Thermoresponsive Polymers for Biomedical Application

Polymers 3, 1215-1242

DOI: 10.3390/polym3031215

Citation Report

#	Article	IF	CITATIONS
1	SANS investigation of a ferrofluid based silicone elastomer microstructure. Journal of Physics: Conference Series, 2012, 351, 012014.	0.3	3
2	Thermoresponsive triblock copolymers based on methacrylate monomers: effect of molecular weight and composition. Soft Matter, 2012, 8, 2737.	1.2	66
3	Polymer Micelles with Crystalline Cores for Thermally Triggered Release. Langmuir, 2012, 28, 10653-10660.	1.6	35
4	Multifunctional and thermoresponsive unimolecular micelles for tumor-targeted delivery and site-specifically release of anticancer drugs. Polymer, 2012, 53, 3485-3497.	1.8	73
5	Rapid cell sheet detachment using spin-coated pNIPAAm films retained on surfaces by an aminopropyltriethoxysilane network. Acta Biomaterialia, 2012, 8, 2559-2567.	4.1	53
6	Magnetic nanoparticle-based approaches to locally target therapy and enhance tissue regeneration <i>in vivo</i> . Nanomedicine, 2012, 7, 1425-1442.	1.7	196
7	Temperature-sensitive polymers for drug delivery. Expert Review of Medical Devices, 2012, 9, 339-351.	1.4	53
8	Temperature and pH dual-responsive coatings of oligoperoxide-graft-poly(N-isopropylacrylamide): Wettability, morphology, and protein adsorption. Journal of Colloid and Interface Science, 2012, 387, 95-105.	5.0	45
9	Smart polymers for peptide and protein parenteral sustained delivery. Drug Discovery Today: Technologies, 2012, 9, e131-e140.	4.0	29
10	A versatile polypeptoid platform based on N-allyl glycine. Chemical Communications, 2012, 48, 7835.	2.2	68
11	pH- and temperature-responsive poly(aspartic acid)-l-poly(N-isopropylacrylamide) conetwork hydrogel. European Polymer Journal, 2013, 49, 2392-2403.	2.6	52
12	Stimuli responsive synthetic polypeptides derived from N-carboxyanhydride (NCA) polymerisation. Chemical Society Reviews, 2013, 42, 7373.	18.7	293
13	Stimuli-responsive copolymer solution and surface assemblies for biomedical applications. Chemical Society Reviews, 2013, 42, 7057.	18.7	267
14	Role of integrated cancer nanomedicine in overcoming drug resistance. Advanced Drug Delivery Reviews, 2013, 65, 1784-1802.	6.6	288
15	Poly(N-isopropylacrylamide-co-acrylic acid) hydrogels for copper ion adsorption: Equilibrium isotherms, kinetic and thermodynamic studies. Journal of Environmental Chemical Engineering, 2013, 1, 339-348.	3.3	106
16	Study of the Potential of Amphiphilic Conetworks Based on Poly(2-ethyl-2-oxazoline) as New Platforms for Delivery of Drugs with Limited Solubility. AAPS PharmSciTech, 2013, 14, 352-359.	1.5	15
17	Intelligent Hydrogels. , 2013, , .		13
18	Comb-like thermoresponsive polymeric materials: Synthesis and effect of macromolecular structure on solution properties. Polymer, 2013, 54, 5456-5466.	1.8	35

#	Article	IF	CITATIONS
19	pH-responsive micelles composed of poly(ethylene glycol) and cholesterol-modified poly(monomethyl) Tj ETQq0 Research, 2013, 20, 1.	0 0 rgBT / 1.2	Overlock 10 7 11
20	Hydration States of Poly(<i>N</i> -isopropylacrylamide) and Poly(<i>N</i> , <i>N</i> -diethylacrylamide) and Their Monomer Units in Aqueous Solutions with Lower Critical Solution Temperatures Studied by Infrared Spectroscopy. Macromolecules, 2013, 46, 1041-1053.	2.2	29
21	Heterogeneous mesoporous SBA-15 silica as catalyst towards the synthesis of various biodegradable aliphatic polyesters. Macromolecular Research, 2013, 21, 833-842.	1.0	9
22	Thermoresponsive gels based on ABA triblock copolymers: Does the asymmetry matter?. Journal of Polymer Science Part A, 2013, 51, 2850-2859.	2.5	43
23	Multicompartment thermoresponsive gels: does the length of the hydrophobic side group matter?. Polymer Chemistry, 2013, 4, 1893.	1.9	52
24	Thermo-responsive peptide-based triblock copolymer hydrogels. Soft Matter, 2013, 9, 4304.	1.2	18
25	Polymeric biomaterials with engineered degradation. Journal of Polymer Science Part A, 2013, 51, 3531-3566.	2.5	73
26	Triggered degradation of poly(ester amide)s via cyclization of pendant functional groups of amino acid monomers. Polymer Chemistry, 2013, 4, 1969.	1.9	38
27	Precision Control of Temperature Response by Copolymerization of Di(Ethylene Glycol) Acrylate and an Acrylamide Comonomer. Macromolecular Chemistry and Physics, 2013, 214, 272-279.	1.1	46
28	Influence of the inter-chain hydrogen bonds on the thermoresponsive swelling behavior of UCST-like microgels. Polymer, 2013, 54, 4963-4971.	1.8	19
29	Thermoresponsive transition of a PEO-b-PNIPAM copolymer: From hierarchical aggregates to well defined ellipsoidal vesicles. Polymer, 2013, 54, 6373-6380.	1.8	31
30	Thermoresponsive Diblock Copolymer with Tunable Soluble–Insoluble and Soluble–Insoluble–Soluble Transitions. Macromolecular Rapid Communications, 2013, 34, 574-580.	2.0	28
31	One-pot synthesis of poly(N-vinylcaprolactam)-based biocompatible block copolymers using a dual initiator for ROP and RAFT polymerization. Polymer, 2013, 54, 6119-6124.	1.8	35
32	Thermoresponsive behavior of amphiphilic diblock co-oligomers of ethylene glycol and styrene in aqueous solution. Soft Matter, 2013, 9, 7007.	1.2	12
33	Thermosensitive liposomes for localized delivery and triggered release of chemotherapy. Journal of Controlled Release, 2013, 169, 112-125.	4.8	304
34	Shape-changing polymer assemblies. Chemical Society Reviews, 2013, 42, 7436.	18.7	76
35	Polymeric theranostics: using polymer-based systems for simultaneous imaging and therapy. Journal of Materials Chemistry B, 2013, 1, 3002.	2.9	121
36	A Combined Experimental and Computational Study of the Substituent Effect on Micellar Behavior of Î ³ -Substituted Thermoresponsive Amphiphilic Poly(ε-caprolactone)s. Macromolecules, 2013, 46, 4829-4838.	2.2	41

#	ARTICLE	IF	CITATIONS
37	Thermosensitive poly(N-isopropylacrylamide-co-glycidyl methacrylate) microgels for controlled drug release. Colloids and Surfaces B: Biointerfaces, 2013, 101, 251-255.	2.5	49
38	Thermoresponsive (Co)polymers through Postpolymerization Modification of Poly(2-vinyl-4,4-dimethylazlactone). Macromolecules, 2013, 46, 6475-6484.	2.2	45
39	Surface modification of cotton fabric with dualâ€responsive PNIPAAm/chitosan nano hydrogel. Polymers for Advanced Technologies, 2013, 24, 797-806.	1.6	41
40	Nanoparticles-mediated drug delivery approaches for cancer targeting: a review. Journal of Drug Targeting, 2013, 21, 107-125.	2.1	124
41	Synthetic Polymer-Network Based Materials in Stem Cell Research. , 2013, , 3-36.		0
42	Shapeâ€Memory Microfluidics. Advanced Functional Materials, 2013, 23, 4832-4839.	7.8	5
43	Stereoselective partitioning of organic substrates by thermoresponsive polymers in aqueous phases. Journal of Applied Polymer Science, 2013, 130, 3458-3464.	1.3	1
45	Synthesis and properties of a dual responsive hydrogel by inverse microemulsion polymerization. Journal of Chemical Sciences, 2014, 126, 1623-1627.	0.7	11
46	Performance of Strong Ionic Hydrogels Based on 2-Acrylamido-2-Methylpropane Sulfonate as Draw Agents for Forward Osmosis. Journal of Environmental Engineering, ASCE, 2014, 140, .	0.7	31
47	Layer-by-Layer Assembly of Biopolyelectrolytes onto Thermo/pH-Responsive Micro/Nano-Gels. Materials, 2014, 7, 7472-7512.	1.3	40
48	Drug Delivery., 2014,,.		22
49	Thermoresponsive hydrogels from BSA esterified with low molecular weight PEG. Journal of Applied Polymer Science, 2014, 131, .	1.3	9
50	Multiresponsive Hydrogels Formed by Interpenetrated Self-Assembled Polymer Networks. Macromolecules, 2014, 47, 8386-8393.	2.2	32
51	Synthesis and encapsulation of an amphiphilic thermoresponsive star polymer with \hat{l}^2 -cyclodextrin and hyperbranched poly(oligo(ethylene glycol)methacrylate) as building blocks. RSC Advances, 2014, 4, 54268-54281.	1.7	13
52	Nearâ€Infrared Light Responsive Multiâ€Compartmental Hydrogel Particles Synthesized Through Droplets Assembly Induced by Superhydrophobic Surface. Small, 2014, 10, 4886-4894.	5.2	47
53	Synthesis and fluorescence properties of star-shaped polymers carrying two fluorescent moieties. Polymer International, 2014, 63, 1047-1055.	1.6	9
54	rhEGF-containing thermosensitive and mucoadhesive polymeric sol–gel for endoscopic treatment of gastric ulcer and bleeding. Journal of Biomaterials Applications, 2014, 28, 1113-1121.	1,2	8
55	Smart Drug Delivery Systems. , 2014, , 265-316.		3

#	ARTICLE	IF	CITATIONS
56	Cononsolvency of poly-N-isopropyl acrylamide (PNIPAM): Microgels versus linear chains and macrogels. Current Opinion in Colloid and Interface Science, 2014, 19, 84-94.	3.4	125
57	Membrane emulsification for the production of uniform poly-N-isopropylacrylamide-coated alginate particles using internal gelation. Chemical Engineering Research and Design, 2014, 92, 1664-1673.	2.7	18
58	Temperature-responsiveness and biocompatibility of DEGMA/OEGMA radiation-grafted onto PP and LDPE films. Radiation Physics and Chemistry, 2014, 99, 53-61.	1.4	10
59	Thermo-responsive gelatin-functionalized PCL film surfaces for improvement of cell adhesion and intelligent recovery of gene-transfected cells. Science China Chemistry, 2014, 57, 586-595.	4.2	16
60	Smart polymers for the controlled delivery of drugs – a concise overview. Acta Pharmaceutica Sinica B, 2014, 4, 120-127.	5.7	463
61	Plasmid DNA hydrogels for biomedical applications. Advances in Colloid and Interface Science, 2014, 205, 257-264.	7.0	15
62	Synthesis and characterization of thermo-responsive poly-N-isopropylacrylamide bioconjugates for application in the formation of galacto-oligosaccharides. Enzyme and Microbial Technology, 2014, 55, 40-49.	1.6	14
63	Drug delivery systems for intra-articular treatment of osteoarthritis. Expert Opinion on Drug Delivery, 2014, 11, 269-282.	2.4	88
64	Hydrogels in a historical perspective: From simple networks to smart materials. Journal of Controlled Release, 2014, 190, 254-273.	4.8	732
65	Composing Wellâ€Defined Stimulusâ€Responsive Materials Through Postpolymerization Modification Reactions. Macromolecular Chemistry and Physics, 2014, 215, 825-838.	1.1	18
66	A review on the recovery methods of draw solutes in forward osmosis. Journal of Water Process Engineering, 2014, 4, 212-223.	2.6	145
67	Polymer collapse in miscible good solvents is a generic phenomenon driven by preferential adsorption. Nature Communications, 2014, 5, 4882.	5.8	207
68	Polymeric nanocarriers for expected nanomedicine: current challenges and future prospects. RSC Advances, 2014, 4, 48639-48659.	1.7	65
69	Bone substitutes based on biomineralization. , 2014, , 3-29.		8
70	Pseudo-graft polymer based on adamantyl-terminated poly(oligo(ethylene glycol) methacrylate) and homopolymer with cyclodextrin as pendant: its thermoresponsivity through polymeric self-assembly and host–guest inclusion complexation. RSC Advances, 2014, 4, 17768-17779.	1.7	13
71	Natural polymers for the microencapsulation of cells. Journal of the Royal Society Interface, 2014, 11, 20140817.	1.5	480
72	Self-assembly and applications of poly(glycidyl methacrylate)s and their derivatives. Chemical Communications, 2014, 50, 13201-13215.	2.2	90
73	Shape recovery characteristics for shape memory polymers subjected to high intensity focused ultrasound. RSC Advances, 2014, 4, 32701-32709.	1.7	25

#	Article	IF	CITATIONS
74	Statistical terpolymers with thermo-responsive fluorescence response in an ionic liquid: effects of solvatophilicity on LCST phase separation and reversibility. Polymer Chemistry, 2014, 5, 4926.	1.9	5
75	Dendrimersomes with photodegradable membranes for triggered release of hydrophilic and hydrophobic cargo. Chemical Communications, 2014, 50, 11122-11125.	2.2	39
76	From particles to stabilizing blocks – polymerized ionic liquids in aqueous heterophase polymerization. Polymer Chemistry, 2014, 5, 5644-5655.	1.9	8
77	Thermoresponsive properties of 3-, 4-, 6-, and 12-armed star-shaped poly[2-(dimethylamino)ethyl methacrylate]s prepared by core-first group transfer polymerization. Polymer Chemistry, 2014, 5, 4701-4709.	1.9	32
78	Photoresponsive hydrogel networks using melanin nanoparticle photothermal sensitizers. Biomaterials Science, 2014, 2, 766.	2.6	30
79	Controlled spreading of thermo-responsive droplets. Soft Matter, 2014, 10, 808-812.	1.2	14
80	Thermoresponsive oligomers reduce <i>Escherichia coli </i> O157:H7 biofouling and virulence. Biofouling, 2014, 30, 627-637.	0.8	10
81	Cell Protective, ABC Triblock Polymer-Based Thermoresponsive Hydrogels with ROS-Triggered Degradation and Drug Release. Journal of the American Chemical Society, 2014, 136, 14896-14902.	6.6	216
82	Tuning the LCST of poly(2â€cyclopropylâ€2â€oxazoline) via gradient copolymerization with 2â€cthylâ€2â€oxazoline. Journal of Polymer Science Part A, 2014, 52, 3118-3122.	2.5	52
83	Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale, 2014, 6, 11553-11573.	2.8	475
84	Novel thermosensitive telechelic PEGs with antioxidant activity: synthesis, molecular properties and conformational behaviour. RSC Advances, 2014, 4, 41763-41771.	1.7	17
85	Smart polymer hydrogels: properties, synthesis and applications. , 2014, , 237-270.		20
86	Dynamics in Stimuli-Responsive Poly(<i>N</i> -isopropylacrylamide) Hydrogel Layers As Revealed by Fluorescence Correlation Spectroscopy. Macromolecules, 2014, 47, 5303-5312.	2.2	31
87	Thermoresponsive polymers: Insights into decisive hydrogel characteristics, mechanisms of gelation, and promising biomedical applications. International Journal of Pharmaceutics, 2014, 472, 262-275.	2.6	182
88	Application of Thermoresponsive PNIPAAM- <i>b</i> -PAMPTMA Diblock Copolymers in siRNA Delivery. Molecular Pharmaceutics, 2014, 11, 819-827.	2.3	23
89	Self-assembly of random copolymers. Chemical Communications, 2014, 50, 13417-13432.	2.2	198
90	Literature Review Concerning Cell and Skin Substitute Cultures Obtained by Means of Tissue Engineering used in the Treatment of Burns. Polski Przeglad Chirurgiczny, 2014, 86, 202-10.	0.2	6
91	Photoreconfigurable Polymers for Biomedical Applications: Chemistry and Macromolecular Engineering. Biomacromolecules, 2014, 15, 3474-3494.	2.6	72

#	Article	IF	CITATIONS
92	Temperature-responsive polymers: properties, synthesis and applications., 2014, , 15-44.		33
93	Thermoresponsive aggregation of PS–PNIPAM–PS triblock copolymer: A combined study of light scattering and small angle neutron scattering. European Polymer Journal, 2014, 56, 59-68.	2.6	43
94	Temperature responsive functional polymeric thin films obtained by matrix assisted pulsed laser evaporation for cells attachment–detachment study. Applied Surface Science, 2014, 302, 134-140.	3.1	26
95	Abnormal blood clot formation induced by temperature responsive polymers by altered fibrin polymerization and platelet binding. Biomaterials, 2014, 35, 2518-2528.	5.7	21
97	Synthesis and investigation of monomodal hydroxy-functionalized PEG methacrylate based copolymers with high polymerization degrees. Modification by $\hat{a} \in \mathbb{Z}$ grafting from $\hat{a} \in \mathbb{Z}$ Reactive and Functional Polymers, 2014, 82, 33-40.	2.0	28
98	Novel serum-tolerant lipoplexes target the folate receptor efficiently. European Journal of Pharmaceutical Sciences, 2014, 59, 83-93.	1.9	21
99	Triggering Mechanisms of Thermosensitive Nanoparticles Under Hyperthermia Condition. Journal of Pharmaceutical Sciences, 2015, 104, 2414-2428.	1.6	20
100	Behaviorial Features of Aqueous Solutions of Thermoresponsive and pH-Sensitive Polymers with complicated architectures. Fibre Chemistry, 2015, 47, 137-143.	0.0	2
101	Low-melting-point polymeric nanoshells for thermal-triggered drug release under hyperthermia condition. International Journal of Hyperthermia, 2015, 31, 920-929.	1.1	19
102	Amphiphilic Polymers: Drug Delivery. , 0, , 186-202.		0
105	Hydrogels Based on Poly(2-oxazoline) S for Pharmaceutical Applications. , 2015, , 231-258.		5
106	Tuning the critical solution temperature of polymers by copolymerization. Journal of Chemical Physics, 2015, 143, 243119.	1.2	9
107	End group polarity and block symmetry effects on cloud point and hydrodynamic diameter of thermoresponsive block copolymers. Journal of Polymer Science Part A, 2015, 53, 2838-2848.	2.5	7
108	Tunable Luminescent Carbon Nanospheres with Well-Defined Nanoscale Chemistry for Synchronized Imaging and Therapy. Small, 2015, 11, 4691-4703.	5.2	51
109	Lightâ€controllable polymeric material based on temperatureâ€sensitive hydrogels with incorporated graphene oxide. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1368-1374.	0.8	15
110	Composites of Polymer Hydrogels and Nanoparticulate Systems for Biomedical and Pharmaceutical Applications. Nanomaterials, 2015, 5, 2054-2130.	1.9	297
111	Thermal Properties of Methyl Ester-Containing Poly(2-oxazoline)s. Polymers, 2015, 7, 1998-2008.	2.0	31
112	Biotechnological Production of Oligosaccharides — Applications in the Food Industry. , 0, , .		18

#	Article	IF	CITATIONS
113	Applications of Thermoresponsive Magnetic Nanoparticles. Journal of Nanomaterials, 2015, 2015, 1-12.	1.5	24
114	Aqueous Solutions of Poly(ethylene oxide)-Poly(<i>N</i> Behavior and Distinct Multiple Assembly Processes. Langmuir, 2015, 31, 6497-6506.	1.6	17
115	Synthesis of magnetic thermosensitive microcontainers for enzyme immobilization. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	9
116	Responsive cell–material interfaces. Nanomedicine, 2015, 10, 849-871.	1.7	54
117	New Developments in Liposomal Drug Delivery. Chemical Reviews, 2015, 115, 10938-10966.	23.0	1,183
118	Adjusting the low critical solution temperature of poly(N-isopropyl acrylamide) solutions by salts, ionic surfactants and solvents: A rheological study. Journal of Molecular Liquids, 2015, 210, 113-118.	2.3	46
119	Thermoresponsive and self-assembly behaviors of poly(oligo(ethylene glycol) methacrylate) based cyclodextrin cored star polymer and pseudo-graft polymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 471, 178-189.	2.3	12
120	The use of endogenous gaseous molecules (NO and CO ₂) to regulate the self-assembly of a dual-responsive triblock copolymer. Polymer Chemistry, 2015, 6, 2407-2415.	1.9	22
121	Smart polymers in drug delivery systems on crossroads: Which way deserves following?. European Polymer Journal, 2015, 65, 82-97.	2.6	111
122	Magnetic thermoresponsive ionic nanogels as novel draw agents in forward osmosis. RSC Advances, 2015, 5, 15359-15365.	1.7	65
123	Thermo-responsive polymers., 2015,, 3-43.		41
124	Kinetic studies and model development for the formation of galacto-oligosaccharides from lactose using synthesized thermo-responsive bioconjugate. Enzyme and Microbial Technology, 2015, 70, 42-49.	1.6	16
125	Tuning temperature responsive poly(2-alkyl-2-oxazoline)s by supramolecular host–guest interactions. Organic and Biomolecular Chemistry, 2015, 13, 3048-3057.	1.5	21
126	A new mechanism of thermal sensitivity for rapid drug release and low systemic toxicity in hyperthermia and thermal ablation temperature ranges. International Journal of Hyperthermia, 2015, 31, 375-385.	1.1	12
127	Light-controlled nanoparticulate drug delivery systems. , 2015, , 393-413.		1
128	Glycosaminoglycans in Tendon Physiology, Pathophysiology, and Therapy. Bioconjugate Chemistry, 2015, 26, 1237-1251.	1.8	44
129	Natural and Synthetic Polymers as Drug Carriers for Delivery of Therapeutic Proteins. Polymer Reviews, 2015, 55, 371-406.	5.3	109
130	On-demand and negative-thermo-swelling tissue adhesive based on highly branched ambivalent PEG–catechol copolymers. Journal of Materials Chemistry B, 2015, 3, 6420-6428.	2.9	65

#	ARTICLE	IF	CITATIONS
131	Thermoresponsive Interplay of Water Insoluble Poly(2-alkyl-2-oxazoline)s Composition and Supramolecular Host–Guest Interactions. International Journal of Molecular Sciences, 2015, 16, 7428-7444.	1.8	12
132	Thermoresponsive hydrogel maintains the mouse embryonic stem cell "naïve―pluripotency phenotype. Biomaterials Science, 2015, 3, 1371-1375.	2.6	8
133	Structure of chitosan gels mineralized by sorption. Journal of Molecular Structure, 2015, 1098, 101-109.	1.8	10
134	Self-assembly of star-shaped poly(2-isopropyl-2-oxazoline) in aqueous solutions. Colloid and Polymer Science, 2015, 293, 239-248.	1.0	53
135	Temperature-induced molecular transport through polymer multilayers coated with PNIPAM microgels. Physical Chemistry Chemical Physics, 2015, 17, 12771-12777.	1.3	25
136	Synthesis and thermoresponsive properties of four-arm star-shaped poly(N-isopropylacrylamide)s bearing covalent and non-covalent cores. Polymer Chemistry, 2015, 6, 3608-3616.	1.9	26
137	Polymers with upper critical solution temperature behavior in alcohol/water solvent mixtures. Progress in Polymer Science, 2015, 48, 122-142.	11.8	173
138	Porous thermo-responsive pNIPAM microgels. European Polymer Journal, 2015, 68, 650-656.	2.6	30
139	Temperatureâ€dependent control of <i>Staphylococcus aureus</i> biofilms and virulence by thermoresponsive oligo(Nâ€vinylcaprolactam). Biotechnology and Bioengineering, 2015, 112, 716-724.	1.7	14
140	Trigger responsive polymeric nanocarriers for cancer therapy. Biomaterials Science, 2015, 3, 955-987.	2.6	117
141	Design of Hydrogels for Biomedical Applications. Advanced Healthcare Materials, 2015, 4, 2360-2374.	3.9	108
142	Novel fast thermal-responsive poly (N-isopropylacrylamide) hydrogels with functional cyclodextrin interpenetrating polymer networks for controlled drug release. Journal of Polymer Research, 2015, 22, $1.$	1.2	15
143	Smart nanoparticles as targeting platforms for HIV infections. Nanoscale, 2015, 7, 7520-7534.	2.8	20
144	Shape-memory polymers for vascular and coronary devices., 2015,, 249-265.		1
145	Synthesis and swelling properties of a pH―and temperatureâ€dual responsive hydrogel by inverse microemulsion polymerization. Journal of Applied Polymer Science, 2015, 132, .	1.3	8
146	Thermoresponsive glycopolypeptides with temperature controlled selective lectin binding properties. European Polymer Journal, 2015, 69, 483-489.	2.6	20
147	Polymersome-based drug-delivery strategies for cancer therapeutics. Therapeutic Delivery, 2015, 6, 521-534.	1.2	119
148	Why does high pressure destroy co-non-solvency of PNIPAm in aqueous methanol?. Soft Matter, 2015, 11, 8599-8604.	1.2	33

#	Article	IF	CITATIONS
149	Co-non-solvency: Mean-field polymer theory does not describe polymer collapse transition in a mixture of two competing good solvents. Journal of Chemical Physics, 2015, 142, 114903.	1.2	54
150	Advances in Mechanics of Soft Materials: A Review of Large Deformation Behavior of Hydrogels. International Journal of Applied Mechanics, 2015, 07, 1530001.	1.3	195
151	Structural and dynamic characteristics of thermo- and pH-sensitive copolymers of 2-(diethylamino)ethyl methacrylate and 2-deoxy-2-methacrylamidoglucose. Polymer, 2015, 77, 246-253.	1.8	6
152	Rheology of polyacrylate systems depends strongly on architecture. Colloid and Polymer Science, 2015, 293, 3285-3293.	1.0	18
153	Visible light-triggered disruption of micelles of an amphiphilic block copolymer with BODIPY at the junction. Chemical Communications, 2015, 51, 17708-17711.	2.2	28
154	Nitric Oxide (NO) Cleavable Biomimetic Thermoresponsive Double Hydrophilic Diblock Copolymer with Tunable LCST. Macromolecules, 2015, 48, 3817-3824.	2.2	27
155	Thermoresponsive copolymers with pendant d-galactosyl 1,2,3-triazole groups: synthesis, characterization and thermal behavior. New Journal of Chemistry, 2015, 39, 8179-8187.	1.4	9
156	The biological stimuli for governing the phase transition temperature of the "smart―polymer PNIPAM in water. Colloids and Surfaces B: Biointerfaces, 2015, 135, 588-595.	2.5	37
157	Thermoresponsive hydrogels in biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 97, 338-349.	2.0	388
158	Temperature-Induced Energy Transfer in Dye-Conjugated Upconverting Nanoparticles: A New Candidate for Nanothermometry. Chemistry of Materials, 2015, 27, 235-244.	3.2	86
159	Thermosensitive block copolymer hydrogels based on poly(É>â€caprolactone) and polyethylene glycol for biomedical applications: State of the art and future perspectives. Journal of Biomedical Materials Research - Part A, 2015, 103, 1276-1290.	2.1	67
160	Thermoresponsive block copolymer micelles with tunable pyrrolidone-based polymer cores: structure/property correlations and application as drug carriers. Journal of Materials Chemistry B, 2015, 3, 814-823.	2.9	31
161	Thermoregulated gas transport through electrospun nanofiber membranes. Chemical Engineering Science, 2015, 123, 557-563.	1.9	9
162	Thermoresponsive Nanodevices in Biomedical Applications. Macromolecular Bioscience, 2015, 15, 183-199.	2.1	61
163	Smart-Polymer-Functionalized Graphene Nanodevices for Thermo-Switch-Controlled Biodetection. ACS Biomaterials Science and Engineering, 2015, 1, 27-36.	2.6	22
164	Synthesis and click chemistry of a new class of biodegradable polylactide towards tunable thermo-responsive biomaterials. Polymer Chemistry, 2015, 6, 1275-1285.	1.9	22
165	Synthesis and Properties of Novel Surface Active Monomers Based on Derivatives of 4â€Hydroxybutyric Acid and 6â€Hydroxyhexanoic Acid. Journal of Surfactants and Detergents, 2015, 18, 133-144.	1.0	11
166	Synthesis, Characterization, and Viscoelastic Behavior of Thermothickening Poly (N-Isopropylacrylamide-Methacrylicacide-Vinylpyrrolidone) Nanogels as an Injectable Biocompatible Drug Carrier. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 55-63.	1.8	15

#	Article	IF	CITATIONS
168	Core Cross-linked Star Polymers for Temperature/pH Controlled Delivery of 5-Fluorouracil. Journal of Chemistry, 2016, 2016, 1-12.	0.9	4
169	An Introduction to Hydrogels and Some Recent Applications. , 0, , .		136
170	Synthesis and Characterization of Poly(Ethylene Glycol) Based Thermo-Responsive Hydrogels for Cell Sheet Engineering. Materials, 2016, 9, 854.	1.3	67
171	Stimuli-Responsive Polymeric Systems for Controlled Protein and Peptide Delivery: Future Implications for Ocular Delivery. Molecules, 2016, 21, 1002.	1.7	33
172	Influence of the Near Molecular Vicinity on the Temperature Regulated Fluorescence Response of Poly(N-vinylcaprolactam). Polymers, 2016, 8, 109.	2.0	13
173	Thermosensitive Behavior and Antibacterial Activity of Cotton Fabric Modified with a Chitosan-poly(N-isopropylacrylamide) Interpenetrating Polymer Network Hydrogel. Polymers, 2016, 8, 110.	2.0	51
174	A Review of Thermo- and Ultrasound-Responsive Polymeric Systems for Delivery of Chemotherapeutic Agents. Polymers, 2016, 8, 359.	2.0	70
175	Nanohybrid Stimuli-Responsive Microgels: A New Approach in Cancer Therapy. , 2016, , 715-742.		4
176	In situ–formed bioactive hydrogels for delivery of stem cells and biomolecules for wound healing. , 2016, , 289-307.		1
177	Smart Drug Delivery Strategies Based on Porous Nanostructure Materials. , 2016, , .		2
178	Thermoresponsive behavior of micellar aggregates from end-functionalized PnBA-b-PNIPAM-COOH block copolymers and their complexes with lysozyme. Soft Matter, 2016, 12, 6547-6556.	1.2	15
179	Smart and Covalently Crossâ€Linked: Hybrid Shape Memory Materials Reinforced through Covalent Bonds by Zirconium Oxoclusters. ChemPlusChem, 2016, 81, 338-350.	1.3	4
180	Synthesis and UCST-type phase behavior of OEGylated poly($\hat{1}^3$ -benzyl- <scp> < scp>-glutamate) in organic media. Journal of Polymer Science Part A, 2016, 54, 1348-1356.</scp>	2.5	14
181	lron salenâ€catalysed oxidative coupling of phenol derivatives: formaldehydeâ€free access to amphiphilic polymers. Polymer International, 2016, 65, 544-550.	1.6	3
182	Influence of the polymer structure over selfâ€assembly and thermoâ€responsive properties: The case of PEGâ€bâ€PCL grafted copolymers via a combination of RAFT and ROP. Journal of Polymer Science Part A, 2016, 54, 2919-2931.	2.5	25
183	Influence of Cononsolvency on the Aggregation of Tertiary Butyl Alcohol in Methanol–Water Mixtures. Journal of the American Chemical Society, 2016, 138, 9045-9048.	6.6	46
184	Glutathione Bioresponsive Cyclodextrin Nanosponges. ChemPlusChem, 2016, 81, 439-443.	1.3	42
185	Modified Electrodes and Electrochemical Systems Switchable by Temperature Changes. Electroanalysis, 2016, 28, 1916-1929.	1.5	30

#	Article	IF	CITATIONS
186	Enzyme immobilization/bioconjugation in producing galactio-oligosaccharidies from lactose: developments of kinetic models and bio-reactors. Materials Today: Proceedings, 2016, 3, 3568-3586.	0.9	5
187	Unusual Phase Transition Behavior of Poly(<i>N</i> -i>co-Poly(tetrabutylphosphonium styrenesulfonate) in Water: Mild and Linear Changes in the Poly(<i>N</i> -isopropylacrylamide) Part. Langmuir, 2016, 32, 3728-3736.	1.6	29
188	Smart material platforms for miniaturized devices: implications in disease models and diagnostics. Lab on A Chip, 2016, 16, 1978-1992.	3.1	26
189	Stimuli responsive drug delivery systems based on nano-graphene for cancer therapy. Advanced Drug Delivery Reviews, 2016, 105, 228-241.	6.6	352
190	Near-infrared light triggered release of molecules from supramolecular hydrogel-nanorod composites. Nanomedicine, 2016, 11, 1579-1590.	1.7	20
191	Poly(N-isopropylacrylamide) hydrogels cross-linked by $\hat{l}\pm,\hat{l}\pm$ -trehalose diacetals as thermo-responsive and acid-degradable carriers for drug delivery. Polymer Degradation and Stability, 2016, 129, 296-305.	2.7	17
192	Protein-surface interactions on stimuli-responsive polymeric biomaterials. Biomedical Materials (Bristol), 2016, 11, 022002.	1.7	38
193	Self-organization of hydrophobic-capped triblock copolymers with a polyelectrolyte midblock: a coarse-grained molecular dynamics simulation study. Soft Matter, 2016, 12, 4611-4620.	1.2	27
194	Fabrication of a thermo-responsive membrane with cross-linked smart gates via a â€~grafting-to' method. RSC Advances, 2016, 6, 45428-45433.	1.7	16
195	Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chemical Reviews, 2016, 116, 5338-5431.	23.0	1,333
196	Features of polyelectrolite behavior and structure of sodium polyacrylamido-2-methyl-1-propanesulfonate cryogels. Polymer, 2016, 96, 1-5.	1.8	2
197	Smart dendrimer-based nanogel for enhancing 5-fluorouracil loading efficiency against MCF7 cancer cell growth. Bulletin of Materials Science, 2016, 39, 1493-1500.	0.8	25
199	Recognitionâ€Mediated Hydrogel Swelling Controlled by Interaction with a Negative Thermoresponsive LCST Polymer. Angewandte Chemie - International Edition, 2016, 55, 13974-13978.	7.2	34
200	Mesoporous γâ€Iron Oxide Nanoparticles for Magnetically Triggered Release of Doxorubicin and Hyperthermia Treatment. Chemistry - A European Journal, 2016, 22, 17020-17028.	1.7	39
201	Influence of Charged Groups on the Structure of Microgel and Volume Phase Transition by Dielectric Analysis. Macromolecules, 2016, 49, 7997-8008.	2.2	30
202	Poly(3-imidazolyl-2-hydroxypropyl methacrylate) – a new polymer with a tunable upper critical solution temperature in water. Polymer Chemistry, 2016, 7, 6645-6654.	1.9	24
203	Synthesis and UCST-type phase behaviors of OEGylated random copolypeptides in alcoholic solvents. Journal of Polymer Science Part A, 2016, 54, 3444-3453.	2.5	5
204	Temperatureâ€Mediated Regulation of Enzymatic Activity. ChemCatChem, 2016, 8, 2740-2747.	1.8	27

#	Article	IF	CITATIONS
205	Synthesis and evaluation of temperature- and glucose-sensitive nanoparticles based on phenylboronic acid and N-vinylcaprolactam for insulin delivery. Materials Science and Engineering C, 2016, 69, 1026-1035.	3.8	29
206	Polyelectrolyte behavior of copolymers of 2-deoxy-2-methacrylamido- d -glucose with cationic comonomers in water and dimethylsulfoxide solutions. European Polymer Journal, 2016, 83, 22-34.	2.6	5
207	Fast Dynamic Color Switching in Temperatureâ€Responsive Plasmonic Films. Advanced Optical Materials, 2016, 4, 877-882.	3.6	56
208	Polymeric Nanostructure Compiled with Multifunctional Components To Exert Tumor-Targeted Delivery of Antiangiogenic Gene for Tumor Growth Suppression. ACS Applied Materials & Samp; Interfaces, 2016, 8, 24404-24414.	4.0	7
209	Radiation Grafting for the Functionalization and Development of Smart Polymeric Materials. Topics in Current Chemistry, 2016, 374, 63.	3.0	26
210	Thickness Dependence of Bovine Serum Albumin Adsorption on Thin Thermoresponsive Poly(diethylene) Tj ETQq1 2016, 32, 9360-9370.	1 0.78431 1.6	l 4 rgBT /0\ 25
211	On–off switch-controlled doxorubicin release from thermo- and pH-responsive coated bimagnetic nanocarriers. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	9
212	Nanoparticles in Biochemical Engineering: Synthesis and Chemistry. , 2016, , 713-744.		1
213	Preparation and temperature-responsive behavior of crosslinked polymers between poly(N-isopropylacrylamide) and natural rubber. Macromolecular Research, 2016, 24, 816-823.	1.0	9
214	Aggregation Behavior of Doubly Thermoresponsive Polysulfobetaine- <i>b</i> -poly(<i>N</i> -isopropylacrylamide) Diblock Copolymers. Macromolecules, 2016, 49, 6655-6668.	2.2	46
215	Review of Adaptive Programmable Materials and Their Bioapplications. ACS Applied Materials & Samp; Interfaces, 2016, 8, 33351-33370.	4.0	112
216	Fluorescent mesomorphic pyrazinacenes. Journal of Materials Chemistry C, 2016, 4, 11514-11523.	2.7	11
217	Photoactivation of Noncovalently Assembled Peptide Ligands on Carbon Nanotubes Enables the Dynamic Regulation of Stem Cell Differentiation. ACS Applied Materials & Interfaces, 2016, 8, 26470-26481.	4.0	22
218	Targeted Smart pH and Thermoresponsive <i>N,O</i> -Carboxymethyl Chitosan Conjugated Nanogels for Enhanced Therapeutic Efficacy of Doxorubicin in MCF-7 Breast Cancer Cells. Bioconjugate Chemistry, 2016, 27, 2605-2619.	1.8	45
219	Advanced Materials for Thermoelectric Applications. , 2016, , 238-282.		0
220	Adaptive Resolution Simulations with Self-Adjusting High-Resolution Regions. Journal of Chemical Theory and Computation, 2016, 12, 4067-4081.	2.3	24
221	Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science. Chemical Society Reviews, 2016, 45, 6213-6249.	18.7	136
222	New stimuli-responsive polyampholyte: Effect of chemical structure and composition on solution properties and swelling mechanism. Polymer, 2016, 104, 91-103.	1.8	9

#	Article	IF	CITATIONS
223	Self-folding hydrogel bilayer for enhanced drug loading, encapsulation, and transport., 2016, 2016, 2103-2106.		6
224	RAFT preparation and self-assembly behavior of thermosensitive triblock PNIPAAm-b-PODA-b-PNIPAAm copolymers. Colloid and Polymer Science, 2016, 294, 1989-1995.	1.0	11
225	Magnetic nanoparticles with multifunctional water-soluble polymers for bioapplications. , 2016, , 485-515.		0
226	Soft micromachines with programmable motility and morphology. Nature Communications, 2016, 7, 12263.	5.8	495
227	Recognitionâ€Mediated Hydrogel Swelling Controlled by Interaction with a Negative Thermoresponsive LCST Polymer. Angewandte Chemie, 2016, 128, 14180-14184.	1.6	10
228	pH and thermosensitive 5-fluorouracil loaded poly(NIPAM-co-AAc) nanogels for cancer therapy. RSC Advances, 2016, 6, 105495-105507.	1.7	14
229	Synthesis of pH―and thermoresponsive poly(2â€ <i>n</i> à€propylâ€2â€oxazoline) based copolymers. Journal of Polymer Science Part A, 2016, 54, 1573-1582.	2.5	38
230	Quantifying the Interactions in the Aggregation of Thermoresponsive Polymers: The Effect of Cononsolvency. Macromolecular Rapid Communications, 2016, 37, 420-425.	2.0	34
231	A coacervate-forming biodegradable polyester with elevated LCST based on bis-(2-methoxyethyl)amine. Polymer Chemistry, 2016, 7, 4693-4702.	1.9	16
232	Thermoresponsive Polymers for Nuclear Medicine: Which Polymer Is the Best?. Langmuir, 2016, 32, 6115-6122.	1.6	40
233	Investigation of shielding parameters for smart polymers. Chinese Journal of Physics, 2016, 54, 408-415.	2.0	112
234	Temperature-Responsive Smart Nanocarriers for Delivery Of Therapeutic Agents: Applications and Recent Advances. ACS Applied Materials & Samp; Interfaces, 2016, 8, 21107-21133.	4.0	305
235	Polymeric-based particulate systems for delivery of therapeutic proteins. Pharmaceutical Development and Technology, 2016, 21, 367-378.	1.1	35
236	A novel approach to controlled self-assembly of pH-responsive thermosensitive homopolymer polyelectrolytes into stable nanoparticles. Advances in Colloid and Interface Science, 2016, 232, 57-69.	7.0	6
237	Conformation Transitions of Thermoresponsive Dendronized Polymers across the Lower Critical Solution Temperature. Macromolecules, 2016, 49, 900-908.	2.2	32
238	Thermogels: In Situ Gelling Biomaterial. ACS Biomaterials Science and Engineering, 2016, 2, 295-316.	2.6	176
239	Synthesis and characterization of poly (N-isopropylacrylamide)-g-carboxymethyl chitosan copolymer-based doxorubicin-loaded polymeric nanoparticles for thermoresponsive drug release. Colloid and Polymer Science, 2016, 294, 527-535.	1.0	31
240	Facile production of nanoaggregates with tuneable morphologies from thermoresponsive P(DEGMA-co-HPMA). Polymer Chemistry, 2016, 7, 430-440.	1.9	74

#	Article	IF	CITATIONS
241	Temperature-Sensitive Pharmaceutical Nanocarriers., 2016,, 143-177.		1
242	Smart and Stimuli-Responsive Colloids. , 2016, , 389-426.		3
243	Thermal stability of self-assembled surfaces and micropatterns made of ladder polysilsesquioxanes. Polymer, 2016, 90, 147-155.	1.8	9
244	Direct Phase Equilibrium Simulations of NIPAM Oligomers in Water. Journal of Physical Chemistry B, 2016, 120, 3434-3440.	1.2	42
245	Biodegradable, thermoresponsive PNIPAM-based hydrogel scaffolds for the sustained release of levofloxacin. RSC Advances, 2016, 6, 32967-32978.	1.7	75
246	Polyacetals: Water-Soluble, pH-Degradable Polymers with Extraordinary Temperature Response. Macromolecules, 2016, 49, 1858-1864.	2.2	35
247	Thermoresponsive gels based on ABC triblock copolymers: effect of the length of the PEG side group. Polymer Chemistry, 2016, 7, 2045-2056.	1.9	33
248	Self-assembly of well-defined fatty acid based amphiphilic thermoresponsive random copolymers. RSC Advances, 2016, 6, 19322-19330.	1.7	25
249	Tuning the gelation of thermoresponsive gels. European Polymer Journal, 2016, 78, 366-375.	2.6	45
250	Doxorubicin loaded dual pH- and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications. Nanoscale, 2016, 8, 12152-12161.	2.8	173
251	Synthesis and characterization of a novel solvent-free dextran-HEMA-PNIPAM thermosensitive nanogel. Journal of Macromolecular Science - Pure and Applied Chemistry, 2016, 53, 68-74.	1.2	8
252	Dinuclear arene ruthenium thiolato complexes with fluorous side-chains. Inorganica Chimica Acta, 2016, 444, 51-55.	1.2	7
253	Structural Properties and Phase Behavior of Crosslinked Networks in Polymer Solutions. Journal of Macromolecular Science - Physics, 2016, 55, 319-329.	0.4	0
254	Electrochemically triggered release of drugs. European Polymer Journal, 2016, 83, 467-477.	2.6	44
255	Affinity-based thermoresponsive precipitation of proteins modified with polymer-binding peptides. Chemical Communications, 2016, 52, 5670-5673.	2.2	18
256	Hofmeister effect on thermo-responsive poly(propylene oxide): Role of polymer molecular weight and concentration. Journal of Colloid and Interface Science, 2016, 465, 67-75.	5.0	22
257	Effect of Urea on Phase Transition of Poly($\langle i \rangle N \langle i \rangle$ -isopropylacrylamide) and Poly($\langle i \rangle N \langle i \rangle$, $\langle i \rangle N \langle i \rangle$ -diethylacrylamide) Hydrogels: A Clue for Urea-Induced Denaturation. Macromolecules, 2016, 49, 234-243.	2.2	63
258	Amino acid containing cross-linked co-polymer gels: pH, thermo and salt responsiveness. Polymer, 2016, 85, 1-9.	1.8	27

#	Article	IF	CITATIONS
259	Transiently Responsive Block Copolymer Micelles Based on <i>N</i> -(2-Hydroxypropyl)methacrylamide Engineered with Hydrolyzable Ethylcarbonate Side Chains. Biomacromolecules, 2016, 17, 119-127.	2.6	20
260	Crosslinker effects on swelling and gel properties of pH- and temperature-responsive poly (NIPAM/IA/AM) hydrogels. Polymer Bulletin, 2016, 73, 1447-1458.	1.7	6
261	Evaluation of zwitterionic polymersomes spontaneously formed by pH-sensitive and biocompatible PEG based random copolymers as drug delivery systems. Colloids and Surfaces B: Biointerfaces, 2016, 139, 107-116.	2.5	26
262	Supramolecular control over thermoresponsive polymers. Materials Today, 2016, 19, 44-55.	8.3	83
263	Synthesis and characterization of smart N-isopropylacrylamide-based magnetic nanocomposites containing doxorubicin anti-cancer drug. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 560-567.	1.9	6
264	A review on carrier systems for bone morphogenetic proteinâ€2. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 904-925.	1.6	95
265	A Targeted and Stable Polymeric Nanoformulation Enhances Systemic Delivery of mRNA to Tumors. Molecular Therapy, 2017, 25, 92-101.	3.7	70
266	Thermoresponsive Corannulene. European Journal of Organic Chemistry, 2017, 2017, 570-576.	1.2	25
267	Thermoresponsive polymers with lower critical solution temperature: from fundamental aspects and measuring techniques to recommended turbidimetry conditions. Materials Horizons, 2017, 4, 109-116.	6.4	374
268	Side-chain amino acid based cationic polymer induced actin polymerization. Journal of Materials Chemistry B, 2017, 5, 1218-1226.	2.9	12
269	<i>50th Anniversary Perspective</i> : Polymeric Biomaterials: Diverse Functions Enabled by Advances in Macromolecular Chemistry. Macromolecules, 2017, 50, 483-502.	2.2	55
270	Synthesis and characterization of thermosensitive poly(N-vinylcaprolactam)-g-collagen. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 1665-1674.	1.9	20
271	Dynamic Covalent Star Poly(ethylene glycol) Model Hydrogels: A New Platform for Mechanically Robust, Multifunctional Materials. Macromolecules, 2017, 50, 2155-2164.	2.2	57
272	Stimuli-Responsive Polymersomes for Biomedical Applications. Biomacromolecules, 2017, 18, 649-673.	2.6	316
273	Effect of conjugation on phase transitions in thermoresponsive polymers: an atomistic and coarse-grained simulation study. Soft Matter, 2017, 13, 2907-2918.	1.2	37
274	Drug releasing nanoplatforms activated by alternating magnetic fields. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1617-1641.	1.1	84
275	Controlled Synthesis and Degradation of Poly($\langle i \rangle N \langle i \rangle$ -(isobutoxymethyl) acrylamide) Homopolymers and Block Copolymers. Macromolecular Reaction Engineering, 2017, 11, 1600073.	0.9	13
276	1,2-Dithiolane-Derived Dynamic, Covalent Materials: Cooperative Self-Assembly and Reversible Cross-Linking. Journal of the American Chemical Society, 2017, 139, 3822-3833.	6.6	174

#	Article	IF	CITATIONS
277	Sustained Drug Release by Thermoresponsive Sol–Gel Hybrid Hydrogels of Poly(<i>N</i> à€Isopropylacrylamideâ€ <i>co</i> à63â€(Trimethoxysilyl)Propyl Methacrylate) Copolymers. Macromolecular Rapid Communications, 2017, 38, 1600724.	2.0	20
278	Thermoresponsive UCSTâ€Type Behavior of Interpolymer Complexes of Poly(ethylene glycol) and Poly(poly(ethylene glycol) methacrylate) Brushes with Poly(acrylic acid) in Isopropanol. Macromolecular Chemistry and Physics, 2017, 218, 1600466.	1.1	9
279	Synthesis of poly($\hat{l}\mu$ -caprolactone)-based polyurethane semi-interpenetrating polymer networks as scaffolds for skin tissue regeneration. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 805-811.	1.8	31
280	Multi-scale characterization of thermoresponsive dendritic elastin-like peptides. Colloids and Surfaces B: Biointerfaces, 2017, 153, 141-151.	2.5	16
281	Organic Polymeric Nanomaterials as Advanced Tools in the Fight Against Antibiotic-Resistant Infections., 2017,, 153-265.		1
282	Thermoresponsive Polypeptoidâ€Coated Superparamagnetic Iron Oxide Nanoparticles by Surfaceâ€Initiated Polymerization. Macromolecular Chemistry and Physics, 2017, 218, 1700116.	1.1	13
283	Stimuli responsive polymer-based strategies for polynucleotide delivery. Journal of Materials Research, 2017, 32, 2930-2953.	1.2	8
284	Therapeutic nanomaterials: from a drug delivery perspective. , 2017, , 1-61.		1
285	ABA and BAB Triblock Copolymers Based on 2â€Methylâ€2â€oxazoline and 2â€ <i>n</i> àê€Propylâ€2â€oxazoline: Synthesis and Thermoresponsive Behavior in Water. Macromolecular Chemistry and Physics, 2017, 218, 1700031.	1.1	35
286	Recent development in cell encapsulations and their therapeutic applications. Materials Science and Engineering C, 2017, 77, 1247-1260.	3.8	27
287	Stimulus-Responsive Degradable Polylactide-Based Block Copolymer Nanoassemblies for Controlled/Enhanced Drug Delivery. Molecular Pharmaceutics, 2017, 14, 2460-2474.	2.3	69
288	Advances in engineering hydrogels. Science, 2017, 356, .	6.0	1,836
289	On-Demand Gas-to-Liquid Process To Fabricate Thermoresponsive Antimicrobial Nanocomposites and Coatings. ACS Applied Materials & District Samp; Interfaces, 2017, 9, 15342-15349.	4.0	17
290	Thermosensitive spontaneous gradient copolymers with block- and gradient-like features. Polymer Chemistry, 2017, 8, 5023-5032.	1.9	40
291	Thermoresponsive functional polymers based on 2,6-diaminopyridine motif with tunable UCST behaviour in water/alcohol mixtures. Polymer Chemistry, 2017, 8, 3140-3153.	1.9	25
292	Injectable and 3D Bioprinted Polysaccharide Hydrogels: From Cartilage to Osteochondral Tissue Engineering. Biomacromolecules, 2017, 18, 1-26.	2.6	185
293	Synthesis, characterization, LCST-type behavior and unprecedented heating-cooling hysteresis of poly(N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate) copolymers. Polymer, 2017, 108, 395-399.	1.8	25
294	Thermodynamic and kinetic analysis of phase separation of temperature-sensitive poly(vinyl methyl) Tj ETQq1 1 0. 1419-1428.	784314 rş 1.0	gBT /Overlo 9

#	Article	IF	CITATIONS
295	Cononsolvency of poly(<i>N</i> à€isopropylacrylamide) in methanol aqueous solutionâ€"insight by dielectric spectroscopy. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1227-1234.	2.4	15
296	Nanomaterials engineering for drug delivery: a hybridization approach. Journal of Materials Chemistry B, 2017, 5, 3995-4018.	2.9	96
297	A temperature-responsive poly(vinyl alcohol) gel for controlling fluidity of an inorganic phase change material. Journal of Materials Chemistry A, 2017, 5, 12474-12482.	5.2	38
298	Poly(oligo(ethylene glycol) vinyl acetate)s: A Versatile Class of Thermoresponsive and Biocompatible Polymers. Angewandte Chemie, 2017, 129, 9306-9310.	1.6	12
299	Poly(oligo(ethylene glycol) vinyl acetate)s: A Versatile Class of Thermoresponsive and Biocompatible Polymers. Angewandte Chemie - International Edition, 2017, 56, 9178-9182.	7.2	51
300	Thermoresponsivity of polymer solution derived from a self-attractive urea unit and a self-repulsive lipophilic ion unit. Polymer Chemistry, 2017, 8, 3921-3925.	1.9	4
301	Self-assembled polymer particles based on thermoresponsive biodegradable copolymers of amino acids. Mendeleev Communications, 2017, 27, 153-154.	0.6	7
302	Synthesis of aliphatic polycarbonates with a tuneable thermal response. Polymer Chemistry, 2017, 8, 5082-5090.	1.9	21
303	Ultrasmall polymeric nanocarriers for drug delivery to podocytes in kidney glomerulus. Journal of Controlled Release, 2017, 255, 94-107.	4.8	46
304	Tuning Thermoresponsive Properties of Cationic Elastin-like Polypeptides by Varying Counterions and Side-Chains. Bioconjugate Chemistry, 2017, 28, 1403-1412.	1.8	40
305	Intelligent Textiles with Comfort Regulation and Inhibition of Bacterial Adhesion Realized by Cross-Linking Poly(<i>n</i> i>io-ethylene glycol methacrylate) to Cotton Fabrics. ACS Applied Materials & Diterraces, 2017, 9, 13647-13656.	4.0	62
306	Microfluidic-aided fabrication of nanoparticles blend based on chitosan for a transdermal multidrug delivery application. International Journal of Biological Macromolecules, 2017, 99, 433-442.	3.6	31
307	Preparation and characterization of temperature- and pH-sensitive hemicellulose-containing hydrogels. International Journal of Polymer Analysis and Characterization, 2017, 22, 187-201.	0.9	15
308	Soft Actuators for Smallâ€Scale Robotics. Advanced Materials, 2017, 29, 1603483.	11.1	973
309	On the rheology of Pluronic F127 aqueous solutions. Journal of Rheology, 2017, 61, 139-146.	1.3	73
310	Selfâ€Assembled Supramolecular Nanogels as a Safe and Effective Drug Delivery Vector for Cancer Therapy. Macromolecular Bioscience, 2017, 17, 1600370.	2.1	38
311	Sequence Control as a Powerful Tool for Improving the Selectivity of Antimicrobial Polymers. ACS Applied Materials & Distriction (2017), 9, 40117-40126.	4.0	83
312	Development and Application of a Coarse-Grained Model for PNIPAM by Iterative Boltzmann Inversion and Its Combination with Lattice Boltzmann Hydrodynamics. Journal of Physical Chemistry B, 2017, 121, 10394-10406.	1.2	14

#	Article	IF	Citations
313	Smart Biopolymers and their Biomedical Applications. Procedia Manufacturing, 2017, 12, 263-279.	1.9	104
314	Identifying trends in hydration behavior for modifications to the hydrophobicity of poly(n-isopropylacrylamide). Journal of Molecular Graphics and Modelling, 2017, 78, 168-175.	1.3	10
315	<i>50th Anniversary Perspective</i> : Solid-State Multistimuli, Multiresponsive Polymeric Materials. Macromolecules, 2017, 50, 8845-8870.	2.2	117
316	Morphological diversity of block copolymer/lipid chimeric nanostructures. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	18
317	CO ₂ /N ₂ -Switchable Thermoresponsive Ionic Liquid Copolymer. Macromolecules, 2017, 50, 8378-8389.	2.2	11
318	Influence of co-non-solvency on hydrophobic molecules driven by excluded volume effect. Physical Chemistry Chemical Physics, 2017, 19, 23915-23918.	1.3	7
320	Poly($\langle i \rangle N \langle i \rangle$ -isopropylacrylamide) Microgels under Alcoholic Intoxication: When a LCST Polymer Shows Swelling with Increasing Temperature. ACS Macro Letters, 2017, 6, 1042-1046.	2.3	45
321	One-step synthesis and self-assembly behavior of thermo-responsive star-shaped β-cyclodextrin–(P(MEO2MA-co-PEGMA))21 copolymers. Frontiers of Materials Science, 2017, 11, 223-232.	1.1	6
322	Thermoresponsive Stability of Colloids in Butyl Acetate/Ethanol Binary Solvent Realized by Grafting Linear Acrylate Copolymers. Langmuir, 2017, 33, 9687-9693.	1.6	1
323	Thermoresponsive hydrogels based on sucrose 1â€∢i>Oà€²â€methacrylate and ⟨i>Nâ€isopropylacrylamide: Synthesis, properties, and applications. Journal of Applied Polymer Science, 2017, 134, 45495.	1.3	12
324	Conformational Changes of Methacrylate-Based Monomers at the Air–Liquid Interface Due to Bulky Substituents. Journal of Physical Chemistry C, 2017, 121, 16888-16902.	1.5	16
325	Biomimetic Reversible Heat-Stiffening Polymer Nanocomposites. ACS Central Science, 2017, 3, 886-894.	5. 3	58
326	Organic Reaction as a Stimulus for Polymer Phase Separation. ACS Macro Letters, 2017, 6, 898-902.	2.3	5
327	Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials. Engineering, 2017, 3, 663-674.	3.2	225
328	Investigation of the spatial resolution of a laser-based stimulation process for light-addressable hydrogels with incorporated graphene oxide by means of IR thermography. Sensors and Actuators A: Physical, 2017, 268, 126-132.	2.0	3
329	Engineering the Mechanical Properties of Polymer Networks with Precise Doping of Primary Defects. ACS Applied Materials & Doping of Primary Defects.	4.0	23
330	Thermoresponsive Surface-Grafted Gels: Controlling the Bulk Volume Change Properties by Surface-Localized Polymer Grafting with Various Densities. Langmuir, 2017, 33, 13828-13833.	1.6	10
331	Combined Cononsolvency and Temperature Effects on Adsorbed PNIPAM Microgels. Langmuir, 2017, 33, 14269-14277.	1.6	30

#	Article	IF	CITATIONS
332	Dually responsive mesoporous silica nanoparticles regulated by upper critical solution temperature polymers for intracellular drug delivery. Journal of Materials Chemistry B, 2017, 5, 9497-9501.	2.9	31
333	The application of blocked isocyanate chemistry in the development of tunable thermoresponsive crosslinkers. Polymer Chemistry, 2017, 8, 7229-7239.	1.9	10
334	Temperature-Dependent Implicit-Solvent Model of Polyethylene Glycol in Aqueous Solution. Journal of Chemical Theory and Computation, 2017, 13, 6317-6327.	2.3	22
335	The effect of pendant group structure on the thermoresponsive properties of <i>N</i> -substituted polyesters. Polymer Chemistry, 2017, 8, 7195-7206.	1.9	36
336	Dynamic Mechanical Response of Hybrid Physical Covalent Networks â ⁻ Molecular Dynamics Simulation. Macromolecular Symposia, 2017, 373, 1600147.	0.4	2
337	Symmetric Amphiphilic Molecules with Hydroxylâ€Cinnamicâ€Acid Dimer Cores: Photoâ€alterable Aggregation and Thermal Sensitivity. Journal of Surfactants and Detergents, 2017, 20, 1105-1113.	1.0	3
338	Waterborne Electrospinning of Poly(<i>N</i> -isopropylacrylamide) by Control of Environmental Parameters. ACS Applied Materials & Samp; Interfaces, 2017, 9, 24100-24110.	4.0	29
339	Dual thermo- and light-responsive coumarin-based copolymers with programmable cloud points. Polymer Chemistry, 2017, 8, 4512-4519.	1.9	26
340	A simplified model for equilibrium and transient swelling of thermo-responsive gels. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 75, 20-32.	1.5	11
341	Mechanical response and equilibrium swelling of temperature-responsive gels. European Polymer Journal, 2017, 94, 56-67.	2.6	11
342	Investigation on a smart nanocarrier with a mesoporous magnetic core and thermo-responsive shell for co-delivery of doxorubicin and curcumin: a new approach towards combination therapy of cancer. RSC Advances, 2017, 7, 28802-28818.	1.7	41
343	Optimization of electrospun poly(<i>N-</i> i>isopropyl acrylamide) mats for the rapid reversible adhesion of mammalian cells. Biointerphases, 2017, 12, 02C417.	0.6	13
344	Bioprinting of Thermoresponsive Hydrogels for Next Generation Tissue Engineering: A Review. Macromolecular Materials and Engineering, 2017, 302, 1600266.	1.7	135
345	The Dependence of the Cloud Point, Clearing Point, and Hysteresis of Poly(<i>N</i> -isopropylacrylamide) on Experimental Conditions: The Need for Standardization of Thermoresponsive Transition Determinations. Macromolecular Chemistry and Physics, 2017, 218, 1600470.	1.1	53
346	Dynamic and biocompatible thermo-responsive magnetic hydrogels that respond to an alternating magnetic field. Journal of Magnetism and Magnetic Materials, 2017, 427, 212-219.	1.0	22
347	Dendritic polyglycerol and N-isopropylacrylamide based thermoresponsive nanogels as smart carriers for controlled delivery of drugs through the hair follicle. Nanoscale, 2017, 9, 172-182.	2.8	53
348	Amphiphilic poly(2-oxazoline) copolymers as self-assembled carriers for drug delivery applications. European Polymer Journal, 2017, 88, 516-523.	2.6	56
349	The influence of various alkylammonium-based ionic liquids on the hydration state of temperature-responsive polymer. Journal of Molecular Liquids, 2017, 225, 186-194.	2.3	9

#	Article	IF	CITATIONS
350	Probing the causes of thermal hysteresis using tunable N _{agg} micelles with linear and brush-like thermoresponsive coronas. Polymer Chemistry, 2017, 8, 233-244.	1.9	22
351	Polyacrylamide/reduced graphene oxide-Ag nanocomposite as highly efficient antibacterial transparent film. Journal of the Iranian Chemical Society, 2017, 14, 37-46.	1.2	15
352	Tunable, concentrationâ€independent, sharp, hysteresisâ€free UCST phase transition from poly(<i>N</i> à€acryloyl glycinamideâ€acrylonitrile) system. Journal of Polymer Science Part A, 2017, 55, 274-279.	2.5	33
353	In Vitro Drug and Gene Delivery Using Random Cationic Copolymers Forming Stable and pHâ€Sensitive Polymersomes. Macromolecular Bioscience, 2017, 17, 1600324.	2.1	16
354	Self-hardening and thermoresponsive alpha tricalcium phosphate/pluronic pastes. Acta Biomaterialia, 2017, 49, 563-574.	4.1	36
355	Supramolecular assembly of a thermoresponsive steroidal surfactant with an oppositely charged thermoresponsive block copolymer. Physical Chemistry Chemical Physics, 2017, 19, 1504-1515.	1.3	19
356	Thermoresponsive poly(2-oxazoline)s, polypeptoids, and polypeptides. Polymer Chemistry, 2017, 8, 24-40.	1.9	228
357	Behavior of Aqueous Solutions of Thermosensitive Starlike Polyalkyloxazolines with Different Arm Structures. Polymer Science - Series A, 2017, 59, 826-838.	0.4	15
358	Biopolymer in Gene Delivery. , 2017, , .		3
359	pH- and temperature-responsive nanosystems. , 2017, , 281-315.		0
360	Metamorphic biomaterials., 2017,, 69-99.		6
361	Thermo-Responsive Poly(N-Isopropylacrylamide)-Cellulose Nanocrystals Hybrid Hydrogels for Wound Dressing. Polymers, 2017, 9, 119.	2.0	121
362	pH Sensitive Hydrogels in Drug Delivery: Brief History, Properties, Swelling, and Release Mechanism, Material Selection and Applications. Polymers, 2017, 9, 137.	2.0	415
363	Thermoresponsive Gels. Gels, 2017, 3, 4.	2.1	124
364	Small-Angle Neutron Scattering (SANS)., 2017,, 339-361.		7
365	Thermoresponsive copolymer-grafted SBA-15 porous silica particles for temperature-triggered topical delivery systems. EXPRESS Polymer Letters, 2017, 11, 96-105.	1.1	32
366	Synthetic Biomaterial for Regenerative Medicine Applications. , 2017, , 901-921.		11
367	Smart Thermoresponsive Surfaces Based on pNIPAm Coatings and Laser Method for Biological Applications. , 0, , .		6

#	Article	IF	CITATIONS
368	Biopolymers for gene delivery applications. , 2017, , 289-323.		1
369	A Comprehensive Systematic Study on Thermoresponsive Gels: Beyond the Common Architectures of Linear Terpolymers. Polymers, 2017, 9, 31.	2.0	23
370	Viscosity Transitions Driven by Thermoresponsive Self-Assembly in PHOS- <i>g</i> -P(PO- <i>r</i> -EO) Brush Copolymer. Macromolecules, 2018, 51, 1644-1653.	2.2	4
371	Comparative Investigation of the Thermoresponsive Behavior of Two Diblock Copolymers Comprising PNIPAM and PMDEGA Blocks. Journal of Physical Chemistry B, 2018, 122, 2655-2668.	1.2	10
372	Thermoresponsive Hydrogels Based on Telechelic Polyelectrolytes: From Dynamic to "Frozen― Networks. Macromolecules, 2018, 51, 2169-2179.	2.2	42
373	Synthesis of high generation thermo-sensitive dendrimers for extraction of rivaroxaban from human fluid and pharmaceutic samples. Journal of Chromatography A, 2018, 1545, 12-21.	1.8	24
374	The structural (FTIR, XRD, and XPS) and biological studies of thermosensitive chitosan chloride gels with $\hat{l}^2 \hat{a} \in g$ lycerophosphate disodium. Journal of Applied Polymer Science, 2018, 135, 46459.	1.3	27
375	Thermoresponsive Polymeric Assemblies and Their Biological Applications. Nanomedicine and Nanotoxicology, 2018, , 155-183.	0.1	2
376	Overcoming Ovarian Cancer Drug Resistance with a Cold Responsive Nanomaterial. ACS Central Science, 2018, 4, 567-581.	5. 3	49
377	In Vivo Self-Assembly Nanotechnology for Biomedical Applications. Nanomedicine and Nanotoxicology, 2018, , .	0.1	1
378	Biopolymer-based strategies in the design of smart medical devices and artificial organs. International Journal of Artificial Organs, 2018, 41, 337-359.	0.7	54
379	An <scp>l</scp> -proline based thermoresponsive and pH-switchable nanogel as a drug delivery vehicle. Polymer Chemistry, 2018, 9, 2271-2280.	1.9	22
380	Development and characterization of thermal responsivehydrogel films for biomedical sensor application. Materials Research Express, 2018, 5, 045703.	0.8	9
381	Polymer-Based Responsive Hydrogel for Drug Delivery. Gels Horizons: From Science To Smart Materials, 2018, , 1-25.	0.3	2
382	Effects of nonionic surfactant and salts on the interactions between oppositely charged star-shaped copolymer and ionic surfactant in aqueous solutions. Journal of Molecular Liquids, 2018, 266, 789-796.	2.3	3
383	Thermoresponsive poly(2-oxazoline) homopolymers and copolymers in aqueous solutions studied by NMR spectroscopy and dynamic light scattering. European Polymer Journal, 2018, 100, 241-252.	2.6	16
384	Thermoresponsive nanogels with film-forming ability. Polymer Chemistry, 2018, 9, 1004-1011.	1.9	10
385	Functional polymers in nonpolar solvents induced by dissociation of macromolecular complexes. Polymer Journal, 2018, 50, 285-299.	1.3	8

#	Article	IF	CITATIONS
386	Dual-responsive hydrogels based on maleilated curdlan- <i>graft</i> -poly(<i>N</i> -isopropylacrylamide). International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 1069-1079.	1.8	4
387	A Tough Composite Hydrogel can Controllably Deliver Hydrophobic Drugs under Ultrasound. Macromolecular Materials and Engineering, 2018, 303, 1700483.	1.7	15
388	Functionalized Hyperbranched Polyethylenimines as Thermosensitive Drug Delivery Nanocarriers with Controlled Transition Temperatures. Biomacromolecules, 2018, 19, 315-328.	2.6	25
389	Injectable hydrogels and nanocomposite hydrogels for cartilage regeneration. Journal of Biomedical Materials Research - Part A, 2018, 106, 2762-2776.	2.1	70
390	Electrically-receptive and thermally-responsive paper-based sensor chip for rapid detection of bacterial cells. Biosensors and Bioelectronics, 2018, 110, 132-140.	5.3	66
391	Anomalous Inverse Hysteresis of Phase Transition in Thermosensitive Dextran- <i>graft</i> -PNIPAM Copolymer/Au Nanoparticles Hybrid Nanosystem. Journal of Physical Chemistry C, 2018, 122, 8003-8010.	1.5	18
392	Temperature- and pH-sensitive core–shell nanogels as efficient carriers of doxorubicin with potential application in lung cancer treatment. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 20-26.	1.8	12
393	Temperature-responsive N-isopropylacrylamide-grafted natural rubber. Polymer Bulletin, 2018, 75, 1387-1401.	1.7	5
394	Electrohydrodynamic methods for the development of pulmonary drug delivery systems. European Journal of Pharmaceutical Sciences, 2018, 113, 29-40.	1.9	41
395	The Effect Acetic Acid has on Poly(<i>N</i> -Vinylcaprolactam) LCST for Biomedical Applications. Polymer-Plastics Technology and Engineering, 2018, 57, 1165-1174.	1.9	7
396	Strategies for Drug Encapsulation and Controlled Delivery Based on Vaporâ€Phase Deposited Thin Films. Advanced Engineering Materials, 2018, 20, 1700639.	1.6	25
397	A review on mechanical considerations for chronically-implanted neural probes. Journal of Neural Engineering, 2018, 15, 031001.	1.8	139
398	Thermoresponsive and biocompatible poly(vinyl alcohol)â€ <i>graft</i> â€poly(<i>N,N</i> â€diethylacrylamide) copolymer: Microwaveâ€assisted synthesis, characterization, and swelling behavior. Journal of Applied Polymer Science, 2018, 135, 45969.	1.3	10
399	Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications. Advanced Healthcare Materials, 2018, 7, 1700831.	3.9	415
400	Development of tailored SPION-PNIPAM nanoparticles by ATRP for dually responsive doxorubicin delivery and MR imaging. Journal of Materials Chemistry B, 2018, 6, 289-300.	2.9	50
401	Thermal response of self-organization in an amphiphilic triblock polyelectrolyte and the influence of the globular protein lysozyme. European Polymer Journal, 2018, 99, 49-57.	2.6	7
402	Thermosensitive hydrogels a versatile concept adapted to vaginal drug delivery. Journal of Drug Targeting, 2018, 26, 533-550.	2.1	21
403	Injectable network biomaterials via molecular or colloidal self-assembly. Advanced Drug Delivery Reviews, 2018, 127, 185-207.	6.6	65

#	Article	IF	CITATIONS
404	Controlling the gelation temperature of biomimetic polyisocyanides. Chinese Chemical Letters, 2018, 29, 281-284.	4.8	19
405	Chitosan-based polymer hybrids for thermo-responsive nanogel delivery of curcumin. Carbohydrate Polymers, 2018, 181, 1119-1127.	5.1	126
406	Sequence analysis of cyclic polyester copolymers using ion mobility tandem mass spectrometry. International Journal of Mass Spectrometry, 2018, 429, 151-157.	0.7	13
407	Poly(2â€oxazoline)s: A comprehensive overview of polymer structures and their physical properties. Polymer International, 2018, 67, 32-45.	1.6	183
408	RECENT ADVANCES IN HYDROGELS FOR BIOMEDICAL APPLICATIONS. Asian Journal of Pharmaceutical and Clinical Research, 2018, 11, 62.	0.3	10
409	SYNTHESIS AND TEMPERATURE-RESPONSIVE BEHAVIOR OF N-VINYLCAPROLACTAM-GRAFTED NR. Rubber Chemistry and Technology, 2018, 91, 417-432.	0.6	2
410	Laser-driven structural transformations in dextran- <i>graft</i> -PNIPAM copolymer/Au nanoparticles hybrid nanosystem: the role of plasmon heating and attractive optical forces. RSC Advances, 2018, 8, 38400-38409.	1.7	6
411	Thermal Fieldâ€Flow Fractionation for the Investigation of the Thermoresponsive Nature of Star and Linear Polystyrene. Macromolecular Chemistry and Physics, 2018, 219, 1800417.	1.1	15
412	Polycation–PEG Block Copolymer Undergoes Stepwise Phase Separation in Aqueous Triflate Solution. Macromolecules, 2018, 51, 9681-9691.	2.2	14
413	Thermo-Sensitive Nanomaterials: Recent Advance in Synthesis and Biomedical Applications. Nanomaterials, 2018, 8, 935.	1.9	90
414	Synthesis, Characterization and Cytotoxicity of Novel Thermoresponsive Star Copolymers of N,N \hat{a} \in 2-Dimethylaminoethyl Methacrylate and Hydroxyl-Bearing Oligo(Ethylene Glycol) Methacrylate. Polymers, 2018, 10, 1255.	2.0	23
415	Recent Advance on Draw Solutes Development in Forward Osmosis. Processes, 2018, 6, 165.	1.3	62
416	Temperatureâ€responsive alginateâ€ <i>y</i> a€poly(<i>N</i> , <i>N</i> â€diethylacrylamide) copolymer: Synthesis, characterization, and swelling behavior. Journal of Applied Polymer Science, 2018, 135, 46688.	1.3	6
417	Poly[oligo(2-ethyl-2-oxazoline)acrylate]-Based Poly(ionic liquid) Random Copolymers with Coexistent and Tunable Lower Critical Solution Temperature- and Upper Critical Solution Temperature-Type Phase Transitions. Langmuir, 2018, 34, 12653-12663.	1.6	27
418	Switchable phase transition behavior of thermoresponsive substrates for cell sheet engineering. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1567-1576.	2.4	15
419	Mapping Coexistence Phase Diagrams of Block Copolymer Micelles and Free Unimer Chains. Macromolecules, 2018, 51, 8127-8135.	2.2	11
420	Salt-Induced Thermoresponsivity of a Cationic Phosphazene Polymer in Aqueous Solutions. Macromolecules, 2018, 51, 7964-7973.	2.2	6
421	Biomaterials for vaccine-based cancer immunotherapy. Journal of Controlled Release, 2018, 292, 256-276.	4.8	146

#	Article	IF	CITATIONS
422	pH- and thermo-responsive solution behavior of amphiphilic, linear triblock terpolymers. Polymer, 2018, 157, 9-18.	1.8	19
423	Thermoresponsive Gel Drug Delivery for Retina and Posterior Segment Disease. , 2018, , 397-409.		1
424	Improving the Colloidal Stability of Temperature-Sensitive Poly(<i>N</i> i>olutions Using Low Molecular Weight Hydrophobic Additives. ACS Omega, 2018, 3, 11865-11873.	1.6	8
425	Porous and responsive hydrogels for cell therapy. Current Opinion in Colloid and Interface Science, 2018, 38, 135-157.	3.4	35
426	Cellulose-based hydrogel materials: chemistry, properties and their prospective applications. Progress in Biomaterials, 2018, 7, 153-174.	1.8	339
427	Thermo-Sensitive Vesicles in Controlled Drug Delivery for Chemotherapy. Pharmaceutics, 2018, 10, 150.	2.0	46
428	Thermoresponsive Tetrablock Terpolymers: Effect of Architecture and Composition on Gelling Behavior. Macromolecules, 2018, 51, 7019-7031.	2.2	29
429	A multi-responsive bidirectional bending actuator based on polypyrrole and agar nanocomposites. Journal of Materials Chemistry C, 2018, 6, 6416-6422.	2.7	37
430	Amphiphilic polyurethane hydrogels as smart carriers for acidic hydrophobic drugs. International Journal of Pharmaceutics, 2018, 546, 106-114.	2.6	39
431	Poly(2-isopropenyl-2-oxazoline) as a versatile platform towards thermoresponsive copolymers. Polymer Chemistry, 2018, 9, 3473-3478.	1.9	36
432	3D printing of methylcellulose-based hydrogels. Bioprinting, 2018, 10, e00024.	2.9	45
433	Observing Phase Transition of a Temperature-Responsive Polymer Using Electrochemical Collisions on an Ultramicroelectrode. Analytical Chemistry, 2018, 90, 7261-7266.	3.2	17
434	Biopolymers for Antitumor Implantable Drug Delivery Systems: Recent Advances and Future Outlook. Advanced Materials, 2018, 30, e1706665.	11.1	147
435	UV-triggered shape-controllable PP fabric. Polymer Chemistry, 2018, 9, 3232-3237.	1.9	11
439	Advancements in exogeneous techniques for stimuli-sensitive delivery systems., 2018,, 447-481.		2
441	Responsive polyelectrolyte complexes based on natural polysaccharides for drug delivery applications., 2018,, 267-287.		5
442	Preparation of injectable hydrogels from temperature and pH responsive grafted chitosan with tuned gelation temperature suitable for tumor acidic environment. Carbohydrate Polymers, 2018, 198, 486-494.	5.1	61
443	Engineering approaches of smart, bio-inspired vesicles for biomedical applications. Physical Biology, 2018, 15, 061001.	0.8	17

#	Article	IF	Citations
444	Temperature-responsive polymers: Synthesis, properties, and biomedical applications. Nano Research, 2018, 11, 5400-5423.	5. 8	82
445	Trithiocarbonate-Functionalized PNiPAAm-Based Nanocomposites for Antimicrobial Properties. Polymers, 2018, 10, 665.	2.0	2
446	Engineered polyester-PEG nanoparticles prepared through a "grafting through―strategy and post-functionalization via Michael type addition. Reactive and Functional Polymers, 2018, 131, 164-173.	2.0	8
447	Stimuli-responsive peptide-based biomaterials as drug delivery systems. Chemical Engineering Journal, 2018, 353, 559-583.	6.6	96
448	Investigation of Magnetotaxis of Reconfigurable Microâ€Origami Swimmers with Competitive and Cooperative Anisotropy. Advanced Functional Materials, 2018, 28, 1802110.	7.8	40
449	Preparation of multifunctional poly(acrylic acid)-poly(ethylene oxide) nanogels from their interpolymer complexes by radiation-induced intramolecular crosslinking. Colloid and Polymer Science, 2018, 296, 1599-1608.	1.0	18
450	Temperature and Recognition Dual Responsive Poly(N-Isopropylacrylamide) and Poly(N,N-Dimethylacrylamide) with Adamantyl Side Group. Materials, 2018, 11, 473.	1.3	6
451	Thermoresponsive Hydrogels and Their Biomedical Applications: Special Insight into Their Applications in Textile Based Transdermal Therapy. Polymers, 2018, 10, 480.	2.0	112
452	Thermoresponsive Microgel Coatings as Versatile Functional Compounds for Novel Cell Manipulation Tools. Polymers, 2018, 10, 656.	2.0	30
453	Coarse-Grained Simulations of Aqueous Thermoresponsive Polyethers. Polymers, 2018, 10, 475.	2.0	12
454	A molecular dynamics simulation scenario for studying solvent-mediated interactions of polymers and application to thermoresponse of poly(N-isopropylacrylamide) in water. Journal of Molecular Liquids, 2018, 268, 294-302.	2.3	14
455	Poly(hydroxyl propyl methacrylate)â€ <i>b</i> à€Poly(oligo ethylene glycol methacrylate) Thermoresponsive Block Copolymers by RAFT Polymerization. Macromolecular Chemistry and Physics, 2018, 219, 1800060.	1.1	5
456	Block length-dependent phase transition of poly(N-isopropylacrylamide)-b-poly(2-isopropyl-2-oxazoline) diblock copolymer in water. Polymer, 2018, 153, 250-261.	1.8	10
457	Fluorescent star ATRP initiators and fluorescent star poly(methyl methacrylate)s: Synthesis and photophysical properties. Polymer, 2018, 153, 139-149.	1.8	9
458	Micellar-Based Nanoparticles for Cancer Therapy and Bioimaging. Nanomedicine and Nanotoxicology, 2018, , 211-238.	0.1	1
459	Hydrogels., 2018,, 627-672.		9
460	Poly(Pentafluorophenyl Methacrylate)â∈Based Nanoâ∈Objects Developed by Photoâ∈PISA as Scaffolds for Postâ∈Polymerization Functionalization. Macromolecular Rapid Communications, 2019, 40, e1800460.	2.0	50
461	Current trends and concepts in the design and development of nanogel carrier systems. Polymer Bulletin, 2019, 76, 1595-1617.	1.7	24

#	Article	IF	CITATIONS
462	Review of Soft Linear Actuator and the Design of a Dielectric Elastomer Linear Actuator. Acta Mechanica Solida Sinica, 2019, 32, 566-579.	1.0	41
463	Functionalized carbon nanotubes modulate the phase transition behavior of thermoresponsive polymer via hydrophilic-hydrophobic balance. Polymer, 2019, 178, 121573.	1.8	20
464	Polymeric and lipid-based drug delivery systems for treatment of glioblastoma multiforme. Journal of Industrial and Engineering Chemistry, 2019, 79, 261-273.	2.9	30
465	Modeling Lower Critical Solution Temperature Behavior of Associating Dendrimers Using Density Functional Theory. Langmuir, 2019, 35, 10808-10817.	1.6	6
466	Comprehensive Insight into the Protein–Surface Biomolecular Interactions on a Smart Material: Complex Formation between Poly(<i>N</i> vinyl Caprolactam) and Heme Protein. Journal of Physical Chemistry B, 2019, 123, 6331-6344.	1.2	16
467	Synthesis of micro- and nanoparticles of alginate and chitosan for controlled release of drugs. , 2019, , 363-398.		5
468	Smart Polymersomes as Intelligent Nanomedicines in Cancer Treatment. , 2019, , 343-371.		8
469	Smart Polymers in Drug Delivery Applications. Applied Mechanics and Materials, 0, 890, 324-339.	0.2	4
470	Quantification Methods for Textile-Adhered Bacteria: Extraction, Colorimetric, and Microscopic Analysis. Polymers, 2019, 11, 1666.	2.0	7
471	Temperature-Induced Mechanomodulation of Interpenetrating Networks of Star Poly(ethylene) Tj ETQq1 1 0.784	-314 rgBT 4.0	/Overlock 10 12
472	Folic acid and rhodamine labelled pH responsive hyperbranched polymers: Synthesis, characterization and cell uptake studies. European Polymer Journal, 2019, 120, 109259.	2.6	9
473	Thermosensitive star-shaped poly-2-ethyl-2-oxazine. Synthesis, structure characterization, conformation, and self-organization in aqueous solutions. European Polymer Journal, 2019, 120, 109215.	2.6	17
474	pHâ€Driven Morphological Diversity in Poly[nâ€Butyl Acrylate―block â€(2â€(Dimethylamino)Ethyl Acrylate)] Amphiphilic Copolymer Solutions. Macromolecular Rapid Communications, 2019, 40, 1900477.	2.0	9
476	A New Associative Diblock Copolymer of Poly(ethylene glycol) and Dense 1,2,3â€√riazole Blocks: Selfâ€Association Behavior and Thermoresponsiveness in Water. Macromolecular Chemistry and Physics, 2019, 220, 1900317.	1.1	10
477	Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release. Journal of Controlled Release, 2019, 315, 1-22.	4.8	134
479	Non-volatile, phase-transition smart gels visually indicating <i>in situ</i> thermal status for sensing applications. Nanoscale, 2019, 11, 16733-16742.	2.8	21
480	Comparison of Thermoresponsive Hydrogels Synthesized by Conventional Free Radical and RAFT Polymerization. Materials, 2019, 12, 2697.	1.3	14
481	New method of increased accuracy for the calculation of intermolecular interactions in thermotropic polymers. Results in Materials, 2019, 1, 100013.	0.9	1

#	Article	IF	CITATIONS
482	Fluorescent Labeling Method Re-Evaluates the Intriguing Thermoresponsive Behavior of Poly(acrylamide- <i>co</i> -acrylonitrile)s with Upper Critical Solution Temperatures. Macromolecules, 2019, 52, 7646-7660.	2.2	25
483	A polyelectrolyte-containing copolymer with a gas-switchable lower critical solution temperature-type phase transition. Polymer Chemistry, 2019, 10, 260-266.	1.9	7
484	Trends in polymeric shape memory hydrogels and hydrogel actuators. Polymer Chemistry, 2019, 10, 1036-1055.	1.9	172
485	Palladium-catalyzed Mizoroki-Heck reactions in water using thermoresponsive polymer micelles. Tetrahedron, 2019, 75, 1351-1358.	1.0	19
486	Temperature dependent specific ion effects in mixed salt environments on a thermoresponsive poly(oligoethylene glycol methacrylate) brush. Physical Chemistry Chemical Physics, 2019, 21, 4650-4662.	1.3	17
487	Preparation of functionalized star polymer nanoparticles by RAFT polymerization and their application in positionally assembled enzymes for cascade reactions. New Journal of Chemistry, 2019, 43, 8517-8526.	1.4	5
488	Thermothickening Behavior of Self-Stabilized Colloids Formed from Associating Polymers. Macromolecules, 2019, 52, 4926-4933.	2.2	5
489	Stimuli-responsive polymers for sensing and actuation. Materials Horizons, 2019, 6, 1774-1793.	6.4	223
490	Temperature Driven Transformation in Dextran-Graft-PNIPAM/Embedded Silver Nanoparticle Hybrid System. International Journal of Polymer Science, 2019, 2019, 1-7.	1.2	6
491	Synthesis and selfâ€assembly of thermoresponsive poly(<i>N</i> â€isopropylacrylamide)â€ <i>b</i> â€poly(oligo) Tolerace Part A, 2019, 57, 1467-1477.	j ETQq1 1 2.5	0.784314 15
492	Solvation Structure of Poly(benzyl methacrylate) in a Solvate Ionic Liquid: Preferential Solvation of Li–Glyme Complex Cation. Journal of Physical Chemistry B, 2019, 123, 4098-4107.	1.2	2
493	Cloud Point Temperature, Thermal and Dielectrical Behaviors of Thermosensitive Block Copolymers Based N-Isopropylacrylamide. Polymer Science - Series B, 2019, 61, 32-41.	0.3	6
494	Synthesis of Novel pH-Tunable Thermoresponsive Hydroxyl-Terminated Hyperbranched Polyether. Polymers, 2019, 11, 895.	2.0	1
495	Fundamentals and Effects of Biomimicking Stimuli-Responsive Polymers for Engineering Functions. Industrial & Engineering Chemistry Research, 2019, 58, 9709-9757.	1.8	63
496	Thermo-responsive polymers: Applications of smart materials in drug delivery and tissue engineering. Materials Science and Engineering C, 2019, 102, 589-605.	3.8	247
497	Nanostructured carriers as innovative tools for cancer diagnosis and therapy. APL Bioengineering, 2019, 3, 011502.	3.3	164
498	Seleniumâ€Modified Microgels as Bioâ€Inspired Oxidation Catalysts. Angewandte Chemie - International Edition, 2019, 58, 9791-9796.	7.2	39
499	Selenmodifizierte Mikrogele als bioinspirierte Oxidationskatalysatoren. Angewandte Chemie, 2019, 131, 9895-9901.	1.6	1

#	Article	IF	CITATIONS
501	The mineralization effect on chitosan hydrogel structure containing collagen and alkaline phosphatase. Journal of Molecular Structure, 2019, 1187, 86-97.	1.8	9
502	Smart Nanoparticles for Drug Delivery Application: Development of Versatile Nanocarrier Platforms in Biotechnology and Nanomedicine. Journal of Nanomaterials, 2019, 2019, 1-26.	1.5	570
503	Design and Applications of Photoresponsive Hydrogels. Advanced Materials, 2019, 31, e1807333.	11.1	353
504	Self-assembling of Thermo-Responsive Block Copolymers: Structural, Thermal and Dielectric Investigations. Series in Bioengineering, 2019, , 397-444.	0.3	1
505	Self-assembly of polyelectrolyte diblock copolymers at monovalent and multivalent counterions. Soft Matter, 2019, 15, 3689-3699.	1.2	15
506	Comparative study of surface modification of polyethylene by parallel-field and cross-field atmospheric pressure plasma jets. Journal of Applied Physics, 2019, 125, .	1.1	8
507	Multiresponsive Poly(N-Acryloyl glycine)-Based Nanocomposite and Its Drug Release Characteristics. Journal of Nanomaterials, 2019, 2019, 1-12.	1.5	4
508	How do biological stimuli modulate conformational changes of biomedical thermoresponsive polymer?. Colloids and Surfaces B: Biointerfaces, 2019, 178, 479-487.	2.5	16
509	Self-assembly of oppositely charged polyelectrolyte block copolymers containing short thermoresponsive blocks. Polymer Chemistry, 2019, 10, 3127-3134.	1.9	19
510	Biomedical Imaging: Principles, Technologies, Clinical Aspects, Contrast Agents, Limitations and Future Trends in Nanomedicines. Pharmaceutical Research, 2019, 36, 78.	1.7	93
511	Thermoresponsive DNA by Intercalation of dsDNA with Oligoethyleneâ€Glycolâ€Functionalized Smallâ€Molecule Intercalators. Macromolecular Rapid Communications, 2019, 40, e1800900.	2.0	0
512	Molecularly imprinted poly(N-isopropylacrylamide) thermosensitive based cryogel for immunoglobulin G purification. Process Biochemistry, 2019, 80, 181-189.	1.8	39
513	Stimuli-responsive polymers for ocular therapy. , 2019, , 463-489.		5
514	Electrospun Polymeric Nanostructures With Applications in Nanomedicine., 2019,, 261-297.		0
515	Transformer Hydrogels: A Review. Advanced Materials Technologies, 2019, 4, 1900043.	3.0	207
516	Temperature-Responsive Polymers: Properties, Synthesis, and Applications. , 2019, , 13-44.		18
517	A review of coarse-grained simulations of nanogel and microgel particles. Journal of Molecular Liquids, 2019, 280, 374-381.	2.3	34
518	Inorganic and organic–inorganic composite nanoparticles with potential biomedical applications: synthesis challenges for enhanced performance. , 2019, , 47-99.		8

#	Article	IF	CITATIONS
519	An In Situ Gelling System for the Local Treatment of Inflammatory Bowel Disease (IBD). The Loading of Maqui (Aristotelia Chilensis) Berry Extract as an Antioxidant and Anti-Inflammatory Agent. Pharmaceutics, 2019, 11, 611.	2.0	17
520	Enrichment of methanol inside pNIPAM gels in the cononsolvency-induced collapse. Physical Chemistry Chemical Physics, 2019, 21, 22811-22818.	1.3	9
521	Mannosylated brush copolymers based on poly(ethylene glycol) and poly($\hat{l}\mu$ -caprolactone) as multivalent lectin-binding nanomaterials. Beilstein Journal of Nanotechnology, 2019, 10, 2192-2206.	1.5	7
522	Thermoresponsive Poly(ß-hydroxyl amine)s: Synthesis of a New Stimuli Responsive Amphiphilic Homopolymer Family through Amine-Epoxy â€~Click' Polymerization. Polymers, 2019, 11, 1941.	2.0	10
523	Tunable Thermo-Responsive Copolymers from DEGMA and OEGMA Synthesized by RAFT Polymerization and the Effect of the Concentration and Saline Phosphate Buffer on its Phase Transition. Polymers, 2019, 11, 1657.	2.0	28
524	Cloud Point Driven Dynamics in Aqueous Solutions of Thermoresponsive Copolymers: Are They Akin to Criticality Driven Solution Dynamics?. Journal of Physical Chemistry B, 2019, 123, 11042-11054.	1.2	9
525	Preparation and application of grafted $\hat{l}^2\hat{a}\in$ cyclodextrin/thermo-sensitive polymer onto modified Fe3O4@SiO2 nano-particles for fenitrothion elimination from aqueous solution. Microchemical Journal, 2019, 145, 59-67.	2.3	33
526	Pneumatic balloon actuator control through integrated microvalves using thermally responsive fluids. Sensors and Actuators A: Physical, 2019, 286, 178-182.	2.0	2
527	Synthesis and analysis of a healable, poly(propylene glycol)-based supramolecular network. Progress in Organic Coatings, 2019, 127, 260-265.	1.9	2
528	Photo-triggered polymer nanomedicines: From molecular mechanisms to therapeutic applications. Advanced Drug Delivery Reviews, 2019, 138, 148-166.	6.6	69
529	Stimuli-Responsive Nano-polymer Composite Materials Based on the Triazine Skeleton Structure Used in Drug Delivery. Jom, 2019, 71, 308-314.	0.9	6
530	Self-Assembly of Stimuli-Responsive Biohybrid Synthetic- <i>b</i> biomacromolecules, 2019, 20, 254-272.	2.6	17
531	Fluid-driven intrinsically soft robots., 2019,, 61-84.		8
532	Mechanism for the Nano-Based Drug Delivery System. , 2019, , 219-263.		17
533	Thermoresponsive Drug Delivery Systems, Characterization, and Applications. , 2019, , 351-373.		1
534	Functional Surfaces through Controlled Assemblies of Upper Critical Solution Temperature Block and Star Copolymers. Langmuir, 2019, 35, 10677-10688.	1.6	12
535	A Custom Radiopaque Thermoresponsive Chemotherapy-Loaded Hydrogel for Intratumoural Injection: An In Vitro and Ex Vivo Assessment of Imaging Characteristics and Material Properties. CardioVascular and Interventional Radiology, 2019, 42, 289-297.	0.9	8
536	Impact of branching unit structure on the cloud point of highly branched polymers with lower critical solution temperature behavior. European Polymer Journal, 2019, 111, 63-68.	2.6	6

#	Article	IF	CITATIONS
537	Responsive textile coatings. , 2019, , 237-261.		4
538	Amphiphilic bromelain-synthesized oligo-phenylalanine grafted with methoxypolyethylene glycol possessing stabilizing thermo-responsive emulsion properties. Journal of Colloid and Interface Science, 2019, 538, 1-14.	5.0	6
539	Wellâ€Defined Thermoresponsive Polymethacrylamide Copolymers with Ester Pendent Groups through Oneâ€Pot Statistical Postpolymerization Modification of Poly(2â€Isopropenylâ€2â€Oxazoline) with Multiple Carboxylic Acids. Journal of Polymer Science Part A, 2019, 57, 360-366.	2.5	10
540	Medical Applications of Polymer/Functionalized Nanoparticle Systems. , 2019, , 381-404.		3
541	Nanogels synthesized by radiation-induced intramolecular crosslinking of water-soluble polymers. Radiation Physics and Chemistry, 2020, 169, 108099.	1.4	26
542	Thermoresponsive cryogels of poly(2-hydroxyethyl methacrylate-co-N-isopropyl acrylamide) (P(HEMA-co-NIPAM)): fabrication, characterization and water sorption study. Polymer Bulletin, 2020, 77, 4417-4443.	1.7	11
543	Flexible Actuators for Soft Robotics. Advanced Intelligent Systems, 2020, 2, 1900077.	3.3	79
544	Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Applied Materials Today, 2020, 18, 100479.	2.3	266
545	High-Throughput Synthesis, Analysis, and Optimization of Injectable Hydrogels for Protein Delivery. Biomacromolecules, 2020, 21, 214-229.	2.6	29
546	Combining Chemistry, Materials Science, Inspiration from Nature, and Serendipity to Develop Stimuliâ€Responsive Polymeric Materials. Israel Journal of Chemistry, 2020, 60, 100-107.	1.0	3
547	Thermoresponsive behavior of poly(DEGMA)-based copolymers. NMR and dynamic light scattering study of aqueous solutions. European Polymer Journal, 2020, 124, 109488.	2.6	9
548	Thermoresponsive gating membranes embedded with liquid crystal(s) for pulsatile transdermal drug delivery: An overview and perspectives. Journal of Controlled Release, 2020, 319, 450-474.	4.8	15
549	Thermoresponsive polymers and their biomedical application in tissue engineering $\hat{a} \in \hat{a}$ a review. Journal of Materials Chemistry B, 2020, 8, 607-628.	2.9	237
550	Immobilization of Bacterial Cells in Hydrogels Prepared by Gamma Irradiation for Bioremoval of Strontium Ions. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	5
551	Quasi-block copolymer design of quaternized derivatives of poly(2-(dimethylamino)ethyl) Tj ETQq0 0 0 rgBT /Ove	erlock 10 T 2.6	Tf 50 187 Td (15
552	Unravelling the interactions between biomedical thermoresponsive polymer and biocompatible ionic liquids. Journal of Molecular Liquids, 2020, 300, 112362.	2.3	10
553	Water-Stable Plasma-Polymerized <i>N</i> , <i>N</i> -Dimethylacrylamide Coatings to Control Cellular Adhesion. ACS Applied Materials & No. 12, 2020, 12, 2116-2128.	4.0	19
554	Combining Ultraâ∈High Drugâ∈Loaded Micelles and Injectable Hydrogel Drug Depots for Prolonged Drug Release. Macromolecular Chemistry and Physics, 2020, 221, 1900341.	1.1	24

#	Article	lF	Citations
555	Synthesis of a branched star copolymer by aqueous SET-LRP and its thermo-stimuli response. Journal of Macromolecular Science - Pure and Applied Chemistry, 2020, 57, 266-273.	1.2	3
556	Thermoresponsive Diblock Copolymer Films with a Linear Shrinkage Behavior and Its Potential Application in Temperature Sensors. Langmuir, 2020, 36, 742-753.	1.6	16
557	A combination drug delivery system employing thermosensitive liposomes for enhanced cell penetration and improved in vitro efficacy. International Journal of Pharmaceutics, 2020, 574, 118912.	2.6	12
558	A comprehensive study on levan nanoparticles formation: Kinetics and self-assembly modeling. International Journal of Biological Macromolecules, 2020, 147, 1089-1098.	3.6	11
559	A thermal analysis and physicochemical study on thermoresponsive chimeric liposomal nanosystems. Journal of Thermal Analysis and Calorimetry, 2020, 141, 751-766.	2.0	7
560	Transiently thermally responsive surfaces: Concepts for cell sheet engineering. European Polymer Journal, 2020, 141, 110076.	2.6	12
561	Temperature-responsive polyelectrolyte complexes for bio-inspired underwater adhesives. European Polymer Journal, 2020, 141, 110034.	2.6	15
562	Enrichment of Charged Monomers Explains Non-monotonic Polymer Volume Fraction Profiles of Multi-stimulus Responsive Copolymer Brushes. Langmuir, 2020, 36, 12460-12472.	1.6	8
563	Advancing the stimuli response of polymer-based drug delivery systems for ocular disease treatment. Polymer Chemistry, 2020, 11, 6988-7008.	1.9	60
564	Drug–polymer conjugates with dynamic cloud point temperatures based on poly(2-oxazoline) copolymers. Polymer Chemistry, 2020, 11, 5191-5199.	1.9	18
565	Stimuli-Responsive Materials for Tissue Engineering and Drug Delivery. International Journal of Molecular Sciences, 2020, 21, 4724.	1.8	111
566	Evident phase separation and surface segregation of hydrophobic moieties at the copolymer surface using atomic force microscopy and SFG spectroscopy. Journal of Colloid and Interface Science, 2020, 580, 645-659.	5.0	6
567	Facile Synthesis of Novel Thermoâ€Responsive Polyvalerolactones with Tunable LCSTs. Macromolecular Chemistry and Physics, 2020, 221, 2000136.	1.1	3
568	Microparticles. , 2020, , 431-451.		2
569	Overcoming Biological Barriers With Block Copolymers-Based Self-Assembled Nanocarriers. Recent Advances in Delivery of Anticancer Therapeutics. Frontiers in Pharmacology, 2020, 11, 593197.	1.6	9
570	Wavelet-Based Noise Removal from Raman Signal to Study PLD Coated Forsterite–Hydroxyapatite Thin Film on Stainless Steel 316l Substrate. Journal of Applied Spectroscopy, 2020, 87, 545-552.	0.3	2
571	Advances and limitations of drug delivery systems formulated as eye drops. Journal of Controlled Release, 2020, 321, 1-22.	4.8	175
572	Complex Temperature and Concentration Dependent Self-Assembly of Poly(2-oxazoline) Block Copolymers. Polymers, 2020, 12, 1495.	2.0	8

#	Article	IF	CITATIONS
573	Mitigation of Polysulfide Shuttling by Interlayer/Permselective Separators in Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2020, 3, 8095-8129.	2.5	60
574	Implant-forming polymeric 19F MRI-tracer with tunable dissolution. Journal of Controlled Release, 2020, 327, 50-60.	4.8	18
575	Multi-Arm Star-Shaped Glycopolymers with Precisely Controlled Core Size and Arm Length. Biomacromolecules, 2020, 21, 3736-3744.	2.6	14
576	Natural hydrogels R&D process: technical and regulatory aspects for industrial implementation. Journal of Materials Science: Materials in Medicine, 2020, 31, 64.	1.7	16
577	Hydrogels as dynamic memory with forgetting ability. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18962-18968.	3.3	76
578	Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies. Journal of Controlled Release, 2020, 327, 316-349.	4.8	236
579	Thermoresponsive behaviors of novel polyoxyethylene-functionalized acrylamide copolymers: Water solubility, rheological properties and surface activity. Journal of Molecular Liquids, 2020, 319, 114337.	2.3	8
580	Effect of Chainâ€End Chemistries on the Efficiency of Coupling Antibodies to Polymers Using Unnatural Amino Acids. Macromolecular Rapid Communications, 2020, 41, e2000294.	2.0	3
581	Insights into the polymerization kinetics of thermoresponsive polytrimethylene carbonate bearing a methoxyethoxy side group. Journal of Polymer Science, 2020, 58, 2697-2707.	2.0	6
582	Co-nonsolvency in concentrated aqueous solutions of PNIPAM: effect of methanol on the collective and the chain dynamics. Soft Matter, 2020, 16, 8462-8472.	1.2	8
583	Study on Synthesized Thermoresponsive Block Copolymer for Water-Based Oil Sands Extraction. Energy & Samp; Fuels, 2020, 34, 9473-9482.	2.5	7
584	Tracer Diffusion in Tightly-Meshed Homogeneous Polymer Networks: A Brownian Dynamics Simulation Study. Polymers, 2020, 12, 2067.	2.0	21
585	Electrospun fibers loaded with ballâ€milled poly(nâ€isopropylacrylamide) microgel particles for smart delivery applications. Journal of Applied Polymer Science, 2020, 137, 49786.	1.3	12
586	Tailoring Gelation Mechanisms for Advanced Hydrogel Applications. Advanced Functional Materials, 2020, 30, 2002759.	7.8	148
587	Thermoresponsive properties of poly(acrylamide- <i>co</i> synthesized (by PISA) in water. Polymer Chemistry, 2020, 11, 5998-6008.	1.9	14
588	Temperature Behavior of Aqueous Solutions of Poly(2-Oxazoline) Homopolymer and Block Copolymers Investigated by NMR Spectroscopy and Dynamic Light Scattering. Polymers, 2020, 12, 1879.	2.0	9
589	Chemical Hydrogels Bearing Thiazolium Groups with a Broad Spectrum of Antimicrobial Behavior. Polymers, 2020, 12, 2853.	2.0	10
590	Thermally Responsive Antiâ€Protein Adsorption Coated Capillary for Electrophoretic Analysis of Proteins. ChemistrySelect, 2020, 5, 11854-11861.	0.7	4

#	Article	IF	CITATIONS
591	Fibronectin/thermo-responsive polymer scaffold as a dynamic ex vivo niche for mesenchymal stem cells. Journal of Materials Science: Materials in Medicine, 2020, 31, 129.	1.7	0
592	Interplay of Composition, pH, and Temperature on the Conformation of Multi-stimulus-responsive Copolymer Brushes: Comparison of Experiment and Theory. Langmuir, 2020, 36, 5765-5777.	1.6	7
593	Responsive polymers for medical diagnostics. Journal of Materials Chemistry B, 2020, 8, 6217-6232.	2.9	10
594	Introduction: different types of smart materials and their practical applications. , 2020, , 1-19.		3
595	Thermo/Anion Dual-Responsive Supramolecular Organoplatinum–Crown Ether Complex. Organic Letters, 2020, 22, 4289-4293.	2.4	6
597	Evaluation of the activity of a chemo-ablative, thermoresponsive hydrogel in a murine xenograft model of lung cancer. British Journal of Cancer, 2020, 123, 369-377.	2.9	6
598	Hydrogels based on N â€isopropylacrylamide and 2â€hydroxyethylacrylate: synthesis, characterization and investigation of their antibacterial activity. Polymer International, 2020, 69, 1220-1226.	1.6	4
599	Next Generation Nanomaterials: Smart Nanomaterials, Significance, and Biomedical Applications. , 2020, , 287-312.		15
600	Applications of Nanomaterials in Human Health. , 2020, , .		21
601	Poly(<i>N</i> -isopropyl acrylamide)–poly(ethylene glycol)–poly(<i>N</i> -isopropyl acrylamide) as a thermoreversible gelator for topical administration. Materials Advances, 2020, 1, 371-386.	2.6	18
602	Effects of Chemical Modifications on the Thermoresponsive Behavior of a PDMAEA-b-PNIPAM-b-POEGA Triblock Terpolymer. Polymers, 2020, 12, 1382.	2.0	9
603	Stimuli-responsive polymer as gate dielectric for organic transistor sensors. Organic Electronics, 2020, 85, 105818.	1.4	14
604	Comparison of Dynamic Light Scattering and Rheometrical Methods to Determine the Gel Point of a Radically Polymerized Hydrogel under Mechanical Shear. Micromachines, 2020, 11, 462.	1.4	4
605	Stimuli-responsive nanocarriers for drug delivery. , 2020, , 99-121.		4
606	Poly(N-isopropylacrylamide)-Based Thermoresponsive Composite Hydrogels for Biomedical Applications. Polymers, 2020, 12, 580.	2.0	207
607	Improving the determination of celecoxib in body fluids and pharmaceuticals using a new selective and thermosensitive molecularly imprinted poly(vinylidene fluoride) membrane. Analytical Methods, 2020, 12, 2185-2195.	1.3	6
608	Non-Conventional Deformations: Materials and Actuation. Materials, 2020, 13, 1383.	1.3	7
609	Generation of Monodispersed Spherical Thermosensitive Gels and Their Swelling and Shrinking Behaviors in Aqueous Polymeric Solutions. Applied Sciences (Switzerland), 2020, 10, 2016.	1.3	0

#	ARTICLE	IF	Citations
610	Thermoresponsive properties of poly(<i>N</i> -isopropyl, <i>N</i> -methylacrylamide) and its statistical and block copolymers with poly(<i>N</i> , <i>N</i> -dimethylacrylamide) prepared by B(C ₆ F ₅) ₃ -catalyzed group transfer polymerization. Polymer Chemistry, 2020, 11, 2346-2359.	1.9	12
611	pH Dependence of Acrylate-Derivative Polyelectrolyte Properties. , 0, , .		2
612	PNIPAM-b-PDMAEA double stimuli responsive copolymers: Effects of composition, end groups and chemical modification on solution self-assembly. European Polymer Journal, 2020, 135, 109867.	2.6	16
613	Investigating the Potential to Deliver and Maintain Plasma and Brain Levels of a Novel Practically Insoluble Methuosis Inducing Anticancer Agent 5-Methoxy MOMIPP Through an Injectable InÂSitu Forming Thermoresponsive Hydrogel Formulation. Journal of Pharmaceutical Sciences, 2020, 109, 2719-2728.	1.6	4
614	Deconstructing poloxamer and poloxamine block copolymers to access poly(ethylene glycol) and poly(propylene oxide)-based thermoresponsive polymers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2020, 57, 472-478.	1,2	5
615	Thermoâ€Responsive MOF/Polymer Composites for Temperatureâ€Mediated Water Capture and Release. Angewandte Chemie, 2020, 132, 11096-11102.	1.6	11
616	Thermoâ€Responsive MOF/Polymer Composites for Temperatureâ€Mediated Water Capture and Release. Angewandte Chemie - International Edition, 2020, 59, 11003-11009.	7.2	101
617	Advances in Sustainable Polymers. Materials Horizons, 2020, , .	0.3	5
618	In situ gelling-polypeptide hydrogel systems for the subcutaneous transplantation of MIN6 cells. Journal of Polymer Research, 2020, 27, 1.	1.2	6
619	Precise synthesis of poly(IBVE-co-HBVE) with tunable thermo-response via fast flow polymerization. Polymer, 2020, 190, 122223.	1.8	6
620	The Design of Sulfobetaine Polymers with Thermoresponsiveness under Physiological Salt Conditions. Macromolecular Chemistry and Physics, 2020, 221, 1900429.	1.1	12
621	Well-Defined Dual Light- and Thermo-Responsive Rod-Coil Block Copolymers Containing an Azobenzene, MEO2MA and OEGMA. Polymers, 2020, 12, 284.	2.0	10
622	Tricomponent thermoresponsive polymers based on an amine-containing monomer with tuneable hydrophobicity: Effect of composition. European Polymer Journal, 2020, 130, 109655.	2.6	12
623	Implantable drug delivery systems. , 2020, , 111-146.		5
624	Animal-derived biopolymers in food and biomedical technology. , 2020, , 139-152.		22
625	Synthesis and Characterization of Inulin-Based Responsive Polyurethanes for Breast Cancer Applications. Polymers, 2020, 12, 865.	2.0	8
626	Thermoresponsive Shapeâ€Memory Hydrogel Actuators Made by Phototriggered Click Chemistry. Advanced Functional Materials, 2020, 30, 2001683.	7.8	29
627	Thermoresponsive polymer gated and superparamagnetic nanoparticle embedded hollow mesoporous silica nanoparticles as smart multifunctional nanocarrier for targeted and controlled delivery of doxorubicin. Nanotechnology, 2020, 31, 455604.	1.3	18

#	Article	IF	CITATIONS
628	Synthesis of regioselective chitosan copolymers with \hat{l}^2 -cyclodextrin and poly(N-isopropyl acrylamide). Journal of Polymer Research, 2020, 27, 1.	1.2	4
629	Synthesis of thermoresponsive oligo(ethylene glycol) polymers through radical ring-opening polymerization of vinylcyclopropane monomers. RSC Advances, 2020, 10, 2359-2363.	1.7	3
630	Sustained-release voriconazole-thermogel for subconjunctival injection in horses: ocular toxicity and in-vivo studies. BMC Veterinary Research, 2020, 16 , 115 .	0.7	5
631	How does the addition of shape distinct gold nanoparticles influence on the conformational transition of poly(N-isopropylacrylamide)?. Journal of Colloid and Interface Science, 2021, 582, 478-487.	5.0	10
632	Analysis of Atomistic Potentials for Poly(ethylene glycol) Ethers. Journal of Chemical Theory and Computation, 2021, 17, 315-321.	2.3	3
633	Combined cryosurgery and cold-responsive drug-loaded nanoparticles to enhance deep-lying tumor therapy: A mathematical model. International Journal of Heat and Mass Transfer, 2021, 165, 120663.	2.5	6
634	Stimuli-Responsive Polysaccharide Hydrogels for Biomedical Applications: a Review. Regenerative Engineering and Translational Medicine, 2021, 7, 91-114.	1.6	51
635	Tunable Hydrogels: Introduction to the World of Smart Materials for Biomedical Applications. Advances in Biochemical Engineering/Biotechnology, 2021, 178, 1-35.	0.6	1
636	Nanogels Capable of Triggered Release. Advances in Biochemical Engineering/Biotechnology, 2021, 178, 99-146.	0.6	2
637	Delineating synchronized control of dynamic covalent and non-covalent interactions for polymer chain collapse towards cargo localization and delivery. Polymer Chemistry, 2021, 12, 1002-1013.	1.9	7
638	Mesoporous Silica Nanoparticles. , 2021, , 458-513.		0
639	Degradable allyl <i>Antheraea pernyi</i> silk fibroin thermoresponsive hydrogels to support cell adhesion and growth. RSC Advances, 2021, 11, 28401-28409.	1.7	6
640	Stimuli-responsive polymersomes of poly [2-(dimethylamino) ethyl methacrylate]-b-polystyrene. Polymer Bulletin, 2022, 79, 785-805.	1.7	7
641	Smart biopolymers and their applications. , 2021, , 145-167.		3
642	Hydrogels as delivery systems for spinal cord injury regeneration. Materials Today Bio, 2021, 9, 100093.	2.6	26
643	Polymeric nanocarriers for delivery of combination drugs., 2021,, 85-118.		0
644	Prospect of plant and algal polysaccharides-based hydrogels. , 2021, , 37-73.		0
645	Intelligent Biomaterials for Tissue Engineering and Biomedical Applications: Current Landscape and Future Prospects., 2021,, 535-560.		3

#	Article	IF	CITATIONS
646	Core-functionalized nanoaggregates: preparation <i>via</i> polymerization-induced self-assembly and their applications. New Journal of Chemistry, 2021, 45, 12776-12791.	1.4	8
647	Exploration of Bioengineered Scaffolds Composed of Thermo-Responsive Polymers for Drug Delivery in Wound Healing. International Journal of Molecular Sciences, 2021, 22, 1408.	1.8	35
648	Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chemical Society Reviews, 2021, 50, 11614-11667.	18.7	193
649	Effects of Hydrophobic Modifications on the Solution Self-Assembly of P(DMAEMA-co-QDMAEMA)-b-POEGMA Random Diblock Copolymers. Polymers, 2021, 13, 338.	2.0	7
650	Triply-responsive OEG-based microgels and hydrogels: regulation of swelling ratio, volume phase transition temperatures and mechanical properties. Polymer Chemistry, 2021, 12, 4406-4417.	1.9	1
651	Homo- and co-polymerisation of di(propylene glycol) methyl ether methacrylate – a new monomer. Polymer Chemistry, 2021, 12, 3522-3532.	1.9	11
652	Phase transition characterization of poly(oligo(ethylene glycol)methyl ether methacrylate) brushes using the quartz crystal microbalance with dissipation. Soft Matter, 2021, 17, 2530-2538.	1.2	12
654	Bio-instructive materials on-demand – combinatorial chemistry of peptoids, foldamers, and beyond. Chemical Communications, 2021, 57, 11131-11152.	2.2	8
655	Thermoresponsive properties of polyacrylamides in physiological solutions. Polymer Chemistry, 2021, 12, 5077-5084.	1.9	12
656	Smart biopolymers for controlled drug delivery applications. , 2021, , 53-83.		1
657	Exploring the structural transition mechanisms of a pair of poly(N-isopropylacrylamide) chains in aqueous solution through coarse-grained molecular simulations coupled with metadynamics. Molecular Simulation, 2021, 47, 480-489.	0.9	1
658	Insights into the Thermal Response of a Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene) Tj ETQq1	1 0.784314 rgl	3T ₁ /Overlock
659	Graphene-based nanomaterial system: a boon in the era of smart nanocarriers. Journal of Pharmaceutical Investigation, 2021, 51, 245-280.	2.7	7
660	Polymer networks one hundred years after the macromolecular hypothesis: A tutorial review. Polymer, 2021, 215, 123322.	1.8	36
661	Bioresorbable Polymers: Advanced Materials and 4D Printing for Tissue Engineering. Polymers, 2021, 13, 563.	2.0	74
662	Encapsulation and <i>In Vitro </i> Controlled Release of Doxycycline in Temperature-Sensitive Hydrogel Composed of Polyethyleneglycol–polypeptide (L-Alanine-co-L-Aspartate). Journal of Biomimetics, Biomaterials and Biomedical Engineering, 0, 49, 119-129.	0.5	O
663	Formation of Single Double-Layered Coacervate of Poly(<i>N,N</i> -diethylacrylamide) in Water by a Laser Tweezer. Langmuir, 2021, 37, 2874-2883.	1.6	7
664	Tuning the Gelation of Thermoresponsive Gels Based on Triblock Terpolymers. Macromolecules, 2021, 54, 1943-1960.	2.2	24

#	Article	IF	CITATIONS
665	Displaying Lipid Chains in a Peptide–Polysaccharide-Based Self-Assembled Hydrogel Network. Chemistry of Materials, 2021, 33, 2756-2768.	3.2	10
666	Incorporation of Dual-Stimuli Responsive Microgels in Nanofibrous Membranes for Cancer Treatment by Magnetic Hyperthermia. Gels, 2021, 7, 28.	2.1	12
667	Design of an LCST–UCST-Like Thermoresponsive Zwitterionic Copolymer. Langmuir, 2021, 37, 3261-3269.	1.6	13
668	Influence of the Polymer Microstructure over the Phase Separation of Thermo-Responsive Nanoparticles. Polymers, 2021, 13, 1032.	2.0	11
669	Perturbation on dynamics of ferroin-catalyzed Belousov–Zhabotinsky reaction by monomer N-isopropylacrylamide and poly(N-isopropylacrylamide). Polymer Bulletin, 0, , 1.	1.7	2
670	Thermoresponsive PNIPAM-b-PAA block copolymers as "smart―adsorbents of Cu(II) for water restore treatments. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614, 126049.	2.3	12
671	Cruciate Ligament Cell Sheets Can Be Rapidly Produced on Thermoresponsive poly(glycidyl ether) Coating and Successfully Used for Colonization of Embroidered Scaffolds. Cells, 2021, 10, 877.	1.8	6
672	Amphiphilic copolymers in biomedical applications: Synthesis routes and property control. Materials Science and Engineering C, 2021, 123, 111952.	3.8	36
673	Thermoâ€responsive mixedâ€matrix hollow fiber membranes. Journal of Applied Polymer Science, 2021, 138, 50787.	1.3	4
674	Interactions and Dynamics in Aqueous Solutions of pH-Responsive Polymers: A Combined Fluorescence and Dielectric Relaxation Study. Journal of Physical Chemistry B, 2021, 125, 6023-6035.	1.2	5
675	A Review of Fluorescent Carbon Dots, Their Synthesis, Physical and Chemical Characteristics, and Applications. Nanomaterials, 2021, 11, 1448.	1.9	73
676	Current Research on Polyelectrolyte Nanostructures: From Molecular Interactions to Biomedical Applications. Macromol, 2021, 1, 155-172.	2.4	11
677	Thermoresponsive Gelation of Amphiphilic Random Copolymer Micelles in Water. Macromolecules, 2021, 54, 5241-5248.	2.2	14
678	Translational Applications of Hydrogels. Chemical Reviews, 2021, 121, 11385-11457.	23.0	438
679	Refining the Design of Diblock Elastin-Like Polypeptides for Self-Assembly into Nanoparticles. Polymers, 2021, 13, 1470.	2.0	15
680	Influence of Molecular Weight Distribution on the Thermoresponsive Transition of Poly(<i>N</i> à€isopropylacrylamide). Macromolecular Rapid Communications, 2021, 42, e2100212.	2.0	17
681	Carboxymethyl cellulose-chitosan composite hydrogel: Modelling and experimental study of the effect of composition on microstructure and swelling response. International Journal of Biological Macromolecules, 2021, 181, 1010-1022.	3.6	25
682	Streamlined access to end-functionalized thermoresponsive polymers via a combination of bulk RAFT polymerization and quasi solvent-free Passerini three-component reaction. Polymer Journal, 2021, 53, 1175-1185.	1.3	4

#	Article	IF	CITATIONS
683	Grafting Density-Dependent Phase Transition Mechanism of Thermoresponsive Poly(glycidyl ether) Brushes: A Comprehensive QCM-D Study. Langmuir, 2021, 37, 7087-7096.	1.6	12
684	DNA Based and Stimuli-Responsive Smart Nanocarrier for Diagnosis and Treatment of Cancer: Applications and Challenges. Cancers, 2021, 13, 3396.	1.7	46
685	Overcoming Multidrug Resistance in Bacteria Through Antibiotics Delivery in Surface-Engineered Nano-Cargos: Recent Developments for Future Nano-Antibiotics. Frontiers in Bioengineering and Biotechnology, 2021, 9, 696514.	2.0	27
686	Effects of Temperature and Blinking on Contact Lens Dehydration of Contemporary Soft Lens Materials Using an In Vitro Blink Model. Translational Vision Science and Technology, 2021, 10, 11.	1.1	4
687	Constrained thermoresponsive polymers – new insights into fundamentals and applications. Beilstein Journal of Organic Chemistry, 2021, 17, 2123-2163.	1.3	14
688	Palladium-Catalyzed Mizoroki–Heck and Copper-Free Sonogashira Coupling Reactions in Water Using Thermoresponsive Polymer Micelles. Polymers, 2021, 13, 2717.	2.0	5
689	Magnetic dual-responsive semi-IPN nanogels based on chitosan/PNVCL and study on BSA release behavior. Progress in Biomaterials, 2021, 10, 173-183.	1.8	6
690	Fluorescence Studies on a Thermoresponsive PNIPAM-Polyfluorene Graft Copolymer. Macromolecules, 2021, 54, 7612-7620.	2.2	6
691	Model dynamic covalent organogels based on endâ€inked threeâ€armed oligo(ethylene glycol) star macromonomers. Journal of Polymer Science, 2021, 59, 2309.	2.0	2
692	Dynamics of Nanoparticles in Polydisperse Polymer Networks: from Free Diffusion to Hopping. Macromolecules, 2021, 54, 8575-8589.	2.2	30
693	Photomechanical polymer hydrogels based on molecular photoswitches. Journal of Polymer Science, 2021, 59, 2246-2264.	2.0	22
694	Simulation Study of the Conformational Properties of Diblock Polyelectrolytes in Salt Solutions. Chemistry - an Asian Journal, 2021, 16, 3354-3362.	1.7	2
695	Poly(acrylates) showing critical fluorescence change in response to heat. Dyes and Pigments, 2021, 194, 109647.	2.0	0
696	Synthesis and characterization of thermo-responsive polymer based on carboxymethyl chitosan and its potential application in water-based drilling fluid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127478.	2.3	14
697	A review of hydrogel systems based on poly(N-isopropyl acrylamide) for use in the engineering of bone tissues. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112035.	2.5	10
698	Smart polymer biomaterials for tissue engineering. , 2021, , 205-214.		0
700	Thermoresponsive dynamic BAB block copolymer networks synthesized by aqueous PISA in one-pot. Polymer Chemistry, 2021, 12, 1040-1049.	1.9	12
701	A facile method to control the phase behavior of hydroxypropyl cellulose. Carbohydrate Polymers, 2021, 251, 117015.	5.1	20

#	Article	IF	CITATIONS
702	Biomedical Nanotechnology., 2021,, 634-662.		0
703	Development of a novel colorimetric thermometer based on poly(<i>N</i> -vinylcaprolactam) with push–π–pull tricyanofuran hydrazone anion dye. New Journal of Chemistry, 2021, 45, 5382-5390.	1.4	26
704	The Battery of Analytical Techniques Necessary for the Effective Characterization of Solutions of Temperature-Sensitive Polymers. Reviews and Advances in Chemistry, 2021, 11, 100-111.	0.2	0
705	The Importance of Cooperativity in Polymer Blending: Toward Controlling the Thermoresponsive Behavior of Blended Block Copolymer Micelles. Macromolecular Rapid Communications, 2020, 41, e1900599.	2.0	17
706	<scp>PDEGMAâ€bâ€PDIPAEMA</scp> copolymers via <scp>RAFT</scp> polymerization and their <scp>pH</scp> and thermoresponsive schizophrenic selfâ€assembly in aqueous media. Journal of Polymer Science, 2020, 58, 1867-1880.	2.0	14
707	Polymeric Schiff Base Metal Complexes Based on Thermoâ€Responsive PNIPAM: Synthesis, Characterization and Catalytic Activity. ChemistrySelect, 2017, 2, 5864-5870.	0.7	4
708	Controlled-Release Systems. , 2014, , 7-62.		7
709	Microfluidics for Processing of Biomaterials. Advances in Experimental Medicine and Biology, 2020, 1230, 15-25.	0.8	2
710	Tracer Mobility in Aqueous Poly(N-isopropylacrylamide) Grafted Networks: Effect of Interactions and Permanent Crosslinks., 2013,, 53-62.		2
711	Basic Principles of Cryotropic Gelation. Advances in Polymer Science, 2014, , 49-101.	0.4	103
712	Design of Nanoparticles for Focused Ultrasound Drug Delivery. , 2019, , 205-239.		3
713	Updates on Stimuli-Responsive Polymers: Synthesis Approaches and Features. Gels Horizons: From Science To Smart Materials, 2018, , 129-146.	0.3	6
714	Interpenetrating Polymer Network (IPN) Nanoparticles for Drug Delivery Applications. , 2020, , 25-54.		4
715	Biocompatible Thermoresponsive Polymers: Property and Synthesis. Materials Horizons, 2020, , 145-181.	0.3	2
716	Bottom-Up Approach to Assess the Molecular Structure of Aqueous Poly(N-Isopropylacrylamide) at Room Temperature via Infrared Spectroscopy. Journal of Physical Chemistry B, 2020, 124, 11699-11710.	1.2	10
717	pH- and Temperature-responsive Hydrogels in Drug Delivery. RSC Smart Materials, 2013, , 153-179.	0.1	4
719	Stimuli-Responsive Polymeric Nanosystem for Colon Specific Drug Delivery. Advanced Pharmaceutical Bulletin, 2020, 10, 1-12.	0.6	22
720	MECHANISM OF FORMATION OF THERMOSENSITIVE CHITOSAN CHLORIDE GELS. Progress on Chemistry and Application of Chitin and Its Derivatives, 2014, 19, 125-134.	0.1	9

#	Article	IF	Citations
721	STRUCTURAL RESEARCH OF THERMOSENSITIVE CHITOSAN-COLLAGEN GELS CONTAINING ALP. Progress on Chemistry and Application of Chitin and Its Derivatives, 2016, 21, 176-186.	0.1	3
722	Laser-Driven Aggregation in Dextran–Graft–PNIPAM/Silver Nanoparticles Hybrid Nanosystem: Plasmonic Effects. Ukrainian Journal of Physics, 2020, 65, 254.	0.1	6
723	Natural Polymer-based Stimuli-responsive Hydrogels. Current Medicinal Chemistry, 2020, 27, 2631-2657.	1.2	72
724	Cancer Nanotechnology-An Excursion on Drug Delivery Systems. Anti-Cancer Agents in Medicinal Chemistry, 2019, 18, 2078-2092.	0.9	10
725	Biomedical Applications of Interpenetrating Polymer Network System. Open Pharmaceutical Sciences Journal, 2015, 2, 21-30.	2.1	16
726	Modern Technologies of Controlled Release of Biologically Active Substances in Pharmaceutical Research and Development (Review). Drug Development and Registration, 2020, 9, 56-66.	0.2	3
727	Amphiphilic Molecular Brushes with Regular Polydimethylsiloxane Backbone and Poly-2-isopropyl-2-oxazoline Side Chains. 2. Self-Organization in Aqueous Solutions on Heating. Polymers, 2021, 13, 31.	2.0	6
728	Targeting Aspects of Nanogels: An Overview. International Journal of Pharmaceutical Sciences and Nanotechnology, 2014, 7, 2612-2630.	0.0	9
729	Mesoporous Silica Nanoparticles. Advances in Medical Technologies and Clinical Practice Book Series, 2018, , 192-246.	0.3	3
730	Remote Hyperthermia, Drug Delivery and Thermometry: The Multifunctional Platform Provided by Nanoparticles. Journal of Nanomedicine & Nanotechnology, 2014, 05, .	1.1	5
731	A Novel Design Strategy for Temperature-Responsive IPN Hydrogels Based on a Copolymer of Acrylamide and N-(1,1-Dimethyl-3-Oxobutyl)-Acrylamide. Advances in Chemical Engineering and Science, 2018, 08, 255-270.	0.2	2
732	Smart Polymers and Coatings Obtained by Ionizing Radiation: Synthesis and Biomedical Applications. Open Journal of Polymer Chemistry, 2015, 05, 17-33.	1.8	20
733	Preparation and In vitro Evaluation of Isoniazid-Containing Dex-HEMA-Co-PNIPAAm Nanogels. Ciência E Natura, 0, 37, 55.	0.0	2
734	Development of Polymeric Nanopaclitaxel and Comparison with Free Paclitaxel for Effects on Cell Proliferation of MCF-7 and B16FO Carcinoma Cells. Asian Pacific Journal of Cancer Prevention, 2014, 15, 2335-2340.	0.5	14
735	Nanoengineering with RAFT polymers: from nanocomposite design to applications. Polymer Chemistry, 2021, 12, 6198-6229.	1.9	17
736	Light manipulation for fabrication of hydrogels and their biological applications. Acta Biomaterialia, 2022, 137, 20-43.	4.1	18
737	Liquid Crystalline Hydrogel with Thermally Induced Reversible Shape Change and Waterâ€Triggered Shape Memory. Macromolecular Rapid Communications, 2021, 42, e2100495.	2.0	5
738	Hydrogen Bonding Sequence Directed Coil-Globule Transition in Water Soluble Thermoresponsive Polymers. Physical Review Letters, 2021, 127, 167801.	2.9	7

#	Article	IF	Citations
739	Exploring polymer solubility with thermallyâ€responsive Dielsâ€Alder monomers: Revisiting the monkey's fist. Journal of Polymer Science, 0, , .	2.0	2
740	BIOLOGICAL PROPERTIES OF THERMOSENSITIVE CHITOSAN GELS CONDITIONING IN WATER. Progress on Chemistry and Application of Chitin and Its Derivatives, 2015, XX, 204-212.	0.1	0
741	Stimuli-Responsive Polymers., 0,, 7663-7674.		O
742	CHAPTER 10. Thermogelling Polymers: A Cutting Edge Rheology Modifier. RSC Polymer Chemistry Series, 2016, , 178-204.	0.1	0
743	Biofunctional Polymers: Vitreoretinal Surgery., 0,, 836-856.		0
744	Cationic Polymers: Stimuli-Responsive. , 0, , 1334-1343.		0
745	Carbohydrate based Hydrogels for Controlled Release of Cancer Therapeutics. , 2017, , 113-153.		0
746	Carbohydrate based Hydrogels for Controlled Release of Cancer Therapeutics. , 2017, , 113-153.		0
747	The investigation of nanosystems branched polymer/nanogold in the region of conformational transition of a polymer matrix. Polymer Journal, 2018, 40, 36-40.	0.3	1
748	Yara Kaplama Malzemesi olarak Kollajen Esaslı Hidrojel Filmleri. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2018, 4, 103-116.	0.2	0
750	Biomedical Nanotechnology. Advances in Bioinformatics and Biomedical Engineering Book Series, 2020, , 30-65.	0.2	0
751	Versatile polymeric cryogels and their biomedical applications. Hacettepe Journal of Biology and Chemistry, 0, , .	0.3	3
752	Characterization of a Thermo-Sensitive Injectable Hydrogel as an Iloprost Delivery System for Dental Use. Key Engineering Materials, 0, 856, 391-398.	0.4	2
753	Surface Engineering in Wearable Sensors for Medical Diagnostic Applications. , 2020, , 101-122.		0
754	Heat-Induced Flower Nanogels of Both Cholesterol End-Capped Poly(<i>N</i> i>-isopropylacrylamide)s in Water. Langmuir, 2022, 38, 5218-5225.	1.6	4
755	Inhomogeneities in PNIPAM Aqueous Solutions: The Inside View by Spin Probe EPR Spectroscopy. Polymers, 2021, 13, 3829.	2.0	3
756	Chitosan-Based Biocompatible Copolymers for Thermoresponsive Drug Delivery Systems: On the Development of a Standardization System. Pharmaceutics, 2021, 13, 1876.	2.0	10
757	Polymers Blending as Release Modulating Tool in Drug Delivery. Frontiers in Materials, 2021, 8, .	1.2	24

#	Article	IF	CITATIONS
758	A review on the emerging applications of 4-cyano-4′-alkylbiphenyl (nCB) liquid crystals beyond display. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 275, 115522.	1.7	9
7 59	Electrospun poly(NVCL-co-AA) fibers as potential thermo-and pH-sensitive agents for controlled release of hydrophobic drugs. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 276, 115531.	1.7	5
760	Sustainable thermoresponsive whey protein―and chitosanâ€based oil―nâ€water emulsions for cosmetic applications. International Journal of Cosmetic Science, 2022, 44, 30-41.	1.2	2
761	Thermoresponsive Triblockâ€Copolymers of Polyethylene Oxide and Polymethacrylates: Linking Chemistry, Nanoscale Morphology, and Rheological Properties. Advanced Functional Materials, 2022, 32, 2109010.	7.8	14
762	Stimuli-Responsive Polymeric Nanomaterials for the Delivery of Immunotherapy Moieties: Antigens, Adjuvants and Agonists. International Journal of Molecular Sciences, 2021, 22, 12510.	1.8	3
763	Nanogels and dendritic molecules combined to form a smart nanomaterial. European Polymer Journal, 2022, 162, 110874.	2.6	3
764	Novel Routes for the Synthesis of a Thermoresponsive Polymer: A Comparative Approach. ChemistrySelect, 2021, 6, 12796-12805.	0.7	0
765	Polymer Architecture Effects on Poly(N,Nâ€Diethyl Acrylamide)â€bâ€Poly(Ethylene Glycol)â€bâ€Poly(N,Nâ€Die Bioscience, 2022, 22, e2100432.	thyl) Tj ETC 2.1	Qq1 1 0.7843 7
769	Synthesis and characterization of cellulose-based graft copolymers crosslinked by gamma-irradiation for enhanced oil recovery applications. IOP Conference Series: Earth and Environmental Science, 2022, 963, 012024.	0.2	0
770	Synthesis and Study of Thermoresponsive Amphiphilic Copolymers via RAFT Polymerization. Polymers, 2022, 14, 229.	2.0	4
771	Microâ∈Nano Motors with Taxis Behavior: Principles, Designs, and Biomedical Applications. Small, 2022, 18, e2106263.	5.2	20
772	Smart Magnetic Nanocarriers for Multi-Stimuli On-Demand Drug Delivery. Nanomaterials, 2022, 12, 303.	1.9	18
773	A deeper insight into the dual temperature- and pH-responsiveness of poly(vinylamine)-b-poly(N-isopropylacrylamide) double hydrophilic block copolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128502.	2.3	7
774	Role of physicochemical characteristics of poly(N,N-diethylacrylamide) on the polymer thermal responsivity and interfacial properties in aqueous solution: All-atom simulation study. Journal of Molecular Graphics and Modelling, 2022, 112, 108140.	1.3	O
775	Graft Copolymers of N-Isopropylacrylamide with Poly(d,l-lactide) or Poly($\hat{l}\mu$ -caprolactone) Macromonomers: A Promising Class of Thermoresponsive Polymers with a Tunable LCST. ACS Applied Polymer Materials, 2022, 4, 1344-1357.	2.0	11
776	Raman spectroscopy coupled to computational approaches towards understanding self-assembly in thermoreversible poloxamer gels. Journal of Molecular Liquids, 2022, 351, 118660.	2.3	1
777	Magnetic-silica nanocomposites and the functionalized forms for environment and medical applications: A review. Inorganic Chemistry Communication, 2022, 137, 109213.	1.8	28
778	Recent progress in polymeric non-invasive insulin delivery. International Journal of Biological Macromolecules, 2022, 203, 222-243.	3.6	45

#	Article	IF	CITATIONS
779	Recent advances in polysaccharide-based self-healing hydrogels for biomedical applications. Carbohydrate Polymers, 2022, 283, 119161.	5.1	110
780	Advances in the Development of Biodegradable Polymeric Materials for Biomedical Applications with Respect to Their Synthesis Procedures, Degradation Properties, Toxicity, Stability and Applications., 2022, , 567-592.		1
781	Research Progress on the Flexibility of an Implantable Neural Microelectrode. Micromachines, 2022, 13, 386.	1.4	15
782	Polymeric Hydrogels for In Vitro 3D Ovarian Cancer Modeling. International Journal of Molecular Sciences, 2022, 23, 3265.	1.8	11
783	Tunable Thermo-Responsive Properties of Hydroxybutyl Chitosan Oligosaccharide. Frontiers in Chemistry, 2022, 10, 830516.	1.8	1
784	Current advances in cell therapeutics: a biomacromolecules application perspective. Expert Opinion on Drug Delivery, 2022, 19, 521-538.	2.4	6
785	Drug Delivery Platforms Containing Thermoresponsive Polymers and Mucoadhesive Cellulose Derivatives: A Review of Patents. Recent Advances in Drug Delivery and Formulation, 2022, 16, 90-102.	0.3	2
786	Luminescent Surfaceâ€Tethered Polymer Brush Materials. Chemistry - A European Journal, 2022, 28, .	1.7	6
787	Hydrophilic drug release from electrospun membranes made out of thermo and pH-sensitive polymers. Journal of Drug Delivery Science and Technology, 2022, 71, 103284.	1.4	1
788	Self-assembly of hydrophobically associating amphiphilic polymer with surfactant and its effect on nanoemulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642, 128599.	2.3	9
789	Investigation of Temperature-Responsive Tocosomal Nanocarriers as the Efficient and Robust Drug Delivery System for Sunitinib Malate Anti-Cancer Drug: Effects of MW and Chain Length of PNIPAAm on LCST and Dissolution Rate. Journal of Pharmaceutical Sciences, 2022, 111, 1937-1951.	1.6	7
790	Engineering Biological Tissues from the Bottom-Up: Recent Advances and Future Prospects. Micromachines, 2022, 13, 75.	1.4	3
791	M-Polynomial and Imbalance-Based Irregularity Indices of Smart Polymers SP[n]. Polycyclic Aromatic Compounds, 2022, 42, 7712-7723.	1.4	2
792	Dextran-based matrix functionalization to promote WJ-MSCs amplification: synthesis and characterization. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 285-295.	1.8	1
793	Fabrication of Antheraea pernyi Silk Fibroin-Based Thermoresponsive Hydrogel Nanofibers for Colon Cancer Cell Culture. Polymers, 2022, 14, 108.	2.0	3
794	Polyacrylamide/Graphene Oxide/Clove Essential Oil Composite Synthesized Via Physical Adsorption Method for Potential Antibacterial Packaging Applications. SSRN Electronic Journal, 0, , .	0.4	0
796	Dual Thermoresponsive Boc-Lysine-Based Acryl Polymer: RAFT Kinetics and Anti-Protein-Fouling of Its Zwitterionic Form. Macromolecules, 2022, 55, 4011-4024.	2.2	11
797	Natural and Synthetic Micelles for the Delivery of Small Molecule Drugs, Imaging Agents and Nucleic Acids. Current Pharmaceutical Design, 2022, 28, 1389-1405.	0.9	2

#	Article	IF	CITATIONS
798	Effect of Hofmeister Salts on the LCST of Poly(diethyl vinylphosphonate) and Poly(2â€vinylpyridineâ€∢i>blockâ€∢/i>diethyl vinylphosphonate). Macromolecular Chemistry and Physics, 2022, 223, .	1.1	1
799	Merging bioresponsive release of insulin-like growth factor I with 3D printable thermogelling hydrogels. Journal of Controlled Release, 2022, 347, 115-126.	4.8	8
800	Temperature-sensitive polymers for biomaterials for drug delivery, gene delivery, and tissue engineering., 2022,, 335-367.		1
801	Polymer-based thermoresponsive hydrogels for controlled drug delivery. Expert Opinion on Drug Delivery, 2022, 19, 1203-1215.	2.4	11
802	Preparation of Molecularly Imprinted Poly(N-Isopropylacrylamide) Thermosensitive Based Cryogels. Methods in Molecular Biology, 2022, 2466, 249-260.	0.4	0
804	Materials recycling using pH/thermal-responsive materials. , 2022, , 159-169.		0
805	Cationic Polyelectrolytes Containing Perfluorinated Groups: Synthesis and Self-Assembly Properties in Aqueous Solutions. Macromol, 2022, 2, 194-210.	2.4	3
806	ZnO-TiO2 hybrid nanocrystal-loaded, wash durable, multifunction cotton textiles. Cellulose, 2022, 29, 5923-5941.	2.4	8
807	Polyurethanes for Biomedical Applications. ACS Symposium Series, 0, , 363-392.	0.5	1
808	Research, development and future trends for medical textile products., 2022,, 795-828.		1
809	Polymersomes for targeting to brain tumors. , 2022, , 451-481.		0
810	Selection and Role of Polymers for Designing of a Drug Carrier. , 0, , .		5
811	Effect of Thermal Stimulus on Kinetic Rehydration of Thermoresponsive Poly(diethylene glycol) Tj ETQq0 0 0 rgBT Thin Films Probed by In Situ Neutron Reflectivity. Langmuir, 2022, 38, 8094-8103.	/Overlock 1.6	10 Tf 50 26
812	Ultrafast Simultaneous and Selective Depolymerization of Heterogeneous Streams of Polyethylene Terephthalate and Polycarbonate: Towards Industrially Feasible Chemical Recycling. ChemSusChem, 2022, 15, .	3.6	5
814	Stimuli-Responsive Thiomorpholine Oxide-Derived Polymers with Tailored Hydrophilicity and Hemocompatible Properties. Molecules, 2022, 27, 4233.	1.7	2
815	Stimuli-responsive hybrid metal nanocomposite – A promising technology for effective anticancer therapy. International Journal of Pharmaceutics, 2022, 624, 121966.	2.6	5
816	Co-solvent and temperature effect on conformation and hydration of polypropylene and polyethylene oxides in aqueous solutions. Journal of Molecular Liquids, 2022, 362, 119774.	2.3	5
817	Poly(N-isopropylacrylamide)-Based Hydrogels for Biomedical Applications: A Review of the State-of-the-Art. Gels, 2022, 8, 454.	2.1	54

#	Article	IF	CITATIONS
818	Poly(2â€(dimethylamino) ethyl methacrylate)â€ <scp><i>b</i></scp> â€poly(lauryl) Tj ETQq0 0 0 rgBT /Overlock 1 micelles as drug delivery carriers for curcumin. Journal of Applied Polymer Science, 2022, 139, .	.0 Tf 50 7 1.3	47 Td (metha 5
819	Design of acrylamide-based thermoresponsive copolymer with potential capability for physical network formation in water: a molecular dynamics study. Materials Research Express, 0, , .	0.8	O
820	Aggregation behavior of triblock terpolymer poly[<scp><i>n</i></scp> â€butyl acrylateâ€ <scp><i>block</i></scp> â€ <scp><i>N</i></scp> â€isopropylacrylamideâ€ <scp><i>block</i></scp> â€acrylate] at the air/water interface. Journal of Applied Polymer Science, 2022, 139, .	2â £(dimet	hy⁄zamino)eth
821	Trials and adventures of the synthesis and evaluation of amphiphilic graft copolymers with dynamic topology. Journal of Polymer Science, 0, , .	2.0	1
822	Molecular dynamics simulations of the folding structure of a thermoresponsive 2-dimethylaminoethyl methacrylate oligomer in the globule state. Polymer Journal, 0, , .	1.3	2
823	Synthesis and characterization of PnVCL grafted agar with potential temperature-sensitive delivery of Doxorubicin. Journal of Drug Delivery Science and Technology, 2022, 76, 103725.	1.4	7
824	Nonordered dendritic mesoporous silica nanoparticles as promising platforms for advanced methods of diagnosis and therapies. Materials Today Chemistry, 2022, 26, 101144.	1.7	8
825	Synthesis and Research on the Surfactant with Temperature-Sensitive Switching Property. Journal of Oil and Gas Technology, 2022, 44, 172-181.	0.1	O
826	Stimuli-Responsive nanocellulose Hydrogels: An overview. European Polymer Journal, 2022, 180, 111591.	2.6	19
827	Macromolecular Crowding as an Intracellular Stimulus for Responsive Nanomaterials. Journal of the American Chemical Society, 2022, 144, 16792-16798.	6.6	7
828	Microneedle patch tattoos. IScience, 2022, 25, 105014.	1.9	12
829	Pharmacokinetics of Intramuscularly Administered Thermoresponsive Polymers. Advanced Healthcare Materials, 2022, 11, .	3.9	4
830	4D printing of thermoresponsive materials: a state-of-the-art review and prospective applications. International Journal on Interactive Design and Manufacturing, 2023, 17, 2075-2094.	1.3	4
831	Thermoresponsive Polymer Brushes for Switchable Protein Adsorption via Dopamineâ€Assisted Graftingâ€To Strategy. Advanced Materials Interfaces, 2022, 9, .	1.9	7
832	Temperature-Responsive Polymer Brush Coatings for Advanced Biomedical Applications. Polymers, 2022, 14, 4245.	2.0	34
833	Lactic Acid-Derived Copolymeric Surfactants with Monomer Distribution Profile-Dependent Solution and Thermoresponsive Properties. ACS Sustainable Chemistry and Engineering, 2022, 10, 14806-14816.	3.2	5
834	Functional Poly(Îμ-caprolactone)/Poly(ethylene glycol) Copolymers with Complex Topologies for Doxorubicin Delivery to a Proteinase-Rich Tumor Environment. ACS Applied Polymer Materials, 2022, 4, 8043-8056.	2.0	3
835	Effect of the <i>N</i> -Alkyl Side Chain on the Amide–Water Interactions. Journal of Physical Chemistry B, 2022, 126, 8290-8299.	1.2	3

#	Article	IF	CITATIONS
836	Poly(2-oxazoline)s as Stimuli-Responsive Materials for Biomedical Applications: Recent Developments of Polish Scientists. Polymers, 2022, 14, 4176.	2.0	4
837	Synthetic Thermo-Responsive Terpolymers as Tunable Scaffolds for Cell Culture Applications. Polymers, 2022, 14, 4379.	2.0	1
838	Rheology and microstructure of thermoresponsive composite gels of hematite pseudocubes and Pluronic F127. Journal of Chemical Physics, 2022, 157, .	1.2	5
839	Thermoresponsive polymers in non-aqueous solutions. Polymer Chemistry, 2022, 13, 6423-6474.	1.9	12
840	Hydrogels and Aerogels of Carbon Nanotubes. , 2022, , 1827-1844.		0
841	Bibliometrics of Functional Polymeric Biomaterials with Bioactive Properties Prepared by Radiation-Induced Graft Copolymerisation: A Review. Polymers, 2022, 14, 4831.	2.0	0
842	Effect of electrolytes on the sol–gel phase transitions in a Pluronic F127/carboxymethyl cellulose aqueous system: Phase map, rheology and NMR self-diffusion study. European Polymer Journal, 2022, 181, 111707.	2.6	3
843	Nanoengineering of Egyptian Blue Nanosheets: Advantages and Limitations for Near-Infrared Photoluminescence Applications., 2023, 1, 465-472.		3
844	Molecular Structure and Co-solvent Distribution in PPO–PEO and Pluronic Micelles. Macromolecules, 2022, 55, 10439-10449.	2.2	4
845	Structure and Dynamics of Inhomogeneities in Aqueous Solutions of Graft Copolymers of N-Isopropylacrylamide with Lactide (P(NIPAM-graft-PLA)) by Spin Probe EPR Spectroscopy. Polymers, 2022, 14, 4746.	2.0	1
846	Developments on the Smart Hydrogel-Based Drug Delivery System for Oral Tumor Therapy. Gels, 2022, 8, 741.	2.1	12
847	Thermosensitive Liposomes Encapsulating Nedaplatin and Picoplatin Demonstrate Enhanced Cytotoxicity against Breast Cancer Cells. ACS Omega, 2022, 7, 42115-42125.	1.6	12
848	Thermosensitive In Situ Gels for Joint Disorders: Pharmaceutical Considerations in Intra-Articular Delivery. Gels, 2022, 8, 723.	2.1	4
849	Acrylamidevinyl acetate copolymer as a new UCST copolymer: Phase transition and aggregation behavior; an experimental and theoretical study. Reactive and Functional Polymers, 2022, 181, 105456.	2.0	1
850	Introduction to smart polymers and their application. , 2023, , 1-46.		2
851	From grape seed extract to highly sensitive sensors with adhesive, self-healable and biocompatible properties. European Polymer Journal, 2023, 183, 111751.	2.6	5
852	Hybrid protein-polymer nanoparticles based on P(NVCL-co-DMAEMA) loaded with cisplatin as a potential anti-cancer agent. Journal of Drug Delivery Science and Technology, 2023, 79, 103995.	1.4	2
853	A comprehensive review on the COVID-19 vaccine and drug delivery applications of interpenetrating polymer networks. Drug Delivery and Translational Research, 0 , , .	3.0	0

#	Article	IF	CITATIONS
854	Multifunctional Hybrid Nanocomposite Hydrogel Releasing Different Biomolecular Species Triggered with Different Biochemical Signals Processed by Orthogonal Biocatalytic Reactions. ACS Applied Bio Materials, 2022, 5, 5513-5517.	2.3	1
855	Kinetics of Water Transfer Between the LCST and UCST Thermoresponsive Blocks in Diblock Copolymer Thin Films Monitored by In Situ Neutron Reflectivity. Advanced Materials Interfaces, 0, , 2201913.	1.9	1
856	Light responsive hydrogels for controlled drug delivery. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	2.0	16
857	Peptide-Based Biopolymers in Biomedicine and Biotechnology. , 2023, , 1-18.		O
858	Modification of Thermoresponsive Poly(<i>N</i> -Isopropylacrylamide) End-Group with Hydrophilic and/or Hydrophobic Compounds Tuned the LCST. Solid State Phenomena, 0, 339, 3-10.	0.3	0
859	The effects of crosslinker ratio and photoinitiator type on the properties of pnipam hydrogel. Journal of Polymer Research, 2023, 30, .	1.2	2
860	Applications of Smart Material to Enhance Daylighting as a tool to Improve Sustainability of Atriums. IOP Conference Series: Earth and Environmental Science, 2022, 1113, 012022.	0.2	0
861	Thermoresponsive Triblock Copolymers as Widely Applicable ¹⁹ F Magnetic Resonance Imaging Tracers. Chemistry of Materials, 2022, 34, 10902-10916.	3.2	3
862	Cardiovascular Nanotechnology. Micro/Nano Technologies, 2023, , 439-468.	0.1	1
863	Engineering dual-stimuli responsive poly(vinyl alcohol) nanofibrous membranes for cancer treatment by magnetic hyperthermia., 2023, 145, 213275.		5
864	Application of Multi-Layered Temperature-Responsive Polymer Brushes Coating on Titanium Surface to Inhibit Biofilm Associated Infection in Orthopedic Surgery. Polymers, 2023, 15, 163.	2.0	4
865	Thermoresponsive polymers and polymeric composites. , 2023, , 363-397.		0
866	Cosolvent effects on the structure and thermoresponse of a polymer brush: PNIPAM in DMSO–water mixtures. Polymer Chemistry, 2023, 14, 1526-1535.	1.9	2
867	Stimuli-responsive structure–property switchable polymer materials. Molecular Systems Design and Engineering, 2023, 8, 1097-1129.	1.7	17
868	Engineering Smart Composite Hydrogels for Wearable Disease Monitoring. Nano-Micro Letters, 2023, 15, .	14.4	49
869	A review on shape memory polymers. Polymer-Plastics Technology and Materials, 2023, 62, 467-485.	0.6	6
870	The Diffusion of TEMPONE Radical in the Graft Copolymer of N-Isopropylacrylamide with Oligolactide in the Presence of Supercritical Carbon Dioxide by In Situ EPR Method. Russian Journal of Physical Chemistry B, 2022, 16, 1208-1212.	0.2	1
871	Surfactant and Block Copolymer Nanostructures: From Design and Development to Nanomedicine Preclinical Studies. Pharmaceutics, 2023, 15, 501.	2.0	8

#	Article	IF	CITATIONS
872	Responsive Nanostructure for Targeted Drug Delivery. Journal of Nanotheranostics, 2023, 4, 55-85.	1.7	4
873	Smart stimuli-responsive injectable gels and hydrogels for drug delivery and tissue engineering applications: A review. Frontiers in Bioengineering and Biotechnology, $0,11,.$	2.0	16
874	Potential Approaches for Delivery of Surface Decorated Nano-carriers in the Management of Carcinoma., 2023,, 64-105.		0
875	Exploiting \hat{l}_{\pm} -benzylated 1,4-butanesultones to expedite the discovery of small-molecule, LCST-type sulfobetaine zwitterionic materials. Materials Advances, 2023, 4, 1740-1745.	2.6	2
876	Impact of biobased materials on drug delivery for improved cancer therapy., 2023,, 479-492.		0
877	Combining branched copolymers with additives generates stable thermoresponsive emulsions with in situ gelation upon exposure to body temperature. International Journal of Pharmaceutics, 2023, 637, 122892.	2.6	2
878	Smart Poly(lactide)-b-poly(triethylene glycol methyl ether methacrylate) (PLA-b-PTEGMA) Block Copolymers: One-Pot Synthesis, Temperature Behavior, and Controlled Release of Paclitaxel. Pharmaceutics, 2023, 15, 1191.	2.0	2
879	Stimuli-responsive self-assembled nanocarriers based on amphiphilic block copolymers for cancer therapy. , 2023, , 365-409.		3
880	Peptide-Based Biopolymers in Biomedicine and Biotechnology. , 2023, , 1117-1134.		0
881	Hydrogels and Nanohydrogels. , 2023, , 140-182.		0
883	Recent advances in biopolymers for drug delivery applications. , 2023, , 513-544.		0
886	Stimuli-responsive dynamic hydrogels: design, properties and tissue engineering applications. Materials Horizons, 2023, 10, 3325-3350.	6.4	16
891	Multicomponent Hydrogels for Bioimaging and Biosensing Applications. , 2023, , 502-541.		0
892	Hydrogels: Definition, History, Classifications, Formation, Constitutive Characteristics, and Applications., 2023, , 1-25.		0
893	Multicomponent Hydrogels for Cancer Diagnosis and Therapy. , 2023, , 542-577.		0
894	Stimuli-responsive and Self-healing Multicomponent Hydrogels for Biomedical Applications. , 2023, , 578-603.		0
917	Injectable smart stimuli-responsive hydrogels: pioneering advancements in biomedical applications. Biomaterials Science, 2023, 12, 8-56.	2.6	1
926	Recent Advances and Perspectives on Polymer-Based Materials for Biomedical Applications. , 2024, , 71-84.		0

ARTICLE IF CITATIONS

933 Multifunctional nanocomposites for targeted drug delivery in breast cancer therapy. , 2024, , 139-177.