An in situ STM/AFM and impedance spectroscopy study 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)tr potential dependent solvation layers and the herringbo

Physical Chemistry Chemical Physics

13, 6849

DOI: 10.1039/c0cp02846k

Citation Report

#	Article	IF	CITATIONS
1	Ionic Liquids As a Medium for STM-Based Single Molecule Conductance Determination: An Exploration Employing Alkanedithiols. Journal of Physical Chemistry C, 2011, 115, 21402-21408.	1.5	15
2	Imaging an Ionic Liquid Adlayer by Scanning Tunneling Microscopy at the Solid Vacuum Interface. ChemPhysChem, 2011, 12, 2565-2567.	1.0	69
3	Ionic Liquids for Electrochemical Deposition: Prospects and Challenges. Chemie-Ingenieur-Technik, 2011, 83, 1485-1492.	0.4	16
4	Commentary on †The interface between Au(111) and an ionic liquid'. Electrochimica Acta, 2011, 56, 7243-7245.	2.6	5
5	Control of Nanoscale Friction on Gold in an Ionic Liquid by a Potential-Dependent Ionic Lubricant Layer. Physical Review Letters, 2012, 109, 155502.	2.9	201
6	Recent developments in the study of ionic liquid interfaces using X-ray photoelectron spectroscopy and potential future directions. Physical Chemistry Chemical Physics, 2012, 14, 5010.	1.3	120
7	Slow and fast capacitive process taking place at the ionic liquid/electrode interface. Faraday Discussions, 2012, 154, 303-311.	1.6	84
8	Interfaces of ionic liquids. Physical Chemistry Chemical Physics, 2012, 14, 5008.	1.3	20
9	New insights into the interface between a single-crystalline metal electrode and an extremely pure ionic liquid: slow interfacial processes and the influence of temperature on interfacial dynamics. Physical Chemistry Chemical Physics, 2012, 14, 5090.	1.3	147
10	Ionic Liquid Nanotribology: Stiction Suppression and Surface Induced Shear Thinning. Langmuir, 2012, 28, 9967-9976.	1.6	60
11	Effect of dissolved LiCl on the ionic liquid–Au(111) electrical double layer structure. Chemical Communications, 2012, 48, 10246.	2.2	70
12	Molecular-scale insights into the mechanisms of ionic liquids interactions with carbon nanotubes. Faraday Discussions, 2012, 154, 235-247.	1.6	70
13	Protein Nano-Object Integrator (ProNOI) for generating atomic style objects for molecular modeling. BMC Structural Biology, 2012, 12, 31.	2.3	4
14	In situ STM, AFM and DTS study of the interface 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate/Au(111). Electrochimica Acta, 2012, 82, 48-59.	2.6	53
15	Probing the neutral graphene–ionic liquid interface: insights from molecular dynamics simulations. Physical Chemistry Chemical Physics, 2012, 14, 2552.	1.3	112
16	The interface ionic liquid(s)/electrode(s): In situSTM and AFM measurements. Faraday Discussions, 2012, 154, 221-233.	1.6	176
17	Mono- and multi-layer adsorption of an ionic liquid on Au(110). Physical Chemistry Chemical Physics, 2012, 14, 6054.	1.3	64
18	An in Situ STM and DTS Study of the Extremely Pure [EMIM]FAP/Au(111) Interface. ChemPhysChem, 2012, 13, 1736-1742.	1.0	24

#	Article	IF	CITATIONS
19	Electrodeposition of germanium from supercritical fluids. Physical Chemistry Chemical Physics, 2012, 14, 1517-1528.	1.3	33
20	Electrode screening by ionic liquids. Physical Chemistry Chemical Physics, 2012, 14, 2693.	1.3	122
21	The interfaces of Au(111) and Au(100) in a hexaalkyl-substituted guanidinium ionic liquid: an electrochemical and in situ STM study. Physical Chemistry Chemical Physics, 2012, 14, 10647.	1.3	48
22	High current density, efficient cycling of Zn2+ in 1-ethyl-3-methylimidazolium dicyanamide ionic liquid: The effect of Zn2+ salt and water concentration. Electrochemistry Communications, 2012, 18, 119-122.	2.3	136
23	Dependence on the crystallographic orientation of Au for the potential window of the electrical double-layer region in imidazolium-based ionic liquids. Electrochemistry Communications, 2012, 20, 26-28.	2.3	15
24	Computer simulations of ionic liquids at electrochemical interfaces. Physical Chemistry Chemical Physics, 2013, 15, 15781.	1.3	148
25	Ion transport properties of ionic liquid-based polyelectrolytes. Solid State Ionics, 2013, 247-248, 15-21.	1.3	21
26	Toward the Microscopic Identification of Anions and Cations at the Ionic Liquid Ag(111) Interface: A Combined Experimental and Theoretical Investigation. ACS Nano, 2013, 7, 7773-7784.	7.3	100
27	Comparative Impedance Study of Cd(0001) Electrode in EMImBF ₄ and KI Aqueous Solution at Different Temperatures. Journal of the Electrochemical Society, 2013, 160, H368-H375.	1.3	18
28	Theory of amplitude modulated electrostatic force microscopy for dielectric measurements in liquids at MHz frequencies. Nanotechnology, 2013, 24, 415709.	1.3	20
29	Effect of alkyl chain length and anion species on the interfacial nanostructure of ionic liquids at the Au(111)–ionic liquid interface as a function of potential. Physical Chemistry Chemical Physics, 2013, 15, 14624.	1.3	163
30	Convective mass transport in ionic liquids studied by electrochemical and electrohydrodynamic impedance spectroscopy. Electrochimica Acta, 2013, 93, 32-43.	2.6	9
31	Ionic liquid lubrication: influence of ion structure, surface potential and sliding velocity. Physical Chemistry Chemical Physics, 2013, 15, 14616.	1.3	140
32	In situ tracking of the nanoscale expansion of porous carbon electrodes. Energy and Environmental Science, 2013, 6, 225-231.	15.6	60
33	Quantum design of ionic liquids for extreme chemical inertness and a new theory of the glass transition. Journal of Solid State Electrochemistry, 2013, 17, 327-337.	1.2	18
34	Electrochemical, Transport, and Spectroscopic Properties of 1-Ethyl-3-methylimidazolium Ionic Liquid Electrolytes Containing Zinc Dicyanamide. Journal of Physical Chemistry C, 2013, 117, 2662-2669.	1.5	69
35	Bias-Dependent Molecular-Level Structure of Electrical Double Layer in Ionic Liquid on Graphite. Nano Letters, 2013, 13, 5954-5960.	4.5	142
36	Electrodeposition of silicon from three different ionic liquids: possible influence of the anion on the deposition process. Journal of Solid State Electrochemistry, 2013, 17, 2823-2832.	1.2	49

#	Article	IF	CITATIONS
37	Charge–discharge behavior of graphite negative electrodes in bis(fluorosulfonyl)imide-based ionic liquid and structural aspects of their electrode/electrolyte interfaces. Electrochimica Acta, 2013, 110, 181-190.	2.6	62
38	Adsorbed and near surface structure of ionic liquids at a solid interface. Physical Chemistry Chemical Physics, 2013, 15, 3320.	1.3	114
39	Electric Double Layer of Au(100)/Imidazolium-Based Ionic Liquids Interface: Effect of Cation Size. Journal of Physical Chemistry C, 2013, 117, 205-212.	1.5	63
40	Electrodeposition of zinc films from ionic liquids and ionic liquid/water mixtures. Electrochimica Acta, 2013, 89, 635-643.	2.6	135
41	Dynamic Electrowetting and Dewetting of Ionic Liquids at a Hydrophobic Solid–Liquid Interface. Langmuir, 2013, 29, 2631-2639.	1.6	47
42	Interfacial Behavior of Thin Ionic Liquid Films on Mica. Journal of Physical Chemistry C, 2013, 117, 5101-5111.	1.5	60
43	Continuous development of schemes for parallel computing of the electrostatics in biological systems: Implementation in DelPhi. Journal of Computational Chemistry, 2013, 34, 1949-1960.	1.5	26
44	Femtosecond Electron Solvation at the Ionic Liquid/Metal Electrode Interface. Journal of the American Chemical Society, 2013, 135, 10646-10653.	6.6	29
45	Influence of solvation on the structural and capacitive properties of electrical double layer capacitors. Electrochimica Acta, 2013, 101, 262-271.	2.6	96
46	Adsorbed and near-surface structure of ionic liquids determines nanoscale friction. Chemical Communications, 2013, 49, 6797.	2.2	71
47	Double Layer at [BuMeIm][Tf ₂ N] Ionic Liquid–Pt or â^'C Material Interfaces. Journal of Physical Chemistry C, 2013, 117, 22915-22925.	1.5	43
48	Progress in developing Poisson-Boltzmann equation solvers. Computational and Mathematical Biophysics, 2013, 1, 42-62.	0.6	29
49	Methane Recognition and Quantification by Differential Capacitance at the Hydrophobic Ionic Liquid-Electrified Metal Electrode Interface. Journal of the Electrochemical Society, 2013, 160, B83-B89.	1.3	31
50	The Differential Capacitance of Ionic Liquid / Metal Electrode Interfaces – A Critical Comparison of Experimental Results with Theoretical Predictions. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2013, 68, 1143-1153.	0.3	41
51	Structure and dynamics of the interfacial layer between ionic liquids and electrode materials. Journal of Molecular Liquids, 2014, 192, 44-54.	2.3	133
52	Mechanistic Studies of Zinc Electrodeposition from Deep Eutectic Electrolytes. Journal of the Electrochemical Society, 2014, 161, D7-D13.	1.3	45
53	Ionic Liquids at Electrified Interfaces. Chemical Reviews, 2014, 114, 2978-3036.	23.0	1,101

#	Article	IF	CITATIONS
55	In Situ Observation of Directed Nanoparticle Aggregation During the Synthesis of Ordered Nanoporous Metal in Soft Templates. Chemistry of Materials, 2014, 26, 1426-1433.	3.2	14
57	Structural Origins of Potential Dependent Hysteresis at the Electrified Graphene/Ionic Liquid Interface. Journal of Physical Chemistry C, 2014, 118, 569-574.	1.5	111
58	Pressureâ€viscosity behaviour and film thickness in elastohydrodynamic regime of lubrication of ionic liquids and other base oils. Lubrication Science, 2014, 26, 449-462.	0.9	20
59	Local Analyses of Ionic Liquid/Solid Interfaces by Frequency Modulation Atomic Force Microscopy and Photoemission Spectroscopy. Chemical Record, 2014, 14, 964-973.	2.9	32
60	3-Dimensional atomic scale structure of the ionic liquid–graphite interface elucidated by AM-AFM and quantum chemical simulations. Nanoscale, 2014, 6, 8100-8106.	2.8	78
61	Adsorption and reaction of sub-monolayer films of an ionic liquid on Cu(111). Chemical Communications, 2014, 50, 8601-8604.	2.2	47
62	Interface Controls Spontaneous Crystallization in Thin Films of the Ionic Liquid [C ₂ C ₁ Im][OTf] on Atomically Clean Pd(111). Langmuir, 2014, 30, 6846-6851.	1.6	22
63	The role of cations in the reduction of 9-fluorenone in bis(trifluoromethylsulfonyl)imide room temperature ionic liquids. New Journal of Chemistry, 2014, 38, 5030-5036.	1.4	15
64	Effect of ion structure on nanoscale friction in protic ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 16651.	1.3	41
65	Influence of temperature on the capacitance of ionic liquid electrolytes on charged surfaces. Physical Chemistry Chemical Physics, 2014, 16, 5174.	1.3	59
66	Molecular dynamics simulations of the structure of the graphene–ionic liquid/alkali salt mixtures interface. Physical Chemistry Chemical Physics, 2014, 16, 13271-13278.	1.3	58
67	Ultrafast solvation dynamics and charge transfer reactions in room temperature ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 13008-13026.	1.3	39
68	Effect of dissolved LiCl on the ionic liquid–Au(111) interface: an <i>in situ</i> STM study. Journal of Physics Condensed Matter, 2014, 26, 284111.	0.7	16
69	Zn Electrochemistry in 1â€Ethylâ€3â€Methylimidazolium and <i>N</i> â€Butylâ€ <i>N</i> â€Methylpyrrolidinium Dicyanamides: Promising New Rechargeable Zn Battery Electrolytes. ChemElectroChem, 2014, 1, 1688-1697.	1.7	49
70	The Electric Double Layer Has a Life of Its Own. Journal of Physical Chemistry C, 2014, 118, 18291-18298.	1.5	195
71	Atomic Resolution Imaging of Gold Nanoparticle Generation and Growth in Ionic Liquids. Journal of the American Chemical Society, 2014, 136, 13789-13797.	6.6	61
72	Ionic liquids confined in porous matrices: Physicochemical properties and applications. Progress in Materials Science, 2014, 64, 73-120.	16.0	264
73	Theory for Anomalous Electric Double-Layer Dynamics in Ionic Liquids. Journal of Physical Chemistry C, 2014, 118, 8766-8774.	1.5	25

	CITATION	LPORT	
#	Article	IF	CITATIONS
74	Changes in dynamical behavior of ionic liquid in silica nano-pores. Ionics, 2014, 20, 507-516.	1.2	25
75	A comparative study of alkylimidazolium room temperature ionic liquids with FSI and TFSI anions near charged electrodes. Electrochimica Acta, 2014, 145, 40-52.	2.6	52
76	Dicationic Ionic Liquid: Insight in the Electrical Double Layer Structure at mercury, glassy carbon and gold surfaces. Electrochimica Acta, 2014, 116, 306-313.	2.6	15
77	Importance of the double layer structure in the electrochemical deposition of Co from soluble Co2+ - based precursors in Ionic Liquid media. Electrochimica Acta, 2014, 134, 55-66.	2.6	30
79	Combined STM, AFM, and DFT Study of the Highly Ordered Pyrolytic Graphite/1-Octyl-3-methyl-imidazolium Bis(trifluoromethylsulfonyl)imide Interface. Journal of Physical Chemistry C, 2014, 118, 10833-10843.	1.5	65
80	Ferrocene/Ferrocenium Redox Couple at Au(111)/Ionic Liquid and Au(111)/Acetonitrile Interfaces: A Molecular-Level View at the Elementary Act. Journal of Physical Chemistry C, 2014, 118, 6151-6164.	1.5	49
81	Surfactant Inuence on Stability and Lubrication Properties of Metal Nanoparticle Suspensions in Oil. , 2014, , 170-201.		0
82	An Analysis of Anionâ€Specific Effects on the Standard Potential Shifts of 9â€Fluorenone in Roomâ€Temperature Ionic Liquids with a Silver Electrode as a Cathode Material. ChemElectroChem, 2014, 1, 2104-2109.	1.7	4
83	Microstructure of room temperature ionic liquids at stepped graphite electrodes. AICHE Journal, 2015, 61, 3022-3028.	1.8	32
84	Sieving Effects in Electrical Double‣ayer Capacitors Based on Neat [Al(hfip) ₄] ^{â^'} and [NTf ₂] ^{â^'} Ionic Liquids. ChemElectroChem, 2015, 2, 829-836.	1.7	6
85	Characterizing the Influence of Water on Charging and Layering at Electrified Ionic‣iquid/Solid Interfaces. Advanced Materials Interfaces, 2015, 2, 1500159.	1.9	93
87	Structure and Nanostructure in Ionic Liquids. Chemical Reviews, 2015, 115, 6357-6426.	23.0	1,793
88	Structural stability and polarisation of ionic liquid films on silica surfaces. Physical Chemistry Chemical Physics, 2015, 17, 17661-17669.	1.3	20
89	Influence of electric potentials on friction of sliding contacts lubricated by an ionic liquid. Physical Chemistry Chemical Physics, 2015, 17, 10339-10342.	1.3	36
90	Long-range electrostatic screening in ionic liquids. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7432-7437.	3.3	214
91	Influence of Electrode Roughness on Double Layer Formation in Ionic Liquids. Journal of Physical Chemistry C, 2015, 119, 4620-4626.	1.5	33
92	Interfacial ionic â€~liquids': connecting static and dynamic structures. Journal of Physics Condensed Matter, 2015, 27, 032101.	0.7	67
93	Solid-liquid interfaces of ionic liquid solutions—Interfacial layering and bulk correlations. Journal of Chemical Physics, 2015, 142, 164707.	1.2	56

#	Article	IF	CITATIONS
94	Topological defects in electric double layers of ionic liquids at carbon interfaces. Nano Energy, 2015, 15, 737-745.	8.2	35
95	In Situ Atomic Force Microscopic Studies of the Interfacial Multilayer Nanostructure of LiTFSI–[Py _{1,Â4}]TFSI on Au(111): Influence of Li ⁺ Ion Concentration on the Au(111)/IL Interface. Journal of Physical Chemistry C, 2015, 119, 16734-16742.	1.5	48
96	Structural Transition in an Ionic Liquid Controls CO ₂ Electrochemical Reduction. Journal of Physical Chemistry C, 2015, 119, 20892-20899.	1.5	78
97	Electrochemical and in-situ scanning tunneling microscopy studies of bis(fluorosulfonyl)imide and bis(trifluoromethanesulfonyl)imide based ionic liquids on graphite and gold electrodes and lithium salt influence. Journal of Power Sources, 2015, 293, 187-195.	4.0	31
98	Reactive Interaction of (Sub-)monolayers and Multilayers of the Ionic Liquid 1-Butyl-1-methylpyrrolidinium Bis(trifluoro-methylsulfonyl)imide with Coadsorbed Lithium on Cu(111). Journal of Physical Chemistry C, 2015, 119, 16649-16659.	1.5	30
99	Potentialâ€Dependent Adlayer Structure and Dynamics at the Ionic Liquid/Au(111) Interface: A Molecularâ€Scale In Situ Videoâ€STM Study. Angewandte Chemie - International Edition, 2015, 54, 6062-6066.	7.2	118
100	lonic Liquids in Catalysis. Catalysis Letters, 2015, 145, 380-397.	1.4	313
101	Coupling Bulk and Near-Electrode Interfacial Nanostructuring in Ionic Liquids. Chemistry of Materials, 2015, 27, 4169-4179.	3.2	27
102	Frequency dependence of the ionic conductivity in water + ammonium nitrate electrolyte solutions. Electrochimica Acta, 2015, 178, 511-516.	2.6	4
103	Electrode–Electrolyte Interfacial Processes in Ionic Liquids and Sensor Applications. , 2015, , 7-74.		3
104	Weighing the surface charge of an ionic liquid. Nanoscale, 2015, 7, 16039-16045.	2.8	28
105	Molecular Response of 1-Butyl-3-Methylimidazolium Dicyanamide Ionic Liquid at the Graphene Electrode Interface Investigated by Sum Frequency Generation Spectroscopy and Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2015, 119, 26009-26019.	1.5	44
106	Ionic liquids at charged surfaces: Insight from molecular simulations. Journal of Non-Crystalline Solids, 2015, 407, 339-348.	1.5	41
107	Nanostructure of [Li(G4)] TFSI and [Li(G4)] NO ₃ solvate ionic liquids at HOPG and Au(111) electrode interfaces as a function of potential. Physical Chemistry Chemical Physics, 2015, 17, 325-333.	1.3	61
108	Dendritenfreie elektrochemische Abscheidung von nanokristallinem Zink aus einer Nickeltriflatâ€haltigen ionischen Flüssigkeit für wiederaufladbare Znâ€Batterien. Angewandte Chemie, 2016, 128, 2939-2943.	1.6	16
109	The Electric Double Layer in an Ionic Liquid Incorporated with Water Molecules: Atomic Force Microscopy Force Curve Study. ChemElectroChem, 2016, 3, 2221-2226.	1.7	48
110	Electrochemical and structural properties of the electrical double layer of two-component electrolytes in response to varied electrode potential. Journal of Chemical Physics, 2016, 144, 134701.	1.2	9

#	Article	IF	CITATIONS
112	3-Dimensional Structure of a Prototypical Ionic Liquid–Solid Interface: Ionic Crystal-Like Behavior Induced by Molecule–Substrate Interactions. Journal of Physical Chemistry C, 2016, 120, 11947-11955.	1.5	23
113	Theoretical Studies on the Adsorption of 1-Butyl-3-methyl-imidazolium-hexafluorophosphate (BMI/PF) Tj ETQq1	1 0,78431 1.3	4 rgBT /Over
114	Long-Range Ordering of Ionic Liquid Fluid Films. Langmuir, 2016, 32, 5147-5154.	1.6	73
115	Anion Effects on the Solid/Ionic Liquid Interface and the Electrodeposition of Zinc. Journal of Physical Chemistry C, 2016, 120, 20224-20231.	1.5	62
116	Electrochemical Double Layers in Ionic Liquids Investigated by Broadband Impedance Spectroscopy and Other Complementary Experimental Techniques. Advances in Dielectrics, 2016, , 157-192.	1.2	0
117	Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy. Scientific Reports, 2016, 6, 32389.	1.6	57
118	Dendriteâ€Free Nanocrystalline Zinc Electrodeposition from an Ionic Liquid Containing Nickel Triflate for Rechargeable Znâ€Based Batteries. Angewandte Chemie - International Edition, 2016, 55, 2889-2893.	7.2	210
119	[Py _{1,4}]FSI-NaFSI-Based Ionic Liquid Electrolyte for Sodium Batteries: Na ⁺ Solvation and Interfacial Nanostructure on Au(111). Journal of Physical Chemistry C, 2016, 120, 14736-14741.	1.5	45
120	Ligand Effects at Ionic Liquid-Modified Interfaces: Coadsorption of [C ₂ C ₁ Im][OTf] and CO on Pd(111). Journal of Physical Chemistry C, 2016, 120, 4453-4465.	1.5	37
121	Concentration Fluctuations and Capacitive Response in Dense Ionic Solutions. Journal of Physical Chemistry Letters, 2016, 7, 2333-2338.	2.1	60
122	Supported Silver Nanoparticle and Near-Interface Solution Dynamics in a Deep Eutectic Solvent. Journal of Physical Chemistry C, 2016, 120, 1534-1545.	1.5	23
123	Is the boundary layer of an ionic liquid equally lubricating at higher temperature?. Physical Chemistry Chemical Physics, 2016, 18, 9232-9239.	1.3	28
124	The electrochemical interface of Ag(111) in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid—A combined in-situ scanning probe microscopy and impedance study. Electrochimica Acta, 2016, 197, 282-289.	2.6	37
125	In Situ Video-STM Study of Adlayer Structure and Surface Dynamics at the Ionic Liquid/Au (111) Interface. Journal of Physical Chemistry C, 2016, 120, 15765-15771.	1.5	43
126	Ionic Liquid-Modified Electrocatalysts: The Interaction of [C 1 C 2 Im][OTf] with Pt(1 1 1) and its Influence on Methanol Oxidation Studied by Electrochemical IR Spectroscopy. Electrochimica Acta, 2016, 188, 825-836.	2.6	38
127	In situ scanning tunneling microscopy (STM), atomic force microscopy (AFM) and quartz crystal microbalance (EQCM) studies of the electrochemical deposition of tantalum in two different ionic liquids with the 1-butyl-1-methylpyrrolidinium cation. Electrochimica Acta, 2016, 197, 374-387.	2.6	31
128	Interfacial Structures of Trihexyltetradecylphosphonium-bis(mandelato)borate Ionic Liquid Confined between Gold Electrodes. ACS Applied Materials & Interfaces, 2017, 9, 4976-4987.	4.0	30
129	Studies of electrochemical interfaces by broadband sum frequency generation. Journal of Electroanalytical Chemistry, 2017, 800, 114-125.	1.9	51

#	Article	IF	Citations
130	Manganese-containing ionic liquids: synthesis, crystal structures and electrodeposition of manganese films and nanoparticles. Dalton Transactions, 2017, 46, 2497-2509.	1.6	11
131	Catalytic reduction of TFSI-containing ionic liquid in the presence of lithium cations. Electrochemistry Communications, 2017, 77, 128-132.	2.3	47
135	Interfacial Nanostructure and Asymmetric Electrowetting of Ionic Liquids. Langmuir, 2017, 33, 9539-9547.	1.6	24
136	Perspective: Chemical reactions in ionic liquids monitored through the gas (vacuum)/liquid interface. Journal of Chemical Physics, 2017, 146, 170901.	1.2	18
137	Ionic Liquids for Supercapacitor Applications. Topics in Current Chemistry, 2017, 375, 63.	3.0	105
138	Anomalous Voltammetric Behavior Observed for Electrodeposition of Indium in the 1-Butyl-1-methylpyrrolidinium Dicyanamide Ionic Liquid. A Result of the Ionic Liquid Cation Adsorption. Journal of Physical Chemistry C, 2017, 121, 8907-8913.	1.5	12
139	Effects of water on low-overpotential CO ₂ reduction in ionic liquid studied by sum-frequency generation spectroscopy. Physical Chemistry Chemical Physics, 2017, 19, 10491-10501.	1.3	35
140	Interfacial Structure at the Quaternary Ammonium-Based Ionic Liquids Gold Electrode Interface Probed by Surface-Enhanced Infrared Absorption Spectroscopy: Anion Dependence of the Cationic Behavior. Journal of Physical Chemistry C, 2017, 121, 1658-1666.	1.5	41
141	Electrodeposition of zinc nanoplates from an ionic liquid composed of 1-butylpyrrolidine and ZnCl ₂ : electrochemical, in situ AFM and spectroscopic studies. Dalton Transactions, 2017, 46, 455-464.	1.6	18
142	Role of Electrical Double Layer Structure in Ionic Liquid Gated Devices. ACS Applied Materials & Interfaces, 2017, 9, 40949-40958.	4.0	24
143	Molecular-level understanding of electric double layer in ionic liquids. Current Opinion in Electrochemistry, 2017, 4, 105-111.	2.5	30
144	SFG Study of the Potential-Dependent Adsorption of the <i>p</i> -Toluenesulfonate Anion at an Activated Carbon/Propylene Carbonate Interface. Journal of Physical Chemistry C, 2017, 121, 20567-20575.	1.5	6
145	The influence of water content in a proton-conducting ionic liquid on the double layer properties of the Pt/PIL interface. Physical Chemistry Chemical Physics, 2017, 19, 24706-24723.	1.3	26
146	Electrochemical Kinetics of Ferrocene-Based Redox-ILs Investigated by Multi-Spectrum Impedance Fitting. Journal of Physical Chemistry C, 2017, 121, 26706-26712.	1.5	4
147	Fabrication of thin TEM sample of ionic liquid for high-resolution ELNES measurements. Ultramicroscopy, 2017, 178, 81-87.	0.8	19
148	Probing the lubricating mechanism of oil-soluble ionic liquids additives. Tribology International, 2017, 107, 152-162.	3.0	89
149	Calculating the Maximum Density of the Surface Packing of Ions in Ionic Liquids. Russian Journal of Physical Chemistry A, 2018, 92, 999-1005.	0.1	10
150	Influence of a silver salt on the nanostructure of a Au(111)/ionic liquid interface: an atomic force microscopy study and theoretical concepts. Physical Chemistry Chemical Physics, 2018, 20, 4760-4771.	1.3	30

#	Article	IF	CITATIONS
151	Direct Measurement of the Differential Capacitance of Solvent-Free and Dilute Ionic Liquids. Journal of Physical Chemistry Letters, 2018, 9, 126-131.	2.1	68
152	Extended hierarchical solvent perturbations from curved surfaces of mesoporous silica particles in a deep eutectic solvent. Journal of Colloid and Interface Science, 2018, 520, 81-90.	5.0	15
153	Electrochemical impedance spectroscopy on the capacitance of ionic liquid–acetonitrile electrolytes. Electrochimica Acta, 2018, 270, 352-362.	2.6	16
154	Molecular scale structure and dynamics at an ionic liquid/electrode interface. Faraday Discussions, 2017, 206, 141-157.	1.6	57
155	Electrowetting of Ionic Liquid on Graphite: Probing via in Situ Electrochemical X-ray Photoelectron Spectroscopy. Langmuir, 2018, 34, 14528-14536.	1.6	6
156	Developing Distinct Chemical Environments in Ionic Liquid Films. Journal of Physical Chemistry C, 2018, 122, 19731-19737.	1.5	19
157	ON the Nature of Ionic Liquid Gating of La2â´'xSrxCuO4. International Journal of Molecular Sciences, 2018, 19, 566.	1.8	1
158	In Situ Atomic Force Microscopy and Electrochemical Quartz Crystal Microbalance Studies on the Electrodeposition and Oxidation of Silicon. Journal of Physical Chemistry C, 2018, 122, 14499-14510.	1.5	4
159	Toward Electrochemical Studies on the Nanometer and Atomic Scales: Progress, Challenges, and Opportunities. ACS Nano, 2019, 13, 9735-9780.	7.3	32
160	Atomic Force Spectroscopy on Ionic Liquids. Applied Sciences (Switzerland), 2019, 9, 2207.	1.3	23
161	Ionic liquid electrolytes in electric double layer capacitors. Science China Materials, 2019, 62, 1537-1555.	3.5	33
162	Computational Ag/AgCl Reference Electrode from Density Functional Theory-Based Molecular Dynamics. Journal of Physical Chemistry B, 2019, 123, 10224-10232.	1.2	15
163	Effect of water on the electrodeposition of copper on nickel in deep eutectic solvents. Transactions of the Institute of Metal Finishing, 2019, 97, 321-329.	0.6	30
164	Electro-Responsive Surface Composition and Kinetics of an Ionic Liquid in a Polar Oil. Langmuir, 2019, 35, 15692-15700.	1.6	25
165	Atomicâ€Scale Insights into Electrode Surface Dynamics by Highâ€Speed Scanning Probe Microscopy. Chemistry - A European Journal, 2019, 25, 12865-12883.	1.7	30
166	Effect of Li + and Mg 2+ on the Electrochemical Decomposition of the Ionic Liquid 1â€Butylâ€1― methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and Related Electrolytes. ChemElectroChem, 2019, 6, 3009-3019.	1.7	10
167	Directing Long-Range Molecular Ordering in Ionic Liquid Films: A Tale of Two Interfaces. Journal of Physical Chemistry C, 2019, 123, 8975-8982.	1.5	16
168	Study on the conductive and tribological properties of copper sliding electrical contacts lubricated by ionic liquids. Tribology International, 2019, 130, 27-35.	3.0	36

#	Article	IF	CITATIONS
169	Underpotential Deposition of Silver on Au(111) from an Air―and Waterâ€Stable Ionic Liquid Visualized by Inâ€Situ STM. ChemElectroChem, 2019, 6, 1149-1156.	1.7	8
170	Electrochemical Scanning Probe Microscopies in Electrocatalysis. Small Methods, 2019, 3, 1800387.	4.6	50
171	Ammonium and Potassium Salts of a Hexacoordinate Phosphorus(V) Anion Featuring P–O and P–C Bonds. Inorganic Chemistry, 2019, 58, 188-198.	1.9	7
172	Structural Changes of Au(111) Singleâ€Crystal Electrode Surface in Ionic Liquids. ChemElectroChem, 2020, 7, 501-508.	1.7	8
173	Surface plasmon resonance imaging of the heterogeneous electric double-layer distribution and its change dynamics. Journal of Materials Chemistry C, 2020, 8, 13563-13573.	2.7	5
174	Electroresponsive structuring and friction of a non-halogenated ionic liquid in a polar solvent: effect of concentration. Physical Chemistry Chemical Physics, 2020, 22, 19162-19171.	1.3	16
175	Recognition of Ionic Liquids as High-Voltage Electrolytes for Supercapacitors. Frontiers in Chemistry, 2020, 8, 261.	1.8	59
176	Effects of Anion on Liquid Structures of Ionic Liquids at Graphene Electrode Interface Analyzed by Molecular Dynamics Simulations. Batteries and Supercaps, 2020, 3, 658-667.	2.4	4
177	Structural Dynamics in Ionic Liquid Thin Films: The Effect of Cation Chain Length. Journal of Physical Chemistry C, 2020, 124, 4179-4189.	1.5	20
178	Free energy barriers for TMEA+, TMA+, and BF4- ion diffusion through nanoporous carbon electrodes. Carbon, 2020, 161, 550-561.	5.4	11
179	Controlling the Dynamics of Ionic Liquid Thin Films via Multilayer Surface Functionalization. Journal of the American Chemical Society, 2020, 142, 9482-9492.	6.6	25
180	Microstructural and Dynamical Heterogeneities in Ionic Liquids. Chemical Reviews, 2020, 120, 5798-5877.	23.0	277
181	Structure of the Electrical Double Layer at the Interface between an Ionic Liquid and Tungsten Oxide in Ion-Gated Transistors. Journal of Physical Chemistry Letters, 2020, 11, 3257-3262.	2.1	16
182	Differential capacitance of ionic liquid and mixture with organic solvent. Electrochimica Acta, 2021, 367, 137517.	2.6	8
183	Recent understanding of solid-liquid friction in ionic liquids. Green Chemical Engineering, 2021, 2, 145-157.	3.3	25
184	Local and Long-Range Organization in Room Temperature Ionic Liquids. Langmuir, 2021, 37, 605-615.	1.6	12
185	Visualization of solvation structure on Li ₄ Ti ₅ O ₁₂ (111)/ ionic liquid-based electrolyte interface by atomic force microscopy. Japanese Journal of Applied Physics, 2021, 60, SE1004.	0.8	6
186	Probing the Dynamics of Non-Faradaic Processes in Ionic Liquids at Extended Time and Length Scales Using XPS with AC Modulation. Journal of Physical Chemistry C, 2021, 125, 9453-9460.	1.5	8

#	Article	IF	CITATIONS
187	Characterization of the Interface Structure of 1-Ethyl-2,3-alkylimidazolium Bis(trifluoromethylsulfonyl)imide on a Au(111) Surface with Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2021, 125, 3677-3689.	1.2	8
188	In situ and operando forceâ€based atomic force microscopy for probing local functionality in energy storage materials. Electrochemical Science Advances, 2022, 2, e2100038.	1.2	12
189	Phase Transitions and Electrochemical Properties of Ionic Liquids and Ionic Liquid—Solvent Mixtures. Molecules, 2021, 26, 3668.	1.7	17
191	Voltammetric investigation of anodic and cathodic processes at Au(hkl) ionic liquid interfaces. Journal of Electroanalytical Chemistry, 2021, 900, 115691.	1.9	7
192	Vibrational Stark shift spectroscopy of catalysts under the influence of electric fields at electricde–solution interfaces. Chemical Science, 2021, 12, 10131-10149.	3.7	25
193	Molecular Dynamics Simulations of Electrochemical Energy Storage Devices. Green Energy and Technology, 2016, , 61-89.	0.4	3
194	Ionic Liquid/Metal Interfaces. Springer Theses, 2013, , 69-122.	0.0	3
195	Hysteresis in the MD Simulations of Differential Capacitance at the Ionic Liquid–Au Interface. Journal of Physical Chemistry Letters, 2020, 11, 10408-10413.	2.1	14
196	Preferential Formation of Layered Structure of Ionic Liquid at Ionic Liquid Aqueous Solution / Graphite Electrode Interfaces Observed by Frequency-Modulation Atomic Force Microscopy. E-Journal of Surface Science and Nanotechnology, 2014, 12, 89-96.	0.1	8
197	Surface and Interface Structure of Ionic Liquids. Journal of the Vacuum Society of Japan, 2013, 56, 54-60.	0.3	2
199	Electrodeposition of metals and electrochemical preparation of metal nano particles in ionic liquids. Denki Kagaku, 2020, 88, 121-128.	0.0	1
200	Electrical Double-Layer Structure and Property of Ionic Liquid-Electrode System for Electrochemical Applications. Nanotechnology in the Life Sciences, 2020, , 177-220.	0.4	0
201	In Situ Electrochemical XPS Monitoring of the Formation of Anionic Gold Species by Cathodic Corrosion of a Gold Electrode in an Ionic Liquid. Journal of Physical Chemistry C, 2021, 125, 26793-26800.	1.5	10
202	Structure and Capacitance of Electrical Double Layers in Tricationic Ionic Liquids with Organic Solvents. Journal of Physical Chemistry B, 2021, 125, 12753-12762.	1.2	8
203	Dataset of the electrochemical potential windows for the Au(hkl) ionic liquid interfaces defined by the cut-off current densities. Data in Brief, 2021, 39, 107585.	0.5	2
204	Insights into Ionic Liquids: From Z-Bonds to Quasi-Liquids. Jacs Au, 2022, 2, 543-561.	3.6	42
205	Detailing molecular interactions of ionic liquids with charged SiO2 surfaces: A systematic AFM study. Journal of Molecular Liquids, 2022, 350, 118506.	2.3	10
206	Slow and Fast Dynamics at the Ionic Liquid/Gold Electrode Interface Separately Probed by Electrochemical Surface Plasmon Resonance Combined with Sequential Potential Pulse Techniques. Journal of the Electrochemical Society, 2022, 169, 066501.	1.3	2

#	Article	IF	CITATIONS
207	Interfacial viscosity and ionic reorientation probed using electrochemical surface plasmon resonance at the gold electrode interface of ionic liquids. Journal of Electroanalytical Chemistry, 2022, 913, 116299.	1.9	3
208	Origin of Enhanced Performance in Nanoporous Electrical Double Layer Capacitors: Insights on Micropore Structure and Electrolyte Composition from Molecular Simulations. ACS Applied Materials & Interfaces, 2022, 14, 16800-16808.	4.0	9
209	Influence of water on the electrochemical characteristics and nanostructure of Bi(hkl)â",Ionic liquid interface. Electrochimica Acta, 2022, 415, 140263.	2.6	6
210	Atomic force microscopy probing interactions and microstructures of ionic liquids at solid surfaces. Nanoscale, 2022, 14, 11098-11128.	2.8	15
211	Double layer in ionic liquids: Temperature effect and bilayer model. Journal of Molecular Liquids, 2022, 363, 119747.	2.3	10
212	Mixing Ionic Liquids Affects the Kinetics and Thermodynamics of the Oxygen/Superoxide Redox Couple in the Context of Oxygen Sensing. ACS Physical Chemistry Au, 0, , .	1.9	1
213	In situ studies at metal oxide/ionic medium interfaces for electronics and electrochemical energy storage. , 2024, , 725-742.		0
215	Solid-liquid interfacial nanostructure of ionic liquids and deep eutectic solvents. , 2024, , 627-650.		1
217	The adsorption of organic molecules and inorganic ions—case studies in aqueous, organic and ionic liquid electrolytes. , 2024, , 681-691.		1
218	Adsorption/desorption of ions and molecules at electrochemical interfaces between gold and ionic liquids. , 2024, , 692-713.		2
223	Integrative studies of ionic liquid interface layers: bridging experiments, theoretical models and simulations. Nanoscale Horizons, 2024, 9, 506-535.	4.1	0