Scaffolds Based Bone Tissue Engineering: The Role of Cl

Tissue Engineering - Part B: Reviews 17, 331-347 DOI: 10.1089/ten.teb.2010.0704

Citation Report

#	Article	IF	CITATIONS
1	Direct writing of chitosan scaffolds using a robotic system. Rapid Prototyping Journal, 2005, 11, 90-97.	1.6	110
2	<i>In Vivo</i> Bone Formation in Silk Fibroin and Chitosan Blend Scaffolds via Ectopically Grafted Periosteum as a Cell Source: A Pilot Study. Tissue Engineering - Part A, 2009, 15, 2717-2725.	1.6	36
3	Composite Chitosan/Nano-Hydroxyapatite Scaffolds Induce Osteocalcin Production by Osteoblasts <i>In Vitro</i> and Support Bone Formation <i>In Vivo</i> . Tissue Engineering - Part A, 2009, 15, 2571-2579.	1.6	130
4	Leveraging "Raw Materials―as Building Blocks and Bioactive Signals in Regenerative Medicine. Tissue Engineering - Part B: Reviews, 2012, 18, 341-362.	2.5	68
5	Facile Synthesis of Radial-Like Macroporous Superparamagnetic Chitosan Spheres with In-Situ Co-Precipitation and Gelation of Ferro-Gels. PLoS ONE, 2012, 7, e49329.	1.1	23
6	Electrospun biomimetic scaffold of hydroxyapatite/chitosan supports enhanced osteogenic differentiation of mMSCs. Nanotechnology, 2012, 23, 485102.	1.3	86
7	Biomimetic three-dimensional nanocrystalline hydroxyapatite and magnetically synthesized single-walled carbon nanotube chitosan nanocomposite for bone regeneration. International Journal of Nanomedicine, 2012, 7, 2087.	3.3	105
8	Chondrogenic phenotype of different cells encapsulated in κâ€carrageenan hydrogels for cartilage regeneration strategies. Biotechnology and Applied Biochemistry, 2012, 59, 132-141.	1.4	64
9	Electrospun inorganic and polymer composite nanofibers for biomedical applications. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 365-385.	1.9	64
10	Synthesis of chitosan 6-OH immobilized cyclodextrin derivates via click chemistry. Fibers and Polymers, 2013, 14, 1058-1065.	1.1	13
11	High tenacity regenerated chitosan fibers prepared by using the binary ionic liquid solvent (Gly·HCl)-[Bmim]Cl. Carbohydrate Polymers, 2013, 97, 300-305.	5.1	32
12	Biomimetic Composites Based on Calcium Phosphates and Chitosan - Hyaluronic Acid with Potential Application in Bone Tissue Engineering. Key Engineering Materials, 0, 587, 191-196.	0.4	4
13	Effect of chitosan incorporation on the consolidation process of highly hydrated collagen hydrogel scaffolds. Soft Matter, 2013, 9, 10811.	1.2	11
14	A practical perspective on ulvan extracted from green algae. Journal of Applied Phycology, 2013, 25, 407-424.	1.5	156
15	Chitosan-based biomaterials for tissue engineering. European Polymer Journal, 2013, 49, 780-792.	2.6	1,742
16	Enhanced mechanical property of chitosan via blending with functional poly(εâ€caprolactone). Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 659-667.	2.4	8
17	The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs. Biomaterials, 2013, 34, 4404-4417.	5.7	290
18	Delivery of Mesenchymal Stem Cells in Chitosan/Collagen Microbeads for Orthopedic Tissue Repair. Cells Tissues Organs, 2013, 197, 333-343.	1.3	79

ITATION REDO

	CITATION	Report	
#	Article	IF	CITATIONS
19	Chitosan/alginate crosslinked hydrogels: Preparation, characterization and application for cell growth purposes. International Journal of Biological Macromolecules, 2013, 59, 342-348.	3.6	145
20	Chitosan for Gene Delivery and Orthopedic Tissue Engineering Applications. Molecules, 2013, 18, 5611-5647.	1.7	133
21	Mechanical enhancement of nanofibrous scaffolds through polyelectrolyte complexation. Nanotechnology, 2013, 24, 025701.	1.3	37
22	Hierarchical Fibrillar Scaffolds Obtained by Nonâ€conventional Layerâ€By‣ayer Electrostatic Selfâ€Assembly. Advanced Healthcare Materials, 2013, 2, 422-427.	3.9	27
23	<i>In vitro</i> evaluation of hydroxyapatite–chitosan–gelatin composite membrane in guided tissue regeneration. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1016-1025.	2.1	37
24	Cytotoxicity and biocompatibility evaluation of chitosan-beta glycerol phosphate-hydroxyethyl cellulose hydrogel on adult rat liver for cell-based therapeutic applications. International Journal of Biomedical Engineering and Technology, 2013, 12, 228.	0.2	2
25	Design of 3 <scp>D</scp> Hybrid Composite Scaffolds: Effect of Composition on Scaffold Structure and Cell Proliferation. Macromolecular Symposia, 2013, 334, 106-116.	0.4	3
26	Repair of mandibular defects by bone marrow stromal cells expressing the basic fibroblast growth factor transgene combined with multi-pore mineralized Bio-Oss. Molecular Medicine Reports, 2013, 7, 99-104.	1.1	8
27	Overview on Biocompatibilities of Implantable Biomaterials. , 0, , .		27
28	Adhesion and proliferation of adipose derived mesenchymal stromal cells on chitosan scaffolds with different degree of deacetylation. Biopolymers and Cell, 2014, 30, 135-140.	0.1	2
29	Enzyme-mediated fast injectable hydrogels based on chitosan–glycolic acid/tyrosine: preparation, characterization, and chondrocyte culture. Polymer Chemistry, 2014, 5, 391-398.	1.9	47
30	Design and characterization of a chitosan physical gel promoting wound healing in mice. Journal of Materials Science: Materials in Medicine, 2014, 25, 1483-1493.	1.7	31
31	Scaffold Design for Bone Regeneration. Journal of Nanoscience and Nanotechnology, 2014, 14, 15-56.	0.9	696
32	Synthesis of hybrid polymer networks of irradiated chitosan/poly(vinyl alcohol) for biomedical applications. Radiation Physics and Chemistry, 2014, 96, 115-119.	1.4	29
33	Comparison of Uncultured Marrow Mononuclear Cells and Culture-Expanded Mesenchymal Stem Cells in 3D Collagen-Chitosan Microbeads for Orthopedic Tissue Engineering. Tissue Engineering - Part A, 2014, 20, 210-224.	1.6	42
34	Effects of micro and nano βâ€TCP fillers in freezeâ€gelled chitosan scaffolds for bone tissue engineering. Journal of Applied Polymer Science, 2014, 131, .	1.3	27
35	2,5-Dimethoxy 2,5-dihydrofuran crosslinked chitosan fibers enhance bone regeneration in rabbit femur defects. RSC Advances, 2014, 4, 19516-19524.	1.7	28
36	Chitin and Chitosan Tissue Engineering and Stem Cell Research. , 2014, , 51-66.		1

#	Article	IF	CITATIONS
37	Tissue repair strength using chitosan adhesives with different physical hemical characteristics. Journal of Biophotonics, 2014, 7, 948-955.	1.1	27
38	Mineralized polycaprolactone nanofibrous matrix for odontogenesis of human dental pulp cells. Journal of Biomaterials Applications, 2014, 28, 1069-1078.	1.2	45
39	Influence of scaffold composition over inÂvitro osteogenic differentiation of hBMSCs and inÂvivo inflammatory response. Journal of Biomaterials Applications, 2014, 28, 1430-1442.	1.2	8
40	Chitosan-based scaffolds for bone tissue engineering. Journal of Materials Chemistry B, 2014, 2, 3161.	2.9	487
41	Fabrication and inÂvitro evaluation of Sulphonated Polyether Ether Ketone/nano Hydroxyapatite composites as bone graft materials. Materials Chemistry and Physics, 2014, 147, 168-177.	2.0	17
42	Stem cells in preclinical spine studies. Spine Journal, 2014, 14, 542-551.	0.6	17
43	Poly-É>-caprolactone composite scaffolds for bone repair. International Journal of Molecular Medicine, 2014, 34, 1537-1546.	1.8	14
44	Novel nanocomposite biomaterial to differentiate bone marrow mesenchymal stem cells to the osteogenic lineage for boneÂrestoration. Journal of Orthopaedic Translation, 2015, 3, 105-113.	1.9	5
45	Organic-inorganic bonding in chitosan-silica hybrid networks: Physical properties. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1391-1400.	2.4	23
46	Development and Characterization of Novel Hybrid Hydrogel Fibers. Macromolecular Materials and Engineering, 2015, 300, 1217-1225.	1.7	36
47	Enhanced Stability of Calcium Sulfate Scaffolds with 45S5 Bioglass for Bone Repair. Materials, 2015, 8, 7498-7510.	1.3	14
48	Chitosan nanofiber scaffold improves bone healing via stimulating trabecular bone production due to upregulation of the Runx2/osteocalcin/alkaline phosphatase signaling pathway. International Journal of Nanomedicine, 2015, 10, 5941.	3.3	45
49	Performance of PRP Associated with Porous Chitosan as a Composite Scaffold for Regenerative Medicine. Scientific World Journal, The, 2015, 2015, 1-12.	0.8	23
50	Sub-nanoscale free volume and local elastic modulus of chitosan–carbon nanotube biomimetic nanocomposite scaffold-materials. Journal of Materials Chemistry B, 2015, 3, 3169-3176.	2.9	8
51	Production and characterization of chitosan/gelatin/Î ² -TCP scaffolds for improved bone tissue regeneration. Materials Science and Engineering C, 2015, 55, 592-604.	3.8	128
52	Biodegradation and bioresorption of poly(É›-caprolactone) nanocomposite scaffolds. International Journal of Biological Macromolecules, 2015, 79, 186-192.	3.6	24
53	Coating cortical bone allografts with periosteum-mimetic scaffolds made of chitosan, trimethyl chitosan, and heparin. Carbohydrate Polymers, 2015, 122, 144-151.	5.1	48
54	Design of biocomposite materials for bone tissue regeneration. Materials Science and Engineering C, 2015, 57, 452-463.	3.8	239

#	Article	IF	CITATIONS
55	Effect of Functionalized TiO ₂ on Mechanical, Thermal and Swelling Properties of Chitosan-Based Nanocomposite Films. Polymer-Plastics Technology and Engineering, 2015, 54, 1035-1042.	1.9	25
56	A novel composite scaffold consisted of porous titanium and chitosan sponge for load-bearing applications: Fabrication, characterization and cellular activity. Composites Science and Technology, 2015, 117, 78-84.	3.8	28
57	Effect of in situ formed hydroxyapatite on microstructure of freeze-gelled chitosan-based biocomposite scaffolds. European Polymer Journal, 2015, 68, 278-287.	2.6	34
58	Antibacterial activity of chitosan nanofiber meshes with liposomes immobilized releasing gentamicin. Acta Biomaterialia, 2015, 18, 196-205.	4.1	154
59	Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Marine Drugs, 2015, 13, 1133-1174.	2.2	1,640
60	Development of silk fibroin/nanohydroxyapatite composite hydrogels for bone tissue engineering. European Polymer Journal, 2015, 67, 66-77.	2.6	82
61	Ceramics and ceramic coatings in orthopaedics. Journal of the European Ceramic Society, 2015, 35, 4327-4369.	2.8	167
62	Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical devices. Journal of Materials Chemistry B, 2015, 3, 8224-8249.	2.9	176
63	In situ strategy for bone repair by facilitated endogenous tissue engineering. Colloids and Surfaces B: Biointerfaces, 2015, 135, 581-587.	2.5	21
64	<scp>E</scp> ffects of flow configuration on bone tissue engineering using human mesenchymal stem cells in 3D chitosan composite scaffolds. Journal of Biomedical Materials Research - Part A, 2015, 103, 2509-2520.	2.1	7
65	Polymeric scaffolds as stem cell carriers in bone repair. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 1093-1119.	1.3	41
66	Development of fibrin conjugated chitosan/nano βâ€₹CP composite scaffolds with improved cell supportive property for bone tissue regeneration. Journal of Applied Polymer Science, 2015, 132, .	1.3	8
67	Fabrication of cancellous biomimetic chitosanâ€based nanocomposite scaffolds applying a combinational method for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2015, 103, 1882-1892.	2.1	40
68	Novel Improvements in Thermal and Hydrophobic Properties of Chitosan Reinforced by Rice Husk Ash. Polymers From Renewable Resources, 2016, 7, 115-133.	0.8	3
69	Composite Coatings Based on Renewable Resources Synthesized by Advanced Laser Techniques. , 2016, , .		1
70	Tissue engineering and regenerative approaches to improving the healing of large bone defects. , 2016, 32, 87-110.		78
71	Composite Hydrogels for Bone Regeneration. Materials, 2016, 9, 267.	1.3	112
72	Influence of different surface modification treatments on silk biotextiles for tissue engineering applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 496-507.	1.6	19

#	Article	IF	Citations
73	Fabrication of Coaxial Wet‧pun Graphene–Chitosan Biofibers. Advanced Engineering Materials, 2016, 18, 284-293.	1.6	37
74	<i>In vitro</i> osteogenic induction of human marrowâ€derived mesenchymal stem cells by PCL fibrous scaffolds containing dexamethazoneâ€loaded chitosan microspheres. Journal of Biomedical Materials Research - Part A, 2016, 104, 1657-1667.	2.1	19
75	Characteristic of bovine hydroxyapatite-gelatin-chitosan scaffolds as biomaterial candidate for bone tissue engineering. , 2016, , .		6
76	Tissue engineering scaffold based on starch: A review. , 2016, , .		15
77	The promotion of bone tissue regeneration by BMP2-derived peptide P24-loaded calcium phosphate cement microspheres. Ceramics International, 2016, 42, 3177-3189.	2.3	10
78	A review of chitosan and its derivatives in bone tissue engineering. Carbohydrate Polymers, 2016, 151, 172-188.	5.1	493
79	Hydroxyapatite-hybridized chitosan/chitin whisker bionanocomposite fibers for bone tissue engineering applications. Carbohydrate Polymers, 2016, 144, 419-427.	5.1	90
80	Creep-resistant dextran-based polyurethane foam as a candidate scaffold for bone tissue engineering: Synthesis, chemico-physical characterization, and <i>in vitro</i> and <i>in vivo</i> biocompatibility. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 729-740.	1.8	8
81	Reinforcement of freeze-dried chitosan scaffolds with multiphasic calcium phosphate short fibers. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 61, 590-599.	1.5	38
82	Comparative study on the role of gelatin, chitosan and their combination as tissue engineered scaffolds on healing and regeneration of critical sized bone defects: an in vivo study. Journal of Materials Science: Materials in Medicine, 2016, 27, 155.	1.7	39
83	Injectable calcium phosphate with hydrogel fibers encapsulating induced pluripotent, dental pulp and bone marrow stem cells for bone repair. Materials Science and Engineering C, 2016, 69, 1125-1136.	3.8	48
85	Development of Novel Biocomposite Scaffold of Chitosan-Gelatin/Nanohydroxyapatite for Potential Bone Tissue Engineering Applications. Nanoscale Research Letters, 2016, 11, 487.	3.1	56
86	The Mineralized Exoskeletons of Crustaceans. , 2016, , 137-163.		19
87	Modified silk and chitosan scaffolds with collagen assembly for osteoporosis. Bioinspired, Biomimetic and Nanobiomaterials, 2016, 5, 1-11.	0.7	3
88	Fabrication and performance characteristics of tough hydrogel scaffolds based on biocompatible polymers. International Journal of Biological Macromolecules, 2016, 92, 1-10.	3.6	26
89	Hydrogel fibers encapsulating human stem cells in an injectable calcium phosphate scaffold for bone tissue engineering. Biomedical Materials (Bristol), 2016, 11, 065008.	1.7	24
90	Delivering Nucleicâ€Acid Based Nanomedicines on Biomaterial Scaffolds for Orthopedic Tissue Repair: Challenges, Progress and Future Perspectives. Advanced Materials, 2016, 28, 5447-5469.	11.1	95
91	Multifunctional zirconium oxide doped chitosan based hybrid nanocomposites as bone tissue engineering materials. Carbohydrate Polymers, 2016, 151, 879-888.	5.1	49

#	Article	IF	CITATIONS
92	Chitosan Based Scaffolds and Their Applications in Wound Healing. Achievements in the Life Sciences, 2016, 10, 27-37.	1.3	293
93	Stabilization of porous chitosan improves the performance of its association with platelet-rich plasma as a composite scaffold. Materials Science and Engineering C, 2016, 60, 538-546.	3.8	23
94	Fabrication and detection of tissue engineered bone aggregates based on encapsulated human ADSCs within hybrid calcium alginate/bone powder gel-beads in a spinner flask. Materials Science and Engineering C, 2016, 62, 787-794.	3.8	12
95	Fabrication and characterization of novel nano-biocomposite scaffold of chitosan–gelatin–alginate–hydroxyapatite for bone tissue engineering. Materials Science and Engineering C, 2016, 64, 416-427.	3.8	239
96	Chitosan based biocomposite scaffolds for bone tissue engineering. International Journal of Biological Macromolecules, 2016, 93, 1354-1365.	3.6	301
97	In vitro performance of injectable chitosan-tripolyphosphate scaffolds combined with platelet-rich plasma. Tissue Engineering and Regenerative Medicine, 2016, 13, 21-30.	1.6	18
98	Methods of Monitoring Cell Fate and Tissue Growth in Three-Dimensional Scaffold-Based Strategies for <i>In Vitro</i> Tissue Engineering. Tissue Engineering - Part B: Reviews, 2016, 22, 265-283.	2.5	19
99	Spray drying as a viable process to produce nano-hydroxyapatite/chitosan (n-HAp/CS) hybrid microparticles mimicking bone composition. Advanced Powder Technology, 2016, 27, 575-583.	2.0	43
100	Proving the suitability of magnetoelectric stimuli for tissue engineering applications. Colloids and Surfaces B: Biointerfaces, 2016, 140, 430-436.	2.5	126
101	Development of porous Ti6Al4V/chitosan sponge composite scaffold for orthopedic applications. Materials Science and Engineering C, 2016, 58, 1177-1181.	3.8	18
102	Osteogenic differentiation and bone regeneration of iPSC-MSCs supported by a biomimetic nanofibrous scaffold. Acta Biomaterialia, 2016, 29, 365-379.	4.1	126
103	Collagen/fibrin microbeads as a delivery system for Ag-doped bioactive glass and DPSCs for potential applications in dentistry. Journal of Non-Crystalline Solids, 2016, 432, 143-149.	1.5	22
105	Enhanced mechanical properties and biocompatibility of novel hydroxyapatite/TOPAS hybrid composite for bone tissue engineering applications. Materials Science and Engineering C, 2017, 75, 807-815.	3.8	15
106	Magnesium ions enhance infiltration of osteoblasts in scaffolds via increasing cell motility. Journal of Materials Science: Materials in Medicine, 2017, 28, 96.	1.7	35
107	Effectiveness of tissue engineered based platelet gel embedded chitosan scaffold on experimentally induced critical sized segmental bone defect model in rat. Injury, 2017, 48, 1466-1474.	0.7	12
108	Bioactive monetiteâ€containing whiskerâ€like fibers reinforced chitosan scaffolds. Journal of the American Ceramic Society, 2017, 100, 4719-4733.	1.9	8
109	Chitosan patterning on titanium implants. Progress in Organic Coatings, 2017, 111, 23-28.	1.9	21
110	Diatomite reinforced chitosan composite membrane as potential scaffold for guided bone regeneration. Materials Science and Engineering C, 2017, 80, 222-231.	3.8	56

#	Article	IF	CITATIONS
111	Mechanical and biological investigations of chitosan–polyvinyl alcohol based ZrO ₂ doped porous hybrid composites for bone tissue engineering applications. New Journal of Chemistry, 2017, 41, 7524-7530.	1.4	23
112	Effectiveness of tissue engineered chitosan-gelatin composite scaffold loaded with human platelet gel in regeneration of critical sized radial bone defect in rat. Journal of Controlled Release, 2017, 254, 65-74.	4.8	42
113	Preparation and characterization of novel functionalized multiwalled carbon nanotubes/chitosan/β-Glycerophosphate scaffolds for bone tissue engineering. International Journal of Biological Macromolecules, 2017, 97, 365-372.	3.6	97
114	Biomaterials for Craniofacial Bone Regeneration. Dental Clinics of North America, 2017, 61, 835-856.	0.8	94
115	Human Bone Progenitor Cells for Clinical Application: What Kind of Immune Reaction Does Fetal Xenograft Tissue Trigger in Immunocompetent Rats?. Cell Transplantation, 2017, 26, 879-890.	1.2	7
116	Biodegradable Polymers for Bone Tissue Engineering. , 2017, , 47-74.		7
117	In vitro study of novel microparticle based silk fibroin scaffold with osteoblast-like cells for load-bearing osteo-regenerative applications. RSC Advances, 2017, 7, 26551-26558.	1.7	19
118	Alginate/Gelatin scaffolds incorporated with Silibinin-loaded Chitosan nanoparticles for bone formation in vitro. Colloids and Surfaces B: Biointerfaces, 2017, 158, 308-318.	2.5	80
119	Effectiveness of chitosan scaffold in skin, bone and cartilage healing. International Journal of Biological Macromolecules, 2017, 104, 1003-1011	3.6	155
120	Chitosan for bone and cartilage regenerative engineering. , 2017, , 33-72.		3
120 121	Chitosan for bone and cartilage regenerative engineering. , 2017, , 33-72. Influence of quercetin and nanohydroxyapatite modifications of decellularized goat-lung scaffold for bone regeneration. Materials Science and Engineering C, 2017, 71, 919-928.	3.8	3
120 121 122	Chitosan for bone and cartilage regenerative engineering. , 2017, , 33-72. Influence of quercetin and nanohydroxyapatite modifications of decellularized goat-lung scaffold for bone regeneration. Materials Science and Engineering C, 2017, 71, 919-928. Fundamentals on Osteochondral Tissue Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 129-146.	3.8	3 31 2
120 121 122 123	Chitosan for bone and cartilage regenerative engineering. , 2017, , 33-72. Influence of quercetin and nanohydroxyapatite modifications of decellularized goat-lung scaffold for bone regeneration. Materials Science and Engineering C, 2017, 71, 919-928. Fundamentals on Osteochondral Tissue Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 129-146. Combined delivery of FGFâ€2, TGFâ€Î ² 1, and adiposeâ€derived stem cells from an engineered periosteum to a criticalâ€sized mouse femur defect. Journal of Biomedical Materials Research - Part A, 2017, 105, 900-911.	3.8 0.7 2.1	3 31 2 33
120 121 122 123 124	Chitosan for bone and cartilage regenerative engineering. , 2017, , 33-72. Influence of quercetin and nanohydroxyapatite modifications of decellularized goat-lung scaffold for bone regeneration. Materials Science and Engineering C, 2017, 71, 919-928. Fundamentals on Osteochondral Tissue Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 129-146. Combined delivery of FGFâ€2, TGFâ€21, and adiposeâ€derived stem cells from an engineered periosteum to a criticalã€sized mouse femur defect. Journal of Biomedical Materials Research - Part A, 2017, 105, 900-911. Preparation and Characterization of HAp Coated Chitosanâ€Alginate PEC Porous Scaffold for Bone Tissue Engineering. Macromolecular Symposia, 2017, 376, 1600205.	3.8 0.7 2.1 0.4	3 31 2 33
120 121 122 123 124	Chitosan for bone and cartilage regenerative engineering. , 2017, , 33-72. Influence of quercetin and nanohydroxyapatite modifications of decellularized goat-lung scaffold for bone regeneration. Materials Science and Engineering C, 2017, 71, 919-928. Fundamentals on Osteochondral Tissue Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 129-146. Combined delivery of FGFâ€2, TGFâ€î²1, and adiposeâ€derived stem cells from an engineered periosteum to a criticalâ€sized mouse femur defect. Journal of Biomedical Materials Research - Part A, 2017, 105, 900-911. Preparation and Characterization of HAp Coated Chitosanâ€Alginate PEC Porous Scaffold for Bone Tissue Engineering. Macromolecular Symposia, 2017, 376, 1600205. Comparative study of chitosan and chitosan–gelatin scaffold for tissue engineering. International Nano Letters, 2017, 7, 285-290.	3.8 0.7 2.1 0.4 2.3	3 31 2 33 11 52
120 121 122 123 124 125	Chitosan for bone and cartilage regenerative engineering. , 2017, , 33-72. Influence of quercetin and nanohydroxyapatite modifications of decellularized goat-lung scaffold for bone regeneration. Materials Science and Engineering C, 2017, 71, 919-928. Fundamentals on Osteochondral Tissue Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 129-146. Combined delivery of FGFâ€2, TGFâ€ ² 1, and adiposeâ€derived stem cells from an engineered periosteum to a criticalâ€sized mouse femur defect. Journal of Biomedical Materials Research - Part A, 2017, 105, 900-911. Preparation and Characterization of HAp Coated Chitosanâ€Alginate PEC Porous Scaffold for Bone Tissue Engineering. Macromolecular Symposia, 2017, 376, 1600205. Comparative study of chitosan and chitosan–gelatin scaffold for tissue engineering. International Nano Letters, 2017, 7, 285-290. Silk fibroin/chitosan thin film promotes osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Journal of Biomaterials Applications, 2018, 32, 1164-1173.	3.8 0.7 2.1 0.4 2.3	3 31 2 33 33 11 52
120 121 122 123 124 125 125 126	Chitosan for bone and cartilage regenerative engineering. , 2017, , 33-72. Influence of quercetin and nanohydroxyapatite modifications of decellularized goat-lung scaffold for bone regeneration. Materials Science and Engineering C, 2017, 71, 919-928. Fundamentals on Osteochondral Tissue Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 129-146. Combined delivery of FCFaC2, TGFaCi ² 1, and adiposeaCelerived stem cells from an engineered periosteum to a criticalaEsized mouse femur defect. Journal of Biomedical Materials Research - Part A, 2017, 105, 900-911. Preparation and Characterization of HAp Coated ChitosanaCAlginate PEC Porous Scaffold for Bone Tissue Engineering. Macromolecular Symposia, 2017, 376, 1600205. Comparative study of chitosan and chitosanaC ^{ee} gelatin scaffold for tissue engineering. International Nano Letters, 2017, 7, 285-290. Silk fibroin/chitosan thin film promotes osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Journal of Biomaterials Applications, 2018, 32, 1164-1173. Application of minimally invasive injectable conductive hydrogels as stimulating scaffolds for myocardial tissue engineering. Polymer International, 2018, 67, 975-982.	3.8 0.7 2.1 0.4 2.3 1.2	 3 31 2 33 11 52 37 15

#	Article	IF	CITATIONS
129	Chitosan: An undisputed bio-fabrication material for tissue engineering and bio-sensing applications. International Journal of Biological Macromolecules, 2018, 110, 110-123.	3.6	149
130	Rheological behavior of pH responsive composite hydrogels of chitosan and alginate: Characterization and its use in encapsulation of citral. Colloids and Surfaces B: Biointerfaces, 2018, 169, 99-106.	2.5	66
131	Cross-linking multilayers of poly-l-lysine and hyaluronic acid: Effect on mesenchymal stem cell behavior. International Journal of Artificial Organs, 2018, 41, 223-235.	0.7	21
132	Supercritical CO 2 assisted process for the production of highâ€purity and sterile nanoâ€hydroxyapatite/chitosan hybrid scaffolds. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 965-975.	1.6	15
133	Improvement of mechanical properties and <i>in vitro</i> bioactivity of freeze-dried gelatin/chitosan scaffolds by functionalized carbon nanotubes. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 267-276.	1.8	23
134	Novel poss reinforced chitosan composite membranes for guided bone tissue regeneration. Journal of Materials Science: Materials in Medicine, 2018, 29, 1.	1.7	22
135	3D bioactive composite scaffolds for bone tissue engineering. Bioactive Materials, 2018, 3, 278-314.	8.6	866
136	Organically modified clay supported chitosan/hydroxyapatite-zinc oxide nanocomposites with enhanced mechanical and biological properties for the application in bone tissue engineering. International Journal of Biological Macromolecules, 2018, 106, 11-19.	3.6	60
137	Collagen/chitosan hybrid 3D-scaffolds as potential biomaterials for tissue engineering. International Journal of Nano and Biomaterials, 2018, 7, 163.	0.1	4
138	Novel Calcium Phosphate Cement with Metformin-Loaded Chitosan for Odontogenic Differentiation of Human Dental Pulp Cells. Stem Cells International, 2018, 2018, 1-10.	1.2	29
139	Electrospun PCL/mupirocin and chitosan/lidocaine hydrochloride multifunctional double layer nanofibrous scaffolds for wound dressing applications. International Journal of Nanomedicine, 2018, Volume 13, 5287-5299.	3.3	69
140	Functionalization of chitosan with carboxylic acids and derivatives of them: Synthesis issues and prospects of practical use: A review. EXPRESS Polymer Letters, 2018, 12, 1081-1105.	1.1	25
141	Fabrication of Coaxial Wet-Spun Biofibres Containing Graphene Core. Springer Theses, 2018, , 79-106.	0.0	0
142	Introduction and Literature Review. Springer Theses, 2018, , 1-45.	0.0	0
143	Polysaccharides as biomaterials. , 2018, , 37-70.		21
144	Chitosan–Cellulose Multifunctional Hydrogel Beads: Design, Characterization and Evaluation of Cytocompatibility with Breast Adenocarcinoma and Osteoblast Cells. Bioengineering, 2018, 5, 3.	1.6	30
145	Study on hydrophilicity and degradability of chitosan/polylactide-co-polycaprolactone nanofibre blend electrospun membrane. Carbohydrate Polymers, 2018, 199, 150-160.	5.1	42
146	PHBV wet-spun scaffold coated with ELR-REDV improves vascularization for bone tissue engineering. Biomedical Materials (Bristol), 2018, 13, 055010.	1.7	17

#	Article	IF	CITATIONS
147	ANN prediction of corrosion behaviour of uncoated and biopolymers coated cp-Titanium substrates. Materials and Design, 2018, 157, 35-51.	3.3	26
148	Novel Blend for Producing Porous Chitosan-Based Films Suitable for Biomedical Applications. Membranes, 2018, 8, 2.	1.4	37
149	Establishing a Current Good Manufacturing Practice Facility for Biomaterials and Biomolecules in an Academic Medical Center. Tissue Engineering - Part B: Reviews, 2018, 24, 493-498.	2.5	9
150	The Role of Polymer Additives in Enhancing the Response of Calcium Phosphate Cement. , 2018, , 345-379.		2
151	Composites Containing Marine Biomaterials for Bone Tissue Repair. Springer Series in Biomaterials Science and Engineering, 2019, , 357-382.	0.7	2
152	State-of-Art Functional Biomaterials for Tissue Engineering. Frontiers in Materials, 2019, 6, .	1.2	49
153	Genetically Engineered-MSC Therapies for Non-unions, Delayed Unions and Critical-size Bone Defects. International Journal of Molecular Sciences, 2019, 20, 3430.	1.8	32
154	Amine-functionalized Single-walled Carbon Nanotube/Polycaprolactone Electrospun Scaffold for Bone Tissue Engineering: in vitro Study. Fibers and Polymers, 2019, 20, 1869-1882.	1.1	40
155	Accelerated Bone Regeneration by Gold-Nanoparticle-Loaded Mesoporous Silica through Stimulating Immunomodulation. ACS Applied Materials & Interfaces, 2019, 11, 41758-41769.	4.0	73
156	Biodegradable polymer nanocomposites for tissue engineering: synthetic strategies and related applications. , 2019, , 157-198.		1
157	Induction of Articular Chondrogenesis by Chitosan/Hyaluronic-Acid-Based Biomimetic Matrices Using Human Adipose-Derived Stem Cells. International Journal of Molecular Sciences, 2019, 20, 4487.	1.8	39
158	Chitosan-Gelatin Scaffolds Incorporating Decellularized Platelet-Rich Fibrin Promote Bone Regeneration. ACS Biomaterials Science and Engineering, 2019, 5, 5305-5315.	2.6	14
159	In Vivo Bone Regeneration Induced by a Scaffold of Chitosan/Dicarboxylic Acid Seeded with Human Periodontal Ligament Cells. International Journal of Molecular Sciences, 2019, 20, 4883.	1.8	26
160	The influence of poly(ester amide) on the structural and functional features of 3D additive manufactured poly(Iµ-caprolactone) scaffolds. Materials Science and Engineering C, 2019, 98, 994-1004.	3.8	40
161	Innovative Biomaterials for Bone Regrowth. International Journal of Molecular Sciences, 2019, 20, 618.	1.8	110
162	Bioinspired calcium phosphate mineralization on Net-Shape-Nonwoven chitosan scaffolds stimulates human bone marrow stromal cell differentiation. Biomedical Materials (Bristol), 2019, 14, 045017.	1.7	6
163	Evaluation of Proliferation and Osteogenic Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Porous Scaffolds. Advances in Experimental Medicine and Biology, 2019, 1084, 207-220.	0.8	9
164	Antimicrobial potential of bismuth lipophilic nanoparticles embedded into chitosan-based membrane. Dental Materials Journal, 2019, 38, 611-620.	0.8	5

#	Article	IF	CITATIONS
165	New insights into nanohydroxyapatite/chitosan nanocomposites for bone tissue regeneration. , 2019, , 331-371.		2
166	The mineralization effect on chitosan hydrogel structure containing collagen and alkaline phosphatase. Journal of Molecular Structure, 2019, 1187, 86-97.	1.8	9
167	Evaluation of physicochemical, mechanical and biological properties of chitosan/carboxymethyl cellulose reinforced with multiphasic calcium phosphate whisker-like fibers for bone tissue engineering. Materials Science and Engineering C, 2019, 100, 341-353.	3.8	82
168	Chitosan/alginate hydrogels containing Alpha-tocopherol for wound healing in rat model. Journal of Drug Delivery Science and Technology, 2019, 51, 204-213.	1.4	139
169	Bioactive diatomite and POSS silica cage reinforced chitosan/Na-carboxymethyl cellulose polyelectrolyte scaffolds for hard tissue regeneration. Materials Science and Engineering C, 2019, 100, 196-208.	3.8	27
170	Chitosan Coating an Efficient Approach to Improve the Substrate Surface for In Vitro Culture System. Journal of the Electrochemical Society, 2019, 166, B3025-B3030.	1.3	9
171	Production and Characterization of a Novel Bilayer Nanocomposite Scaffold Composed of Chitosan/Si-nHap and Zein/POSS Structures for Osteochondral Tissue Regeneration. ACS Applied Bio Materials, 2019, 2, 1440-1455.	2.3	25
172	Bioactive fish scale incorporated chitosan biocomposite scaffolds for bone tissue engineering. International Journal of Biological Macromolecules, 2019, 130, 266-279.	3.6	40
173	Dually optimized polycaprolactone/collagen I microfiber scaffolds with stem cell capture and differentiation-inducing abilities promote bone regeneration. Journal of Materials Chemistry B, 2019, 7, 7052-7064.	2.9	11
175	Nanoengineered biomaterials for bone/dental regeneration. , 2019, , 13-38.		5
176	Chitosan-hybrid poss nanocomposites for bone regeneration: The effect of poss nanocage on surface, morphology, structure and in vitro bioactivity. International Journal of Biological Macromolecules, 2020, 142, 643-657.	3.6	41
177	Goat mesenchymal stem cell basic research and potential applications. Small Ruminant Research, 2020, 183, 106045.	0.6	24
178	Bioactive Phoenix dactylifera seeds incorporated chitosan/hydroxyapatite nanoconjugate for prospective bone tissue engineering applications: A bio-synergistic approach. Materials Science and Engineering C, 2020, 109, 110554.	3.8	15
179	Chitin, chitosan, marine to market. , 2020, , 335-376.		4
180	Chitin, chitosan, marine to market. , 2020, , 341-381.		2
181	Drug delivery and tissue engineering applications of chitosan-based biomaterial systems. , 2020, , 555-588.		0
182	The 3D-Printed Bilayer's Bioactive-Biomaterials Scaffold for Full-Thickness Articular Cartilage Defects Treatment. Materials, 2020, 13, 3417.	1.3	26
183	A modular strategy for fabrication of responsive nanocomposites using functionalized oligocaprolactones and hydroxyapatite nanoparticles. New Journal of Chemistry, 2020, 44, 20155-20166.	1.4	7

#	Article	IF	CITATIONS
184	Preparation of PBS/PLLA/HAP Composites by the Solution Casting Method: Mechanical Properties and Biocompatibility. Nanomaterials, 2020, 10, 1778.	1.9	12
185	Hydroxyapatite Nanoparticles Fortified Xanthan Gum–Chitosan Based Polyelectrolyte Complex Scaffolds for Supporting the Osteo-Friendly Environment. ACS Applied Bio Materials, 2020, 3, 7133-7146.	2.3	15
186	Histomorphometric evaluation of the effects of local application of red clover oil (Trifolium) Tj ETQq0 0 0 rgBT /0 062029.	Overlock 1 0.3	0 Tf 50 667 T 0
187	Hydroxyl Groups Induce Bioactivity in Silica/Chitosan Aerogels Designed for Bone Tissue Engineering. In Vitro Model for the Assessment of Osteoblasts Behavior. Polymers, 2020, 12, 2802.	2.0	18
188	Assessment of various crosslinking agents on collagen/chitosan scaffolds for myocardial tissue engineering. Biomedical Materials (Bristol), 2020, 15, 045003.	1.7	38
189	Injectable thermosensitive chitosan/gelatin-based hydrogel carried erythropoietin to effectively enhance maxillary sinus floor augmentation in vivo. Dental Materials, 2020, 36, e229-e240.	1.6	20
190	An efficient functionalization of dexamethasone-loaded polymeric scaffold with [3-(2,3-epoxypropoxy)-propyl]-trimethoxysilane coupling agent for bone regeneration: Synthesis, characterization, and in vitro evaluation. Journal of Bioactive and Compatible Polymers, 2020, 35, 139-159	0.8	6
191	Injectable hydrogel delivering bone morphogenetic protein-2, vascular endothelial growth factor, and adipose-derived stem cells for vascularized bone tissue engineering. Journal of Drug Delivery Science and Technology, 2020, 57, 101637.	1.4	12
192	Magnetic Bioreactor for Magneto-, Mechano- and Electroactive Tissue Engineering Strategies. Sensors, 2020, 20, 3340.	2.1	21
193	Wet-spinning of magneto-responsive helical chitosan microfibers. Beilstein Journal of Nanotechnology, 2020, 11, 991-999.	1.5	5
194	Microspheres containing biosynthesized silver nanoparticles with alginate-nano hydroxyapatite for biomedical applications. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 2025-2043.	1.9	18
195	In Vivo Testing and Extended Drug Release of Chitosan-Coated Itraconazole Loaded Microemulsion Using Volatile Oil Thymus vulgaris. Revista Brasileira De Farmacognosia, 2020, 30, 279-289.	0.6	4
196	Grafting of Unsaturated Higher Fatty Acids to Chitosan in Aqueous Medium. Russian Journal of Applied Chemistry, 2020, 93, 420-426.	0.1	0
197	Chitosan-alginate hydrogels for simultaneous and sustained releases of ciprofloxacin, amoxicillin and vancomycin for combination therapy. Journal of Drug Delivery Science and Technology, 2021, 61, 102126.	1.4	26
198	Implementation and <i>inÂvitro</i> characterization of calcium-free <i>in situ</i> gelling oral reconstituted suspension for potential overweight treatment. Drug Development and Industrial Pharmacy, 2021, 47, 36-50.	0.9	2
199	Hybrid chitosan/gelatin/nanohydroxyapatite scaffolds promote odontogenic differentiation of dental pulp stem cells and in vitro biomineralization. Dental Materials, 2021, 37, e23-e36.	1.6	36
200	Effectiveness of a biodegradable 3D polylactic acid/poly(É›â€caprolactone)/hydroxyapatite scaffold loaded by differentiated osteogenic cells in a criticalâ€sized radius bone defect in rat. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 150-162.	1.3	5
201	Cellulose-based biocomposites. , 2021, , 135-195.		1

#	Article	IF	CITATIONS
202	Chitosan and Hydroxyapatite Based Biomaterials to Circumvent Periprosthetic Joint Infections. Materials, 2021, 14, 804.	1.3	50
203	Nanohydroxyapatite reinforced chitosan and carboxymethyl-chitosan biocomposites chemically crosslinked with epichlorohydrin for potential bone tissue repair. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 740-755.	1.8	5
204	Materials and Manufacturing Techniques for Polymeric and Ceramic Scaffolds Used in Implant Dentistry. Journal of Composites Science, 2021, 5, 78.	1.4	24
205	Two‣teps of Gelation System Enhanced the Stability of Syzygium cuminiÂAnthocyanins by Encapsulation with Sodium Alginate, Maltodextrin, Chitosan and Gum Arabic. Journal of Polymers and the Environment, 2021, 29, 3679-3692.	2.4	22
206	From a plant secretion to the promising bone grafts: Cryogels of silicon-integrated quince seed mucilage by microwave-assisted sol–gel reaction. Journal of Bioscience and Bioengineering, 2021, 131, 420-433.	1.1	11
207	Bioactive small molecules in calcium phosphate scaffold enhanced osteogenic differentiation of human induced pluripotent stem cells. Dental Materials Journal, 2021, 40, 615-624.	0.8	3
208	Unsaturated and thiolated derivatives of polysaccharides as functional matrixes for tissue engineering and pharmacology: A review. Carbohydrate Polymers, 2021, 259, 117735.	5.1	9
209	Biomaterials for tissue engineered bone Scaffolds: A review. Materials Today: Proceedings, 2023, 81, 888-893.	0.9	12
210	An Overview on Starch-Based Sustainable Hydrogels: Potential Applications and Aspects. Journal of Polymers and the Environment, 2022, 30, 19-50.	2.4	58
211	The effect of aqueous extract of Prunus dulcis on tibial bone healing in the rabbit. Journal of Orthopaedic Surgery and Research, 2021, 16, 362.	0.9	2
212	Chitosan-based 3D-printed scaffolds for bone tissue engineering. International Journal of Biological Macromolecules, 2021, 183, 1925-1938.	3.6	73
213	Treatment of Critical-Size Femoral Bone Defects with Chitosan Scaffolds Produced by a Novel Process from Textile Engineering. Biomedicines, 2021, 9, 1015.	1.4	6
214	Green synthesized silver nanoparticles-impregnated novel gum kondagogu–chitosan biosheet for tissue engineering and wound healing applications. Polymer Bulletin, 2022, 79, 7215-7227.	1.7	3
215	Synthesis of Silica-Based Boron-Incorporated Collagen/Human Hair Keratin Hybrid Cryogels with the Potential Bone Formation Capability. ACS Applied Bio Materials, 2021, 4, 7266-7279.	2.3	11
216	The role of natural polymers in bone tissue engineering. Journal of Controlled Release, 2021, 338, 571-582.	4.8	145
217	The Use of Nano-Polysaccharides in Biomedical Applications. Springer Series in Biomaterials Science and Engineering, 2019, , 171-219.	0.7	3
218	Goat Mesenchymal Stem Cell Basic Research and Potential Applications. , 2020, , 153-179.		2
219	Enhancing the mechanical properties and cytocompatibility of magnesium potassium phosphate cement by incorporating oxygen-carboxymethyl chitosan. International Journal of Energy Production and Management, 2021, 8, rbaa048.	1.9	15

ARTICLE IF CITATIONS In Vivo Vascularization for Large-Volume Soft Tissue Engineering. , 2014, , 343-362. 220 1 Healing capacity of bone marrow mesenchymal stem cells versus platelet-rich fibrin in tibial bone 221 0.8 defects of albino rats: an in vivo study. F1000Research, 2018, 7, 1573. Pullulan/dextran/nHA Macroporous Composite Beads for Bone Repair in a Femoral Condyle Defect in 222 1.1 32 Rats. PLoS ONE, 2014, 9, e110251. Lysozyme-Induced Degradation of Chitosan: The Characterisation of Degraded Chitosan Scaffolds. Journal of Tissue Repair and Regeneration, 2017, 1, 12-22. STRUCTURAL RESEARCH OF THERMOSENSITIVE CHITOSAN-COLLAGEN GELS CONTAINING ALP. Progress on 224 0.1 3 Chemistry and Application of Chitin and Its Derivatives, 2016, 21, 176-186. Amphotericin-B and vancomycin-loaded chitosan nanofiber for antifungal and antibacterial 1.2 application. Brazilian Journal of Pharmaceutical Sciences, 0, 55, . Compressive strength and porosity tests on bovine hydroxyapatite-gelatin-chitosan scaffolds. Dental 226 0.0 7 Journal: Majalah Kedokteran Gigi, 2016, 49, 153. Scaffolds for Bone Regeneration: State of the Art. Current Pharmaceutical Design, 2016, 22, 2726-2736. Optimization, characterization, and efficacy evaluation of 2% chitosan scaffold for tissue 228 0.2 23 engineering and wound healing. Journal of Pharmacy and Bioallied Sciences, 2016, 8, 300. Hydrogel Fibre: Future Material of Interest for Biomedical Applications. Journal of Textile Science and 229 0.2 Technology, 2019, 05, 92-107. Effect of Chitosan on Expression of Osteogenic Genes during the Healing of Rat Extraction Socket. 230 0 0.1 Journal of Korean Dental Science, 2014, 7, 58-65. Preparation and Characterisation of Novel Hybrid Hydrogel Fibres. Springer Theses, 2018, , 57-77. 0.0 The overview of methods for obtaining alginate hydrogels and nanofibers using the electrospinning 232 0.1 0 technique. Materials Protection, 2018, 59, 327-337. Optimization Design Strategy for Additive Manufacturing Process to Develop 3D Magnetic 0.3 Nanocomposite Scaffolds. Lecture Notes in Mechanical Engineering, 2020, , 948-958 Chitosanâ€Based Smart Polymeric Hydrogels and Their Prospective Applications in Biomedicine. 234 10 1.1 Starch/Staerke, 2024, 76, 2100150. Chitin and chitosan composites for bone tissue regeneration., 2020, , 499-553. 236 Chemically modified polysaccharides in tissue engineering., 2020, , 197-224. 2 Micro-Osteo Tubular Scaffolds: a Method for Induction of Bone Tissue Constructs. Regenerative Engineering and Translational Medicine, 0, , 1.

	CITATION R	EPORT	
#	Article	IF	CITATIONS
238	Towards high throughput tissue engineering: development of chitosan-calcium phosphate scaffolds for engineering bone tissue from embryonic stem cells. American Journal of Stem Cells, 2012, 1, 81-9.	0.4	2
240	Efficacy of Octacalcium Phosphate and Octacalcium Phosphate/Gelatin Composite on the Repair of Critical-Sized Calvarial Defects in Rats. Journal of Dentistry of Tehran University of Medical Sciences, 2018, 15, 86-96.	0.4	0
241	Biological macromolecules in tissue engineering. , 2022, , 381-392.		3
242	Chitosan/β-TCP composites scaffolds coated with silk fibroin: a bone tissue engineering approach. Biomedical Materials (Bristol), 2022, 17, 015003.	1.7	7
243	Development of alginate-chitosan composite scaffold incorporation of bacterial cellulose for bone tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 296-307.	1.8	5
244	Spatiotemporal regulation of endogenous MSCs using a functional injectable hydrogel system for cartilage regeneration. NPG Asia Materials, 2021, 13, .	3.8	24
245	Microcarriers in application for cartilage tissue engineering: Recent progress and challenges. Bioactive Materials, 2022, 17, 81-108.	8.6	30
246	Natural Polymer–Based Micronanostructured Scaffolds for Bone Tissue Engineering. Methods in Molecular Biology, 2022, 2394, 669-691.	0.4	4
247	Chitosan-collagen-hydroxyapatite membranes for tissue engineering. Journal of Materials Science: Materials in Medicine, 2022, 33, 18.	1.7	37
248	Chitosan-based scaffolds in tissue engineering and regenerative medicine. , 2022, , 329-354.		4
249	Recent advances in 3D hydrogel culture systems for mesenchymal stem cell-based therapy and cell behavior regulation. Journal of Materials Chemistry B, 2022, 10, 1486-1507.	2.9	23
250	Toughening robocast chitosan/biphasic calcium phosphate composite scaffolds with silk fibroin: Tuning printable inks and scaffold structure for bone regeneration. Materials Science and Engineering C, 2022, 134, 112690.	3.8	13
251	Chitosan: A review of molecular structure, bioactivities and interactions with the human body and micro-organisms. Carbohydrate Polymers, 2022, 282, 119132.	5.1	143
252	Bone Tissue Engineering Using Osteogenic Cells: From the Bench to the Clinical Application. Tissue Engineering - Part C: Methods, 2022, 28, 179-192.	1.1	18
253	Enhancing osseointegration and mitigating bacterial biofilms on medical-grade titanium with chitosan-conjugated liquid-infused coatings. Scientific Reports, 2022, 12, 5380.	1.6	10
254	Biomedyczne wÅ,aÅ›ciwoÅ›ci chitozanu – zastosowanie w inżynierii tkankowej Biomedical properties of chitosan: Application in tissue engineering. Postepy Higieny I Medycyny Doswiadczalnej, 2021, 75, 1020-1037.	0.1	0
255	Marine Biomaterials as Carrier of Drugs/Biomolecules for Management of Bone Disorders. , 2022, , 271-305.		1
256	Preparation of norfloxacin-grafted chitosan antimicrobial sponge and its application in wound repair. International Journal of Biological Macromolecules, 2022, 210, 243-251.	3.6	8

#	Article	IF	CITATIONS
257	Mechanically and biologically enhanced 3D-printed HA/PLLA/dECM biocomposites for bone tissue engineering. International Journal of Biological Macromolecules, 2022, 218, 9-21.	3.6	10
258	Microfluidicâ€essisted preparation of nano and microscale chitosan based <scp>3D</scp> composite materials: Comparison with conventional methods. Journal of Applied Polymer Science, 2022, 139, .	1.3	1
259	Application of Chitosan in the Medical and Biomedical Field. Engineering Materials and Processes, 2022, , 291-321.	0.2	0
260	Polysaccharide Based Implantable Drug Delivery: Development Strategies, Regulatory Requirements, and Future Perspectives. Polysaccharides, 2022, 3, 625-654.	2.1	22
261	The comprehensive on-demand 3D bio-printing for composite reconstruction of mandibular defects. Maxillofacial Plastic and Reconstructive Surgery, 2022, 44, .	0.7	7
262	Modern prerequisites for creating a collagen-based artificial analogue of the corneal stroma. Vestnik Oftalmologii, 2022, 138, 253.	0.1	0
263	Composite Fibers Based on Polycaprolactone and Calcium Magnesium Silicate Powders for Tissue Engineering Applications. Polymers, 2022, 14, 4611.	2.0	2
264	Evaluation of Mechanical Properties of Porous Chitosan/Gelatin/Polycaprolactone Bone Scaffold Prepared by Microwave Foaming Method. Polymers, 2022, 14, 4668.	2.0	1
265	Green Materials for 3D Printing in Dentistry. , 2022, , 1-6.		0
266	Kinetics of PTSA-Catalysed Polycondensation of Citric Acid with 1,3-Propanediol. Applied Sciences (Switzerland), 2022, 12, 12445.	1.3	1
268	Biocompatibility of Veratric Acid–Encapsulated Chitosan/Methylcellulose Hydrogel: Biological Characterization, Osteogenic Efficiency with In Silico Molecular Modeling. Applied Biochemistry and Biotechnology, 2023, 195, 4429-4446.	1.4	4
270	CHITOSAN ADDED COMPOSITE VISCOSE YARN AND ITS POTENTIAL APPLICATION FOR DENIM FABRIC DEVELOPMENT. , 2023, 30, 93-98.		0
278	Biopolymer nanocomposites and membranes in tissue engineering. , 2023, , 337-372.		0

Biopolymer nanocomposites and membranes in tissue engineering. , 2023, , 337-372. 278