modeling of Human Stem Cell-derived AAV. Molecular Therapy, 2014, 22, 1625-1634.	3.7	48
367	SP-057 RARE BLEEDING DISORDERS: UPDATE ON DIAGNOSIS AND MANAGEMENT, ROLE OF PRENATAL DIAGNOSIS AND PROPHYLAXIS. Leukemia Research, 2014, 38, S23-S24.	0.4	0
368	SP-060 PNH: A MULTISYSTEMIC AND MULTIDISCIPLINARY DISEASE. Leukemia Research, 2014, 38, S24-S25.	0.4	0
370	Manufacturing and Characterization of a Recombinant Adeno-Associated Virus Type 8 Reference Standard Material. Human Gene Therapy, 2014, 25, 977-987.	1.4	80
371	Translational Fidelity of Intrathecal Delivery of Self-Complementary AAV9–Survival Motor Neuron 1 for Spinal Muscular Atrophy. Human Gene Therapy, 2014, 25, 619-630.	1.4	79
372	Life-Long Correction of Hyperbilirubinemia with a Neonatal Liver-Specific AAV-Mediated Gene Transfer in a Lethal Mouse Model of Crigler–Najjar Syndrome. Human Gene Therapy, 2014, 25, 844-855.	1.4	74
373	Liver-directed gene therapy corrects cardiovascular lesions in feline mucopolysaccharidosis type I. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14894-14899.	3.3	42
374	Lignin Nanotubes As Vehicles for Gene Delivery into Human Cells. Biomacromolecules, 2014, 15, 327-338.	2.6	101
375	Oral gene therapy for hemophilia B using chitosanâ€formulated FIX mutants. Journal of Thrombosis and Haemostasis, 2014, 12, 932-942.	1.9	17
376	Genetic correction using engineered nucleases for gene therapy applications. Development Growth and Differentiation, 2014, 56, 63-77.	0.6	37
377	Adeno-Associated Virus Vectors as Therapeutic and Investigational Tools in the Cardiovascular System. Circulation Research, 2014, 114, 1827-1846.	2.0	111
378	Gene therapy for the neurological manifestations in lysosomal storage disorders. Journal of Lipid Research, 2014, 55, 1827-1838.	2.0	22
379	AAV Empty Capsids: For Better or for Worse?. Molecular Therapy, 2014, 22, 1-2.	3.7	71
380	Pristimerin enhances recombinant adeno-associated virus vector-mediated transgene expression in human cell lines in vitro and murine hepatocytes in vivo. Journal of Integrative Medicine, 2014, 12, 20-34.	1.4	50
381	The roles of traditional Chinese medicine in gene therapy. Journal of Integrative Medicine, 2014, 12, 67-75.	1.4	50
382	Establishment of a Novel Cell Line for the Enhanced Production of Recombinant Adeno-Associated Virus Vectors for Gene Therapy. Human Gene Therapy, 2014, 25, 929-941.	1.4	15

#	Article	IF	CITATIONS
383	Efficient Production of Dual Recombinant Adeno-Associated Viral Vectors for Factor VIII Delivery. Human Gene Therapy Methods, 2014, 25, 261-268.	2.1	33
384	Adeno-associated virus: fit to serve. Current Opinion in Virology, 2014, 8, 90-97.	2.6	93
385	Synthetic virology: engineering viruses for gene delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014, 6, 548-558.	3.3	42
386	Gene Therapy: Charting a Future Course—Summary of a National Institutes of Health Workshop, April 12, 2013. Human Gene Therapy, 2014, 25, 488-497.	1.4	12
387	Recombinant Adeno-Associated Virus Utilizes Cell-Specific Infectious Entry Mechanisms. Journal of Virology, 2014, 88, 12472-12484.	1.5	28
388	<i>DOK7</i> gene therapy benefits mouse models of diseases characterized by defects in the neuromuscular junction. Science, 2014, 345, 1505-1508.	6.0	68
389	Liver-Specific Transcriptional Modules Identified by Genome-Wide In Silico Analysis Enable Efficient Gene Therapy in Mice and Non-Human Primates. Molecular Therapy, 2014, 22, 1605-1613.	3.7	71
390	Cell and Gene Therapy for Friedreich Ataxia: Progress to Date. Human Gene Therapy, 2014, 25, 684-693.	1.4	29
391	A roadmap toward clinical translation of genetically-modified stem cells for treatment of HIV. Trends in Molecular Medicine, 2014, 20, 632-642.	3.5	23
392	CRISPR/Cas9â€mediated genome engineering: An adenoâ€associated viral (AAV) vector toolbox. Biotechnology Journal, 2014, 9, 1402-1412.	1.8	235
393	The special case of gene therapy pricing. Nature Biotechnology, 2014, 32, 874-876.	9.4	66
394	Targeted genome correction by a single adenoviral vector simultaneously carrying an inducible zinc finger nuclease and a donor template. Journal of Biotechnology, 2014, 188, 1-6.	1.9	6
395	Inhibition of ATPIF1 Ameliorates Severe Mitochondrial Respiratory Chain Dysfunction in Mammalian Cells. Cell Reports, 2014, 7, 27-34.	2.9	62
396	CRISPR technology for gene therapy. Nature Medicine, 2014, 20, 476-477.	15.2	17
397	Gene and cell therapy for children — New medicines, new challenges?. Advanced Drug Delivery Reviews, 2014, 73, 162-169.	6.6	33
398	Current status of haemophilia gene therapy. Haemophilia, 2014, 20, 43-49.	1.0	78
399	The structure of AAVrh32.33, a novel gene delivery vector. Journal of Structural Biology, 2014, 186, 308-317.	1.3	31
400	Intraneural convection enhanced delivery of AAVrh20 for targeting primary sensory neurons. Molecular and Cellular Neurosciences, 2014, 60, 72-80.	1.0	6

#	Article	IF	Citations
401	Naturally enveloped AAV vectors for shielding neutralizing antibodies and robust gene delivery inÂvivo. Biomaterials, 2014, 35, 7598-7609.	5.7	112
402	An AAV9 coding for frataxin clearly improved the symptoms and prolonged the life of Friedreich ataxia mouse models. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14044.	1.8	45
403	Empty virions in AAV8 vector preparations reduce transduction efficiency and may cause total viral particle dose-limiting side effects. Molecular Therapy - Methods and Clinical Development, 2014, 1, 9.	1.8	92
404	Bioengineered coagulation factor VIII enables long-term correction of murine hemophilia A following liver-directed adeno-associated viral vector delivery. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14036.	1.8	35
407	AAV shuffles to the liver: commentary on Lisowski et al Molecular Therapy - Methods and Clinical Development, 2014, 1, 14006.	1.8	2
408	Proteomic profiling of salivary gland after nonviral gene transfer mediated by conventional plasmids and minicircles. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14007.	1.8	11
410	Computationally designed liver-specific transcriptional modules and hyperactive factor IX improve hepatic gene therapy. Blood, 2014, 123, 3195-3199.	0.6	73
411	Toward optimal therapy for inhibitors in hemophilia. Blood, 2014, 124, 3365-3372.	0.6	120
412	Omental implantation of BOECs in hemophilia dogs results in circulating FVIII antigen and a complex immune response. Blood, 2014, 123, 4045-4053.	0.6	28
413	A simplified purification protocol for recombinant adeno-associated virus vectors. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14034.	1.8	56
414	Turoctocog alfa and drug development for hemophilia A. Expert Opinion on Orphan Drugs, 2014, 2, 419-431.	0.5	2
415	Ifit1 Protects Against Lipopolysaccharide and D-galactosamine–Induced Fatal Hepatitis by Inhibiting Activation of the JNK Pathway. Journal of Infectious Diseases, 2015, 212, 1509-1520.	1.9	16
416	Gene therapy: progress and predictions. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20143003.	1.2	108
417	Emerging genetic and pharmacologic therapies for controlling hemostasis: beyond recombinant clotting factors. Hematology American Society of Hematology Education Program, 2015, 2015, 33-40.	0.9	17
418	Recombinant factorÂVIII Fc fusion protein for the prevention and treatment of bleeding in children with severe hemophiliaÂA. Journal of Thrombosis and Haemostasis, 2015, 13, 967-977.	1.9	150
419	New approaches to gene and cell therapy for hemophilia. Journal of Thrombosis and Haemostasis, 2015, 13, S133-S142.	1.9	24
420	Gene therapy in an era of emerging treatment options for hemophilia B. Journal of Thrombosis and Haemostasis, 2015, 13, S151-S160.	1.9	27
421	Adeno-associated Virus as a Mammalian DNA Vector. Microbiology Spectrum, 2015, 3, .	1.2	68

#	Article	IF	CITATIONS
422	Noncovalent stabilization of the factor VIII A2 domain enhances efficacy in hemophilia A mouse vascular injury models. Blood, 2015, 125, 392-398.	0.6	12
423	In vivo genome editing of the albumin locus as a platform for protein replacement therapy. Blood, 2015, 126, 1777-1784.	0.6	256
424	A natural choice for hemophilia B. Blood, 2015, 125, 1509-1510.	0.6	0
425	Mitochondrial diseases caused by toxic compound accumulation: from etiopathology to therapeutic approaches. EMBO Molecular Medicine, 2015, 7, 1257-1266.	3.3	37
426	AAV capsid CD8+ T-cell epitopes are highly conserved across AAV serotypes. Molecular Therapy - Methods and Clinical Development, 2015, 2, 15029.	1.8	59
428	Follistatin Gene Therapy Improves Ambulation in Becker Muscular Dystrophy. Journal of Neuromuscular Diseases, 2015, 2, 185-192.	1.1	34
429	Identification of an adeno-associated virus binding epitope for AVB sepharose affinity resin. Molecular Therapy - Methods and Clinical Development, 2015, 2, 15040.	1.8	31
430	Progress and challenges in gene therapy for Crigler–Najjar syndrome. Expert Opinion on Orphan Drugs, 2015, 3, 1387-1396.	0.5	0
431	The physicochemical properties of histone H2A and modified histone H2A-TAT complexes with plasmid DNA. Biophysics (Russian Federation), 2015, 60, 727-731.	0.2	1
432	Maximizing Transfection Efficiency of Vertically Aligned Silicon Nanowire Arrays. Advanced Functional Materials, 2015, 25, 7215-7225.	7.8	103
433	Genetic evolution in immunization. Reviews in Medical Virology, 2015, 25, 131-132.	3.9	0
434	Prevention of Lethal Murine Hypophosphatasia by Neonatal <i>Ex Vivo</i> Gene Therapy Using Lentivirally Transduced Bone Marrow Cells. Human Gene Therapy, 2015, 26, 801-812.	1.4	23
435	Vectored antibody gene delivery for the prevention or treatment of HIV infection. Current Opinion in HIV and AIDS, 2015, 10, 190-197.	1.5	30
436	Modeling correction of severe urea cycle defects in the growing murine liver using a hybrid recombinant adenoâ€associated virus/piggyBac transposase gene delivery system. Hepatology, 2015, 62, 417-428.	3.6	30
437	Challenges of experimental gene therapy for urea cycle disorders. Journal of Pediatric Biochemistry, 2015, 04, 065-073.	0.2	0
438	Gene therapy for hemophilia. Frontiers in Bioscience - Landmark, 2015, 20, 556-603.	3.0	51
439	AAV Biology, Infectivity and Therapeutic Use from Bench to Clinic. , 0, , .		15
440	miR-122 is a Unique Molecule with Great Potential in Diagnosis, Prognosis of Liver Disease, and Therapy Both as miRNA Mimic and Antimir. Current Gene Therapy, 2015, 15, 142-150.	0.9	183

#	Article	IF	CITATIONS
441	Recent advances in gene therapy for lysosomal storage disorders. The Application of Clinical Genetics, 2015, 8, 157.	1.4	36
442	Adeno-associated Virus as a Mammalian DNA Vector. , 0, , 827-849.		4
443	Codon Optimization of the Human Papillomavirus E7 Oncogene Induces a CD8+ T Cell Response to a Cryptic Epitope Not Harbored by Wild-Type E7. PLoS ONE, 2015, 10, e0121633.	1.1	10
445	Emerging and future therapies for hemophilia. Journal of Blood Medicine, 2015, 6, 245.	0.7	22
446	The therapeutic potential of genome editing for \hat{l}^2 -thalassemia. F1000Research, 2015, 4, 1431.	0.8	7
447	Gene Therapy of Inherited Retinal Degenerations: Prospects and Challenges. Human Gene Therapy, 2015, 26, 193-200.	1.4	39
448	AAV's Golden Jubilee. Molecular Therapy, 2015, 23, 807-808.	3.7	16
449	Evaluation of Readministration of a Recombinant Adeno-Associated Virus Vector Expressing Acid Alpha-Glucosidase in Pompe Disease: Preclinical to Clinical Planning. Human Gene Therapy Clinical Development, 2015, 26, 185-193.	3.2	74
450	Gene Therapy for Inherited Diseases of Liver Metabolism. Human Gene Therapy, 2015, 26, 186-192.	1.4	10
451	Fibronectin-Alginate microcapsules improve cell viability and protein secretion of encapsulated Factor IX-engineered human mesenchymal stromal cells. Artificial Cells, Nanomedicine and Biotechnology, 2015, 43, 318-327.	1.9	12
453	Enhanced selective gene delivery to neural stem cells <i>in vivo</i> by an adeno-associated viral variant. Development (Cambridge), 2015, 142, 1885-1892.	1.2	41
454	ACE2 Therapy Using Adeno-associated Viral Vector Inhibits Liver Fibrosis in Mice. Molecular Therapy, 2015, 23, 1434-1443.	3.7	61
455	Prevalence of neutralizing antibodies against liver-tropic adeno-associated virus serotype vectors in 100 healthy Chinese and its potential relation to body constitutions. Journal of Integrative Medicine, 2015, 13, 341-346.	1.4	24
456	Viral Vectors for Gene Therapy: Translational and Clinical Outlook. Annual Review of Biomedical Engineering, 2015, 17, 63-89.	5.7	369
457	Gene therapy for Rett syndrome: prospects and challenges. Future Neurology, 2015, 10, 467-484.	0.9	7
458	Selecting the Best AAV Capsid for Human Studies. Molecular Therapy, 2015, 23, 1800-1801.	3.7	11
459	Engineered AAV vectors for improved central nervous system gene delivery. Neurogenesis (Austin, Tex) Tj ETQc	0 0 0 rgBT	/Overlock 10

#	Article	IF	CITATIONS
461	The emerging role of miRNAs in inflammatory bowel disease: a review. Therapeutic Advances in Gastroenterology, 2015, 8, 4-22.	1.4	136
462	Antibody neutralization poses a barrier to intravitreal adeno-associated viral vector gene delivery to non-human primates. Gene Therapy, 2015, 22, 116-126.	2.3	134
463	Genome Editing in Stem Cells. Current Stem Cell Reports, 2015, 1, 31-38.	0.7	1
464	Atoh1 gene therapy in the cochlea for hair cell regeneration. Expert Opinion on Biological Therapy, 2015, 15, 417-430.	1.4	43
465	Development of a Rapid, Robust, and Universal PicoGreen-Based Method to Titer Adeno-Associated Vectors. Human Gene Therapy Methods, 2015, 26, 35-42.	2.1	57
466	Gene Replacement Therapy for Genetic Hepatocellular Jaundice. Clinical Reviews in Allergy and Immunology, 2015, 48, 243-253.	2.9	19
467	The Status of <i>RPE65</i> Gene Therapy Trials: Safety and Efficacy. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a017285.	2.9	130
468	A Call to Arms for Improved Vector Analytics!. Human Gene Therapy Methods, 2015, 26, 1-2.	2.1	6
469	Recombinant adenoâ€associated virus–mediated inhibition of microRNAâ€21 protects mice against the lethal schistosome infection by repressing both ILâ€13 and transforming growth factor beta 1 pathways. Hepatology, 2015, 61, 2008-2017.	3.6	71
470	In situproduction of therapeutic monoclonal antibodies. Expert Review of Vaccines, 2015, 14, 205-219.	2.0	9
471	Enhanced Transgene Expression from Recombinant Single-Stranded D-Sequence-Substituted Adeno-Associated Virus Vectors in Human Cell Lines <i>In Vitro</i> and in Murine Hepatocytes <i>In Vivo</i> . Journal of Virology, 2015, 89, 952-961.	1.5	40
472	Extracellular Metabolic Energetics Can Promote Cancer Progression. Cell, 2015, 160, 393-406.	13.5	293
473	Adenoassociated Virus Serotype 9-Mediated Gene Therapy for X-Linked Adrenoleukodystrophy. Molecular Therapy, 2015, 23, 824-834.	3.7	51
474	The Potential of AAV-Mediated Gene Targeting for Gene and Cell Therapy Applications. Current Stem Cell Reports, 2015, 1, 16-22.	0.7	7
475	Preferential Targeting of Disseminated Liver Tumors Using a Recombinant Adeno-Associated Viral Vector. Human Gene Therapy, 2015, 26, 94-103.	1.4	29
476	Optimized human factor IX expression cassettes for hepatic-directed gene therapy of hemophilia B. Frontiers of Medicine, 2015, 9, 90-99.	1.5	13
477	Hemophilia Gene Therapy. , 2015, , 207-213.		0
478	Immune System Obstacles to InÂvivo Gene Transfer with Adeno-Associated Virus Vectors. , 2015, , 45-64.		1

#	Article	IF	CITATIONS
479	Adenovirus-Mediated Somatic Genome Editing of <i>Pten</i> by CRISPR/Cas9 in Mouse Liver in Spite of Cas9-Specific Immune Responses. Human Gene Therapy, 2015, 26, 432-442.	1.4	291
480	Robust Lentiviral Gene Delivery But Limited Transduction Capacity of Commonly Used Adeno-Associated Viral Serotypes in Xenotransplanted Human Skin. Human Gene Therapy Methods, 2015, 26, 123-133.	2.1	5
481	In Silico Reconstruction of the Viral Evolutionary Lineage Yields a Potent Gene Therapy Vector. Cell Reports, 2015, 12, 1056-1068.	2.9	241
482	Systemic gene delivery following intravenous administration of AAV9 to fetal and neonatal mice and late-gestation nonhuman primates. FASEB Journal, 2015, 29, 3876-3888.	0.2	31
483	Transient suppression of hepatocellular replication in the mouse liver following transduction with recombinant adeno-associated virus. Gene Therapy, 2015, 22, 917-922.	2.3	1
484	Novel Adeno-associated Viruses Derived From Pig Tissues Transduce Most Major Organs in Mice. Scientific Reports, 2014, 4, 6644.	1.6	23
485	Lysosomal storage disease: Gene therapy on both sides of the blood–brain barrier. Molecular Genetics and Metabolism, 2015, 114, 83-93.	0.5	45
486	Nanoparticles: Blood Components Interactions. , 2015, , 1352-1360.		1
487	Prediction of adeno-associated virus neutralizing antibody activity for clinical application. Gene Therapy, 2015, 22, 984-992.	2.3	40
488	Natural Rubber. , 2015, , 1377-1382.		1
489	Nanofibers and Electrospinning. , 2015, , 1323-1337.		8
490	OneBac 2.0: <i>Sf</i> 9 Cell Lines for Production of AAV5 Vectors with Enhanced Infectivity and Minimal Encapsidation of Foreign DNA. Human Gene Therapy, 2015, 26, 688-697.	1.4	48
491	Recombinant AAV-mediated in vivo long-term expression and antitumour activity of an anti-ganglioside GM3(Neu5Gc) antibody. Gene Therapy, 2015, 22, 960-967.	2.3	7
492	Obstacles and future of gene therapy for hemophilia. Expert Opinion on Orphan Drugs, 2015, 3, 997-1010.	0.5	28
493	Progress with Recombinant Adeno-Associated Virus Vectors for Gene Therapy of Alpha-1 Antitrypsin Deficiency. Human Gene Therapy Methods, 2015, 26, 77-81.	2.1	12
494	Inhibition of pathological brain angiogenesis through systemic delivery of AAV vector expressing soluble FLT1. Gene Therapy, 2015, 22, 893-900.	2.3	6
495	Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan. Human Molecular Genetics, 2015, 24, 4353-4364.	1.4	78
496	Unique Roles of TLR9- and MyD88-Dependent and -Independent Pathways in Adaptive Immune Responses to AAV-Mediated Gene Transfer. Journal of Innate Immunity, 2015, 7, 302-314.	1.8	62

#	Article	IF	CITATIONS
497	Nucleic Acid Therapeutics Using Polyplexes: A Journey of 50 Years (and Beyond). Chemical Reviews, 2015, 115, 11043-11078.	23.0	495
498	Liver-directed gene therapy of chronic hepadnavirus infection using interferon alpha tethered to apolipoprotein A-I. Journal of Hepatology, 2015, 63, 329-336.	1.8	21
499	Liver-directed lentiviral gene therapy in a dog model of hemophilia B. Science Translational Medicine, 2015, 7, 277ra28.	5.8	118
500	Intraosseous Delivery of Lentiviral Vectors Targeting Factor VIII Expression in Platelets Corrects Murine Hemophilia A. Molecular Therapy, 2015, 23, 617-626.	3.7	63
501	Development of Recombinant Adeno-Associated Virus Serotype 2/8 Carrying Kringle Domains of Human Plasminogen for Sustained Expression and Cancer Therapy. Human Gene Therapy, 2015, 26, 603-613.	1.4	10
502	Profile of efraloctocog alfa and its potential in the treatment of hemophilia A. Journal of Blood Medicine, 2015, 6, 131.	0.7	9
503	Haemophilia gene therapy: Progress and challenges. Blood Reviews, 2015, 29, 321-328.	2.8	32
504	Employing a Gain-of-Function Factor IX Variant R338L to Advance the Efficacy and Safety of Hemophilia B Human Gene Therapy: Preclinical Evaluation Supporting an Ongoing Adeno-Associated Virus Clinical Trial. Human Gene Therapy, 2015, 26, 69-81.	1.4	94
505	Current developments in gene therapy for amyotrophic lateral sclerosis. Expert Opinion on Biological Therapy, 2015, 15, 935-947.	1.4	30
506	Moving Forward Toward a Cure for Hemophilia B. Molecular Therapy, 2015, 23, 809-811.	3.7	5
507	Diabetes reversal via gene transfer: building on successes in animal models. Research and Reports in Endocrine Disorders, 0, , 15.	0.4	1
508	The influence of novel gemini surfactants containing cycloalkyl side-chains on the structural phases of DNA in solution. Colloids and Surfaces B: Biointerfaces, 2015, 131, 83-92.	2.5	16
509	Liverâ€ŧargeted gene therapy: Approaches and challenges. Liver Transplantation, 2015, 21, 718-737.	1.3	25
510	Biological therapies for inherited diseases: social and bioethical considerations. Hemophilia as an example. Expert Opinion on Biological Therapy, 2015, 15, 713-722.	1.4	2
511	Adenoâ€Associated Virus Vector–Based Gene Therapy for Monogenetic Metabolic Diseases of the Liver. Journal of Pediatric Gastroenterology and Nutrition, 2015, 60, 433-440.	0.9	18
512	Decoding mechanisms by which silent codon changes influence protein biogenesis and function. International Journal of Biochemistry and Cell Biology, 2015, 64, 58-74.	1.2	115
513	Stability and Compatibility of Recombinant Adeno-Associated Virus Under Conditions Commonly Encountered in Human Gene Therapy Trials. Human Gene Therapy Methods, 2015, 26, 71-76.	2.1	37
514	Current Approach to Hyperammonemia. , 2015, , .		0

ARTICLE IF CITATIONS Comparative Study of Liver Gene Transfer With AAV Vectors Based on Natural and Engineered AAV 515 3.7 94 Capsids. Molecular Therapy, 2015, 23, 1877-1887. E Pluribus Unum: 50 Years of Research, Millions of Viruses, and One Goalâ€"Tailored Acceleration of AAV Evolution. Molecular Therapy, 2015, 23, 1819-1831. Advanced Characterization of DNA Molecules in rAAV Vector Preparations by Single-stranded Virus 517 2.3 57 Next-generation Sequencing. Molecular Therapy - Nucleic Acids, 2015, 4, e260. Intravenous AAV8 Encoding Urocortin-2 Increases Function of the Failing Heart in Mice. Human Gene Therapy, 2015, 26, 347-356. Newer Hemostatic Agents. Seminars in Thrombosis and Hemostasis, 2015, 41, 802-808. 520 1.5 20 Hitting the Target Without Pulling the Trigger. Molecular Therapy, 2015, 23, 4-6. 3.7 Translational Data from Adeno-Associated Virus-Mediated Gene Therapy of Hemophilia B in Dogs. 522 3.2 29 Human Gene Therapy Clinical Development, 2015, 26, 5-14. Research in haemophilia B – approaching the request for high evidence levels in a rare disease. 1.0 Haemophilia, 2015, 21, 4-20. Prevalence of Anti–Adeno-Associated Virus Serotype 8 Neutralizing Antibodies and Arylsulfatase B 524 Cross-Reactive Immunologic Material in Mucopolysaccharidosis VI Patient Candidates for a Gene 1.4 19 Therapy Trial. Human Gene Therapy, 2015, 26, 145-152. Determination of Anti-Adeno-Associated Virus Vector Neutralizing Antibody Titer with an <i>In 2.1 Vitro</i> Reporter System. Human Gene Therapy Methods, 2015, 26, 45-53. Site-Directed Mutagenesis of Surface-Exposed Lysine Residues Leads to Improved Transduction by AAV2, But Not AAV8, Vectors in Murine Hepatocytes <i>In Vivo</i>. Human Gene Therapy Methods, 2015, 26, 527 2.1 27 211-220. Efficient and Targeted Transduction of Nonhuman Primate Liver With Systemically Delivered 528 Optimized AAV3B Vectors. Molecular Therapy, 2015, 23, 1867-1876. Analytical Ultracentrifugation as an Approach to Characterize Recombinant Adeno-Associated Viral 529 2.1 107 Vectors. Human Gene Therapy Methods, 2015, 26, 228-242. Development of operational immunologic tolerance with neonatal gene transfer in nonhuman primates: preliminary studies. Gene Therapy, 2015, 22, 923-930. 2.3 Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nature 531 387 9.4 Genetics, 2015, 47, 1187-1193. Gene therapy for cardiovascular disease: advances in vector development, targeting, and delivery for 1.8 129 clinical translation. Cardiovascular Research, 2015, 108, 4-20. Targeted gene correction of RUNX1 in induced pluripotent stem cells derived from familial platelet 533 disorder with propensity to myeloid malignancy restores normal megakaryopoiesis. Experimental 0.2 40 Hematology, 2015, 43, 849-857. Neutralization Properties of Simian Immunodeficiency Viruses Infecting Chimpanzees and Gorillas. 534 1.8 MBio, 2015, 6, .

#	Article	IF	CITATIONS
535	Adeno-associated virus serotypes for gene therapeutics. Current Opinion in Pharmacology, 2015, 24, 59-67.	1.7	113
536	Challenges in hemophilia care in Australia and New Zealand. Current Medical Research and Opinion, 2015, 31, 1985-1991.	0.9	6
537	Prospective therapeutic approaches in mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). Expert Opinion on Orphan Drugs, 2015, 3, 1167-1182.	0.5	5
538	Nanofiber-Reinforced Elastomers. , 2015, , 1320-1323.		0
539	New Synthetic Carbon Allotropes. , 2015, , 1382-1392.		1
540	Structure of neurotropic adeno-associated virus AAVrh.8. Journal of Structural Biology, 2015, 192, 21-36.	1.3	47
541	Current status of gene therapy for α-1 antitrypsin deficiency. Expert Opinion on Biological Therapy, 2015, 15, 329-336.	1.4	29
542	Adeno-associated virus-mediated cancer gene therapy: Current status. Cancer Letters, 2015, 356, 347-356.	3.2	65
543	Overexpression of sphingosine kinase 1 in liver reduces triglyceride content in mice fed a low but not high-fat diet. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 210-219.	1.2	33
544	Adeno-Associated Virus Serotype 1 (AAV1)- and AAV5-Antibody Complex Structures Reveal Evolutionary Commonalities in Parvovirus Antigenic Reactivity. Journal of Virology, 2015, 89, 1794-1808.	1.5	64
545	Adeno-Associated Virus Vectors and Neurological Gene Therapy. Neuroscientist, 2015, 21, 84-98.	2.6	101
546	Disease-regulated local IL-10 gene therapy diminishes synovitis and cartilage proteoglycan depletion in experimental arthritis. Annals of the Rheumatic Diseases, 2015, 74, 2084-2091.	0.5	31
547	A Phase 1/2a Follistatin Gene Therapy Trial for Becker Muscular Dystrophy. Molecular Therapy, 2015, 23, 192-201.	3.7	193
548	Early Interaction of Adeno-Associated Virus Serotype 8 Vector with the Host Immune System Following Intramuscular Delivery Results in Weak but Detectable Lymphocyte and Dendritic Cell Transduction. Human Gene Therapy, 2015, 26, 1-13.	1.4	17
549	Improving Single Injection CSF Delivery of AAV9-mediated Gene Therapy for SMA: A Dose–response Study in Mice and Nonhuman Primates. Molecular Therapy, 2015, 23, 477-487.	3.7	217
550	Gene therapy for rhesus monkeys heterozygous for LDL receptor deficiency by balloon catheter hepatic delivery of helper-dependent adenoviral vector. Gene Therapy, 2015, 22, 87-95.	2.3	19
551	Promoterless gene targeting without nucleases ameliorates haemophilia B in mice. Nature, 2015, 517, 360-364.	13.7	226
552	MUC1 Promoter–Driven DTA as a Targeted Therapeutic Strategy against Pancreatic Cancer. Molecular Cancer Research, 2015, 13, 439-448.	1.5	18

#	Article	IF	CITATIONS
553	Enhanced cellular secretion of AAV2 by expression of foreign viral envelope proteins. Biochemical Engineering Journal, 2015, 93, 108-114.	1.8	1
555	Genome-wide Computational Analysis Reveals Cardiomyocyte-specific Transcriptional Cis-regulatory Motifs That Enable Efficient Cardiac Gene Therapy. Molecular Therapy, 2015, 23, 43-52.	3.7	36
556	Once-weekly prophylactic dosing of recombinant factor IX improves adherence in hemophilia B. Journal of Blood Medicine, 2016, Volume 7, 275-282.	0.7	16
557	Circumventing furin enhances factor VIII biological activity and ameliorates bleeding phenotypes in hemophilia models. JCI Insight, 2016, 1, e89371.	2.3	28
558	Gene therapy for metabolic diseases. Translational Science of Rare Diseases, 2016, 1, 73-89.	1.6	23
559	Ultracentrifugation-free chromatography-mediated large-scale purification of recombinant adeno-associated virus serotype 1 (rAAV1). Molecular Therapy - Methods and Clinical Development, 2016, 3, 15058.	1.8	29
560	Simple Purification of Adeno-Associated Virus-DJ for Liver-Specific Gene Expression. Yonsei Medical Journal, 2016, 57, 790.	0.9	5
561	Helper-Dependent Adenoviral Vectors. , 2016, , 423-450.		4
562	Gene Therapy for Cardiovascular Diseases. , 2016, , 377-387.		0
563	Disorders of Coagulation. , 2016, , 279-333.		2
564	Hereditary Angioedema as a Metabolic Liver Disorder: Novel Therapeutic Options and Prospects for Cure. Frontiers in Immunology, 2016, 7, 547.	2.2	12
565	Different Gene Therapy Strategies: A Overview for Prostate Cancer. Current Gene Therapy, 2016, 16, 287-291.	0.9	6
566	Nanoparticle Coated Viral Vectors for Gene Therapy. Current Biotechnology, 2016, 5, 44-53.	0.2	11
567	Adult Hematopoiesis. , 2016, , 15-25.		0
568	Insulin Therapy Improves Adeno-Associated Virus Transduction of Liver and Skeletal Muscle in Mice and Cultured Cells. Human Gene Therapy, 2016, 27, 892-905.	1.4	5
569	Temperatureâ€sensitive miRâ€483 is a conserved regulator of recombinant protein and viral vector production in mammalian cells. Biotechnology and Bioengineering, 2016, 113, 830-841.	1.7	29
570	Preclinical safety, pharmacokinetics, pharmacodynamics, and biodistribution studies with Ad35K++ protein: a novel rituximab cotherapeutic. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16013.	1.8	11
571	Efficacy and biodistribution analysis of intracerebroventricular administration of an optimized scAAV9-SMN1 vector in a mouse model of spinal muscular atrophy. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16060.	1.8	41

#	Article	IF	CITATIONS
572	Effects of Self-Complementarity, Codon Optimization, Transgene, and Dose on Liver Transduction with AAV8. Human Gene Therapy Methods, 2016, 27, 228-237.	2.1	15
574	Strategies for the Gene Modification of Megakaryopoiesis and Platelets. , 2016, , 421-460.		0
575	Effects of FVIII immunity on hepatocyte and hematopoietic stem cell–directed gene therapy of murine hemophilia A. Molecular Therapy - Methods and Clinical Development, 2016, 3, 15056.	1.8	26
576	Targeted approaches to induce immune tolerance for Pompe disease therapy. Molecular Therapy - Methods and Clinical Development, 2016, 3, 15053.	1.8	44
577	Practical utilization of recombinant AAV vector reference standards: focus on vector genomes titration by free ITR qPCR. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16019.	1.8	70
578	Adeno-Associated Virus Gene Therapy for Liver Disease. Human Gene Therapy, 2016, 27, 947-961.	1.4	106
579	Potential for cellular stress response to hepatic factor VIII expression from AAV vector. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16063.	1.8	54
581	Gene therapy for haemophilia. The Cochrane Library, 2016, 12, CD010822.	1.5	9
582	Impact of intravenous infusion time on AAV8 vector pharmacokinetics, safety, and liver transduction in cynomolgus macaques. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16079.	1.8	14
583	In situ genetic correction of F8 intron 22 inversion in hemophilia A patient-specific iPSCs. Scientific Reports, 2016, 6, 18865.	1.6	43
584	Emerging therapies for acute intermittent porphyria. Expert Reviews in Molecular Medicine, 2016, 18, e17.	1.6	32
585	Strategies to generate high-titer, high-potency recombinant AAV3 serotype vectors. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16029.	1.8	24
586	Current animal models of hemophilia: the state of the art. Thrombosis Journal, 2016, 14, 22.	0.9	21
588	An engineered tale-transcription factor rescues transcription of factor VII impaired by promoter mutations and enhances its endogenous expression in hepatocytes. Scientific Reports, 2016, 6, 28304.	1.6	14
589	Superior In vivo Transduction of Human Hepatocytes Using Engineered AAV3 Capsid. Molecular Therapy, 2016, 24, 1042-1049.	3.7	91
590	Intracerebroventricular delivery of self-complementary adeno-associated virus serotype 9 to the adult rat brain. Gene Therapy, 2016, 23, 401-407.	2.3	14
591	Gene Therapy for Hemophilia. Human Gene Therapy, 2016, 27, 305-308.	1.4	12
592	Quantification of cellular and nuclear uptake rates of polymeric gene delivery nanoparticles and DNA plasmids via flow cytometry. Acta Biomaterialia, 2016, 37, 120-130.	4.1	52

CITATION REPORT ARTICLE IF CITATIONS Mouse Models of NMNAT1-Leber Congenital Amaurosis (LCA9) Recapitulate Key Features of the Human 1.9 61 Disease. American Journal of Pathology, 2016, 186, 1925-1938. Future Perspectives for the Treatment of Sickle Cell Anemia., 2016, , 399-429. Adeno-associated virus type 2 as an oncogenic virus in human hepatocellular carcinoma. Molecular 0.3 12 and Cellular Oncology, 2016, 3, e1095271. Sickle Cell Anemia., 2016,,. Flexible, AAV-equipped Genetic Modules for Inducible Control of Gene Expression in Mammalian Brain. 2.3 12 Molecular Therapy - Nucleic Acids, 2016, 5, e309. Single point mutation in adeno-associated viral vectors -DJ capsid leads to improvement for gene 1.7 delivery in vivo. BMC Biotechnology, 2016, 16, 1. Pharmacodynamics of anti-HIV gene therapy using viral vectors and targeted endonucleases. Journal 1.3 5 of Antimicrobial Chemotherapy, 2016, 71, 2089-2099. Gene therapy for hemophilia B mice with scAAV8-LP1-hFIX. Frontiers of Medicine, 2016, 10, 212-218. 1.5 Identification and Validation of Small Molecules That Enhance Recombinant Adeno-associated Virus 39 1.5 Transduction following High-Throughput Screens. Journal of Virology, 2016, 90, 7019-7031. Current and future prospects for hemophilia gene therapy. Expert Review of Hematology, 2016, 9, 1.0 649-659. Gene Therapy for Coagulation Disorders. Circulation Research, 2016, 118, 1443-1452. 17 2.0 Fetal Stem Cells in Regenerative Medicine. Pancreatic Islet Biology, 2016, , . 0.1 In Vivo Selection Yields AAV-B1 Capsid for Central Nervous System and Muscle Gene Therapy. 3.7 98 Molecular Therapy, 2016, 24, 1247-1257. The Future of Hemophilia Treatment: Longer-Acting Factor Concentrates versus Gene Therapy. 1.5 Seminars in Thrombosis and Hemostasis, 2016, 42, 513-517. Perinatal Gene Therapy. Pancreatic Islet Biology, 2016, , 361-402. 0.1 1 Changing Paradigm of Hemophilia Management: Extended Half-Life Factor Concentrates and Gene Therapy. Seminars in Thrombosis and Hemostasis, 2016, 42, 018-029. Megakaryocyte- and megakaryocyte precursorâ€"related gene therapies. Blood, 2016, 127, 1260-1268. 0.6 13

610	Sustained correction of FVII deficiency in dogs using AAV-mediated expression of zymogen FVII. Blood, 2016, 127, 565-571.	0.6	19
-----	---	-----	----

#

593

594

595

596

597

598

599

600

601

603

604

605

606

607

# 611	ARTICLE Gene Therapy for Bleeding Disorders. , 2016, , 321-336.	IF	Citations 0
612	In vivo tissue-tropism of adeno-associated viral vectors. Current Opinion in Virology, 2016, 21, 75-80.	2.6	249
613	Gene therapy applications to transfusion medicine. , 2016, , 452-455.		0
614	Low-dose Gene Therapy Reduces the Frequency of Enzyme Replacement Therapy in a Mouse Model of Lysosomal Storage Disease. Molecular Therapy, 2016, 24, 2054-2063.	3.7	12
615	Early clinical data raise the bar for hemophilia gene therapies. Nature Biotechnology, 2016, 34, 999-1001.	9.4	15
616	High-Density Recombinant Adeno-Associated Viral Particles are Competent Vectors for <i>In Vivo</i> Transduction. Human Gene Therapy, 2016, 27, 971-981.	1.4	14
617	State of the art: gene therapy of haemophilia. Haemophilia, 2016, 22, 66-71.	1.0	29
618	Viral/Nonviral Chimeric Nanoparticles To Synergistically Suppress Leukemia Proliferation <i>via</i> Simultaneous Gene Transduction and Silencing. ACS Nano, 2016, 10, 8705-8714.	7.3	22
619	Stimulation of AAV Gene Editing via DSB Repair. Advances in Experimental Medicine and Biology, 2016, , 125-137.	0.8	1
620	Synergistic inhibition of PARPâ€1 and NFâ€₽B signaling downregulates immune response against recombinant AAV2 vectors during hepatic gene therapy. European Journal of Immunology, 2016, 46, 154-166.	1.6	7
621	Safety surveillance in haemophilia and allied disorders. Journal of Internal Medicine, 2016, 279, 515-523.	2.7	10
622	2017 Clinical trials update: Innovations in hemophilia therapy. American Journal of Hematology, 2016, 91, 1252-1260.	2.0	82
623	Generation and characterization of anti-Adeno-associated virus serotype 8 (AAV8) and anti-AAV9 monoclonal antibodies. Journal of Virological Methods, 2016, 236, 105-110.	1.0	22
624	Multilineage transduction of resident lung cells in vivo by AAV2/8 for α1-antitrypsin gene therapy. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16042.	1.8	10
625	In utero stem cell transplantation and gene therapy: rationale, history, and recent advances toward clinical application. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16020.	1.8	52
626	Promise and problems associated with the use of recombinant AAV for the delivery of anti-HIV antibodies. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16068.	1.8	48
627	<scp>CRISPR</scp> as9 technology and its application in haematological disorders. British Journal of Haematology, 2016, 175, 208-225.	1.2	22
628	AAV-mediated liver-directed gene therapy for Acute Intermittent Porphyria: It is safe but is it effective?. Journal of Hepatology, 2016, 65, 666-667.	1.8	6

ARTICLE IF CITATIONS Development of Optimized AAV Serotype Vectors for High-Efficiency Transduction at Further Reduced 629 2.1 17 Doses. Human Gene Therapy Methods, 2016, 27, 143-149. The evolution of comprehensive haemophilia care in the United States: perspectives from the 1.0 frontline. Haemophilia, 2016, 22, 676-683. The CD8 Tâ€cell response during tolerance induction in liver transplantation. Clinical and 631 1.7 15 Translational Immunology, 2016, 5, e102. Assembly PCR synthesis of optimally designed, compact, multi-responsive promoters suited to gene therapy application. Scientific Reports, 2016, 6, 29388. Treatment of hypophosphatasia by muscle-directed expression of bone-targeted alkaline phosphatase via self-complementary AAV8 vector. Molecular Therapy - Methods and Clinical Development, 2016, 3, 634 20 1.8 15059. Adeno-Associated Virus 5 Transduces Adipose-Derived Stem Cells with Greater Efficacy Than Other Adeno-Associated Viral Serotypes. Human Gene Therapy Methods, 2016, 27, 219-227. 2.1 Hemophilia A gene therapy via intraosseous delivery of factor VIII-lentiviral vectors. Thrombosis 636 0.9 15 Journal, 2016, 14, 41. Manufacturing of recombinant adeno-associated viral vectors: new technologies are welcome. 1.8 Molecular Therapy - Methods and Clinical Development, 2016, 3, 15049. A translationally optimized AAV-UGT1A1 vector drives safe and long-lasting correction of 638 50 1.8 Crigler-Najjar sýndrome. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16049. Pancreatic Islet Biology. Pancreatic Islet Biology, 2016, , . 0.1 A universal system to select gene-modified hepatocytes in vivo. Science Translational Medicine, 2016, 8, 640 5.838 342ra79. Long non-coding RNAs (IncRNAs) in skeletal and cardiac muscle: potential therapeutic and diagnostic 1.8 24 targets?. Clinical Science, 2016, 130, 2245-2256. Overexpression of factor VIII after AAV delivery is transiently associated with cellular stress in 642 1.8 59 hemophilia A mice. Molecular Therapy - Methóds and Clinical Development, 2016, 3, 16064. Clinical development of gene therapy: results and lessons from recent successes. Molecular Therapy -Methods and Clinical Development, 2016, 3, 16034. 643 1.8 183 Viral-Mediated Gene Therapy for the Generation of Artificial Insulin-Producing Cells as a Therapeutic 644 0 0.1 Treatment for Type 1 Diabetes Mellitus. Pancreatic Islet Biology, 2016, , 241-255. Constitutively active form of natriuretic peptide receptor 2 ameliorates experimental pulmonary 645 1.8 arterial hypertension. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16044. Blocking senseâ€strand activity improves potency, safety and specificity of antiâ€hepatitis B virus short 647 3.3 24 hairpin <scp>RNA</scp>. EMBO Molecular Medicine, 2016, 8, 1082-1098. <i>>Plasmodium</i>> meets <scp>AAV</scp>â€"the (un)likely marriage of parasitology and virology, and 648 1.3 how to make the match. FEBS Letters, 2016, 590, 2027-2045.

#	Article	IF	Citations
650	AAV natural infection induces broad cross-neutralizing antibody responses to multiple AAV serotypes in chimpanzees. Human Gene Therapy Clinical Development, 2016, , .	3.2	1
651	AAV Natural Infection Induces Broad Cross-Neutralizing Antibody Responses to Multiple AAV Serotypes in Chimpanzees. Human Gene Therapy Clinical Development, 2016, 27, 79-82.	3.2	58
652	InÂVivo Hepatic Reprogramming of Myofibroblasts with AAV Vectors as a Therapeutic Strategy for Liver Fibrosis. Cell Stem Cell, 2016, 18, 809-816.	5.2	109
653	MiR-128 and miR-125 regulate expression of coagulation Factor IX gene with nonsense mutation by repressing nonsense-mediated mRNA decay. Biomedicine and Pharmacotherapy, 2016, 80, 331-337.	2.5	7
654	Genetic profiling of hepatocellular carcinoma using next-generation sequencing. Journal of Hepatology, 2016, 65, 1031-1042.	1.8	219
655	Prospect and progress of gene therapy in acute intermittent porphyria. Expert Opinion on Orphan Drugs, 2016, 4, 711-717.	0.5	2
656	Novel Vector Design and Hexosaminidase Variant Enabling Self-Complementary Adeno-Associated Virus for the Treatment of Tay-Sachs Disease. Human Gene Therapy, 2016, 27, 509-521.	1.4	35
657	Canine models of inherited bleeding disorders in the development of coagulation assays, novel protein replacement and gene therapies. Journal of Thrombosis and Haemostasis, 2016, 14, 894-905.	1.9	34
658	Engineering Stem Cells for Biomedical Applications. Advanced Healthcare Materials, 2016, 5, 10-55.	3.9	25
659	Liver cell-targeted delivery of therapeutic molecules. Critical Reviews in Biotechnology, 2016, 36, 132-143.	5.1	43
660	An essential receptor for adeno-associated virus infection. Nature, 2016, 530, 108-112.	13.7	342
661	Genetic manipulation of brain endothelial cells in vivo. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 381-394.	1.8	15
662	Adeno-associated virus (AAV) vectors in cancer gene therapy. Journal of Controlled Release, 2016, 240, 287-301.	4.8	137
663	Current Progress in Therapeutic Gene Editing for Monogenic Diseases. Molecular Therapy, 2016, 24, 465-474.	3.7	92
664	Development of next generation adeno-associated viral vectors capable of selective tropism and efficient gene delivery. Biomaterials, 2016, 80, 134-145.	5.7	33
665	Recent Developments in Gene Therapy for Homozygous Familial Hypercholesterolemia. Current Atherosclerosis Reports, 2016, 18, 22.	2.0	39
666	The past and future of haemophilia: diagnosis, treatments, and its complications. Lancet, The, 2016, 388, 187-197.	6.3	331
667	Adeno-Associated Virus: The Naturally Occurring Virus Versus the Recombinant Vector. Human Gene Therapy, 2016, 27, 1-6.	1.4	20

		CITATION RE	PORT	
#	Article		IF	CITATIONS
668	Gene Therapy: The View from NCATS. Human Gene Therapy, 2016, 27, 7-13.		1.4	18
669	Neutralizing Antibodies Against Adeno-Associated Viral Capsids in Patients with <i>mut Methylmalonic Acidemia. Human Gene Therapy, 2016, 27, 345-353.</i>		1.4	30
670	Gene editing technology as an approach to the treatment of liver diseases. Expert Opinio Biological Therapy, 2016, 16, 595-608.	on on	1.4	15
672	Genetic modification of bone-marrow mesenchymal stem cells and hematopoietic cells v coagulation factor IX-expressing plasmids. Biologicals, 2016, 44, 170-177.	vith human	0.5	8
673	Recombinant AAV Integration Is Not Associated With Hepatic Genotoxicity in Nonhuma Patients. Molecular Therapy, 2016, 24, 1100-1105.	n Primates and	3.7	122
674	Ultrasound-targeted hepatic delivery of factor IX in hemophiliac mice. Gene Therapy, 20	16, 23, 510-519.	2.3	17
675	Short peptides from leucyl-tRNA synthetase rescue disease-causing mitochondrial tRNA mutations. Human Molecular Genetics, 2016, 25, 903-915.	point	1.4	19
676	Copackaged AAV9 Vectors Promote Simultaneous Immune Tolerance and Phenotypic Co Pompe Disease. Human Gene Therapy, 2016, 27, 43-59.	prrection of	1.4	44
677	Helper-dependent adenoviral vectors for liver-directed gene therapy of primary hyperoxa Gene Therapy, 2016, 23, 129-134.	luria type 1.	2.3	37
678	Adeno-associated viral vectors for the treatment of hemophilia. Human Molecular Genet R36-R41.	ics, 2016, 25,	1.4	56
679	Controlled release strategies for rAAV-mediated gene delivery. Acta Biomaterialia, 2016,	29, 1-10.	4.1	40
680	rAAV-CFTRΔR Rescues the Cystic Fibrosis Phenotype in Human Intestinal Organoids and Mice. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 288-298.	Cystic Fibrosis	2.5	55
681	Progress and challenges in viral vector manufacturing. Human Molecular Genetics, 2016	, 25, R42-R52.	1.4	165
682	New and improved AAVenues: current status of hemophilia B gene therapy. Expert Opin Biological Therapy, 2016, 16, 79-92.	ion on	1.4	17
683	Gene therapy for hemophilia: past, present and future. Seminars in Hematology, 2016, 5	3, 46-54.	1.8	33
684	Genome Engineering Using Adeno-associated Virus: Basic and Clinical Research Applicat Molecular Therapy, 2016, 24, 458-464.	ions.	3.7	93
685	Progress toward improved therapies for inborn errors of metabolism. Human Molecular (2016, 25, R27-R35.	Genetics,	1.4	16
686	Gene Therapy and Cell Therapy Through the Liver. , 2016, , .			0

		15	6
#	Article	IF	CITATIONS
687	Oral-tolerization Prevents Immune Responses and Improves Transgene Persistence Following Gene Transfer Mediated by Adeno-associated Viral Vector. Molecular Therapy, 2016, 24, 87-95.	3.7	15
688	Development of Patient-specific AAV Vectors After Neutralizing Antibody Selection for Enhanced Muscle Gene Transfer. Molecular Therapy, 2016, 24, 53-65.	3.7	45
689	Targeted delivery of AAV-transduced mesenchymal stromal cells to hepatic tissue forex vivogene therapy. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1354-1364.	1.3	8
690	Syngeneic AAV Pseudo-particles Potentiate Gene Transduction of AAV Vectors. Molecular Therapy - Methods and Clinical Development, 2017, 4, 149-158.	1.8	10
691	Characterization of Adeno-Associated Viral Vector-Mediated Human Factor VIII Gene Therapy in Hemophilia A Mice. Human Gene Therapy, 2017, 28, 392-402.	1.4	29
692	Class I-restricted T-cell responses to a polymorphic peptide in a gene therapy clinical trial for α-1-antitrypsin deficiency. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1655-1659.	3.3	52
693	AAV9-NPC1 significantly ameliorates Purkinje cell death and behavioral abnormalities in mouse NPC disease. Journal of Lipid Research, 2017, 58, 512-518.	2.0	40
694	Rare bleeding disorders-old diseases in the era of novel options for therapy. Blood Cells, Molecules, and Diseases, 2017, 67, 63-68.	0.6	9
695	Gene delivery of apoptin-derived peptide using an adeno-associated virus vector inhibits glioma and prolongs animal survival. Biochemical and Biophysical Research Communications, 2017, 482, 506-513.	1.0	7
696	Effective Depletion of Pre-existing Anti-AAV Antibodies Requires Broad Immune Targeting. Molecular Therapy - Methods and Clinical Development, 2017, 4, 159-168.	1.8	30
697	The Balance between CD8+ T Cell-Mediated Clearance of AAV-Encoded Antigen in the Liver and Tolerance Is Dependent on the Vector Dose. Molecular Therapy, 2017, 25, 880-891.	3.7	50
698	Systemic AAV8-Mediated Gene Therapy Drives Whole-Body Correction of Myotubular Myopathy in Dogs. Molecular Therapy, 2017, 25, 839-854.	3.7	81
699	Low-Dose Liver-Targeted Gene Therapy for Pompe Disease Enhances Therapeutic Efficacy of ERT via Immune Tolerance Induction. Molecular Therapy - Methods and Clinical Development, 2017, 4, 126-136.	1.8	61
700	Efficient Gene Delivery and Expression in Pancreas and Pancreatic Tumors by Capsid-Optimized AAV8 Vectors. Human Gene Therapy Methods, 2017, 28, 49-59.	2.1	17
701	A synthetic AAV vector enables safe and efficient gene transfer to the mammalian inner ear. Nature Biotechnology, 2017, 35, 280-284.	9.4	248
702	Manufacturing of recombinant adenoâ€associated viruses using mammalian expression platforms. Biotechnology Journal, 2017, 12, 1600193.	1.8	62
704	Characteristics of Minimally Oversized Adeno-Associated Virus Vectors Encoding Human Factor VIII Generated Using Producer Cell Lines and Triple Transfection. Human Gene Therapy Methods, 2017, 28, 23-38.	2.1	12
705	CpG loaded MoS ₂ nanosheets as multifunctional agents for photothermal enhanced cancer immunotherapy. Nanoscale, 2017, 9, 5927-5934.	2.8	106

#	Article	IF	CITATIONS
706	Toward Personalized Gene Therapy: Characterizing the Host Genetic Control of Lentiviral-Vector-Mediated Hepatic Gene Delivery. Molecular Therapy - Methods and Clinical Development, 2017, 5, 83-92.	1.8	14
707	Gene Therapy for Hemophilia. Molecular Therapy, 2017, 25, 1163-1167.	3.7	74
709	Preclinical study of rAAV2-sTRAIL: pharmaceutical efficacy, biodistribution and safety in animals. Cancer Gene Therapy, 2017, 24, 251-258.	2.2	5
710	Efficient CNS targeting in adult mice by intrathecal infusion of single-stranded AAV9-GFP for gene therapy of neurological disorders. Gene Therapy, 2017, 24, 325-332.	2.3	56
711	Non-coding RNA in hepatocellular carcinoma: Mechanisms, biomarkers and therapeutic targets. Journal of Hepatology, 2017, 67, 603-618.	1.8	292
712	Gene Delivery of Activated Factor VII Using Alternative Adeno-Associated Virus Serotype Improves Hemostasis in Hemophiliac Mice with FVIII Inhibitors and Adeno-Associated Virus Neutralizing Antibodies. Human Gene Therapy, 2017, 28, 654-666.	1.4	15
713	Plasmacytoid and conventional dendritic cells cooperate in crosspriming AAV capsid-specific CD8+ T cells. Blood, 2017, 129, 3184-3195.	0.6	83
714	CRISPR/Cas9: at the cutting edge of hepatology. Gut, 2017, 66, 1329-1340.	6.1	31
715	Construction and expression of a lentivirus expression vector carrying the VEGF165-EGFP fusion gene in breast cancer MCF-7 cells. Oncology Letters, 2017, 13, 1745-1752.	0.8	3
716	In Utero Transfer of Adeno-Associated Viral Vectors Produces Long-Term Factor IX Levels in a Cynomolgus Macaque Model. Molecular Therapy, 2017, 25, 1843-1853.	3.7	30
717	AAV-mediated delivery of optogenetic constructs to the macaque brain triggers humoral immune responses. Journal of Neurophysiology, 2017, 117, 2004-2013.	0.9	31
718	Current Methods in Cardiac Gene Therapy: Overview. Methods in Molecular Biology, 2017, 1521, 3-14.	0.4	5
719	Cell-Based Measurement of Neutralizing Antibodies Against Adeno-Associated Virus (AAV). Methods in Molecular Biology, 2017, 1521, 109-126.	0.4	10
720	miRNA-mediated post-transcriptional silencing of transgenes leads to increased adeno-associated viral vector yield and targeting specificity. Gene Therapy, 2017, 24, 462-469.	2.3	12
721	Direct Reprogramming, Epigenetics, and Cardiac Regeneration. Journal of Cardiac Failure, 2017, 23, 552-557.	0.7	14
722	Safety and Efficacy of Gene-Based Therapeutics for Inherited Disorders. , 2017, , .		3
723	Micromanaging Tolerance in Hemophilia A Gene Therapy. Molecular Therapy, 2017, 25, 1739-1740.	3.7	5
724	Successful Repeated Hepatic Gene Delivery in Mice and Non-human Primates Achieved by Sequential Administration of AAV5 ch and AAV1. Molecular Therapy, 2017, 25, 1831-1842.	3.7	56

#	Article	IF	CITATIONS
725	AAV Gene Therapy for Alcoholism: Inhibition of Mitochondrial Aldehyde Dehydrogenase Enzyme Expression in Hepatoma Cells. Human Gene Therapy, 2017, 28, 717-725.	1.4	6
726	Progress in the contemporary management of hemophilia: The new issue of patient aging. European Journal of Internal Medicine, 2017, 43, 16-21.	1.0	26
727	CRISPR/Cas9-mediated correction of human genetic disease. Science China Life Sciences, 2017, 60, 447-457.	2.3	34
728	Codon-Optimized RPGR Improves Stability and Efficacy of AAV8 Gene Therapy in Two Mouse Models of X-Linked Retinitis Pigmentosa. Molecular Therapy, 2017, 25, 1854-1865.	3.7	86
729	Hematological Disorders in Children. , 2017, , .		2
731	Non-Clinical Study Examining AAV8.TBC.hLDLR Vector-Associated Toxicity in Chow-Fed Wild-Type and LDLR ^{+/â^'} Rhesus Macaques. Human Gene Therapy Clinical Development, 2017, 28, 39-50.	3.2	46
732	Regulatory and Exhausted T Cell Responses to AAV Capsid. Human Gene Therapy, 2017, 28, 338-349.	1.4	35
733	The 2.8ÂÃ Electron Microscopy Structure of Adeno-Associated Virus-DJ Bound by a Heparinoid Pentasaccharide. Molecular Therapy - Methods and Clinical Development, 2017, 5, 1-12.	1.8	30
734	Nonclinical Pharmacology/Toxicology Study of AAV8.TBG.mLDLR and AAV8.TBG.hLDLR in a Mouse Model of Homozygous Familial Hypercholesterolemia. Human Gene Therapy Clinical Development, 2017, 28, 28-38.	3.2	33
736	Gene Therapy 2017: Progress and Future Directions. Clinical and Translational Science, 2017, 10, 242-248.	1.5	113
737	Induction of T-Cell Infiltration and Programmed Death Ligand 2 Expression by Adeno-Associated Virus in Rhesus Macaque Skeletal Muscle and Modulation by Prednisone. Human Gene Therapy, 2017, 28, 493-509.	1.4	17
738	Impact of AAV Capsid-Specific T-Cell Responses on Design and Outcome of Clinical Gene Transfer Trials with Recombinant Adeno-Associated Viral Vectors: An Evolving Controversy. Human Gene Therapy, 2017, 28, 328-337.	1.4	85
739	Do we need marker gene studies in humans to improve clinical AAV gene therapy?. Gene Therapy, 2017, 24, 72-73.	2.3	3
740	Differential Prevalence of Antibodies Against Adeno-Associated Virus in Healthy Children and Patients with Mucopolysaccharidosis III: Perspective for AAV-Mediated Gene Therapy. Human Gene Therapy Clinical Development, 2017, 28, 187-196.	3.2	31
741	Protein Phosphatase Inhibitor-1 GeneÂTherapy in a Swine Model of NonischemicÂHeart Failure. Journal of the American College of Cardiology, 2017, 70, 1744-1756.	1.2	30
742	Overcoming the Host Immune Response to Adeno-Associated Virus Gene Delivery Vectors: The Race Between Clearance, Tolerance, Neutralization, and Escape. Annual Review of Virology, 2017, 4, 511-534.	3.0	147
743	In Situ Liver Expression of HBsAg/CD3-Bispecific Antibodies for HBV Immunotherapy. Molecular Therapy - Methods and Clinical Development, 2017, 7, 32-41.	1.8	14
744	Novel approaches to hemophilia therapy: successes and challenges. Blood, 2017, 130, 2251-2256.	0.6	95

#	Article	IF	CITATIONS
748	Gene delivery of hypoxia-inducible VEGF targeting collagen effectively improves cardiac function after myocardial infarction. Scientific Reports, 2017, 7, 13273.	1.6	12
749	Gene therapy for inherited retinal degenerations: initial successes and future challenges. Journal of Neural Engineering, 2017, 14, 051002.	1.8	26
750	Unraveling the Complex Story of Immune Responses to AAV Vectors Trial After Trial. Human Gene Therapy, 2017, 28, 1061-1074.	1.4	170
751	Advances in Gene Therapy for Hemophilia. Human Gene Therapy, 2017, 28, 1004-1012.	1.4	54
752	Small But Increasingly Mighty: Latest Advances in AAV Vector Research, Design, and Evolution. Human Gene Therapy, 2017, 28, 1075-1086.	1.4	97
753	Stent-based delivery of adeno-associated viral vectors with sustained vascular transduction and iNOS-mediated inhibition of in-stent restenosis. Gene Therapy, 2017, 24, 717-726.	2.3	18
754	European Society for Gene and Cell Therapy—Inaugural Learned Society in the Field Worldwide: A Vision on Its Birth, Life, and Prospects for Sustainability. Human Gene Therapy, 2017, 28, 941-950.	1.4	0
755	Nonintegrating Gene Therapy Vectors. Hematology/Oncology Clinics of North America, 2017, 31, 753-770.	0.9	83
756	Gene Therapy for Hemophilia. Hematology/Oncology Clinics of North America, 2017, 31, 853-868.	0.9	30
757	Therapeutic Gene Editing in Muscles and Muscle Stem Cells. Research and Perspectives in Neurosciences, 2017, , 103-123.	0.4	1
759	Gene Therapy in Tyrosinemia: Potential and Pitfalls. Advances in Experimental Medicine and Biology, 2017, 959, 231-243.	0.8	3
760	Inside Job: Methods for Delivering Proteins to the Interior of Mammalian Cells. Cell Chemical Biology, 2017, 24, 924-934.	2.5	38
761	Thermal Stability as a Determinant of AAV Serotype Identity. Molecular Therapy - Methods and Clinical Development, 2017, 6, 171-182.	1.8	95
762	Non-clinical Safety and Efficacy of an AAV2/8 Vector Administered Intravenously for Treatment of Mucopolysaccharidosis Type VI. Molecular Therapy - Methods and Clinical Development, 2017, 6, 143-158.	1.8	36
763	Next-generation AAV vectors for clinical use: an ever-accelerating race. Virus Genes, 2017, 53, 707-713.	0.7	44
764	Current and Emerging Options for the Management of Inherited von Willebrand Disease. Drugs, 2017, 77, 1531-1547.	4.9	28
765	Repeated AAV-mediated gene transfer by serotype switching enables long-lasting therapeutic levels of hUgt1a1 enzyme in a mouse model of Crigler–Najjar Syndrome Type I. Gene Therapy, 2017, 24, 649-660.	2.3	27
766	Hemophilia Gene Therapy: Ready for Prime Time?. Human Gene Therapy, 2017, 28, 1013-1023.	1.4	25

#	Article	IF	CITATIONS
767	Promoterless gene targeting without nucleases rescues lethality of a Criglerâ€Najjar syndrome mouse model. EMBO Molecular Medicine, 2017, 9, 1346-1355.	3.3	46
768	Application of polyploid adeno-associated virus vectors for transduction enhancement and neutralizing antibody evasion. Journal of Controlled Release, 2017, 262, 348-356.	4.8	21
769	FIX It in One Go: Enhanced Factor IX Gene Therapy for Hemophilia B. Cell, 2017, 171, 1478-1480.	13.5	7
770	Hemophilia B Gene Therapy with a High-Specific-Activity Factor IX Variant. New England Journal of Medicine, 2017, 377, 2215-2227.	13.9	549
771	AAV5–Factor VIII Gene Transfer in Severe Hemophilia A. New England Journal of Medicine, 2017, 377, 2519-2530.	13.9	529
772	Rescue of Pompe disease in mice by AAV-mediated liver delivery of secretable acid α-glucosidase. Science Translational Medicine, 2017, 9, .	5.8	103
773	Precision Medicine, CRISPR, and Genome Engineering. Advances in Experimental Medicine and Biology, 2017, , .	0.8	2
774	Combining Engineered Nucleases with Adeno-associated Viral Vectors for Therapeutic Gene Editing. Advances in Experimental Medicine and Biology, 2017, 1016, 29-42.	0.8	13
775	Strategy to detect pre-existing immunity to AAV gene therapy. Gene Therapy, 2017, 24, 768-778.	2.3	71
776	Control of HIV Infection InÂVivo Using Gene Therapy with a Secreted Entry Inhibitor. Molecular Therapy - Nucleic Acids, 2017, 9, 132-144.	2.3	15
777	The function of DNA binding protein nucleophosmin in AAV replication. Virology, 2017, 510, 46-54.	1.1	17
778	Reducible PEG-POD/DNA Nanoparticles for Gene Transfer InÂVitro and InÂVivo: Application in a Mouse Model of Age-Related Macular Degeneration. Molecular Therapy - Nucleic Acids, 2017, 8, 77-89.	2.3	22
779	Evaluation of engineered AAV capsids for hepatic factor IX gene transfer in murine and canine models. Journal of Translational Medicine, 2017, 15, 94.	1.8	16
780	Direct interaction of human serum proteins with AAV virions to enhance AAV transduction: immediate impact on clinical applications. Gene Therapy, 2017, 24, 49-59.	2.3	40
781	Engineering a gene silencing viral construct that targets the cat hypothalamus to induce permanent sterility: An update. Reproduction in Domestic Animals, 2017, 52, 354-358.	0.6	10
782	Gene and Cell Therapy for Inborn Errors of Metabolism. , 2017, , 155-171.		1
783	Empty Capsids and Macrophage Inhibition/Depletion Increase rAAV Transgene Expression in Joints of Both Healthy and Arthritic Mice. Human Gene Therapy, 2017, 28, 168-178.	1.4	11
784	Differential prevalence of antibodies against adeno-associated virus in healthy children and patients with mucopolysaccharidosis III: perspective for AAV-mediated gene therapy. Human Gene Therapy Clinical Development, 2017, , .	3.2	0

#	Article	IF	CITATIONS
785	Pathogenesis and Treatment of Hemophilia. , 2017, , 189-204.		2
786	Hemophilia gene therapy comes of age. Hematology American Society of Hematology Education Program, 2017, 2017, 587-594.	0.9	36
787	Enhanced liver gene transfer and evasion of preexisting humoral immunity with exosome-enveloped AAV vectors. Blood Advances, 2017, 1, 2019-2031.	2.5	90
788	Optimized AAV rh.10 Vectors That Partially Evade Neutralizing Antibodies during Hepatic Gene Transfer. Frontiers in Pharmacology, 2017, 8, 441.	1.6	13
789	Selective HDL-Raising Human Apo A-I Gene Therapy Counteracts Cardiac Hypertrophy, Reduces Myocardial Fibrosis, and Improves Cardiac Function in Mice with Chronic Pressure Overload. International Journal of Molecular Sciences, 2017, 18, 2012.	1.8	27
790	Increasing the Clinical Potential and Applications of Anti-HIV Antibodies. Frontiers in Immunology, 2017, 8, 1655.	2.2	22
791	Regulatory and Scientific Advancements in Gene Therapy: State-of-the-Art of Clinical Applications and of the Supporting European Regulatory Framework. Frontiers in Medicine, 2017, 4, 182.	1.2	41
792	Gene Therapy for Liver Disease. , 2017, , 837-851.		1
793	Induction of Immune Tolerance to Foreign Protein via Adeno-Associated Viral Vector Gene Transfer in Mid-Gestation Fetal Sheep. PLoS ONE, 2017, 12, e0171132.	1.1	22
794	Gene Transfer in Spinal Muscular Atrophy. , 2017, , 313-323.		0
795	Hemophilic Arthropathy. , 2017, , 2007-2017.		2
796	Trends in orally viral vector gene delivery and therapy. , 2017, , 123-146.		2
797	Hemophilia gene therapy comes of age. Blood Advances, 2017, 1, 2591-2599.	2.5	55
798	CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells. Korean Journal of Internal Medicine, 2017, 32, 42-61.	0.7	45
800	Inhibition of hepatitis B virus replication via HBV DNA cleavage by Cas9 from Staphylococcus aureus. Antiviral Research, 2018, 152, 58-67.	1.9	65
801	Oligonucleotide conjugated multi-functional adeno-associated viruses. Scientific Reports, 2018, 8, 3589.	1.6	40
802	Principles of haemophilia care: The Asiaâ€Pacific perspective. Haemophilia, 2018, 24, 366-375.	1.0	15
803	Hemophilia gene therapy is effective and safe. Blood, 2018, 131, 952-953.	0.6	4

#	Article	IF	CITATIONS
804	Influence of Pre-existing Anti-capsid Neutralizing and Binding Antibodies on AAV Vector Transduction. Molecular Therapy - Methods and Clinical Development, 2018, 9, 119-129.	1.8	125
805	A Novel Approach to the Treatment of Plasma Protein Deficiency: <i>Ex Vivo</i> -Manipulated Adipocytes for Sustained Secretion of Therapeutic Proteins. Chemical and Pharmaceutical Bulletin, 2018, 66, 217-224.	0.6	7
806	Assessment of Humoral, Innate, and T-Cell Immune Responses to Adeno-Associated Virus Vectors. Human Gene Therapy Methods, 2018, 29, 86-95.	2.1	46
807	Designer nucleaseâ€mediated gene correction via homologyâ€directed repair in an <i>in vitro</i> model of canine hemophilia B. Journal of Gene Medicine, 2018, 20, e3020.	1.4	12
808	Assessment of humoral, innate, and T-cell immune responses to adeno-associated virus vectors. Human Gene Therapy Methods, 0, , .	2.1	2
809	AAV8 virions hijack serum proteins to increase hepatocyte binding for transduction enhancement. Virology, 2018, 518, 95-102.	1.1	19
810	Platelet-Targeted Gene Therapy for Hemophilia. Molecular Therapy - Methods and Clinical Development, 2018, 9, 100-108.	1.8	29
811	Single Intramuscular Injection of AAV-shRNA Reduces DNM2 and Prevents Myotubular Myopathy in Mice. Molecular Therapy, 2018, 26, 1082-1092.	3.7	35
812	Gene Therapy for Hemophilia and Duchenne Muscular Dystrophy in China. Human Gene Therapy, 2018, 29, 146-150.	1.4	5
813	Severe Toxicity in Nonhuman Primates and Piglets Following High-Dose Intravenous Administration of an Adeno-Associated Virus Vector Expressing Human SMN. Human Gene Therapy, 2018, 29, 285-298.	1.4	543
814	Novel therapies and current clinical progress in hemophilia A. Therapeutic Advances in Hematology, 2018, 9, 49-61.	1.1	36
815	Programming gene and engineered-cell therapies with synthetic biology. Science, 2018, 359, .	6.0	180
816	Target-Cell-Directed Bioengineering Approaches for Gene Therapy of Hemophilia A. Molecular Therapy - Methods and Clinical Development, 2018, 9, 57-69.	1.8	31
817	An Alternate Route for Adeno-associated Virus (AAV) Entry Independent of AAV Receptor. Journal of Virology, 2018, 92, .	1.5	77
818	Recent advances in developing specific therapies for haemophilia. British Journal of Haematology, 2018, 181, 161-172.	1.2	32
819	Emerging Issues in AAV-Mediated InÂVivo Gene Therapy. Molecular Therapy - Methods and Clinical Development, 2018, 8, 87-104.	1.8	578
820	Universal Method for the Purification of Recombinant AAV Vectors of Differing Serotypes. Molecular Therapy - Methods and Clinical Development, 2018, 9, 33-46.	1.8	88
821	Targeted mRNA Therapy for Ornithine Transcarbamylase Deficiency. Molecular Therapy, 2018, 26, 801-813.	3.7	95

		CITATION RE	IPORT	
#	Article		IF	CITATIONS
822	A novel and highly efficient AAV6 mutant. Virus Genes, 2018, 54, 165-171.		0.7	0
823	Gene Therapy with BMN 270 Results in Therapeutic Levels of FVIII in Mice and Primate Normalization of Bleeding in Hemophilic Mice. Molecular Therapy, 2018, 26, 496-509.		3.7	52
824	A contemporary look at FVIII inhibitor development: still a great influence on the evolu hemophilia therapies. Expert Review of Hematology, 2018, 11, 87-97.	tion of	1.0	14
825	CRISPR/Cas9 therapeutics for liver diseases. Journal of Cellular Biochemistry, 2018, 11	9, 4265-4278.	1.2	9
826	Gene therapy comes of age. Science, 2018, 359, .		6.0	936
827	Inhibition of antigen presentation during AAV gene therapy using virus peptides. Huma Genetics, 2018, 27, 601-613.	an Molecular	1.4	14
828	Autologous and Heterologous Cell Therapy for Hemophilia B toward Functional Restor Factor IX. Cell Reports, 2018, 23, 1565-1580.	ation of	2.9	27
829	<i>In Vivo</i> Potency Assay for Adeno-Associated Virus–Based Gene Therapy Vectors as an Example. Human Gene Therapy Methods, 2018, 29, 146-155.	ors Using AAVrh.10	2.1	18
830	Update in Pediatric Hematology. , 2018, , 313-330.			0
831	A golden age for Haemophilia treatment?. Haemophilia, 2018, 24, 175-176.		1.0	12
832	AAV6 K531 serves a dual function in selective receptor and antibody ADK6 recognitior 518, 369-376.	ı. Virology, 2018,	1.1	20
833	In Utero Transplantation of Placenta-Derived Mesenchymal Stromal Cells for Potential Treatment of Hemophilia A. Cell Transplantation, 2018, 27, 130-139.	Fetal	1.2	19
834	Gene therapy clinical trials worldwide to 2017: An update. Journal of Gene Medicine, 2	018, 20, e3015.	1.4	612
835	Practical Implications of Factor IX Gene Transfer for Individuals with Hemophilia B: A C Perspective. Human Gene Therapy Clinical Development, 2018, 29, 80-89.	linical	3.2	10
836	Mutagenic Analysis of an Adeno-Associated Virus Variant Capable of Simultaneously P Immune Resistance and Robust Gene Delivery. Human Gene Therapy, 2018, 29, 25-41.		1.4	6
837	Current strides in AAV-derived vectors and SIN channels further relieves the limitations therapy. Egyptian Journal of Medical Human Genetics, 2018, 19, 69-75.	of gene	0.5	0
838	Gene therapy for hemophilia. Pediatric Blood and Cancer, 2018, 65, e26865.		0.8	30
839	Immunity to CRISPR Cas9 and Cas12a therapeutics. Wiley Interdisciplinary Reviews: Sy Medicine, 2018, 10, e1408.	ystems Biology and	6.6	96

#	Article	IF	CITATIONS
840	Bioengineered AAV Capsids with Combined High Human Liver Transduction InÂVivo and Unique Humoral Seroreactivity. Molecular Therapy, 2018, 26, 289-303.	3.7	130
841	Lancet Commission: Stem cells and regenerative medicine. Lancet, The, 2018, 391, 883-910.	6.3	184
842	Advancements in the design and scalable production of viral gene transfer vectors. Biotechnology and Bioengineering, 2018, 115, 25-40.	1.7	45
843	MicroRNA 122, Regulated by GRLH2, Protects Livers of Mice andÂPatients From Ethanol-Induced Liver Disease. Gastroenterology, 2018, 154, 238-252.e7.	0.6	128
844	Engineering Protein-Secreting Plasma Cells by Homology-Directed Repair in Primary Human B Cells. Molecular Therapy, 2018, 26, 456-467.	3.7	92
845	Hepatic Parenchymal Injury in Criglerâ€Najjar Type I. Journal of Pediatric Gastroenterology and Nutrition, 2018, 66, 588-594.	0.9	20
846	Gene therapy with adeno-associated virus vector 5–human factor IX in adults with hemophilia B. Blood, 2018, 131, 1022-1031.	0.6	236
847	Gene Therapy for Hemophilia: Progress to Date. BioDrugs, 2018, 32, 9-25.	2.2	18
848	Delivery of Adeno-Associated Virus Vectors in Adult Mammalian Inner-Ear Cell Subtypes Without Auditory Dysfunction. Human Gene Therapy, 2018, 29, 492-506.	1.4	64
849	Extracellular vesicles: nature's nanoparticles for improving gene transfer with adenoâ€associated virus vectors. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1488.	3.3	29
850	Gene Therapy in Hemophilia: From Hype to Hope. HemaSphere, 2018, 2, e37.	1.2	0
851	Double-stranded RNA innate immune response activation from long-term adeno-associated virus vector transduction. JCl Insight, 2018, 3, .	2.3	74
852	Site-Specific N-Glycosylation on the AAV8 Capsid Protein. Viruses, 2018, 10, 644.	1.5	31
854	Navigating Speed Bumps on the Innovation Highway in Hemophilia Therapeutics. HemaSphere, 2018, 2, e144.	1.2	6
855	Tolerance induction in hemophilia. Current Opinion in Hematology, 2018, 25, 365-372.	1.2	14
856	Patient-Specific iPSC-Derived Endothelial Cells Provide Long-Term Phenotypic Correction of Hemophilia A. Stem Cell Reports, 2018, 11, 1391-1406.	2.3	46
857	Adeno-Associated Virus Neutralizing Antibodies in Large Animals and Their Impact on Brain Intraparenchymal Gene Transfer. Molecular Therapy - Methods and Clinical Development, 2018, 11, 65-72.	1.8	38
858	Development of a Novel Recombinant Adeno-Associated Virus Production System Using Human Bocavirus 1 Helper Genes. Molecular Therapy - Methods and Clinical Development, 2018, 11, 40-51.	1.8	21

#	Article	IF	CITATIONS
859	Patients with rare diseases: from therapeutic orphans to pioneers of personalized treatments. EMBO Molecular Medicine, 2018, 10, 1-3.	3.3	53
860	Highly Efficient Ultracentrifugation-free Chromatographic Purification of Recombinant AAV Serotype 9. Molecular Therapy - Methods and Clinical Development, 2018, 11, 180-190.	1.8	35
861	Vectored delivery of anti-SIV envelope targeting mAb via AAV8 protects rhesus macaques from repeated limiting dose intrarectal swarm SIVsmE660 challenge. PLoS Pathogens, 2018, 14, e1007395.	2.1	37
862	Spring Forward: ESGCT Trains the Next Generation of Gene and Cell Therapists. Human Gene Therapy, 2018, 29, 1074-1075.	1.4	1
863	Antigen-selective modulation of AAV immunogenicity with tolerogenic rapamycin nanoparticles enables successful vector re-administration. Nature Communications, 2018, 9, 4098.	5.8	184
864	Self-complementary and tyrosine-mutant rAAV vectors enhance transduction in cystic fibrosis bronchial epithelial cells. Experimental Cell Research, 2018, 372, 99-107.	1.2	5
865	Gene and Cell Therapy: Tearing Down Walls. Human Gene Therapy, 2018, 29, 1071-1073.	1.4	0
866	Evaluation of the activity levels of rat FVIII and human FVIII delivered by adeno-associated viral vectors both in vitro and in vivo. Blood Cells, Molecules, and Diseases, 2018, 73, 47-54.	0.6	4
867	Muscle Atrophy: Present and Future. Advances in Experimental Medicine and Biology, 2018, 1088, 605-624.	0.8	45
868	Development of a Chemiluminescent ELISA Method for the Detection of Total Anti-Adeno Associated Virus Serotype 9 (AAV9) Antibodies. Human Gene Therapy Methods, 2018, 29, 237-250.	2.1	15
869	Safe and effective superoxide dismutase 1 silencing using artificial microRNA in macaques. Science Translational Medicine, 2018, 10, .	5.8	59
870	Genetic Strategies for HIV Treatment and Prevention. Molecular Therapy - Nucleic Acids, 2018, 13, 514-533.	2.3	16
871	HIV Entry and Its Inhibition by Bifunctional Antiviral Proteins. Molecular Therapy - Nucleic Acids, 2018, 13, 347-364.	2.3	10
872	AAV serotype 8-mediated liver specific GNMT expression delays progression of hepatocellular carcinoma and prevents carbon tetrachloride-induced liver damage. Scientific Reports, 2018, 8, 13802.	1.6	15
873	Human Cardiac Gene Therapy. Circulation Research, 2018, 123, 601-613.	2.0	75
875	Viral- and Non-viral-Based Hybrid Vectors for Gene Therapy. , 2018, , 111-130.		2
876	Emerging therapies for hemophilia: controversies and unanswered questions. F1000Research, 2018, 7, 489.	0.8	29
877	Homocysteine-lowering gene therapy rescues signaling pathways in brain of mice with intermediate hyperhomocysteinemia. Redox Biology, 2018, 19, 200-209.	3.9	18

ARTICLE IF CITATIONS Adeno-associated virus-mediated delivery of CRISPR-Cas9 for genome editing in the central nervous 878 1.8 13 system. Current Opinion in Biomedical Engineering, 2018, 7, 33-41. Liver-secreted RBP4 does not impair glucose homeostasis in mice. Journal of Biological Chemistry, 879 1.6 2018, 293, 15269-15276. Complete correction of hemophilia B phenotype by FIX-Padua skeletal muscle gene therapy in an 880 2.5 21 inhibitor-prone dog model. Blood Advances, 2018, 2, 505-508. Homologous recombination mediates stable Fah gene integration and phenotypic correction in tyrosinaemia mouse-model. World Journal of Hepatology, 2018, 10, 277-286. Blood-brain barrier shuttle peptides enhance AAV transduction in the brain after systemic 882 5.7 46 administration. Biomaterials, 2018, 176, 71-83. Cre Recombinase Mediates the Removal of Bacterial Backbone to Efficiently Generate rSV40. Molecular 1.8 Therapy - Methods and Clinical Development, 2018, 9, 225-233. 884 Evolving Complexity in Hemophilia Management. Pediatric Clinics of North America, 2018, 65, 407-425. 0.9 10 Translational Aspects of Adeno-Associated Virus–Mediated Cardiac Gene Therapy. Human Gene Therapy, 885 1.4 2018, 29, 1341-1351. Development of Methods for the Selective Measurement of the Single Amino Acid Exchange Variant 886 1.8 8 Coagulation Factor IX Padua. Molecular Therapy - Methods and Clinical Development, 2018, 10, 29-37. Efficient CRISPR/Cas9-mediated editing of trinucleotide repeat expansion in myotonic dystrophy 6.5 patient-derived iPS and myogenic cells. Nucleic Acids Research, 2018, 46, 8275-8298. Development and testing of AAV-delivered single-chain variable fragments for the treatment of 888 1.1 5 methamphetamine abuse. PLoS ONE, 2018, 13, e0200060. 889 The rapidly evolving state of gene therapy. FASEB Journal, 2018, 32, 1733-1740. Thymosin \hat{I}^2 4-mediated protective effects in the heart. Expert Opinion on Biological Therapy, 2018, 18, 890 1.4 13 121-129. Serotype survey of AAV gene delivery via subconjunctival injection in mice. Gene Therapy, 2018, 25, 2.3 402-414 Hemophilia B., 2018, , 139-160. 892 5 Centronuclear myopathies under attack: A plethora of therapeutic targets. Journal of Neuromuscular 34 Diseases, 2018, 5, 387-406. 894 Transfusion Therapy for Coagulation Factor Deficiencies., 2018, , 1769-1780.e3. 0 Longâ€term complications of glycogen storage disease type Ia in the canine model treated with gene 895 replacement therapy. Journal of Inherited Metabolic Disease, 2018, 41, 965-976.

#	Article	IF	CITATIONS
896	Gene Therapy: Use of Viruses as Vectors. , 2018, , .		2
897	Gene Therapy With Regulatory T Cells: A Beneficial Alliance. Frontiers in Immunology, 2018, 9, 554.	2.2	30
898	Efficient Capsid Antigen Presentation From Adeno-Associated Virus Empty Virions In Vivo. Frontiers in Immunology, 2018, 9, 844.	2.2	20
899	Haemophilia clinical care and research needs: Assessing priorities. Haemophilia, 2018, 24, e270-e273.	1.0	0
900	Advances in understanding disease mechanisms and potential treatments for Crigler–Najjar syndrome. Expert Opinion on Orphan Drugs, 2018, 6, 425-439.	0.5	17
901	Meganuclease targeting of PCSK9 in macaque liver leads to stable reduction in serum cholesterol. Nature Biotechnology, 2018, 36, 717-725.	9.4	95
902	A Recombinant Baculovirus Efficiently Generates Recombinant Adeno-Associated Virus Vectors in Cultured Insect Cells and Larvae. Molecular Therapy - Methods and Clinical Development, 2018, 10, 38-47.	1.8	27
903	Optogenetic surface stimulation of the rat cervical spinal cord. Journal of Neurophysiology, 2018, 120, 795-811.	0.9	19
904	Angiotensin 1-7 Overexpression Mediated by a Capsid-optimized AAV8 Vector Leads to Significant Growth Inhibition of Hepatocellular Carcinoma <i>In vivo</i> . International Journal of Biological Sciences, 2018, 14, 57-68.	2.6	15
905	An Observational Study from Long-Term AAV Re-administration in Two Hemophilia Dogs. Molecular Therapy - Methods and Clinical Development, 2018, 10, 257-267.	1.8	28
906	Foamy Virus Vectors Transduce Visceral Organs and Hippocampal Structures following InÂVivo Delivery to Neonatal Mice. Molecular Therapy - Nucleic Acids, 2018, 12, 626-634.	2.3	7
907	Gene therapy for hemophilia: what does the future hold?. Therapeutic Advances in Hematology, 2018, 9, 273-293.	1.1	79
908	Characterization of Recombinant Adeno-Associated Viral Transduction and Safety Profiles in Cardiomyocytes. Cellular Physiology and Biochemistry, 2018, 48, 1894-1900.	1.1	11
909	Haemophilia gene therapy: From trailblazer to gamechanger. Haemophilia, 2018, 24, 50-59.	1.0	21
910	Optimized Adeno-Associated Viral-Mediated Human Factor VIII Gene Therapy in Cynomolgus Macaques. Human Gene Therapy, 2018, 29, 1364-1375.	1.4	18
911	Advances and innovations in haemophilia treatment. Nature Reviews Drug Discovery, 2018, 17, 493-508.	21.5	81
912	Past, present and future of haemophilia gene therapy: From vectors and transgenes to known and unknown outcomes. Haemophilia, 2018, 24, 60-67.	1.0	35
913	Emerging therapies for haemophilia ―Global perspective. Haemophilia, 2018, 24, 15-21.	1.0	24

#	Article	IF	CITATIONS
914	Potentials of CRISPR in liver research and therapy. Clinics and Research in Hepatology and Gastroenterology, 2019, 43, 5-11.	0.7	6
915	Delivery of Glucosylceramidase Beta Gene Using AAV9 Vector Therapy as a Treatment Strategy in Mouse Models of Gaucher Disease. Human Gene Therapy, 2019, 30, 155-167.	1.4	16
916	Prenatal Cell- and Gene-Based Therapies for Regenerative Medicine. , 2019, , 1009-1027.		2
917	Adeno-Associated Virus (AAV)-Mediated Gene Therapy for Disorders of Inherited and Non-Inherited Origin. , 2019, , .		2
918	AAV-ie enables safe and efficient gene transfer to inner ear cells. Nature Communications, 2019, 10, 3733.	5.8	136
919	In Utero Gene Therapy (IUGT) Using GLOBE Lentiviral Vector Phenotypically Corrects the Heterozygous Humanised Mouse Model and Its Progress Can Be Monitored Using MRI Techniques. Scientific Reports, 2019, 9, 11592.	1.6	15
920	Molecular characterization of novel Adeno-associated virus variants infecting human tissues. Virus Research, 2019, 272, 197716.	1.1	3
921	Dual <i>ABCA4</i> -AAV Vector Treatment Reduces Pathogenic Retinal A2E Accumulation in a Mouse Model of Autosomal Recessive Stargardt Disease. Human Gene Therapy, 2019, 30, 1361-1370.	1.4	38
922	Current status and future prospects of virus-based gene medicine. Drug Delivery System, 2019, 34, 99-105.	0.0	0
923	Gene Therapy for Pompe Disease: The Time is now. Human Gene Therapy, 2019, 30, 1245-1262.	1.4	20
924	Gene therapy of hematological disorders: current challenges. Gene Therapy, 2019, 26, 296-307.	2.3	8
925	Competing Endogenous RNAs in Hepatocellular Carcinoma—The Pinnacle of Rivalry. Seminars in Liver Disease, 2019, 39, 463-475.	1.8	8
926	Clinical advances in gene therapy updates on clinical trials of gene therapy in haemophilia. Haemophilia, 2019, 25, 738-746.	1.0	57
927	Recombinant Adeno-Associated Virus Gene Therapy in Light of Luxturna (and Zolgensma and Glybera): Where Are We, and How Did We Get Here?. Annual Review of Virology, 2019, 6, 601-621.	3.0	217
928	Infectivity Assessment of Recombinant Adeno-Associated Virus and Wild-Type Adeno-Associated Virus Exposed to Various Diluents and Environmental Conditions. Human Gene Therapy Methods, 2019, 30, 137-143.	2.1	8
929	Challenges of Gene Therapy for the Treatment of Glycogen Storage Diseases Type I and Type III. Human Gene Therapy, 2019, 30, 1263-1273.	1.4	16
930	Gene Therapy. New England Journal of Medicine, 2019, 381, 455-464.	13.9	343
931	Illustrated Stateâ€ofâ€ŧheâ€Art Capsules of the ISTH 2019 Congress in Melbourne, Australia. Research and Practice in Thrombosis and Haemostasis, 2019, 3, 431-497.	1.0	11

#	Article	IF	CITATIONS
932	Optogenetics in Brain Research: From a Strategy to Investigate Physiological Function to a Therapeutic Tool. Photonics, 2019, 6, 92.	0.9	22
933	Enhanced Factor IX Activity following Administration of AAV5-R338L "Padua―Factor IX versus AAV5 WT Human Factor IX in NHPs. Molecular Therapy - Methods and Clinical Development, 2019, 15, 221-231.	1.8	19
934	Gene therapy for hemophilia: Progress to date and challenges moving forward. Transfusion and Apheresis Science, 2019, 58, 602-612.	0.5	23
935	microRNAs as therapeutic targets in intestinal diseases. ExRNA, 2019, 1, .	1.0	18
936	Recombinant Adeno-Associated Viral Vectors Expressing Human Coagulation FIX-E456H Variant in Hemophilia B Mice. Thrombosis and Haemostasis, 2019, 119, 1956-1967.	1.8	8
937	Hemophilia A ameliorated in mice by CRISPR-based in vivo genome editing of human Factor VIII. Scientific Reports, 2019, 9, 16838.	1.6	46
938	Gene Therapy: Principles and Clinical Potential. , 2019, , 540-560.		0
939	Rational Engineering and Preclinical Evaluation of Neddylation and SUMOylation Site Modified Adeno-Associated Virus Vectors in Murine Models of Hemophilia B and Leber Congenital Amaurosis. Human Gene Therapy, 2019, 30, 1461-1476.	1.4	16
940	cis Elements that Mediate RNA Polymerase II Pausing Regulate Human Gene Expression. American Journal of Human Genetics, 2019, 105, 677-688.	2.6	26
941	<i>In Vivo</i> Gene Therapy for Mucopolysaccharidosis Type III (Sanfilippo Syndrome): A New Treatment Horizon. Human Gene Therapy, 2019, 30, 1211-1221.	1.4	25
942	Transduction of Craniofacial Motoneurons Following Intramuscular Injections of Canine Adenovirus Type-2 (CAV-2) in Rhesus Macaques. Frontiers in Neuroanatomy, 2019, 13, 84.	0.9	8
943	Clinical Considerations for Capsid Choice in the Development of Liver-Targeted AAV-Based Gene Transfer. Molecular Therapy - Methods and Clinical Development, 2019, 15, 170-178.	1.8	55
944	Current Status on Clinical Development of Adeno-Associated Virus-Mediated Liver-Directed Gene Therapy for Inborn Errors of Metabolism. Human Gene Therapy, 2019, 30, 1204-1210.	1.4	22
945	Gene therapy trials for haemophilia: a step closer to a cure?. Expert Review of Precision Medicine and Drug Development, 2019, 4, 259-262.	0.4	3
946	Superior human hepatocyte transduction with adeno-associated virus vector serotype 7. Gene Therapy, 2019, 26, 504-514.	2.3	13
947	Viral Vector-Based Delivery of CRISPR/Cas9 and Donor DNA for Homology-Directed Repair in an InÂVitro Model for Canine Hemophilia B. Molecular Therapy - Nucleic Acids, 2019, 14, 364-376.	2.3	36
948	Safety and efficacy evaluations of an adeno-associated virus variant for preparing IL10-secreting human neural stem cell-based therapeutics. Gene Therapy, 2019, 26, 135-150.	2.3	5
949	Adeno-associated Virus (AAV) versus Immune Response. Viruses, 2019, 11, 102.	1.5	94

#	Article	IF	CITATIONS
950	Adeno-associated virus vector as a platform for gene therapy delivery. Nature Reviews Drug Discovery, 2019, 18, 358-378.	21.5	1,267
951	Optimization of Dexamethasone Administration for Maintaining Global Transduction Efficacy of Adeno-Associated Virus Serotype 9. Human Gene Therapy, 2019, 30, 829-840.	1.4	15
952	Protein-Engineered Coagulation Factors for Hemophilia Gene Therapy. Molecular Therapy - Methods and Clinical Development, 2019, 12, 184-201.	1.8	39
953	Preclinical Development of an AAV8-hUGT1A1 Vector for the Treatment of Crigler-Najjar Syndrome. Molecular Therapy - Methods and Clinical Development, 2019, 12, 157-174.	1.8	45
954	The Impact of Pre-existing Immunity on the Non-clinical Pharmacodynamics of AAV5-Based Gene Therapy. Molecular Therapy - Methods and Clinical Development, 2019, 13, 440-452.	1.8	57
955	RNA-based diagnostic and therapeutic strategies for cardiovascular disease. Nature Reviews Cardiology, 2019, 16, 661-674.	6.1	218
956	How to discuss gene therapy for haemophilia? A patient and physician perspective. Haemophilia, 2019, 25, 545-557.	1.0	54
957	An update on gene therapy for lysosomal storage disorders. Expert Opinion on Biological Therapy, 2019, 19, 655-670.	1.4	38
958	Gene Therapy in Pediatric Liver Disease. , 2019, , 799-829.		2
959	Threshold for Pre-existing Antibody Levels Limiting Transduction Efficiency of Systemic rAAV9 Gene Delivery: Relevance for Translation. Molecular Therapy - Methods and Clinical Development, 2019, 13, 453-462.	1.8	18
960	Targeted Treatment of Individuals With Psychosis Carrying a Copy Number Variant Containing a Genomic Triplication of the Glycine Decarboxylase Gene. Biological Psychiatry, 2019, 86, 523-535.	0.7	32
961	Gene Therapy: Paving New Roads in the Treatment of Hemophilia. Seminars in Thrombosis and Hemostasis, 2019, 45, 743-750.	1.5	13
962	Adenovirusâ€associated antibodies in UK cohort of hemophilia patients: A seroprevalence study of the presence of adenovirusâ€associated virus vector–serotypes AAV5 and AAV8 neutralizing activity and antibodies in patients with hemophilia A. Research and Practice in Thrombosis and Haemostasis, 2019, 3, 261-267.	1.0	36
963	Gene Therapy Leaves a Vicious Cycle. Frontiers in Oncology, 2019, 9, 297.	1.3	236
964	Oracle or false prophet? Can we predict AAV efficacy based on preexisting antibody titers?. Research and Practice in Thrombosis and Haemostasis, 2019, 3, 149-151.	1.0	2
965	Hepatocyte transplantation, a step forward?. Journal of Hepatology, 2019, 70, 1049-1050.	1.8	11
966	Adeno-associated virus as a gene therapy vector: strategies to neutralize the neutralizing antibodies. Clinical and Experimental Medicine, 2019, 19, 289-298.	1.9	20
968	The long non-coding road to endogenous cardiac regeneration. Heart Failure Reviews, 2019, 24, 587-600.	1.7	5

#	Article	IF	CITATIONS
969	Adeno-associated virus vectored immunoprophylaxis to prevent HIV in healthy adults: a phase 1 randomised controlled trial. Lancet HIV,the, 2019, 6, e230-e239.	2.1	84
970	Therapeutic AAV Gene Transfer to the Nervous System: A Clinical Reality. Neuron, 2019, 101, 839-862.	3.8	234
971	AAV <i>cis</i> -regulatory sequences are correlated with ocular toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5785-5794.	3.3	158
972	Suppression of Choroidal Neovascularization by AAV-Based Dual-Acting Antiangiogenic Gene Therapy. Molecular Therapy - Nucleic Acids, 2019, 16, 38-50.	2.3	47
973	AAV-Mig-6 Increase the Efficacy of TAE in VX2 Rabbit Model, Is Associated With JNK Mediated Autophagy. Journal of Cancer, 2019, 10, 1060-1069.	1.2	3
974	Next Generation of Adeno-Associated Virus Vectors for Gene Therapy for Human Liver Diseases. Gastroenterology Clinics of North America, 2019, 48, 319-330.	1.0	16
975	CRISPR/Cas9-mediated in vivo gene targeting corrects hemostasis in newborn and adult factor IX–knockout mice. Blood, 2019, 133, 2745-2752.	0.6	57
976	Hemophilia in a Changing Treatment Landscape. Hematology/Oncology Clinics of North America, 2019, 33, 409-423.	0.9	21
977	Messenger RNA therapy for rare genetic metabolic diseases. Gut, 2019, 68, 1323-1330.	6.1	76
978	Engineering the AAV capsid to evade immune responses. Current Opinion in Biotechnology, 2019, 60, 99-103.	3.3	64
979	Detection of Biologically Relevant Low-Titer Neutralizing Antibodies Against Adeno-Associated Virus Require Sensitive <i>In Vitro</i> Assays. Human Gene Therapy Methods, 2019, 30, 35-43.	2.1	23
980	Adeno-associated virus 2 bound to its cellular receptor AAVR. Nature Microbiology, 2019, 4, 675-682.	5.9	76
981	Capsid Modifications for Targeting and Improving the Efficacy of AAV Vectors. Molecular Therapy - Methods and Clinical Development, 2019, 12, 248-265.	1.8	168
982	Adeno-Associated Virus Vectors. Methods in Molecular Biology, 2019, , .	0.4	2
983	Production, Purification, and Quality Control for Adeno-associated Virus-based Vectors. Journal of Visualized Experiments, 2019, , .	0.2	21
984	AAV-Mediated Gene Delivery to the Liver: Overview of Current Technologies and Methods. Methods in Molecular Biology, 2019, 1950, 333-360.	0.4	22
985	Liver targeted gene therapy: Insights into emerging therapies. Drug Discovery Today: Technologies, 2019, 34, 9-19.	4.0	3
986	On the Use of Optogenetics Wireless Systems in Modern Pathology: Opportunities and Challenges. , 2019, , .		0

#	Article	IF	CITATIONS
988	Gene-based FVIIa prophylaxis modulates the spontaneous bleeding phenotype of hemophilia A rats. Blood Advances, 2019, 3, 301-311.	2.5	5
989	Immunoadsorption enables successful rAAV5-mediated repeated hepatic gene delivery in nonhuman primates. Blood Advances, 2019, 3, 2632-2641.	2.5	41
990	Etranacogene dezaparvovec (AMT-061 phase 2b): normal/near normal FIX activity and bleed cessation in hemophilia B. Blood Advances, 2019, 3, 3241-3247.	2.5	85
991	Advances of adeno-associated virus applied in gene therapy to hemophilia from bench work to the clinical use. Blood Science, 2019, 1, 130-136.	0.4	1
992	Molecular Dynamics Simulation Reveals Exposed Residues in the Ligand-Binding Domain of the Low-Density Lipoprotein Receptor that Interacts with Vesicular Stomatitis Virus-G Envelope. Viruses, 2019, 11, 1063.	1.5	4
993	Gene Therapy for Liver Cancers: Current Status from Basic to Clinics. Cancers, 2019, 11, 1865.	1.7	28
994	A User's Guide to the Inverted Terminal Repeats of Adeno-Associated Virus. Human Gene Therapy Methods, 2019, 30, 206-213.	2.1	33
995	SHMT2 Promotes Liver Regeneration Through Glycine-activated Akt/mTOR Pathway. Transplantation, 2019, 103, e188-e197.	0.5	15
996	Rare bleeding disorders and advances in gene therapy. Blood Coagulation and Fibrinolysis, 2019, 30, 371-378.	0.5	1
997	Chimeric Capsid Proteins Impact Transduction Efficiency of Haploid Adeno-Associated Virus Vectors. Viruses, 2019, 11, 1138.	1.5	4
998	AAV Gene Transfer with Tandem Promoter Design Prevents Anti-transgene Immunity and Provides Persistent Efficacy in Neonate Pompe Mice. Molecular Therapy - Methods and Clinical Development, 2019, 12, 85-101.	1.8	52
999	Update on clinical gene therapy for hemophilia. Blood, 2019, 133, 407-414.	0.6	140
1000	Codon-Optimization of Wild-Type Adeno-Associated Virus Capsid Sequences Enhances DNA Family Shuffling while Conserving Functionality. Molecular Therapy - Methods and Clinical Development, 2019, 12, 71-84.	1.8	22
1001	Entering the Modern Era of Gene Therapy. Annual Review of Medicine, 2019, 70, 273-288.	5.0	311
1002	Intrathecal Adeno-Associated Viral Vector-Mediated Gene Delivery for Adrenomyeloneuropathy. Human Gene Therapy, 2019, 30, 544-555.	1.4	21
1003	Potential limits of AAVâ€based gene therapy with the use of new transgenes expressing factor IX fusion proteins. Haemophilia, 2019, 25, e11-e18.	1.0	3
1004	Immunosuppression overcomes insulin- and vector-specific immune responses that limit efficacy of AAV2/8-mediated insulin gene therapy in NOD mice. Gene Therapy, 2019, 26, 40-56.	2.3	8
1005	Therapeutic expression of human clotting factors IX and × following adenoâ€associated viral vectorâ€mediated intrauterine gene transfer in earlyâ€gestation fetal macaques. FASEB Journal, 2019, 33, 3954-3967.	0.2	21

#	Article	IF	CITATIONS
1006	Gene Therapy for Neoplastic Hematology in Transplant Setting. Advances and Controversies in Hematopoietic Transplantation and Cell Therapy, 2019, , 245-264.	0.0	0
1007	Prevalence and long-term monitoring of humoral immunity against adeno-associated virus in Duchenne Muscular Dystrophy patients. Cellular Immunology, 2019, 342, 103780.	1.4	33
1008	Gene therapy for neurological disorders: challenges and recent advancements. Journal of Drug Targeting, 2020, 28, 111-128.	2.1	46
1009	Advances in gene therapy for hemophilia: basis, current status, and future perspectives. International Journal of Hematology, 2020, 111, 31-41.	0.7	36
1010	No light without the dark: Perspectives and hindrances for translation of cardiac optogenetics. Progress in Biophysics and Molecular Biology, 2020, 154, 39-50.	1.4	13
1011	Distinct transduction of muscle tissue in mice after systemic delivery of AAVpo1 vectors. Gene Therapy, 2020, 27, 170-179.	2.3	8
1012	Fetal Gene Therapy. , 2020, , 560-571.e2.		0
1013	A rAAV2/6 Mutant with Enhanced Targeting for Mouse Retinal Müller Cells. Current Eye Research, 2020, 45, 64-71.	0.7	5
1014	The End of the Beginning: The Journey to Molecular Therapies for Spinal Muscular Atrophy. Pediatric Neurology, 2020, 102, 1-2.	1.0	1
1015	A Molecular Revolution in the Treatment of Hemophilia. Molecular Therapy, 2020, 28, 997-1015.	3.7	66
1016	Type I IFN Sensing by cDCs and CD4+ T Cell Help Are Both Requisite for Cross-Priming of AAV Capsid-Specific CD8+ T Cells. Molecular Therapy, 2020, 28, 758-770.	3.7	45
1017	Disease burden of Crigler–Najjar syndrome: Systematic review and future perspectives. Journal of Gastroenterology and Hepatology (Australia), 2020, 35, 530-543.	1.4	23
1018	Modulation of retinoid signaling: therapeutic opportunities in organ fibrosis and repair. , 2020, 205, 107415.		23
1019	Combining designer receptors exclusively activated by designer drugs and neuroimaging in experimental models: A powerful approach towards neurotheranostic applications. British Journal of Pharmacology, 2020, 177, 992-1002.	2.7	8
1020	AAV Vector Immunogenicity in Humans: A Long Journey to Successful Gene Transfer. Molecular Therapy, 2020, 28, 723-746.	3.7	363
1021	Immune Responses to Viral Gene Therapy Vectors. Molecular Therapy, 2020, 28, 709-722.	3.7	382
1022	The Effect of CpG Sequences on Capsid-Specific CD8+ T Cell Responses to AAV Vector Gene Transfer. Molecular Therapy, 2020, 28, 771-783.	3.7	44
1023	Prednisolone Does Not Regulate Factor VIII Expression in Mice Receiving AAV5-hFVIII-SQ: Valoctocogene Roxaparvovec. Molecular Therapy - Methods and Clinical Development, 2020, 17, 13-20.	1.8	7

#	Article	IF	CITATIONS
1024	Urocortin 2 Gene Transfer Improves Glycemic Control and Reduces Retinopathy and Mortality in Murine Insulin Deficiency. Molecular Therapy - Methods and Clinical Development, 2020, 17, 220-233.	1.8	6
1025	Immune Response Mechanisms against AAV Vectors in Animal Models. Molecular Therapy - Methods and Clinical Development, 2020, 17, 198-208.	1.8	57
1026	Adeno-associated viral vector-mediated immune responses: Understanding barriers to gene delivery. , 2020, 207, 107453.		108
1027	Systemic Safety of a Recombinant AAV8 Vector for Human Cocaine Hydrolase Gene Therapy: A Good Laboratory Practice Preclinical Study in Mice. Human Gene Therapy, 2020, 31, 70-79.	1.4	4
1028	Factor VIII: the protein, cloning its gene, synthetic factor and now – 35Âyears later – gene therapy; what happened in between?. British Journal of Haematology, 2020, 189, 400-407.	1.2	6
1029	Breaking the sound barrier: Towards next-generation AAV vectors for gene therapy of hearing disorders. Hearing Research, 2022, 413, 108092.	0.9	9
1030	Delivery Approaches for Therapeutic Genome Editing and Challenges. Genes, 2020, 11, 1113.	1.0	37
1031	Immune responses to retinal gene therapy using adeno-associated viral vectors – Implications for treatment success and safety. Progress in Retinal and Eye Research, 2021, 83, 100915.	7.3	105
1033	Engineered AAV8 capsid acquires heparin and AVB sepharose binding capacity but has altered in vivo transduction efficiency. Gene Therapy, 2023, 30, 236-244.	2.3	2
1034	Development of a Clinical Candidate AAV3 Vector for Gene Therapy of Hemophilia B. Human Gene Therapy, 2020, 31, 1114-1123.	1.4	19
1035	Blockade of the costimulatory CD28â€B7 family signal axis enables repeated application of AAV8 gene vectors. Journal of Thrombosis and Haemostasis, 2020, 18, 1075-1080.	1.9	9
1036	Towards Clinical Implementation of Adeno-Associated Virus (AAV) Vectors for Cancer Gene Therapy: Current Status and Future Perspectives. Cancers, 2020, 12, 1889.	1.7	36
1037	Timing of Intensive Immunosuppression Impacts Risk of Transgene Antibodies after AAV Gene Therapy in Nonhuman Primates. Molecular Therapy - Methods and Clinical Development, 2020, 17, 1129-1138.	1.8	34
1038	Advances in gene therapy for hemophilia. Journal of Biosciences, 2020, 45, 1.	0.5	2
1039	Gene therapy for global brain diseases: one small step for mice, one giant leap for humans. Brain, 2020, 143, 1964-1966.	3.7	1
1040	Quantitative Whole-Body Imaging of I-124-Labeled Adeno-Associated Viral Vector Biodistribution in Nonhuman Primates. Human Gene Therapy, 2020, 31, 1237-1259.	1.4	21
1041	In Situ Detection of Adeno-associated Viral Vector Genomes with SABER-FISH. Molecular Therapy - Methods and Clinical Development, 2020, 19, 376-386.	1.8	18
1042	Of rAAV and Men: From Genetic Neuromuscular Disorder Efficacy and Toxicity Preclinical Studies to Clinical Trials and Back. Journal of Personalized Medicine, 2020, 10, 258.	1.1	17

#	Article	IF	CITATIONS
1043	CRISPR-Cas9-Mediated InÂVivo Gene Integration at the Albumin Locus Recovers Hemostasis in Neonatal and Adult Hemophilia B Mice. Molecular Therapy - Methods and Clinical Development, 2020, 18, 520-531.	1.8	34
1044	The Evolution of Gene Therapy in the Treatment of Metabolic Liver Diseases. Genes, 2020, 11, 915.	1.0	3
1045	Lentiviral Hematopoietic Stem Cell Gene Therapy Rescues Clinical Phenotypes in a Murine Model of Pompe Disease. Molecular Therapy - Methods and Clinical Development, 2020, 18, 558-570.	1.8	11
1046	Development of AAV Variants with Human Hepatocyte Tropism and Neutralizing Antibody Escape Capacity. Molecular Therapy - Methods and Clinical Development, 2020, 18, 259-268.	1.8	20
1047	Effects of Thermally Induced Configuration Changes on rAAV Genome's Enzymatic Accessibility. Molecular Therapy - Methods and Clinical Development, 2020, 18, 328-334.	1.8	10
1048	AAV2/6 Gene Therapy in a Murine Model of Fabry Disease Results in Supraphysiological Enzyme Activity and Effective Substrate Reduction. Molecular Therapy - Methods and Clinical Development, 2020, 18, 607-619.	1.8	29
1049	The Evolution of Hemophilia Care: Clinical and Laboratory Advances, Opportunities, and Challenges. Hamostaseologie, 2020, 40, 311-321.	0.9	16
1050	Novel Lung Tropic Adeno-Associated Virus Capsids for Therapeutic Gene Delivery. Human Gene Therapy, 2020, 31, 996-1009.	1.4	5
1051	Use of a Hybrid Adeno-Associated Viral Vector Transposon System to Deliver the Insulin Gene to Diabetic NOD Mice. Cells, 2020, 9, 2227.	1.8	8
1052	Two-Plasmid Packaging System for Recombinant Adeno-Associated Virus. BioResearch Open Access, 2020, 9, 219-228.	2.6	12
1053	Systemic Delivery in Anti-aging Medicine: An Overview. Healthy Ageing and Longevity, 2020, , 3-37.	0.2	0
1054	Guest Editor: G. Castaman GENE THERAPY FOR HEMOPHILIA: FACTS AND QUANDARIES IN THE 21ST CENTURY. Mediterranean Journal of Hematology and Infectious Diseases, 2020, 12, e2020069.	0.5	18
1055	Bound Protein- and Peptide-Based Strategies for Adeno-Associated Virus Vector-Mediated Gene Therapy: Where Do We Stand Now?. Human Gene Therapy, 2020, 31, 1146-1154.	1.4	5
1056	Gene therapy to cure haemophilia: Is robust scientific inquiry the missing factor?. Haemophilia, 2020, 26, 931-933.	1.0	24
1057	Restoring the natural tropism of AAV2 vectors for human liver. Science Translational Medicine, 2020, 12, .	5.8	41
1058	Mosaicism in Human Health and Disease. Annual Review of Genetics, 2020, 54, 487-510.	3.2	48
1059	Activity of transgene-produced B-domain–deleted factor VIII in human plasma following AAV5 gene therapy. Blood, 2020, 136, 2524-2534.	0.6	48
1060	Beliefs and Values About Gene Therapy and In-Utero Gene Editing in Patients with Hemophilia and Their Relatives. Patient, 2020, 13, 633-642.	1.1	7

		TATION REPO	ORT	
#	Article		IF	CITATIONS
1061	Gene Editing and Genotoxicity: Targeting the Off-Targets. Frontiers in Genome Editing, 2020, 2, 6132	.52.	2.7	31
1062	Singleâ€domain antibodies targeting antithrombin reduce bleeding in hemophilic mice with or withou inhibitors. EMBO Molecular Medicine, 2020, 12, e11298.	ıt	3.3	20
1063	Characterization of AAV-Specific Affinity Ligands: Consequences for Vector Purification and Development Strategies. Molecular Therapy - Methods and Clinical Development, 2020, 19, 362-373.	:	1.8	29
1064	Minimal Essential Human Factor VIII Alterations Enhance Secretion and Gene Therapy Efficiency. Molecular Therapy - Methods and Clinical Development, 2020, 19, 486-495.		1.8	11
1065	Gene therapy for haemophilia. The Cochrane Library, 2020, 2020, CD010822.	:	1.5	5
1066	<p>The Patient Experience of Gene Therapy for Hemophilia: Qualitative Interviews with Trial Patients</p> . Patient Preference and Adherence, 2020, Volume 14, 767-770.		0.8	18
1067	Evading the AAV Immune Response in Mucopolysaccharidoses. International Journal of Molecular Sciences, 2020, 21, 3433.	:	1.8	4
1068	Towards the clinical translation of optogenetic skeletal muscle stimulation. Pflugers Archiv European Journal of Physiology, 2020, 472, 527-545.		1.3	12
1069	Viral-Mediated Gene Replacement Therapy in the Developing Central Nervous System: Current Status and Future Directions. Pediatric Neurology, 2020, 110, 5-19.	:	1.0	9
1070	A Small-Molecule-Responsive Riboswitch Enables Conditional Induction of Viral Vector-Mediated Gene Expression in Mice. ACS Synthetic Biology, 2020, 9, 1292-1305.		1.9	33
1071	CRISPR-based gene editing enables <i>FOXP3</i> gene repair in IPEX patient cells. Science Advances, 2020, 6, eaaz0571.		4.7	84
1072	Treating Bietti crystalline dystrophy in a high-fat diet-exacerbated murine model using gene therapy. Gene Therapy, 2020, 27, 370-382.		2.3	14
1073	Immunity-related GTPase induces lipophagy to prevent excess hepatic lipid accumulation. Journal of Hepatology, 2020, 73, 771-782.	:	1.8	34
1074	Subacute Liver Failure Following Gene Replacement Therapy for Spinal Muscular Atrophy Type 1. Journal of Pediatrics, 2020, 225, 252-258.e1.		0.9	79
1075	Assessment of Systemic Delivery of rAAVrh74.MHCK7.micro-dystrophin in Children With Duchenne Muscular Dystrophy. JAMA Neurology, 2020, 77, 1122.		4.5	226
1076	Creation of a High-Yield AAV Vector Production Platform in Suspension Cells Using a Design-of-Experiment Approach. Molecular Therapy - Methods and Clinical Development, 2020, 18, 312-320.		1.8	49
1077	Prophylaxis for hemophilia A without inhibitors: treatment options and considerations. Expert Review of Hematology, 2020, 13, 731-743.		1.0	16
1078	Modifiers of Adeno-Associated Virus-Mediated Gene Expression in Implication for Serotype-Universal Neutralizing Antibody Assay. Human Gene Therapy, 2020, 31, 1124-1131.		1.4	9

#	Article	IF	CITATIONS
1079	Development of an InÂVitro Biopotency Assay for an AAV8 Hemophilia B Gene Therapy Vector Suitable for Clinical Product Release. Molecular Therapy - Methods and Clinical Development, 2020, 17, 581-588.	1.8	9
1080	AAV3-miRNA vectors for growth suppression of human hepatocellular carcinoma cells in vitro and human liver tumors in a murine xenograft model in vivo. Gene Therapy, 2021, 28, 422-434.	2.3	14
1081	Viral vectors for gene delivery to the inner ear. Hearing Research, 2020, 394, 107927.	0.9	26
1082	FVIII activity following FVIII protein infusion or FVIII gene transfer predicts the bleeding risk in hemophilia A rats. Journal of Thrombosis and Haemostasis, 2020, 18, 1586-1597.	1.9	2
1083	Hemophilia gene therapy knowledge and perceptions: Results of an international survey. Research and Practice in Thrombosis and Haemostasis, 2020, 4, 644-651.	1.0	14
1084	Pronounced Therapeutic Benefit of a Single Bidirectional AAV Vector Administered Systemically in Sandhoff Mice. Molecular Therapy, 2020, 28, 2150-2160.	3.7	16
1085	Methods Matter: Standard Production Platforms for Recombinant AAV Produce Chemically and Functionally Distinct Vectors. Molecular Therapy - Methods and Clinical Development, 2020, 18, 98-118.	1.8	80
1086	Long-Term Follow-Up of the First in Human Intravascular Delivery of AAV for Gene Transfer: AAV2-hFIX16 for Severe Hemophilia B. Molecular Therapy, 2020, 28, 2073-2082.	3.7	123
1087	Role of Essential Metal Ions in AAV Vector-Mediated Transduction. Molecular Therapy - Methods and Clinical Development, 2020, 18, 159-166.	1.8	9
1088	Rescue of Advanced Pompe Disease in Mice with Hepatic Expression of Secretable Acid α-Glucosidase. Molecular Therapy, 2020, 28, 2056-2072.	3.7	16
1089	Tetramer-Based Enrichment of Preexisting Anti-AAV8 CD8+ T Cells in Human Donors Allows the Detection of a TEMRA Subpopulation. Frontiers in Immunology, 2019, 10, 3110.	2.2	15
1090	rAAV-Mediated Cochlear Gene Therapy: Prospects and Challenges for Clinical Application. Journal of Clinical Medicine, 2020, 9, 589.	1.0	12
1091	Hemophilia therapy: the future has begun. Haematologica, 2020, 105, 545-553.	1.7	132
1092	High-Level Expression of Alkaline Phosphatase by Adeno-Associated Virus Vector Ameliorates Pathological Bone Structure in a Hypophosphatasia Mouse Model. Calcified Tissue International, 2020, 106, 665-677.	1.5	6
1093	Dual and triple AAV delivery of large therapeutic gene sequences into the inner ear. Hearing Research, 2020, 394, 107912.	0.9	28
1094	Utility of microminipigs for evaluating liver-mediated gene expression in the presence of neutralizing antibody against vector capsid. Gene Therapy, 2020, 27, 427-434.	2.3	6
1095	MicroRNAâ€based recombinant AAV vector assembly improves efficiency of suicide gene transfer in a murine model of lymphoma. Cancer Medicine, 2020, 9, 3188-3201.	1.3	4
1096	Gene therapy 1·O in haemophilia: effective and safe, but with many uncertainties. Lancet Haematology,the, 2020, 7, e186-e188.	2.2	4

ARTICLE IF CITATIONS Engineering adeno-associated virus vectors for gene therapy. Nature Reviews Genetics, 2020, 21, 1097 634 7.7 255-272. Muscle-Directed Delivery of an AAV1 Vector Leads to Capsid-Specific T Cell Exhaustion in Nonhuman 1098 3.7 23 Primates and Humans. Molecular Therapy, 2020, 28, 747-757. Gene therapy delivering a paraoxonase 1 variant offers long-term prophylactic protection against 1099 5.86 nerve agents in mice. Science Translational Medicine, 2020, 12, . Translational Potential of Immune Tolerance Induction by AAV Liver-Directed Factor VIII Gene Therapy 1100 for Hemophilia A. Frontiers in Immunology, 2020, 11, 618. Intra-CSF AAV9 and AAVrh10 Administration in Nonhuman Primates: Promising Routes and Vectors for 1101 Which Neurological Diseases?. Molecular Therapy - Methods and Clinical Development, 2020, 17, 1.8 53 771-784. Tissue engineering and transplantation in the fetus., 2020, , 369-402. Experimental gene therapies for the NCLs. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1103 1.8 11 2020, 1866, 165772. Enhancement of transduction efficiency using Adeno-associated viral vectors by chemical 1104 1.0 pretreatment to mice bladder urothelium. Journal of Virological Methods, 2020, 279, 113854. Human Immune Responses to Adeno-Associated Virus (AAV) Vectors. Frontiers in Immunology, 2020, 11, 1105 2.2 198 670. Establishment of a Recombinant AAV2/HBoV1 Vector Production System in Insect Cells. Genes, 2020, 11, 1.0 439 Neurotrophin gene therapy to promote survival of spiral ganglion neurons after deafness. Hearing 1107 0.9 21 Research, 2020, 394, 107955. The Immune Response to the fVIII Gene Therapy in Preclinical Models. Frontiers in Immunology, 2020, 11, 1108 2.2 494. 1109 Gene Therapy Clinical Trials., 2020, , 285-301. 3 Revisiting the "Newâ€Inflammatory Toxicities of Adeno-Associated Virus Vectors. Human Gene Therapy, 2020, 31, 398-399. 1.4 AAV6 Vexosomes Mediate Robust Suicide Gene Delivery in a Murine Model of Hepatocellular 1111 1.8 21 Carcinoma. Molecular Therapy - Methods and Clinical Development, 2020, 17, 497-504. CRISPR/Cas9-mediated knockin of human factor IX into swine factor IX locus effectively alleviates bleeding in hemophilia B pigs. Haematologica, 2021, 106, 829-837. Laboratory issues in gene therapy and emicizumab. Haemophilia, 2021, 27, 142-147. 1113 1.0 19 1114 Redefining prophylaxis in the modern era. Haemophilia, 2021, 27, 21-27.

#	Article	IF	CITATIONS
1115	Uncertainty in an era of transformative therapy for haemophilia: Addressing the unknowns. Haemophilia, 2021, 27, 103-113.	1.0	28
1116	In vivo enrichment of genetically manipulated platelets for murine hemophilia B gene therapy. Journal of Cellular Physiology, 2021, 236, 354-365.	2.0	7
1117	Hemophilia gene therapy—New country initiatives. Haemophilia, 2021, 27, 132-141.	1.0	15
1118	Nanoplatforms for mRNA Therapeutics. Advanced Therapeutics, 2021, 4, .	1.6	62
1119	Gene Transfer in Adeno-Associated Virus Seropositive Rhesus Macaques Following Rapamycin Treatment and Subcutaneous Delivery of AAV6, but Not Retargeted AAV6 Vectors. Human Gene Therapy, 2021, 32, 96-112.	1.4	11
1120	Promoterless, Nucleaseâ€Free Genome Editing Confers a Growth Advantage for Corrected Hepatocytes in Mice With Methylmalonic Acidemia. Hepatology, 2021, 73, 2223-2237.	3.6	36
1121	Extracellular vesicles in hepatology: Physiological role, involvement in pathogenesis, and therapeutic opportunities. , 2021, 218, 107683.		22
1122	<scp>2021</scp> clinical trials update: Innovations in hemophilia therapy. American Journal of Hematology, 2021, 96, 128-144.	2.0	37
1123	BAX 335 hemophilia B gene therapy clinical trial results: potential impact of CpG sequences on gene expression. Blood, 2021, 137, 763-774.	0.6	94
1124	Discussing investigational AAV gene therapy with hemophilia patients: A guide. Blood Reviews, 2021, 47, 100759.	2.8	40
1125	Advances in biological therapies for dyslipidemias and atherosclerosis. Metabolism: Clinical and Experimental, 2021, 116, 154461.	1.5	41
1126	Current Clinical Applications of InÂVivo Gene Therapy with AAVs. Molecular Therapy, 2021, 29, 464-488.	3.7	380
1127	Early Phase Clinical Immunogenicity of Valoctocogene Roxaparvovec, an AAV5-Mediated Gene Therapy for Hemophilia A. Molecular Therapy, 2021, 29, 597-610.	3.7	42
1128	Long-term correction of ornithine transcarbamylase deficiency in Spf-Ash mice with a translationally optimized AAV vector. Molecular Therapy - Methods and Clinical Development, 2021, 20, 169-180.	1.8	12
1129	Adeno-associated virus (AAV) capsid engineering in liver-directed gene therapy. Expert Opinion on Biological Therapy, 2021, 21, 1-18.	1.4	12
1130	Liver-directed gene-based therapies for inborn errors of metabolism. Expert Opinion on Biological Therapy, 2021, 21, 229-240.	1.4	11
1131	Hepatic glycogen storage diseases: pathogenesis, clinical symptoms and therapeutic management. Archives of Medical Science, 2021, 17, 304-313.	0.4	7
1133	Advances in gene therapy for hemophilia. Japanese Journal of Thrombosis and Hemostasis, 2021, 32, 17-25.	0.1	0

#	Article	IF	CITATIONS
1134	Strategies for Vaccination: Conventional Vaccine Approaches Versus New-Generation Strategies in Combination with Adjuvants. Pharmaceutics, 2021, 13, 140.	2.0	28
1135	In vivo cytidine base editing of hepatocytes without detectable off-target mutations in RNA and DNA. Nature Biomedical Engineering, 2021, 5, 179-189.	11.6	62
1136	Viral Vector Technologies and Strategies: Improving on Nature. International Ophthalmology Clinics, 2021, 61, 59-89.	0.3	2
1137	Targeting Age-Related Neurodegenerative Diseases byÂAAV-Mediated Gene Therapy. Advances in Experimental Medicine and Biology, 2021, 1286, 213-223.	0.8	1
1138	Altered microRNA expression in animal models of Huntington's disease and potential therapeutic strategies. Neural Regeneration Research, 2021, 16, 2159.	1.6	17
1139	The role of small molecules in cell and gene therapy. RSC Medicinal Chemistry, 2021, 12, 330-352.	1.7	3
1141	Overcoming innate immune barriers that impede AAV gene therapy vectors. Journal of Clinical Investigation, 2021, 131, .	3.9	72
1142	Validation of an IFN-gamma ELISpot assay to measure cellular immune responses against viral antigens in non-human primates. Gene Therapy, 2022, 29, 41-54.	2.3	18
1143	Characterization of Viral Genome Encapsidated in Adeno-associated Recombinant Vectors Produced in Yeast Saccharomyces cerevisiae. Molecular Biotechnology, 2021, 63, 156-165.	1.3	3
1145	The changing treatment landscape in haemophilia: from standard half-life clotting factor concentrates to gene editing. Lancet, The, 2021, 397, 630-640.	6.3	71
1146	Gene Therapy for Inherited Bleeding Disorders. Seminars in Thrombosis and Hemostasis, 2021, 47, 161-173.	1.5	11
1147	Engineering adeno-associated viral vectors to evade innate immune and inflammatory responses. Science Translational Medicine, 2021, 13, .	5.8	99
1148	Viral vector platforms within the gene therapy landscape. Signal Transduction and Targeted Therapy, 2021, 6, 53.	7.1	514
1149	Evolving AAV-delivered therapeutics towards ultimate cures. Journal of Molecular Medicine, 2021, 99, 593-617.	1.7	41
1150	No CpGs for AAVs?. Blood, 2021, 137, 721-723.	0.6	4
1151	Hemophilia Gene Therapy: Approaching the First Licensed Product. HemaSphere, 2021, 5, e540.	1.2	40
1152	Enhancement of liver-directed transgene expression at initial and repeat doses of AAV vectors admixed with ImmTOR nanoparticles. Science Advances, 2021, 7, .	4.7	28
1154	Liver targeting with rAAV7: balancing tropism with immune profiles. Gene Therapy, 2021, 28, 115-116.	2.3	0

#	Article	IF	CITATIONS
1155	Patient selection for hemophilia gene therapy: Realâ€life data from a single center. Research and Practice in Thrombosis and Haemostasis, 2021, 5, 390-394.	1.0	11
1157	Platelet-targeted hyperfunctional FIX gene therapy for hemophilia B mice even with preexisting anti-FIX immunity. Blood Advances, 2021, 5, 1224-1238.	2.5	3
1158	Intracellular trafficking of adeno-associated virus (AAV) vectors: challenges and future directions. Gene Therapy, 2021, 28, 683-696.	2.3	37
1160	Current progress and limitations of AAV mediated delivery of protein therapeutic genes and the importance of developing quantitative pharmacokinetic/pharmacodynamic (PK/PD) models. Advanced Drug Delivery Reviews, 2021, 170, 214-237.	6.6	35
1161	AAV8 locoregional delivery induces long-term expression of an immunogenic transgene in macaques despite persisting local inflammation. Molecular Therapy - Methods and Clinical Development, 2021, 20, 660-674.	1.8	5
1162	Anti-AAV Antibodies in AAV Gene Therapy: Current Challenges and Possible Solutions. Frontiers in Immunology, 2021, 12, 658399.	2.2	84
1163	Patient Preferences to Assess Value IN Gene Therapies: Protocol Development for the PAVING Study in Hemophilia. Frontiers in Medicine, 2021, 8, 595797.	1.2	8
1164	Viral gene therapy for paediatric neurological diseases: progress to clinical reality. Developmental Medicine and Child Neurology, 2021, 63, 1019-1029.	1.1	10
1165	Vector engineering, strategies and targets in cancer gene therapy. Cancer Gene Therapy, 2022, 29, 402-417.	2.2	18
1166	Optimizing language for effective communication of gene therapy concepts with hemophilia patients: a qualitative study. Orphanet Journal of Rare Diseases, 2021, 16, 189.	1.2	15
1167	Gene Therapy: A Possible Alternative to CFTR Modulators?. Frontiers in Pharmacology, 2021, 12, 648203.	1.6	4
1168	Humoral immune responses to <scp>AAV</scp> gene therapy in the ocular compartment. Biological Reviews, 2021, 96, 1616-1644.	4.7	20
1169	T Cell-Mediated Immune Responses to AAV and AAV Vectors. Frontiers in Immunology, 2021, 12, 666666.	2.2	37
1170	Impact of Medium-Sized Extracellular Vesicles on the Transduction Efficiency of Adeno-Associated Viruses in Neuronal and Primary Astrocyte Cell Cultures. International Journal of Molecular Sciences, 2021, 22, 4221.	1.8	3
1171	Immunomodulation in Administration of rAAV: Preclinical and Clinical Adjuvant Pharmacotherapies. Frontiers in Immunology, 2021, 12, 658038.	2.2	31
1173	Treatment of a Hemophilia B Mouse Model with Platelet-Targeted Expression of Factor IX Padua. Human Gene Therapy, 2021, 32, 506-516.	1.4	2
1174	Challenges Posed by Immune Responses to AAV Vectors: Addressing Root Causes. Frontiers in Immunology, 2021, 12, 675897.	2.2	46
1175	Cell-Based Delivery Approaches for DNA-Binding Domains into the Central Nervous System. Current Neuropharmacology, 2021, 19, .	1.4	1

#	Article	IF	CITATIONS
1176	Effect of CpG Depletion of Vector Genome on CD8+ T Cell Responses in AAV Gene Therapy. Frontiers in Immunology, 2021, 12, 672449.	2.2	35
1177	Development of Gene Therapy Vectors: Remaining Challenges. Journal of Pharmaceutical Sciences, 2021, 110, 1915-1920.	1.6	13
1180	Endoscopic-mediated, biliary hydrodynamic injection mediating clinically relevant levels of gene delivery in pig liver. Gastrointestinal Endoscopy, 2021, 94, 1119-1130.e4.	0.5	4
1181	Emerging Immunogenicity and Genotoxicity Considerations of Adeno-Associated Virus Vector Gene Therapy for Hemophilia. Journal of Clinical Medicine, 2021, 10, 2471.	1.0	47
1183	Increased CFTR expression and function from an optimized lentiviral vector for cystic fibrosis gene therapy. Molecular Therapy - Methods and Clinical Development, 2021, 21, 94-106.	1.8	8
1184	Immune function in X-linked retinoschisis subjects in an AAV8-RS1 phase I/IIa gene therapy trial. Molecular Therapy, 2021, 29, 2030-2040.	3.7	17
1185	Personalized Cancer Medicine in the Media: Sensationalism or Realistic Reporting?. Journal of Personalized Medicine, 2021, 11, 741.	1.1	5
1186	Haemophilia: factoring in new therapies. British Journal of Haematology, 2021, 194, 835-850.	1.2	17
1187	Gene therapy for hemophilia: a review on clinical benefit, limitations, and remaining issues. Blood, 2021, 138, 923-931.	0.6	67
1188	Gene therapy for hemophilia: Current status and laboratory consequences. International Journal of Laboratory Hematology, 2021, 43, 117-123.	0.7	15
1189	CRISPR/Cas9-Mediated in vivo Genetic Correction in a Mouse Model of Hemophilia A. Frontiers in Cell and Developmental Biology, 2021, 9, 672564.	1.8	10
1190	Novel vectors and approaches for gene therapy in liver diseases. JHEP Reports, 2021, 3, 100300.	2.6	57
1191	Detailed Protocol for the Novel and Scalable Viral Vector Upstream Process for AAV Gene Therapy Manufacturing. Human Gene Therapy, 2021, 32, 850-861.	1.4	16
1192	Persistence of haemostatic response following gene therapy with valoctocogene roxaparvovec in severe haemophilia A. Haemophilia, 2021, 27, 947-956.	1.0	62
1193	The intersection of vector biology, gene therapy, and hemophilia. Research and Practice in Thrombosis and Haemostasis, 2021, 5, e12586.	1.0	13
1194	Adeno-Associated Virus Vector Gene Delivery Elevates Factor I Levels and Downregulates the Complement Alternative Pathway <i>In Vivo</i> . Human Gene Therapy, 2021, 32, 1370-1381.	1.4	7
1195	Monitoring cell-mediated immune responses in AAV gene therapy clinical trials using a validated IFN-γ ELISpot method. Molecular Therapy - Methods and Clinical Development, 2021, 22, 183-195.	1.8	14
1196	Developing a second-generation clinical candidate AAV vector for gene therapy of familial hypercholesterolemia. Molecular Therapy - Methods and Clinical Development, 2021, 22, 1-10.	1.8	14

	CITATION	N REPORT	
#	Article	IF	CITATIONS
1197	Hearing impairment: new frontiers of regenerative medicine. Otorhinolaryngology(Italy), 2021, 71, .	0.1	0
1198	Safety and efficacy of an engineered hepatotropic AAV gene therapy for ornithine transcarbamylase deficiency in cynomolgus monkeys. Molecular Therapy - Methods and Clinical Development, 2021, 23, 135-146.	1.8	21
1199	Reduced Immunogenicity of Intraparenchymal Delivery of Adeno-Associated Virus Serotype 2 Vectors: Brief Overview. Current Gene Therapy, 2021, 21, .	0.9	2
1200	A Changing World in Gene Therapy Research: Exciting Opportunities for Medical Advancement and Biosafety Challenges. Applied Biosafety, 2021, 26, 179-192.	0.2	4
1201	Functional correction of <i>CFTR</i> mutations in human airway epithelial cells using adenine base editors. Nucleic Acids Research, 2021, 49, 10558-10572.	6.5	25
1202	A sensitive and reproducible cell-based assay via secNanoLuc to detect neutralizing antibody against adeno-associated virus vector capsid. Molecular Therapy - Methods and Clinical Development, 2021, 22, 162-171.	1.8	13
1203	Hemophilia B (Factor IX Deficiency). Hematology/Oncology Clinics of North America, 2021, 35, 1143-1155.	0.9	6
1204	Coagulation factor IX gene transfer to non-human primates using engineered AAV3 capsid and hepatic optimized expression cassette. Molecular Therapy - Methods and Clinical Development, 2021, 23, 98-107.	1.8	7
1205	Development of alternative gene transfer techniques for exÂvivo and inÂvivo gene therapy in a canine model. Regenerative Therapy, 2021, 18, 347-354.	1.4	2
1206	In Vivo Delivery of Cassettes Encoding Anti-HBV Primary MicroRNAs Using an Ancestral Adeno-Associated Viral Vector. Methods in Molecular Biology, 2020, 2115, 171-183.	0.4	4
1207	Adeno-Associated Vectors for Gene Delivery to the Nervous System. Neuromethods, 2015, , 1-22.	0.2	2
1208	Portal Vein Delivery of Viral Vectors for Gene Therapy for Hemophilia. Methods in Molecular Biology, 2014, 1114, 413-426.	0.4	10
1209	Therapeutic Potential of HDL in Cardioprotection and Tissue Repair. Handbook of Experimental Pharmacology, 2015, 224, 527-565.	0.9	39
1210	AAV Vector-Based Gene Therapy, Progress and Current Challenges. , 2017, , 77-112.		2
1211	Gene therapy and gene editing. , 2020, , 463-477.		2
1212	Preclinical models to assess the immunogenicity of AAV vectors. Cellular Immunology, 2019, 342, 103722.	1.4	14
1213	Haemophilia, the journey in search of a cure. 1960–2020. British Journal of Haematology, 2020, 191, 573-578.	1.2	6
1214	Hyperactivity of factor IX Padua (R338L) depends on factor VIIIa cofactor activity. JCI Insight, 2019, 4, .	2.3	24

#	Article	IF	CITATIONS
1215	Coupling AAV-mediated promoterless gene targeting to SaCas9 nuclease to efficiently correct liver metabolic diseases. JCI Insight, 2019, 4, .	2.3	28
1216	One-time injection of AAV8 encoding urocortin 2 provides long-term resolution of insulin resistance. JCI Insight, 2016, 1, e88322.	2.3	23
1217	Exposure to wild-type AAV drives distinct capsid immunity profiles in humans. Journal of Clinical Investigation, 2018, 128, 5267-5279.	3.9	76
1218	Whole body correction of mucopolysaccharidosis IIIA by intracerebrospinal fluid gene therapy. Journal of Clinical Investigation, 2013, 123, 3254-3271.	3.9	176
1219	Human Treg responses allow sustained recombinant adeno-associated virus–mediated transgene expression. Journal of Clinical Investigation, 2013, 123, 5310-5318.	3.9	133
1220	Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy. Journal of Clinical Investigation, 2015, 125, 870-880.	3.9	287
1221	Dominant-negative SERPING1 variants cause intracellular retention of C1 inhibitor in hereditary angioedema. Journal of Clinical Investigation, 2018, 129, 388-405.	3.9	39
1222	The gene therapy journey for hemophilia: are we there yet?. Hematology American Society of Hematology Education Program, 2012, 2012, 375-81.	0.9	20
1223	The gene therapy journey for hemophilia: are we there yet?. Hematology American Society of Hematology Education Program, 2012, 2012, 375-381.	0.9	14
1224	Efficient liver gene transfer with foamy virus vectors. Medical Science Monitor Basic Research, 2013, 19, 214-220.	2.6	5
1225	Proteasome Inhibition Is Partially Effective in Attenuating Pre-Existing Immunity against Recombinant Adeno-Associated Viral Vectors. PLoS ONE, 2012, 7, e34684.	1.1	18
1226	An Experimental and Computational Evolution-Based Method to Study a Mode of Co-evolution of Overlapping Open Reading Frames in the AAV2 Viral Genome. PLoS ONE, 2013, 8, e66211.	1.1	13
1227	IL12-Mediated Liver Inflammation Reduces the Formation of AAV Transcriptionally Active Forms but Has No Effect over Preexisting AAV Transgene Expression. PLoS ONE, 2013, 8, e67748.	1.1	18
1228	Effects of Angiotensin II Type 2 Receptor Overexpression on the Growth of Hepatocellular Carcinoma Cells In Vitro and In Vivo. PLoS ONE, 2013, 8, e83754.	1.1	35
1229	Proteomics Analysis of Co-Purifying Cellular Proteins Associated with rAAV Vectors. PLoS ONE, 2014, 9, e86453.	1.1	22
1230	Recombinant AAV Vectors for Enhanced Expression of Authentic IgG. PLoS ONE, 2016, 11, e0158009.	1.1	16
1231	Insulin-Like Growth Factor I (IGF-I) Expressed from an AAV1 Vector Leads to a Complete Reversion of Liver Cirrhosis in Rats. PLoS ONE, 2016, 11, e0162955.	1.1	9
1232	AAV-Delivered Antibody Mediates Significant Protective Effects against SIVmac239 Challenge in the Absence of Neutralizing Activity. PLoS Pathogens, 2015, 11, e1005090.	2.1	77

#	Article	IF	Citations
1233	The SUMOylation Pathway Restricts Gene Transduction by Adeno-Associated Viruses. PLoS Pathogens, 2015, 11, e1005281.	2.1	25
1234	Genetically Engineering the Nervous System with CRISPR-Cas. ENeuro, 2020, 7, ENEURO.0419-19.2020.	0.9	12
1235	Gene Therapy: The Promise of a Permanent Cure. North Carolina Medical Journal, 2013, 74, 526-529.	0.1	9
1236	Cardiac BNP gene delivery prolongs survival in aged spontaneously hypertensive rats with overt hypertensive heart disease. Aging, 2014, 6, 311-319.	1.4	14
1237	Telomerase gene therapy ameliorates the effects of neurodegeneration associated to short telomeres in mice. Aging, 2019, 11, 2916-2948.	1.4	36
1238	Identification of IFN-γ-producing T cells as the main mediators of the side effects associated to mouse interleukin-15 sustained exposure. Oncotarget, 2016, 7, 49008-49026.	0.8	10
1239	Progress and challenges of gene therapy for Pompe disease. Annals of Translational Medicine, 2019, 7, 287-287.	0.7	35
1240	Developing Immunologically Inert Adeno-Associated Virus (AAV) Vectors for Gene Therapy: Possibilities and Limitations. Current Pharmaceutical Biotechnology, 2014, 14, 1072-1082.	0.9	26
1241	Basic Biology of Adeno-Associated Virus (AAV) Vectors Used in Gene Therapy. Current Gene Therapy, 2014, 14, 86-100.	0.9	156
1242	The Skeletal Muscle Environment and Its Role in Immunity and Tolerance to AAV Vector-Mediated Gene Transfer. Current Gene Therapy, 2015, 15, 381-394.	0.9	43
1243	Gene Therapy for Hemophilia A: Where We Stand. Current Gene Therapy, 2020, 20, 142-151.	0.9	7
1244	Determination of Anti-Adeno-Associated Viral Vector Neutralizing Antibodies in Patients With Heart Failure in the Cardiovascular Foundation of Colombia (ANVIAS): Study Protocol. JMIR Research Protocols, 2016, 5, e102.	0.5	6
1245	Present and future challanges in the treatment of haemophilia: a clinician's perspective. Blood Transfusion, 2013, 11 Suppl 4, s77-81.	0.3	20
1246	Treatment Options in Hemophilia. Deutsches Ärzteblatt International, 2019, 116, 791-798.	0.6	12
1247	Coagulation Factor IX for Hemophilia B Therapy. Acta Naturae, 2012, 4, 62-73.	1.7	28
1248	Overcoming Immunological Challenges to Helper-Dependent Adenoviral Vector-Mediated Long-Term CFTR Expression in Mouse Airways. Genes, 2020, 11, 565.	1.0	2
1249	High-Capacity Adenoviral Vectors: Expanding the Scope of Gene Therapy. International Journal of Molecular Sciences, 2020, 21, 3643.	1.8	78
1250	The Inherited Neuromuscular Disorder GNE Myopathy: Research to Patient Care. Neurology India, 2019, 67, 1213.	0.2	7

#	Article	IF	CITATIONS
1251	Long-term correction of type 1 and 2 diabetes by central leptin gene therapy independent of effects on appetite and energy expenditure. Indian Journal of Endocrinology and Metabolism, 2012, 16, 556.	0.2	5
1252	Improved Adeno-associated Viral Gene Transfer to Murine Glioma. Journal of Genetic Syndromes & Gene Therapy, 2013, 04, .	0.2	11
1253	Development of Novel Recombinant Aav Vectors and Strategies for the Potential Gene Therapy of Hemophilia. Journal of Genetic Syndromes & Gene Therapy, 2012, 01, .	0.2	10
1254	Liver-Directed Adeno-Associated Viral Gene Therapy for Hemophilia. Journal of Genetic Syndromes & Gene Therapy, 2013, S1, 1-9.	0.2	23
1255	Treatment of Hemophilia A in Utero and Postnatally using Sheep as a Model for Cell and Gene Delivery. Journal of Genetic Syndromes & Gene Therapy, 2013, S1, .	0.2	9
1256	Proteostasis: Bad news and good news from the endoplasmic reticulum. Swiss Medical Weekly, 2014, 144, w14001.	0.8	13
1257	A new era of gene editing for the treatment of human diseases. Swiss Medical Weekly, 2019, 149, w20021.	0.8	16
1258	Sox11 Modified Tendon-Derived Stem Cells Promote the Repair of Osteonecrosis of Femoral Head. Cell Transplantation, 2021, 30, 096368972110538.	1.2	2
1259	Dexamethasone Transiently Enhances Transgene Expression in the Liver When Administered at Late-Phase Post Long-Term Adeno-Associated Virus Transduction. Human Gene Therapy, 2022, 33, 119-130.	1.4	5
1260	Emerging drugs for hemophilia A: insights into phase II and III clinical trials. Expert Opinion on Emerging Drugs, 2021, 26, 337-350.	1.0	2
1261	Capsid-Engineering for Central Nervous System-Directed Gene Therapy with Adeno-Associated Virus Vectors. Human Gene Therapy, 2021, 32, 1096-1119.	1.4	5
1262	Prenatal Gene Therapy. Clinical Obstetrics and Gynecology, 2021, 64, 876-885.	0.6	6
1263	AAV manufacturing for clinical use: Insights on current challenges from the upstream process perspective. Current Opinion in Biomedical Engineering, 2021, 20, 100353.	1.8	28
1264	Reduction of Recombinant Adeno-Associated Virus Vector Adsorption on Solid Surfaces by Polyionic Hydrophilic Complex Coating. Journal of Pharmaceutical Sciences, 2022, 111, 663-671.	1.6	6
1265	Deep Parallel Characterization of AAV Tropism and AAV-Mediated Transcriptional Changes via Single-Cell RNA Sequencing. Frontiers in Immunology, 2021, 12, 730825.	2.2	31
1266	Inherent hepatocytic heterogeneity determines expression and retention of edited F9 alleles post-AAV/CRISPR infusion. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2110887118.	3.3	1
1267	Hemophilia Gene Therapy Value Assessment: Methodological Challenges and Recommendations. Value in Health, 2021, 24, 1628-1633.	0.1	11
1268	S1-4. Progress in Regulatory Science: Gene Therapy. Japanese Journal of Clinical Pharmacology and Therapeutics, 2012, 43, 175-176.	0.1	Ο

#	Article	IF	Citations
1269	Advances in Overcoming Immune Responses following Hemophilia Gene Therapy. Journal of Genetic Syndromes & Gene Therapy, 2012, 01, .	0.2	4
1271	Who discovered hemophilia B (factor IX deficiency) ?. Japanese Journal of Thrombosis and Hemostasis, 2012, 23, 274-279.	0.1	0
1272	Recombinant AAV Vectors as Tools to Study and Treat Human Disorders. , 2013, 01, .		0
1273	Direction of Gene Therapy and Virotherapy. Journal of Cancer Science & Therapy, 2013, 05, .	1.7	0
1274	The Need for Gene Therapy for the Effective Treatment of Hemophilia. Journal of Genetic Syndromes & Gene Therapy, 2013, S1, .	0.2	0
1275	Gene Therapists Determined to Stop the Bleeding!. Journal of Genetic Syndromes & Gene Therapy, 2013, S1, .	0.2	0
1277	Muscle Gene Therapy for Hemophilia. Journal of Genetic Syndromes & Gene Therapy, 2013, S1, .	0.2	1
1278	Gene therapy: Where do we stand?. IOSR Journal of Pharmacy and Biological Sciences, 2013, 6, 31-34.	0.1	0
1279	In vitro and In vivo Model Systems for Hemophilia A Gene Therapy. Journal of Genetic Syndromes & Gene Therapy, 2013, S1, .	0.2	2
1280	Adenoviral Vectors for Hemophilia Gene Therapy. Journal of Genetic Syndromes & Gene Therapy, 2013, 01, .	0.2	0
1281	The Wikipedia guide to medicine. BMJ, The, 0, , f1091.	3.0	0
1282	Polyinosinic acid blocks adeno-associated virus macrophage endocytosis in vitro and enhances adeno-associated virus liver directed gene therapy in vivo. Human Gene Therapy Methods, 0, , 130815223935004.	2.1	0
1285	Gentherapie. , 2014, , 427-431.		0
1286	Development of cell-based therapy for hemophilic arthropathy. Japanese Journal of Thrombosis and Hemostasis, 2014, 25, 516-522.	0.1	0
1287	Looking Back â \in " Looking Forward: 40 Years in Hemophilia Research. , 2014, 11, .		3
1288	HereditÃ r e Erkrankungen. , 2014, , 761-849.		0
1290	Feasibility and Safety of Systemic rAAV9-hNAGLU Delivery for Treating MPS IIIB: Toxicology, Bio-distribution and Immunological Assessments in Primates. Human Gene Therapy Clinical Development, 0, , 150127063140004.	3.2	1
1292	Viral Vectors for Gene Therapy of Genetic Diseases: Challenges and Prospects. Journal of Human Virology & Retrovirology, 2014, 2, .	0.1	0

#	Article	IF	CITATIONS
1293	Adeno-Associated Virus Gene Therapy and Its Application to the Prevention and Personalised Treatment of Rare Diseases. Advances in Predictive, Preventive and Personalised Medicine, 2015, , 131-157.	0.6	0
1295	Gene therapy: A veracity or myth!. Acta Medica International, 2015, 2, 155.	0.2	0
1296	Adeno-associated virus vectors for human gene therapy. World Journal of Medical Genetics, 2015, 5, 28.	1.0	2
1297	Somatic Gene Therapy Using Viral Vectors: Theoretical and Clinical Implications in Relation to Treatment of Genetic Conditions in Humans. , 2015, , 35-67.		0
1298	Hereditary diseases. , 2015, , 743-827.		0
1299	Targeted Gene Therapy for Ischemic Stroke. Neuromethods, 2015, , 191-202.	0.2	0
1300	The potential of Genome-editing techniques. Japanese Journal of Thrombosis and Hemostasis, 2015, 26, 534-540.	0.1	0
1301	Ethical problems in gene testing and genome editing. Japanese Journal of Thrombosis and Hemostasis, 2015, 26, 541-548.	0.1	0
1303	Glad tidings for haemophilia B patients. The Journal of Haemophilia Practice, 2015, 2, 1-2.	0.2	0
1304	The impending medical revolution in haemophilia care: one patient's view. The Journal of Haemophilia Practice, 2015, 2, 9-11.	0.2	0
1305	Gene therapy for haemophilia: an update on progress in clinical trials. The Journal of Haemophilia Practice, 2015, 2, 3-5.	0.2	0
1306	Patient advocacy helps patients weigh up gene therapy trial risk/benefits. The Journal of Haemophilia Practice, 2015, 2, 6-8.	0.2	2
1307	Gene therapy for haemophilia: a very modern success story. The Journal of Haemophilia Practice, 2015, 2, 26-28.	0.2	0
1308	International databases open the door to improved care for rare bleeding disorders. The Journal of Haemophilia Practice, 2015, 2, 11-12.	0.2	0
1311	Treating Hemophilia by Gene Therapy. , 2016, , 179-201.		0
1312	Cell and Vector Production Facility for Gene Therapy and Cell Therapy. , 2016, , 171-185.		0
1313	AAV Vector-Mediated Liver Gene Therapy and Its Implementation for Hemophilia. , 2016, , 59-73.		2
1314	Helper-Dependent Adenoviral Vectors for Gene Therapy of Inherited Diseases. , 2017, , 61-75.		0

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1316	è¡€å•ç—…ã®éºä¼åæ²»ç™,. Japanese Journal of Thrombosis and Hemostasis, 2018, 29	, 760-764.	0.1	0
1317	Koagulopathien. , 2018, , 133-160.			0
1318	Current threats on gene doping - a systematic review. Timisoara Physical Education and Journal, 2018, 11, 28-35.	d Rehabilitation	0.3	0
1319	Clinical Use of Toxic Proteins and Peptides from Tian Hua Fen and Scorpion Venom. Cu and Peptide Science, 2019, 20, 285-295.	rrent Protein	0.7	3
1322	NUCLEASE-MEDIATED TARGETED GENETIC CORRECTION. , 2019, , 85-114.			0
1323	Genetic disorders of coagulation. , 2020, , 5532-5546.			0
1324	The inborn errors of metabolism: General aspects. , 2020, , 1929-1941.			0
1325	Biopharmaceutical molecules. , 2020, , 31-68.			1
1326	Gene Therapy Approaches for Cochlear Repair. , 2020, , 962-984.			0
1327	Adeno-Associated Viruses (AAV) and Host Immunity $\hat{a} \in A$ Race Between the Hare and Frontiers in Immunology, 2021, 12, 753467.	the Hedgehog.	2.2	30
1328	Modulating Immune Responses to AAV by expanded polyclonal T-regulatory cells and c chimeric antigen receptor T-regulatory cells. Molecular Therapy - Methods and Clinical 1 2021, 23, 490-506.	apsid specific Development,	1.8	16
1329	Structural characterization of the porcine adenoâ€associated virus Po1 capsid protein nuclear trafficking protein importin alpha. FEBS Letters, 2021, 595, 2793-2804.	binding to the	1.3	3
1330	AAV6 as an effective gene delivery vector for prolonged transgene expression in intervecells inÂvivo. Genes and Diseases, 2022, 9, 1074-1085.	ertebral disc	1.5	4
1331	Design of a pDNA nanocarrier with ascorbic acid modified chitosan coated on superpar oxide nanoparticles for gene delivery. Colloids and Surfaces A: Physicochemical and En Aspects, 2022, 632, 127743.		2.3	13
1332	Schwerpunkte der Forschungspipelines. , 2020, , 87-111.			0
1333	Gene therapy and editing in the treatment of hereditary blood disorders: Medical and e Clinical Ethics, 0, , 147775092110572.	thical aspects.	0.5	0
1334	Development of enzyme replacement therapy using liver organoids derived from huma Delivery System, 2020, 35, 278-284.	n iPS cells. Drug	0.0	0
1335	Advances in Overcoming Immune Responses following Hemophilia Gene Therapy. Journ Syndromes & Gene Therapy, 2011, S1, .	nal of Genetic	0.2	10

		CITATION REPORT		
#	Article		IF	CITATIONS
1336	Coagulation Factor IX for Hemophilia B Therapy. Acta Naturae, 2012, 4, 62-73.		1.7	16
1338	Adenoviral Vectors for Hemophilia Gene Therapy. Journal of Genetic Syndromes & Gene Th 017.	erapy, 2013, 2,	0.2	0
1341	Lessons Learned from Animal Models of Inherited Bleeding Disorders. Hematology Educati 39-46.	ion, 2014, 8,	0.0	1
1351	Gene therapy: the promise of a permanent cure. North Carolina Medical Journal, 2013, 74,	526-9.	0.1	9
1352	Disorders of coagulation. , 2022, , 287-340.			1
1353	CRISPR/Cas System and Factors Affecting Its Precision and Efficiency. Frontiers in Cell and Developmental Biology, 2021, 9, 761709.		1.8	20
1354	Multiyear Factor VIII Expression after AAV Gene Transfer for Hemophilia A. New England Jo Medicine, 2021, 385, 1961-1973.	urnal of	13.9	127
1355	Structurally Mapping Antigenic Epitopes of Adeno-associated Virus 9: Development of Ant Variants. Journal of Virology, 2022, 96, JVI0125121.	tibody Escape	1.5	11
1356	Hemophilia A gene therapy: current and next-generation approaches. Expert Opinion on B Therapy, 2022, 22, 1099-1115.	iological	1.4	22
1357	Selective Microvascular Tissue Transfection Using Minicircle DNA for Systemic Delivery of Coagulation Factor IX in a Rat Model Using a Therapeutic Flap. Plastic and Reconstructive 2021, Publish Ahead of Print, .		0.7	1
1358	A short hepatitis C virus NS5A peptide expression by AAV vector modulates human T cell a reduces vector immunogenicity. Gene Therapy, 2022, 29, 616-623.	activation and	2.3	1
1359	Hemophilia: The Past, the Present, and the Future. Pediatrics in Review, 2021, 42, 672-683	8.	0.2	3
1360	Approved and marketed nanoparticles for disease targeting and applications in COVID-19. Nanotechnology Reviews, 2021, 10, 1941-1977.		2.6	43
1362	The Perspective of DMPK on Recombinant Adeno-Associated Virus-Based Gene Therapy: Pa Current Support, and Future Contribution. AAPS Journal, 2022, 24, 31.	ast Learning,	2.2	13
1363	Recent Advances in RNA Therapy and Its Carriers to Treat the Single-Gene Neurological Dis Biomedicines, 2022, 10, 158.	sorders.	1.4	11
1364	Differential TÂcell immune responses to deamidated adeno-associated virus vector. Molec Methods and Clinical Development, 2022, 24, 255-267.	ular Therapy -	1.8	14
1365	Towards translational optogenetics. Nature Biomedical Engineering, 2023, 7, 349-369.		11.6	54
1366	Preventing packaging of translatable P5-associated DNA contaminants in recombinant AA preps. Molecular Therapy - Methods and Clinical Development, 2022, 24, 280-291.	V vector	1.8	5

#	Article	IF	CITATIONS
1367	Chimeric Mice Engrafted With Canine Hepatocytes Exhibits Similar AAV Transduction Efficiency to Hemophilia B Dog. Frontiers in Pharmacology, 2022, 13, 815317.	1.6	1
1368	Non-invasive administration of AAV to target lung parenchymal cells and develop SARS-CoV-2-susceptible mice. Molecular Therapy, 2022, 30, 1994-2004.	3.7	9
1369	Bay41-4109-induced aberrant polymers of hepatitis b capsid proteins are removed via STUB1-promoted p62-mediated macroautophagy. PLoS Pathogens, 2022, 18, e1010204.	2.1	9
1370	Long-term correction of hemorrhagic diathesis in hemophilia A mice by an AAV-delivered hybrid FVIII composed of the human heavy chain and the rat light chain. Frontiers of Medicine, 2022, , 1.	1.5	1
1371	A universal strategy for AAV delivery of base editors to correct genetic point mutations in neonatal PKU mice. Molecular Therapy - Methods and Clinical Development, 2022, 24, 230-240.	1.8	13
1372	AAV2-VEGF-B gene therapy failed to induce angiogenesis in ischemic porcine myocardium due to inflammatory responses. Gene Therapy, 2022, 29, 643-652.	2.3	7
1373	CRISPR genome surgery in a novel humanized model for autosomal dominant retinitis pigmentosa. Molecular Therapy, 2022, 30, 1407-1420.	3.7	16
1374	Gene Therapy Advances: A Meta-Analysis of AAV Usage in Clinical Settings. Frontiers in Medicine, 2021, 8, 809118.	1.2	91
1375	Biodistribution and Tolerability of AAV-PHP.B-CBh- <i>SMN1</i> in Wistar Han Rats and Cynomolgus Macaques Reveal Different Toxicologic Profiles. Human Gene Therapy, 2022, 33, 175-187.	1.4	32
1376	International consensus recommendations on the management of people with haemophilia B. Therapeutic Advances in Hematology, 2022, 13, 204062072210852.	1.1	13
1377	Antiviral Targeting of Varicella Zoster Virus Replication and Neuronal Reactivation Using CRISPR/Cas9 Cleavage of the Duplicated Open Reading Frames 62/71. Viruses, 2022, 14, 378.	1.5	2
1378	Prepare the Way for Hemophilia A Gene Therapy. New England Journal of Medicine, 2022, 386, 1081-1082.	13.9	6
1379	Valoctocogene Roxaparvovec Gene Therapy for Hemophilia A. New England Journal of Medicine, 2022, 386, 1013-1025.	13.9	157
1380	The Effect of Rapamycin and Ibrutinib on Antibody Responses to Adeno-Associated Virus Vector-Mediated Gene Transfer. Human Gene Therapy, 2022, 33, 614-624.	1.4	16
1381	Challenges to Gene Editing Approaches in the Retina. Klinische Monatsblatter Fur Augenheilkunde, 2022, 239, 275-283.	0.3	1
1382	Conversion of the Liver into a Biofactory for DNasel Using Adeno-Associated Virus Vector Gene Transfer Reduces Neutrophil Extracellular Traps in a Model of Systemic Lupus Erythematosus. Human Gene Therapy, 2022, 33, 560-571.	1.4	1
1383	Global Seroprevalence of Pre-existing Immunity Against AAV5 and Other AAV Serotypes in People with Hemophilia A. Human Gene Therapy, 2022, 33, 432-441.	1.4	37
1384	Electroporation-Mediated Delivery of Cas9 Ribonucleoproteins Results in High Levels of Gene Editing in Primary Hepatocytes. CRISPR Journal, 2022, 5, 397-409.	1.4	6

#	Article	IF	CITATIONS
1385	Addressing high dose AAV toxicity – â€~one and done' or â€~slower and lower'?. Expert Opinion on Biological Therapy, 2022, 22, 1067-1071.	1.4	60
1386	The experiences of people with haemophilia and their families of gene therapy in a clinical trial setting: regaining control, the Exigency study. Orphanet Journal of Rare Diseases, 2022, 17, 155.	1.2	18
1387	Durability of transgene expression after rAAV gene therapy. Molecular Therapy, 2022, 30, 1364-1380.	3.7	20
1388	Directed evolution of adeno-associated virus 5 capsid enables specific liver tropism. Molecular Therapy - Nucleic Acids, 2022, 28, 293-306.	2.3	8
1389	Strategies to package recombinant Adeno-Associated Virus expressing the N-terminal gasdermin domain for tumor treatment. Nature Communications, 2021, 12, 7155.	5.8	22
1390	Hemophilia gene therapy: ushering in a new treatment paradigm?. Hematology American Society of Hematology Education Program, 2021, 2021, 226-233.	0.9	12
1391	Challenges in development and authorisation of gene therapy products. BIOpreparations Prevention Diagnosis Treatment, 2022, 22, 6-22.	0.2	4
1392	Impact of novel hemophilia therapies around the world. Research and Practice in Thrombosis and Haemostasis, 2022, 6, e12695.	1.0	19
1393	Molecular Signature of Astrocytes for Gene Delivery by the Synthetic Adenoâ€Associated Viral Vector rAAV9P1. Advanced Science, 2022, 9, e2104979.	5.6	7
1410	Advanced Gene-Targeting Therapies for Motor Neuron Diseases and Muscular Dystrophies. International Journal of Molecular Sciences, 2022, 23, 4824.	1.8	3
1411	Gene Therapy for Hemophilia A: How Long Will It Last?. HemaSphere, 2022, 6, e720.	1.2	4
1412	Gene therapy: Practical aspects of implementation. Haemophilia, 2022, 28, 44-52.	1.0	11
1413	20 Years of Legislation - How Australia Has Responded to the Challenge of Regulating Genetically Modified Organisms in the Clinic. Frontiers in Medicine, 2022, 9, .	1.2	2
1414	Wilson Disease: Update on Pathophysiology and Treatment. Frontiers in Cell and Developmental Biology, 2022, 10, 871877.	1.8	18
1415	Gene therapy – are we ready now?. Haemophilia, 2022, 28, 35-43.	1.0	5
1416	Cryo-electron Microscopy of Adeno-associated Virus. Chemical Reviews, 2022, 122, 14018-14054.	23.0	15
1417	Modern therapeutic approaches to liver-related disorders. Journal of Hepatology, 2022, 76, 1392-1409.	1.8	22
1418	The legacy of haemophilia: Memories and reflections from three survivors. Haemophilia, 2022, , .	1.0	2

		CITATION REPORT		
#	Article		IF	Citations
1420	Gene Therapy for Acquired and Genetic Cholestasis. Biomedicines, 2022, 10, 1238.		1.4	3
1421	Dead Cas(t) light on new life: CRISPRa-mediated reprogramming of somatic cells into r Cellular and Molecular Life Sciences, 2022, 79, .	neurons.	2.4	2
1422	Safety and activity of an engineered, liver-tropic adeno-associated virus vector express hyperactive Padua factor IX administered with prophylactic glucocorticoids in patients haemophilia B: a single-centre, single-arm, phase 1, pilot trial. Lancet Haematology,the e504-e513.	with	2.2	21
1423	The Landscape of Noncoding RNA in Pulmonary Hypertension. Biomolecules, 2022, 12	, 796.	1.8	8
1424	Long-term correction of hemophilia B through CRISPR/Cas9 induced homology-indepe integration. Journal of Genetics and Genomics, 2022, 49, 1114-1126.	ndent targeted	1.7	6
1425	Liver-Directed Adeno-Associated Virus–Mediated Gene Therapy for Mucopolysaccha 2022, 1, .	idosis Type VI. ,		5
1426	The protective effects of systemic dexamethasone on sensory epithelial damage and h targeted Cx26-null mice. Cell Death and Disease, 2022, 13, .	earing loss in	2.7	10
1427	Challenges and opportunities when transitioning from <i>in vivo</i> gene replacemen vivo CRISPR/Cas9 therapies – a spotlight on hemophilia. Expert Opinion on Biolo 22, 1091-1098.	t to <i>in gical Therapy, 2022,</i>	1.4	1
1428	Cas-Based Systems for RNA Editing in Gene Therapy of Monogenic Diseases: In Vitro a Application and Translational Potential. Frontiers in Cell and Developmental Biology, O	nd in Vivo , 10, .	1.8	3
1429	Organoid transduction using recombinant adenoâ€associated viral vectors: Challenge opportunities. BioEssays, 2022, 44, .	s and	1.2	2
1430	Clinical gene technology in Australia: building on solid foundations. Medical Journal of 2022, 217, 65-70.	Australia,	0.8	2
1432	Factor IX Padua for haemophilia B gene addition: universal adaptation and repeated su Haematology,the, 2022, 9, e465-e466.	ccess. Lancet	2.2	2
1434	AAV-mediated gene transfer of inducible nitric oxide synthase (iNOS) to an animal mod hypertension. Human Gene Therapy, 0, , .	lel of pulmonary	1.4	3
1435	Systemic gene therapy with thymosin \hat{I}^24 alleviates glomerular injury in mice. Scientific .	: Reports, 2022, 12,	1.6	1
1436	IL-15 blockade and rapamycin rescue multifactorial loss of factor VIII from AAV-transdu hepatocytes in hemophilia A mice. Molecular Therapy, 2022, 30, 3552-3569.	iced	3.7	16
1437	In vivo Delivery Tools for Clustered Regularly Interspaced Short Palindromic Repeat/Ass Protein 9-Mediated Inhibition of Hepatitis B Virus Infection: An Update. Frontiers in Mic.	ociated crobiology, 0, 13,	1.5	2
1438	Differences in wild-type– and R338L-tenase complex formation areÂat the root of R3 discrepancies. Blood Advances, 2023, 7, 458-467.	38L-factor IX assay	2.5	6
1439	Adeno-Associated Virus Vector Design–Moving the Adeno-Associated Virus to a Bioe Therapeutic Nanoparticle. Hematology/Oncology Clinics of North America, 2022, 36, 6		0.9	2

ARTICLE IF CITATIONS Hemophilia A/B. Hematology/Oncology Clinics of North America, 2022, 36, 797-812. 0.9 0 1440 Phase 1–2 Trial of AAVS3 Gene Therapy in Patients with Hemophilia B. New England Journal of Medicine, 2022, 387, 237-247. 1441 Hepatic p53 is regulated by transcription factor FOXO1 and acutely controls glycogen homeostasis. 1442 3 1.6 Journal of Biological Chemistry, 2022, 298, 102287. Secretion of functional $\hat{l}\pm 1$ -antitrypsin is cell type dependent: Implications for intramuscular delivery for gene therapy. Proceedings of the National Academy of Sciences of the United States of America, 1444 2022, 119, . In vivo lentiviral vector gene therapy to cure hereditary tyrosinemia type 1 and prevent development 1445 5.8 2 of precancerous and cancerous lesions. Nature Communications, 2022, 13, . Immune Responses and Immunosuppressive Strategies for Adeno-Associated Virus-Based Gene Therapy for Treatment of Central Nervous System Disorders: Current Knowledge and Approaches. Human Gene 1.4 Therapy, 2022, 33, 1228-1245. Immunogenicity and toxicity of AAV gene therapy. Frontiers in Immunology, 0, 13, . 1447 2.2 75 Immunogenicity assessment of AAV-based gene therapies: An IQ consortium industry white paper. 1448 1.8 20 Molecular Therapy - Methods and Clinical Development, 2022, 26, 471-494. Disorders of Hemostasis and Thrombosis., 2023, , 173-211. 0 1449 1450 Adeno-Associated Virus Gene Therapy for Hemophilia. Annual Review of Medicine, 2023, 74, 231-247. Acute retinol mobilization by retinol-binding protein 4 in mouse liver induces fibroblast growth 1451 0 2.0 factor 21 expression. Journal of Lipid Research, 2022, 63, 100268. Gene therapy in haemophilia: literature review and regional perspectives for Turkey. Therapeutic 1.1 Advances in Hematology, 2022, 13, 204062072211045. rAAV expressing recombinant neutralizing antibody for the botulinum neurotoxin type A prophylaxis. 1453 1.5 4 Frontiers in Microbiology, 0, 13, . A Comprehensive Review on Liver Targeting: Emphasis on Nanotechnology- based Molecular Targets 1454 1.0 and Receptors Mediated Approaches. Current Drug Targets, 2022, 23, 1381-1405. Rational engineering of adenoâ€associated virus capsid enhances human hepatocyte tropism and 1455 2.4 3 reduces immunogenicity. Cell Proliferation, 2022, 55, . The Arrival of Gene Therapy for Patients with Hemophilia A. International Journal of Molecular 1456 1.8 Sciences, 2022, 23, 10228. To Clot or Not to Clot: Deepening Our Understanding of Alterations in the Hemostatic System. 1457 0.9 1 Toxicologic Pathology, 2022, 50, 890-894. A systematic review of adeno-associated virus gene therapies in neurology: the need for consistent 1458 safety monitoring of a promising treatment. Journal of Neurology, Neurosurgery and Psychiatry, 0, , jnnp-2022-329431.

ARTICLE IF CITATIONS Organoids and microphysiological systems: Promising models for accelerating AAV gene therapy 1459 2.2 7 studies. Frontiers in Immunology, 0, 13, . A versatile toolkit for overcoming AAV immunity. Frontiers in Immunology, 0, 13, . 1460 2.2 Adeno-associated virus mediates gene transduction after static cold storage treatment in rodent 1462 0.4 3 lung transplantation. Journal of Thoracic and Cardiovascular Surgery, 2023, 166, e38-e49. Liver Gene Therapy. Human Gene Therapy, 2022, 33, 879-888. 1463 Africa must participate in finding a gene therapy cure for sickle-cell disease. Nature Medicine, 0, , . 15.2 1464 4 AAV vectors: The Rubik's cube of human gene therapy. Molecular Therapy, 2022, 30, 3515-3541. 3.7 87 Gene Therapy and Hemophilia: Where Do We Go from Here?. Journal of Blood Medicine, 0, Volume 13, 1466 0.7 3 559-580. Application of Gene Therapy in Hemophilia. Current Medical Science, 2022, 42, 925-931. 1467 First-in-human inÂvivo genome editing via AAV-zinc-finger nucleases for mucopolysaccharidosis I/II and 1469 3.7 16 hemophilia B. Molecular Therapy, 2022, 30, 3587-3600. Co-transduction of dual-adeno-associated virus vectors in the neonatal and adult mouse utricles. 1470 1.4 Frontiers in Molecular Neuroscience, 0, 15, . IgG-cleavage protein allows therapeutic AAV gene delivery in passively immunized MPS IIIA mice. Gene 1472 2 2.3Therapy, 0, , . Sex Difference Leads to Differential Gene Expression Patterns and Therapeutic Efficacy in Mucopolysaccharidosis IVA Murine Model Receiving AAV8 Gene Therapy. International Journal of 1.8 Molecular Sciences, 2022, 23, 12693 Ancestral library identifies conserved reprogrammable liver motif on AAV capsid. Cell Reports 1474 3.3 7 Medicine, 2022, 3, 100803. Allometric-like scaling of AAV gene therapy for systemic protein delivery. Molecular Therapy - Methods and Clinical Development, 2022, 27, 368-379. 1475 1.8 Development of a highâ€yield, highâ€quality purification process for adenoâ€associated virus vectors that 1476 can be used in vivo without ultracentrifugation: Application to a lung endothelial cellâ€targeted 0.2 0 adenoâ€associated virus. FASEB Journal, 2022, 36, . First-in-Patient Dose Prediction for Adeno-Associated Virus-Mediated Hemophilia Gene Therapy Using 1477 2.3 Allometric Scaling. Molecular Pharmaceutics, 2023, 20, 758-766. Interspecies normalization of doseâ€response relationship for adenoâ€associated virusâ€mediated 1478 haemophilia gene therapyâ€"Application to human dose prediction. British Journal of Clinical 1.1 2 Pharmacology, 2023, 89, 1393-1401. rAAV-CRISPRa therapy corrects Rai1 haploinsufficiency and rescues selective disease features in 1479 1.6 Smith-Magenis syndrome mice. Journal of Biological Chemistry, 2023, 299, 102728.

#	Article	IF	CITATIONS
1480	Gene and Cell Therapy: How to Build a BioDrug. Pediatric Oncology, 2022, , 51-88.	0.5	0
1481	A sensitive and drug tolerant assay for detecting anti-AAV9 antibodies using affinity capture elution. Journal of Immunological Methods, 2023, 512, 113397.	0.6	3
1482	Exploration of the impact of gene therapy on the lives of people with haemophilia and their families: a protocol for the mixed-methods exigency study. BMJ Open, 2022, 12, e060351.	0.8	1
1484	Comparison of different gene addition strategies to modify placental derived-mesenchymal stromal cells to produce FVIII. Frontiers in Immunology, 0, 13, .	2.2	2
1485	Stable and durable factor IX levels in patients with hemophilia B over 3 years after etranacogene dezaparvovec gene therapy. Blood Advances, 2023, 7, 5671-5679.	2.5	16
1486	Clinical Pharmacology Considerations on Recombinant Adenoâ€Associated Virus–Based Gene Therapy. Journal of Clinical Pharmacology, 2022, 62, .	1.0	7
1487	Meeting Summary: ESGCT 2022 AAV Safety Plenary Session. Human Gene Therapy, 2022, 33, 1217-1220.	1.4	0
1488	Transient expression of factor VIII and a chronic high-fat diet induces ER stress and late hepatocyte oncogenesis. Molecular Therapy, 2022, 30, 3510-3512.	3.7	1
1489	Gene therapy for hemophilia—opportunities and risks. Deutsches Ärzteblatt International, 0, , .	0.6	0
1490	Binding and neutralizing anti-AAV antibodies: Detection and implications for rAAV-mediated gene therapy. Molecular Therapy, 2023, 31, 616-630.	3.7	15
1491	Viral-mediated gene therapy in pediatric neurological disorders. World Journal of Pediatrics, 0, , .	0.8	4
1492	Gene therapy for liver diseases — progress and challenges. Nature Reviews Gastroenterology and Hepatology, 2023, 20, 288-305.	8.2	16
1493	Liverâ€directed gene therapy for ornithine aminotransferase deficiency. EMBO Molecular Medicine, 2023, 15, .	3.3	5
1494	One Health: Animal Models of Heritable Human Bleeding Diseases. Animals, 2023, 13, 87.	1.0	1
1495	Big stride in gene therapy for hemophilia B in China. Blood Science, 0, Publish Ahead of Print, .	0.4	1
1496	Towards the Clinical Application of Gene Therapy for Genetic Inner Ear Diseases. Journal of Clinical Medicine, 2023, 12, 1046.	1.0	8
1497	Neonatal Fc Receptor Inhibition Enables Adeno-Associated Virus Gene Therapy Despite Pre-Existing Humoral Immunity. Human Gene Therapy, 2023, 34, 1022-1032.	1.4	4
1498	Valoctocogene roxaparvovec gene transfer in participants with HIV. Blood Advances, 2023, 7, 1525-1530.	2.5	1

#	Article	IF	CITATIONS
1499	Modulating the activity of human nociceptors with a SCN10A promoter-specific viral vector tool. Neurobiology of Pain (Cambridge, Mass), 2023, 13, 100120.	1.0	2
1500	Mitigating Serious Adverse Events in Gene Therapy with AAV Vectors: Vector Dose and Immunosuppression. Drugs, 2023, 83, 287-298.	4.9	7
1501	Immunogenicity of Recombinant Adeno-Associated Virus (AAV) Vectors for Gene Transfer. BioDrugs, 2023, 37, 311-329.	2.2	19
1502	A systematic review of adenoâ€associated virus gene therapy clinical trials for HIV – A potential solution for patients with haemophilia and HIV?. Haemophilia, 2023, 29, 784-789.	1.0	1
1503	Gene therapy for hemophilia: looking beyond factor expression. Experimental Biology and Medicine, 2022, 247, 2223-2232.	1.1	1
1504	Reversible stabilization of DNA/PEI complexes by reducible click-linkage between DNA and polymer. A new polyplex concept for lowering polymer quantity. Gene Therapy, 0, , .	2.3	1
1505	Multiplexing AAV Serotype-Specific Neutralizing Antibodies in Preclinical Animal Models and Humans. Biomedicines, 2023, 11, 523.	1.4	1
1506	Gene Therapy with Etranacogene Dezaparvovec for Hemophilia B. New England Journal of Medicine, 2023, 388, 706-718.	13.9	76
1507	Hemophilia treatment innovation: 50 years of progress and more to come. Journal of Thrombosis and Haemostasis, 2023, 21, 403-412.	1.9	18
1508	Expectation and loss when gene therapy for haemophilia is not an option: An exigency subâ€ s tudy. Haemophilia, 2023, 29, 776-783.	1.0	1
1509	Assessment of Pre-Clinical Liver Models Based on Their Ability to Predict the Liver-Tropism of Adeno-Associated Virus Vectors. Human Gene Therapy, 2023, 34, 273-288.	1.4	8
1510	Successful liver transduction by reâ€administration of different adenoâ€associated virus vector serotypes in mice. Journal of Gene Medicine, 2023, 25, .	1.4	2
1511	AAV genome modification for efficient AAV production. Heliyon, 2023, 9, e15071.	1.4	1
1512	AAV6-Mediated Gene Therapy Prevents Developmental Dentin Defects in a Dentinogenesis Imperfecta Type ⢠Mouse Model. Human Gene Therapy, 0, , .	1.4	0
1513	The Transfer of the Hepatocyte Growth Factor Gene by Macrophages Ameliorates the Progression of Peritoneal Fibrosis in Mice. International Journal of Molecular Sciences, 2023, 24, 6951.	1.8	1
1514	Barriers in Heart Failure Gene Therapy and Approaches to Overcome Them. Heart Lung and Circulation, 2023, , .	0.2	1
1515	Evaluation of Cellular Immune Response to Adeno-Associated Virus-Based Gene Therapy. AAPS Journal, 2023, 25, .	2.2	6
1526	Adeno-associated virus vectors and neurotoxicity—lessons from preclinical and human studies. Gene Therapy, 0, , .	2.3	2

#	Article	IF	CITATIONS
1527	Gene Therapy and Therapeutic Genome Editing in Liver for Lipid Disorders. , 2024, , 281-285.e1.		0
1586	Hemophilia B: Diagnosis and Management. , 2023, , 145-171.		0
1589	Intrathecal Delivery of Viral Vector-Mediated Gene Therapy. , 2023, , 399-412.		0
1598	Update in Pediatric Hematology. , 2023, , 429-446.		0