Regulation of HIF-1α activity in adipose tissue by obesinsulin, and hypoxia

American Journal of Physiology - Endocrinology and Metabolis 300, E877-E885

DOI: 10.1152/ajpendo.00626.2010

Citation Report

#	Article	IF	CITATIONS
1	Apelin, diabetes, and obesity. Endocrine, 2011, 40, 1-9.	2.3	240
2	Increased Angiogenesis Protects against Adipose Hypoxia and Fibrosis in Metabolic Disease-resistant $11\hat{1}^2$ -Hydroxysteroid Dehydrogenase Type 1 (HSD1)-deficient Mice. Journal of Biological Chemistry, 2012, 287, 4188-4197.	3.4	82
3	Negative Regulation of Human Growth Hormone Gene Expression by Insulin Is Dependent on Hypoxia-inducible Factor Binding in Primary Non-tumor Pituitary Cells. Journal of Biological Chemistry, 2012, 287, 33282-33292.	3.4	15
4	Adipose tissue oxygen tension. Current Opinion in Clinical Nutrition and Metabolic Care, 2012, 15, 539-546.	2.5	57
5	Adipose Tissue Inflammation and Adiponectin Resistance in Patients With Advanced Heart Failure. Circulation: Heart Failure, 2012, 5, 340-348.	3.9	86
6	Glycolysis in the control of blood glucose homeostasis. Acta Pharmaceutica Sinica B, 2012, 2, 358-367.	12.0	105
7	Hypoxia and estrogen are functionally equivalent in breast cancer-endothelial cell interdependence. Molecular Cancer, 2012, 11, 80.	19.2	36
8	Early Chronotype and Tissue-Specific Alterations of Circadian Clock Function in Spontaneously Hypertensive Rats. PLoS ONE, 2012, 7, e46951.	2.5	26
9	Hypoxiaâ€inducible factor 1 activation from adipose protein 2â€cre mediated knockout of von hippelâ€indau gene leads to embryonic lethality. Clinical and Experimental Pharmacology and Physiology, 2012, 39, 145-150.	1.9	20
10	Cyclic restricted feeding enhances lipid storage in 3ÂT3-L1 adipocytes. Lipids in Health and Disease, 2013, 12, 76.	3.0	2
11	Modest hypoxia significantly reduces triglyceride content and lipid droplet size in 3T3-L1 adipocytes. Biochemical and Biophysical Research Communications, 2013, 440, 43-49.	2.1	26
12	Inflammation during obesity is not all bad: evidence from animal and human studies. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E466-E477.	3.5	126
13	Hypoxia and Adipose Tissue Function and Dysfunction in Obesity. Physiological Reviews, 2013, 93, 1-21.	28.8	658
14	ATF3 plays a role in adipocyte hypoxia-mediated mitochondria dysfunction in obesity. Biochemical and Biophysical Research Communications, 2013, 431, 421-427.	2.1	41
15	Adipose tissue renin–angiotensin–aldosterone system (RAAS) and progression of insulin resistance. Molecular and Cellular Endocrinology, 2013, 378, 1-14.	3.2	73
16	Systems biology of adipose tissue metabolism: regulation of growth, signaling and inflammation. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2013, 5, 425-447.	6.6	32
17	Fatâ€resident <scp>T</scp> regs: an emerging guard protecting from obesityâ€associated metabolic disorders. Obesity Reviews, 2013, 14, 568-578.	6.5	38
18	Mechanisms of insulin resistance in obesity. Frontiers of Medicine, 2013, 7, 14-24.	3.4	518

#	Article	IF	CITATIONS
19	Insulin promotes iron uptake in human hepatic cell by regulating transferrin receptor-1 transcription mediated by hypoxia inducible factor-1. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 293-301.	3.8	28
20	Regulation of $11\hat{l}^2$ -HSD1 expression during adipose tissue expansion by hypoxia through different activities of NF- \hat{l}^2 B and HIF- $1\hat{l}^{\pm}$. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E1035-E1041.	3.5	21
21	Nutrient Restriction and Radiation Therapy for Cancer Treatment: When Less Is More. Oncologist, 2013, 18, 97-103.	3.7	47
22	Adipose Tissue Hypoxia in Regulation of Angiogenesis and Obesity. , 2013, , 247-262.		0
23	Endogenous oxidative stress, but not ER stress, induces hypoxiaâ€independent VEGF ₁₂₀ release through PI3Kâ€dependent pathways in 3T3‣1 adipocytes. Obesity, 2013, 21, 1625-1634.	3.0	15
24	Overview of Obesity, Inflammation, and Cancer. , 2013, , 21-40.		0
25	Insulin Regulates Hypoxia-Inducible Factor- $1\hat{l}\pm$ Transcription by Reactive Oxygen Species Sensitive Activation of Sp1 in 3T3-L1 Preadipocyte. PLoS ONE, 2013, 8, e62128.	2.5	21
26	Arsenite-Induced Pseudo-Hypoxia Results in Loss of Anchorage-Dependent Growth in BEAS-2B Pulmonary Epithelial Cells. PLoS ONE, 2014, 9, e114549.	2.5	22
27	Regulation of obesity and insulin resistance by hypoxia-inducible factors. Hypoxia (Auckland, N Z), 2014, 2, 171.	1.9	36
28	A vascular piece in the puzzle of adipose tissue dysfunction: mechanisms and consequences. Archives of Physiology and Biochemistry, 2014, 120, 1-11.	2.1	9
29	Hepatocyte growth factor regulates neovascularization in developing fat pads. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E189-E196.	3. 5	4
30	Moderate exercise training provides modest protection against adipose tissue inflammatory gene expression in response to high-fat feeding. Physiological Reports, 2014, 2, e12071.	1.7	48
31	HIFâ€1α Expression as a Protective Strategy of HepG2 Cells Against Fatty Acidâ€Induced Toxicity. Journal of Cellular Biochemistry, 2014, 115, 1147-1158.	2.6	31
32	The effects of 30 days resveratrol supplementation on adipose tissue morphology and gene expression patterns in obese men. International Journal of Obesity, 2014, 38, 470-473.	3.4	115
33	The consumption of n-3 polyunsaturated fatty acids differentially modulates gene expression of peroxisome proliferator-activated receptor alpha and gamma and hypoxia-inducible factor 1 alpha in subcutaneous adipose tissue of obese adolescents. Endocrine, 2014, 45, 98-105.	2.3	39
34	Transcriptional regulatory network analysis of the over-expressed genes in adipose tissue. Genes and Genomics, 2014, 36, 105-117.	1.4	31
35	NADPH oxidase 4 promotes cardiac microvascular angiogenesis after hypoxia/reoxygenation in vitro. Free Radical Biology and Medicine, 2014, 69, 278-288.	2.9	41
36	Persistent organic pollutants meet adipose tissue hypoxia: does crossâ€ŧalk contribute to inflammation during obesity?. Obesity Reviews, 2014, 15, 19-28.	6.5	32

#	Article	IF	CITATIONS
37	Oxygen sensing and metabolic homeostasis. Molecular and Cellular Endocrinology, 2014, 397, 51-58.	3.2	89
38	Regulation of hepatocyte growth factor expression by NF-κB and PPARγ in adipose tissue. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E929-E936.	3.5	16
39	Macrophages and the Regulation of Adipose Tissue Remodeling. Annual Review of Nutrition, 2014, 34, 57-76.	10.1	91
40	Obesity-associated mechanisms of hepatocarcinogenesis. Metabolism: Clinical and Experimental, 2014, 63, 607-617.	3.4	146
41	Vascular rarefaction mediates whitening of brown fat in obesity. Journal of Clinical Investigation, 2014, 124, 2099-2112.	8.2	328
42	Metabolic dysfunction in obstructive sleep apnea: A critical examination of underlying mechanisms. Sleep and Biological Rhythms, 2015, 13, 2-17.	1.0	55
43	Hypoxia is associated with a lower expression of genes involved in lipogenesis in visceral adipose tissue. Journal of Translational Medicine, 2015, 13, 373.	4.4	28
44	Computational Model of MicroRNA Control of HIF-VEGF Pathway: Insights into the Pathophysiology of Ischemic Vascular Disease and Cancer. PLoS Computational Biology, 2015, 11, e1004612.	3.2	33
45	The role of fatty acids in insulin resistance. Lipids in Health and Disease, 2015, 14, 121.	3.0	368
46	Inflammation in sleep apnea: An update. Reviews in Endocrine and Metabolic Disorders, 2015, 16, 25-34.	5.7	153
47	Adipose Tissue in Sleep Apnea. , 2015, , 69-76.		0
48	Hypoxia Inhibits Cavin-1 and Cavin-2 Expression and Down-Regulates Caveolae in Adipocytes. Endocrinology, 2015, 156, 789-801.	2.8	28
49	Regulation of energy balance by inflammation: Common theme in physiology and pathology. Reviews in Endocrine and Metabolic Disorders, 2015, 16, 47-54.	5.7	110
50	Adipocyte Pseudohypoxia Suppresses Lipolysis and Facilitates Benign Adipose Tissue Expansion. Diabetes, 2015, 64, 733-745.	0.6	49
51	Effects of Hyperoxia on Oxygen-Related Inflammation with a Focus on Obesity. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-11.	4.0	26
52	Role of Tissue and Systemic Hypoxia in Obesity and Type 2 Diabetes. Journal of Diabetes Research, 2016, 2016, 1-3.	2.3	16
53	Hypoxia-regulated mechanisms in the pathogenesis of obesity and non-alcoholic fatty liver disease. Cellular and Molecular Life Sciences, 2016, 73, 3419-3431.	5.4	50
54	Depot-specific differences in angiogenic capacity of adipose tissue in differential susceptibility to diet-induced obesity. Molecular Metabolism, 2016, 5, 1113-1120.	6.5	20

#	Article	IF	Citations
55	Hypoxia-Inducible Factor-1α Regulates CD55 in Airway Epithelium. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 889-898.	2.9	27
56	Adipogenesis, lipogenesis and lipolysis is stimulated by mild but not severe hypoxia in 3T3-L1 cells. Biochemical and Biophysical Research Communications, 2016, 478, 727-732.	2.1	26
57	HIF-1α in Myeloid Cells Promotes Adipose Tissue Remodeling Toward Insulin Resistance. Diabetes, 2016, 65, 3649-3659.	0.6	81
58	The pathological role of vascular aging in cardio-metabolic disorder. Inflammation and Regeneration, 2016, 36, 16.	3.7	9
59	Differential regulation of pro- and antiapoptotic proteins in fish adipocytes during hypoxic conditions. Fish Physiology and Biochemistry, 2016, 42, 919-934.	2.3	6
60	Increased Cardiometabolic Risk and Worsening Hypoxemia at High Altitude. High Altitude Medicine and Biology, 2016, 17, 93-100.	0.9	38
61	Hypoxia-Inducible Factors and Cancer. Current Sleep Medicine Reports, 2017, 3, 1-10.	1.4	154
62	Increased hypoxia-inducible factor- $\hat{\Pi}$ in striated muscle of tumor-bearing mice. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H1154-H1162.	3.2	13
63	Bilobalide abates inflammation, insulin resistance and secretion of angiogenic factors induced by hypoxia in 3T3-L1 adipocytes by controlling NF- \hat{l}° B and JNK activation. International Immunopharmacology, 2017, 42, 209-217.	3.8	37
64	Mangiferin ameliorates insulin resistance by inhibiting inflammation and regulatiing adipokine expression in adipocytes under hypoxic condition. Chinese Journal of Natural Medicines, 2017, 15, 664-673.	1.3	9
65	Function and Dysfunction of Adipose Tissue. Advances in Neurobiology, 2017, 19, 3-31.	1.8	31
66	Fat-enriched rather than high-fructose diets promote whitening of adipose tissue in a sex-dependent manner. Journal of Nutritional Biochemistry, 2017, 49, 22-29.	4.2	22
67	RNA SEQ Analysis Indicates that the AE3 Clâ^²/HCO3 â^² Exchanger Contributes to Active Transport-Mediated CO2 Disposal in Heart. Scientific Reports, 2017, 7, 7264.	3.3	5
68	Adapting to obesity with adipose tissue inflammation. Nature Reviews Endocrinology, 2017, 13, 633-643.	9.6	864
69	Aerobic exercise elevates markers of angiogenesis and macrophage IL-6 gene expression in the subcutaneous adipose tissue of overweight-to-obese adults. Journal of Applied Physiology, 2017, 123, 1150-1159.	2.5	38
70	Adipose HIF- $1\hat{1}\pm$ causes obesity by suppressing brown adipose tissue thermogenesis. Journal of Molecular Medicine, 2017, 95, 287-297.	3.9	34
71	Circadian Clock Interaction with HIF1 \hat{l}_{\pm} Mediates Oxygenic Metabolism and Anaerobic Glycolysis in Skeletal Muscle. Cell Metabolism, 2017, 25, 86-92.	16.2	275
72	HIF1 <i>$\hat{l}\pm<$i>li>-Induced Glycolysis Metabolism Is Essential to the Activation of Inflammatory Macrophages. Mediators of Inflammation, 2017, 2017, 1-10.</i>	3.0	228

#	Article	IF	CITATIONS
73	Elevated (Pro)renin Receptor Expression Contributes to Maintaining Aerobic Metabolism in Growth Hormone Deficiency. Journal of the Endocrine Society, 2018, 2, 252-265.	0.2	5
74	Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms. Pharmacological Research, 2018, 130, 451-465.	7.1	276
75	Hypoxia Inducible Factor as a Central Regulator of Metabolism – Implications for the Development of Obesity. Frontiers in Neuroscience, 2018, 12, 813.	2.8	60
76	Different effects of long noncoding RNA <i>NDRG1-OT1</i> fragments on <i>NDRG1</i> transcription in breast cancer cells under hypoxia. RNA Biology, 2018, 15, 1487-1498.	3.1	20
77	GPS2 Deficiency Triggers Maladaptive White Adipose Tissue Expansion in Obesity via HIF1A Activation. Cell Reports, 2018, 24, 2957-2971.e6.	6.4	48
78	Long Non-Coding RNAs in Obesity-Induced Cancer. Non-coding RNA, 2018, 4, 19.	2.6	36
79	Hepatocellular Carcinoma in Obesity: Finding a Needle in the Haystack?. Advances in Experimental Medicine and Biology, 2018, 1061, 63-77.	1.6	6
80	Circulating Serum Level of Visfatin in Patients with Endometrial Cancer. BioMed Research International, 2018, 2018, 1-9.	1.9	24
81	Obesity, Fatty Liver and Liver Cancer. Advances in Experimental Medicine and Biology, 2018, , .	1.6	17
82	Environmental exposures and systemic hypertension are risk factors for decline in lung function. Thorax, 2018, 73, 1120-1127.	5.6	16
83	The Heterogeneity of White Adipose Tissue. , 2018, , .		8
84	Inflammation stimulates hypoxiaâ€inducible factorâ€1α regulatory activity in 3T3â€L1 adipocytes with conditioned medium from lipopolysaccharideâ€activated RAW 264.7 macrophages. Journal of Cellular Physiology, 2019, 234, 550-560.	4.1	12
85	New Insights into Bioactive Compounds of Traditional Chinese Medicines for Insulin Resistance Based on Signaling Pathways. Chemistry and Biodiversity, 2019, 16, e1900176.	2.1	5
86	Adipogenesis: A Necessary but Harmful Strategy. International Journal of Molecular Sciences, 2019, 20, 3657.	4.1	43
87	Fish oil supplementation to a high-fat diet improves both intestinal health and the systemic obese phenotype. Journal of Nutritional Biochemistry, 2019, 72, 108216.	4.2	26
88	Leptin in the regulation of the immunometabolism of adipose tissue-macrophages. Journal of Leukocyte Biology, 2019, 106, 703-716.	3.3	52
89	Hypoxiaâ€inducible factor 1â€alpha (HIFâ€1α) as a factor mediating the relationship between obesity and heart failure with preserved ejection fraction. Obesity Reviews, 2019, 20, 701-712.	6.5	57
90	Anti-angiogenic isoform of vascular endothelial growth factor-A in cardiovascular and renal disease. Advances in Clinical Chemistry, 2019, 88, 1-33.	3.7	21

#	Article	IF	CITATIONS
91	The role of hypoxia-inducible factors in metabolic diseases. Nature Reviews Endocrinology, 2019, 15, 21-32.	9.6	254
92	Oxygenation of adipose tissue: A human perspective. Acta Physiologica, 2020, 228, e13298.	3.8	72
93	Flavonoids and type 2 diabetes: Evidence of efficacy in clinical and animal studies and delivery strategies to enhance their therapeutic efficacy. Pharmacological Research, 2020, 152, 104629.	7.1	112
94	Bioactive Agent Discovery from the Natural Compounds for the Treatment of Type 2 Diabetes Rat Model. Molecules, 2020, 25, 5713.	3.8	15
96	<p>Expression of Hypoxia-Inducible Factor- $1\hat{l}\pm$ (HIF1A) and Lp-PLA2 in Low, Intermediate, and High Cardiovascular Disease Risk Population</p>. Vascular Health and Risk Management, 2020, Volume 16, 507-513.	2.3	6
97	Turning the Oxygen Dial: Balancing the Highs and Lows. Trends in Cell Biology, 2020, 30, 516-536.	7.9	41
98	Intermittent Fasting and High-Intensity Exercise Elicit Sexual-Dimorphic and Tissue-Specific Adaptations in Diet-Induced Obese Mice. Nutrients, 2020, 12, 1764.	4.1	9
99	Cold-Pressed Nigella Sativa Oil Standardized to 3% Thymoquinone Potentiates Omega-3 Protection against Obesity-Induced Oxidative Stress, Inflammation, and Markers of Insulin Resistance Accompanied with Conversion of White to Beige Fat in Mice. Antioxidants, 2020, 9, 489.	5.1	25
100	Adipose Tissue in Health and Disease., 0, , .		4
101	Proteomic identification of aerobic glycolysis as a potential metabolic target for methylglyoxal in adipocytes. Nutrition Research, 2020, 80, 66-77.	2.9	3
102	Intermittent Hypoxia Stimulates Lipolysis, But Inhibits Differentiation and <i>De Novo</i> Lipogenesis in 3T3-L1 Cells. Metabolic Syndrome and Related Disorders, 2020, 18, 146-153.	1.3	10
103	Critical Role of Matrix Metalloproteinase 14 in Adipose Tissue Remodeling during Obesity. Molecular and Cellular Biology, 2020, 40, .	2.3	56
104	Liraglutide treatment and acylcarnitine profiles in Egyptian obese insulin-resistant females. European Journal of Pharmacology, 2021, 891, 173668.	3.5	0
105	Applications in medicine: hypoglycemic peptides. , 2021, , 607-628.		0
106	Alphaâ€ipoic acid alleviates NAFLD and triglyceride accumulation in liver via modulating hepatic NLRP3 inflammasome activation pathway in type 2 diabetic rats. Food Science and Nutrition, 2021, 9, 2733-2742.	3.4	13
107	The continuum of disrupted metabolic tempo, mitochondrial substrate congestion, and metabolic gridlock toward the development of non-communicable diseases. Critical Reviews in Food Science and Nutrition, 2021, , 1-17.	10.3	1
108	Modulatory Effect of Intermittent Fasting on Adipose Tissue Inflammation: Amelioration of Cardiovascular Dysfunction in Early Metabolic Impairment. Frontiers in Pharmacology, 2021, 12, 626313.	3.5	15
109	Deletion of adipose triglyceride lipase abolishes blood flow increase after \hat{I}^2 3-adrenergic stimulation in visceral adipose tissue of mice. Korean Journal of Physiology and Pharmacology, 2021, 25, 355-363.	1.2	1

#	Article	IF	CITATIONS
110	Novel Metabolic Regulation of Bile Acid Responses to Low Cholesterol in Whole-Grain-Diet-Fed Mice. Journal of Agricultural and Food Chemistry, 2021, 69, 8440-8447.	5.2	11
111	Secretory Phospholipase A2s in Insulin Resistance and Metabolism. Frontiers in Endocrinology, 2021, 12, 732726.	3.5	13
112	Oxygen in Metabolic Dysfunction and Its Therapeutic Relevance. Antioxidants and Redox Signaling, 2021, 35, 642-687.	5.4	2
113	Pyruvate dehydrogenase kinase 1 and 2 deficiency reduces high-fat diet-induced hypertrophic obesity and inhibits the differentiation of preadipocytes into mature adipocytes. Experimental and Molecular Medicine, 2021, 53, 1390-1401.	7.7	5
114	Bird evolution by insulin resistance. Trends in Endocrinology and Metabolism, 2021, 32, 803-813.	7.1	11
115	Adipocyte-derived extracellular vesicles promote breast cancer cell malignancy through HIF-1 \hat{l} ± activity. Cancer Letters, 2021, 521, 155-168.	7.2	27
116	Growth hormone receptor disrupts glucose homeostasis via promoting and stabilizing retinol binding protein 4. Theranostics, 2021, 11, 8283-8300.	10.0	10
117	Adipose Tissue Hypoxia in Obesity and Its Impact on Preadipocytes and Macrophages: Hypoxia Hypothesis. Advances in Experimental Medicine and Biology, 2017, 960, 305-326.	1.6	84
118	Endothelial Dysfunction in Obesity. Advances in Experimental Medicine and Biology, 2017, 960, 345-379.	1.6	151
119	The Pathogenesis of Obesity-Associated Adipose Tissue Inflammation. Advances in Experimental Medicine and Biology, 2017, 960, 221-245.	1.6	198
120	CXCL13 is a differentiation- and hypoxia-induced adipocytokine that exacerbates the inflammatory phenotype of adipocytes through PHLPP1 induction. Biochemical Journal, 2019, 476, 3533-3548.	3.7	15
121	Targeting perivascular and epicardial adipose tissue inflammation: therapeutic opportunities for cardiovascular disease. Clinical Science, 2020, 134, 827-851.	4.3	43
122	Hypoxia-inducible factors: key regulators of myeloid cells during inflammation. Journal of Clinical Investigation, 2016, 126, 3661-3671.	8.2	113
123	NADPH Oxidase 4 Mediates Insulin-Stimulated HIF- \hat{l} ± and VEGF Expression, and Angiogenesis In Vitro. PLoS ONE, 2012, 7, e48393.	2.5	67
124	The Effect of Pericellular Oxygen Levels on Proteomic Profile and Lipogenesis in 3T3-L1 Differentiated Preadipocytes Cultured on Gas-Permeable Cultureware. PLoS ONE, 2016, 11, e0152382.	2.5	13
125	Classifying the Linkage between Adipose Tissue Inflammation and Tumor Growth through Cancer-Associated Adipocytes. Molecules and Cells, 2020, 43, 763-773.	2.6	4
126	Regulation of type 3 deiodinase in rodent liver and adipose tissue during fasting. Endocrine Connections, 2020, 9, 552-562.	1.9	12
127	Hypoxia negates hyperglycaemia-induced chemo-resistance in breast cancer cells: the role of insulin-like growth factor binding protein 2. Oncotarget, 2017, 8, 74635-74648.	1.8	7

#	Article	IF	CITATIONS
128	Glycation and Hypoxia: Two Key Factors for Adipose Tissue Dysfunction. Current Medicinal Chemistry, 2015, 22, 2417-2437.	2.4	14
129	One Special Question to Start with: Can HIF/NFkB be a Target in Inflammation?. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2015, 15, 171-185.	1.2	18
130	Adipose tissue and vascular inflammation in coronary artery disease. World Journal of Cardiology, 2014, 6, 539.	1.5	42
131	Critical protein GAPDH and its regulatory mechanisms in cancer cells. Cancer Biology and Medicine, 2015, 12, 10-22.	3.0	119
132	MiR-409-3p targets a MAP4K3-ZEB1-PLGF signaling axis and controls brown adipose tissue angiogenesis and insulin resistance. Cellular and Molecular Life Sciences, 2021, 78, 7663-7679.	5.4	12
133	Obesity-Related Endothelial Dysfunction and Metabolic Syndrome. , 2013, , 278-336.		0
134	The Role of Diet in Inflammation and Metabolic Syndrome. , 2015, , 3-22.		0
135	Obesity-Related Genes and Oral Cancer: A Bioinformatics Approach and Systematic Review. Journal of Applied Bioinformatics & Computational Biology, 2016, 05, .	0.2	0
136	Role of Hypoxia Inducible Factors in Obesity Pathogenesis. British Journal of Medicine and Medical Research, 2016, 15, 1-8.	0.2	0
137	Acanthosis Nigricans and Skin Tags as Markers of Insulin Resistance in Non-Diabetic Obese Individuals. Journal of Evidence Based Medicine and Healthcare, 2020, 7, 270-274.	0.0	0
138	Losartan Attenuates Insulin Resistance and Regulates Browning Phenomenon of White Adipose Tissue in ob/ob Mice. Current Issues in Molecular Biology, 2021, 43, 1828-1843.	2.4	6
139	A novel regulatory mechanism of geniposide for improving glucose homeostasis mediated by circulating RBP4. Phytomedicine, 2022, 95, 153862.	5.3	7
140	Oxidized LDL Increase the Proinflammatory Profile of Human Visceral Adipocytes Produced by Hypoxia. Biomedicines, 2021, 9, 1715.	3.2	9
141	Metabolic reprogramming in the arsenic carcinogenesis. Ecotoxicology and Environmental Safety, 2022, 229, 113098.	6.0	10
142	Dysmetabolism and Neurodegeneration: Trick or Treat?. Nutrients, 2022, 14, 1425.	4.1	8
143	Role of Exercise Intensity on Th1/Th2 Immune Modulations During the COVID-19 Pandemic. Frontiers in Immunology, 2021, 12, 761382.	4.8	10
145	Association between polymorphisms and hypermethylation of CD36 gene in obese and obese diabetic Senegalese females. Diabetology and Metabolic Syndrome, 2022, 14, .	2.7	1
146	Effects of combination of obesity, diabetes, and hypoxia on inflammatory regulating genes and cytokines in rat pancreatic tissues and serum. PeerJ, 0, 10, e13990.	2.0	0

#	Article	IF	CITATIONS
147	Endothelial dysfunction in patients with obesity. Regional Blood Circulation and Microcirculation, 2022, 21, 4-11.	0.3	2
148	The HIF1 $\hat{l}\pm$ polymorphism rs2301104 is associated with obesity and obesity-related cytokines in Han Chinese population. Acta Diabetologica, 0, , .	2.5	0
150	Remodeling of white adipose tissue microenvironment against obesity by phytochemicals. Phytotherapy Research, 0, , .	5.8	1
151	Adipocyte-derived extracellular vesicles: bridging the communications between obesity and tumor microenvironment. Discover Oncology, 2023, 14, .	2.1	2
152	The importance of microvascular inflammation in ageing and age-related diseases: a position paper from the ESH working group on small arteries, section of microvascular inflammation. Journal of Hypertension, 2023, 41, 1521-1543.	0.5	6
153	Structure-related relationship: Plant-derived antidiabetic compounds. Studies in Natural Products Chemistry, 2023, , 241-295.	1.8	0
155	Astaxanthin and DHA supplementation ameliorates the proteomic profile of perinatal undernutrition-induced adipose tissue dysfunction in adult life. Scientific Reports, 2023, 13, .	3.3	2
156	Murine Proâ€Inflammatory Responses to Acute and Sustained Intermittent Hypoxia: Implications for Obstructive Sleep Apnea Research. Laryngoscope, 2024, 134, .	2.0	0
157	Exploring the Functional Basis of Epigenetic Aging in Relation to Body Fat Phenotypes in the Norfolk Island Cohort. Current Issues in Molecular Biology, 2023, 45, 7862-7877.	2.4	0
158	Obesity and Inflammation. Contemporary Endocrinology, 2023, , 15-53.	0.1	1
160	Myricetin attenuates hypoxia-induced inflammation in human adipocytes. Molecular Biology Reports, 0, , .	2.3	0
161	Sensing the oxygen and temperature in the adipose tissues – who's sensing what?. Experimental and Molecular Medicine, 2023, 55, 2300-2307.	7.7	4
162	Context-dependent regulation of lipid accumulation in adipocytes by a HIF1 \hat{i} ±-PPAR \hat{i} 3 feedback network. Cell Systems, 2023, , .	6.2	1
163	HIF1 $\hat{l}\pm$ elevations at tissue and serum levels and their association with metabolic disorders in obese children. Journal of Clinical Endocrinology and Metabolism, 0, , .	3.6	0
164	Mechanisms of action of natural products on type 2 diabetes. World Journal of Diabetes, 0, 14, 1603-1620.	3.5	1
165	Fat Biology in Triple-Negative Breast Cancer: Immune Regulation, Fibrosis, and Senescence. Journal of Obesity and Metabolic Syndrome, 2023, , .	3.6	0
166	Effects of biological therapies on patients with Type-2 high asthma and comorbid obesity. Frontiers in Pharmacology, $0,14,1$	3.5	0
167	Interleukin-16 is increased in obesity and alters adipogenesis and inflammation in vitro. Frontiers in Endocrinology, $0,15,.$	3.5	0