Molecular Genetics of Colorectal Cancer

Annual Review of Pathology: Mechanisms of Disease 6, 479-507

DOI: 10.1146/annurev-pathol-011110-130235

Citation Report

#	Article	IF	CITATIONS
1	Clinical Applications of Aspirin. , 0, , 223-365.		0
2	Integrating contextual miRNA and protein signatures for diagnostic and treatment decisions in cancer. Expert Review of Molecular Diagnostics, 2011, 11, 813-827.	1.5	36
3	MAPing the Role of Kras Mutations in Hyperplastic Polyps. Gastroenterology, 2011, 141, 799-801.	0.6	0
4	Pharmacology and cellular/molecular mechanisms of action of aspirin and Non-aspirin NSAIDs in colorectal cancer. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2011, 25, 473-484.	1.0	63
5	The Causes and Consequences of Polyploidy in Normal Development and Cancer. Annual Review of Cell and Developmental Biology, 2011, 27, 585-610.	4.0	375
6	Effect of Maternal and Post-Weaning Folate Supply on Gene-Specific DNA Methylation in the Small Intestine of Weaning and Adult Apc+/Min and Wild Type Mice. Frontiers in Genetics, 2011, 2, 23.	1.1	24
7	Checkpoint Signaling, Base Excision Repair, and PARP Promote Survival of Colon Cancer Cells Treated with 5-Fluorodeoxyuridine but Not 5-Fluorouracil. PLoS ONE, 2011, 6, e28862.	1.1	31
8	Epigenetics and colorectal cancer. Nature Reviews Gastroenterology and Hepatology, 2011, 8, 686-700.	8.2	577
10	Micromanaging the Classification of Colon Cancer: The Role of the microRNAome. Clinical Cancer Research, 2011, 17, 7207-7209.	3.2	12
11	Loss of Heterozygosity at the Glutathione Peroxidase 1 Locus Is Not an Early Event in Colon Carcinogenesis. Genes and Cancer, 2011, 2, 910-913.	0.6	4
12	A Single-Nucleotide Substitution Mutator Phenotype Revealed by Exome Sequencing of Human Colon Adenomas. Cancer Research, 2012, 72, 6279-6289.	0.4	61
13	Molecular Events in Primary and Metastatic Colorectal Carcinoma: A Review. Pathology Research International, 2012, 2012, 1-14.	1.4	60
14	Ras Stabilization Through Aberrant Activation of Wnt/β-Catenin Signaling Promotes Intestinal Tumorigenesis. Science Signaling, 2012, 5, ra30.	1.6	155
15	Genomic CGH-assessed structural DNA alterations in rectal carcinoma as related to local recurrence following primary operation for cure. International Journal of Oncology, 2012, 41, 1397-1404.	1.4	6
16	The utility of diagnostic biopsy specimens for predictive molecular testing in colorectal cancer. Histopathology, 2012, 61, 1117-1124.	1.6	22
17	Extensive quantitative remodeling of the proteome between normal colon tissue and adenocarcinoma. Molecular Systems Biology, 2012, 8, 611.	3.2	221
18	<i>miR-23a</i> Promotes the Transition from Indolent to Invasive Colorectal Cancer. Cancer Discovery, 2012, 2, 540-553.	7.7	132
19	Targeting Protein Tyrosine Kinase 6 Enhances Apoptosis of Colon Cancer Cells following DNA Damage. Molecular Cancer Therapeutics, 2012, 11, 2311-2320.	1.9	16

TION RED

# 20	ARTICLE Missense Mutations in MLH1, MSH2, KRAS, and APC Genes in Colorectal Cancer Patients in Malaysia. Digestive Diseases and Sciences, 2012, 57, 2863-2872.	IF 1.1	Citations 8
21	Prevalence of mismatch repair-deficient crypt foci in Lynch syndrome: a pathological study. Lancet Oncology, The, 2012, 13, 598-606.	5.1	147
22	Obesityâ€related colon cancer: Dietary factors and their mechanisms of anticancer action [‡] . Clinical and Experimental Pharmacology and Physiology, 2012, 39, 161-167.	0.9	24
23	Gene-Diet Interactions on Colorectal Cancer Risk. Current Nutrition Reports, 2012, 1, 132-141.	2.1	24
24	Recurrent R-spondin fusions in colon cancer. Nature, 2012, 488, 660-664.	13.7	862
25	Proteomic Consequences of a Single Gene Mutation in a Colorectal Cancer Model. Journal of Proteome Research, 2012, 11, 1184-1195.	1.8	33
26	Transcriptional Networks in Liver and Intestinal Development. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008284-a008284.	2.3	42
27	Oxidatively damaged DNA and its repair in colon carcinogenesis. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2012, 736, 82-92.	0.4	40
28	Application of molecular techniques in the diagnosis, prognosis and management of patients with colorectal cancer: a practical approach. Human Pathology, 2012, 43, 1157-1168.	1.1	26
29	Sleeping Beauty – A mouse model for all cancers?. Cancer Letters, 2012, 317, 1-8.	3.2	19
30	Different mutation profiles associated to P53 accumulation in colorectal cancer. Gene, 2012, 499, 81-87.	1.0	52
31	Transition from Colitis to Cancer: High Wnt Activity Sustains the Tumor-Initiating Potential of Colon Cancer Stem Cell Precursors. Cancer Research, 2012, 72, 5091-5100.	0.4	86
32	Influence of Dietary Phytochemicals and Microbiota on Colon Cancer Risk. Journal of Agricultural and Food Chemistry, 2012, 60, 6728-6735.	2.4	62
33	Screening of Finnish RAD51Cfounder mutations in prostate and colorectal cancer patients. BMC Cancer, 2012, 12, 552.	1.1	8
34	Abnormal expression of GADD45B in human colorectal carcinoma. Journal of Translational Medicine, 2012, 10, 215.	1.8	50
35	Structural, functional and molecular analysis of the effects of aging in the small intestine and colon of C57BL/6J mice. BMC Medical Genomics, 2012, 5, 38.	0.7	48
36	Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines. BMC Medical Genomics, 2012, 5, 66.	0.7	202
37	Expression of miR-34 is lost in colon cancer which can be re-expressed by a novel agent CDF. Journal of Hematology and Oncology, 2012, 5, 58.	6.9	137

		EPORT	
#	Article	IF	CITATIONS
38	High-throughput screening strategies for targeted identification of therapeutic compounds in colorectal cancer. Future Oncology, 2012, 8, 259-272.	1.1	5
39	Comprehensive molecular characterization of human colon and rectal cancer. Nature, 2012, 487, 330-337.	13.7	7,168
40	Developmental pathways in colon cancer. Cell Cycle, 2012, 11, 4344-4351.	1.3	167
41	Multispectral Endoscopic Imaging of Colorectal Dysplasia In Vivo. Gastroenterology, 2012, 143, 1435-1437.	0.6	37
42	Cancer Biology: A New RING to Wnt Signaling. Current Biology, 2012, 22, R849-R851.	1.8	14
43	Chromothripsis: Chromosomes in Crisis. Developmental Cell, 2012, 23, 908-917.	3.1	116
44	Cancer syndromes and therapy by stop-codon readthrough. Trends in Molecular Medicine, 2012, 18, 667-678.	3.5	61
47	Long-range epigenetic silencing of chromosome 5q31 protocadherins is involved in early and late stages of colorectal tumorigenesis through modulation of oncogenic pathways. Oncogene, 2012, 31, 4409-4419.	2.6	77
48	2 Clinical Relevance of Kallikrein-related Peptidases in Gastric and Colorectal Cancer. , 2012, , 27-44.		0
49	HMGA1 Induces Intestinal Polyposis in Transgenic Mice and Drives Tumor Progression and Stem Cell Properties in Colon Cancer Cells. PLoS ONE, 2012, 7, e30034.	1.1	93
50	Forced Expression of miR-143 Represses ERK5/c-Myc and p68/p72 Signaling in Concert with miR-145 in Gut Tumors of ApcMin Mice. PLoS ONE, 2012, 7, e42137.	1.1	41
51	Frequent Alteration of the Tumor Suppressor Gene APC in Sporadic Canine Colorectal Tumors. PLoS ONE, 2012, 7, e50813.	1.1	22
52	Aqueous Fraction of Nephelium ramboutan-ake Rind Induces Mitochondrial-Mediated Apoptosis in HT-29 Human Colorectal Adenocarcinoma Cells. Molecules, 2012, 17, 6633-6657.	1.7	21
53	Systems-wide RNAi analysis of CASP8AP2/FLASH shows transcriptional deregulation of the replication-dependent histone genes and extensive effects on the transcriptome of colorectal cancer cells. Molecular Cancer, 2012, 11, 1.	7.9	42
54	Letâ€7c functions as a metastasis suppressor by targeting MMP11 and PBX3 in colorectal cancer. Journal of Pathology, 2012, 226, 544-555.	2.1	128
55	Occurrence of Aurora A positive multipolar mitoses in distinct molecular classes of colorectal carcinomas and effect of Aurora A inhibition. Molecular Carcinogenesis, 2012, 51, 696-710.	1.3	11
56	Red meat consumption and cancer: Reasons to suspect involvement of bovine infectious factors in colorectal cancer. International Journal of Cancer, 2012, 130, 2475-2483.	2.3	100
57	Signal Transducer and Activator of Transcription 3 (STAT3) Protein Suppresses Adenoma-to-carcinoma Transition in Apc/+ Mice via Regulation of Snail-1 (SNAI) Protein Stability. Journal of Biological Chemistry, 2012, 287, 18182-18189.	1.6	62

#	Article	IF	CITATIONS
58	A bacterial driver–passenger model for colorectal cancer: beyond the usual suspects. Nature Reviews Microbiology, 2012, 10, 575-582.	13.6	672
59	Canonical Wnt suppressor, Axin2, promotes colon carcinoma oncogenic activity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11312-11317.	3.3	125
60	Do neuroâ€humoral signaling molecules participate in colorectal carcinogenesis/cancer progression?. Neurogastroenterology and Motility, 2012, 24, 96-99.	1.6	1
61	Immunostaining in the context of loss mismatch repair function: interpretive confounders and cautionary tales!. Histopathology, 2012, 61, 522-525.	1.6	3
62	Mutations and epimutations in the origin of cancer. Experimental Cell Research, 2012, 318, 299-310.	1.2	68
63	Loss of HLTF function promotes intestinal carcinogenesis. Molecular Cancer, 2012, 11, 18.	7.9	37
64	Ovarian steroid cell tumor with biallelic adenomatous polyposis coli inactivation in a patient with familial adenomatous polyposis. Genes Chromosomes and Cancer, 2012, 51, 283-289.	1.5	13
65	Epigenetics Offer New Horizons for Colorectal Cancer Prevention. Current Colorectal Cancer Reports, 2012, 8, 66-81.	1.0	87
66	Targeted therapies in colorectal cancer—an integrative view by PPPM. EPMA Journal, 2013, 4, 3.	3.3	60
67	Association between NQO1 C609T polymorphism and colorectal cancer risk. Tumor Biology, 2013, 34, 4027-4032.	0.8	4
68	CYP2E1 T7632A and 9-bp insertion polymorphisms and colorectal cancer risk: a meta-analysis based on 4,592 cases and 5,918 controls. Tumor Biology, 2013, 34, 2225-2231.	0.8	7
69	Matrix metalloproteinase 9 expression and prognosis in colorectal cancer: a meta-analysis. Tumor Biology, 2013, 34, 735-741.	0.8	29
70	The Proto-Oncogene KRAS and BRAF Profiles and Some Clinical Characteristics in Colorectal Cancer in the Turkish Population. Genetic Testing and Molecular Biomarkers, 2013, 17, 135-139.	0.3	11
71	BRAF: A Driver of the Serrated Pathway in Colon Cancer. Cancer Cell, 2013, 24, 1-2.	7.7	40
72	Alterations in the EGFR pathway coincide in colorectal cancer and impact on prognosis. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2013, 463, 509-523.	1.4	42
73	Efficient recovery of proteins from multiple source samples after trizol® or trizol®LS RNA extraction and long-term storage. BMC Genomics, 2013, 14, 181.	1.2	92
74	Genomic homeostasis is dysregulated in favour of apoptosis in the colonic epithelium of the azoxymethane treated rat. BMC Physiology, 2013, 13, 2.	3.6	11
75	Cullin 4B is a novel prognostic marker that correlates with colon cancer progression and pathogenesis. Medical Oncology, 2013, 30, 534.	1.2	43

#	ARTICLE	IF	CITATIONS
76	SLIT2 inhibits cell migration in colorectal cancer through the AKT–GSK3β signaling pathway. International Journal of Colorectal Disease, 2013, 28, 933-940.	1.0	30
77	Berberine acts as a natural inhibitor of Wnt/βâ€catenin signaling—Identification of more active 13â€arylalkyl derivatives. BioFactors, 2013, 39, 652-662.	2.6	47
79	B-cell epitope peptide vaccination targeting dimer interface of epidermal growth factor receptor (EGFR). Immunology Letters, 2013, 153, 33-40.	1.1	12
80	Inflammation, Obesity, and Colon Cancer. , 2013, , 147-180.		1
81	Epigenetics and Colorectal Cancer Pathogenesis. Cancers, 2013, 5, 676-713.	1.7	195
82	Screening metatranscriptomes for toxin genes as functional drivers of human colorectal cancer. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2013, 27, 85-99.	1.0	36
83	Lineage tracing reveals multipotent stem cells maintain human adenomas and the pattern of clonal expansion in tumor evolution. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2490-9.	3.3	88
84	Toll-like receptor signalling and their therapeutic targeting in colorectal cancer. International Immunopharmacology, 2013, 16, 199-209.	1.7	29
85	Canonical Wnt/β-catenin Signaling Drives Human Schwann Cell Transformation, Progression, and Tumor Maintenance. Cancer Discovery, 2013, 3, 674-689.	7.7	87
86	Screening for herbal medicines that affect ZIC1 gene methylation in colorectal cancer. Molecular and Cellular Toxicology, 2013, 9, 211-218.	0.8	2
87	The attitudes of people with sarcoma and their family towards genomics and incidental information arising from genetic research. Clinical Sarcoma Research, 2013, 3, 11.	2.3	12
88	Animal models of colorectal cancer. Cancer and Metastasis Reviews, 2013, 32, 39-61.	2.7	90
89	Systematic genomic identification of colorectal cancer genes delineating advanced from early clinical stage and metastasis. BMC Medical Genomics, 2013, 6, 54.	0.7	34
90	Up-regulation of tripartite motif-containing 29 promotes cancer cell proliferation and predicts poor survival in colorectal cancer. Medical Oncology, 2013, 30, 715.	1.2	37
92	A Genetic Progression Model of BrafV600E-Induced Intestinal Tumorigenesis Reveals Targets for Therapeutic Intervention. Cancer Cell, 2013, 24, 15-29.	7.7	183
93	Microbiota impact on the epigenetic regulation of colorectal cancer. Trends in Molecular Medicine, 2013, 19, 714-725.	3.5	86
94	Investigation of 3-aryl-pyrimido[5,4-e][1,2,4]triazine-5,7-diones as small molecule antagonists of β-catenin/TCF transcription. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5814-5820.	1.0	14
95	A Novel Tankyrase Small-Molecule Inhibitor Suppresses <i>APC</i> Mutation–Driven Colorectal Tumor Growth. Cancer Research, 2013, 73, 3132-3144.	0.4	282

#	Article	IF	CITATIONS
96	Nanoproteomic analysis of extracellular receptor kinaseâ€1/2 postâ€translational activation in microdissected human hyperplastic colon lesions. Proteomics, 2013, 13, 1428-1436.	1.3	14
97	Intestinal Tumorigenesis Initiated by Dedifferentiation and Acquisition of Stem-Cell-like Properties. Cell, 2013, 152, 25-38.	13.5	889
98	Detection of <i>miR-34a</i> Promoter Methylation in Combination with Elevated Expression of c-Met and β-Catenin Predicts Distant Metastasis of Colon Cancer. Clinical Cancer Research, 2013, 19, 710-720.	3.2	138
99	Quantitative mass spectrometry for colorectal cancer proteomics. Proteomics - Clinical Applications, 2013, 7, 42-54.	0.8	20
100	Gamma-tocopherol attenuates moderate but not severe colitis and suppresses moderate colitis-promoted colon tumorigenesis in mice. Free Radical Biology and Medicine, 2013, 65, 1069-1077.	1.3	41
101	Adenomatous polyposis coli gene involvement in ileal enterochromaffin cell neuroendocrine neoplasms. Human Pathology, 2013, 44, 2736-2742.	1.1	20
102	Polyposis Syndromes. Surgical Pathology Clinics, 2013, 6, 545-565.	0.7	1
103	Dicer and Drosha expression and response to Bevacizumab-based therapy in advanced colorectal cancer patients. European Journal of Cancer, 2013, 49, 1501-1508.	1.3	19
104	Feasibility of preemptive biomarker profiling for personalised early clinical drug development at a Comprehensive Cancer Center. European Journal of Cancer, 2013, 49, 3076-3082.	1.3	26
105	Modelling the evolution of genetic instability during tumour progression. Evolutionary Applications, 2013, 6, 20-33.	1.5	41
106	Molecular Dissection of Microsatellite Instable Colorectal Cancer. Cancer Discovery, 2013, 3, 502-511.	7.7	91
107	Proteomic workflow for analysis of archival formalinâ€fixed and paraffinâ€embedded clinical samples to a depth of 10 000 proteins. Proteomics - Clinical Applications, 2013, 7, 225-233.	0.8	131
108	Prospective of colon cancer treatments and scope for combinatorial approach to enhanced cancer cell apoptosis. Critical Reviews in Oncology/Hematology, 2013, 86, 232-250.	2.0	144
109	The burden of faulty proofreading in colon cancer. Nature Genetics, 2013, 45, 121-122.	9.4	25
110	Genomics and epigenomics of colorectal cancer. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2013, 5, 205-219.	6.6	34
111	Regulation of Wnt4 in chronic obstructive pulmonary disease. FASEB Journal, 2013, 27, 2367-2381.	0.2	32
112	Sox9 Induction, Ectopic Paneth Cells, and Mitotic Spindle Axis Defects in Mouse Colon Adenomatous Epithelium Arising From Conditional Biallelic Apc Inactivation. American Journal of Pathology, 2013, 183, 493-503.	1.9	74
113	Towards a vaccine to prevent cancer in Lynch syndrome patients. Familial Cancer, 2013, 12, 307-312.	0.9	54

		CITATION RE	PORT	
#	Article		IF	CITATIONS
114	Mutant p53 Prolongs NF-ΪB Activation and Promotes Chronic Inflammation and Inflammation-Associated Colorectal Cancer. Cancer Cell, 2013, 23, 634-646.		7.7	388
115	The Other Face of ROS: a Driver of Stem Cell Expansion in Colorectal Cancer. Cell Stem 0 635-636.	Cell, 2013, 12,	5.2	18
116	MicroRNA-497 targets insulin-like growth factor 1 receptor and has a tumour suppressiv human colorectal cancer. Oncogene, 2013, 32, 1910-1920.	e role in	2.6	206
117	Potential tumor-suppressive role of monoglyceride lipase in human colorectal cancer. Or 2013, 32, 234-241.	icogene,	2.6	44
118	Dietary heme iron and the risk of colorectal cancer with specific mutations in KRAS and A Carcinogenesis, 2013, 34, 2757-2766.	APC.	1.3	57
119	Intestinal Stem Cells. Digestive Diseases, 2013, 31, 293-298.		0.8	6
120	Regulation of MLH1 mRNA and protein expression by promoter methylation in primary c cancer: a descriptive and prognostic cancer marker study. Cellular Oncology (Dordrecht) 411-419.	olorectal I, 2013, 36,	2.1	18
121	APC and DNA Demethylation in Cell Fate Specification and Intestinal Cancer. Advances in Medicine and Biology, 2013, 754, 167-177.	n Experimental	0.8	10
122	Get the Fat Out!. Cancer Prevention Research, 2013, 6, 161-164.		0.7	3
123	Translating colorectal cancer prevention through the guanylyl cyclase C signaling axis. Ex Review of Clinical Pharmacology, 2013, 6, 557-564.	kpert	1.3	11
124	Identification of driver genes in microsatellite-unstable colorectal cancers. Colorectal Cancers, 2, 515-523.	ncer, 2013,	0.8	0
125	Somatic rearrangements across cancer reveal classes of samples with distinct patterns o breakage and rearrangement-induced hypermutability. Genome Research, 2013, 23, 228		2.4	124
126	Role of S100A3 in human colorectal cancer and the anticancer effect of cantharidinate. I and Therapeutic Medicine, 2013, 6, 1499-1503.	Experimental	0.8	18
127	Microsatellite instability and loss of heterozygosity detected in middle-aged patients wit colon cancer: A retrospective study. Oncology Letters, 2013, 6, 1413-1420.	h sporadic	0.8	11
128	APC2 and Axin promote mitotic fidelity by facilitating centrosome separation and cytosk regulation. Development (Cambridge), 2013, 140, 4226-4236.	eletal	1.2	19
129	In-depth Characterization of the Secretome of Colorectal Cancer Metastatic Cells Identif Proteins in Cell Adhesion, Migration, and Invasion. Molecular and Cellular Proteomics, 20 1602-1620.		2.5	98
130	ER stress transcription factor Xbp1 suppresses intestinal tumorigenesis and directs intes cells. Journal of Experimental Medicine, 2013, 210, 2041-2056.	itinal stem	4.2	120
131	<i>RAS, BRAF,</i> and <i>TP53</i><!--<br-->Mutations in Taiwanese Colorectal Cancer Patients. Oncology Research and Treatment, 7 719-724.	b> Gene 2013, 36,	0.8	17

#	Article	IF	CITATIONS
132	Differential expression of carbohydrate antigen 19-9 in human colorectal cancer: A comparison with colon and rectal cancers. Molecular and Clinical Oncology, 2013, 1, 1072-1078.	0.4	6
133	Important considerations in treating children, adolescents and young adults with colorectal carcinoma. Colorectal Cancer, 2013, 2, 347-358.	0.8	4
134	Genome-scale analysis of DNA methylation in colorectal cancer using Infinium HumanMethylation450 BeadChips. Epigenetics, 2013, 8, 921-934.	1.3	130
135	Exposure to Carbon Nanotubes Leads to Changes in the Cellular Biomechanics. Advanced Healthcare Materials, 2013, 2, 945-951.	3.9	28
136	Comparison of the performance of guaiacâ€based and two immunochemical fecal occult blood tests for identifying advanced colorectal neoplasia in <scp>T</scp> aiwan. Journal of Digestive Diseases, 2013, 14, 474-483.	0.7	8
137	Spinophilin Loss Correlates with Poor Patient Prognosis in Advanced Stages of Colon Carcinoma. Clinical Cancer Research, 2013, 19, 3925-3935.	3.2	16
138	Toward a comprehensive and systematic methylome signature in colorectal cancers. Epigenetics, 2013, 8, 807-815.	1.3	58
139	Targeting aberrant colon cancer-specific DNA methylation with lipoteichoic acid-deficient Lactobacillus acidophilus. Gut Microbes, 2013, 4, 84-88.	4.3	36
140	A calibrated agent-based computer model of stochastic cell dynamics in normal human colon crypts useful for in silico experiments. Theoretical Biology and Medical Modelling, 2013, 10, 66.	2.1	46
141	In vitro Organoid Culture of Primary Mouse Colon Tumors. Journal of Visualized Experiments, 2013, , e50210.	0.2	33
142	Role of tissue transglutaminase and effect of cantharidinate in human colorectal cancer. Molecular Medicine Reports, 2013, 8, 1812-1816.	1.1	4
143	Intestinal Iron Homeostasis and Colon Tumorigenesis. Nutrients, 2013, 5, 2333-2351.	1.7	62
144	RAS signaling pathways, mutations and their role in colorectal cancer. World Journal of Gastrointestinal Oncology, 2013, 5, 97.	0.8	118
145	ICAD Deficiency in Human Colon Cancer and Predisposition to Colon Tumorigenesis: Linkage to Apoptosis Resistance and Genomic Instability. PLoS ONE, 2013, 8, e57871.	1.1	15
146	Targeted Sequencing of Cancer-Related Genes in Colorectal Cancer Using Next-Generation Sequencing. PLoS ONE, 2013, 8, e64271.	1.1	71
147	Genome-wide multi-omics profiling of colorectal cancer identifies immune determinants strongly associated with relapse. Frontiers in Genetics, 2013, 4, 236.	1.1	31
148	Molecular pathology of colorectal cancer. Polish Journal of Pathology, 2014, 4, 257-266.	0.1	38
149	Proactive strategies for regorafenib in metastatic colorectal cancer: implications for optimal patient management. Cancer Management and Research, 2014, 6, 93.	0.9	18

	Citation	Report	
#	Article	IF	CITATIONS
150	Clinical Application of Genetics in Management of Colorectal Cancer. Intestinal Research, 2014, 12, 184.	1.0	38
151	Metformin: A Potential Therapeutic Agent for Recurrent Colon Cancer. PLoS ONE, 2014, 9, e84369.	1.1	102
152	The Expression and Prognostic Significance of Retinoic Acid Metabolising Enzymes in Colorectal Cancer. PLoS ONE, 2014, 9, e90776.	1.1	42
153	Mutations of C-Reactive Protein (CRP) -286 SNP, APC and p53 in Colorectal Cancer: Implication for a CRP-Wnt Crosstalk. PLoS ONE, 2014, 9, e102418.	1.1	22
154	Current and future molecular diagnostics in colorectal cancer and colorectal adenoma. World Journal of Gastroenterology, 2014, 20, 3847.	1.4	40
155	Activation of the PI3K/Akt/mTOR/p70S6K Pathway is Involved in S100A4-induced Viability and Migration in Colorectal Cancer Cells. International Journal of Medical Sciences, 2014, 11, 841-849.	1.1	53
157	Clear cell change in colonic adenomas: case report and review of the literature. Case Reports in Clinical Pathology, 2014, 2, .	0.0	0
159	The Evolution of Our Molecular Understanding of Colorectal Cancer: What We Are Doing Now, What the Future Holds, and How Tumor Profiling Is Just the Beginning. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2014, , 91-99.	1.8	27
160	Molecular profiling in colorectal cancer: current state of play and future directions. Colorectal Cancer, 2014, 3, 41-56.	0.8	1
161	Downregulation of GRHL2 inhibits the proliferation of colorectal cancer cells by targeting ZEB1. Cancer Biology and Therapy, 2014, 15, 878-887.	1.5	47
162	A novel colorectal cancer risk locus at 4q32.2 identified from an international genome-wide association study. Carcinogenesis, 2014, 35, 2512-2519.	1.3	30
163	CDC42 Inhibition Suppresses Progression of Incipient Intestinal Tumors. Cancer Research, 2014, 74, 5480-5492.	0.4	48
164	DNA Repair Gene -XRCC1in Relation to Genome Instability and Role in Colorectal Carcinogenesis. Oncology Research and Treatment, 2014, 37, 4-4.	0.8	14
165	Small molecule-driven mitophagy-mediated NLRP3 inflammasome inhibition is responsible for the prevention of colitis-associated cancer. Autophagy, 2014, 10, 972-985.	4.3	216
166	Oncogenic mutations in intestinal adenomas regulate Bim-mediated apoptosis induced by TGF-β. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2229-36.	3.3	52
167	A functional role for Smad7 in sustaining colon cancer cell growth and survival. Cell Death and Disease, 2014, 5, e1073-e1073.	2.7	61
168	Bmi1 is required for tumorigenesis in a mouse model of intestinal cancer. Oncogene, 2014, 33, 3742-3747.	2.6	30
169	Plant Sterol Feeding Induces Tumor Formation and Alters Sterol Metabolism in the Intestine of <i>Apc</i> ^{Min} Mice. Nutrition and Cancer, 2014, 66, 259-269.	0.9	8

#	Article	IF	Citations
#	ROS, Notch, and Wnt Signaling Pathways: Crosstalk between Three Major Regulators of	0.9	65
170	Cardiovascular Biology. BioMed Research International, 2014, 2014, 1-8.	0.9	00
171	Physiological expression of the PI3K-activating mutation <i>Pik3ca</i> H1047R combines with <i>Apc</i> loss to promote development of invasive intestinal adenocarcinomas in mice. Biochemical Journal, 2014, 458, 251-258.	1.7	20
172	Molecular Markers of Carcinogenesis for Risk Stratification of Individuals with Colorectal Polyps: A Case–Control Study. Cancer Prevention Research, 2014, 7, 1023-1034.	0.7	4
173	Unsupervised analyses reveal molecular subtypes associated to prognosis and response to therapy in colorectal cancer. Colorectal Cancer, 2014, 3, 277-288.	0.8	2
174	A positive family history of cancer or lifestyle factors may not explain the high incidence of early-onset colorectal cancer in India. Colorectal Cancer, 2014, 3, 409-416.	0.8	1
176	Prox1 Promotes Expansion of the Colorectal Cancer Stem Cell Population to Fuel Tumor Growth and Ischemia Resistance. Cell Reports, 2014, 8, 1943-1956.	2.9	63
177	DRO1 Inactivation Drives Colorectal Carcinogenesis in <i>ApcMin</i> /+ Mice. Molecular Cancer Research, 2014, 12, 1655-1662.	1.5	16
178	Interplay between chromatin-modifying enzymes controls colon cancer progression through Wnt signaling. Human Molecular Genetics, 2014, 23, 2120-2131.	1.4	26
179	Tracing PAKs from GI inflammation to cancer. Gut, 2014, 63, 1173-1184.	6.1	47
180	Republished: Tracing PAKs from GI inflammation to cancer. Postgraduate Medical Journal, 2014, 90, 657-668.	0.9	3
181	Colorectal Cancer Stem Cells: From the Crypt to the Clinic. Cell Stem Cell, 2014, 15, 692-705.	5.2	340
182	Serrated pathway in colorectal carcinogenesis. World Journal of Gastroenterology, 2014, 20, 2634.	1.4	87
183	The Myc 3′ Wnt-Responsive Element Suppresses Colonic Tumorigenesis. Molecular and Cellular Biology, 2014, 34, 1659-1669.	1.1	12
184	A Colon Cancer-derived Mutant of Krüppel-like Factor 5 (KLF5) Is Resistant to Degradation by Glycogen Synthase Kinase 3β (GSK3β) and the E3 Ubiquitin Ligase F-box and WD Repeat Domain-containing 7I± (FBW7α). Journal of Biological Chemistry, 2014, 289, 5997-6005.	1.6	29
185	Oncogenicity of LHX4 in colorectal cancer through Wnt/β-catenin/TCF4 cascade. Tumor Biology, 2014, 35, 10319-10324.	0.8	11
186	Proteomics, genomics and transcriptomics: their emerging roles in the discovery and validation of colorectal cancer biomarkers. Expert Review of Proteomics, 2014, 11, 179-205.	1.3	31
187	Diterpenoid C of Radix Curcumae: An inhibitor of proliferation and inducer of apoptosis in human colon adenocarcinoma cells acting via inhibiting MAPK signaling pathway. Pharmaceutical Biology, 2014, 52, 1158-1165.	1.3	18
188	Associations between dietary and lifestyle risk factors and colorectal cancer in the Scottish population. European Journal of Cancer Prevention, 2014, 23, 8-17.	0.6	39

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
189	Gut Microbiome and Colorectal Adenomas. Cancer Journal (Sudbury, Mass), 2014, 20	, 225-231.	1.0	94
190	PROX1 Promotes Metabolic Adaptation and Fuels Outgrowth of Wnt high Metastatic Cells. Cell Reports, 2014, 8, 1957-1973.	Colon Cancer	2.9	66
191	One-Carbon Metabolism Nutrients and Epigenetics: A Mechanistic Link Between Aberr Metabolism and Cancer Risk?. , 2014, , 277-353.	ant One-Carbon		1
192	Prevention of Colorectal Cancer. , 2014, , 377-408.			1
193	Kallikrein-related peptidase 7 (KLK7) is a proliferative factor that is aberrantly expresse colon cancer. Biological Chemistry, 2014, 395, 1075-1086.	d in human	1.2	32
194	Wiring miRNAs to pathways: a topological approach to integrate miRNA and mRNA ex Nucleic Acids Research, 2014, 42, e96-e96.	pression profiles.	6.5	41
195	Molecular Diagnostic Applications in Colorectal Cancer. Microarrays (Basel, Switzerlan 168-179.	d), 2014, 3,	1.4	7
196	Prognostic Significance of β-Catenin, E-Cadherin, and SOX9 in Colorectal Cancer: I Large Population-Representative Series. Frontiers in Oncology, 2014, 4, 118.	Results from a	1.3	63
197	The APC Network Regulates the Removal of Mutated Cells from Colonic Crypts. Cell Re 94-103.	2ports, 2014, 7,	2.9	19
198	Charting the molecular links between driver and susceptibility genes in colorectal cance Biochemical and Biophysical Research Communications, 2014, 445, 734-738.	er.	1.0	6
199	Molecular mechanisms of oncogene-induced inflammation and inflammation-sustained activation in gastrointestinal tumors: An underappreciated symbiotic relationship. Biod Biophysica Acta: Reviews on Cancer, 2014, 1846, 152-160.		3.3	13
200	HLA Class II Antigen Expression in Colorectal Carcinoma Tumors as a Favorable Prognc Neoplasia, 2014, 16, 31-W15.	stic Marker.	2.3	99
201	Assessment of the association between hOGG1 C8069G polymorphism and colorectal Biology, 2014, 35, 2373-2377.	cancer. Tumor	0.8	3
202	Glutathione S-transferase M1 polymorphism and colorectal cancer risk in Chinese pop Biology, 2014, 35, 2117-2121.	ulation. Tumor	0.8	7
203	<scp>DNA</scp> content analysis of colorectal cancer defines a distinct â€~microsate chromosome stable' group but does not predict response to radiotherapy. Interna Experimental Pathology, 2014, 95, 16-23.		0.6	7
205	Genetic unraveling of colorectal cancer. Tumor Biology, 2014, 35, 5067-5082.		0.8	17
206	An updated meta-analysis of the association between GSTM1 polymorphism and color Asians. Tumor Biology, 2014, 35, 949-953.	ectal cancer in	0.8	11
207	Loss of NF2/Merlin expression in advanced sporadic colorectal cancer. Cellular Oncolo (Dordrecht), 2014, 37, 69-77.	gy	2.1	17

# 208	ARTICLE Microfluidic platforms for discovery and detection of molecular biomarkers. Microfluidics and Nanofluidics, 2014, 16, 941-963.	IF 1.0	CITATIONS
209	Focus on genetic and epigenetic events of colorectal cancer pathogenesis: implications for molecular diagnosis. Tumor Biology, 2014, 35, 6195-6206.	0.8	91
210	Mouse models of cancer: Sleeping Beauty transposons for insertional mutagenesis screens and reverse genetic studies. Seminars in Cell and Developmental Biology, 2014, 27, 86-95.	2.3	22
211	Gastrointestinal Malignancy and the Microbiome. Gastroenterology, 2014, 146, 1534-1546.e3.	0.6	242
212	Rectal cancer genomics. Seminars in Colon and Rectal Surgery, 2014, 25, 13-18.	0.2	1
213	Genomics of Colorectal Cancer. , 2014, , 247-264.		2
214	Molecular therapy of colorectal cancer: Progress and future directions. International Journal of Cancer, 2015, 136, 493-502.	2.3	53
215	Colorectal cancer. Lancet, The, 2014, 383, 1490-1502.	6.3	2,455
216	Interplay between DNA repair and inflammation, and the link to cancer. Critical Reviews in Biochemistry and Molecular Biology, 2014, 49, 116-139.	2.3	128
217	Omega-3 Fatty Acid Is a Potential Preventive Agent for Recurrent Colon Cancer. Cancer Prevention Research, 2014, 7, 1138-1148.	0.7	38
218	Sequential expression of <scp>miR</scp> â€182 and <scp>miR</scp> â€503 cooperatively targets <scp>FBXW7</scp> , contributing to the malignant transformation of colon adenoma to adenocarcinoma. Journal of Pathology, 2014, 234, 488-501.	2.1	59
219	MultiNotch MS3 Enables Accurate, Sensitive, and Multiplexed Detection of Differential Expression across Cancer Cell Line Proteomes. Analytical Chemistry, 2014, 86, 7150-7158.	3.2	1,130
220	Iro/IRX transcription factors negatively regulate <scp>D</scp> pp/ <scp>TGF</scp> â€i² pathway activity during intestinal tumorigenesis. EMBO Reports, 2014, 15, 1210-1218.	2.0	28
221	Functional annotation of colon cancer risk SNPs. Nature Communications, 2014, 5, 5114.	5.8	98
222	Inherited cancer predisposition sensitizes colonic mucosa to address Western diet effects and putative cancer-predisposing changes on mouse proteome. Journal of Nutritional Biochemistry, 2014, 25, 1196-1206.	1.9	6
223	KRAS and Cancer Stem Cells in APC-Mutant Colorectal Cancer. Journal of the National Cancer Institute, 2014, 106, djt444-djt444.	3.0	13
224	Mutations in POLE and survival of colorectal cancer patients – link to disease stage and treatment. Cancer Medicine, 2014, 3, 1527-1538.	1.3	56
225	Proteogenomic characterization of human colon and rectal cancer. Nature, 2014, 513, 382-387.	13.7	1,219

#	Article	IF	CITATIONS
226	The Human Gut Microbiome as a Screening Tool for Colorectal Cancer. Cancer Prevention Research, 2014, 7, 1112-1121.	0.7	463
227	Identification of 33 candidate oncogenes by screening for base-specific mutations. British Journal of Cancer, 2014, 111, 1657-1662.	2.9	30
228	Colon cancer-derived oncogenic EGFR G724S mutant identified by whole genome sequence analysis is dependent on asymmetric dimerization and sensitive to cetuximab. Molecular Cancer, 2014, 13, 141.	7.9	24
229	Co-occurrence of driver and passenger bacteria in human colorectal cancer. Gut Pathogens, 2014, 6, 26.	1.6	100
230	Promoter methylation of tumor suppressor genes in pre-neoplastic lesions; potential marker of disease recurrence. Journal of Experimental and Clinical Cancer Research, 2014, 33, 65.	3.5	14
231	A microRNA 221– and 222–Mediated Feedback Loop Maintains Constitutive Activation of NFκB and STAT3 in Colorectal CancerÂCells. Gastroenterology, 2014, 147, 847-859.e11.	0.6	167
232	The theranostic path to personalized nanomedicine. Clinical and Translational Imaging, 2014, 2, 67-76.	1.1	57
233	Dependence receptors and colorectal cancer. Gut, 2014, 63, 1821-1829.	6.1	28
234	Copy number alterations of chromosomal regions enclosing protein tyrosine phosphatase receptor-like genes in colorectal cancer. Pathology Research and Practice, 2014, 210, 893-896.	1.0	13
235	Up-regulation of CHAF1A, a poor prognostic factor, facilitates cell proliferation of colon cancer. Biochemical and Biophysical Research Communications, 2014, 449, 208-215.	1.0	18
236	Organoid cultures for the analysis of cancer phenotypes. Current Opinion in Genetics and Development, 2014, 24, 68-73.	1.5	295
237	Targeted repression of AXIN2 and MYC gene expression using designer TALEs. Biochemical and Biophysical Research Communications, 2014, 446, 1120-1125.	1.0	5
238	Stem cell dynamics in homeostasis and cancer of the intestine. Nature Reviews Cancer, 2014, 14, 468-480.	12.8	206
239	Diet, Genes, and Microbes. Toxicologic Pathology, 2014, 42, 182-188.	0.9	60
240	Loss of the Polycomb Mark from Bivalent Promoters Leads to Activation of Cancer-Promoting Genes in Colorectal Tumors. Cancer Research, 2014, 74, 3617-3629.	0.4	43
241	Optimization of a pentaplex panel for MSI analysis without control DNA in a Brazilian population: correlation with ancestry markers. European Journal of Human Genetics, 2014, 22, 875-880.	1.4	48
242	IKKα Promotes Intestinal Tumorigenesis by Limiting Recruitment of M1-like Polarized Myeloid Cells. Cell Reports, 2014, 7, 1914-1925.	2.9	22
243	Mutation and expression analysis of the IDH1, IDH2, DNMT3A, and MYD88 genes in colorectal cancer. Gene, 2014, 546, 263-270.	1.0	22

#	Article	IF	CITATIONS
244	Inactivation of TGF-Î ² signaling and loss of PTEN cooperate to induce colon cancer in vivo. Oncogene, 2014, 33, 1538-1547.	2.6	66
245	E2A Predicts Prognosis of Colorectal Cancer Patients and Regulates Cancer Cell Growth by Targeting miR-320a. PLoS ONE, 2014, 9, e85201.	1.1	19
246	Real-time Imaging of Myeloid Cells Dynamics in Apc^{Min/+} Intestinal Tumors by Spinning Disk Confocal Microscopy. Journal of Visualized Experiments, 2014, , 51916.	0.2	1
247	High-throughput sequencing to identify miRNA biomarkers in colorectal cancer patients. Oncology Letters, 2014, 8, 711-713.	0.8	11
248	Tumor suppressor DLC-1 induces apoptosis and inhibits the growth and invasion of colon cancer cells through the Wnt/β-catenin signaling pathway. Oncology Reports, 2014, 31, 2270-2278.	1.2	22
249	Long non-coding RNA HOTAIR is a powerful predictor of metastasis and poor prognosis and is associated with epithelial-mesenchymal transition in colon cancer. Oncology Reports, 2014, 32, 395-402.	1.2	193
250	MicroRNA-96 promotes the proliferation of colorectal cancer cells and targets tumor protein p53 inducible nuclear protein 1, forkhead box protein O1 (FOXO1) and FOXO3a. Molecular Medicine Reports, 2015, 11, 1200-1206.	1.1	61
251	Mouse models of colorectal cancer as preclinical models. BioEssays, 2015, 37, 909-920.	1.2	59
252	Methylation of Werner syndrome protein is associated with the occurrence and development of invasive meningioma via the regulation of Myc and p53 expression. Experimental and Therapeutic Medicine, 2015, 10, 498-502.	0.8	4
253	Death-associated protein kinase: A molecule with functional antagonistic duality and a potential role in inflammatory bowel disease (Review). International Journal of Oncology, 2015, 47, 5-15.	1.4	20
254	miR-206 is an independent prognostic factor and inhibits tumor invasion and migration in colorectal cancer. Cancer Biomarkers, 2015, 15, 391-396.	0.8	30
255	Lentivirus-mediated knockdown of rhomboid domain containing 1 inhibits colorectal cancer cell growth. Molecular Medicine Reports, 2015, 12, 377-381.	1.1	8
256	GSTM1 polymorphism contribute to colorectal cancer in Asian populations: a prospective meta-analysis. Scientific Reports, 2015, 5, 12514.	1.6	15
257	Time-serial Assessment of Drug Combination Interventions in a Mouse Model of Colorectal Carcinogenesis Using Optical Coherence Tomography. Cancer Growth and Metastasis, 2015, 8s1, CGM.S21216.	3.5	5
258	Influence of miRNA-106b and miRNA-135a on butyrate-regulated expression of p21 and Cyclin D2 in human colon adenoma cells. Genes and Nutrition, 2015, 10, 50.	1.2	31
259	Functional and protein-protein interaction network analysis of colorectal cancer induced by ulcerative colitis. Molecular Medicine Reports, 2015, 12, 4947-4958.	1.1	4
260	A survey of tandem repeat instabilities and associated gene expression changes in 35 colorectal cancers. BMC Genomics, 2015, 16, 702.	1.2	27
261	Colorectal cancer DNA methylation patterns from patients in Manaus, Brazil. Biological Research, 2015, 48, 50.	1.5	7

#	Article	IF	CITATIONS
262	The Effects of miRâ€⊋0a on p21: Two Mechanisms Blocking Growth Arrest in TGFâ€Î²â€Responsive Colon Carcinoma. Journal of Cellular Physiology, 2015, 230, 3105-3114.	2.0	46
263	Genetic analysis of colon tumors induced by a dietary carcinogen PhIP in CYP1A humanized mice: Identification of mutation of β atenin/Ctnnb1 as the driver gene for the carcinogenesis. Molecular Carcinogenesis, 2015, 54, 1264-1274.	1.3	16
264	Powerful Setâ€Based Geneâ€Environment Interaction Testing Framework for Complex Diseases. Genetic Epidemiology, 2015, 39, 609-618.	0.6	15
265	Distinctive Spatiotemporal Stability of Somatic Mutations in Metastasized Microsatellite-stable Colorectal Cancer. American Journal of Surgical Pathology, 2015, 39, 1140-1147.	2.1	35
266	Downstream Signaling of the Sos Gene is Not Required during the Pathogenesis of Cancer Cells Bearing KRAS and BRAF Mutations. Journal of Carcinogenesis & Mutagenesis, 2015, 06, .	0.3	0
267	Novel insights into Notum and glypicans regulation in colorectal cancer. Oncotarget, 2015, 6, 41237-41257.	0.8	50
268	Association between serum angiopoietin-2 concentration and clinicopathological parameters in patients with colorectal cancer. Genetics and Molecular Research, 2015, 14, 15547-15552.	0.3	5
269	Similar but different: distinct roles for KRAS and BRAF oncogenes in colorectal cancer development and therapy resistance. Oncotarget, 2015, 6, 20785-20800.	0.8	112
270	Functional repair of p53 mutation in colorectal cancer cells using trans-splicing. Oncotarget, 2015, 6, 2034-2045.	0.8	28
271	Exome sequencing of a colorectal cancer family reveals shared mutation pattern and predisposition circuitry along tumor pathways. Frontiers in Genetics, 2015, 6, 288.	1.1	11
272	Tissue-Specific Effects of Reduced β-catenin Expression on Adenomatous Polyposis Coli Mutation-Instigated Tumorigenesis in Mouse Colon and Ovarian Epithelium. PLoS Genetics, 2015, 11, e1005638.	1.5	15
273	Distinct Clinicopathological Patterns of Mismatch Repair Status in Colorectal Cancer Stratified by KRAS Mutations. PLoS ONE, 2015, 10, e0128202.	1.1	8
274	Multidrug Resistance-Associated Protein 2 Expression Is Upregulated by Adenosine 5'-Triphosphate in Colorectal Cancer Cells and Enhances Their Survival to Chemotherapeutic Drugs. PLoS ONE, 2015, 10, e0136080.	1.1	22
275	Secernin-1 Contributes to Colon Cancer Progression through Enhancing Matrix Metalloproteinase-2/9 Exocytosis. Disease Markers, 2015, 2015, 1-12.	0.6	13
276	The Intrauterine and Nursing Period Is a Window of Susceptibility for Development of Obesity and Intestinal Tumorigenesis by a High Fat Diet in <i>Min/+</i> Mice as Adults. Journal of Obesity, 2015, 2015, 1-25.	1.1	1
277	Genetic and Diet-Induced Obesity Increased Intestinal Tumorigenesis in the Double Mutant Mouse Model Multiple Intestinal Neoplasia X Obese via Disturbed Glucose Regulation and Inflammation. Journal of Obesity, 2015, 2015, 1-21.	1.1	7
278	Etio-Pathogenesis III. , 2015, , 153-184.		0
279	Ovarian stem cells: From basic to clinical applications. World Journal of Stem Cells, 2015, 7, 757.	1.3	23

#	Article	IF	Citations
280	Apoptotic effect of novel Schiff Based CdCl2(C14H21N3O2) complex is mediated via activation of the mitochondrial pathway in colon cancer cells. Scientific Reports, 2015, 5, 9097.	1.6	54
281	Predicting response to treatment for colorectal cancer: a review of relevant mechanisms and potential biomarkers. Colorectal Cancer, 2015, 4, 85-95.	0.8	0
282	Simultaneous Inference of Cancer Pathways and Tumor Progression from Cross-Sectional Mutation Data. Journal of Computational Biology, 2015, 22, 510-527.	0.8	28
283	Association between Appendectomy and Subsequent Colorectal Cancer Development: An Asian Population Study. PLoS ONE, 2015, 10, e0118411.	1.1	54
284	Constructing lncRNA functional similarity network based on lncRNA-disease associations and disease semantic similarity. Scientific Reports, 2015, 5, 11338.	1.6	195
285	Implications of Epithelialââ,¬â€œMesenchymal Plasticity for Heterogeneity in Colorectal Cancer. Frontiers in Oncology, 2015, 5, 13.	1.3	27
286	Meta-analysis of the association between APC promoter methylation and colorectal cancer. OncoTargets and Therapy, 2015, 8, 211.	1.0	9
287	Phosphatase and Tensin Homolog (PTEN) Represses Colon Cancer Progression through Inhibiting Paxillin Transcription via PI3K/AKT/NF-Î₽B Pathway. Journal of Biological Chemistry, 2015, 290, 15018-15029.	1.6	75
288	Intestinal Inflammation and Cancer of the Gastrointestinal Tract. , 2015, , 1761-1775.		2
289	Commensal bacteria drive endogenous transformation and tumour stem cell marker expression through a bystander effect. Gut, 2015, 64, 459-468.	6.1	95
290	Comparative proteomics analysis of the antitumor effect of CIGB-552 peptide in HT-29 colon adenocarcinoma cells. Journal of Proteomics, 2015, 126, 163-171.	1.2	13
291	Apc and p53 interaction in DNA damage and genomic instability in hepatocytes. Oncogene, 2015, 34, 4118-4129.	2.6	19
292	Maintenance Treatment with Cetuximab and BAY86-9766 Increases Antitumor Efficacy of Irinotecan plus Cetuximab in Human Colorectal Cancer Xenograft Models. Clinical Cancer Research, 2015, 21, 4153-4164.	3.2	21
293	LIN28 cooperates with WNT signaling to drive invasive intestinal and colorectal adenocarcinoma in mice and humans. Genes and Development, 2015, 29, 1074-1086.	2.7	92
294	On the apparent rarity of epithelial cancers in captive chimpanzees. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140225.	1.8	35
295	Etio-pathogenesis I. , 2015, , 89-123.		1
296	Highly sensitive, non-invasive detection of colorectal cancer mutations using single molecule, third generation sequencing. Applied & Translational Genomics, 2015, 7, 32-39.	2.1	16
297	Treatment Individualization in Colorectal Cancer. Current Colorectal Cancer Reports, 2015, 11, 335-344.	1.0	17

#	Article	IF	CITATIONS
298	Lithium chloride induces mesenchymal-to-epithelial reverting transition in primary colon cancer cell cultures. International Journal of Oncology, 2015, 46, 1913-1923.	1.4	28
299	Decreased expression of SCUBE2 is associated with progression and prognosis in colorectal cancer. Oncology Reports, 2015, 33, 1956-1964.	1.2	18
300	Downregulation of NIT2 inhibits colon cancer cell proliferation and induces cell cycle arrest through the caspase-3 and PARP pathways. International Journal of Molecular Medicine, 2015, 35, 1317-1322.	1.8	26
301	Targeting the neurokinin-1 receptor inhibits growth of human colon cancer cells. International Journal of Oncology, 2015, 47, 151-160.	1.4	44
302	Circadian gene hClock enhances proliferation and inhibits apoptosis of human colorectal carcinoma cells in vitro and in vivo. Molecular Medicine Reports, 2015, 11, 4204-4210.	1.1	23
303	Colon and Rectal Cancer. , 2015, , 499-514.e2.		0
304	In vivo molecular mapping of the tumor microenvironment in an azoxymethaneâ€ŧreated mouse model of colon carcinogenesis. Lasers in Surgery and Medicine, 2015, 47, 40-49.	1.1	6
305	A red meat-derived glycan promotes inflammation and cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 542-547.	3.3	327
306	Personalized treatment for colorectal cancer: novel developments and putative therapeutic strategies. Langenbeck's Archives of Surgery, 2015, 400, 129-143.	0.8	14
307	A dynamic exchange of TCF3 and TCF4 transcription factors controls <i>MYC</i> expression in colorectal cancer cells. Cell Cycle, 2015, 14, 323-332.	1.3	39
308	Annexin A10 is a marker for the serrated pathway of colorectal carcinoma. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2015, 466, 5-12.	1.4	31
309	Intrinsic cancer subtypes-next steps into personalized medicine. Cellular Oncology (Dordrecht), 2015, 38, 3-16.	2.1	24
310	Genome-wide linkage analysis and tumoral characterization reveal heterogeneity in familial colorectal cancer type X. Journal of Gastroenterology, 2015, 50, 657-666.	2.3	28
311	Suppressing TGFβ Signaling in Regenerating Epithelia in an Inflammatory Microenvironment Is Sufficient to Cause Invasive Intestinal Cancer. Cancer Research, 2015, 75, 766-776.	0.4	80
312	Identification of novel mutations by exome sequencing in African American colorectal cancer patients. Cancer, 2015, 121, 34-42.	2.0	36
313	Modeling colorectal cancer using CRISPR-Cas9–mediated engineering of human intestinal organoids. Nature Medicine, 2015, 21, 256-262.	15.2	887
314	MUC1-C activates the TAK1 inflammatory pathway in colon cancer. Oncogene, 2015, 34, 5187-5197.	2.6	86
315	Colorectal cancer-derived tumor spheroids retain the characteristics of original tumors. Cancer Letters, 2015, 367, 34-42.	3.2	47

#	Article	IF	Citations
316	Genetics and Genetic Biomarkers in Sporadic Colorectal Cancer. Gastroenterology, 2015, 149, 1177-1190.e3.	0.6	337
317	Molecular biomarkers in colorectal carcinoma. Pharmacogenomics, 2015, 16, 1189-1222.	0.6	14
318	Epigenetic regulation of the intestinal epithelium. Cellular and Molecular Life Sciences, 2015, 72, 4139-4156.	2.4	35
319	KRAS and aneusomy of chromosomes 4, 10 and 12 in colorectal carcinomas. Pathology Research and Practice, 2015, 211, 646-651.	1.0	5
320	Gut Microbiota and Colorectal Cancer. Gastrointestinal Tumors, 2015, 2, 26-32.	0.3	55
321	Clinical Implications of Intestinal Stem Cell Markers in Colorectal Cancer. Clinical Colorectal Cancer, 2015, 14, 63-71.	1.0	34
322	An AXIN2 Mutant Allele Associated With Predisposition to Colorectal Neoplasia Has Context-Dependent Effects on AXIN2 Protein Function. Neoplasia, 2015, 17, 463-472.	2.3	12
323	Microsatellite instable vs stable colon carcinomas: analysis of tumour heterogeneity, inflammation and angiogenesis. British Journal of Cancer, 2015, 113, 500-509.	2.9	112
324	Volatility of Mutator Phenotypes at Single Cell Resolution. PLoS Genetics, 2015, 11, e1005151.	1.5	15
325	Advanced Proteogenomic Analysis Reveals Multiple Peptide Mutations and Complex Immunoglobulin Peptides in Colon Cancer. Journal of Proteome Research, 2015, 14, 3555-3567.	1.8	36
326	DRO1/CCDC80: a Novel Tumor Suppressor of Colorectal Carcinogenesis. Current Colorectal Cancer Reports, 2015, 11, 200-208.	1.0	2
327	Chronic inflammation and the development of malignancy in the GI tract. Trends in Immunology, 2015, 36, 451-459.	2.9	49
328	The cancer cells-of-origin in the gastrointestinal tract: progenitors revisited: Figure 1 Carcinogenesis, 2015, 36, 811-816.	1.3	6
329	Dynamic microbe and molecule networks in a mouse model of colitis-associated colorectal cancer. Scientific Reports, 2014, 4, 4985.	1.6	59
330	Rectal and colon cancer: Not just a different anatomic site. Cancer Treatment Reviews, 2015, 41, 671-679.	3.4	239
331	Promoter Hypermethylation of Tumour Suppressor Genes as Potential Biomarkers in Colorectal Cancer. International Journal of Molecular Sciences, 2015, 16, 2472-2496.	1.8	151
332	The association of CTLAâ€4 A49G polymorphism with colorectal cancer risk in a Chinese Han population. International Journal of Immunogenetics, 2015, 42, 93-99.	0.8	12
333	Sequential cancer mutations in cultured human intestinal stem cells. Nature, 2015, 521, 43-47.	13.7	853

C				БТ
L	IIAI	ION	Repo	ואי

#	Article	IF	CITATIONS
334	Mismatch repair deficient-crypts in non-neoplastic colonic mucosa in Lynch syndrome: insights from an illustrative case. Familial Cancer, 2015, 14, 61-68.	0.9	27
335	CP-31398 prevents the growth of p53-mutated colorectal cancer cells in vitro and in vivo. Tumor Biology, 2015, 36, 1437-1444.	0.8	14
336	Colorectal Neoplasia Pathways. Gastrointestinal Endoscopy Clinics of North America, 2015, 25, 169-182.	0.6	23
337	Altered pathways and colorectal cancer prognosis. BMC Medicine, 2015, 13, 76.	2.3	8
338	Survivin and angiotensin-converting enzyme polymorphisms with risk of colorectal cancer: a systematic review and meta-analysis. World Journal of Surgical Oncology, 2015, 13, 27.	0.8	6
339	dNTP pool levels modulate mutator phenotypes of error-prone DNA polymerase ε variants. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2457-66.	3.3	47
340	Prospective Derivation of a Living Organoid Biobank of Colorectal Cancer Patients. Cell, 2015, 161, 933-945.	13.5	1,710
341	Inactivation of Itf2 promotes intestinal tumorigenesis in ApcMin/+ mice. Biochemical and Biophysical Research Communications, 2015, 461, 249-253.	1.0	8
342	Genetic Manipulation of Homologous Recombination <i>In Vivo</i> Attenuates Intestinal Tumorigenesis. Cancer Prevention Research, 2015, 8, 650-656.	0.7	3
343	Mutual reinforcement of inflammation and carcinogenesis by the Helicobacter pylori CagA oncoprotein. Scientific Reports, 2015, 5, 10024.	1.6	52
344	Chikusetsusaponin IVa methyl ester induces cell cycle arrest by the inhibition of nuclear translocation of β-catenin in HCT116 cells. Biochemical and Biophysical Research Communications, 2015, 459, 591-596.	1.0	16
345	Interleukin-1 Receptor Type 2 Acts with c-Fos to Enhance the Expression of Interleukin-6 and Vascular Endothelial Growth Factor A in Colon Cancer Cells and Induce Angiogenesis. Journal of Biological Chemistry, 2015, 290, 22212-22224.	1.6	69
346	Elucidating the molecular aspects of colorectal cancer and their clinical importance. Colorectal Cancer, 2015, 4, 175-183.	0.8	0
347	Colorectal carcinomas with KRAS codon 12 mutation are associated with more advanced tumor stages. BMC Cancer, 2015, 15, 340.	1.1	61
348	Angioprevention in Colon Cancer from Bench to Bedside. Current Colorectal Cancer Reports, 2015, 11, 422-431.	1.0	0
349	Identification of Colorectal Cancer Candidate Genes Based on Subnetwork Extraction Algorithm. Lecture Notes in Computer Science, 2015, , 706-712.	1.0	0
350	Targeting Wnt signaling in colorectal cancer. A Review in the Theme: Cell Signaling: Proteins, Pathways and Mechanisms. American Journal of Physiology - Cell Physiology, 2015, 309, C511-C521.	2.1	276
351	Tumor-selective proteotoxicity of verteporfin inhibits colon cancer progression independently of YAP1. Science Signaling, 2015, 8, ra98.	1.6	152

	Сітатіо	n Report	
#	Article	IF	CITATIONS
352	Deoxyribonucleotide metabolism, mutagenesis and cancer. Nature Reviews Cancer, 2015, 15, 528-539.	12.8	148
353	Clinical Response to Sorafenib in a Patient with Metastatic Colorectal Cancer and FLT3 Amplification. Case Reports in Oncology, 2015, 8, 83-87.	0.3	24
354	Molecular mechanism of adenomatous polyposis coli-induced blockade of base excision repair pathway in colorectal carcinogenesis. Life Sciences, 2015, 139, 145-152.	2.0	17
355	Inhibition of β-catenin signalling promotes DNA damage elicited by benzo[a]pyrene in a model of human colon cancer cells via CYP1 deregulation. Mutagenesis, 2015, 30, 565-576.	1.0	17
356	Use of Biomarkers in Screening for Cancer. Advances in Experimental Medicine and Biology, 2015, 867, 27-39.	0.8	45
357	Serrated and Non-Serrated Precursor Lesions of Colorectal Cancer. Digestive Diseases, 2015, 33, 28-37.	0.8	39
358	Molecular Subtyping of Colorectal Cancer: Time to Explore BothÂIntertumoral and Intratumoral Heterogeneity toÂEvaluateÂPatient Outcome. Gastroenterology, 2015, 148, 10-13.	0.6	27
359	Mutated K-ras activates CDK8 to stimulate the epithelial-to-mesenchymal transition in pancreatic cancer in part via the Wnt/β-catenin signaling pathway. Cancer Letters, 2015, 356, 613-627.	3.2	115
360	Connexins in colorectal cancer pathogenesis. International Journal of Cancer, 2015, 137, 1-11.	2.3	39
361	Familial colorectal cancer type X: genetic profiles and phenotypic features. Modern Pathology, 2015, 28, 30-36.	2.9	37
362	Epithelial stem cells and intestinal cancer. Seminars in Cancer Biology, 2015, 32, 40-53.	4.3	58
363	MicroRNA Polymorphisms and Risk of Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 65-72.	1.1	11
364	Lhx3 is required to maintain cancer cell development of high-grade oligodendroglioma. Molecular and Cellular Biochemistry, 2015, 399, 1-5.	1.4	8
365	Transgenic expression of oncogenic BRAF induces loss of stem cells in the mouse intestine, which is antagonized by β-catenin activity. Oncogene, 2015, 34, 3164-3175.	2.6	36
366	Personalised cancer medicine. International Journal of Cancer, 2015, 137, 262-266.	2.3	277
367	Relationship between Preoperative 18F-Fluorodeoxyglucose Uptake and Epidermal Growth Factor Receptor Status in Primary Colorectal Cancer. Yonsei Medical Journal, 2016, 57, 232.	0.9	2
368	The Emerging Role of NOD-like Receptors in Colorectal Cancer. Journal of Neoplasm, 2016, 01, .	0.1	1
370	The chromatin-remodeling enzyme BRG1 promotes colon cancer progression via positive regulation of WNT3A. Oncotarget, 2016, 7, 86051-86063.	0.8	23

#	Article	IF	CITATIONS
371	Racial disparity in colorectal cancer: Gut microbiome and cancer stem cells. World Journal of Stem Cells, 2016, 8, 279.	1.3	4
372	Mutations of <i>KRAS/NRAS/BRAF</i> predict cetuximab resistance in metastatic colorectal cancer patients. Oncotarget, 2016, 7, 22257-22270.	0.8	109
373	Mutation analysis of 13 driver genes of colorectal cancer-related pathways in Taiwanese patients. World Journal of Gastroenterology, 2016, 22, 2314-2325.	1.4	28
374	Current status and perspectives in atomic force microscopy-based identification of cellular transformation. International Journal of Nanomedicine, 2016, 11, 2107.	3.3	9
375	Mouse models for the discovery of colorectal cancer driver genes. World Journal of Gastroenterology, 2016, 22, 815.	1.4	8
376	Serrated colorectal cancer: Molecular classification, prognosis, and response to chemotherapy. World Journal of Gastroenterology, 2016, 22, 3516.	1.4	30
377	Changes in cellular mechanical properties during onset or progression of colorectal cancer. World Journal of Gastroenterology, 2016, 22, 7203.	1.4	55
378	Manipulation of DNA Repair Proficiency in Mouse Models of Colorectal Cancer. BioMed Research International, 2016, 2016, 1-18.	0.9	4
379	Expression Pattern and Clinicopathological Relevance of the Indoleamine 2,3-Dioxygenase 1/Tryptophan 2,3-Dioxygenase Protein in Colorectal Cancer. Disease Markers, 2016, 2016, 1-9.	0.6	31
380	Tumor suppressive role of sestrin2 during colitis and colon carcinogenesis. ELife, 2016, 5, e12204.	2.8	74
381	GSTM1 gene polymorphism and the risk of colorectal cancer in a Saudi Arabian population. Genetics and Molecular Research, 2016, 15, .	0.3	12
382	The Role of the C-Clamp in Wnt-Related Colorectal Cancers. Cancers, 2016, 8, 74.	1.7	14
383	Aberrant Promoter Methylation at CpG Cytosines Induce the Upregulation of the E2F5 Gene in Breast Cancer. Journal of Breast Cancer, 2016, 19, 133.	0.8	3
384	Wnt Signaling in Cancer Stem Cell Biology. Cancers, 2016, 8, 60.	1.7	180
385	Construction and Experimental Validation of a Petri Net Model of Wnt/β-Catenin Signaling. PLoS ONE, 2016, 11, e0155743.	1.1	16
386	The MYC 3′ Wnt-Responsive Element Drives Oncogenic MYC Expression in Human Colorectal Cancer Cells. Cancers, 2016, 8, 52.	1.7	11
388	Multipotent mesenchymal stromal cells promote tumor growth in distinct colorectal cancer cells by a β1â€integrinâ€dependent mechanism. International Journal of Cancer, 2016, 138, 964-975.	2.3	20
389	Activation of Wnt/ \hat{l}^2 -Catenin in Ewing Sarcoma Cells Antagonizes EWS/ETS Function and Promotes Phenotypic Transition to More Metastatic Cell States. Cancer Research, 2016, 76, 5040-5053.	0.4	70

#	Article	IF	CITATIONS
390	Translating colorectal cancer genetics into clinically useful biomarkers. Colorectal Disease, 2016, 18, 749-762.	0.7	4
391	Next-Generation Sequencing of Matched Primary and Metastatic Rectal Adenocarcinomas Demonstrates Minimal Mutation Gain and Concordance to Colonic Adenocarcinomas. Archives of Pathology and Laboratory Medicine, 2016, 140, 529-535.	1.2	16
392	PTEN Overexpression Cooperates With Lithium to Reduce the Malignancy and to Increase Cell Death by Apoptosis via PI3K/Akt Suppression in Colorectal Cancer Cells. Journal of Cellular Biochemistry, 2016, 117, 458-469.	1.2	33
393	Increased incidence of <i>FBXW7</i> and <i>POLE</i> proofreading domain mutations in young adult colorectal cancers. Cancer, 2016, 122, 2828-2835.	2.0	41
394	MicroRNA-92a Promotes Colorectal Cancer Cell Growth and Migration by Inhibiting KLF4. Oncology Research, 2016, 23, 283-290.	0.6	59
395	Expression of MCRS1 and MCRS2 and their correlation with serum carcinoembryonic antigen in colorectal cancer. Experimental and Therapeutic Medicine, 2016, 12, 589-596.	0.8	4
396	Less frequently mutated genes in colorectal cancer: evidences from next-generation sequencing of 653 routine cases. Journal of Clinical Pathology, 2016, 69, 767-771.	1.0	75
397	SEPT9 and SHOX2 DNA methylation status and its utility in the diagnosis of colonic adenomas and colorectal adenocarcinomas. Clinical Epigenetics, 2016, 8, 100.	1.8	46
398	A multigene mutation classification of 468 colorectal cancers reveals a prognostic role for APC. Nature Communications, 2016, 7, 11743.	5.8	170
399	A gene browser of colorectal cancer with literature evidence and pre-computed regulatory information to identify key tumor suppressors and oncogenes. Scientific Reports, 2016, 6, 30624.	1.6	3
401	Targeting the Microenvironment in Advanced Colorectal Cancer. Trends in Cancer, 2016, 2, 495-504.	3.8	80
402	A functional polymorphism located at transcription factor binding sites, rs6695837 near LAMC1 gene, confers risk of colorectal cancer in Chinese populations. Carcinogenesis, 2016, 38, bgw204.	1.3	59
403	Spectrum of Gene Mutations in Colorectal Cancer. Cancer Journal (Sudbury, Mass), 2016, 22, 149-155.	1.0	22
404	Overexpressed transcription factor FOXM1 contributes to the progression of colorectal cancer. Molecular Medicine Reports, 2016, 13, 2696-2700.	1.1	17
406	PS341 inhibits hepatocellular and colorectal cancer cells through the FOXO3/CTNNB1 signaling pathway. Scientific Reports, 2016, 6, 22090.	1.6	32
407	The protoâ€oncogene PBF binds p53 and is associated with prognostic features in colorectal cancer. Molecular Carcinogenesis, 2016, 55, 15-26.	1.3	27
408	Genomic Landscape of Colorectal Mucosa and Adenomas. Cancer Prevention Research, 2016, 9, 417-427.	0.7	65
409	Obesity promotes PhIP-induced small intestinal carcinogenesis in hCYP1A-db/db mice: involvement of mutations and DNA hypermethylation of <i>Apc</i> . Carcinogenesis, 2016, 37, 723-730.	1.3	6

#	Article	IF	CITATIONS
410	Enigeneois in Colorectal Concern All other Change in the Call 2016 122 144		0
410	Epigenesis in Colorectal Cancer: A Lethal Change in the Cell. , 2016, , 123-144.		0
411	Hsp70 exerts oncogenic activity in the Apc mutant Min mouse model. Carcinogenesis, 2016, 37, 731-739.	1.3	15
412	The UVB1 Vitamin D analogue inhibits colorectal carcinoma progression. Journal of Steroid Biochemistry and Molecular Biology, 2016, 163, 193-205.	1.2	10
413	Clinical and therapeutic significance of sirtuin-4 expression in colorectal cancer. Oncology Reports, 2016, 35, 2801-2810.	1.2	43
414	LRH-1 drives colon cancer cell growth by repressing the expression of the <i>CDKN1A</i> gene in a p53-dependent manner. Nucleic Acids Research, 2016, 44, 582-594.	6.5	46
415	High expression of Fatty Acidâ€Binding Protein 5 promotes cell growth and metastatic potential of colorectal cancer cells. FEBS Open Bio, 2016, 6, 190-199.	1.0	58
416	Comparative analysis of copy number variations in ulcerative colitis associated and sporadic colorectal neoplasia. BMC Cancer, 2016, 16, 271.	1.1	17
417	Ethanolic Extract of Bark fromSalix aegyptiacaAmeliorates 1,2-dimethylhydrazine-induced Colon Carcinogenesis in Mice by Reducing Oxidative Stress. Nutrition and Cancer, 2016, 68, 495-506.	0.9	8
418	Stem cell dynamics and pretumor progression in the intestinal tract. Journal of Gastroenterology, 2016, 51, 841-852.	2.3	3
419	Molecular Subtypes and Personalized Therapy in Metastatic Colorectal Cancer. Current Colorectal Cancer Reports, 2016, 12, 141-150.	1.0	40
420	A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer. Genome Research, 2016, 26, 745-755.	2.4	233
421	Focusing the Spotlight on the Zebrafish Intestine to Illuminate Mechanisms of Colorectal Cancer. Advances in Experimental Medicine and Biology, 2016, 916, 411-437.	0.8	11
422	Effect of API-1 and FR180204 on cell proliferation and apoptosis in human DLD-1 and LoVo colorectal cancer cells. Oncology Letters, 2016, 12, 2463-2474.	0.8	11
423	Colorectal Cancer Subtypes: Developmental Origin and Microenvironmental Regulation. Trends in Cancer, 2016, 2, 505-518.	3.8	51
424	Molecular endoscopy for targeted imaging in the digestive tract. The Lancet Gastroenterology and Hepatology, 2016, 1, 147-155.	3.7	40
425	Epigenetics, Obesity, and Colon Cancer. Energy Balance and Cancer, 2016, , 211-233.	0.2	0
426	Tissue-specific mutation accumulation in human adult stem cells during life. Nature, 2016, 538, 260-264.	13.7	759
427	Generation of an inducible colon-specific Cre enzyme mouse line for colon cancer research. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11859-11864.	3.3	43

#	Article	IF	CITATIONS
428	Mitochondrial Amino Acid Metabolism Provides Vulnerabilities inÂMutant KRAS-Driven Cancers. Gastroenterology, 2016, 151, 798-801.	0.6	3
429	High-Order Drug Combinations Are Required to Effectively Kill Colorectal Cancer Cells. Cancer Research, 2016, 76, 6950-6963.	0.4	30
430	Tescalcin expression contributes to invasive and metastatic activity in colorectal cancer. Tumor Biology, 2016, 37, 13843-13853.	0.8	20
431	Mouse models of intestinal cancer. Journal of Pathology, 2016, 238, 141-151.	2.1	109
432	Decreased expression of LncRNA SLC25A25-AS1 promotes proliferation, chemoresistance, and EMT in colorectal cancer cells. Tumor Biology, 2016, 37, 14205-14215.	0.8	56
433	MicroRNA Methylation in Colorectal Cancer. Advances in Experimental Medicine and Biology, 2016, 937, 109-122.	0.8	24
434	Clobal methylation profiling to identify epigenetic signature of gallbladder cancer and gallstone disease. Tumor Biology, 2016, 37, 14687-14699.	0.8	33
435	Bypass of Mutagenic O6-Carboxymethylguanine DNA Adducts by Human Y- and B-Family Polymerases. Chemical Research in Toxicology, 2016, 29, 1493-1503.	1.7	16
436	The Role of Stem Cell DNA Methylation in Colorectal Carcinogenesis. Stem Cell Reviews and Reports, 2016, 12, 573-583.	5.6	16
437	LMO2 attenuates tumor growth by targeting the Wnt signaling pathway in breast and colorectal cancer. Scientific Reports, 2016, 6, 36050.	1.6	26
438	Colorectal cancer and the KIR genes in the human genome: A meta-analysis. Genomics Data, 2016, 10, 118-126.	1.3	12
439	Single-cell SNP analyses and interpretations based on RNA-Seq data for colon cancer research. Scientific Reports, 2016, 6, 34420.	1.6	14
440	Genistein regulates tumor microenvironment and exhibits anticancer effect in dimethyl hydrazineâ€induced experimental colon carcinogenesis. BioFactors, 2016, 42, 623-637.	2.6	33
441	Bcl-2 is a critical mediator of intestinal transformation. Nature Communications, 2016, 7, 10916.	5.8	55
442	ROR2 is epigenetically inactivated in the early stages of colorectal neoplasia and is associated with proliferation and migration. BMC Cancer, 2016, 16, 508.	1.1	29
443	Polyp Genetics. Clinics in Colon and Rectal Surgery, 2016, 29, 289-295.	0.5	5
444	Molecular Triage Trials in Colorectal Cancer. Cancer Journal (Sudbury, Mass), 2016, 22, 218-222.	1.0	0
446	Genetic heterogeneity in synchronous colorectal cancers impacts genotyping approaches and therapeutic strategies. Genes Chromosomes and Cancer, 2016, 55, 268-277.	1.5	28

# 447	ARTICLE Genotyping of colorectal cancer for cancer precision medicine: Results from the IPH Center for Molecular Pathology. Genes Chromosomes and Cancer, 2016, 55, 505-521.	IF 1.5	Citations 34
448	KSR1 and EPHB4 Regulate Myc and PGC1β To Promote Survival of Human Colon Tumors. Molecular and Cellular Biology, 2016, 36, 2246-2261.	1.1	30
449	The genetic heterogeneity of colorectal cancer predisposition - guidelines for gene discovery. Cellular Oncology (Dordrecht), 2016, 39, 491-510.	2.1	34
450	pathTiMEx: Joint Inference of Mutually Exclusive Cancer Pathways and Their Dependencies in Tumor Progression. Lecture Notes in Computer Science, 2016, , 65-82.	1.0	1
451	Expression of mitochondrial genes MT-ND1, MT-ND6, MT-CYB, MT-COI, MT-ATP6, and 12S/MT-RNR1 in colorectal adenopolyps. Tumor Biology, 2016, 37, 12465-12475.	0.8	31
452	Integrated genomic analysis of colorectal cancer progression reveals activation of EGFR through demethylation of the EREG promoter. Oncogene, 2016, 35, 6403-6415.	2.6	58
453	Rad51C-ATXN7 fusion gene expression in colorectal tumors. Molecular Cancer, 2016, 15, 47.	7.9	10
454	Small-molecule binding of the axin RCS domain promotes β-catenin and Ras degradation. Nature Chemical Biology, 2016, 12, 593-600.	3.9	80
455	Sporadic early-onset colon cancer expresses unique molecular features. Journal of Surgical Research, 2016, 204, 251-260.	0.8	18
456	Selective β2â€AR Blockage Suppresses Colorectal Cancer Growth Through Regulation of EGFRâ€Akt/ERK1/2 Signaling, G1â€Phase Arrest, and Apoptosis. Journal of Cellular Physiology, 2016, 231, 459-472.	2.0	56
457	Targeting the serrated pathway of colorectal cancer with mutation in BRAF. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1866, 51-63.	3.3	8
458	PAC exhibits potent antiâ€colon cancer properties through targeting cyclin D1 and suppressing epithelialâ€toâ€mesenchymal transition. Molecular Carcinogenesis, 2016, 55, 233-244.	1.3	20
459	DUSP10 regulates intestinal epithelial cell growth and colorectal tumorigenesis. Oncogene, 2016, 35, 206-217.	2.6	33
460	An in vivo molecular response analysis of colorectal cancer treated with Astragalus membranaceus extract. Oncology Reports, 2016, 35, 659-668.	1.2	25
461	From Molecular Biology to Clinical Trials: Toward Personalized Colorectal Cancer Therapy. Clinical Colorectal Cancer, 2016, 15, 104-115.	1.0	20
462	Medicinal plants of the genuses Salvia and Hypericum are sources of anticolon cancer compounds: Effects on PI3K/Akt and MAP kinases pathways. PharmaNutrition, 2016, 4, 112-122.	0.8	6
463	Mucins and Wnt/β-catenin signaling in gastrointestinal cancers: an unholy nexus. Carcinogenesis, 2016, 37, 223-232.	1.3	52
464	Molecular Taxonomy and Tumourigenesis of Colorectal Cancer. Clinical Oncology, 2016, 28, 73-82.	0.6	5

#	Article	IF	CITATIONS
465	ML264, A Novel Small-Molecule Compound That Potently Inhibits Growth of Colorectal Cancer. Molecular Cancer Therapeutics, 2016, 15, 72-83.	1.9	41
466	Quantitative Profiling of Protein Tyrosine Kinases in Human Cancer Cell Lines by Multiplexed Parallel Reaction Monitoring Assays. Molecular and Cellular Proteomics, 2016, 15, 682-691.	2.5	39
467	Olfactomedin 4 deletion induces colon adenocarcinoma in ApcMin/+ mice. Oncogene, 2016, 35, 5237-5247.	2.6	64
468	Endoluminal high-resolution MR imaging protocol for colon walls analysis in a mouse model of colitis. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2016, 29, 657-669.	1.1	6
469	The Prosurvival IKK-Related Kinase IKKϵ Integrates LPS and IL17A Signaling Cascades to Promote Wnt-Dependent Tumor Development in the Intestine. Cancer Research, 2016, 76, 2587-2599.	0.4	21
470	A Chemopreventive Cocktail on the Rocks. Gastroenterology, 2016, 150, 26-29.	0.6	2
471	Colorectal Cancer: Epidemiology, Disease Mechanisms and Interventions to Reduce Onset and Mortality. Clinical Colorectal Cancer, 2016, 15, 195-203.	1.0	268
472	Pristimerin inhibits proliferation, migration and invasion, and induces apoptosis in HCT-116 colorectal cancer cells. Biomedicine and Pharmacotherapy, 2016, 79, 112-119.	2.5	35
473	Heme Iron Intake, Dietary Antioxidant Capacity, and Risk of Colorectal Adenomas in a Large Cohort Study of French Women. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 640-647.	1.1	46
474	DNA Hypomethylation Contributes to Genomic Instability and Intestinal Cancer Initiation. Cancer Prevention Research, 2016, 9, 534-546.	0.7	97
475	A network-based analysis of colon cancer splicing changes reveals a tumorigenesis-favoring regulatory pathway emanating from ELK1. Genome Research, 2016, 26, 541-553.	2.4	45
476	Aspirin and colorectal cancer: the promise of precision chemoprevention. Nature Reviews Cancer, 2016, 16, 173-186.	12.8	370
477	Evolution of genetic instability in heterogeneous tumors. Journal of Theoretical Biology, 2016, 396, 1-12.	0.8	28
478	Dietary cholesterol promotes AOM-induced colorectal cancer through activating the NLRP3 inflammasome. Biochemical Pharmacology, 2016, 105, 42-54.	2.0	76
479	Biologic and molecular markers for staging colon carcinoma. Colorectal Cancer, 2016, 5, 41-51.	0.8	1
480	Molecular evolution of colorectal cancer: from multistep carcinogenesis to the big bang. Cancer and Metastasis Reviews, 2016, 35, 63-74.	2.7	29
481	Deregulation of STING Signaling in Colorectal Carcinoma Constrains DNA Damage Responses and Correlates With Tumorigenesis. Cell Reports, 2016, 14, 282-297.	2.9	414
482	Genetic Diversity of Pancreatic Ductal Adenocarcinoma and Opportunities for Precision Medicine. Gastroenterology, 2016, 150, 48-63.	0.6	90

#	Article	IF	CITATIONS
483	The IL-33/ST2 pathway contributes to intestinal tumorigenesis in humans and mice. Oncolmmunology, 2016, 5, e1062966.	2.1	80
484	Increased expression of <i>Solute carrier family 12 member 5</i> via gene amplification contributes to tumour progression and metastasis and associates with poor survival in colorectal cancer. Gut, 2016, 65, 635-646.	6.1	39
485	Consumption of Red/Processed Meat and Colorectal Carcinoma: Possible Mechanisms Underlying the Significant Association. Critical Reviews in Food Science and Nutrition, 2016, 56, 614-634.	5.4	30
486	The role of dietary polyphenols in the moderation of the inflammatory response in early stage colorectal cancer. Critical Reviews in Food Science and Nutrition, 2017, 57, 2310-2320.	5.4	26
487	Personalized Proteome Profiles of Healthy and Tumor Human Colon Organoids Reveal Both Individual Diversity and Basic Features of Colorectal Cancer. Cell Reports, 2017, 18, 263-274.	2.9	126
488	Colorectal mixed adenoneuroendocrine carcinomas and neuroendocrine carcinomas are genetically closely related to colorectal adenocarcinomas. Modern Pathology, 2017, 30, 610-619.	2.9	131
489	Epigenomic landscape of 5-hydroxymethylcytosine reveals its transcriptional regulation of lncRNAs in colorectal cancer. British Journal of Cancer, 2017, 116, 658-668.	2.9	38
490	Determinants of metastatic competency in colorectal cancer. Molecular Oncology, 2017, 11, 97-119.	2.1	180
491	CpG island methylator phenotype is an independent predictor of survival after curative resection for colorectal cancer: A prospective cohort study. Journal of Gastroenterology and Hepatology (Australia), 2017, 32, 1469-1474.	1.4	18
492	A Prospective Study of Smoking and Risk of Synchronous Colorectal Cancers. American Journal of Gastroenterology, 2017, 112, 493-501.	0.2	17
493	DNA copy number changes define spatial patterns of heterogeneity in colorectal cancer. Nature Communications, 2017, 8, 14093.	5.8	85
494	YAP–IL-6ST autoregulatory loop activated on APC loss controls colonic tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1643-1648.	3.3	85
496	New frontiers in the treatment of colorectal cancer: Autophagy and the unfolded protein response as promising targets. Autophagy, 2017, 13, 781-819.	4.3	117
497	Targeting TGF-Î ² Signaling in Cancer. Trends in Cancer, 2017, 3, 56-71.	3.8	697
498	Specific mutations in KRAS codon 12 are associated with worse overall survival in patients with advanced and recurrent colorectal cancer. British Journal of Cancer, 2017, 116, 923-929.	2.9	114
499	Intra-tumor heterogeneity from a cancer stem cell perspective. Molecular Cancer, 2017, 16, 41.	7.9	533
500	Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2357-E2364.	3.3	198
501	Guanylate cyclase C as a target for prevention, detection, and therapy in colorectal cancer. Expert Review of Clinical Pharmacology, 2017, 10, 549-557.	1.3	28

		CITATION F	Report	
#	Article		IF	CITATIONS
502	Cancer genomics guide clinical practice in personalized medicine. Therapie, 2017, 72, 4	39-451.	0.6	12
503	Pharmacological inhibition of MAGL attenuates experimental colon carcinogenesis. Pha Research, 2017, 119, 227-236.	rmacological	3.1	53
504	The Contributions of Human Mini-Intestines to the Study of Intestinal Physiology and Pathophysiology. Annual Review of Physiology, 2017, 79, 291-312.		5.6	46
505	Molecular subtypes in cancers of the gastrointestinal tract. Nature Reviews Gastroenter Hepatology, 2017, 14, 333-342.	rology and	8.2	99
506	Specific microRNA–mRNA Regulatory Network of Colon Cancer Invasion Mediated by Kallikrein–Related Peptidase 6. Neoplasia, 2017, 19, 396-411.	Tissue	2.3	27
507	Antagonistic Interactions between Extracellular Signal-Regulated Kinase Mitogen-Activa Kinase and Retinoic Acid Receptor Signaling in Colorectal Cancer Cells. Molecular and C Biology, 2017, 37, .	ted Protein ellular	1.1	9
508	A Systematic Analysis of Oncogenic Gene Fusions in Primary Colon Cancer. Cancer Rese 3814-3822.	arch, 2017, 77,	0.4	76
509	HMGA1 amplifies Wnt signalling and expands the intestinal stem cell compartment and niche. Nature Communications, 2017, 8, 15008.	Paneth cell	5.8	59
510	Design and synthesis of near-infrared fluorescence-enhancement probes for the cancer- enzyme hNQO1. Dyes and Pigments, 2017, 143, 245-251.	specific	2.0	36
511	Oncogenic β-catenin and PIK3CA instruct network states and cancer phenotypes in into organoids. Journal of Cell Biology, 2017, 216, 1567-1577.	estinal	2.3	29
512	tRF/miR-1280 Suppresses Stem Cell–like Cells and Metastasis in Colorectal Cancer. C 2017, 77, 3194-3206.	ancer Research,	0.4	187
513	Review of the mechanisms of probiotic actions in the prevention of colorectal cancer. N Research, 2017, 37, 1-19.	utrition	1.3	151
514	Enhanced Rate of Acquisition of Point Mutations in Mouse Intestinal Adenomas Compa Tissue. Cell Reports, 2017, 19, 2185-2192.	red to Normal	2.9	18
515	Association between mutations of critical pathway genes and survival outcomes accord tumor location in colorectal cancer. Cancer, 2017, 123, 3513-3523.	ling to the	2.0	50
516	Overcoming chemoresistance in cancer stem cells with the help of microRNAs in colore Epigenomics, 2017, 9, 793-796.	ctal cancer.	1.0	26
517	Long noncoding RNA lnc-sox5 modulates CRC tumorigenesis by unbalancing tumor mic Cell Cycle, 2017, 16, 1295-1301.	roenvironment.	1.3	51
518	NOD2 Genetic Variants Predispose One of Two Familial Adenomatous Polyposis Sibling Through Microbiome Dysbiosis. Journal of Crohn's and Colitis, 2017, 11, 1393-1397.	s to Pouchitis	0.6	4
520	Libidibia ferrea presents antiproliferative, apoptotic and antioxidant effects in a colorect cell line. Biomedicine and Pharmacotherapy, 2017, 92, 696-706.	tal cancer	2.5	16

#	Article	IF	CITATIONS
521	Epithelialâ€toâ€mesenchymal transition transcription factors in cancerâ€associated fibroblasts. Molecular Oncology, 2017, 11, 847-859.	2.1	58
522	Early detection: the impact of genomics. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2017, 471, 165-173.	1.4	10
523	Notch as a Driver of Gastric Epithelial Cell Proliferation. Cellular and Molecular Gastroenterology and Hepatology, 2017, 3, 323-330.	2.3	43
524	Translational applications of adult stem cell-derived organoids. Development (Cambridge), 2017, 144, 968-975.	1.2	103
525	PI3K/AKT-mediated upregulation of WDR5 promotes colorectal cancer metastasis by directly targeting ZNF407. Cell Death and Disease, 2017, 8, e2686-e2686.	2.7	82
526	RNA virus receptor Rig-I monitors gut microbiota and inhibits colitis-associated colorectal cancer. Journal of Experimental and Clinical Cancer Research, 2017, 36, 2.	3.5	42
527	Precision surgery for colorectal liver metastases: Opportunities and challenges of omics-based decision making. European Journal of Surgical Oncology, 2017, 43, 875-883.	0.5	32
528	Sulfatase-2 promotes the growth and metastasis of colorectal cancer by activating Akt and Erk1/2 pathways. Biomedicine and Pharmacotherapy, 2017, 89, 1370-1377.	2.5	17
529	From tumour heterogeneity to advances in precision treatment of colorectal cancer. Nature Reviews Clinical Oncology, 2017, 14, 235-246.	12.5	466
530	Exosomal microRNA concentrations in colorectal cancer: A mathematical model. Journal of Theoretical Biology, 2017, 415, 70-83.	0.8	17
531	ARID1A loss impairs enhancer-mediated gene regulation and drives colon cancer in mice. Nature Genetics, 2017, 49, 296-302.	9.4	260
532	Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nature Reviews Cancer, 2017, 17, 79-92.	12.8	686
533	Phytochemical Investigations of Three <i>Rhodocodon</i> (Hyacinthaceae Sensu APG II) Species. Journal of Natural Products, 2017, 80, 30-37.	1.5	11
534	pathTiMEx: Joint Inference of Mutually Exclusive Cancer Pathways and Their Progression Dynamics. Journal of Computational Biology, 2017, 24, 603-615.	0.8	35
535	Epithelial Hypoxia-Inducible Factor 2 <i>α</i> Facilitates the Progression of Colon Tumors through Recruiting Neutrophils. Molecular and Cellular Biology, 2017, 37, .	1.1	52
536	Pteisolic acid G, a novel ent‑kaurane diterpenoid, inhibits viability and induces apoptosis in human colorectal carcinoma cells. Oncology Letters, 2017, 14, 5540-5548.	0.8	5
537	Circadian gene hCLOCK contributes to progression of colorectal carcinoma and is directly regulated by tumor-suppressive microRNA-124. Molecular Medicine Reports, 2017, 16, 7923-7930.	1.1	5
538	miRNA biogenesis-associated RNase III nucleases Drosha and Dicer are upregulated in colorectal adenocarcinoma. Oncology Letters, 2017, 14, 4379-4383.	0.8	16

#	Article	IF	CITATIONS
539	Molecular stratification of colorectal cancer populations and its use in directing precision medicine. Expert Review of Precision Medicine and Drug Development, 2017, 2, 205-215.	0.4	3
540	Differential abundance of CK1α provides selectivity for pharmacological CK1α activators to target WNT-dependent tumors. Science Signaling, 2017, 10, .	1.6	31
541	Pien Tze Huang inhibits the proliferation of colorectal cancer cells by increasing the expression of miR-34c-5p. Experimental and Therapeutic Medicine, 2017, 14, 3901-3907.	0.8	33
542	Familial Colorectal Cancer Type X (FCCTX) and the correlation with various genes—A systematic review. Current Problems in Cancer, 2017, 41, 388-397.	1.0	19
543	P2Y2 Receptor Functions in Cancer: A Perspective in the Context of Colorectal Cancer. Advances in Experimental Medicine and Biology, 2017, 1051, 91-106.	0.8	5
544	A Review of Compounds for Prevention of Colorectal Cancer. Current Pharmacology Reports, 2017, 3, 221-231.	1.5	5
545	Reversal of hyperactive Wnt signaling-dependent adipocyte defects by peptide boronic acids. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7469-E7478.	3.3	10
546	miR-187 inhibits the growth of cervical cancer cells by targeting FGF9. Oncology Reports, 2017, 38, 1977-1984.	1.2	40
547	Identification of hub genes, key miRNAs and potential molecular mechanisms of colorectal cancer. Oncology Reports, 2017, 38, 2043-2050.	1.2	41
548	An Optimal Mean Based Block Robust Feature Extraction Method to Identify Colorectal Cancer Genes with Integrated Data. Scientific Reports, 2017, 7, 8584.	1.6	5
549	Long non-coding RNA SPRY4-IT1 promotes proliferation and invasion by acting as a ceRNA of miR-101-3p in colorectal cancer cells. Tumor Biology, 2017, 39, 101042831771625.	0.8	35
550	BRAF mutant colorectal cancer: prognosis, treatment, and new perspectives. Annals of Oncology, 2017, 28, 2648-2657.	0.6	227
551	The essential role of TAp73 in bortezomib-induced apoptosis in p53-deficient colorectal cancer cells. Scientific Reports, 2017, 7, 5423.	1.6	28
552	Precision Oncology: Present Status and Perspectives. Current Clinical Pathology, 2017, , 7-26.	0.0	0
553	Difference in expression of two neurokinin-1 receptors in adenoma and carcinoma from patients that underwent radical surgery for colorectal carcinoma. Oncology Letters, 2017, 14, 3729-3733.	0.8	2
554	The Tumor Suppressor p53 Limits Ferroptosis by Blocking DPP4 Activity. Cell Reports, 2017, 20, 1692-1704.	2.9	608
555	RNF183 promotes proliferation and metastasis of colorectal cancer cells via activation of NF-κB-IL-8 axis. Cell Death and Disease, 2017, 8, e2994-e2994.	2.7	56
556	Colon cancer associated transcripts in human cancers. Biomedicine and Pharmacotherapy, 2017, 94, 531-540.	2.5	32

#	Article	IF	CITATIONS
557	Gene expression profile comparison between colorectal cancer and adjacent normal tissues. Oncology Letters, 2017, 14, 6071-6078.	0.8	18
558	Pathogenesis of Colorectal Cancer. , 2017, , 105-112.		0
559	Expending Role of Microsatellite Instability in Diagnosis and Treatment of Colorectal Cancers. Journal of Gastrointestinal Cancer, 2017, 48, 305-313.	0.6	19
560	The NF1 somatic mutational landscape in sporadic human cancers. Human Genomics, 2017, 11, 13.	1.4	203
561	Connecting cancer biology and clinical outcomes to imaging in KRAS mutant and wild-type colorectal cancer liver tumors following selective internal radiation therapy with yttrium-90. Abdominal Radiology, 2017, 42, 451-459.	1.0	16
562	Friend or foe?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1867, 1-18.	3.3	54
563	Comparison of biomarker expression between proximal and distal colorectal adenomas: The Tennessee–Indiana Adenoma Recurrence Study. Molecular Carcinogenesis, 2017, 56, 761-773.	1.3	4
564	From the Cover: PhIP/DSS-Induced Colon Carcinogenesis in CYP1A-Humanized Mice and the Possible Role of Lgr5+ Stem Cells. Toxicological Sciences, 2017, 155, 224-233.	1.4	8
565	Spindle Assembly Checkpoint as a Potential Target in Colorectal Cancer: Current Status and Future Perspectives. Clinical Colorectal Cancer, 2017, 16, 1-8.	1.0	16
566	Overproduction of IGF-2 drives a subset of colorectal cancer cells, which specifically respond to an anti-IGF therapeutic antibody and combination therapies. Oncogene, 2017, 36, 797-806.	2.6	29
567	Molecular pathways driving disease-specific alterations of intestinal epithelial cells. Cellular and Molecular Life Sciences, 2017, 74, 803-826.	2.4	12
568	Gene heterogeneity in metastasis of colorectal cancer to the lung. Seminars in Cell and Developmental Biology, 2017, 64, 58-64.	2.3	15
569	Degree of Tissue Differentiation Dictates Susceptibility to BRAF-Driven Colorectal Cancer. Cell Reports, 2017, 21, 3833-3845.	2.9	52
571	β‑catenin, leucine-rich repeat-containing G protein-coupled receptor 5 and GATA-binding factor 6 are associated with the normal mucosa‑adenoma‑adenocarcinoma sequence of colorectal tumorigenesis. Oncology Letters, 2017, 15, 2287-2295.	0.8	13
572	Cortactin promotes colorectal cancer cell proliferation by activating the EGFR-MAPK pathway. Oncotarget, 2017, 8, 1541-1554.	0.8	25
573	Molecular profiling of metastatic colorectal tumors using next-generation sequencing: a single-institution experience. Oncotarget, 2017, 8, 42198-42213.	0.8	49
574	Vitamin D/VDR, Probiotics, and Gastrointestinal Diseases. Current Medicinal Chemistry, 2017, 24, 876-887.	1.2	84
575	Molecular Characterization of Somatic Alterations in Dukes' B and C Colorectal Cancers by Targeted Sequencing. Frontiers in Pharmacology, 2017, 8, 465.	1.6	8

#	Article	IF	CITATIONS
576	Long noncoding RNA XIST is a prognostic factor in colorectal cancer and inhibits 5-fluorouracil-induced cell cytotoxicity through promoting thymidylate synthase expression. Oncotarget, 2017, 8, 83171-83182.	0.8	46
577	miR-107 Promotes Proliferation and Inhibits Apoptosis of Colon Cancer Cells by Targeting Prostate Apoptosis Response-4 (Par4). Oncology Research, 2017, 25, 967-974.	0.6	29
578	CDKL1 promotes tumor proliferation and invasion in colorectal cancer. OncoTargets and Therapy, 2017, Volume 10, 1613-1624.	1.0	13
579	Evolutionary biologic changes of gut microbiota in an â€~adenoma-carcinoma sequence' mouse colorectal cancer model induced by 1, 2-Dimethylhydrazine. Oncotarget, 2017, 8, 444-457.	0.8	47
580	The Role of Somatic L1 Retrotransposition in Human Cancers. Viruses, 2017, 9, 131.	1.5	74
581	Prevention of Colorectal Cancer by Targeting Obesity-Related Disorders and Inflammation. International Journal of Molecular Sciences, 2017, 18, 908.	1.8	11
582	The Role of IL-33-Dependent Inflammation in the Tumor Microenvironment. Frontiers in Immunology, 2016, 7, 682.	2.2	64
583	Upregulation of circadian gene 'hClock' contribution to metastasis of colorectal cancer. International Journal of Oncology, 2017, 50, 2191-2199.	1.4	28
584	BRAFV600E cooperates with CDX2 inactivation to promote serrated colorectal tumorigenesis. ELife, 2017, 6, .	2.8	73
585	The ESRP1-GPR137 axis contributes to intestinal pathogenesis. ELife, 2017, 6, .	2.8	24
586	Long non-coding RNAs in Colorectal Cancer: Progression and Future Directions. Journal of Cancer, 2017, 8, 3212-3225.	1.2	60
587	Aberrantly methylated-differentially expressed genes and pathways in colorectal cancer. Cancer Cell International, 2017, 17, 75.	1.8	65
588	Synthetic lethal short hairpin RNA screening reveals that ring finger protein 183 confers resistance to trametinib in colorectal cancer cells. Chinese Journal of Cancer, 2017, 36, 63.	4.9	11
589	Diverse expression patterns and tumorigenic role of neurotensin signaling components in colorectal cancer cells. International Journal of Oncology, 2017, 50, 2200-2206.	1.4	19
590	Molecular Testing in Colorectal Cancer. , 2017, , 305-320.		3
591	Overexpression of Hepatocyte Cell Adhesion Molecule (hepaCAM) Inhibits the Proliferation, Migration, and Invasion in Colorectal Cancer Cells. Oncology Research, 2017, 25, 1039-1046.	0.6	11
592	Construction of a multiplex mutation hot spot PCR panel: the first step towards colorectal cancer genotyping on the GS Junior platform. Journal of Cancer, 2017, 8, 162-173.	1.2	7
593	Long non-coding RNA SPRY4-IT1 pormotes colorectal cancer metastasis by regulate epithelial-mesenchymal transition. Oncotarget, 2017, 8, 14479-14486.	0.8	35

#	Article	IF	CITATIONS
594	<i>APC</i> hypermethylation for early diagnosis of colorectal cancer: a meta-analysis and literature review. Oncotarget, 2017, 8, 46468-46479.	0.8	51
595	Clinico-pathological and oncological differences between right and left-sided colon cancer (stages) Tj ETQq1 1 0.	784314 rg 0.1	gBŢ_{Overloc
596	miR-17-3P regulates the proliferation and survival of colon cancer cells by targeting Par4. Molecular Medicine Reports, 2018, 17, 618-623.	1.1	35
597	SUV39H2 promotes colorectal cancer proliferation and metastasis via tri-methylation of the SLIT1 promoter. Cancer Letters, 2018, 422, 56-69.	3.2	38
598	Colorectal Cancer $\hat{a} \in$ " An Update for Primary Care Nurse Practitioners. Journal for Nurse Practitioners, 2018, 14, 344-350.	0.4	2
599	The cytotoxic, apoptotic and oxidative effects of carbonic anhydrase IX inhibitor on colorectal cancer cells. Journal of Bioenergetics and Biomembranes, 2018, 50, 107-116.	1.0	20
600	Ubiquitin-Specific Peptidase 22 Contributes to Colorectal Cancer Stemness and Chemoresistance via Wnt/β-Catenin Pathway. Cellular Physiology and Biochemistry, 2018, 46, 1412-1422.	1.1	30
601	Colon cancers carrying BRAF V600E and β-catenin T41A activating mutations are resistant to numerous common anticancer drugs. Oncology Letters, 2018, 15, 4471-4476.	0.8	2
602	Immune Profiling of Premalignant Lesions in Patients With Lynch Syndrome. JAMA Oncology, 2018, 4, 1085.	3.4	62
603	Analysis of potential genes and pathways associated with the colorectal normal mucosa–adenoma–carcinoma sequence. Cancer Medicine, 2018, 7, 2555-2566.	1.3	42
604	1â€Lâ€MT, an IDO inhibitor, prevented colitisâ€associated cancer by inducing CDC20 inhibitionâ€mediated mitotic death of colon cancer cells. International Journal of Cancer, 2018, 143, 1516-1529.	2.3	39
605	Somatic <i>POLE</i> exonuclease domain mutations are early events in sporadic endometrial and colorectal carcinogenesis, determining driver mutational landscape, clonal neoantigen burden and immune response. Journal of Pathology, 2018, 245, 283-296.	2.1	71
606	Butyrate Inhibits Indices of Colorectal Carcinogenesis via Enhancing αâ€Ketoglutarateâ€Dependent DNA Demethylation of Mismatch Repair Genes. Molecular Nutrition and Food Research, 2018, 62, e1700932.	1.5	25
607	Clinical importance of DNA repair in sporadic colorectal cancer. Critical Reviews in Oncology/Hematology, 2018, 126, 168-185.	2.0	11
608	Update on Sporadic Colorectal Cancer Genetics. Clinics in Colon and Rectal Surgery, 2018, 31, 147-152.	0.5	19
609	The role of heme iron molecules derived from red and processed meat in the pathogenesis of colorectal carcinoma. Critical Reviews in Oncology/Hematology, 2018, 126, 121-128.	2.0	59
610	The G protein-coupled P2Y6 receptor promotes colorectal cancer tumorigenesis by inhibiting apoptosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1539-1551.	1.8	38
611	Molecular characterization of colorectal adenomas with and without malignancy reveals distinguishing genome, transcriptome and methylome alterations. Scientific Reports, 2018, 8, 3161.	1.6	35

#	Article	IF	CITATIONS
612	IKKα is required in the intestinal epithelial cells for tumour stemness. British Journal of Cancer, 2018, 118, 839-846.	2.9	12
613	RNF6 Promotes Colorectal Cancer by Activating the Wnt∫β-Catenin Pathway via Ubiquitination of TLE3. Cancer Research, 2018, 78, 1958-1971.	0.4	67
614	Oral delivery of siRNA lipid nanoparticles: Fate in the GI tract. Scientific Reports, 2018, 8, 2178.	1.6	91
615	Three molecular pathways model colorectal carcinogenesis in <scp>L</scp> ynch syndrome. International Journal of Cancer, 2018, 143, 139-150.	2.3	129
616	Genetically engineered pigs as models for human disease. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	155
617	Ten-eleven translocation 1 (TET1) gene is a potential target of miR-21-5p in human colorectal cancer. Surgical Oncology, 2018, 27, 76-81.	0.8	19
618	Functional significance and therapeutic implication of ring-type E3 ligases in colorectal cancer. Oncogene, 2018, 37, 148-159.	2.6	49
619	The Central Role of Wnt Signaling and Organoid Technology in Personalizing Anticancer Therapy. Progress in Molecular Biology and Translational Science, 2018, 153, 299-319.	0.9	7
620	β-Catenin mRNA Silencing and MEK Inhibition Display Synergistic Efficacy in Preclinical Tumor Models. Molecular Cancer Therapeutics, 2018, 17, 544-553.	1.9	18
622	MicroRNAâ€1271 suppresses the proliferation and invasion of colorectal cancer cells by regulating metadherin/Wnt signaling. Journal of Biochemical and Molecular Toxicology, 2018, 32, e22028.	1.4	21
623	The burgeoning role of cytochrome P450-mediated vitamin D metabolites against colorectal cancer. Pharmacological Research, 2018, 133, 9-20.	3.1	14
624	Smad4/DPC4. Journal of Clinical Pathology, 2018, 71, 661-664.	1.0	47
625	Mlh1 deficiency in normal mouse colon mucosa associates with chromosomally unstable colon cancer. Carcinogenesis, 2018, 39, 788-797.	1.3	18
626	Clinical Trials and Progress in Metastatic Colon Cancer. Surgical Oncology Clinics of North America, 2018, 27, 349-365.	0.6	64
627	Use of Organoids to Characterize Signaling Pathways in Cancer Initiation. Methods in Molecular Biology, 2018, 1765, 315-331.	0.4	1
628	Significance of PITX2 Promoter Methylation in Colorectal Carcinoma Prognosis. Clinical Colorectal Cancer, 2018, 17, e385-e393.	1.0	10
629	CREPT facilitates colorectal cancer growth through inducing Wnt/β-catenin pathway by enhancing p300-mediated β-catenin acetylation. Oncogene, 2018, 37, 3485-3500.	2.6	43
630	Sorting nexin 10 acts as a tumor suppressor in tumorigenesis and progression of colorectal cancer through regulating chaperone mediated autophagy degradation of p21Cip1/WAF1. Cancer Letters, 2018, 419, 116-127.	3.2	36

#	Article	IF	CITATIONS
631	Esculetin suppresses tumor growth and metastasis by targeting Axin2/E-cadherin axis in colorectal cancer. Biochemical Pharmacology, 2018, 152, 71-83.	2.0	55
632	Wnt is necessary for mesenchymal to epithelial transition in colorectal cancer cells. Developmental Dynamics, 2018, 247, 521-530.	0.8	36
633	The Application of CRISPR/Cas Technology to Efficiently Model Complex Cancer Genomes in Stem Cells. Journal of Cellular Biochemistry, 2018, 119, 134-140.	1.2	13
634	The human <i>PKP2</i> /plakophilinâ€2 gene is induced by Wnt/βâ€catenin in normal and colon cancerâ€associated fibroblasts. International Journal of Cancer, 2018, 142, 792-804.	2.3	26
635	Clinical performance evaluation of the Idylla NRAS-BRAF mutation test on retrospectively collected formalin-fixed paraffin-embedded colorectal cancer tissue. Journal of Clinical Pathology, 2018, 71, 336-343.	1.0	19
636	Logarithmic expansion of LGR5 + cells in human colorectal cancer. Cellular Signalling, 2018, 42, 97-105.	1.7	35
637	Arsenic trioxide exposure accelerates colon preneoplasic aberrant crypt foci induction regionally through mitochondrial dysfunction. Toxicology Research, 2018, 7, 182-190.	0.9	4
638	Pathology and genetics of hereditary colorectal cancer. Pathology, 2018, 50, 49-59.	0.3	119
639	Exome sequencing of synchronously resected primary colorectal tumours and colorectal liver metastases to inform oncosurgical management. European Journal of Surgical Oncology, 2018, 44, 115-121.	0.5	4
640	TANKYRASE Inhibition Enhances the Antiproliferative Effect of PI3K and EGFR Inhibition, Mutually Affecting β-CATENIN and AKT Signaling in Colorectal Cancer. Molecular Cancer Research, 2018, 16, 543-553.	1.5	42
641	Proximal Aberrant Crypt Foci Associate with Synchronous Neoplasia and Are Primed for Neoplastic Progression. Molecular Cancer Research, 2018, 16, 486-495.	1.5	13
642	Integrated Molecular Characterization of the Lethal Pediatric Cancer Pancreatoblastoma. Cancer Research, 2018, 78, 865-876.	0.4	25
643	Collaborating genomic, transcriptomic and microbiomic alterations lead to canine extreme intestinal polyposis. Oncotarget, 2018, 9, 29162-29179.	0.8	16
644	Colorectal carcinogenesis: Insights into the cell death and signal transduction pathways: A review. World Journal of Gastrointestinal Oncology, 2018, 10, 244-259.	0.8	69
645	Wnt Signaling in Intestinal Stem Cells and Cancer. , 2018, , .		0
646	Vitamin C promotes decitabine or azacytidine induced DNA hydroxymethylation and subsequent reactivation of the epigenetically silenced tumour suppressor <i>CDKN1A</i> in colon cancer cells. Oncotarget, 2018, 9, 32822-32840.	0.8	32
647	Colorectal Cancer Among Gout Patients Undergoing Colonoscopy. Journal of Clinical Rheumatology, 2019, 25, 335-340.	0.5	4
648	Role of curcumin in preventing familial adenomatous polyposis. Digestive Medicine Research, 2018, 1, 13-13.	0.2	1

		CITATION R	EPORT	
#	Article		IF	Citations
649	Diagnostic Potential and Interactive Dynamics of the Colorectal Cancer Virome. MBio, 201	18, 9, .	1.8	195
650	Increased EZH2 expression during the adenoma‑carcinoma sequence in colorectal cance Letters, 2018, 16, 5275-5281.	er. Oncology	0.8	16
651	Synthetic Cannabinoid Activity Against Colorectal Cancer Cells. Cannabis and Cannabinoid 2018, 3, 272-281.	d Research,	1.5	29
652	Targeting Colon Cancers with Mutated BRAF and Microsatellite Instability. Advances in Ex Medicine and Biology, 2018, 1110, 7-21.	perimental	0.8	6
653	Colorectal Cancer Subtypes – The Current Portrait. Advances in Experimental Medicine 2018, 1110, 1-6.	and Biology,	0.8	2
654	AACR White Paper: Shaping the Future of Cancer Prevention – A Roadmap for Advancin Public Health. Cancer Prevention Research, 2018, 11, 735-778.	g Science and	0.7	36
655	Difference Between Left-Sided and Right-Sided Colorectal Cancer: A Focused Review of Lit Gastroenterology Research, 2018, 11, 264-273.	erature.	0.4	294
656	Insights Into the Relationship Between Gut Microbiota and Colorectal Cancer. Current Col Cancer Reports, 2018, 14, 251-265.	orectal	1.0	2
657	A Bioinformatic Profile of Gene Expression of Colorectal Carcinoma Derived Organoids. Bio Research International, 2018, 2018, 1-12.	oMed	0.9	3
658	Testing for <i>NRAS</i> Mutations in Serous Borderline Ovarian Tumors and Low-Grade So Ovarian Carcinomas. Disease Markers, 2018, 2018, 1-7.	erous	0.6	6
659	Expression and Localization of Cathepsins B, D and G in Cancer Stem Cells in Liver Metast Colon Adenocarcinoma. Frontiers in Surgery, 2018, 5, 40.	asis From	0.6	25
660	Heterozygosity of Chaperone Grp78 Reduces Intestinal Stem Cell Regeneration Potential against Adenoma Formation. Cancer Research, 2018, 78, 6098-6106.	and Protects	0.4	12
661	Deciphering the Far-Reaching Functions of Non-coding RNA in Colorectal Cancer. Current Cancer Reports, 2018, 14, 115-127.	Colorectal	1.0	0
662	ANIMAL MODELS FOR COLORECTAL CANCER. Arquivos Brasileiros De Cirurgia Digestiva: A Brazilian Archives of Digestive Surgery, 2018, 31, e1369.	ABCD =	0.5	34
663	Aberrant promoter methylation status is associated with upregulation of the E2F4 gene in cancer. Oncology Letters, 2018, 15, 8461-8469.	breast	0.8	5
664	Methylation and Gene Expression of <i>BCAT1</i> and <i>IKZF1</i> in Colorectal Cancer Clinical Medicine Insights: Oncology, 2018, 12, 117955491877506.	Tissues.	0.6	19
665	Aurora kinase A (AURKA) interaction with Wnt and Ras-MAPK signalling pathways in color cancer. Scientific Reports, 2018, 8, 7522.	ectal	1.6	38
666	Promoter epigenetics of APC gene and its implication in sporadic breast cancer patients fr Indian population. Gene Reports, 2018, 11, 255-260.	om South	0.4	2

#	Article	IF	CITATIONS
667	The importance and implications of comparator selection in pharmacoepidemiologic research. Current Epidemiology Reports, 2018, 5, 272-283.	1.1	29
668	Analysis of Mutation and Loss of Heterozygosity by Whole-Exome Sequencing Yields Insights into Pseudomyxoma Peritonei. Journal of Molecular Diagnostics, 2018, 20, 635-642.	1.2	19
669	PTPRS Regulates Colorectal Cancer RAS Pathway Activity by Inactivating Erk and Preventing Its Nuclear Translocation. Scientific Reports, 2018, 8, 9296.	1.6	23
670	The controversial role of <i>Enterococcus faecalis</i> in colorectal cancer. Therapeutic Advances in Gastroenterology, 2018, 11, 175628481878360.	1.4	95
671	Sirtuin 6 inhibits colon cancer progression by modulating PTEN/AKT signaling. Biomedicine and Pharmacotherapy, 2018, 106, 109-116.	2.5	32
672	Colorectal Cancer, Pathology and Genetics. , 2018, , 428-428.		0
673	Vitamin D and Colon Cancer. , 2018, , 837-862.		6
674	Stepwise approach to SNP-set analysis illustrated with the Metabochip and colorectal cancer in Japanese Americans of the Multiethnic Cohort. BMC Genomics, 2018, 19, 524.	1.2	5
675	Rimonabant Kills Colon Cancer Stem Cells without Inducing Toxicity in Normal Colon Organoids. Frontiers in Pharmacology, 2017, 8, 949.	1.6	33
676	Characterization of Cancer Stem Cells in Colon Adenocarcinoma Metastasis to the Liver. Frontiers in Surgery, 2017, 4, 76.	0.6	31
677	Synaptotagmin7 Is Overexpressed In Colorectal Cancer And Regulates Colorectal Cancer Cell Proliferation. Journal of Cancer, 2018, 9, 2349-2356.	1.2	18
678	Comparison of Microbiota in Patients Treated by Surgery or Chemotherapy by 16S rRNA Sequencing Reveals Potential Biomarkers for Colorectal Cancer Therapy. Frontiers in Microbiology, 2018, 9, 1607.	1.5	103
679	A promising new approach to cancer therapy: Targeting iron metabolism in cancer stem cells. Seminars in Cancer Biology, 2018, 53, 125-138.	4.3	105
680	Teaming Up for Trouble: Cancer Cells, Transforming Growth Factor-β1 Signaling and the Epigenetic Corruption of Stromal NaÃīve Fibroblasts. Cancers, 2018, 10, 61.	1.7	30
681	Colorectal Cancer: Genetic Abnormalities, Tumor Progression, Tumor Heterogeneity, Clonal Evolution and Tumor-Initiating Cells. Medical Sciences (Basel, Switzerland), 2018, 6, 31.	1.3	167
682	A Novel Inhibitor Targets Both Wnt Signaling and ATM/p53 in Colorectal Cancer. Cancer Research, 2018, 78, 5072-5083.	0.4	22
683	Stearoyl-CoA desaturase-1 promotes colorectal cancer metastasis in response to glucose by suppressing PTEN. Journal of Experimental and Clinical Cancer Research, 2018, 37, 54.	3.5	78
684	Vitamin D Deficiency has a Negative Impact on Cetuximab-Mediated Cellular Cytotoxicity against Human Colon Carcinoma Cells. Targeted Oncology, 2018, 13, 657-665.	1.7	14

#	Article	IF	CITATIONS
685	The Guanylate Cyclase C—cGMP Signaling Axis Opposes Intestinal Epithelial Injury and Neoplasia. Frontiers in Oncology, 2018, 8, 299.	1.3	37
686	Curcumin mediates polyamine metabolism and sensitizes gastrointestinal cancer cells to antitumor polyamine-targeted therapies. PLoS ONE, 2018, 13, e0202677.	1.1	25
687	Colorectal premalignancy is associated with consensus molecular subtypes 1 and 2. Annals of Oncology, 2018, 29, 2061-2067.	0.6	35
688	Group I Paks are essential for epithelial- mesenchymal transition in an Apc-driven model of colorectal cancer. Nature Communications, 2018, 9, 3473.	5.8	22
689	Intestinal microbiota: a novel perspective in colorectal cancer biotherapeutics. OncoTargets and Therapy, 2018, Volume 11, 4797-4810.	1.0	47
690	Comprehensive evaluation of coding region point mutations in microsatelliteâ€unstable colorectal cancer. EMBO Molecular Medicine, 2018, 10, .	3.3	10
691	Dro1/Ccdc80 inactivation promotes AOM/DSS-induced colorectal carcinogenesis and aggravates colitis by DSS in mice. Carcinogenesis, 2018, 39, 1176-1184.	1.3	11
692	Applications of CRISPR-Cas Enzymes in Cancer Therapeutics and Detection. Trends in Cancer, 2018, 4, 499-512.	3.8	89
693	The Genetics and Epigenetics of Colorectal Cancer Health Disparity. , 2018, , 87-115.		1
694	Down-regulated paxillin suppresses cell proliferation and invasion by inhibiting M2 macrophage polarization in colon cancer. Biological Chemistry, 2018, 399, 1285-1295.	1.2	23
695	Oncogenic BRAF ^{V600E} drives expression of MGL ligands in the colorectal cancer cell line HT29 through <i>N</i> -acetylgalactosamine-transferase 3. Biological Chemistry, 2018, 399, 649-659.	1.2	16
696	Inference of Cancer Progression With Probabilistic Graphical Model From Cross-Sectional Mutation Data. IEEE Access, 2018, 6, 22889-22898.	2.6	7
697	Increased colon cancer risk after severe Salmonella infection. PLoS ONE, 2018, 13, e0189721.	1.1	94
698	TIGAR knockdown enhanced the anticancer effect of aescin via regulating autophagy and apoptosis in colorectal cancer cells. Acta Pharmacologica Sinica, 2019, 40, 111-121.	2.8	20
699	Adjuvant and Neoadjuvant Therapy for Colorectal Cancer. , 2019, , 2126-2136.		2
700	Microbiota Profile and Impact of Fusobacterium nucleatum in Colorectal Cancer Patients of Barretos Cancer Hospital. Frontiers in Oncology, 2019, 9, 813.	1.3	43
701	Infection with genotoxinâ€producing <i>Salmonella enterica</i> synergises with loss of the tumour suppressor <i>APC</i> in promoting genomic instability via the PI3K pathway in colonic epithelial cells. Cellular Microbiology, 2019, 21, e13099.	1.1	26
702	An enhanced genetic model of colorectal cancer progression history. Genome Biology, 2019, 20, 168.	3.8	34

#	Article	IF	Citations
703	A New Switch for TGFÎ ² in Cancer. Cancer Research, 2019, 79, 3797-3805.	0.4	77
704	β-Catenin/TCF4 Complex-Mediated Induction of the NRF3 (NFE2L3) Gene in Cancer Cells. International Journal of Molecular Sciences, 2019, 20, 3344.	1.8	25
705	Uncovering Potential Therapeutic Targets in Colorectal Cancer by Deciphering Mutational Status and Expression of Druggable Oncogenes. Cancers, 2019, 11, 983.	1.7	14
706	Flavopereirine Suppresses the Growth of Colorectal Cancer Cells through P53 Signaling Dependence. Cancers, 2019, 11, 1034.	1.7	12
707	Altered expression of renin-angiotensin system receptors throughout colorectal adenoma-adenocarcinoma sequence. International Journal of Medical Sciences, 2019, 16, 813-821.	1.1	10
708	AMPâ€kinase inhibitor dorsomorphin reduces the proliferation and migration behavior of colorectal cancer cells by targeting the AKT/mTOR pathway. IUBMB Life, 2019, 71, 1929-1936.	1.5	10
709	Intercellular Transfer of Oncogenic KRAS via Tunneling Nanotubes Introduces Intracellular Mutational Heterogeneity in Colon Cancer Cells. Cancers, 2019, 11, 892.	1.7	43
710	Cell type-dependent differential activation of ERK by oncogenic KRAS in colon cancer and intestinal epithelium. Nature Communications, 2019, 10, 2919.	5.8	70
711	ILâ€17R deletion predicts highâ€grade colorectal cancer and poor clinical outcomes. International Journal of Cancer, 2019, 145, 548-558.	2.3	12
712	Functions and Implications of Autophagy in Colon Cancer. Cells, 2019, 8, 1349.	1.8	44
714	TRPM4 is highly expressed in human colorectal tumor buds and contributes to proliferation, cell cycle, and invasion of colorectal cancer cells. Molecular Oncology, 2019, 13, 2393-2405.	2.1	32
715	Reviewing the role of P2Y receptors in specific gastrointestinal cancers. Purinergic Signalling, 2019, 15, 451-463.	1.1	20
716	Retrotransposon insertions can initiate colorectal cancer and are associated with poor survival. Nature Communications, 2019, 10, 4022.	5.8	53
717	MicroRNA Biogenesis Pathway Genes Are Deregulated in Colorectal Cancer. International Journal of Molecular Sciences, 2019, 20, 4460.	1.8	14
718	Epithelial NOTCH Signaling Rewires the Tumor Microenvironment of Colorectal Cancer to Drive Poor-Prognosis Subtypes and Metastasis. Cancer Cell, 2019, 36, 319-336.e7.	7.7	278
719	Regulation of Ketogenic Enzyme HMGCS2 by Wnt/β-catenin/PPARγ Pathway in Intestinal Cells. Cells, 2019, 8, 1106.	1.8	43
720	Colon Cancer: Epithelial Notch Signaling Recruits Neutrophils to Drive Metastasis. Cancer Cell, 2019, 36, 213-214.	7.7	23
721	The Novel Small-Molecule SR18662 Efficiently Inhibits the Growth of Colorectal Cancer <i>In Vitro</i> and <i>In Vivo</i> . Molecular Cancer Therapeutics, 2019, 18, 1973-1984.	1.9	7

		CITATION REPORT	
#	ARTICLE	IF	Citations
722	DLIC 1 , but not DLIC 2 , is upregulated in colon cancer and this contributes to proliferative overgrowth and migratory characteristics of cancer cells. FEBS Journal, 2019, 286, 803-820.	2.2	8
723	Sine oculis homeobox 1 promotes proliferation and migration of human colorectal cancer cells through activation of Wnt/l²â€catenin signaling. Cancer Science, 2019, 110, 608-616.	1.7	16
724	Genomic clustering of fitnessâ€affecting mutations favors the evolution of chromosomal instab Evolutionary Applications, 2019, 12, 301-313.	ility. 1.5	3
725	Sphere‑forming assay vs. organoid culture: Determining long‑term stemness and the chemo capacity of primary colorectal cancer cells. International Journal of Oncology, 2019, 54, 893-904	presistant 1.4 4.	19
726	3,3'-Diindolylmethane inhibits patient-derived xenograft colon tumor growth by targeting COXI ERK1/2. Cancer Letters, 2019, 448, 20-30.	1/2 and 3.2	32
727	Colorectal Cancer in Young Adults. Current Treatment Options in Gastroenterology, 2019, 17, 8	39-98. 0.3	38
728	Class III Î ² -tubulin Expression in Colorectal Neoplasms Is a Potential Predictive Biomarker for Pac Response. Anticancer Research, 2019, 39, 655-662.	litaxel 0.5	13
729	Genetic Analysis Using a Gene Panel in 87 Caucasian Patients With Colorectal Cancer: Own Res Review of Literature. Anticancer Research, 2019, 39, 847-852.	ults and 0.5	3
730	Targeted next generation sequencing reveals a common genetic pathway for colorectal cancers chromosomal instability and those with microsatellite and chromosome stability. Pathology Research and Practice, 2019, 215, 152445.	with 1.0	3
731	The histone H3 lysine-27 demethylase UTX plays a critical role in colorectal cancer cell proliferat Cancer Cell International, 2019, 19, 144.	ion. 1.8	8
732	The Intestinal Stem Cell Niche: A Central Role for Foxl1-Expressing Subepithelial Telocytes. Cellu and Molecular Gastroenterology and Hepatology, 2019, 8, 111-117.	lar 2.3	59
733	Gut microbiome identifies risk for colorectal polyps. BMJ Open Gastroenterology, 2019, 6, e000	297. 1.1	33
734	An oncogenic gene, SNRPA1, regulates PIK3R1, VEGFC, MKI67, CDK1 and other genes in colored Biomedicine and Pharmacotherapy, 2019, 117, 109076.	ctal cancer. 2.5	23
735	(Pro)renin Receptor Expression Increases throughout the Colorectal Adenoma—Adenocarcino Sequence and It Is Associated with Worse Colorectal Cancer Prognosis. Cancers, 2019, 11, 881		13
736	Trp53 null and R270H mutant alleles have comparable effects in regulating invasion, metastasis gene expression in mouse colon tumorigenesis. Laboratory Investigation, 2019, 99, 1454-1469.		18
737	Mechanism of Apoptosis Induced by Curcumin in Colorectal Cancer. International Journal of Molecular Sciences, 2019, 20, 2454.	1.8	103
738	Association of pathway mutation with survival after recurrence in colorectal cancer patients treated with adjuvant fluoropyrimidine and oxaliplatin chemotherapy. BMC Cancer, 2019, 19, 4	21. 1.1	2
739	Smad7 and Colorectal Carcinogenesis: A Double-Edged Sword. Cancers, 2019, 11, 612.	1.7	17

#	Article	IF	CITATIONS
740	PYGO2 as an independent diagnostic marker expressed in a majority of colorectal cancers. Journal of Histotechnology, 2019, 42, 98-103.	0.2	2
741	Genetics of rectal cancer and novel therapies: primer for radiologists. Abdominal Radiology, 2019, 44, 3743-3750.	1.0	10
742	Prostaglandin E2 as a potent therapeutic target for treatment of colon cancer. Prostaglandins and Other Lipid Mediators, 2019, 144, 106338.	1.0	79
743	Targeting Wnt Signaling via Notch in Intestinal Carcinogenesis. Cancers, 2019, 11, 555.	1.7	28
744	Effects of obesity and weight loss on mitochondrial structure and function and implications for colorectal cancer risk. Proceedings of the Nutrition Society, 2019, 78, 426-437.	0.4	17
745	Difference of TGF-β/Smads signaling pathway in epithelial-mesenchymal transition of normal colonic epithelial cells induced by tumor-associated fibroblasts and colon cancer cells. Molecular Biology Reports, 2019, 46, 2749-2759.	1.0	6
746	Deregulation of SATB2 in carcinogenesis with emphasis on miRNA-mediated control. Carcinogenesis, 2019, 40, 393-402.	1.3	20
747	Complex karyotype in myelodysplastic syndromes: Diagnostic procedure and prognostic susceptibility. Oncology Reviews, 2019, 13, 389.	0.8	9
748	Selected Aspects of Chemoresistance Mechanisms in Colorectal Carcinoma—A Focus on Epithelial-to-Mesenchymal Transition, Autophagy, and Apoptosis. Cells, 2019, 8, 234.	1.8	46
749	Meta-analysis of the molecular associations of mucinous colorectal cancer. British Journal of Surgery, 2019, 106, 682-691.	0.1	54
750	The emergence of melatonin in oncology: Focus on colorectal cancer. Medicinal Research Reviews, 2019, 39, 2239-2285.	5.0	46
751	Association between TP53 genetic polymorphisms and the methylation and expression of miR‑34a, 34b/c in colorectal cancer tissues. Oncology Letters, 2019, 17, 4726-4734.	0.8	9
752	Clinical Utilization Pattern of Liquid Biopsies (LB) to Detect Actionable Driver Mutations, Guide Treatment Decisions and Monitor Disease Burden During Treatment of 33 Metastatic Colorectal Cancer (mCRC) Patients (pts) at a Fox Chase Cancer Center GI Oncology Subspecialty Clinic. Frontiers in Oncology, 2018, 8, 652.	1.3	14
753	MEK Inhibition Induces Canonical WNT Signaling through YAP in KRAS Mutated HCT-15 Cells, and a Cancer Preventive FOXO3/FOXM1 Ratio in Combination with TNKS Inhibition. Cancers, 2019, 11, 164.	1.7	10
754	Impact of the gut microbiome on the genome and epigenome of colon epithelial cells: contributions to colorectal cancer development. Genome Medicine, 2019, 11, 11.	3.6	127
755	<p>Long noncoding RNA GIHCG induces cancer progression and chemoresistance and indicates poor prognosis in colorectal cancer</p> . OncoTargets and Therapy, 2019, Volume 12, 1059-1070.	1.0	31
756	Neutrophils Restrict Tumor-Associated Microbiota to Reduce Growth and Invasion of Colon Tumors in Mice. Gastroenterology, 2019, 156, 1467-1482.	0.6	85
757	Drug Sensitivity Screening and Targeted Pathway Analysis Reveal a Multi-Driver Proliferative Mechanism and Suggest a Strategy of Combination Targeted Therapy for Colorectal Cancer Cells. Molecules, 2019, 24, 623.	1.7	7

#	Article	IF	CITATIONS
758	DNA methylation instability by BRAF-mediated TET silencing and lifestyle-exposure divides colon cancer pathways. Clinical Epigenetics, 2019, 11, 196.	1.8	22
759	A Perspective on the Development of TGF-β Inhibitors for Cancer Treatment. Biomolecules, 2019, 9, 743.	1.8	138
760	Mutation Profiling of Premalignant Colorectal Neoplasia. Gastroenterology Research and Practice, 2019, 2019, 1-9.	0.7	5
761	Signaling pathways involved in colorectal cancer progression. Cell and Bioscience, 2019, 9, 97.	2.1	226
762	Polymorphisms in Genes Coding for Folate-Related Enzymes and Colorectal Cancer. Nutrition Today, 2019, 54, 229-234.	0.6	1
763	Suspected Hereditary Cancer Syndromes in Young Patients: Heterogeneous Clinical and Genetic Presentation of Colorectal Cancers. Oncologist, 2019, 24, 877-882.	1.9	1
764	An immunohistochemical approach to detect oncogenic CTNNB1 mutations in primary neoplastic tissues. Laboratory Investigation, 2019, 99, 128-137.	1.7	18
765	Integrative molecular analysis of colorectal cancer and gastric cancer: What have we learnt?. Cancer Treatment Reviews, 2019, 73, 31-40.	3.4	15
766	Epidemiological, clinical and molecular characterization of Lynchâ€like syndrome: A populationâ€based study. International Journal of Cancer, 2019, 145, 87-98.	2.3	28
767	A mediator of phosphorylated Smad2/3, evodiamine, in the reversion of TAF-induced EMT in normal colonic epithelial cells. Investigational New Drugs, 2019, 37, 865-875.	1.2	12
768	Butyrate interacts with benzo[a]pyrene to alter expression and activities of xenobiotic metabolizing enzymes involved in metabolism of carcinogens within colon epithelial cell models. Toxicology, 2019, 412, 1-11.	2.0	6
769	Dancing from bottoms up – Roles of the POZ-ZF transcription factor Kaiso in Cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1871, 64-74.	3.3	24
770	RAS genes in colorectal carcinoma: pathogenesis, testing guidelines and treatment implications. Journal of Clinical Pathology, 2019, 72, 135-139.	1.0	28
771	Regulation between two alternative splicing isoforms ZNF148FL and ZNF148ΔN, and their roles in the apoptosis and invasion of colorectal cancer. Pathology Research and Practice, 2019, 215, 272-277.	1.0	16
772	High Sensitivity of Human Translesion DNA Synthesis Polymerase κ to Variation in <i>O</i> ⁶ -Carboxymethylguanine Structures. ACS Chemical Biology, 2019, 14, 214-222.	1.6	6
773	Overview of the oncogenic signaling pathways in colorectal cancer: Mechanistic insights. Seminars in Cancer Biology, 2019, 58, 65-79.	4.3	94
774	Interaction of bacteria and stem cells in health and disease. FEMS Microbiology Reviews, 2019, 43, 162-180.	3.9	12
775	Marine omegaâ€3 fatty acid intake and survival of stage III colon cancer according to tumor molecular markers in NCCTG Phase III trial N0147 (Alliance). International Journal of Cancer, 2019, 145, 380-389.	2.3	22

#	Article	IF	CITATIONS
776	Concomitant dysregulation of the estrogen receptor and BRAF/MEK signaling pathways is common in colorectal cancer and predicts a worse prognosis. Cellular Oncology (Dordrecht), 2019, 42, 197-209.	2.1	8
777	Colorectal cancer invasiveness in vitro: Predominant contribution of neonatal Nav1.5 under normoxia and hypoxia. Journal of Cellular Physiology, 2019, 234, 6582-6593.	2.0	44
778	Berberine reversed the epithelialâ€mesenchymal transition of normal colonic epithelial cells induced by SW480 cells through regulating the important components in the TGFâ€Î² pathway. Journal of Cellular Physiology, 2019, 234, 11679-11691.	2.0	14
779	Mutant p53 in colon cancer. Journal of Molecular Cell Biology, 2019, 11, 267-276.	1.5	170
780	Association of PARK2 promoter polymorphisms and methylation with colorectal cancer in North Indian population. Gene, 2019, 682, 25-32.	1.0	14
781	Interleukin-33 and ST2 Signaling in Tumor Microenvironment. Journal of Interferon and Cytokine Research, 2019, 39, 61-71.	0.5	29
782	Anthocyanins/anthocyanidins and colorectal cancer: What is behind the scenes?. Critical Reviews in Food Science and Nutrition, 2019, 59, 59-71.	5.4	45
783	Ras and Rap1: A tale of two GTPases. Seminars in Cancer Biology, 2019, 54, 29-39.	4.3	121
784	Elevating H3K27me3 level sensitizes colorectal cancer to oxaliplatin. Journal of Molecular Cell Biology, 2020, 12, 125-137.	1.5	46
785	Variation in Blood and Colorectal Epithelia's Key Trace Elements Along with Expression of Mismatch Repair Proteins from Localized and Metastatic Colorectal Cancer Patients. Biological Trace Element Research, 2020, 194, 66-75.	1.9	15
786	Metabolic pathways regulating colorectal cancer initiation and progression. Seminars in Cell and Developmental Biology, 2020, 98, 63-70.	2.3	203
787	Molecular Genetics and the Role of Molecularly Targeted Agents in Metastatic Colorectal Carcinoma. Journal of Gastrointestinal Cancer, 2020, 51, 387-400.	0.6	6
788	Biomarker-guided therapy for colorectal cancer: strength in complexity. Nature Reviews Clinical Oncology, 2020, 17, 11-32.	12.5	195
789	Mutational Profile Using Next-Generation Sequencing May Aid in the Diagnosis and Treatment of Urachal Adenocarcinoma. International Journal of Surgical Pathology, 2020, 28, 51-59.	0.4	6
790	Colorectal cancer peritoneal metastases: Biology, treatment and next steps. European Journal of Surgical Oncology, 2020, 46, 675-683.	0.5	5
791	Growth of cells, growth factors, and oncogenes. , 2020, , 87-104.		0
792	Next Generation Lipophilic Bisphosphonate Shows Antitumor Effect in Colorectal Cancer In Vitro and In Vivo. Pathology and Oncology Research, 2020, 26, 1957-1969.	0.9	10
793	Comparison of the molecular and cellular phenotypes of common mouse syngeneic models with human tumors. BMC Genomics, 2020, 21, 2.	1.2	124

#	Article	IF	CITATIONS
794	Colonic Adenocarcinomas Harboring NTRK Fusion Genes. American Journal of Surgical Pathology, 2020, 44, 162-173.	2.1	56
795	Gut microbiome associated with APC gene mutation in patients with intestinal adenomatous polyps. International Journal of Biological Sciences, 2020, 16, 135-146.	2.6	42
796	Toxigenic gut bacteria, diet and colon carcinogenesis. Journal of the Royal Society of New Zealand, 2020, 50, 418-433.	1.0	3
797	Genomic and transcriptomic profiling of carcinogenesis in patients with familial adenomatous polyposis. Gut, 2020, 69, 1283-1293.	6.1	36
798	Hormonal and reproductive factors and reduction in the risk of colorectal cancer. European Journal of Cancer Prevention, 2020, 29, 229-237.	0.6	3
799	Multifaceted Roles of TRIM Proteins in Colorectal Carcinoma. International Journal of Molecular Sciences, 2020, 21, 7532.	1.8	21
800	High expression of PLAC1 in colon cancer as a predictor of poor prognosis: A study based on TCGA data. Gene, 2020, 763, 145072.	1.0	6
801	Driver mutations of the adenoma-carcinoma sequence govern the intestinal epithelial global translational capacity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25560-25570.	3.3	50
802	Organoid Models of Colorectal Pathology: Do They Hold the Key to Personalized Medicine? A Systematic Review. Diseases of the Colon and Rectum, 2020, 63, 1559-1569.	0.7	5
803	TRIP13 promotes metastasis of colorectal cancer regardless of p53 and microsatellite instability status. Molecular Oncology, 2020, 14, 3007-3029.	2.1	24
804	An update on colorectal cancer microenvironment, epigenetic and immunotherapy. International Immunopharmacology, 2020, 89, 107041.	1.7	45
805	Interplay between APC and ALDH1B1 in a newly developed mouse model of colorectal cancer. Chemico-Biological Interactions, 2020, 331, 109274.	1.7	7
806	RNAi Screening Identifies that TEX10 Promotes the Proliferation of Colorectal Cancer Cells by Increasing NFâ€ <i>κ</i> B Activation. Advanced Science, 2020, 7, 2000593.	5.6	13
807	Exploring and modelling colon cancer inter-tumour heterogeneity: opportunities and challenges. Oncogenesis, 2020, 9, 66.	2.1	52
808	The Interaction of Genomics, Molecular Imaging, and Therapy in Gastrointestinal Tumors. Seminars in Nuclear Medicine, 2020, 50, 471-483.	2.5	2
809	Unpacking the genetic etiology of uveal melanoma. Expert Review of Ophthalmology, 2020, 15, 211-220.	0.3	2
810	CircAGFG1 drives metastasis and stemness in colorectal cancer by modulating YY1/CTNNB1. Cell Death and Disease, 2020, 11, 542.	2.7	56
811	Disruption of EGF Feedback by Intestinal Tumors and Neighboring Cells in Drosophila. Current Biology, 2020, 30, 1537-1546.e3.	1.8	18

#	Article	IF	CITATIONS
812	Mutant Kras as a Biomarker Plays a Favorable Role in FL118-Induced Apoptosis, Reactive Oxygen Species (ROS) Production and Modulation of Survivin, Mcl-1 and XIAP in Human Bladder Cancer. Cancers, 2020, 12, 3413.	1.7	12
813	Microbes in Tumoral In Situ Tissues and in Tumorigenesis. Frontiers in Cellular and Infection Microbiology, 2020, 10, 572570.	1.8	4
814	miR-219a-1 inhibits colon cancer cells proliferation and invasion by targeting <i>MEMO1</i> . Cancer Biology and Therapy, 2020, 21, 1163-1170.	1.5	10
815	microRNA-96 promotes occurrence and progression of colorectal cancer via regulation of the AMPKα2-FTO-m6A/MYC axis. Journal of Experimental and Clinical Cancer Research, 2020, 39, 240.	3.5	88
816	Mathematical model of colorectal cancer initiation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20681-20688.	3.3	47
817	Circular RNA hsa_circRNA_102209 promotes the growth and metastasis of colorectal cancer through miRâ€761â€mediated Ras and Rab interactor 1 signaling. Cancer Medicine, 2020, 9, 6710-6725.	1.3	32
818	LncRNA & amp; Wnt signaling in colorectal cancer. Cancer Cell International, 2020, 20, 326.	1.8	32
819	Protein Arginine Methyltransferase 5 as a Therapeutic Target for KRAS Mutated Colorectal Cancer. Cancers, 2020, 12, 2091.	1.7	9
820	Fecal DNA methylation markers for detecting stages of colorectal cancer and its precursors: a systematic review. Clinical Epigenetics, 2020, 12, 122.	1.8	21
821	MTA3 gene expression as potential gene biomarker for epithelial mesenchymal transition (EMT) study in colorectal cancer (CRC) cases. AIP Conference Proceedings, 2020, , .	0.3	0
822	Playing With Dynamite? A Cautious Assessment of TNT. Journal of Clinical Oncology, 2021, 39, 103-106.	0.8	21
823	Signal transduction pathway mutations in gastrointestinal (GI) cancers: a systematic review and meta-analysis. Scientific Reports, 2020, 10, 18713.	1.6	14
824	Multivalent tumor suppressor adenomatous polyposis coli promotes Axin biomolecular condensate formation and efficient β-catenin degradation. Scientific Reports, 2020, 10, 17425.	1.6	12
825	EP4 receptor as a novel promising therapeutic target in colon cancer. Pathology Research and Practice, 2020, 216, 153247.	1.0	17
826	AKT-dependent NOTCH3 activation drives tumor progression in a model of mesenchymal colorectal cancer. Journal of Experimental Medicine, 2020, 217, .	4.2	48
827	Roles of NRF3 in the Hallmarks of Cancer: Proteasomal Inactivation of Tumor Suppressors. Cancers, 2020, 12, 2681.	1.7	23
828	An update on guanylyl cyclase C in the diagnosis, chemoprevention, and treatment of colorectal cancer. Expert Review of Clinical Pharmacology, 2020, 13, 1125-1137.	1.3	7
829	<p>Dual Targeting of Cell Growth and Phagocytosis by Erianin for Human Colorectal Cancer</p> . Drug Design, Development and Therapy, 2020, Volume 14, 3301-3313.	2.0	19

#	Article	IF	CITATIONS
830	Roles of METTL3 in cancer: mechanisms and therapeutic targeting. Journal of Hematology and Oncology, 2020, 13, 117.	6.9	269
831	Overexpression of family with sequence similarity 134, member B (FAM134B) in colon cancers and its tumor suppressive properties in vitro. Cancer Biology and Therapy, 2020, 21, 954-962.	1.5	6
832	Mast Cells, microRNAs and Others: The Role of Translational Research on Colorectal Cancer in the Forthcoming Era of Precision Medicine. Journal of Clinical Medicine, 2020, 9, 2852.	1.0	39
833	MiR-325 Promotes Oxaliplatin-Induced Cytotoxicity Against Colorectal Cancer Through the HSPA12B/PI3K/AKT/Bcl-2 Pathway. Digestive Diseases and Sciences, 2021, 66, 2651-2660.	1.1	12
834	Malignant transformation and genetic alterations are uncoupled in early colorectal cancer progression. BMC Biology, 2020, 18, 116.	1.7	16
835	Overexpression of Pyruvate Carboxylase Is Correlated With Colorectal Cancer Progression and Supports Growth of Invasive Colon Cancer HT-29 Cell Line. Anticancer Research, 2020, 40, 6285-6293.	0.5	9
836	APC Mutations Are Not Confined to Hotspot Regions in Early-Onset Colorectal Cancer. Cancers, 2020, 12, 3829.	1.7	14
837	A Tissue Engineering Approach to Metastatic Colon Cancer. IScience, 2020, 23, 101719.	1.9	15
838	Tumor DNA as a Cancer Biomarker through the Lens of Colorectal Neoplasia. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 2441-2453.	1.1	5
839	PWD/Ph-Encoded Genetic Variants Modulate the Cellular Wnt/β-Catenin Response to Suppress <i>Apc</i> Min-Triggered Intestinal Tumor Formation. Cancer Research, 2021, 81, 38-49.	0.4	0
840	The Bacterial Microbiota of Gastrointestinal Cancers: Role in Cancer Pathogenesis and Therapeutic Perspectives. Clinical and Experimental Gastroenterology, 2020, Volume 13, 151-185.	1.0	18
841	UHRF2 promotes intestinal tumorigenesis through stabilization of TCF4 mediated Wnt/β atenin signaling. International Journal of Cancer, 2020, 147, 2239-2252.	2.3	20
842	Functional Hypermethylation of ALDH1L1, PLCL2, and PPP2R3A in Colon Cancer. Molecular Biology, 2020, 54, 178-184.	0.4	2
843	Proteomic Characterization of Colorectal Cancer Cells versus Normal-Derived Colon Mucosa Cells: Approaching Identification of Novel Diagnostic Protein Biomarkers in Colorectal Cancer. International Journal of Molecular Sciences, 2020, 21, 3466.	1.8	26
844	Effective intracellular delivery of bevacizumab <i>via</i> PEGylated polymeric nanoparticles targeting the CD44v6 receptor in colon cancer cells. Biomaterials Science, 2020, 8, 3720-3729.	2.6	24
845	Overexpression of miR-21-5p in colorectal cancer cells promotes self-assembly of E-cadherin-dependent multicellular tumor spheroids. Tissue and Cell, 2020, 65, 101365.	1.0	6
846	Targeting Protein Synthesis in Colorectal Cancer. Cancers, 2020, 12, 1298.	1.7	32
847	Drastic Reduction of Turnaround Time After Implementation of a Fully Automated Assay for RAS-BRAF Mutations in Colorectal Cancer: A Pilot Prospective Study in Real-life Conditions. Pathology and Oncology Research, 2020, 26, 2469-2473.	0.9	2

		CITATION RE	PORT	
#	Article		IF	Citations
848	PAWI-2: A novel inhibitor for eradication of cancer. Medicinal Chemistry Research, 2020, 29, 1	1147-1159.	1.1	1
849	Evaluation of Colorectal Cancer Risk and Prevalence by Stool DNA Integrity Detection. Journal Visualized Experiments, 2020, , .	of	0.2	3
850	Treatment options in BRAF-mutant metastatic colorectal cancer. Anti-Cancer Drugs, 2020, 31	., 545-557.	0.7	7
851	Immunotherapy, Inflammation and Colorectal Cancer. Cells, 2020, 9, 618.		1.8	167
852	Cost-effectiveness Evaluation of Targeted Surgical and Endoscopic Therapies for Early Colored Adenocarcinoma Based on Biomarker Profiles. JAMA Network Open, 2020, 3, e1919963.	stal	2.8	4
853	Feedback analysis identifies a combination target for overcoming adaptive resistance to targe cancer therapy. Oncogene, 2020, 39, 3803-3820.	eted	2.6	14
854	α-Ketoglutarate attenuates Wnt signaling and drives differentiation in colorectal cancer. Nat Cancer, 2020, 1, 345-358.	ure	5.7	85
855	Metaproteomics characterizes human gut microbiome function in colorectal cancer. Npj Biofi Microbiomes, 2020, 6, 14.	lms and	2.9	79
856	The influence of blood on the human gut microbiome. BMC Microbiology, 2020, 20, 44.		1.3	25
857	Development of novel microRNA-based therapeutics platform for colorectal cancer. , 2020, , 8	33-92.		0
858	The genetic factors associated with Wnt signaling pathway in colorectal cancer. Life Sciences 256, 118006.	, 2020,	2.0	21
859	Silencing the intestinal GUCY2C tumor suppressor axis requires <i>APC</i> loss of heterozyg Cancer Biology and Therapy, 2020, 21, 799-805.	osity.	1.5	13
860	The expression of the P2Y6 receptor is regulated at the transcriptional level by p53. Biochemi Biophysical Research Communications, 2020, 524, 798-802.	cal and	1.0	8
861	Enterotoxigenic <i>Bacteroides fragilis</i> infection exacerbates tumorigenesis in AOM/DSS model. International Journal of Medical Sciences, 2020, 17, 145-152.	mouse	1.1	35
862	The Clinical Management of Clonal Hematopoiesis. Hematology/Oncology Clinics of North An 2020, 34, 357-367.	nerica,	0.9	42
863	Conformation-specific inhibitors of activated Ras GTPases reveal limited Ras dependency of patient-derived cancer organoids. Journal of Biological Chemistry, 2020, 295, 4526-4540.		1.6	19
864	Genetically Engineered Pigs to Study Cancer. International Journal of Molecular Sciences, 202 488.	0, 21,	1.8	30
865	FGF14 Functions as a Tumor Suppressor through Inhibiting PI3K/AKT/mTOR Pathway in Color Cancer. Journal of Cancer, 2020, 11, 819-825.	ectal	1.2	13

#	Article	IF	CITATIONS
866	Biodiversity and richness shifts of mucosa-associated gut microbiota with progression of colorectal cancer. Research in Microbiology, 2020, 171, 107-114.	1.0	18
867	Tissue of origin dictates GOT1 dependence and confers synthetic lethality to radiotherapy. Cancer & Metabolism, 2020, 8, 1.	2.4	34
868	Mutation Analysis of Colorectal and Gastric Carcinomas Originating from Adenomas: Insights into Genomic Evolution Associated with Malignant Progression. Cancers, 2020, 12, 325.	1.7	5
869	Exosomal KRAS mutation promotes the formation of tumor-associated neutrophil extracellular traps and causes deterioration of colorectal cancer by inducing IL-8 expression. Cell Communication and Signaling, 2020, 18, 52.	2.7	62
870	Nanobody-based therapeutics against colorectal cancer: Precision therapies based on the personal mutanome profile and tumor neoantigens. Pharmacological Research, 2020, 156, 104790.	3.1	25
871	Fecal Metabolomic Signatures in Colorectal Adenoma Patients Are Associated with Gut Microbiota and Early Events of Colorectal Cancer Pathogenesis. MBio, 2020, 11, .	1.8	101
872	Prevalence and characteristics of <i>PIK3CA</i> mutation in mismatch repair-deficient colorectal cancer. Journal of Cancer, 2020, 11, 3827-3833.	1.2	12
873	Altered ARID1A expression in colorectal cancer. BMC Cancer, 2020, 20, 350.	1.1	14
874	Tunneling Nanotubes and Tumor Microtubes in Cancer. Cancers, 2020, 12, 857.	1.7	76
875	The Role of VEGFA, COX2, HUR and CUGBP2 in Predicting the Response to Neoadjuvant Therapy in Rectal Cancer Patients. Medicina (Lithuania), 2020, 56, 192.	0.8	4
876	Right and left-sided colon cancers - specificity of molecular mechanisms in tumorigenesis and progression. BMC Cancer, 2020, 20, 317.	1.1	51
877	Integrated bioinformatics identifies the dysregulation induced by aberrant gene methylation in colorectal carcinoma. Genes and Diseases, 2021, 8, 521-530.	1.5	6
878	Naproxen chemoprevention promotes immune activation in Lynch syndrome colorectal mucosa. Gut, 2021, 70, 555-566.	6.1	37
879	The Fragile X Mental Retardation Protein Regulates RIPK1 and Colorectal Cancer Resistance to Necroptosis. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 639-658.	2.3	21
880	A Nucleotide Analog Prevents Colitis-Associated Cancer via Beta-Catenin Independently of Inflammation and Autophagy. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 33-53.	2.3	12
881	The "unnatural―history of colorectal cancer in Lynch syndrome: Lessons from colonoscopy surveillance. International Journal of Cancer, 2021, 148, 800-811.	2.3	55
882	Identifying Novel Susceptibility Genes for Colorectal Cancer Risk From a Transcriptome-Wide Association Study of 125,478 Subjects. Gastroenterology, 2021, 160, 1164-1178.e6.	0.6	36
883	IOX1 Suppresses Wnt Target Gene Transcription and Colorectal Cancer Tumorigenesis through Inhibition of KDM3 Histone Demethylases. Molecular Cancer Therapeutics, 2021, 20, 191-202.	1.9	13

#	Article	IF	CITATIONS
884	Wild-type <i>APC</i> Is Associated with Poor Survival in Metastatic Microsatellite Stable Colorectal Cancer. Oncologist, 2021, 26, 208-214.	1.9	19
885	Patient-derived xenograft (PDX) models of colorectal carcinoma (CRC) as a platform for chemosensitivity and biomarker analysis in personalized medicine. Neoplasia, 2021, 23, 21-35.	2.3	32
886	Synthetic lethality between MyD88 loss and mutations in Wnt/β-catenin pathway in intestinal tumor epithelial cells. Oncogene, 2021, 40, 408-420.	2.6	11
887	<i>Boswellia sacra</i> essential oil manages colon cancer stem cells proliferation and apoptosis: a new perspective for cure. Journal of Essential Oil Research, 2021, 33, 53-62.	1.3	11
888	Biomarker alterations associated with distinct patterns of metastatic spread in colorectal cancer. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2021, 478, 695-705.	1.4	4
889	Transcription factors in colorectal cancer: molecular mechanism and therapeutic implications. Oncogene, 2021, 40, 1555-1569.	2.6	34
890	Association of Consensus Molecular Subtypes and Molecular Markers With Clinical Outcomes in Patients With Metastatic Colorectal Cancer: Biomarker Analyses From LUME-Colon 1. Clinical Colorectal Cancer, 2021, 20, 84-95.e8.	1.0	15
891	Transmembrane and Immunoglobulin Domain Containing 1, a Putative Tumor Suppressor, Induces G2/M Cell Cycle Checkpoint Arrest in Colon Cancer Cells. American Journal of Pathology, 2021, 191, 157-167.	1.9	13
892	Association between histone deacetylase activity and vitamin Dâ€dependent gene expressions in relation to sulforaphane in human colorectal cancer cells. Journal of the Science of Food and Agriculture, 2021, 101, 1833-1843.	1.7	6
893	Emerging trends in colorectal cancer: Dysregulated signaling pathways (Review). International Journal of Molecular Medicine, 2021, 47, .	1.8	50
894	Histone methyltransferase WHSC1 inhibits colorectal cancer cell apoptosis via targeting anti-apoptotic BCL2. Cell Death Discovery, 2021, 7, 19.	2.0	13
895	Eubacterium rectale contributes to colorectal cancer initiation via promoting colitis. Gut Pathogens, 2021, 13, 2.	1.6	53
897	PRMT5 regulates colorectal cancer cell growth and EMT via EGFR/Akt/GSK3β signaling cascades. Aging, 2021, 13, 4468-4481.	1.4	24
898	"Driver-passenger―bacteria and their metabolites in the pathogenesis of colorectal cancer. Gut Microbes, 2021, 13, 1941710.	4.3	28
899	An Insight into the Driver Mutations and Molecular Mechanisms Underlying Mucinous Adenocarcinoma of the Rectum. Diseases of the Colon and Rectum, 2021, Publish Ahead of Print, 677-688.	0.7	1
900	Multi-omics analysis to identify susceptibility genes for colorectal cancer. Human Molecular Genetics, 2021, 30, 321-330.	1.4	13
901	Concomitant Pathogenic Mutations and Fusions of Driver Oncogenes in Tumors. Frontiers in Oncology, 2020, 10, 544579.	1.3	2
903	Review on Colonrectal Cancer. E3S Web of Conferences, 2021, 271, 03001.	0.2	0

#	Article	IF	CITATIONS
904	Development of structure-based pharmacophore to target the β-catenin-TCF protein–protein interaction. Medicinal Chemistry Research, 2021, 30, 429-439.	1.1	3
905	A universal molecular prognostic score for gastrointestinal tumors. Npj Genomic Medicine, 2021, 6, 6.	1.7	6
906	Immunohistochemistry features and molecular pathology of appendiceal neoplasms. Critical Reviews in Clinical Laboratory Sciences, 2021, 58, 369-384.	2.7	5
907	Advances in the Relationship Between Regulator of Ribosome Synthesis 1 (RRS1) and Diseases. Frontiers in Cell and Developmental Biology, 2021, 9, 620925.	1.8	11
908	Colorectal Cancer-Associated Smad4 R361 Hotspot Mutations Boost Wnt/β-Catenin Signaling through Enhanced Smad4–LEF1 Binding. Molecular Cancer Research, 2021, 19, 823-833.	1.5	4
909	Exosomes: A new frontier under the spotlight for diagnosis and treatment of gastrointestinal diseases. World Journal of Meta-analysis, 2021, 9, 12-28.	0.1	0
910	No evidence of EMAST in whole genome sequencing data from 248 colorectal cancers. Genes Chromosomes and Cancer, 2021, 60, 463-473.	1.5	5
911	KHDRBS3 promotes multiâ€drug resistance and anchorageâ€independent growth in colorectal cancer. Cancer Science, 2021, 112, 1196-1208.	1.7	17
912	AKT3 Expression in Mesenchymal Colorectal Cancer Cells Drives Growth and Is Associated with Epithelial-Mesenchymal Transition. Cancers, 2021, 13, 801.	1.7	16
913	Fucoxanthin Prevents Colorectal Cancer Development in Dextran Sodium Sulfate-treated ApcMin/+ Mice. Anticancer Research, 2021, 41, 1299-1305.	0.5	9
914	Mucin 4 mutation is associated with tumor mutation burden and promotes antitumor immunity in colon cancer patients. Aging, 2021, 13, 9043-9055.	1.4	18
915	Resistance to Cell Death in Mucinous Colorectal Cancer—A Review. Cancers, 2021, 13, 1389.	1.7	12
916	circ-Keratin 6c Promotes Malignant Progression and Immune Evasion of Colorectal Cancer through microRNA-485-3p/Programmed Cell Death Receptor Ligand 1 Axis. Journal of Pharmacology and Experimental Therapeutics, 2021, 377, 358-367.	1.3	16
917	The Transcriptomic Landscape of Mismatch Repair-Deficient Intestinal Stem Cells. Cancer Research, 2021, 81, 2760-2773.	0.4	7
918	Olaparib-mediated enhancement of 5-fluorouracil cytotoxicity in mismatch repair deficient colorectal cancer cells. BMC Cancer, 2021, 21, 448.	1.1	8
919	The inflammatory pathogenesis of colorectal cancer. Nature Reviews Immunology, 2021, 21, 653-667.	10.6	270
920	Rhein Suppresses Colorectal Cancer Cell Growth by Inhibiting the mTOR Pathway In Vitro and In Vivo. Cancers, 2021, 13, 2176.	1.7	12
921	The dietary carcinogen <scp>PhIP</scp> activates p53â€dependent <scp>DNA</scp> damage response in the colon of <scp>CYP1A</scp> â€humanized mice. BioFactors, 2021, 47, 612-626.	2.6	6

#	Article	IF	CITATIONS
922	Small-Molecule Inhibitors Targeting the Canonical WNT Signaling Pathway for the Treatment of Cancer. Journal of Medicinal Chemistry, 2021, 64, 4257-4288.	2.9	23
924	Fucoxanthin and Colorectal Cancer Prevention. Cancers, 2021, 13, 2379.	1.7	26
925	Molecular Pathways Associated with Kallikrein 6 Overexpression in Colorectal Cancer. Genes, 2021, 12, 749.	1.0	3
926	Restoring two tumor suppressor pathways with one PAWI. Cell Chemical Biology, 2021, 28, 590-593.	2.5	0
927	A Comprehensive Overview of Colon Cancer- A Grim Reaper of the 21st Century. Current Medicinal Chemistry, 2021, 28, 2657-2696.	1.2	19
928	Captopril, a Renin-Angiotensin System Inhibitor, Attenuates Features of Tumor Invasion and Down-Regulates C-Myc Expression in a Mouse Model of Colorectal Cancer Liver Metastasis. Cancers, 2021, 13, 2734.	1.7	12
929	Comprehensive Analysis of Differentially Expressed Long Noncoding RNA-mRNA in the Adenoma-Carcinoma Sequence of DNA Mismatch Repair Proficient Colon Cancer. Journal of Oncology, 2021, 2021, 1-15.	0.6	0
930	Exploration of the Key Proteins in the Normal-Adenoma-Carcinoma Sequence of Colorectal Cancer Evolution Using In-Depth Quantitative Proteomics. Journal of Oncology, 2021, 2021, 1-19.	0.6	2
931	Metabolic Reprogramming of Colorectal Cancer Cells and the Microenvironment: Implication for Therapy. International Journal of Molecular Sciences, 2021, 22, 6262.	1.8	53
932	A systematic review and meta-analysis of the DNA methylation in colorectal cancer among Iranian population. Gene Reports, 2021, 23, 101080.	0.4	0
934	Tracing oncogene-driven remodelling of the intestinal stem cell niche. Nature, 2021, 594, 442-447.	13.7	56
935	Selective cytotoxicity of cyclometalated gold(III) complexes on Caco-2 cells is mediated by G2/M cell cycle arrest. Metallomics, 2021, 13, .	1.0	6
936	Beyond RAS and BRAF: HER2, a New Actionable Oncotarget in Advanced Colorectal Cancer. International Journal of Molecular Sciences, 2021, 22, 6813.	1.8	20
937	Beyond Microsatellite Instability: Evolving Strategies Integrating Immunotherapy for Microsatellite Stable Colorectal Cancer. Current Treatment Options in Oncology, 2021, 22, 69.	1.3	16
938	Proteomics study of colorectal cancer and adenomatous polyps identifies TFR1, SAHH, and HV307 as potential biomarkers for screening. Journal of Proteomics, 2021, 243, 104246.	1.2	7
939	Colorectal Cancer Study of Austria (CORSA): A Population-Based Multicenter Study. Biology, 2021, 10, 722.	1.3	6
940	The diverse molecular profiles of lynch syndrome-associated colorectal cancers are (highly) dependent on underlying germline mismatch repair mutations. Critical Reviews in Oncology/Hematology, 2021, 163, 103338.	2.0	15
941	Cancer Genomic Profiling in Colorectal Cancer: Current Challenges in Subtyping Colorectal Cancers Based on Somatic and Germline Variants. Journal of the Anus, Rectum and Colon, 2021, 5, 213-228.	0.4	2

#	Article	IF	CITATIONS
942	The Pivotal Player: Components of NF-κB Pathway as Promising Biomarkers in Colorectal Cancer. International Journal of Molecular Sciences, 2021, 22, 7429.	1.8	16
943	SCISSORâ,"¢: a single-cell inferred site-specific omics resource for tumor microenvironment association study. NAR Cancer, 2021, 3, zcab037.	1.6	1
944	Identification of response signatures for tankyrase inhibitor treatment in tumor cell lines. IScience, 2021, 24, 102807.	1.9	8
945	Microbiota-Associated Metabolites and Related Immunoregulation in Colorectal Cancer. Cancers, 2021, 13, 4054.	1.7	13
946	Brg1 is required to maintain colorectal cancer stem cells. Journal of Pathology, 2021, 255, 257-269.	2.1	7
947	The Multifaceted Role of TGF-Î ² in Gastrointestinal Tumors. Cancers, 2021, 13, 3960.	1.7	18
948	Advances on colorectal cancer 3D models: The needed translational technology for nanomedicine screening. Advanced Drug Delivery Reviews, 2021, 175, 113824.	6.6	27
949	Regulation Network of Colorectal-Cancer-Specific Enhancers in the Progression of Colorectal Cancer. International Journal of Molecular Sciences, 2021, 22, 8337.	1.8	4
950	The multidimensional role of the Wnt/β atenin signaling pathway in human malignancies. Journal of Cellular Physiology, 2022, 237, 199-238.	2.0	53
951	Mitogenâ€activated protein kinase activity drives cell trajectories in colorectal cancer. EMBO Molecular Medicine, 2021, 13, e14123.	3.3	47
952	MiRNAâ€Wnt signaling regulatory network in colorectal cancer. Journal of Biochemical and Molecular Toxicology, 2021, 35, e22883.	1.4	13
953	Investigation of the Role of Neurokinin-1 Receptor Inhibition Using Aprepitant in the Apoptotic Cell Death through PI3K/Akt/NF-κB Signal Transduction Pathways in Colon Cancer Cells. BioMed Research International, 2021, 2021, 1-10.	0.9	24
954	Gut Microbiota Profiles in Early- and Late-Onset Colorectal Cancer: A Potential Diagnostic Biomarker in the Future. Digestion, 2021, 102, 823-832.	1.2	13
955	Membrane Bound Peroxiredoxin-1 Serves as a Biomarker for <i>In Vivo</i> Detection of Sessile Serrated Adenomas. Antioxidants and Redox Signaling, 2022, 36, 39-56.	2.5	4
956	Microbiota of Breast Tissue and Its Potential Association with Regional Recurrence of Breast Cancer in Korean Women. Journal of Microbiology and Biotechnology, 2021, 31, 1643-1655.	0.9	8
957	Germline mutations in a DNA repair pathway are associated with familial colorectal cancer. JCI Insight, 2021, 6, .	2.3	6
958	NCOR1 Sustains Colorectal Cancer Cell Growth and Protects against Cellular Senescence. Cancers, 2021, 13, 4414.	1.7	5
959	Deregulation of signaling pathways controlling cell survival and proliferation in cancer cells alters induction of cytochrome P450 family 1 enzymes. Toxicology, 2021, 461, 152897.	2.0	5

#	Article	IF	Citations
960	Investigation of the relationship between GSTM1 gene variations and serum trace elements, plasma malondialdehyde levels in patients with colorectal cancer. Molecular Biology Reports, 2021, 48, 6911-6921.	1.0	8
961	The elderly harbor greater proportions of advanced histology in subcentimeter adenomas. European Journal of Gastroenterology and Hepatology, 2021, Publish Ahead of Print, .	0.8	1
962	Transposons: Unexpected players in cancer. Gene, 2022, 808, 145975.	1.0	15
963	Restoration of miR-124 serves as a promising therapeutic approach in CRC by affecting CDK6 which is itself a prognostic and diagnostic factor. Gene Reports, 2021, 24, 101274.	0.4	1
964	Fatty acid metabolism and colon cancer protection by dietary methyl donor restriction. Metabolomics, 2021, 17, 80.	1.4	8
965	Patient-Derived Explants of Colorectal Cancer: Histopathological and Molecular Analysis of Long-Term Cultures. Cancers, 2021, 13, 4695.	1.7	6
966	Tissue-specific reduction in MLH1 expression induces microsatellite instability in intestine of Mlh1 mice. DNA Repair, 2021, 106, 103178.	1.3	7
967	Protein domain-based approaches for the identification and prioritization of therapeutically actionable cancer variants. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188614.	3.3	2
968	Translation initiation and its relevance in colorectal cancer. FEBS Journal, 2021, 288, 6635-6651.	2.2	10
969	PRMT5 functionally associates with EZH2 to promote colorectal cancer progression through epigenetically repressing CDKN2B expression. Theranostics, 2021, 11, 3742-3759.	4.6	30
970	Gutting it Out: Developing Effective Immunotherapies for Patients With Colorectal Cancer. Journal of Immunotherapy, 2021, 44, 49-62.	1.2	7
971	Colorectal Cancer and Genetic Polymorphism in Key Regulatory Low Penetrance Genes. , 2021, , 119-164.		2
972	Implications of Peak Selection in the Interpretation of Unsupervised Mass Spectrometry Imaging Data Analyses. Analytical Chemistry, 2021, 93, 2309-2316.	3.2	18
973	Mechanisms Involved in Carcinogenesis. Food Bioactive Ingredients, 2021, , 11-36.	0.3	0
974	Biomarkers as Putative Therapeutic Targets in Colorectal Cancer. , 2021, , 123-177.		0
975	Are developmentally missing teeth a predictive risk marker of malignant diseases in non-syndromic individuals? A systematic review. Journal of Orthodontics, 2021, 48, 221-230.	0.4	4
976	Gut Microbial Signatures in Sporadic and Hereditary Colorectal Cancer. International Journal of Molecular Sciences, 2021, 22, 1312.	1.8	14
977	Molecular Mechanisms of Colorectal Carcinogenesis. , 2013, , 25-65.		7

	Ci	tation Report	
#	Article	IF	CITATIONS
978	Cancer Epigenetics: An Introduction. Methods in Molecular Biology, 2015, 1238, 3-25.	0.4	195
979	Overcoming Drug Resistance in Colorectal Cancer by MicroRNAs. , 2014, , 139-155.		3
981	Branching Process Models of Cancer. , 2015, , 1-63.		18
982	Polyps and Tumors of the Gastrointestinal Tract in Childhood. , 2014, , 317-370.		4
983	Molecular Parameters for Prognostic and Predictive Assessment in Colorectal Cancer. Updates in Surgery Series, 2013, , 41-62.	0.0	4
985	Targeting tumor multicellular aggregation through IGPR-1 inhibits colon cancer growth and improves chemotherapy. Oncogenesis, 2017, 6, e378-e378.	2.1	26
986	IPO11 mediates βcatenin nuclear import in a subset of colorectal cancers. Journal of Cell Biology, 202 219, .	20, 2.3	27
987	Intestinal microbiota and colorectal cancer: changes in the intestinal microenvironment and their relation to the disease. Journal of Medical Microbiology, 2019, 68, 1391-1407.	0.7	30
996	New addiction to the NRF2â€related factor NRF3 in cancer cells: Ubiquitinâ€independent proteolysis through the 20S proteasome. Cancer Science, 2020, 111, 6-14.	1.7	28
997	MYC and Chromatin. Open Access Journal of Science and Technology, 2015, 3, .	0.2	4
998	Nardilysin controls intestinal tumorigenesis through HDAC1/p53–dependent transcriptional regulation. JCI Insight, 2018, 3, .	2.3	10
999	Intestinal carcinogenesis: IKK can go all the way. Journal of Clinical Investigation, 2011, 121, 2551-25.	53. 3.9	7
1000	Membrane protein CNNM4–dependent Mg2+ efflux suppresses tumor progression. Journal of Clinic Investigation, 2014, 124, 5398-5410.	cal 3.9	93
1001	Hypoxia-inducible factors: a central link between inflammation and cancer. Journal of Clinical Investigation, 2016, 126, 3689-3698.	3.9	144
1002	Histone methyltransferase SETD2 modulates alternative splicing to inhibit intestinal tumorigenesis. Journal of Clinical Investigation, 2017, 127, 3375-3391.	3.9	128
1003	Adiponectin Gene Polymorphisms are Associated with Increased Risk of Colorectal Cancer. Medical Science Monitor, 2015, 21, 2595-2606.	0.5	17
1004	Integrative Gene Expression Profiling Analysis to Investigate Potential Prognostic Biomarkers for Colorectal Cancer. Medical Science Monitor, 2020, 26, e918906.	0.5	20
1005	Clinicopathological Analysis and Prognostic Assessment of Transcobalamin I (TCN1) in Patients with Colorectal Tumors. Medical Science Monitor, 2020, 26, e923828.	0.5	8

#	Article	IF	CITATIONS
1006	Long-Range Signaling in MutS and MSH Homologs via Switching of Dynamic Communication Pathways. PLoS Computational Biology, 2016, 12, e1005159.	1.5	7
1007	Colorectal Cancers from Distinct Ancestral Populations Show Variations in BRAF Mutation Frequency. PLoS ONE, 2013, 8, e74950.	1.1	34
1008	Cancer-Predicting Gene Expression Changes in Colonic Mucosa of Western Diet Fed Mlh1+/- Mice. PLoS ONE, 2013, 8, e76865.	1.1	11
1009	Deciphering Genomic Alterations in Colorectal Cancer through Transcriptional Subtype-Based Network Analysis. PLoS ONE, 2013, 8, e79282.	1.1	15
1010	Plasma YKL-40 in Patients with Metastatic Colorectal Cancer Treated with First Line Oxaliplatin-Based Regimen with or without Cetuximab: RESULTS from the NORDIC VII Study. PLoS ONE, 2014, 9, e87746.	1.1	18
1011	Prostate Cancer Induced by Loss of Apc Is Restrained by TGFÎ ² Signaling. PLoS ONE, 2014, 9, e92800.	1.1	13
1012	Altered Interactions between the Gut Microbiome and Colonic Mucosa Precede Polyposis in APCMin/+ Mice. PLoS ONE, 2015, 10, e0127985.	1.1	48
1013	cir-ITCH Plays an Inhibitory Role in Colorectal Cancer by Regulating the Wnt/β-Catenin Pathway. PLoS ONE, 2015, 10, e0131225.	1.1	251
1014	Lipidoid Nanoparticles for siRNA Delivery to the Intestinal Epithelium: In Vitro Investigations in a Caco-2 Model. PLoS ONE, 2015, 10, e0133154.	1.1	36
1015	Precritical State Transition Dynamics in the Attractor Landscape of a Molecular Interaction Network Underlying Colorectal Tumorigenesis. PLoS ONE, 2015, 10, e0140172.	1.1	12
1016	Multi-Scale Genomic, Transcriptomic and Proteomic Analysis of Colorectal Cancer Cell Lines to Identify Novel Biomarkers. PLoS ONE, 2015, 10, e0144708.	1.1	40
1017	Application of Circulating Tumor DNA as a Non-Invasive Tool for Monitoring the Progression of Colorectal Cancer. PLoS ONE, 2016, 11, e0159708.	1.1	38
1018	Identification of Aging-Associated Gene Expression Signatures That Precede Intestinal Tumorigenesis. PLoS ONE, 2016, 11, e0162300.	1.1	7
1019	Active BRAF-V600E is the key player in generation of a sessile serrated polyp-specific DNA methylation profile. PLoS ONE, 2018, 13, e0192499.	1.1	18
1020	Novel putative drivers revealed by targeted exome sequencing of advanced solid tumors. PLoS ONE, 2018, 13, e0194790.	1.1	3
1021	Smoking and Colorectal Cancer Risk, Overall and by Molecular Subtypes: A Meta-Analysis. American Journal of Gastroenterology, 2020, 115, 1940-1949.	0.2	95
1022	Intraductal papillary mucinous neoplasm (IPMN) of the pancreas: clinicopathological features and long-term outcomes following a pancreatectomy. Revista Espanola De Enfermedades Digestivas, 2018, 110, 768-774.	0.1	5
1023	MUC4 is negatively regulated through the Wnt/ \hat{l}^2 -catenin pathway via the Notch effector Hath1 in colorectal cancer. Genes and Cancer, 2016, 7, 154-168.	0.6	18

<u> </u>		<u> </u>	
(17	ΓΔΤΙ	Repo	DL.
\sim			IX I

#	Article	IF	CITATIONS
1024	Genetic pathways, prevention, and treatment of sporadic colorectal cancer. Oncoscience, 2014, 1, 400-406.	0.9	82
1025	miR-449a inhibits colorectal cancer progression by targeting SATB2. Oncotarget, 2017, 8, 100975-100988.	0.8	21
1026	Wnt signalling is a bi-directional vulnerability of cancer cells. Oncotarget, 2016, 7, 60310-60331.	0.8	31
1027	Genomic profiling of stage II and III colon cancers reveals <i>APC</i> mutations to be associated with survival in stage III colon cancer patients. Oncotarget, 2016, 7, 73876-73887.	0.8	9
1028	Gli1 promotes colorectal cancer metastasis in a Foxm1-dependent manner by activating EMT and PI3K-AKT signaling. Oncotarget, 2016, 7, 86134-86147.	0.8	29
1029	T lymphocyte SHP2-deficiency triggers anti-tumor immunity to inhibit colitis-associated cancer in mice. Oncotarget, 2017, 8, 7586-7597.	0.8	23
1030	Whole-exome sequencing identified mutational profiles of high-grade colon adenomas. Oncotarget, 2017, 8, 6579-6588.	0.8	27
1031	Long non-coding RNA growth arrest specific transcript 5 acts as a tumour suppressor in colorectal cancer by inhibiting interleukin-10 and vascular endothelial growth factor expression. Oncotarget, 2017, 8, 13690-13702.	0.8	56
1032	Inhibition and deficiency of the immunoproteasome subunit LMP7 suppress the development and progression of colorectal carcinoma in mice. Oncotarget, 2017, 8, 50873-50888.	0.8	61
1033	PPA1 regulates tumor malignant potential and clinical outcome of colon adenocarcinoma through JNK pathways. Oncotarget, 2017, 8, 58611-58624.	0.8	12
1034	NSC30049 inhibits Chk1 pathway in 5-FU-resistant CRC bulk and stem cell populations. Oncotarget, 2017, 8, 57246-57264.	0.8	13
1035	Tumor-derived exosomes in colorectal cancer progression and their clinical applications. Oncotarget, 2017, 8, 100781-100790.	0.8	48
1036	RRS1 silencing suppresses colorectal cancer cell proliferation and tumorigenesis by inhibiting G2/M progression and angiogenesis. Oncotarget, 2017, 8, 82968-82980.	0.8	32
1037	Phospholipase Cl ³ 1 links inflammation and tumorigenesis in colitis-associated cancer. Oncotarget, 2018, 9, 5752-5763.	0.8	5
1038	Mutational analysis of genes coding for cell surface proteins in colorectal cancer cell lines reveal novel altered pathways, druggable mutations and mutated epitopes for targeted therapy. Oncotarget, 2014, 5, 9199-9213.	0.8	31
1039	Identification of copy number alterations in colon cancer from analysis of amplicon-based next generation sequencing data. Oncotarget, 2018, 9, 20409-20425.	0.8	11
1040	Paradoxical role of CBX8 in proliferation and metastasis of colorectal cancer. Oncotarget, 2014, 5, 10778-10790.	0.8	48
1041	Identification of different mutational profiles in cancers arising in specific colon segments by next generation sequencing. Oncotarget, 2018, 9, 23960-23974.	0.8	13

#	Article	IF	CITATIONS
1042	Functional characterization of CNOT3 variants identified in familial adenomatous polyposis adenomas. Oncotarget, 2019, 10, 3939-3951.	0.8	5
1043	Capturing the Molecular and Biological Diversity of High-Grade Astrocytoma in Genetically Engineered Mouse Models. Oncotarget, 2012, 3, 67-77.	0.8	16
1044	DDX3 as a strongest prognosis marker and its downregulation promotes metastasis in colorectal cancer. Oncotarget, 2015, 6, 18602-18612.	0.8	47
1045	Targeting protein arginine methyltransferase 5 inhibits colorectal cancer growth by decreasing arginine methylation of elF4E and FGFR3. Oncotarget, 2015, 6, 22799-22811.	0.8	83
1046	LINE-1 hypomethylation in normal colon mucosa is associated with poor survival in Chinese patients with sporadic colon cancer. Oncotarget, 2015, 6, 23820-23836.	0.8	7
1047	PRIMA-1met (APR-246) inhibits growth of colorectal cancer cells with different p53 status through distinct mechanisms. Oncotarget, 2015, 6, 36689-36699.	0.8	39
1048	Molecular pathological epidemiology of colorectal cancer in Chinese patients with <i>KRAS</i> and <i>BRAF</i> mutations. Oncotarget, 2015, 6, 39607-39613.	0.8	34
1049	Cdk3-promoted epithelial-mesenchymal transition through activating AP-1 is involved in colorectal cancer metastasis. Oncotarget, 2016, 7, 7012-7028.	0.8	26
1050	Clinicopathologic distribution of <i>KRAS</i> and <i>BRAF</i> mutations in a Chinese population with colorectal cancer precursor lesions. Oncotarget, 2016, 7, 17265-17274.	0.8	16
1051	Novel role of STRAP in progression and metastasis of colorectal cancer through Wnt/β-catenin signaling. Oncotarget, 2016, 7, 16023-16037.	0.8	25
1052	Chemopreventive activity of GEN-27, a genistein derivative, in colitis-associated cancer is mediated by p65-CDX2-β-catenin axis. Oncotarget, 2016, 7, 17870-17884.	0.8	24
1053	Photodynamic ability of silver nanoparticles in inducing cytotoxic effects in breast and lung cancer cell lines. International Journal of Nanomedicine, 0, , 3771.	3.3	11
1054	Aspirin: A Potential Therapeutic Approach in Pancreatic Cancer. Current Medicinal Chemistry, 2013, 20, 4153-4162.	1.2	9
1055	Role of Cellular Biomolecules in Screening, Diagnosis and Treatment of Colorectal Cancer. Current Drug Metabolism, 2019, 20, 880-888.	0.7	5
1056	K-ras Mutations as the Earliest Driving Force in a Subset of Colorectal Carcinomas. In Vivo, 2017, 31, 527-542.	0.6	18
1057	Rectal cancer and the pathologist. Minerva Chirurgica, 2018, 73, 534-547.	0.8	5
1058	A C/EBPα–Wnt connection in gut homeostasis and carcinogenesis. Life Science Alliance, 2019, 2, e201800173.	1.3	4
1059	Evaluation of colorectal cancer subtypes and cell lines using deep learning. Life Science Alliance, 2019, 2, e201900517.	1.3	65

#	Article	IF	CITATIONS
1060	The Role of Probiotics in Cancer Prevention. Cancers, 2021, 13, 20.	1.7	97
1061	Clinical applications of next-generation sequencing in colorectal cancers. World Journal of Gastroenterology, 2013, 19, 6784.	1.4	29
1062	Emerging role of the β-catenin-PPARγ axis in the pathogenesis of colorectal cancer. World Journal of Gastroenterology, 2014, 20, 7137.	1.4	43
1063	Colorectal cancer with liver metastases: Neoadjuvant chemotherapy, surgical resection first or palliation alone?. World Journal of Gastroenterology, 2014, 20, 12391.	1.4	48
1064	Dissecting characteristics and dynamics of differentially expressed proteins during multistage carcinogenesis of human colorectal cancer. World Journal of Gastroenterology, 2016, 22, 4515.	1.4	32
1065	MicroRNA biomarkers predicting risk, initiation and progression of colorectal cancer. World Journal of Gastroenterology, 2016, 22, 7389.	1.4	20
1066	Therapeutic aspects of c-MYC signaling in inflammatory and cancerous colonic diseases. World Journal of Gastroenterology, 2016, 22, 7938.	1.4	67
1067	Guanylyl cyclase C signaling axis and colon cancer prevention. World Journal of Gastroenterology, 2016, 22, 8070.	1.4	36
1068	Contribution of galectin-1, a glycan-binding protein, to gastrointestinal tumor progression. World Journal of Gastroenterology, 2017, 23, 5266.	1.4	20
1069	Identification of differentially expressed genes regulated by methylation in colon cancer based on bioinformatics analysis. World Journal of Gastroenterology, 2019, 25, 3392-3407.	1.4	64
1070	Reduced microRNA 375 in colorectal cancer upregulates metadherin-mediated signaling. World Journal of Gastroenterology, 2019, 25, 6495-6507.	1.4	11
1071	<i>Lactobacillus bulgaricus </i> inhibits colitis-associated cancer via a negative regulation of intestinal inflammation in azoxymethane/dextran sodium sulfate model. World Journal of Gastroenterology, 2020, 26, 6782-6794.	1.4	43
1072	Long non‑coding RNA LINC00707 acts as a competing endogenous RNA to enhance cell proliferation in colorectal cancer. Experimental and Therapeutic Medicine, 2020, 19, 1439-1447.	0.8	7
1073	Downregulation of microRNA‑126 is inversely correlated with insulin receptor substrate‑1 protein expression in colorectal cancer and is associated with advanced stages of disease. Oncology Letters, 2020, 20, 2411-2419.	0.8	4
1074	Alteration of the abundance of Parvimonas micra in the gut along the adenoma‑carcinoma sequence. Oncology Letters, 2020, 20, 1-1.	0.8	22
1075	The impact of primary tumor location in patients with metastatic colorectal cancer: a Korean Cancer Study Group CO12-04 study. Korean Journal of Internal Medicine, 2019, 34, 165-177.	0.7	20
1076	Hypoxia-inducible factor-1α rs11549465 C>T and rs11549467 G>A gene polymorphisms are associated with an increased risk of digestive cancers in Asians. Journal of Cancer Research and Therapeutics, 2018, 14, S46-S53.	0.3	2
1077	Peroxisome proliferators-activated receptor gamma polymorphisms and colorectal cancer risk. Journal of Cancer Research and Therapeutics, 2018, 14, S306-S310.	0.3	17

#	Article	IF	CITATIONS
1078	APC, FBXW7, KRAS, PIK3CA, and TP53 Gene Mutations in Human Colorectal Cancer Tumors Frequently Detected by Next-Generation DNA Sequencing. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2014, 08, .	0.1	7
1079	Cancer Stem Cells in Colorectal Cancer: Genetic and Epigenetic Changes. Journal of Stem Cell Research & Therapy, 2013, 01, .	0.3	21
1080	Regulation of <i>MYC</i> gene expression by aberrant Wnt/β-catenin signaling in colorectal cancer. World Journal of Biological Chemistry, 2015, 6, 290.	1.7	113
1081	Genomic era diagnosis and management of hereditary and sporadic colon cancer. World Journal of Clinical Oncology, 2014, 5, 1036.	0.9	11
1082	Are we any closer to screening for colorectal cancer using microbial markers?A critical review. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2017, 161, 333-338.	0.2	9
1083	Colorectal Carcinoma in Malaysians: DNA Mismatch Repair Pattern in a Multiethnic Population. Asian Pacific Journal of Cancer Prevention, 2014, 15, 3287-3291.	0.5	7
1084	Role of TGF-β1 in Human Colorectal Cancer and Effects after Cantharidinate Intervention. Asian Pacific Journal of Cancer Prevention, 2014, 15, 4045-4048.	0.5	7
1085	Associations of Probiotics with Vitamin D and Leptin Receptors and their Effects on Colon Cancer. Asian Pacific Journal of Cancer Prevention, 2015, 16, 3621-3627.	0.5	12
1086	Registered report: Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. ELife, 2016, 5, .	2.8	36
1087	Detection of Cells Displaying High Expression of CLIC4 in Tumor Tissue of Patients With Colorectal Cancer. In Vivo, 2021, 35, 3165-3173.	0.6	1
1088	RING-finger protein 6 promotes colorectal tumorigenesis by transcriptionally activating SF3B2. Oncogene, 2021, 40, 6513-6526.	2.6	4
1089	A novel xenonucleic acid-mediated molecular clamping technology for early colorectal cancer screening. PLoS ONE, 2021, 16, e0244332.	1.1	6
1090	QSAR Docking on Azoles as inhibitors of Notum carboxylesterase. Current Chemical Biology, 2021, 15, .	0.2	0
1091	TRPC1 promotes the genesis and progression of colorectal cancer via activating CaM-mediated PI3K/AKT signaling axis. Oncogenesis, 2021, 10, 67.	2.1	19
1092	Metastatic Rectal Carcinoma with Long-Term Remission due to Modern Multimodality Treatment. Case Reports in Oncology, 2021, 14, 1475-1482.	0.3	1
1093	Transcriptomic Analysis Identifies Complement Component 3 as a Potential Predictive Biomarker for Chemotherapy Resistance in Colorectal Cancer. Frontiers in Molecular Biosciences, 2021, 8, 763652.	1.6	4
1094	Genai svarbūs storosios žarnos vėžio patogenezėje. Health Sciences, 2012, 22, 77-84.	0.0	0
1095	Mutational Activation of KRAS and BRAF in Colorectal Cancer. , 2013, , 121-156.		1

#	Article	IF	CITATIONS
1096	Colorectal Cancer Genome and Its Implications. , 2013, , 247-265.		0
1097	Genomic Expression Profiles: From Molecular Signatures to Clinical Oncology Translation. , 0, , .		0
1098	Metastasis. , 2014, , 211-272.		0
1099	The SOCS-1 -1478CA/del Polymorphism is not Associated with Colorectal Cancer or Age at Onset in Turkish Subjects. Asian Pacific Journal of Cancer Prevention, 2013, 14, 7583-7586.	0.5	4
1100	Evaluation of Polymorphisms rs762624 and rs3176336 of CDKN1A Gene and Risk of Colorectal Cancer. British Journal of Medicine and Medical Research, 2014, 4, 5098-5106.	0.2	1
1101	Epithelial Tumorigenesis. , 2014, , 1588-1593.		0
1102	Pathophysiological responses from human gut microbiome. World Journal of Translational Medicine, 2014, 3, 133.	3.5	0
1103	The tumour suppressor function of the scaffolding protein spinophilin. Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2014, , .	0.1	0
1104	Inflammation and Colorectal Cancer. , 2015, , 211-256.		0
1105	Colorectal Cancer Stem Cells. , 2015, , 227-245.		0
1106	Aging: An Etiological Factor in The Development of Intestinal Tumorigenesis. , 2015, , 287-308.		0
1108	Incidence and Risk Factors. , 2016, , 23-39.		6
1109	Adenomatous Polyposis Coli. , 2016, , 1-11.		0
1110	Mutations by Next Generation Sequencing in Stool DNA from Colorectal Carcinoma Patients – A Literature Review and our Experience with this Methodology. Journal of Analytical Oncology, 2016, 5, 24-32.	0.1	1
1112	Pathology and Molecular Pathology of Colorectal Cancer. , 2017, , 409-446.		2
1113	Molecular stratification of sporadic and hereditary colorectal cancer – mini review. Rad Hrvatske Akademije Znanosti I Umjetnosti Medicinske Znanosti, 2017, 530, 73-80.	0.1	0
1114	Transcription Factors and Colorectal Cancer: An Overview. , 2017, , 215-237.		0
1115	Molecular and Cellular Mechanisms of Carcinogenesis in the Large Bowel. , 2017, , 65-82.		0

# 1116	ARTICLE BRAF inhibitor treatment of melanoma causing colonic polyps: An alternative hypothesis. World Journal of Gastroenterology, 2017, 23, 3022.	IF 1.4	CITATIONS
1117	Autofluorescence metabolic drug screening in colorectal cancer spheroids. , 2017, , .		0
1118	Discovery and Identification of Serum Potential Biomarkers for Colorectal Cancer Using TMT Quantitative Proteomics. International Journal of Cancer and Oncology, 2017, 4, 1-7.	0.2	0
1119	Medical Oncology Management of Hereditary Colorectal Cancer. , 2018, , 401-413.		0
1120	Notch Signaling in the Normal Intestine and Intestinal Cancer. , 2018, , 333-352.		0
1122	Adenomatous Polyposis Coli. , 2018, , 176-186.		0
1123	Analysis of MSH2 Loss of Heterozygosity, Expression, and IVS10+12G>A Polymorphism in Sporadic Colon Cancer. Anticancer Research, 2018, 38, 2841-2848.	0.5	1
1127	Tumor Establishment Requires Tumor Autonomous and Non-Autonomous Decoupling of EGF Signaling from Apoptosis. SSRN Electronic Journal, 0, , .	0.4	0
1128	Implications of Lateral or Horizontal Gene Transfer from Bacteria to the Human Gastrointestinal System for Cancer Development and Treatment. , 2019, , 377-397.		1
1129	3D Tissue Model of Cancers. Biomaterials Science Series, 2019, , 294-311.	0.1	0
1130	Alcohol Intake and Cancer Risk. Food Chemistry, Function and Analysis, 2019, , 108-127.	0.1	0
1131	Pathology of Rectal Cancer and Predictors of Response to Neoadjuvant Therapy. , 2019, , 87-112.		0
1132	p53 and Ferroptosis. , 2019, , 249-256.		0
1133	Function of the Endocannabinoid System in Neurodegenerative Diseases and Cancers. American Journal of Plant Sciences, 2019, 10, 1839-1854.	0.3	0
1134	Cancers. Advances in Bioinformatics and Biomedical Engineering Book Series, 2019, , 325-360.	0.2	0
1135	Colorectal Cancer Prevention. , 2019, , 473-509.		1
1137	Identification of the Altered Proteins Related to Colon Carcinogenesis by iTRAQ-based Quantitative Proteomic Analysis. Current Proteomics, 2019, 16, 297-306.	0.1	0
1138	Potential Clinical Roles of JS-2 Gene in the Pathogenesis of Colorectal Cancer. Gene, Cell and Tissue, 2019, In Press, .	0.2	0

#	Article	IF	CITATIONS
1139	The Role of the Intestinal Microbiome in the Immunotherapy of Colon Cancer. Malignant Tumours, 2019, 9, 5-11.	0.1	1
1141	miR‑5191 functions as a tumor suppressor by targeting RPS6KB1 in colorectal cancer. International Journal of Oncology, 2019, , .	1.4	3
1142	Red Meats and Processed Meat as the Carcinogenic Foods and Phytochemical-chemoprevention. Indonesian Biomedical Journal, 2019, 11, 225-39.	0.2	0
1143	Targeted molecular proï¬ling of genetic alterations in colorectal cancer using nextâ€generation sequencing. Oncology Letters, 2020, 19, 1137-1144.	0.8	0
1144	Microbiota, mucosal immunity, and Colon cancer. , 2020, , 157-209.		1
1145	Aspirin for prevention of colorectal cancer in the elderly: friend or foe?. Annals of Gastroenterology, 2020, 34, 1-11.	0.4	8
1149	Development and Application of Patient-Derived Cancer Organoidsin Clinical Management of Gastrointestinal Cancer: A State-of-the-Art Review. Frontiers in Oncology, 2021, 11, 716339.	1.3	1
1150	The Dual Role of Circular RNAs as miRNA Sponges in Breast Cancer and Colon Cancer. Biomedicines, 2021, 9, 1590.	1.4	15
1151	APC and TP53 Mutations Predict Cetuximab Sensitivity across Consensus Molecular Subtypes. Cancers, 2021, 13, 5394.	1.7	7
1154	Oral Gene Delivery: An Innovative Approach for Colorectal Center Therapy. Journal of Drug Delivery and Therapeutics, 2020, 10, 186-188.	0.2	1
1155	Omics-based biomarkers for CRC. , 2022, , 249-263.		2
1156	Colorectal Cancer Genetics: An Overview of the Actionable Building Blocks. , 2020, , 29-71.		1
1157	Frizzled7 Activates β-Catenin-Dependent and β-Catenin-Independent Wnt Signalling Pathways During Developmental Morphogenesis: Implications for Therapeutic Targeting in Colorectal Cancer. Handbook of Experimental Pharmacology, 2021, 269, 251-277.	0.9	3
1158	Gene Therapy Targeting p53 and KRAS for Colorectal Cancer Treatment: A Myth or the Way Forward?. International Journal of Molecular Sciences, 2021, 22, 11941.	1.8	27
1159	Gut Microbiome and Gastrointestinal Diseases. Korean Journal of Clinical Laboratory Science, 2018, 50, 11-19.	0.1	2
1161	Integrating Genomics and Clinical Data for Statistical Analysis by Using GEnome MINIng (GEMINI) and Fast Healthcare Interoperability Resources (FHIR): System Design and Implementation. Journal of Medical Internet Research, 2020, 22, e19879.	2.1	15
1162	Possibility of Probiotic in Colorectal Cancer: A Specific Countenance to Research. , 2021, , 113-123.		0
1163	Expression Status of UBE2Q2 in Colorectal Primary Tumors and Cell Lines. Iranian Journal of Medical Sciences, 2014, 39, 196-202.	0.3	8

#	Article	IF	CITATIONS
1164	LSF expression and its prognostic implication in colorectal cancer. International Journal of Clinical and Experimental Pathology, 2014, 7, 6024-31.	0.5	13
1165	Establishment of genetically diverse patient-derived xenografts of colorectal cancer. American Journal of Cancer Research, 2014, 4, 824-37.	1.4	18
1166	Genetics of colorectal cancer. Journal of Medicine and Life, 2014, 7, 507-11.	0.4	18
1167	P53 mutations occur more commonly than KRAS mutations in colorectal adenoma. International Journal of Clinical and Experimental Medicine, 2015, 8, 1370-5.	1.3	9
1168	Correlation between smoking history and molecular pathways in sporadic colorectal cancer: a meta-analysis. International Journal of Clinical and Experimental Medicine, 2015, 8, 3241-57.	1.3	15
1169	MYBL2 is an independent prognostic marker that has tumor-promoting functions in colorectal cancer. American Journal of Cancer Research, 2015, 5, 1542-52.	1.4	32
1170	Advanced colorectal adenoma related gene expression signature may predict prognostic for colorectal cancer patients with adenoma-carcinoma sequence. International Journal of Clinical and Experimental Medicine, 2015, 8, 4883-98.	1.3	4
1171	ITF-2B protein levels are correlated with favorable prognosis in patients with colorectal carcinomas. American Journal of Cancer Research, 2015, 5, 2241-8.	1.4	3
1172	Correlation of NGX6 expression with clinicopathologic features and prognosis in colon cancer. International Journal of Clinical and Experimental Medicine, 2015, 8, 13644-8.	1.3	1
1173	Immunohistochemistry and microsatellite instability analysis in molecular subtyping of colorectal carcinoma based on mismatch repair competency. International Journal of Clinical and Experimental Medicine, 2015, 8, 20988-1000.	1.3	28
1174	High FOXRED1 expression predicted good prognosis of colorectal cancer. American Journal of Cancer Research, 2016, 6, 2722-2728.	1.4	1
1175	Gene Expression Analysis of Sporadic Early-Onset Rectal Adenocarcinoma. , 2016, 1, .		5
1176	Tumor suppressor genes in familial adenomatous polyposis. Gastroenterology and Hepatology From Bed To Bench, 2017, 10, 3-13.	0.6	35
1177	Knockdown of HOXA-AS2 suppresses proliferation and induces apoptosis in colorectal cancer. American Journal of Translational Research (discontinued), 2017, 9, 4545-4552.	0.0	22
1178	Surgical treatment of multiple sporadic colorectal carcinoma. Acta Biomedica, 2017, 88, 39-44.	0.2	10
1179	Kras mutation subtypes distinctly affect colorectal cancer cell sensitivity to FL118, a novel inhibitor of survivin, Mcl-1, XIAP, cIAP2 and MdmX. American Journal of Translational Research (discontinued), 2021, 13, 7458-7474.	0.0	1
1180	CRISPR and KRAS: a match yet to be made. Journal of Biomedical Science, 2021, 28, 77.	2.6	3
1181	Novel Methylation Biomarkers for Colorectal Cancer Prognosis. Biomolecules, 2021, 11, 1722.	1.8	21

#	Article	IF	CITATIONS
1182	Curcumin induces apoptosis through caspase dependent pathway in human colon carcinoma cells. Molecular Biology Reports, 2022, 49, 1351-1360.	1.0	5
1183	The Significant Influence of a Second Metal on the Antiproliferative Properties of the Complex [Ru(η ⁶ â^'C ₁₀ H ₁₄)(Cl ₂)(dmoPTA)]. Chemistry - A European Journal, 2022, 28, e202103048.	1.7	8
1184	An emerging role of the 5′ termini of mature tRNAs in human diseases: Current situation and prospects. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166314.	1.8	12
1185	PNU-74654 Suppresses TNFR1/IKB Alpha/p65 Signaling and Induces Cell Death in Testicular Cancer. Current Issues in Molecular Biology, 2022, 44, 222-232.	1.0	2
1186	Microenvironmental Metabolites in the Intestine: Messengers between Health and Disease. Metabolites, 2022, 12, 46.	1.3	4
1187	Bacterial driver–passenger model in biofilms: a new mechanism in the development of colorectal cancer. Clinical and Translational Oncology, 2022, 24, 784-795.	1.2	5
1188	Therapeutic Potential of Naturally Occurring Small Molecules to Target the Wnt/β-Catenin Signaling Pathway in Colorectal Cancer. Cancers, 2022, 14, 403.	1.7	16
1189	Molecular characteristics of youngâ€onset colorectal cancer in Vietnamese patients. Asia-Pacific Journal of Clinical Oncology, 2022, , .	0.7	3
1190	Precision medicine for metastatic colorectal cancer in clinical practice. Therapeutic Advances in Medical Oncology, 2022, 14, 175883592110727.	1.4	23
1191	Analysis of 5-Methylcytosine Regulators and DNA Methylation-Driven Genes in Colon Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 657092.	1.8	5
1192	Multi-Omic Approaches in Colorectal Cancer beyond Genomic Data. Journal of Personalized Medicine, 2022, 12, 128.	1.1	6
1193	microRNA-34 family: From mechanism to potential applications. International Journal of Biochemistry and Cell Biology, 2022, 144, 106168.	1.2	17
1194	Downregulation of CPT2 promotes proliferation and inhibits apoptosis through p53 pathway in colorectal cancer. Cellular Signalling, 2022, 92, 110267.	1.7	18
1195	Necessity of Multiplex Ligation Probe Amplification in Genetic Tests: Germline variant analysis of the APC gene in familial adenomatous polyposis patients. Cancer Genetics, 2022, 262-263, 95-101.	0.2	2
1196	Integration of multiple lineage measurements from the same cell reconstructs parallel tumor evolution. Cell Genomics, 2022, 2, 100096.	3.0	13
1197	State-of-the-art cancer biomarker detection by portable (Bio) sensing technology: A critical review. Microchemical Journal, 2022, 177, 107248.	2.3	35
1199	A β-Catenin-TCF-Sensitive Locus Control Region Mediates GUCY2C Ligand Loss in Colorectal Cancer. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1276-1296.	2.3	6
1202	Identification and <i>in silico</i> Analysis of Nonsense SNPs of Human Colorectal Cancer Protein. Journal of Oleo Science, 2022, 71, 363-370.	0.6	2

#	Article	IF	CITATIONS
1203	Identification of the Crucial Role of CCL22 in F. nucleatum-Related Colorectal Tumorigenesis that Correlates With Tumor Microenvironment and Immune Checkpoint Therapy. Frontiers in Genetics, 2022, 13, 811900.	1.1	12
1204	Application Progress of Organoids in Colorectal Cancer. Frontiers in Cell and Developmental Biology, 2022, 10, 815067.	1.8	8
1205	Single-cell transcriptomic profiling unravels the adenoma-initiation role of protein tyrosine kinases during colorectal tumorigenesis. Signal Transduction and Targeted Therapy, 2022, 7, 60.	7.1	31
1206	Investigation of Long Non-coding RNAs H19 and LINC00675 in Colorectal Cancers in Terms of Histopathological Features and Correlations With Plasma Markers. Anticancer Research, 2022, 42, 1301-1306.	0.5	2
1207	Role of Furin in Colon Cancer Stem Cells Malignant Phenotype and Expression of LGR5 and NANOG in KRAS and BRAF-Mutated Colon Tumors. Cancers, 2022, 14, 1195.	1.7	9
1208	DOT1L affects colorectal carcinogenesis via altering T cell subsets and oncogenic pathway. Oncolmmunology, 2022, 11, 2052640.	2.1	4
1209	Surface-Functionalized Terahertz Metamaterial Biosensor Used for the Detection of Exosomes in Patients. Langmuir, 2022, 38, 3739-3747.	1.6	7
1210	PUMILIO proteins promote colorectal cancer growth via suppressing p21. Nature Communications, 2022, 13, 1627.	5.8	14
1211	Discriminating Potential Genetic Markers for Complete Response and Non-Complete Response Patients to Neoadjuvant Chemotherapy with Locally Advanced Rectal Cancer. International Journal of Environmental Research and Public Health, 2022, 19, 4008.	1.2	3
1213	Super-enhancers and novel therapeutic targets in colorectal cancer. Cell Death and Disease, 2022, 13, 228.	2.7	10
1214	Molecular Network of Colorectal Cancer and Current Therapeutic Options. Frontiers in Oncology, 2022, 12, 852927.	1.3	20
1215	Genetic variation at the catalytic subunit of glutamate cysteine ligase contributes to the susceptibility to sporadic colorectal cancer: a pilot study. Molecular Biology Reports, 2022, , 1.	1.0	2
1216	Colorectal microbiota after removal of colorectal cancer. NAR Cancer, 2022, 4, zcac011.	1.6	5
1217	Role and regulation of autophagy in cancer. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166400.	1.8	52
1218	The Effect of Gene Mutations on Metastasis and Overall Survival in Metastatic and Nonmetastatic Colon Cancers. Asian Pacific Journal of Cancer Prevention, 2021, 22, 3839-3846.	0.5	0
1219	Combination of Wnt/ \hat{l}^2 -Catenin Targets S100A4 and DKK1 Improves Prognosis of Human Colorectal Cancer. Cancers, 2022, 14, 37.	1.7	7
1221	A Gene-Based Machine Learning Classifier Associated to the Colorectal Adenoma—Carcinoma Sequence. Biomedicines, 2021, 9, 1937.	1.4	5
1222	The differences between fecal microbiota and intestinal fluid microbiota in colon polyps. Medicine (United States), 2021, 100, e28028.	0.4	6

#	Article	IF	CITATIONS
1223	A Case of Microsatellite Instability–High Colon Cancer in a Young Woman With Familial Adenomatous Polyposis. Journal of the National Comprehensive Cancer Network: JNCCN, 2021, 19, 1377-1381.	2.3	3
1224	Sigara Kullanımı ve Lenf Nodu Metastazı ile Kolorektal Kanserlerde Sağkalım İle İlişkisi. Ahi Evran M Journal, 0, , .	edical 0.1	0
1225	Dissection of Immune Profiles in Microsatellite Stable and Low Microsatellite Instability Colon Adenocarcinoma by Multiomics Data Analysis. Journal of Oncology, 2022, 2022, 1-20.	0.6	0
1228	Mechanobiology of Colorectal Cancer. Cancers, 2022, 14, 1945.	1.7	5
1229	Exploration of naphthoquinone analogs in targeting the TCF-DNA interaction to inhibit the Wnt/β-catenin signaling pathway. Bioorganic Chemistry, 2022, 124, 105812.	2.0	4
1254	Alterations in APC, BECN1, and TP53 gene expression levels in colon cancer cells caused by monosodium glutamate. Brazilian Journal of Biology, 2021, 83, e246970.	0.4	6
1255	Epidemiology and biology of early onset colorectal cancer EXCLI Journal, 2022, 21, 162-182.	0.5	8
1257	LncRNA AK077216 affects the survival of colorectal adenocarcinoma patients via miR-34a. Arab Journal of Gastroenterology, 2022, , .	0.4	0
1258	Colorectal Cancer Develops Inherent Radiosensitivity That Can Be Predicted Using Patient-Derived Organoids. Cancer Research, 2022, 82, 2298-2312.	0.4	14
1259	The Synergistic Cooperation between TGF-Î ² and Hypoxia in Cancer and Fibrosis. Biomolecules, 2022, 12, 635.	1.8	17
1260	Berberine as a Potential Agent for the Treatment of Colorectal Cancer. Frontiers in Medicine, 2022, 9, 886996.	1.2	12
1261	Comparative Study of the Role of Interepithelial Mucosal Mast Cells in the Context of Intestinal Adenoma-Carcinoma Progression. Cancers, 2022, 14, 2248.	1.7	3
1262	Colon Tumors in Enterotoxigenic Bacteroides fragilis (ETBF)-Colonized Mice Do Not Display a Unique Mutational Signature but Instead Possess Host-Dependent Alterations in the APC Gene. Microbiology Spectrum, 2022, 10, e0105522.	1.2	18
1263	A specific upregulated long noncoding RNA in colorectal cancer promotes cancer progression. JCI Insight, 2022, 7, .	2.3	3
1264	FL118, acting as a â€~molecular glue degrader', binds to, dephosphorylates and degrades the oncoprotein DDX5 (p68) to control câ€Myc, survivin and mutant Kras against colorectal and pancreatic cancer with high efficacy. Clinical and Translational Medicine, 2022, 12, .	1.7	12
1265	Modified Shenlingbaizhu Decoction represses the pluripotency of colorectal cancer stem cells by inhibiting TGF-β mediated EMT program. Phytomedicine, 2022, 103, 154234.	2.3	10
1266	Inhibitory potential of phytochemicals from Chromolaena odorata L. against apoptosis signal-regulatory kinase 1: A computational model against colorectal cancer. Computational Toxicology, 2022, 23, 100235.	1.8	17
1268	Requirement of CLIC4 Expression in Human Colorectal Cancer Cells for Sensitivity to Growth Inhibition by Fucoxanthinol. Cancer Genomics and Proteomics, 2022, 19, 428-444.	1.0	1

		CITATION REPORT		
#	Article		IF	Citations
1269	Diagnostic Potential of Exosomal microRNAs in Colorectal Cancer. Diagnostics, 2022,	12, 1413.	1.3	7
1270	Identification of a Genomic Instability-Related Long Noncoding RNA Prognostic Model Cancer Based on Bioinformatic Analysis. Disease Markers, 2022, 2022, 1-16.	in Colorectal	0.6	4
1271	SIRT4 Loss Reprograms Intestinal Nucleotide Metabolism to Support Proliferation and Following Perturbation of Homeostasis. SSRN Electronic Journal, 0, , .	Survival	0.4	0
1272	From Intestinal Epithelial Homeostasis to Colorectal Cancer: Autophagy Regulation in Stress. Antioxidants, 2022, 11, 1308.	Cellular	2.2	2
1273	Receptor Guanylyl Cyclase C and Cyclic GMP in Health and Disease: Perspectives and T Opportunities. Frontiers in Endocrinology, 0, 13, .	herapeutic	1.5	10
1275	Genomic and transcriptomic analysis of Korean colorectal cancer patients. Genes and 44, 967-979.	Genomics, 2022,	0.5	2
1276	Colorectal cancer-derived exosomes and modulation KRAS signaling. Clinical and Trans Oncology, 2022, 24, 2074-2080.	lational	1.2	2
1277	Liquid–liquid phase separation in tumor biology. Signal Transduction and Targeted T	herapy, 2022, 7, .	7.1	52
1278	Proteomic analysis of low- and high-grade human colon adenocarcinoma tissues and ti primary cell lines reveals unique biological functions of tumours and new protein biom candidates. Clinical Proteomics, 2022, 19, .	ssue-derived arker	1.1	2
1279	The Tissue-Associated Microbiota in Colorectal Cancer: A Systematic Review. Cancers,	2022, 14, 3385.	1.7	9
1280	The prediction of tumor and normal tissues based on the DNA methylation values of te Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2022, 1865, 194841.	n key sites.	0.9	0
1281	Title: Involvement of unsaturated fatty acid biosynthesis in CRC progression based on silico studies. Biomedicine and Pharmacotherapy, 2022, 153, 113338.	in vitro and in	2.5	11
1282	Association between c-type lectin-like receptor 2 and microsatellite instability in colore cross-sectional study. BMC Cancer, 2022, 22, .	ectal cancer: a	1.1	0
1283	Kallikrein-Related Peptidase 6 (KLK6) as a Contributor toward an Aggressive Cancer Ce Potential Role in Colon Cancer Peritoneal Metastasis. Biomolecules, 2022, 12, 1003.	ll Phenotype: A	1.8	7
1284	A Generalized Integration Approach to Association Analysis with Multi-category Outco Application to a Tumor Sequencing Study of Colorectal Cancer and Smoking. Journal o Statistical Association, 2023, 118, 29-42.		1.8	0
1285	LncRNA CRLM1 inhibits apoptosis and promotes metastasis through transcriptional re cooperated with hnRNPK in colorectal cancer. Cell and Bioscience, 2022, 12, .	gulation	2.1	3
1286	Colorectal cancer chemoprevention: is aspirin still in the game?. Cancer Biology and Th 446-461.	ierapy, 2022, 23,	1.5	10
1287	New Insights into Bile Acids Related Signaling Pathways in the Onset of Colorectal Car 2022, 14, 2964.	icer. Nutrients,	1.7	15

#	Article	IF	CITATIONS
1288	Targeting RAS Mutant Colorectal Cancer with Dual Inhibition of MEK and CDK4/6. Cancer Research, 2022, 82, 3335-3344.	0.4	14
1289	Comprehensive characterization of clonality of driver genes revealing their clinical relevance in colorectal cancer. Journal of Translational Medicine, 2022, 20, .	1.8	5
1290	Asparagine, colorectal cancer, and the role of sex, genes, microbes, and diet: A narrative review. Frontiers in Molecular Biosciences, 0, 9, .	1.6	4
1291	RNA Modifications in Gastrointestinal Cancer: Current Status and Future Perspectives. Biomedicines, 2022, 10, 1918.	1.4	5
1292	Anti-Colorectal Cancer Effects of Inonotus hispidus (Bull.: Fr.) P. Karst. Spore Powder through Regulation of Gut Microbiota-Mediated JAK/STAT Signaling. Nutrients, 2022, 14, 3299.	1.7	9
1293	Dysregulated FOXM1 signaling in the regulation of cancer stem cells. Seminars in Cancer Biology, 2022, 86, 107-121.	4.3	36
1294	Chemoprevention effect of the Mediterranean diet on colorectal cancer: Current studies and future prospects. Frontiers in Nutrition, 0, 9, .	1.6	16
1295	Isolinderalactone sensitizes oxaliplatin-resistance colorectal cancer cells through JNK/p38 MAPK signaling pathways. Phytomedicine, 2022, 105, 154383.	2.3	15
1296	Transcriptome Analyses Identify Deregulated MYC in Early Onset Colorectal Cancer. Biomolecules, 2022, 12, 1223.	1.8	6
1297	Genetic and epigenetic dependencies in colorectal cancer development. Gastroenterology Report, 2022, 10, .	0.6	19
1298	Cancer suppression by ferroptosis and its role in digestive system tumors. World Chinese Journal of Digestology, 2022, 30, 718-728.	0.0	0
1299	MCPIP1 Suppresses the NF-κB Signaling Pathway Through Negative Regulation of K63-Linked Ubiquitylation of TRAF6 in Colorectal Cancer. Cancer Gene Therapy, 2023, 30, 96-107.	2.2	3
1300	Classical Angiogenic Signaling Pathways and Novel Anti-Angiogenic Strategies for Colorectal Cancer. Current Issues in Molecular Biology, 2022, 44, 4447-4471.	1.0	5
1301	Colorectal cancer: Metabolic interactions reshape the tumor microenvironment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188797.	3.3	24
1302	Teenage-Onset Colorectal Cancers in a Digenic Cancer Predisposition Syndrome Provide Clues for the Interaction between Mismatch Repair and Polymerase l´Proofreading Deficiency in Tumorigenesis. Biomolecules, 2022, 12, 1350.	1.8	9
1303	Investigation of cell signalings and therapeutic targets in PTPRK-RSPO3 fusion-positive colorectal cancer. PLoS ONE, 2022, 17, e0274555.	1.1	0
1304	Redox-Regulation in Cancer Stem Cells. Biomedicines, 2022, 10, 2413.	1.4	5
1306	CINSARC signature outperforms gold-standard TNM staging and consensus molecular subtypes for clinical outcome in stage II–III colorectal carcinoma. Modern Pathology, 2022, 35, 2002-2010.	2.9	4

#	Article	IF	CITATIONS
1307	Câncer colorretal e sistema purinérgico. , 2021, , 123-137.		0
1308	КОЛОÐЕКТÐЛЬÐЫЕ ÐДЕÐОМЫ. Problemy Zdorovʹâ I èkologii, 2011, , 39-44.	0.0	0
1310	Mouse models of Kras activation in gastric cancer. Experimental and Molecular Medicine, 2022, 54, 1793-1798.	3.2	7
1311	Association between Oral Chinese Herbal Medicine and Recurrence and Metastasis in Patients with Stages II and III Colorectal Cancer: A Cohort Study in China. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-11.	0.5	1
1312	The crosstalk between intestinal bacterial microbiota and immune cells in colorectal cancer progression. Clinical and Translational Oncology, 0, , .	1.2	1
1314	Curcumin Represses Colorectal Cancer Cell Proliferation by Triggering Ferroptosis <i>via</i> PI3K/Akt/mTOR Signaling. Nutrition and Cancer, 2023, 75, 726-733.	0.9	20
1315	PRMT6 functionally associates with PRMT5 to promote colorectal cancer progression through epigenetically repressing the expression of CDKN2B and CCNG1. Experimental Cell Research, 2023, 422, 113413.	1.2	6
1317	Dysregulated Amino Acid Sensing Drives Colorectal Cancer Growth and Metabolic Reprogramming Leading to Chemoresistance. Gastroenterology, 2023, 164, 376-391.e13.	0.6	12
1318	Distinct clinical pattern of colorectal cancer patients with POLE mutations: A retrospective study on real-world data. Frontiers in Genetics, 0, 13, .	1.1	5
1319	Alterations of Cytoskeleton Networks in Cell Fate Determination and Cancer Development. Biomolecules, 2022, 12, 1862.	1.8	3
1320	Recent Advances in Genetic Epidemiology of Colorectal Cancer in Chinese Population. , 2022, , 187-214.		0
1323	Potential Role of ROS in Butyrate- and Dietary Fiber-Mediated Growth Inhibition and Modulation of Cell Cycle-, Apoptosis- and Antioxidant-Relevant Proteins in LT97 Colon Adenoma and HT29 Colon Carcinoma Cells. Cancers, 2023, 15, 440.	1.7	6
1326	Arginine limitation drives a directed codon-dependent DNA sequence evolution response in colorectal cancer cells. Science Advances, 2023, 9, .	4.7	8
1327	Ferroptosis in colorectal cancer: a future target?. British Journal of Cancer, 2023, 128, 1439-1451.	2.9	12
1329	A novel tumour enhancer function of Insulin-like growth factor II mRNA-binding protein 3 in colorectal cancer. Cell Death and Disease, 2023, 14, .	2.7	3
1330	Sinonasal Myxoma: A Distinct Entity or a Myxoid Variant of Desmoid Fibromatosis?. Modern Pathology, 2023, 36, 100189.	2.9	4
1331	Natural Compounds Targeting the Autophagy Pathway in the Treatment of Colorectal Cancer. International Journal of Molecular Sciences, 2023, 24, 7310.	1.8	4
1332	Gut Microbiota in Colorectal Cancer: Biological Role and Therapeutic Opportunities. Cancers, 2023, 15, 866.	1.7	15

#	Article	IF	CITATIONS
1333	Intestinal Epithelial Cells Adapt to Chronic Inflammation through Partial Genetic Reprogramming. Cancers, 2023, 15, 973.	1.7	1
1334	Phenotypic Characterization of Colorectal Liver Metastases: Capsule versus No Capsule and the Potential Role of Epithelial Mesenchymal Transition. Cancers, 2023, 15, 1056.	1.7	0
1335	Identification of Gene Signature-Related Oxidative Stress for Predicting Prognosis of Colorectal Cancer. Oxidative Medicine and Cellular Longevity, 2023, 2023, 1-17.	1.9	1
1336	The Usher syndrome 1C protein harmonin regulates canonical Wnt signaling. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	3
1337	The Antithetic Roles of IQGAP2 and IQGAP3 in Cancers. Cancers, 2023, 15, 1115.	1.7	4
1338	Esculentoside A Inhibits Proliferation, Colony Formation, Migration, and Invasion of Human Colorectal Cancer Cells. Evidence-based Complementary and Alternative Medicine, 2023, 2023, 1-5.	0.5	3
1340	Using fecal immmunochemical cartridges for gut microbiome analysis within a colorectal cancer screening program. Gut Microbes, 2023, 15, .	4.3	1
1341	Next Generation Sequencing in Vitellointestinal Duct Adenoma: Existence of Adenoma-Carcinoma Sequence or too Early to Predict?. International Journal of Surgical Pathology, 2023, 31, 1403-1408.	0.4	0
1342	Cross-talk between cancer stem cells and immune cells: potential therapeutic targets in the tumor immune microenvironment. Molecular Cancer, 2023, 22, .	7.9	29
1343	Subtype-specific kinase dependency regulates growth and metastasis of poor-prognosis mesenchymal colorectal cancer. Journal of Experimental and Clinical Cancer Research, 2023, 42, .	3.5	0
1344	The Mucin Family of Proteins: Candidates as Potential Biomarkers for Colon Cancer. Cancers, 2023, 15, 1491.	1.7	18
1345	Genetic heterogeneity of colorectal cancer and the microbiome. World Journal of Gastrointestinal Oncology, 0, 15, 443-463.	0.8	1
1346	Renin-Angiotensin System: A Potential Therapeutic Target for Colorectal Cancer. , 2023, , 451-463.		1
1347	Single-cell profiling of the copy-number heterogeneity in colorectal cancer. Chinese Medical Journal, 2023, 136, 707-718.	0.9	0
1348	Molecular, Morphological and Clinical Characteristics of Spontaneous Canine Colorectal Cancer – A Review. Folia Veterinaria, 2023, 67, 60-66.	0.2	0
1349	Polysaccharides from Chinese herbs as natural weapons against colorectal cancer. Bioscience Reports, 2023, 43, .	1.1	3
1350	Exploration of bioactive compounds from <i>Mangifera indica</i> (Mango) as probable inhibitors of thymidylate synthase and nuclear factor kappa-B (NF-Κb) in colorectal cancer management. ChemistrySelect, 2022, .	0.7	0
1351	Imatinib blocks tyrosine phosphorylation of Smad4 and restores TGF-β growth-suppressive signaling in BCR-ABL1-positive leukemia. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	3

#	Article	IF	-	Citations
1352	Biological sciences underpinning biomechanics. , 2023, , 391-493.			0
1353	Proteomic Profiling of Colorectal Adenomas Identifies a Predictive Risk Signature for Develo Metachronous Advanced Colorectal Neoplasia. Gastroenterology, 2023, 165, 121-132.e5.	pment of o).6	4
1354	The Cell Death and Signal Transduction Mechanisms in Colorectal Carcinogenesis: Recent A Anti-Cancer Agents in Medicinal Chemistry, 2023, 23, .	dvances. o).9	0
1355	Oncogenic signaling is coupled to colorectal cancer cell differentiation state. Journal of Cell Biology, 2023, 222, .	2	.3	2
1356	ATG4B and pS383/392-ATG4B serve as potential biomarkers and therapeutic targets of colo cancer. Cancer Cell International, 2023, 23, .	rectal 1.	.8	1
1357	RSPO2 as Wnt signaling enabler: Important roles in cancer development and therapeutic opportunities. Genes and Diseases, 2024, 11, 788-806.	1.	.5	2
1386	Molecular testing in colorectal cancer. , 2024, , 339-358.			0
1389	Unveiling the genetic and epigenetic landscape of colorectal cancer: new insights into patho pathways. , 2023, 40, .	ogenic		2
1400	p53 and Ferroptosis. , 2023, , 137-148.			0
1401	Origin of cancer stem cells and the signaling pathways associated with stem cells and cance cells. , 2024, , 1-14.	r stem		0
1406	ROS and Redox Regulation/Signaling and Metabolism in Cancer Stem Cells. , 2023, , 49-90.			0
1407	Role of Microbiomes in Defining the Metabolic and Regulatory Networks that Distinguishes Good Health and a Continuum of Disease States. , 2023, , 219-240.	Between		ο
1411	Colorectal cancer: understanding of disease. , 2024, , 1-27.			0