Parkinson's Disease: Genetics and Pathogenesis

Annual Review of Pathology: Mechanisms of Disease 6, 193-222

DOI: 10.1146/annurev-pathol-011110-130242

Citation Report

#	Article	IF	CITATIONS
1	Leucine-Rich Repeat Kinase 2 (LRRK2) Cellular Biology: A Review of Recent Advances in Identifying Physiological Substrates and Cellular Functions. Journal of Neurogenetics, 2011, 25, 140-151.	0.6	40
2	Proteostasis and Movement Disorders: Parkinson's Disease and Amyotrophic Lateral Sclerosis. Cold Spring Harbor Perspectives in Biology, 2011, 3, a007500-a007500.	2.3	55
3	Structural Role of Compensatory Amino Acid Replacements in the α-Synuclein Protein. Biochemistry, 2011, 50, 6994-7001.	1.2	25
4	Mechanisms underlying NMDA receptor synaptic/extrasynaptic distribution and function. Molecular and Cellular Neurosciences, 2011, 48, 308-320.	1.0	164
5	Biomarkers of Parkinson's disease and Dementia with Lewy bodies. Progress in Neurobiology, 2011, 95, 601-613.	2.8	32
6	Tau Reduction Does Not Prevent Motor Deficits in Two Mouse Models of Parkinson's Disease. PLoS ONE, 2011, 6, e29257.	1.1	45
7	Traumatic brain injury and dopaminergic degeneration: the long-term risks require greater attention. Neurodegenerative Disease Management, 2011, 1, 433-435.	1.2	2
8	The Role of the Blood Brain Barrier in Neurodegenerative Disorders and their Treatment. Journal of Alzheimer's Disease, 2011, 24, 643-656.	1.2	59
9	Modelling of Parkinson's disease in mice. Lancet Neurology, The, 2011, 10, 1108-1118.	4.9	165
10	Akt as a Victim, Villain and Potential Hero in Parkinson's Disease Pathophysiology and Treatment. Cellular and Molecular Neurobiology, 2011, 31, 969-978.	1.7	62
11	Parkin' control: regulation of PGC-1α through PARIS in Parkinson's disease. DMM Disease Models and Mechanisms, 2011, 4, 427-429.	1.2	29
12	Genetic therapy for the nervous system. Human Molecular Genetics, 2011, 20, R28-R41.	1.4	62
13	Modeling Neurological Disorders by Human Induced Pluripotent Stem Cells. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-11.	3.0	12
14	Is Pesticide Use Related to Parkinson Disease? Some Clues to Heterogeneity in Study Results. Environmental Health Perspectives, 2012, 120, 340-347.	2.8	175
15	The Role of Free Radicals in the Aging Brain and Parkinson's Disease: Convergence and Parallelism. International Journal of Molecular Sciences, 2012, 13, 10478-10504.	1.8	174
16	Toward Personalized Cell Therapies by Using Stem Cells. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-2.	3.0	3
17	Resting state brain networks and their implications in neurodegenerative disease. Proceedings of SPIE, 2012, , .	0.8	0
18	Compositions and methods for treatment of Parkinson's disease: a patent evaluation of WO2011/102847A1. Expert Opinion on Therapeutic Patents, 2012, 22, 181-184.	2.4	1

#	Article	IF	CITATIONS
19	Mitochondrial Disturbances, Tryptophan Metabolites and Neurodegeneration: Medicinal Chemistry Aspects. Current Medicinal Chemistry, 2012, 19, 1899-1920.	1.2	53
20	Perspectives on molecular targeted therapies and clinical trials for neurodegenerative diseases. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 329-335.	0.9	47
21	Polymorphisms in Neuropsychiatric and Neuroinflammatory Disorders and the Role of Next Generation Sequencing in Early Diagnosis and Treatment. Advances in Protein Chemistry and Structural Biology, 2012, 89, 85-116.	1.0	2
22	Translational Research in Neurology. Archives of Neurology, 2012, 69, 969-77.	4.9	13
23	The Coming Epidemic of Neurologic Disorders: What Science Is – and Should Be – Doing About It. Daedalus, 2012, 141, 98-107.	0.9	16
25	Discovery and verification of panels of T-lymphocyte proteins as biomarkers of Parkinson's disease. Scientific Reports, 2012, 2, 953.	1.6	38
26	Annonamine, a New Aporphine Alkaloid from the Leaves of Annona muricata. Chemical and Pharmaceutical Bulletin, 2012, 60, 257-259.	0.6	38
27	Mitochondrial Quality Control Mediated by PINK1 and Parkin: Links to Parkinsonism. Cold Spring Harbor Perspectives in Biology, 2012, 4, a011338-a011338.	2.3	273
28	The physiology and pathobiology of human kallikrein-related peptidase 6 (KLK6). Clinical Chemistry and Laboratory Medicine, 2012, 50, 211-33.	1.4	45
29	Analysis of neural subtypes reveals selective mitochondrial dysfunction in dopaminergic neurons from <i>parkin</i> mutants. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10438-10443.	3.3	62
30	Neurobiology of cognitive impairment in Parkinson's disease. Expert Review of Neurotherapeutics, 2012, 12, 1451-1466.	1.4	53
31	9â€Methylâ€Î²â€carbolineâ€induced cognitive enhancement is associated with elevated hippocampal dopamine levels and dendritic and synaptic proliferation. Journal of Neurochemistry, 2012, 121, 924-931.	2.1	18
32	Applying bioinformatics to proteomics: Is machine learning the answer to biomarker discovery for PD and MSA?. Movement Disorders, 2012, 27, 1595-1597.	2.2	9
33	Proteolytic Cleavage of Extracellular α-Synuclein by Plasmin. Journal of Biological Chemistry, 2012, 287, 24862-24872.	1.6	67
34	Molecular mechanisms of cortical degeneration in Parkinson disease. Neurology, 2012, 79, 1750-1751.	1.5	0
35	Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences. EMBO Journal, 2012, 31, 3038-3062.	3.5	487
36	Genetic analysis of the LAMP-2 gene promoter in patients with sporadic Parkinson's disease. Neuroscience Letters, 2012, 526, 63-67.	1.0	35
37	Genetic analysis of SIRT1 gene promoter in sporadic Parkinson's disease. Biochemical and Biophysical Research Communications, 2012, 422, 693-696.	1.0	39

#	Article	IF	CITATIONS
38	Molecular Insights into Parkinson's Disease. Progress in Molecular Biology and Translational Science, 2012, 107, 125-188.	0.9	83
39	LRRK2 expression is enriched in the striosomal compartment of mouse striatum. Neurobiology of Disease, 2012, 48, 582-593.	2.1	57
40	Evolution of Neurodegeneration. Current Biology, 2012, 22, R753-R761.	1.8	18
41	Drosophila as a Model to Study Mitochondrial Dysfunction in Parkinson's Disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a009944-a009944.	2.9	76
42	The Adverse Effects of Air Pollution on the Nervous System. Journal of Toxicology, 2012, 2012, 1-23.	1.4	438
43	Induced Pluripotent Stem Cells to Model and Treat Neurogenetic Disorders. Neural Plasticity, 2012, 2012, 1-15.	1.0	20
44	Oxidative Stress in Genetic Mouse Models of Parkinson's Disease. Oxidative Medicine and Cellular Longevity, 2012, 2012, 1-25.	1.9	71
45	Clinical applications of schizophrenia genetics: genetic diagnosis, risk, and counseling in the molecular era. The Application of Clinical Genetics, 2012, 5, 1.	1.4	35
46	Clinical Need and Rationale for Multi-Target Drugs in Psychiatry. RSC Drug Discovery Series, 2012, , 14-31.	0.2	2
47	Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Reports, 2012, 13, 378-385.	2.0	558
48	Dopaminergic therapies modulate the T ELL proteome of patients with Parkinson's disease. IUBMB Life, 2012, 64, 846-852.	1.5	43
49	Modeling human neurodegenerative diseases in transgenic systems. Human Genetics, 2012, 131, 535-563.	1.8	100
50	Cellular models to investigate biochemical pathways in Parkinson's disease. FEBS Journal, 2012, 279, 1146-1155.	2.2	120
51	Animal models of the non-motor features of Parkinson's disease. Neurobiology of Disease, 2012, 46, 597-606.	2.1	131
52	The role of α-synuclein in neurodegeneration $\hat{a} \in$ " An update. Translational Neuroscience, 2012, 3, .	0.7	16
53	Nigral pathology and parkinsonian signs in elders without Parkinson disease. Annals of Neurology, 2012, 71, 258-266.	2.8	171
54	Synaptic Protein Alterations in Parkinson's Disease. Molecular Neurobiology, 2012, 45, 126-143.	1.9	27
55	Neuroprotective effects of human mesenchymal stem cells on neural cultures exposed to 6-hydroxydopamine: implications for reparative therapy in Parkinson's disease. Apoptosis: an International Journal on Programmed Cell Death, 2012, 17, 289-304.	2.2	28

#	Article	IF	CITATIONS
56	Parkin, PINK1 and mitochondrial integrity: emerging concepts of mitochondrial dysfunction in Parkinson's disease. Acta Neuropathologica, 2012, 123, 173-188.	3.9	118
57	Intrabodies as Neuroprotective Therapeutics. Neurotherapeutics, 2013, 10, 447-458.	2.1	32
58	Do Tardive Dyskinesia and l-Dopa Induced Dyskinesia Share Common Genetic Risk Factors? An Exploratory Study. Journal of Molecular Neuroscience, 2013, 51, 380-388.	1.1	12
59	Evolutionary Development of Neural Systems in Vertebrates and Beyond. Journal of Neurogenetics, 2013, 27, 69-85.	0.6	18
60	Loss of vesicular dopamine release precedes tauopathy in degenerative dopaminergic neurons in a Drosophila model expressing human tau. Acta Neuropathologica, 2013, 125, 711-725.	3.9	29
61	Parkinson's Disease: Diagnosis, Motor Symptoms and Non-motor Features. , 2013, , .		2
62	Genetic analysis of the ATG7 gene promoter in sporadic Parkinson's disease. Neuroscience Letters, 2013, 534, 193-198.	1.0	38
63	Gene–environment interactions in Parkinson's disease: Specific evidence in humans and mammalian models. Neurobiology of Disease, 2013, 57, 38-46.	2.1	158
64	Axon degeneration in Parkinson's disease. Experimental Neurology, 2013, 246, 72-83.	2.0	367
65	Parkinson's disease plasma biomarkers: An automated literature analysis followed by experimental validation. Journal of Proteomics, 2013, 90, 107-114.	1.2	28
66	Influence of microRNA deregulation on chaperone-mediated autophagy and α-synuclein pathology in Parkinson's disease. Cell Death and Disease, 2013, 4, e545-e545.	2.7	181
67	Diffusion tensor imaging and correlations to Parkinson rating scales. Journal of Neurology, 2013, 260, 2823-2830.	1.8	42
68	Inflammatory Mediators as Biomarkers in Brain Disorders. Inflammation, 2013, 37, 639-48.	1.7	40
69	Structural Variation and the Expanding Genomic Architecture of Parkinson Disease. JAMA Neurology, 2013, 70, 1355.	4.5	3
70	A Single Dopamine Pathway Underlies Progressive Locomotor Deficits in a Drosophila Model of Parkinson Disease. Cell Reports, 2013, 5, 952-960.	2.9	128
71	A novel and functional variant within the ATG5 gene promoter in sporadic Parkinson's disease. Neuroscience Letters, 2013, 538, 49-53.	1.0	38
72	The vesicular monoamine transporter (VMAT-2) inhibitor tetrabenazine induces tremulous jaw movements in rodents: Implications for pharmacological models of parkinsonian tremor. Neuroscience, 2013, 250, 507-519.	1.1	21
73	Neurochemical profiling of dopaminergic neurons in the forebrain of a cichlid fish, Astatotilapia burtoni. Journal of Chemical Neuroanatomy, 2013, 47, 106-115.	1.0	26

#	Article	IF	CITATIONS
74	Substantia Nigra Volume Loss Before Basal Forebrain Degeneration in Early Parkinson Disease. JAMA Neurology, 2013, 70, 241.	4.5	56
75	Molecular Pathology of the Central Nervous System. , 2013, , 357-405.		4
76	ER-stress-associated functional link between Parkin and DJ-1 via a transcriptional cascade involving the tumor suppressor p53 and the spliced X-box binding protein XBP-1. Journal of Cell Science, 2013, 126, 2124-33.	1.2	65
77	Recent advances in quantitative neuroproteomics. Methods, 2013, 61, 186-218.	1.9	112
78	Recent Advances in α-Synuclein Functions, Advanced Glycation, and Toxicity: Implications for Parkinson's Disease. Molecular Neurobiology, 2013, 47, 525-536.	1.9	94
79	Coordination of Copper to the Membrane-Bound Form of α-Synuclein. Biochemistry, 2013, 52, 53-60.	1.2	41
80	A NETWORK VIEW ON PARKINSON'S DISEASE. Computational and Structural Biotechnology Journal, 2013, 7, e201304004.	1.9	48
81	Chicken DT40 cell line lacking DJ-1, the gene responsible for familial Parkinson's disease, displays mitochondrial dysfunction. Neuroscience Research, 2013, 77, 228-233.	1.0	6
82	Harnessing advances in structural MRI to enhance research on Parkinson's disease. Imaging in Medicine, 2013, 5, 91-94.	0.0	8
83	F-Box Only Protein 7 Gene in Parkinsonian-Pyramidal Disease. JAMA Neurology, 2013, 70, 20.	4.5	46
84	Impact of Genetic Variants of Apolipoprotein E on Lipid Profile in Patients with Parkinson's Disease. BioMed Research International, 2013, 2013, 1-7.	0.9	20
85	Upregulation of a small vault RNA (svtRNA2-1a) is an early event in Parkinson disease and induces neuronal dysfunction. RNA Biology, 2013, 10, 1093-1106.	1.5	44
86	Ultra-High 7T MRI of Structural Age-Related Changes of the Subthalamic Nucleus. Journal of Neuroscience, 2013, 33, 4896-4900.	1.7	116
87	An Inflection Point in Gene Discovery Efforts for Neurodegenerative Diseases. JAMA Neurology, 2013, 70, 719.	4.5	17
88	Synthesis of the tetracyclic core of Illicium sesquiterpenes using an organocatalyzed asymmetric Robinson annulation. Beilstein Journal of Organic Chemistry, 2013, 9, 1135-1140.	1.3	9
89	The Pharmacology of Regenerative Medicine. Pharmacological Reviews, 2013, 65, 1091-1133.	7.1	48
90	Translational research on diseaseâ€modifying therapies for neurodegenerative diseases. Neurology and Clinical Neuroscience, 2013, 1, 3-10.	0.2	4
91	Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8638-8643.	3.3	278

	CITATIO	N REPORT	
#	Article	IF	CITATIONS
92	Aberrant Alternative Splicing Events in Parkinson's Disease. Cell Transplantation, 2013, 22, 653-661.	1.2	39
94	Phloroglucinol Attenuates Motor Functional Deficits in an Animal Model of Parkinson's Disease by Enhancing Nrf2 Activity. PLoS ONE, 2013, 8, e71178.	1.1	48
95	Design and Customization of Telemedicine Systems. Computational and Mathematical Methods in Medicine, 2013, 2013, 1-16.	0.7	28
96	Nigral Iron Elevation Is an Invariable Feature of Parkinson's Disease and Is a Sufficient Cause of Neurodegeneration. BioMed Research International, 2014, 2014, 1-9.	0.9	126
97	Molecular Mechanisms of Neurological Disease. , 2014, , 639-661.		3
98	Targeting GTPases in Parkinsonââ,¬â,,¢s disease: comparison to the historic path of kinase drug discovery and perspectives. Frontiers in Molecular Neuroscience, 2014, 7, 52.	1.4	12
99	Stem Cell Approaches for Treatment of Neurodegenerative Diseases. Clinical Pharmacology & Biopharmaceutics, 2014, 3, .	0.2	0
100	Targeted Activation of Heat Shock Proteins by Natural Bioactive Compounds to Prevent Neurodegenerative Diseases. Journal of Ancient Diseases & Preventive Remedies, 2014, 02, .	0.2	1
101	Interferon Gamma Potentiates the Injury Caused by MPP(+) on SH-SY5Y Cells, Which is Attenuated by the Nitric Oxide Synthases Inhibition. Neurochemical Research, 2014, 39, 2452-2464.	1.6	14
102	A Conserved Role for p48 Homologs in Protecting Dopaminergic Neurons from Oxidative Stress. PLoS Genetics, 2014, 10, e1004718.	1.5	33
103	Molecular Chaperone Dysfunction in Neurodegenerative Diseases and Effects of Curcumin. BioMed Research International, 2014, 2014, 1-14.	0.9	94
104	Vitamin A and Carotenoids and the Risk of Parkinson's Disease: A Systematic Review and Meta-Analysis. Neuroepidemiology, 2014, 42, 25-38.	1.1	68
105	Carboxyfullerene neuroprotection postinjury in Parkinsonian nonhuman primates. Annals of Neurology, 2014, 76, 393-402.	2.8	58
106	UCP4A protects against mitochondrial dysfunction and degeneration in <i>pink1</i> / <i>parkin</i> models of Parkinson's disease. FASEB Journal, 2014, 28, 5111-5121.	0.2	19
107	Motor impulsivity in Parkinson disease: Associations with <scp>COMT</scp> and <scp>DRD</scp> 2 polymorphisms. Scandinavian Journal of Psychology, 2014, 55, 278-286.	0.8	17
108	DICE, an efficient system for iterative genomic editing in human pluripotent stem cells. Nucleic Acids Research, 2014, 42, e34-e34.	6.5	94
109	Parkin-mediated ubiquitination of mutant glucocerebrosidase leads to competition with its substrates PARIS and ARTS. Orphanet Journal of Rare Diseases, 2014, 9, 86.	1.2	27
110	The role of the LRRK2 gene in Parkinsonism. Molecular Neurodegeneration, 2014, 9, 47.	4.4	180

		CITATION R	EPORT	
#	Article		IF	CITATIONS
111	Role of Aberrant α-Synuclein–Membrane Interactions in Parkinson's Disease. , 201	4, , 443-452.		0
112	Reading Comprehension in Parkinson's Disease. American Journal of Speech-Language Pa 23, S246-58.	thology, 2014,	0.9	15
113	Relationship and factor structure in multisystem neurodegeneration in Parkinson's diseas Neurologica Scandinavica, 2014, 130, 347-353.	se. Acta	1.0	12
114	Orchestrated increase of dopamine and PARK mRNAs but not miR-133b in dopamine neu Parkinson's disease. Neurobiology of Aging, 2014, 35, 2302-2315.	rons in	1.5	36
115	Factors determining when to start levodopa/carbidopa/entacapone treatment in Spanish Parkinson's disease. NeurologÃa (English Edition), 2014, 29, 153-160.	patients with	0.2	0
116	Pesticides exposure as etiological factors of Parkinson's disease and other neurodegener diseases—A mechanistic approach. Toxicology Letters, 2014, 230, 85-103.	ative	0.4	317
117	Molecular basis of Parkinsons's disease linked to LRRK2 mutations. Molecular Biolog	y, 2014, 48, 1-10.	0.4	9
118	Oxidative Stress-Induced Signaling Pathways Implicated in the Pathogenesis of Parkinsor NeuroMolecular Medicine, 2014, 16, 217-230.	l's Disease.	1.8	175
119	Neurotrophic Natural Products: Chemistry and Biology. Angewandte Chemie - Internatior 2014, 53, 956-987.	ial Edition,	7.2	106
120	Protective effect of hesperidin in a model of Parkinson's disease induced by 6-hydroxydo mice. Nutrition, 2014, 30, 1415-1422.	pamine in aged	1.1	109
121	Nepalese traditional medicine and symptoms related to Parkinson× ³ s disease and other of Patterns of the usage of plant resources along the Himalayan altitudinal range. Journal of Ethnopharmacology, 2014, 153, 178-189.	lisorders:	2.0	26
122	A Mitocentric View of Parkinson's Disease. Annual Review of Neuroscience, 2014, 37, 13	7-159.	5.0	115
123	Dysphagia in the Elderly. Clinics in Geriatric Medicine, 2014, 30, 43-53.		1.0	68
124	Common defects of mitochondria and iron in neurodegeneration and diabetes (MIND): A worth exploring. Biochemical Pharmacology, 2014, 88, 573-583.	paradigm	2.0	13
125	Animal Models of Parkinson's Disease: A Gateway to Therapeutics?. Neurotherapeutics, 2	:014, 11, 92-110.	2.1	78
126	Brain and peripheral pharmacokinetics of levodopa in the cynomolgus monkey following administration of opicapone, a third generation nitrocatechol COMT inhibitor. Neurophar 2014, 77, 334-341.	rmacology,	2.0	37
127	Targeting heat shock proteins to modulate α-synuclein toxicity. Therapeutic Advances in Disorders, 2014, 7, 33-51.	Neurological	1.5	53
128	Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopam Brain, 2014, 137, 2287-2302.	line neurons.	3.7	103

	CHAHON	KLFORT	
#	ARTICLE	IF	CITATIONS
129	Methyl fellow: A Potential Drug Scarloid for Parkinson's Disease. ChembioChem, 2014, 15, 1591-1598.	1.3	7
130	2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) Is Selectively Toxic to Primary Dopaminergic Neurons In Vitro. Toxicological Sciences, 2014, 140, 179-189.	1.4	22
131	Liquid-Liquid Phase Separation in Biology. Annual Review of Cell and Developmental Biology, 2014, 30, 39-58.	4.0	2,234
133	Modulation of alpha-synuclein toxicity in yeast using a novel microfluidic-based gradient generator. Lab on A Chip, 2014, 14, 3949-3957.	3.1	33
134	Mitochondrial proteomics investigation of a cellular model of impaired dopamine homeostasis, an early step in Parkinson's disease pathogenesis. Molecular BioSystems, 2014, 10, 1332.	2.9	48
135	Targeted Discovery and Validation of Plasma Biomarkers of Parkinson's Disease. Journal of Proteome Research, 2014, 13, 4535-4545.	1.8	30
137	Upregulation of human PINK1 gene expression by NFκB signalling. Molecular Brain, 2014, 7, 57.	1.3	18
138	Novel Inhibitors of Human DOPA Decarboxylase Extracted from <i>Euonymus glabra</i> Roxb ACS Chemical Biology, 2014, 9, 897-903.	1.6	13
139	Preventing α-synuclein aggregation: The role of the small heat-shock molecular chaperone proteins. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1830-1843.	1.8	70
140	Verification of a Parkinson's Disease Protein Signature in T-Lymphocytes by Multiple Reaction Monitoring. Journal of Proteome Research, 2014, 13, 3554-3561.	1.8	17
141	Hypomethylation of SNCA in blood of patients with sporadic Parkinson's disease. Journal of the Neurological Sciences, 2014, 337, 123-128.	0.3	90
142	Loss of PINK1 enhances neurodegeneration in a mouse model ofÂParkinson's disease triggered by mitochondrial stress. Neuropharmacology, 2014, 77, 350-357.	2.0	48
143	Novel and functional ABCB1 gene variant in sporadic Parkinson's disease. Neuroscience Letters, 2014, 566, 61-66.	1.0	15
144	Chemically-induced oxidative stress increases the vulnerability of PC12 cells to rotenone-induced toxicity. NeuroToxicology, 2014, 43, 102-109.	1.4	12
145	Stemming the Hype: What Can We Learn from iPSC Models of Parkinson's Disease and How Can We Learn It?. Journal of Parkinson's Disease, 2014, 4, 15-27.	1.5	14
146	A cyclodextrin-based approach for selective detection of catecholamine hormone mixtures. Micro and Nano Systems Letters, 2014, 2, .	1.7	13
147	Surprising behavioral and neurochemical enhancements in mice with combined mutations linked to Parkinson's disease. Neurobiology of Disease, 2014, 62, 113-123.	2.1	26
148	Factores determinantes del inicio de tratamiento con levodopa/carbidopa/entacapona en pacientes españoles con enfermedad de Parkinson. NeurologÃa, 2014, 29, 153-160.	0.3	2

#	Article	IF	CITATIONS
150	The Benefits of Exercise on Structural andÂFunctional Plasticity in the Rodent Hippocampus of Different Disease Models. Brain Plasticity, 2015, 1, 97-127.	1.9	47
151	Fractional anisotropy in the substantia nigra in Parkinson's disease: a complex picture. European Journal of Neurology, 2015, 22, 1408-1414.	1.7	44
152	Cross-species Transcriptomic Comparison of <i>In Vitro</i> and <i>In Vivo</i> Mammalian Neural Cells. Bioinformatics and Biology Insights, 2015, 9, BBI.S33124.	1.0	14
153	Gene expression profiling for human iPS-derived motor neurons from sporadic ALS patients reveals a strong association between mitochondrial functions and neurodegeneration. Frontiers in Cellular Neuroscience, 2015, 9, 289.	1.8	51
154	Neuroinflammation in Multiple System Atrophy: Response to and Cause of α-Synuclein Aggregation. Frontiers in Cellular Neuroscience, 2015, 9, 437.	1.8	77
155	Carbon nanotubes and graphene as emerging candidates in neuroregeneration and neurodrug delivery. International Journal of Nanomedicine, 2015, 10, 4267.	3.3	59
156	The Diagnostic and Differential Diagnosis Utility of Cerebrospinal Fluidα-Synuclein Levels in Parkinson's Disease: A Meta-Analysis. Parkinson's Disease, 2015, 2015, 1-11.	0.6	45
157	Mitochondria-Targeted Protective Compounds in Parkinson's and Alzheimer's Diseases. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-30.	1.9	80
158	Low muscle strength in late adolescence and Parkinson disease later in life. Neurology, 2015, 84, 1862-1869.	1.5	20
159	The Nâ€Terminus of αâ€ S ynuclein Forms Cu ^{II} â€Bridged Oligomers. Chemistry - A European Journa 2015, 21, 7111-7118.	^{ll,} 1.7	21
160	Occupational exposures and Parkinson's disease mortality in a prospective Dutch cohort. Occupational and Environmental Medicine, 2015, 72, 448-455.	1.3	48
161	Performance evaluation of combined feature selection and classification methods in diagnosing parkinson disease based on voice feature. , 2015, , .		11
162	Flies with Parkinson's disease. Experimental Neurology, 2015, 274, 42-51.	2.0	29
163	Dopamine midbrain neurons in health and Parkinson's disease: Emerging roles of voltage-gated calcium channels and ATP-sensitive potassium channels. Neuroscience, 2015, 284, 798-814.	1.1	118
164	Class-IIa Histone Deacetylase Inhibition Promotes the Growth of Neural Processes and Protects Them Against Neurotoxic Insult. Molecular Neurobiology, 2015, 51, 1432-1442.	1.9	31
165	Persulfidation (S-sulfhydration) and H2S. Handbook of Experimental Pharmacology, 2015, 230, 29-59.	0.9	151
166	Cerebral Toxocariasis: Silent Progression to Neurodegenerative Disorders?. Clinical Microbiology Reviews, 2015, 28, 663-686.	5.7	138
167	Selective dopamine detection using aptamer-functionalized glassy carbon electrodes. Canadian Journal of Chemistry, 2015, 93, 572-577.	0.6	12

#	Article	IF	CITATIONS
168	Genetic Factors in Environmentally Induced Disease. , 2015, , 21-43.		1
170	Genetic Models of Parkinson's Disease. , 2015, , 289-314.		0
171	Inflammasomes: mechanism of action, role in disease, and therapeutics. Nature Medicine, 2015, 21, 677-687.	15.2	2,476
172	Dopamine and Consolidation of Episodic Memory: Timing Is Everything. Journal of Cognitive Neuroscience, 2015, 27, 2035-2050.	1.1	21
173	Pharmacogenetics of Antipsychotic-Induced Movement Disorders as a Resource for Better Understanding Parkinson¢â,¬â,,¢s Disease Modifier Genes. Frontiers in Neurology, 2015, 6, 27.	1.1	7
174	α-Synuclein and β-Amyloid form a Bridged Copper Complex. Applied Magnetic Resonance, 2015, 46, 1041-1052.	0.6	7
175	LRRK2 mutations and neurotoxicant susceptibility. Experimental Biology and Medicine, 2015, 240, 752-759.	1.1	28
176	Toward stem cell-based phenotypic screens for neurodegenerative diseases. Nature Reviews Neurology, 2015, 11, 339-350.	4.9	65
177	Effects of impaired membrane interactions on α-synuclein aggregation and neurotoxicity. Neurobiology of Disease, 2015, 79, 150-163.	2.1	73
178	Gene-based vaccines and immunotherapeutic strategies against neurodegenerative diseases: Potential utility and limitations. Human Vaccines and Immunotherapeutics, 2015, 11, 1921-1926.	1.4	13
179	Exposure to D2-like dopamine receptor agonists inhibits swimming in Daphnia magna. Pharmacology Biochemistry and Behavior, 2015, 137, 101-109.	1.3	19
180	DNA methylation levels of α-synuclein intron 1 in the aging brain. Neurobiology of Aging, 2015, 36, 3334.e7-3334.e11.	1.5	23
181	SILAC-based quantitative proteomics identified lysosome as a fast response target to PDT agent Gd-N induced oxidative stress in human ovarian cancer IGROV1 cells. Molecular BioSystems, 2015, 11, 3059-3067.	2.9	6
182	Parkin-mediated K63-polyubiquitination targets ubiquitin C-terminal hydrolase L1 for degradation by the autophagy-lysosome system. Cellular and Molecular Life Sciences, 2015, 72, 1811-1824.	2.4	36
183	An update on the rotenone models of Parkinson's disease: Their ability to reproduce the features of clinical disease and model gene–environment interactions. NeuroToxicology, 2015, 46, 101-116.	1.4	251
184	A dopamine receptor contributes to paraquat-induced neurotoxicity in Drosophila. Human Molecular Genetics, 2015, 24, 197-212.	1.4	67
185	Cell type-specific transcriptome profiling in mammalian brains. Frontiers in Bioscience - Landmark, 2016, 21, 973-985.	3.0	6
186	Altered Expression of EPOMight Underlie Hepatic Hemangiomas in LRRK2Knockout Mice. BioMed Research International. 2016. 2016. 1-8.	0.9	2

#	Article	IF	CITATIONS
187	Reorganization of Synaptic Connections and Perineuronal Nets in the Deep Cerebellar Nuclei of <i>Purkinje Cell Degeneration</i> Mutant Mice. Neural Plasticity, 2016, 2016, 1-17.	1.0	18
188	A Review of Recent Advances in Neuroprotective Potential of 3-N-Butylphthalide and Its Derivatives. BioMed Research International, 2016, 2016, 1-9.	0.9	81
189	A Novel Homozygous p.L539F Mutation Identified in <i>PINK1</i> Gene in a Moroccan Patient with Parkinsonism. BioMed Research International, 2016, 2016, 1-5.	0.9	10
190	Nutraceuticals Neuroprotect Naturally. Studies in Natural Products Chemistry, 2016, , 373-397.	0.8	3
192	Functional prediction of differentially expressed lncRNAs in HSV-1 infected human foreskin fibroblasts. Virology Journal, 2016, 13, 137.	1.4	23
193	The Role of DNA Methylation and Histone Modifications in Neurodegenerative Diseases: A Systematic Review. PLoS ONE, 2016, 11, e0167201.	1.1	90
194	Lmx1a and Lmx1b regulate mitochondrial functions and survival of adult midbrain dopaminergic neurons. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4387-96.	3.3	75
195	A Review of the Association Between Parkinson Disease and Malignant Melanoma. Dermatologic Surgery, 2016, 42, 141-146.	0.4	36
196	Increased Risk of Parkinson's Disease in Patients With Obstructive Sleep Apnea. Medicine (United) Tj ETQq0 0 0 r	gBT/Over	^{-lo} င္ငန္ 10 Tf 50
197	Mitochondrial reactive oxygen species and inflammation: Molecular mechanisms, diseases and promising therapies. International Journal of Biochemistry and Cell Biology, 2016, 81, 281-293.	1.2	147
198	Alpha-synuclein modulates retinal iron homeostasis by facilitating the uptake of transferrin-bound iron: Implications for visual manifestations of Parkinson's disease. Free Radical Biology and Medicine, 2016, 97, 292-306.	1.3	46
199	Genetic Variants in MicroRNAs and Their Binding Sites Are Associated with the Risk of Parkinson Disease. Human Mutation, 2016, 37, 292-300.	1.1	52
200	Tmc1 Is a Dynamically Regulated Effector of the Rpn4 Proteotoxic Stress Response. Journal of Biological Chemistry, 2016, 291, 14788-14795.	1.6	12
201	PINK1-dependent phosphorylation of PINK1 and Parkin is essential for mitochondrial quality control. Cell Death and Disease, 2016, 7, e2501-e2501.	2.7	58
202	miR-27a and miR-27b regulate autophagic clearance of damaged mitochondria by targeting PTEN-induced putative kinase 1 (PINK1). Molecular Neurodegeneration, 2016, 11, 55.	4.4	106
203	Urinary Incontinence, Incident Parkinsonism, and Parkinson's Disease Pathology in Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, glw235.	1.7	2
204	APOE, MAPT, and COMT and Parkinson's Disease Susceptibility and Cognitive Symptom Progression. Journal of Parkinson's Disease, 2016, 6, 349-359.	1.5	53
205	Association of rs1801582 and rs1801334 PARK2 Polymorphisms with risk of Parkinson's disease: A case-control study in South India and Meta-Analysis. Meta Gene, 2016, 10, 32-38.	0.3	12

#	Article	IF	CITATIONS
206	The entangled ER-mitochondrial axis as a potential therapeutic strategy in neurodegeneration: A tangled duo unchained. Cell Calcium, 2016, 60, 218-234.	1.1	48
207	Phase Separation: Linking Cellular Compartmentalization to Disease. Trends in Cell Biology, 2016, 26, 547-558.	3.6	291
208	Amyloid- <i>β</i> peptide aggregation and the influence of carbon nanoparticles. Chinese Physics B, 2016, 25, 018704.	0.7	16
209	The contribution of mutant <i>GBA</i> to the development of Parkinson disease in <i>Drosophila</i> . Human Molecular Genetics, 2016, 25, ddw129.	1.4	60
210	Deciphering variability in the role of interleukin-1β in Parkinson's disease. Reviews in the Neurosciences, 2016, 27, 635-650.	1.4	18
211	Central Parkin: The evolving role of Parkin in the heart. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1307-1312.	0.5	24
212	Effects of pramipexole treatment on the α-synuclein content in serum exosomes of Parkinson's disease patients. Experimental and Therapeutic Medicine, 2016, 12, 1373-1376.	0.8	9
213	Loss of Pink1 modulates synaptic mitochondrial bioenergetics in the rat striatum prior to motor symptoms: concomitant complex I respiratory defects and increased complex IIâ€mediated respiration. Proteomics - Clinical Applications, 2016, 10, 1205-1217.	0.8	24
214	Novel Dimer Compounds That Bind α-Synuclein Can Rescue Cell Growth in a Yeast Model Overexpressing α-Synuclein. A Possible Prevention Strategy for Parkinson's Disease. ACS Chemical Neuroscience, 2016, 7, 1671-1680.	1.7	11
215	Incident parkinsonism in older adults without Parkinson disease. Neurology, 2016, 87, 1036-1044.	1.5	61
216	Glycosaminoglycanâ€Based Biohybrid Hydrogels: A Sweet and Smart Choice for Multifunctional Biomaterials. Advanced Materials, 2016, 28, 8861-8891.	11.1	156
217	Acrylamide induces locomotor defects and degeneration of dopamine neurons in <i>Caenorhabditis elegans</i> . Journal of Applied Toxicology, 2016, 36, 60-67.	1.4	52
218	Endolysosomal dysfunction in Parkinson's disease: Recent developments and future challenges. Movement Disorders, 2016, 31, 1433-1443.	2.2	34
219	Chronic mild stress accelerates the progression of Parkinson's disease in A53T α-synuclein transgenic mice. Experimental Neurology, 2016, 285, 61-71.	2.0	42
220	Novel incretin analogues improve autophagy and protect from mitochondrial stress induced by rotenone in <scp>SH</scp> â€ <scp>SY</scp> 5Y cells. Journal of Neurochemistry, 2016, 139, 55-67.	2.1	57
221	Multivalent approaches and beyond: novel tools for the investigation of dopamine D ₂ receptor pharmacology. Future Medicinal Chemistry, 2016, 8, 1349-1372.	1.1	8
222	Serum miRâ€⊋21 serves as a biomarker for Parkinson's disease. Cell Biochemistry and Function, 2016, 34, 511-515.	1.4	87
223	Differences in vulnerability of neurons and astrocytes to heme oxygenase-1 modulation: Implications for mitochondrial ferritin. Scientific Reports, 2016, 6, 24200.	1.6	26

#	Article	IF	CITATIONS
224	Phenome-based gene discovery provides information about Parkinson's disease drug targets. BMC Genomics, 2016, 17, 493.	1.2	12
225	Cdk5-Dependent Activation of Neuronal Inflammasomes in Parkinson's Disease. Movement Disorders, 2016, 31, 366-376.	2.2	79
226	Loss of collapsin response mediator protein 4 suppresses dopaminergic neuron death in an 1â€methylâ€4â€phenylâ€1,2,3,6â€tetrahydropyridineâ€induced mouse model of Parkinson's disease. Journal of Neurochemistry, 2016, 137, 795-805.	2.1	14
227	Dual Function of Phosphoubiquitin in E3 Activation of Parkin. Journal of Biological Chemistry, 2016, 291, 16879-16891.	1.6	12
228	Molecular Features Underlying Neurodegeneration Identified through InÂVitro Modeling of Genetically Diverse Parkinson's Disease Patients. Cell Reports, 2016, 15, 2411-2426.	2.9	76
229	Next-generation sequencing reveals substantial genetic contribution to dementia with Lewy bodies. Neurobiology of Disease, 2016, 94, 55-62.	2.1	55
230	Discovery, Synthesis, and Functional Characterization of a Novel Neuroprotective Natural Product from the Fruit of <i>Alpinia oxyphylla</i> for use in Parkinson's Disease Through LC/MS-Based Multivariate Data Analysis-Guided Fractionation. Journal of Proteome Research, 2016, 15, 2595-2606.	1.8	38
231	Conformation and electronic structure of Carbidopa. A QM/MD study. Journal of Theoretical and Computational Chemistry, 2016, 15, 1650002.	1.8	0
232	The neurotoxicity of iron, copper and cobalt in Parkinson's disease through ROS-mediated mechanisms. BioMetals, 2016, 29, 665-678.	1.8	73
233	Alphaâ€Synuclein as a Biomarker for Parkinson's Disease. Brain Pathology, 2016, 26, 410-418.	2.1	217
234	Association between two α-2-macroglobulin gene polymorphisms and Parkinson's disease: a meta-analysis. International Journal of Neuroscience, 2016, 126, 193-198.	0.8	9
235	Identification of a panel of five serum miRNAs as a biomarker for Parkinson's disease. Parkinsonism and Related Disorders, 2016, 22, 68-73.	1.1	149
236	The Potential Mutation of GAK Gene in the Typical Sporadic Parkinson's Disease from the Han Population of Chinese Mainland. Molecular Neurobiology, 2016, 53, 7119-7136.	1.9	6
237	RGS6 as a Novel Therapeutic Target in CNS Diseases and Cancer. AAPS Journal, 2016, 18, 560-572.	2.2	27
238	Multifactorial theory applied to the neurotoxicity of paraquat and paraquat-induced mechanisms of developing Parkinson's disease. Laboratory Investigation, 2016, 96, 496-507.	1.7	73
239	Recent advances in biosensors for neurodegenerative disease detection. TrAC - Trends in Analytical Chemistry, 2016, 79, 363-370.	5.8	47
240	Prevention of Neurodegenerative Disorders by Nutraceuticals. , 2016, , 15-28.		0
241	The V81M variant of tyrosine hydroxylase is associated with more severe freezing of gait in Parkinson's disease. Parkinsonism and Related Disorders, 2016, 23, 86-90.	1.1	3

#	Article	IF	CITATIONS
242	Induction of oral tremor in mice by the acetylcholinesterase inhibitor galantamine: Reversal with adenosine A2A antagonism. Pharmacology Biochemistry and Behavior, 2016, 140, 62-67.	1.3	7
243	Specific small-RNA signatures in the amygdala at premotor and motor stages of Parkinson's disease revealed by deep sequencing analysis. Bioinformatics, 2016, 32, 673-681.	1.8	29
244	The role of serotonergic, adrenergic and dopaminergic receptors in antidepressant-like effect. Pharmacological Reports, 2016, 68, 263-274.	1.5	63
245	Neuroregeneration: Disease Modeling and Therapeutic Strategies for Alzheimer's and Parkinson's Diseases. Biosystems and Biorobotics, 2016, , 293-325.	0.2	2
246	Parkinsonism in Older Adults and Its Association With Adverse Health Outcomes and Neuropathology. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 549-556.	1.7	51
247	Progression and recovery of Parkinsonism in a chronic progressive MPTP-induction model in the marmoset without persistent molecular and cellular damage. Neuroscience, 2016, 312, 247-259.	1.1	13
249	Patient-Specific Induced Pluripotent Stem Cells for Disease Modeling and Phenotypic Drug Discovery. Journal of Medicinal Chemistry, 2016, 59, 2-15.	2.9	31
250	Pharmacophore model prediction, 3D-QSAR and molecular docking studies on vinyl sulfones targeting Nrf2-mediated gene transcription intended for anti-Parkinson drug design. Journal of Biomolecular Structure and Dynamics, 2016, 34, 1282-1297.	2.0	40
251	Caspase-1 Deficiency Alleviates Dopaminergic Neuronal Death via Inhibiting Caspase-7/AIF Pathway in MPTP/p Mouse Model of Parkinson's Disease. Molecular Neurobiology, 2017, 54, 4292-4302.	1.9	67
252	Expression of the Parkinson's Disease-Associated Gene Alpha-Synuclein is Regulated by the Neuronal Cell Fate Determinant TRIM32. Molecular Neurobiology, 2017, 54, 4257-4270.	1.9	11
253	mTOR Signaling in Parkinson's Disease. NeuroMolecular Medicine, 2017, 19, 1-10.	1.8	74
254	Pikuni-Blackfeet traditional medicine: Neuroprotective activities of medicinal plants used to treat Parkinson's disease-related symptoms. Journal of Ethnopharmacology, 2017, 206, 393-407.	2.0	18
255	Discovery and functional prioritization of Parkinson's disease candidate genes from large-scale whole exome sequencing. Genome Biology, 2017, 18, 22.	3.8	96
256	The Proteasome Inhibition Model ofÂParkinson's Disease. Journal of Parkinson's Disease, 2017, 7, 31-63.	1.5	81
257	Stimulation of synaptoneurosome glutamate release by monomeric and fibrillated αâ€synuclein. Journal of Neuroscience Research, 2017, 95, 1871-1887.	1.3	23
258	Genome-Scale Networks Link Neurodegenerative Disease Genes to α-Synuclein through Specific Molecular Pathways. Cell Systems, 2017, 4, 157-170.e14.	2.9	102
259	Lumbee traditional medicine: Neuroprotective activities of medicinal plants used to treat Parkinson's disease-related symptoms. Journal of Ethnopharmacology, 2017, 206, 408-425.	2.0	29
260	The involvement of Eag1 potassium channels and miR-34a in rotenone-induced death of dopaminergic SH-SY5Y cells. Molecular Medicine Reports, 2017, 15, 1479-1488.	1.1	24

#	Article	IF	Citations
261	Platelets and Neurodegenerative Diseases. , 2017, , 1209-1224.		1
262	Expanded and Wild-type Ataxin-3 Modify the Redox Status of SH-SY5Y Cells Overexpressing α-Synuclein. Neurochemical Research, 2017, 42, 1430-1437.	1.6	8
263	A practical review of gastrointestinal manifestations in Parkinson's disease. Parkinsonism and Related Disorders, 2017, 39, 17-26.	1.1	40
264	Polymorphisms of <i>COMT</i> (c.649G>A), <i>MAO-A</i> (c.1460C>T), <i>NET</i> (c.1287G>A) Genes and the Level of Catecholamines, Serotonin in Patients with Parkinson's Disease. DNA and Cell Biology, 2017, 36, 501-512.	0.9	2
265	The role of Ca2+ signaling in Parkinson's disease. DMM Disease Models and Mechanisms, 2017, 10, 519-535.	1.2	132
266	Effect of intranasal stem cell administration on the nigrostriatal system in a mouse model of Parkinson's disease. Experimental and Therapeutic Medicine, 2017, 13, 976-982.	0.8	50
267	Revisiting the flip side: Long-term depression of synaptic efficacy in the hippocampus. Neuroscience and Biobehavioral Reviews, 2017, 80, 394-413.	2.9	47
268	Epigenetics in Parkinson's Disease. Advances in Experimental Medicine and Biology, 2017, 978, 363-390.	0.8	50
269	MicroRNAs in Parkinson's disease. Experimental Brain Research, 2017, 235, 2359-2374.	0.7	68
270	Early-onset mild cognitive impairment in Parkinson's disease: Altered corticopetal cholinergic network. Scientific Reports, 2017, 7, 2381.	1.6	15
271	Optimization of EMG movement recognition for use in an upper limb wearable robot. , 2017, , .		8
272	The Microbiome and Human Biology. Annual Review of Genomics and Human Genetics, 2017, 18, 65-86.	2.5	266
273	α-Synuclein impairs ferritinophagy in the retinal pigment epithelium: Implications for retinal iron dyshomeostasis in Parkinson's disease. Scientific Reports, 2017, 7, 12843.	1.6	47
274	A Systems Model of Parkinson's Disease Using Biochemical Systems Theory. OMICS A Journal of Integrative Biology, 2017, 21, 454-464.	1.0	14
275	Mitochondrial dynamics in Parkinson's disease: a role for α-synuclein?. DMM Disease Models and Mechanisms, 2017, 10, 1075-1087.	1.2	134
276	A meta-analysis of genome-wide association studies identifies 17 new Parkinson's disease risk loci. Nature Genetics, 2017, 49, 1511-1516.	9.4	944
277	Understanding taurine CNS activity using alternative zebrafish models. Neuroscience and Biobehavioral Reviews, 2017, 83, 525-539.	2.9	16
278	RAN Translation Regulated by Muscleblind Proteins in Myotonic Dystrophy Type 2. Neuron, 2017, 95, 1292-1305.e5.	3.8	116

#	Article	IF	CITATIONS
279	CpG demethylation in the neurotoxicity of 1-methyl-4-phenylpyridinium might mediate transcriptional up-regulation of α-synuclein in SH-SY5Y cells. Neuroscience Letters, 2017, 659, 124-132.	1.0	9
280	Levodopa (L-DOPA) attenuates endoplasmic reticulum stress response and cell death signaling through DRD2 in SH-SY5Y neuronal cells under α-synuclein-induced toxicity. Neuroscience, 2017, 358, 336-348.	1.1	18
281	Gait Influence Diagrams in Parkinson's Disease. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 1257-1267.	2.7	9
282	Neurotrophin Signaling and Stem Cells—Implications for Neurodegenerative Diseases and Stem Cell Therapy. Molecular Neurobiology, 2017, 54, 7401-7459.	1.9	49
283	α-synuclein aggregation and its modulation. International Journal of Biological Macromolecules, 2017, 100, 37-54.	3.6	106
284	Tris(2-chloroethyl) phosphate (TCEP) and tris(2-chloropropyl) phosphate (TCPP) induce locomotor deficits and dopaminergic degeneration in Caenorhabditis elegans. Toxicology Research, 2017, 6, 63-72.	0.9	44
285	Sirtuins as modifiers of Parkinson's disease pathology. Journal of Neuroscience Research, 2017, 95, 930-942.	1.3	37
286	c-Abl and Parkinson's Disease: Mechanisms and Therapeutic Potential. Journal of Parkinson's Disease, 2017, 7, 589-601.	1.5	67
287	Lignan Diesters of Canangafruticoside A from the Leaves of <i>Cananga odorata</i> var. <i>odorata</i> . Chemical and Pharmaceutical Bulletin, 2017, 65, 97-101.	0.6	7
288	Investigation into experimental toxicological properties of plant protection products having a potential link to Parkinson's disease and childhood leukaemiaâ€. EFSA Journal, 2017, 15, e04691.	0.9	20
289	Relationship between Apolipoprotein Superfamily and Parkinson's Disease. Chinese Medical Journal, 2017, 130, 2616-2623.	0.9	13
290	Eye Movements in Parkinson's Disease and Inherited Parkinsonian Syndromes. Frontiers in Neurology, 2017, 8, 592.	1.1	74
291	Modulation of Alpha-synuclein Expression and Associated Effects by MicroRNA Let-7 in Transgenic C. elegans. Frontiers in Molecular Neuroscience, 2017, 10, 328.	1.4	32
292	Effects of dopamine on reinforcement learning and consolidation in Parkinson's disease. ELife, 2017, 6,	2.8	52
293	Serum uric acid levels in patients with Parkinson's disease: A meta-analysis. PLoS ONE, 2017, 12, e0173731.	1.1	83
294	Parkinson disease polygenic risk score is associated with Parkinson disease status and age at onset but not with alpha-synuclein cerebrospinal fluid levels. BMC Neurology, 2017, 17, 198.	0.8	55
295	Dietary Phytochemicals in Neurodegenerative Disease. , 2017, , 361-391.		6
296	Sostenibilidad y turismo en los paisajes culturales de la industrialización. Arbor, 2017, 193, 400.	0.1	8

#	Article	IF	CITATIONS
297	Outcomes of Primary Total Knee Arthroplasty in Patients With Parkinson's Disease. Journal of Arthroplasty, 2018, 33, 1745-1748.	1.5	17
298	Harnessing neuroplasticity: modern approaches and clinical future. International Journal of Neuroscience, 2018, 128, 1061-1077.	0.8	35
299	Gallic Acid Protects 6-OHDA Induced Neurotoxicity by Attenuating Oxidative Stress in Human Dopaminergic Cell Line. Neurochemical Research, 2018, 43, 1150-1160.	1.6	65
300	Multitarget effects of Korean Red Cinseng in animal model of Parkinson's disease: antiapoptosis, antioxidant, antiinflammation, and maintenance of blood–brain barrier integrity. Journal of Ginseng Research, 2018, 42, 379-388.	3.0	47
301	Changes in the Serum Urate Level Can Predict the Development of Parkinsonism in the 6-Hydroxydopamine Animal Model. Neurochemical Research, 2018, 43, 1086-1095.	1.6	12
302	Impaired Wnt signaling in dopamine containing neurons is associated with pathogenesis in a rotenone triggered Drosophila Parkinson's disease model. Scientific Reports, 2018, 8, 2372.	1.6	43
303	What Can We Learn About Human Disease from the Nematode C. elegans?. Methods in Molecular Biology, 2018, 1706, 53-75.	0.4	66
304	Toxic properties of microsome-associated alpha-synuclein species in mouse primary neurons. Neurobiology of Disease, 2018, 111, 36-47.	2.1	21
305	Potential neuroprotective effect of androstâ€5â€eneâ€3β, 17βâ€diol (ADIOL) on the striatum, and substantia ni in Parkinson's disease rat model. Journal of Cellular Physiology, 2018, 233, 5981-6000.	^{gra} 2.0	8
306	Astroglial and microglial contributions to iron metabolism disturbance in Parkinson's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 967-973.	1.8	41
307	Synaptotagmin-11 is a critical mediator of parkin-linked neurotoxicity and Parkinson's disease-like pathology. Nature Communications, 2018, 9, 81.	5.8	55
308	Advances in microstructural diffusion neuroimaging for psychiatric disorders. NeuroImage, 2018, 182, 259-282.	2.1	77
309	Mitochondrial alterations in Parkinson's disease human samples and cellular models. Neurochemistry International, 2018, 118, 61-72.	1.9	58
310	Recent computational studies of membrane interaction and disruption of human islet amyloid polypeptide: Monomers, oligomers and protofibrils. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1826-1839.	1.4	34
311	Selective dopaminergic neurotoxicity of three heterocyclic amine subclasses in primary rat midbrain neurons. NeuroToxicology, 2018, 65, 68-84.	1.4	24
312	Modulation of ARTS and XIAP by Parkin Is Associated with Carnosic Acid Protects SH-SY5Y Cells against 6-Hydroxydopamine-Induced Apoptosis. Molecular Neurobiology, 2018, 55, 1786-1794.	1.9	15
313	The developing utility of zebrafish models of neurological and neuropsychiatric disorders: A critical review. Experimental Neurology, 2018, 299, 157-171.	2.0	188
314	Spinal <scp>L</scp> ewy body pathology in older adults without an antemortem diagnosis of <scp>P</scp> arkinson's disease. Brain Pathology, 2018, 28, 560-568.	2.1	18

#	Article	IF	CITATIONS
315	Alpha Lipoamide Ameliorates Motor Deficits and Mitochondrial Dynamics in the Parkinson's Disease Model Induced by 6-Hydroxydopamine. Neurotoxicity Research, 2018, 33, 759-767.	1.3	15
316	α-synuclein Induces Mitochondrial Dysfunction through Spectrin and the Actin Cytoskeleton. Neuron, 2018, 97, 108-124.e6.	3.8	181
317	Chemical Biology of H ₂ S Signaling through Persulfidation. Chemical Reviews, 2018, 118, 1253-1337.	23.0	690
318	Mechanistic contributions of FBXO7 to Parkinson disease. Journal of Neurochemistry, 2018, 144, 118-127.	2.1	25
319	Genetics of Parkinson's disease and related disorders. Journal of Medical Genetics, 2018, 55, 73-80.	1.5	55
320	Geriatric Anesthesia: Age-Dependent Changes in the Central and Peripheral Nervous Systems. , 2018, , 145-160.		0
321	Predicting the occurrence of Parkinsonâ \in $^{ m Ms}$ Disease using various Classification Models. , 2018, , .		11
322	Motor Impairment Estimates via Touchscreen Typing Dynamics Toward Parkinson's Disease Detection From Data Harvested In-the-Wild. Frontiers in ICT, 2018, 5, .	3.6	25
323	Lrrk promotes tau neurotoxicity through dysregulation of actin and mitochondrial dynamics. PLoS Biology, 2018, 16, e2006265.	2.6	44
324	Computational Studies Applied to Flavonoids against Alzheimer's and Parkinson's Diseases. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-21.	1.9	51
325	Neuroprotective Effects of a Traditional Multi-Herbal Medicine Kyung-Ok-Ko in an Animal Model of Parkinson's Disease: Inhibition of MAPKs and NF-κB Pathways and Activation of Keap1-Nrf2 Pathway. Frontiers in Pharmacology, 2018, 9, 1444.	1.6	15
326	The codon sequences predict protein lifetimes and other parameters of the protein life cycle in the mouse brain. Scientific Reports, 2018, 8, 16913.	1.6	17
327	Inhibition of catechol-O-methyltransferase in the cynomolgus monkey by opicapone after acute and repeated administration. Neuropharmacology, 2018, 143, 282-288.	2.0	4
328	Parkinson's disease research: adopting a more human perspective to accelerate advances. Drug Discovery Today, 2018, 23, 1950-1961.	3.2	15
329	Aging and the Inflammasomes. Experientia Supplementum (2012), 2018, 108, 303-320.	0.5	9
330	The Protective Effect of Repeated 1MeTIQ Administration on the Lactacystin-Induced Impairment of Dopamine Release and Decline in TH Level in the Rat Brain. Neurotoxicity Research, 2018, 34, 706-716.	1.3	3
331	Axin-2 knockdown promote mitochondrial biogenesis and dopaminergic neurogenesis by regulating Wnt/β-catenin signaling in rat model of Parkinson's disease. Free Radical Biology and Medicine, 2018, 129, 73-87.	1.3	49
332	Touchscreen typing-pattern analysis for detecting fine motor skills decline in early-stage Parkinson's disease. Scientific Reports, 2018, 8, 7663.	1.6	59

#	Article	IF	CITATIONS
333	Multi-Target Protective Effects of Gintonin in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Mediated Model of Parkinson's Disease via Lysophosphatidic Acid Receptors. Frontiers in Pharmacology, 2018, 9, 515.	1.6	44
334	An Inflammation-Centric View of Neurological Disease: Beyond the Neuron. Frontiers in Cellular Neuroscience, 2018, 12, 72.	1.8	320
335	pTSara-NatB, an improved N-terminal acetylation system for recombinant protein expression in E. coli. PLoS ONE, 2018, 13, e0198715.	1.1	4
336	Role of Plant-Derived Flavonoids and Their Mechanism in Attenuation of Alzheimer's and Parkinson's Diseases: An Update of Recent Data. Molecules, 2018, 23, 814.	1.7	71
338	Differential interaction of α-synuclein N-terminal segment with mitochondrial model membranes. International Journal of Biological Macromolecules, 2018, 119, 1286-1293.	3.6	3
339	CRISPR/Cas9-Mediated Generation of Guangxi Bama Minipigs Harboring Three Mutations in α-Synuclein Causing Parkinson's Disease. Scientific Reports, 2018, 8, 12420.	1.6	38
340	Oligo-Porphyran Ameliorates Neurobehavioral Deficits in Parkinsonian Mice by Regulating the PI3K/Akt/Bcl-2 Pathway. Marine Drugs, 2018, 16, 82.	2.2	25
341	Sirtuins as Modifiers of Huntington's Disease (HD) Pathology. Progress in Molecular Biology and Translational Science, 2018, 154, 105-145.	0.9	17
342	Parallel roles of transcription factors dFOXO and FER2 in the development and maintenance of dopaminergic neurons. PLoS Genetics, 2018, 14, e1007271.	1.5	20
343	δ-Opioid Receptor Activation Attenuates the Oligomer Formation Induced by Hypoxia and/or α-Synuclein Overexpression/Mutation Through Dual Signaling Pathways. Molecular Neurobiology, 2019, 56, 3463-3475.	1.9	22
344	Ganoderma lucidum extract ameliorates MPTP-induced parkinsonism and protects dopaminergic neurons from oxidative stress via regulating mitochondrial function, autophagy, and apoptosis. Acta Pharmacologica Sinica, 2019, 40, 441-450.	2.8	65
345	Strengths and limitations of morphological and behavioral analyses in detecting dopaminergic deficiency in Caenorhabditis elegans. NeuroToxicology, 2019, 74, 209-220.	1.4	16
346	Microbubble-facilitated ultrasound pulsation promotes direct α-synuclein gene delivery. Biochemical and Biophysical Research Communications, 2019, 517, 77-83.	1.0	6
347	Evidence From Parkinson's Disease That the Superior Colliculus Couples Action and Perception. Movement Disorders, 2019, 34, 1680-1689.	2.2	8
348	Genetic Silencing of Fatty Acid Desaturases Modulates α-Synuclein Toxicity and Neuronal Loss in Parkinson-Like Models of C. elegans. Frontiers in Aging Neuroscience, 2019, 11, 207.	1.7	16
349	Impaired D2 receptor-dependent dopaminergic transmission in prefrontal cortex of awake mouse model of Parkinson's disease. Brain, 2019, 142, 3099-3115.	3.7	17
350	Current Progress of Mitochondrial Quality Control Pathways Underlying the Pathogenesis of Parkinson's Disease. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-11.	1.9	27
351	A New Cell Model for Investigating Prion Strain Selection and Adaptation. Viruses, 2019, 11, 888.	1.5	4

#	Article	IF	CITATIONS
352	Neuronal <i><scp>KIF</scp>5b</i> deletion induces <i>striatum</i> â€dependent locomotor impairments and defects in membrane presentation of dopamine D2 receptors. Journal of Neurochemistry, 2019, 149, 362-380.	2.1	12
353	Dietary Restriction and Neuroinflammation: A Potential Mechanistic Link. International Journal of Molecular Sciences, 2019, 20, 464.	1.8	29
354	Intranasal Administration of Extracellular Vesicles Derived from Human Teeth Stem Cells Improves Motor Symptoms and Normalizes Tyrosine Hydroxylase Expression in the Substantia Nigra and Striatum of the 6-Hydroxydopamine-Treated Rats. Stem Cells Translational Medicine, 2019, 8, 490-499.	1.6	100
355	Gene-by-environment interactions in Alzheimer's disease and Parkinson's disease. Neuroscience and Biobehavioral Reviews, 2019, 103, 73-80.	2.9	99
356	Association of the Polygenic Risk Score with the Incidence Risk of Parkinson's Disease and Cerebrospinal Fluid α-Synuclein in a Chinese Cohort. Neurotoxicity Research, 2019, 36, 515-522.	1.3	8
357	Rosmarinic acid suppresses Alzheimer's disease development by reducing amyloid β aggregation by increasing monoamine secretion. Scientific Reports, 2019, 9, 8711.	1.6	82
358	Parkin interacting substrate zinc finger protein 746 is a pathological mediator in Parkinson's disease. Brain, 2019, 142, 2380-2401.	3.7	46
359	Glial <i>HMOX1</i> expression promotes central and peripheral αâ€synuclein dysregulation and pathogenicity in parkinsonian mice. Glia, 2019, 67, 1730-1744.	2.5	25
360	Mast Cells in Neurodegenerative Disease. Frontiers in Cellular Neuroscience, 2019, 13, 171.	1.8	57
362	Association between autophagy and rapid eye movement sleep loss-associated neurodegenerative and patho-physio-behavioral changes. Sleep Medicine, 2019, 63, 29-37.	0.8	24
363	The association between Parkinson's disease and temporomandibular disorder. PLoS ONE, 2019, 14, e0217763.	1.1	10
364	Gender specific decrease of a set of circulating N-acylphosphatidyl ethanolamines (NAPEs) in the plasma of Parkinson's disease patients. Metabolomics, 2019, 15, 74.	1.4	9
365	Effects of inspiratory muscle training on respiratory muscle strength, lung function, functional capacity and cardiac autonomic function in Parkinson's disease: Randomized controlled clinical trial protocol. Physiotherapy Research International, 2019, 24, e1777.	0.7	7
366	Norepinephrine–Fe(III)–ATP Ternary Complex and Its Relevance to Parkinson's Disease. ACS Chemical Neuroscience, 2019, 10, 2777-2785.	1.7	4
367	Earliest Mechanisms of Dopaminergic Neurons Sufferance in a Novel Slow Progressing Ex Vivo Model of Parkinson Disease in Rat Organotypic Cultures of Substantia Nigra. International Journal of Molecular Sciences, 2019, 20, 2224.	1.8	15
368	E46K-like α-synuclein mutants increase lipid interactions and disrupt membrane selectivity. Journal of Biological Chemistry, 2019, 294, 9799-9812.	1.6	32
369	UsingDrosophilaas a platform for drug discovery from natural products in Parkinson's disease. MedChemComm, 2019, 10, 867-879.	3.5	24
370	Chronic renal dysfunction, proteinuria, and risk of Parkinson's disease in the elderly. Movement Disorders, 2019, 34, 1184-1191.	2.2	33

#	Article	IF	CITATIONS
371	Parkinson's Disease is Associated with Dysregulations of a Dopamine-Modulated Gene Network Relevant to Sleep and Affective Neurobehaviors in the Striatum. Scientific Reports, 2019, 9, 4808.	1.6	13
372	The influence of dopaminergic medication on gait automaticity in Parkinson's disease. Journal of Clinical Neuroscience, 2019, 65, 71-76.	0.8	5
373	Mapping the experiences and needs of deep brain stimulation for people with Parkinson's disease and their family members. Brain Impairment, 2019, 20, 211-225.	0.5	5
374	The Roles of Post-translational Modifications on α-Synuclein in the Pathogenesis of Parkinson's Diseases. Frontiers in Neuroscience, 2019, 13, 381.	1.4	136
375	Tremor-Dominant in Parkinson Disease: The Relevance to Iron Metabolism and Inflammation. Frontiers in Neuroscience, 2019, 13, 255.	1.4	21
376	The influence of dopaminergic medication on balance automaticity in Parkinson's disease. Gait and Posture, 2019, 70, 98-103.	0.6	18
377	Selective inhibition of mitochondrial sodium-calcium exchanger protects striatal neurons from α-synuclein plus rotenone induced toxicity. Cell Death and Disease, 2019, 10, 80.	2.7	17
378	Motor Learning Deficits in Parkinson's Disease (PD) and Their Effect on Training Response in Gait and Balance: A Narrative Review. Frontiers in Neurology, 2019, 10, 62.	1.1	84
379	Lactacystin: first-in-class proteasome inhibitor still excelling and an exemplar for future antibiotic research. Journal of Antibiotics, 2019, 72, 189-201.	1.0	34
380	Protein misfolding and aggregation in neurodegenerative diseases: a review of pathogeneses, novel detection strategies, and potential therapeutics. Reviews in the Neurosciences, 2019, 30, 339-358.	1.4	84
381	Wearable System for Early Identification of Parkinson's Disease Symptoms Through the Evaluation of the Gait Training. , 2019, , .		2
382	Dimensionality Reduction of Attributes in order to Predict Parkinson's Disease Using Linear Model. , 2019, , .		0
383	The role of LRRK2 in cell signalling. Biochemical Society Transactions, 2019, 47, 197-207.	1.6	34
384	Anti-Parkinson activity of bioactive substances extracted from Holothuria leucospilota. Biomedicine and Pharmacotherapy, 2019, 109, 1967-1977.	2.5	27
385	Proteomic analysis of protein homeostasis and aggregation. Journal of Proteomics, 2019, 198, 98-112.	1.2	30
386	The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in Parkinson's disease. International Immunopharmacology, 2019, 67, 458-464.	1.7	294
387	Mitochondrial dysfunction and oxidative stress in induced pluripotent stem cell models of Parkinson's disease. European Journal of Neuroscience, 2019, 49, 525-532.	1.2	32
388	Low Molecular Weight Sulfated Chitosan: Neuroprotective Effect on Rotenone-Induced In Vitro Parkinson's Disease. Neurotoxicity Research, 2019, 35, 505-515.	1.3	19

#	Article	IF	CITATIONS
389	Pretreatment with crocin along with treadmill exercise ameliorates motor and memory deficits in hemiparkinsonian rats by anti-inflammatory and antioxidant mechanisms. Metabolic Brain Disease, 2019, 34, 459-468.	1.4	20
390	Parkinsonian GM2 synthase knockout mice lacking mature gangliosides develop urinary dysfunction and neurogenic bladder. Experimental Neurology, 2019, 311, 265-273.	2.0	8
391	Microbiome–microglia connections via the gut–brain axis. Journal of Experimental Medicine, 2019, 216, 41-59.	4.2	275
392	Marmosets in Neurologic Disease Research. , 2019, , 415-435.		1
393	δ-Opioid Receptor Activation Attenuates Hypoxia/MPP+-Induced Downregulation of PINK1: a Novel Mechanism of Neuroprotection Against Parkinsonian Injury. Molecular Neurobiology, 2019, 56, 252-266.	1.9	13
394	Validity and reliability of the Persian version of the Montreal Cognitive Assessment (MoCA-P) scale among subjects with Parkinson's disease. Applied Neuropsychology Adult, 2020, 27, 431-439.	0.7	20
395	Apelin-36 mediates neuroprotective effects by regulating oxidative stress, autophagy and apoptosis in MPTP-induced Parkinson's disease model mice. Brain Research, 2020, 1726, 146493.	1.1	42
396	Open questions on the nature of Parkinson's disease: from triggers to spreading pathology. Journal of Medical Genetics, 2020, 57, 73-81.	1.5	17
397	MiRâ€⊋9c protects against inflammation and apoptosis in Parkinson's disease model in vivo and in vitro by targeting SP1. Clinical and Experimental Pharmacology and Physiology, 2020, 47, 372-382.	0.9	46
398	Anti-Parkinson's disease activity of phenolic acids from <i>Eucommia ulmoides</i> Oliver leaf extracts and their autophagy activation mechanism. Food and Function, 2020, 11, 1425-1440.	2.1	48
399	Neuroprotective effect of crocin against rotenone-induced Parkinson's disease in rats: Interplay between PI3K/Akt/mTOR signaling pathway and enhanced expression of miRNA-7 and miRNA-221. Neuropharmacology, 2020, 164, 107900.	2.0	73
400	Therapeutic implications of circadian clocks in neurodegenerative diseases. Journal of Neuroscience Research, 2020, 98, 1095-1113.	1.3	10
401	Neuroprotective potential of chrysin in Parkinson's disease: Molecular mechanisms and clinical implications. Neurochemistry International, 2020, 132, 104612.	1.9	60
402	Twice subacute MPTP administrations induced time-dependent dopaminergic neurodegeneration and inflammation in midbrain and ileum, as well as gut microbiota disorders in PD mice. NeuroToxicology, 2020, 76, 200-212.	1.4	23
403	The microbiota–microglia axis in central nervous system disorders. Brain Pathology, 2020, 30, 1159-1177.	2.1	52
404	A Systematic Review of Total Knee Arthroplasty in Neurologic Conditions: Survivorship, Complications, and Surgical Considerations. Journal of Arthroplasty, 2020, 35, 3383-3392.	1.5	14
405	Ghrelin protects dopaminergic neurons against MPTP neurotoxicity through promoting autophagy and inhibiting endoplasmic reticulum mediated apoptosis. Brain Research, 2020, 1746, 147023.	1.1	24
406	Tolerability and Blinding of Transcranial Direct Current Stimulation in People with Parkinson's Disease: A Critical Review. Brain Sciences, 2020, 10, 467.	1.1	8

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
407	Drosophila Skp1 Homologue SkpA Plays a Neuroprotective Role in Adult Brain. IScience, 2020, 23, 101375.	1.9	5
408	Identifying a Comprehensive ceRNA Network to Reveal Novel Targets for the Pathogenesis of Parkinson's Disease. Frontiers in Neurology, 2020, 11, 810.	1.1	16
410	Preparation and Neuroprotective Activity of Glucuronomannan Oligosaccharides in an MPTP-Induced Parkinson's Model. Marine Drugs, 2020, 18, 438.	2.2	8
411	Challenges in ICU Care. Critical Care Nursing Quarterly, 2020, 43, 205-215.	0.4	2
412	Comparative proteomic analysis highlights metabolic dysfunction in α-synucleinopathy. Npj Parkinson's Disease, 2020, 6, 40.	2.5	16
413	Exploring the Impact of PARK2 Mutations on the Total and Mitochondrial Proteome of Human Skin Fibroblasts. Frontiers in Cell and Developmental Biology, 2020, 8, 423.	1.8	11
414	β-Naphthoflavone and Ethanol Reverse Mitochondrial Dysfunction in A Parkinsonian Model of Neurodegeneration. International Journal of Molecular Sciences, 2020, 21, 3955.	1.8	5
415	Ongoing Research on the Role of Gintonin in the Management of Neurodegenerative Disorders. Cells, 2020, 9, 1464.	1.8	24
416	Focus on the Role of NLRP3 Inflammasome in Diseases. International Journal of Molecular Sciences, 2020, 21, 4223.	1.8	162
417	Parkinson's Disease in Pregnancy: A Case Report and Review of the Literature. Frontiers in Neurology, 2019, 10, 1349.	1.1	14
418	Mechanistic evaluation of Ursolic acid against rotenone induced Parkinson's disease– emphasizing the role of mitochondrial biogenesis. Brain Research Bulletin, 2020, 160, 150-161.	1.4	17
419	miRâ€29câ€3p inhibits microglial NLRP3 inflammasome activation by targeting NFAT5 in Parkinson's disease. Genes To Cells, 2020, 25, 364-374.	0.5	40
420	Development of methylthiosemicarbazones as new reversible monoamine oxidase-B inhibitors for the treatment of Parkinson's disease. Journal of Biomolecular Structure and Dynamics, 2021, 39, 4786-4794.	2.0	11
421	Erythrocytic α-synuclein contained in microvesicles regulates astrocytic glutamate homeostasis: a new perspective on Parkinson's disease pathogenesis. Acta Neuropathologica Communications, 2020, 8, 102.	2.4	26
422	Pathogenesis of cerebral toxocariasis and neurodegenerative diseases. Advances in Parasitology, 2020, 109, 233-259.	1.4	12
423	Disturbed expression of autophagy genes in blood of Parkinson's disease patients. Gene, 2020, 738, 144454.	1.0	10
424	RGS Proteins as Critical Regulators of Motor Function and Their Implications in Parkinson's Disease. Molecular Pharmacology, 2020, 98, 730-738.	1.0	10
425	Interleukin-1 Beta Neutralization Attenuates Traumatic Brain Injury-Induced Microglia Activation and Neuronal Changes in the Clobus Pallidus. International Journal of Molecular Sciences, 2020, 21, 387.	1.8	21

#	Article	IF	Citations
426	The Novel Dual GLP-1/GIP Receptor Agonist DA-CH5 Is Superior to Single GLP-1 Receptor Agonists in the MPTP Model of Parkinson's Disease. Journal of Parkinson's Disease, 2020, 10, 523-542.	1.5	43
427	Intracellular delivery of Parkin rescues neurons from accumulation of damaged mitochondria and pathological α-synuclein. Science Advances, 2020, 6, eaba1193.	4.7	41
428	Nontoxic Black Phosphorus Quantum Dots Inhibit Insulin Amyloid Fibrillation at an Ultralow Concentration. IScience, 2020, 23, 101044.	1.9	13
429	Genetic predispositions of Parkinson's disease revealed in patient-derived brain cells. Npj Parkinson's Disease, 2020, 6, 8.	2.5	90
430	Revisiting the blood-brain barrier: A hard nut to crack in the transportation of drug molecules. Brain Research Bulletin, 2020, 160, 121-140.	1.4	72
431	Effect of electroacupuncture on dopaminergic neurons in a rat model of Parkinson's disease based on the <i>α</i> -synuclein pathway. Materials Express, 2020, 10, 62-69.	0.2	0
432	Human microbiome and homeostasis: insights into the key role of prebiotics, probiotics, and symbiotics. Critical Reviews in Food Science and Nutrition, 2021, 61, 1415-1428.	5.4	20
433	Using multi-organ culture systems to study Parkinson's disease. Molecular Psychiatry, 2021, 26, 725-735.	4.1	16
434	Linking chronic kidney disease and Parkinson's disease: a literature review. Metabolic Brain Disease, 2021, 36, 1-12.	1.4	18
435	Bile Acids: A Communication Channel in the Gut-Brain Axis. NeuroMolecular Medicine, 2021, 23, 99-117.	1.8	76
436	Opicapone enhances the reversal of MPTP-induced Parkinson-like syndrome by levodopa in cynomolgus monkeys. European Journal of Pharmacology, 2021, 892, 173742.	1.7	4
437	Predictors of physical activity levels in individuals with Parkinson's disease: a cross-sectional study. Neurological Sciences, 2021, 42, 1499-1505.	0.9	4
438	Evaluation of the Association Between Serum Levels of Testosterone and Prolactin With 6- Hydroxydopamine- Induced Parkinsonism in Male Rats. Basic and Clinical Neuroscience, 2021, 12, 453-464.	0.3	0
439	Sirtuins in mechanistic target of rapamycin complex 1 signaling. , 2021, , 191-212.		0
440	Genetic basis of ParkinsonÂ's disease: a brief review. Journal of Biochemical and Clinical Genetics, 0, , 1244-1247.	0.1	0
441	Probabilistic Neural Network-based Model for Identification of Parkinson's Disease by using Voice Profile and Personal Data. Arabian Journal for Science and Engineering, 2021, 46, 3383-3407.	1.7	6
442	Prevention of neurodegenerative disorders by nutraceuticals. , 2021, , 17-39.		1
443	Neuroprotective effect of neferine, an alkaloid against the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced Parkinson's disease mouse model. Pharmacognosy Magazine, 2021, 17, 186.	0.3	3

#	Article	IF	CITATIONS
444	The potential therapy with dental tissue-derived mesenchymal stem cells in Parkinson's disease. Stem Cell Research and Therapy, 2021, 12, 5.	2.4	30
446	The association between frailty and Parkinson's disease in the ReSPOnD trial. Canadian Geriatrics Journal, 2021, 24, 22-25.	0.7	2
447	Valency and Binding Affinity Variations Can Regulate the Multilayered Organization of Protein Condensates with Many Components. Biomolecules, 2021, 11, 278.	1.8	53
448	Long Non-coding RNAs in Parkinson's Disease. Neurochemical Research, 2021, 46, 1031-1042.	1.6	22
449	α-synuclein impairs autophagosome maturation through abnormal actin stabilization. PLoS Genetics, 2021, 17, e1009359.	1.5	49
450	Development of a Sensitive Diagnostic Assay for Parkinson Disease Quantifying α-Synuclein–Containing Extracellular Vesicles. Neurology, 2021, 96, e2332-e2345.	1.5	18
452	Determination and Application of Nineteen Monoamines in the Gut Microbiota Targeting Phenylalanine, Tryptophan, and Glutamic Acid Metabolic Pathways. Molecules, 2021, 26, 1377.	1.7	16
453	The translocator protein (TSPO) is prodromal to mitophagy loss in neurotoxicity. Molecular Psychiatry, 2021, 26, 2721-2739.	4.1	10
454	Meta-analysis of the Parkinson's disease gut microbiome suggests alterations linked to intestinal inflammation. Npj Parkinson's Disease, 2021, 7, 27.	2.5	315
455	Stem cell in neurodegenerative disorders; an emerging strategy. International Journal of Developmental Neuroscience, 2021, 81, 291-311.	0.7	19
456	The effect of directional social cues on saccadic eye movements in Parkinson's disease. Experimental Brain Research, 2021, 239, 2063-2075.	0.7	1
457	Binding mechanism of naringenin with monoamine oxidase – B enzyme: QM/MM and molecular dynamics perspective. Heliyon, 2021, 7, e06684.	1.4	11
458	The impact of chronic exposure to air pollution over oxidative stress parameters and brain histology. Environmental Science and Pollution Research, 2021, 28, 47407-47417.	2.7	7
459	Reference SVA insertion polymorphisms are associated with Parkinson's Disease progression and differential gene expression. Npj Parkinson's Disease, 2021, 7, 44.	2.5	22
460	MicroPET imaging of vesicular monoamine transporter 2 revealed the potentiation of (+)-dihydrotetrabenazine on MPTP-induced degeneration of dopaminergic neurons. Nuclear Medicine and Biology, 2021, 96-97, 9-18.	0.3	0
461	Mitochondrial Ca2+ Signaling in Health, Disease and Therapy. Cells, 2021, 10, 1317.	1.8	59
462	Mechanistic insights into the protective effect of paracetamol against rotenone-induced Parkinson's disease in rats: Possible role of endocannabinoid system modulation. International Immunopharmacology, 2021, 94, 107431.	1.7	15
463	Parkinson's disease: Alterations in iron and redox biology as a key to unlock therapeutic strategies. Redox Biology, 2021, 41, 101896.	3.9	75

#	Article	IF	CITATIONS
464	Self-assembly of Amphiphilic Diblock Copolymers Induced by Liquid-Liquid Phase Separation. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1217-1224.	2.0	7
465	Oligomerization of Lrrk controls actin severing and α-synuclein neurotoxicity in vivo. Molecular Neurodegeneration, 2021, 16, 33.	4.4	6
466	The Cross-Links of Endoplasmic Reticulum Stress, Autophagy, and Neurodegeneration in Parkinson's Disease. Frontiers in Aging Neuroscience, 2021, 13, 691881.	1.7	45
467	Identification of sixteen novel candidate genes for late onset Parkinson's disease. Molecular Neurodegeneration, 2021, 16, 35.	4.4	41
468	Precision Medicine on the Fly: Using <i>Drosophila</i> to Decipher Gene-Environment Interactions in Parkinson's Disease. Toxicological Sciences, 2021, 182, 159-167.	1.4	8
469	Neuroprotective gain of Apelin/APJ system. Neuropeptides, 2021, 87, 102131.	0.9	20
470	The Role of Protein Persulfidation in Brain Aging and Neurodegeneration. Frontiers in Aging Neuroscience, 2021, 13, 674135.	1.7	36
472	Roles of Non-Coding RNAs as Novel Diagnostic Biomarkers in Parkinson's Disease. Journal of Parkinson's Disease, 2021, 11, 1-15.	1.5	4
473	Parkinson's Disease Genetics and Pathophysiology. Annual Review of Neuroscience, 2021, 44, 87-108.	5.0	92
475	Animal Models of Autosomal Recessive Parkinsonism. Biomedicines, 2021, 9, 812.	1.4	6
476	Inflammasomes as therapeutic targets in human diseases. Signal Transduction and Targeted Therapy, 2021, 6, 247.	7.1	105
477	Neurodegenerative disorders and the current state, pathophysiology and management of Parkinson's disease. CNS and Neurological Disorders - Drug Targets, 2021, 20, .	0.8	0
478	Novel Approaches Used to Examine and Control Neurogenesis in Parkinson′s Disease. International Journal of Molecular Sciences, 2021, 22, 9608.	1.8	13
479	Genetically Targeted Clinical Trials in Parkinson's Disease: Learning from the Successes Made in Oncology. Genes, 2021, 12, 1529.	1.0	2
480	Neuroprotective mechanisms of red clover and soy isoflavones in Parkinson's disease models. Food and Function, 2021, 12, 11987-12007.	2.1	14
481	ATP-sensitive Potassium Channel Subunits in Neuroinflammation: Novel Drug Targets in Neurodegenerative Disorders. CNS and Neurological Disorders - Drug Targets, 2022, 21, 130-149.	0.8	17
482	"Metal elements and pesticides as risk factors for Parkinson's disease - A review". Toxicology Reports, 2021, 8, 607-616.	1.6	37
484	A Data-Driven Biophysical Computational Model of Parkinson's Disease Based on Marmoset Monkeys. IFFF Access 2021 9 122548-122567	2.6	8

#	Article	IF	CITATIONS
486	Hesperidin Ameliorates Anxiety-Depressive-Like Behavior in 6-OHDA Model of Parkinson's Disease by Regulating Striatal Cytokine and Neurotrophic Factors Levels and Dopaminergic Innervation Loss in the Striatum of Mice. Molecular Neurobiology, 2020, 57, 3027-3041.	1.9	29
488	Huntington Disease, Parkinson Disease, and Other Neurodegenerative Diseases. , 2013, , .		1
491	Age-dependent nigral dopaminergic neurodegeneration and $\hat{I}\pm$ -synuclein accumulation in RGS6-deficient mice. JCI Insight, 2019, 4, .	2.3	14
492	Role of Paeonol in an Astrocyte Model of Parkinson's Disease. Medical Science Monitor, 2017, 23, 4740-4748.	0.5	9
493	Kinetic Program and Functional Status in Patients with Parkinson's Disease. Current Health Sciences Journal, 2016, 42, 51-60.	0.2	1
494	The Role of Alpha-Synuclein in Melanin Synthesis in Melanoma and Dopaminergic Neuronal Cells. PLoS ONE, 2012, 7, e45183.	1.1	81
495	Temperature-Dependent Structural Changes of Parkinson's Alpha-Synuclein Reveal the Role of Pre-Existing Oligomers in Alpha-Synuclein Fibrillization. PLoS ONE, 2013, 8, e53487.	1.1	30
496	Parkinson's Disease in Saudi Patients: A Genetic Study. PLoS ONE, 2015, 10, e0135950.	1.1	23
497	Rotenone Susceptibility Phenotype in Olfactory Derived Patient Cells as a Model of Idiopathic Parkinson's Disease. PLoS ONE, 2016, 11, e0154544.	1.1	13
498	Visualization of Decision Tree State for the Classification of Parkinson's Disease. Journal of Biomedical Engineering and Medical Imaging, 2016, 3, .	0.1	3
499	Non-Ergot Dopamine Agonists Do Not Increase the Risk of Heart Failure in Parkinson's Disease Patients: A Meta-Analysis of Randomized Controlled Trials. Journal of Clinical Medicine Research, 2016, 8, 449-460.	0.6	7
500	Restoration of Mitochondrial Dysfunction in 6-Hydroxydopamine Induced Parkinson's disease: a Complete Review. , 2017, 1, 001-026.		8
501	New Magnetic Resonance Imaging Biomarkers Advance the Characterisation of Parkinson's Disease. European Neurological Review, 2013, 8, 85.	0.5	5
502	Deconvoluting the complexity of autophagy and Parkinson's disease for potential therapeutic purpose. Oncotarget, 2015, 6, 40480-40495.	0.8	11
503	Recent Advances in Drug Repurposing for Parkinson's Disease. Current Medicinal Chemistry, 2019, 26, 5340-5362.	1.2	9
504	Can Trehalose Prevent Neurodegeneration? Insights from Experimental Studies. Current Drug Targets, 2014, 15, 551-557.	1.0	64
505	Curcumin and its Derivatives: Their Application in Neuropharmacology and Neuroscience in the 21st Century. Current Neuropharmacology, 2013, 11, 338-378.	1.4	422
506	Alpha-synuclein, Proteotoxicity and Parkinson's Disease: Search for Neuroprotective Therapy. Current Neuropharmacology, 2018, 16, 1086-1097.	1.4	46

	CITATION RE	CITATION REPORT	
#	Article	IF	Citations
507	Role of Genes and Treatments for Parkinson's Disease. The Open Biology Journal, 2020, 8, 47-65.	0.5	4
508	Stem Cell Therapy for Parkinson's Disease: A Review. Pharmatutor, 2018, 6, 01.	0.4	2
509	Basal Ganglia Disorders Associated with Imbalances in the Striatal Striosome and Matrix Compartments. Frontiers in Neuroanatomy, 2011, 5, 59.	0.9	354
510	Molecular Chaperones in Neurodegeneration. Advances in Medical Diagnosis, Treatment, and Care, 2020, , 354-379.	0.1	4
511	MicroRNAs in Parkinson's disease and emerging therapeutic targets. Neural Regeneration Research, 2017, 12, 1945.	1.6	65
512	Alternative Splicing and Nonsense Mediated Decay in Mitochondrial Complex-I Biogenesis and its Implication in Human Diseases. Journal of Bioanalysis & Biomedicine, 2013, s3, .	0.1	2
513	Parkinson's Disease and Parkin: Insights from Park2 Knockout Mice. , 0, , .		3
514	Retrograde trafficking of VMAT2 and its role in protein stabilityin non-neuronal cells. Journal of Biomedical Research, 2016, 30, 502-509.	0.7	11
515	The remote assessment of parkinsonism supporting the ongoing development of interventions in Gaucher disease. Neurodegenerative Disease Management, 2021, 11, 451-458.	1.2	7
516	An Evolutionary Biology Approach to Understanding Neurological Disorders. , 0, , .		1
517	Estimulación Transcraneal de Corriente Directa en Parkinson. Revista Neurociencias, 2013, 21, 356-363.	0.0	0
518	Estimulación Transcraneal de Corriente Directa en Parkinson - Revisión Sistemática. Revista Neurociencias, 2013, 21, 356-363.	0.0	2
520	Hoarding Behavior and Hoarding Disorder. , 2015, , 15-48.		0
522	Previous Injury and Chronic Pain are Associated with Side of Onset in Parkinson's Disease. Journal of Neurology and Neurobiology, 2015, 1, .	0.1	0
523	Beneficial effects of L-arginine on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neuronal degeneration in substantia nigra of Balb/c mice. Advanced Biomedical Research, 2016, 5, 140.	0.2	1
525	Parkinson Hastalığı ve İlişkili Olduğu Genler. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 2018, 6,	2012239.	0
527	LRRK2 Signalling Pathways in Parkinson's Disease. Archives in Neurology & Neuroscience, 2019, 2, .	0.1	1
531	Parkinson's disease, subthalamic nucleus stimulation, and total hip arthroplasty: A case report. Current Orthopaedic Practice, 2019, 30, 582-584.	0.1	0

#	Article	IF	CITATIONS
532	Air Pollution Exposure Studies Related to Human Health. Environmental Chemistry for A Sustainable World, 2020, , 141-177.	0.3	1
533	Dopaminergic Neuronal Death in Substantia Nigra Associates with Serum Levels of Total Bilirubin, Selenium, and Zinc: Evidences from 6-Hydroxydopamine Animal Model of Parkinson's Disease. Biological Trace Element Research, 2022, 200, 4058-4067.	1.9	7
534	Human Brain Disorders: A Review. The Open Biology Journal, 2020, 8, 6-21.	0.5	6
536	Neuroprotective effects of porphyran derivatives against 6-hydroxydopamine-induced cytotoxicity is independent on mitochondria restoration. Annals of Translational Medicine, 2015, 3, 39.	0.7	0
537	Genetic association of cyclooxygenase-2 gene polymorphisms with Parkinson's disease susceptibility in Chinese Han population. International Journal of Clinical and Experimental Pathology, 2015, 8, 13495-9.	0.5	2
538	Differential proteomics analysis of mononuclear cells in cerebrospinal fluid of Parkinson's disease. International Journal of Clinical and Experimental Pathology, 2015, 8, 15462-6.	0.5	2
540	Machine Learning Neuroprotective Strategy Reveals a Unique Set of Parkinson Therapeutic Nicotine Analogs. Open Bioinformatics Journal, 2020, 13, 1-14.	1.0	1
541	Current methods for studying intracellular liquid-liquid phase separation. Current Topics in Membranes, 2021, 88, 55-73.	0.5	0
542	Yeast Proteins may Reversibly Aggregate like Amphiphilic Molecules. Journal of Molecular Biology, 2022, 434, 167352.	2.0	4
543	Chronic and progressive dopaminergic neuronal death in substantia nigra associates with a decrease in serum levels of glucose and free fatty acids, the role of interlokin-1 beta. Metabolic Brain Disease, 2021, , 1.	1.4	1
544	Genome Editing Technology for the Study and Correction of Neurodegenerative Diseases. Neurochemical Journal, 2021, 15, 339-352.	0.2	1
545	Role of the mtDNA Mutations and Mitophagy in Inflammaging. International Journal of Molecular Sciences, 2022, 23, 1323.	1.8	13
546	A Comprehensive Study of miRNAs in Parkinson's Disease: Diagnostics and Therapeutic Approaches. CNS and Neurological Disorders - Drug Targets, 2022, 21, .	0.8	2
547	Unleashing the shape of I-DOPA at last. Physical Chemistry Chemical Physics, 2022, 24, 3546-3554.	1.3	2
548	Sex Differences in Cerebral Blood Flow and Serum Inflammatory Cytokines and Their Relationships in Mild Traumatic Brain Injury. Frontiers in Neurology, 2021, 12, 755152.	1.1	3
549	Dopaminergic imaging in degenerative parkinsonisms, an established clinical diagnostic tool. Journal of Neurochemistry, 2023, 164, 346-363.	2.1	10
550	A Transcriptome Analysis of mRNAs and Long Non-Coding RNAs in Patients with Parkinson's Disease. International Journal of Molecular Sciences, 2022, 23, 1535.	1.8	13
551	Unexpected BrdU inhibition on astrocyte-to-neuron conversion. Neural Regeneration Research, 2022, 17, 1526.	1.6	7

# 552	ARTICLE Gut–Brain Cross Talk: Microbiome and Micronutrients. , 2022, , 33-47.	IF	CITATIONS 0
553	Neuroprotective Effects of the DPP4 Inhibitor Vildagliptin in In Vivo and In Vitro Models of Parkinson's Disease. International Journal of Molecular Sciences, 2022, 23, 2388.	1.8	15
554	α-Synuclein-containing erythrocytic extracellular vesicles: essential contributors to hyperactivation of monocytes in Parkinson's disease. Journal of Neuroinflammation, 2022, 19, 53.	3.1	17
555	From the Structural and (Dys)Function of ATP Synthase to Deficiency in Age-Related Diseases. Life, 2022, 12, 401.	1.1	11
557	Elucidations of Molecular Mechanism and Mechanistic Effects of Environmental Toxicants in Neurological Disorders. CNS and Neurological Disorders - Drug Targets, 2023, 22, 84-97.	0.8	8
558	Maintenance of mitochondrial integrity in midbrain dopaminergic neurons governed by a conserved developmental transcription factor. Nature Communications, 2022, 13, 1426.	5.8	11
559	Does the Expression and Epigenetics of Genes Involved in Monogenic Forms of Parkinson's Disease Influence Sporadic Forms?. Genes, 2022, 13, 479.	1.0	6
560	Advances in pig models of human diseases. Animal Models and Experimental Medicine, 2022, 5, 141-152.	1.3	26
561	Mass Spectrometry for Neurobiomarker Discovery: The Relevance of Post-Translational Modifications. Cells, 2022, 11, 1279.	1.8	11
562	The impact of sesamol and exercise on striatal TNF-α level, motor behavior, aversive memory and oxidative stress status in 6-hydroxydopamine-lesioned rats. Physiology and Pharmacology, 2022, 26, 30-38.	0.1	1
563	Parkinson's disease hospitalization rates and pesticide use in urban and non-urban regions of Brazil. Cadernos Saude Coletiva, 0, , .	0.2	1
564	Abnormal B-Cell and Tfh-Cell Profiles in Patients With Parkinson Disease. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	3.1	21
565	Chitosan oligosaccharides exert neuroprotective effects <i>via</i> modulating the PI3K/Akt/Bcl-2 pathway in a Parkinsonian model. Food and Function, 2022, 13, 5838-5853.	2.1	11
566	Mixed Neuropathologies, Neural Motor Resilience and Target Discovery for Therapies of Late-Life Motor Impairment. Frontiers in Human Neuroscience, 2022, 16, 853330.	1.0	6
567	Ca2+ Dyshomeostasis Links Risk Factors to Neurodegeneration in Parkinson's Disease. Frontiers in Cellular Neuroscience, 2022, 16, 867385.	1.8	7
568	CHAPTER 8. Redox Signalling in Dopaminergic Cell Death and Survival. Issues in Toxicology, 0, , 210-254.	0.2	0
569	CHAPTER 11. At the Intersection Between Mitochondrial Dysfunction and Lysosomal Autophagy: Role of PD-Related Neurotoxins and Gene Products. Issues in Toxicology, 0, , 325-388.	0.2	0
584	Angiotensin-Converting Enzyme 2 Activation Mitigates Behavioral Deficits and Neuroinflammatory Burden in 6-OHDA Induced Experimental Models of Parkinson's Disease. ACS Chemical Neuroscience, 2022, 13, 1491-1504.	1.7	5

#	Article	IF	CITATIONS
585	Proteome-Wide Discovery of Cortical Proteins That May Provide Motor Resilience to Offset the Negative Effects of Pathologies in Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2023, 78, 494-503.	1.7	4
586	Computer-Aided Identification of Cholinergic and Monoaminergic Inhibitory Flavonoids from Hibiscus sabdariffa L Current Drug Discovery Technologies, 2022, 19, .	0.6	1
587	Induced pluripotent stem cells: a tool for modeling Parkinson's disease. Trends in Neurosciences, 2022, 45, 608-620.	4.2	17
589	The disturbance of protein synthesis/degradation homeostasis is a common trait of age-related neurodegenerative disorders. Advances in Protein Chemistry and Structural Biology, 2022, , 49-87.	1.0	7
590	The Parkinson's disease protein alpha-synuclein is a modulator of processing bodies and mRNA stability. Cell, 2022, 185, 2035-2056.e33.	13.5	57
591	The Putative Role of Astaxanthin in Neuroinflammation Modulation: Mechanisms and Therapeutic Potential. Frontiers in Pharmacology, 0, 13, .	1.6	7
592	Studies of neurodegenerative diseases using <i>Drosophila</i> and the development of novel approaches for their analysis. Fly, 2022, 16, 275-298.	0.9	22
594	Diagnostic and therapeutic agents that target alpha-synuclein in Parkinson's disease. Journal of Neurology, 2022, 269, 5762-5786.	1.8	11
595	Therapeutic utility of mesenchymal stromal cell (MSC)-based approaches in chronic neurodegeneration: a glimpse into underlying mechanisms, current status, and prospects. Cellular and Molecular Biology Letters, 2022, 27, .	2.7	20
596	Choroid and choriocapillaris changes in early-stage Parkinson's disease: a swept-source optical coherence tomography angiography-based cross-sectional study. Alzheimer's Research and Therapy, 2022, 14, .	3.0	11
597	The prominin-like Gene Expressed in a Subset of Dopaminergic Neurons Regulates Locomotion in Drosophila. Molecules and Cells, 2022, 45, 640-648.	1.0	3
598	CRISPR and iPSCs: Recent Developments and Future Perspectives in Neurodegenerative Disease Modelling, Research, and Therapeutics. Neurotoxicity Research, 2022, 40, 1597-1623.	1.3	10
599	Current Insights on Neurodegeneration by the Italian Proteomics Community. Biomedicines, 2022, 10, 2297.	1.4	3
600	Modelling Parkinson's Disease in <i>C. elegans</i> : Strengths and Limitations. Current Pharmaceutical Design, 2022, 28, 3033-3048.	0.9	3
601	Conformational change of organic cofactor PLP is essential for catalysis in PLP-dependent enzymes. BMB Reports, 2022, 55, 439-446.	1.1	3
602	A role of human microbiota in the development of neurodegenerative diseases. Zhurnal Nevrologii I Psikhiatrii Imeni S S Korsakova, 2022, 122, 57.	0.1	3
603	The Role of Inflammasomes in the Pathogenesis of Neurodegenerative Diseases. Neurochemical Journal, 2022, 16, 271-282.	0.2	0
604	Lycium barbarum polysaccharide improves dopamine metabolism and symptoms in an MPTP-induced model of Parkinson's disease. BMC Medicine, 2022, 20, .	2.3	11

#	Article	IF	CITATIONS
606	Intestine-derived α-synuclein initiates and aggravates pathogenesis of Parkinson's disease in Drosophila. Translational Neurodegeneration, 2022, 11, .	3.6	13
607	Chrysin supplementation mitigated neurobehavioral changes in a animal model of Parkinson's disease: Influence on TH+ neurons. Learning and Motivation, 2022, 80, 101847.	0.6	Ο
608	Design and synthesis of benzo[d]thiazol-2-yl-methyl-4-(substituted)-piperazine-1-carbothioamide as novel neuronal nitric oxide inhibitors and evaluation of their neuroprotecting effect in 6-OHDA-induced unilateral lesioned rat model of Parkinson's disease. Biomedicine and Pharmacotherapy, 2022, 156, 113838.	2.5	3
609	Are static posturography-assisted biofeedback exercises effective in Parkinson's disease?. Arquivos De Neuro-Psiquiatria, 2022, 80, 935-943.	0.3	1
610	Protein misfolding and related human diseases: A comprehensive review of toxicity, proteins involved, and current therapeutic strategies. International Journal of Biological Macromolecules, 2022, 223, 143-160.	3.6	12
611	Emerging polymeric biomaterials and manufacturing-based tissue engineering approaches for neuro regeneration-A critical review on recent effective approaches. Smart Materials in Medicine, 2023, 4, 337-355.	3.7	30
612	Aggregated alpha-synuclein transcriptionally activates pro-inflammatory canonical and non-canonical NF-κB signaling pathways in peripheral monocytic cells. Molecular Immunology, 2023, 154, 1-10.	1.0	2
613	Proximity to residential and workplace pesticides application and the risk of progression of Parkinson's diseases in Central California. Science of the Total Environment, 2023, 864, 160851.	3.9	6
614	The effects of microbiota abundance on symptom severity in Parkinson's disease: A systematic review. Frontiers in Aging Neuroscience, 0, 14, .	1.7	2
616	Nano-biosensors for Diagnosing Infectious and Lifestyle-Related Disease of Human: An Update. , 2023, , 79-103.		0
617	Probing the Neuro-psychological Changes Observed with the Administration of COVID-19 Drugs. Current Topics in Medicinal Chemistry, 2023, 23, 143-154.	1.0	2
618	Discovery and Optimization of Potent, Selective, and Brain-Penetrant 1-Heteroaryl-1 <i>H</i> -Indazole LRRK2 Kinase Inhibitors for the Treatment of Parkinson's Disease. Journal of Medicinal Chemistry, 2022, 65, 16801-16817.	2.9	5
619	Naringin and Naringenin Polyphenols in Neurological Diseases: Understandings from a Therapeutic Viewpoint. Life, 2023, 13, 99.	1.1	12
620	α-Synuclein Promotes Neuronal Dysfunction and Death by Disrupting the Binding of Ankyrin to β-Spectrin. Journal of Neuroscience, 2023, 43, 1614-1626.	1.7	6
621	Enhanced IRE1α Phosphorylation/Oligomerization-Triggered XBP1 Splicing Contributes to Parkin-Mediated Prevention of SH-SY5Y Cell Death under Nitrosative Stress. International Journal of Molecular Sciences, 2023, 24, 2017.	1.8	0
622	Deep brain stimulation improves central nervous system inflammation in Parkinson's disease: Evidence and perspectives. CNS Neuroscience and Therapeutics, 2023, 29, 2177-2185.	1.9	3
623	Carnosic acid attenuated cytochrome c release through the mitochondrial structural protein Mic60 by PINK1 in SH-SY5Y cells. Food and Chemical Toxicology, 2023, 173, 113636.	1.8	0
625	Cas9-mediated replacement of expanded CAG repeats in a pig model of Huntington's disease. Nature Biomedical Engineering, 2023, 7, 629-646.	11.6	12

	CHAI	CHATION REPORT		
#	ARTICLE	IF	CITATIONS	
626	Is Disrupted Mitophagy a Central Player to Parkinsonâ \in ${}^{\mathrm{M}}$ s Disease Pathology?. Cureus, 2023, , .	0.2	1	
627	The utility and caveat of split-GAL4s in the study of neurodegeneration. Fly, 2023, 17, .	0.9	2	
633	Parkinson's Disease models of Caenorhabditis elegans to study mechanism of action of Ayurvedic nootropics. , 2023, , 487-520.		0	
644	Molecular Pathology of the Central Nervous System. , 2023, , 615-658.		0	
649	RNA therapeutics for neurological disease. Progress in Molecular Biology and Translational Science, 2024, , 165-180.	0.9	0	