Carbon emission from hydroelectric reservoirs linked t

Nature Geoscience 4, 593-596 DOI: 10.1038/ngeo1211

Citation Report

#	Article	IF	CITATIONS
1	Methane emissions from the surface of the Three Gorges Reservoir. Journal of Geophysical Research, 2011, 116, .	3.3	150
2	Hydropower in the CDM: Examining Additionality and Criteria for Sustainability. SSRN Electronic Journal, 0, , .	0.4	17
3	Gross CO2 and CH4 emissions from the Nam Ngum and Nam Leuk sub-tropical reservoirs in Lao PDR. Science of the Total Environment, 2011, 409, 5382-5391.	8.0	65
4	Renewable but not carbon-free. Nature Geoscience, 2011, 4, 585-586.	12.9	32
5	Potentially massive greenhouseâ€gas sources in proposed tropical dams. Frontiers in Ecology and the Environment, 2012, 10, 234-235.	4.0	13
6	Hydroelectric carbon sequestration. Nature Geoscience, 2012, 5, 838-840.	12.9	64
7	New paradigms in tropical limnology: the importance of the microbial food web. Hydrobiologia, 2012, 686, 1-14.	2.0	79
8	Flooding of the continental shelves as a contributor to deglacial CH ₄ rise. Journal of Quaternary Science, 2012, 27, 800-806.	2.1	14
9	Benthic and pelagic sources of carbon dioxide in boreal lakes and a young reservoir (Eastmainâ€1) in eastern Canada. Global Biogeochemical Cycles, 2012, 26, .	4.9	22
10	The net carbon footprint of a newly created boreal hydroelectric reservoir. Global Biogeochemical Cycles, 2012, 26, .	4.9	117
11	Surface methane emissions from different land use types during various water levels in three major drawdown areas of the Three Gorges Reservoir. Journal of Geophysical Research, 2012, 117, .	3.3	41
12	Daily CO2 partial pressure and CO2 outgassing in the upper Yangtze River basin: A case study of the Longchuan River, China. Journal of Hydrology, 2012, 466-467, 141-150.	5.4	85
13	Greenhouse-gas emissions from tropical dams. Nature Climate Change, 2012, 2, 382-384.	18.8	235
14	Landscape heterogeneity influences carbon dioxide production in a young boreal reservoir. Canadian Journal of Fisheries and Aquatic Sciences, 2012, 69, 447-456.	1.4	13
15	Climate change in Brazil: perspective on the biogeochemistry of inland waters. Brazilian Journal of Biology, 2012, 72, 709-722.	0.9	52
16	Greenhouse Gas Emissions from Hydropower Reservoirs. Hydro Nepal: Journal of Water, Energy & Environment, 0, 11, 37-42.	0.1	16
17	Greenhouse Gas Emissions from Hydroelectric Reservoirs: What Knowledge Do We Have and What is Lacking?. , 2012, , .		12
18	Greenhouse gas emissions (CO2, CH4, and N2O) from several perialpine and alpine hydropower reservoirs by diffusion and loss in turbines. Aquatic Sciences, 2012, 74, 619-635.	1.5	61

~			~	
		ON	REPC	NDT
\sim	плп		NLFC	ואנ

#	Article	IF	CITATIONS
19	Phytoplankton biomass is mainly controlled by hydrology and phosphorus concentrations in tropical hydroelectric reservoirs. Hydrobiologia, 2012, 693, 13-28.	2.0	114
20	Uncertainties of carbon emission from hydroelectric reservoirs. Natural Hazards, 2012, 62, 1343-1345.	3.4	21
21	Redressing China's Strategy of Water Resource Exploitation. Environmental Management, 2013, 51, 503-510.	2.7	9
22	Water renewal along the aquatic continuum offsets cumulative retention by lakes: implications for the character of organic carbon in boreal lakes. Aquatic Sciences, 2013, 75, 535-545.	1.5	28
23	CO2 partial pressure and CO2 emission in the Lower Mekong River. Journal of Hydrology, 2013, 504, 40-56.	5.4	101
24	Global carbon dioxide emissions from inland waters. Nature, 2013, 503, 355-359.	27.8	1,670
25	Riverine transport of terrestrial organic matter to the North Catalan margin, NW Mediterranean Sea. Progress in Oceanography, 2013, 118, 71-80.	3.2	35
26	A hypothesis linking chrysophyte microfossils to lake carbon dynamics on ecological and evolutionary time scales. Global and Planetary Change, 2013, 111, 189-198.	3.5	31
27	Sediment Trapping by Dams Creates Methane Emission Hot Spots. Environmental Science & Technology, 2013, 47, 8130-8137.	10.0	222
28	Spatial and seasonal variability of CO2 flux at the air-water interface of the Three Gorges Reservoir. Journal of Environmental Sciences, 2013, 25, 2229-2238.	6.1	37
29	Wood decomposition in Amazonian hydropower reservoirs: An additional source of greenhouse gases. Journal of South American Earth Sciences, 2013, 44, 104-107.	1.4	24
30	Carbon emission as a function of energy generation in hydroelectric reservoirs in Brazilian dry tropical biome. Energy Policy, 2013, 58, 109-116.	8.8	42
31	Inorganic carbon loading as a primary driver of dissolved carbon dioxide concentrations in the lakes and reservoirs of the contiguous United States. Global Biogeochemical Cycles, 2013, 27, 285-295.	4.9	117
32	Depositional fluxes and sources of particulate carbon and nitrogen in natural lakes and a young boreal reservoir in Northern Québec. Biogeochemistry, 2013, 113, 323-339.	3.5	31
33	Emissions from Amazonian dams. Nature Climate Change, 2013, 3, 1005-1005.	18.8	15
34	The urgency of assessing the greenhouse gas budgets of hydroelectric reservoirs in China. Nature Climate Change, 2013, 3, 708-712.	18.8	35
35	Addressing Biogenic Greenhouse Gas Emissions from Hydropower in LCA. Environmental Science & Technology, 2013, 47, 9604-9611.	10.0	147
36	Ten years of the Three Gorges Dam: a call for policy overhaul. Environmental Research Letters, 2013, 8, 041006.	5.2	19

#	Article	IF	Citations
#		IF	CHATIONS
37	Spatial and seasonal variability of diffusive methane emissions from the Three Gorges Reservoir. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 471-481.	3.0	43
38	A new pathway of freshwater methane emissions and the putative importance of microbubbles. Inland Waters, 2013, 3, 311-320.	2.2	55
39	Processes affecting greenhouse gas production in experimental boreal reservoirs. Global Biogeochemical Cycles, 2013, 27, 567-577.	4.9	24
40	Regulation of CO ₂ emissions from temperate streams and reservoirs. Biogeosciences, 2013, 10, 7539-7551.	3.3	47
41	Biodiversity effects of benthic ecosystem engineers on the spatial patterns of sediment CH4 concentration in an urban Neotropical coastal lagoon. Acta Limnologica Brasiliensia, 2013, 25, 302-314.	0.4	1
42	Spatiotemporal characterization of dissolved carbon for inland waters in semi-humid/semi-arid region, China. Hydrology and Earth System Sciences, 2013, 17, 4269-4281.	4.9	65
43	Spatial variation of sediment mineralization supports differential CO2 emissions from a tropical hydroelectric reservoir. Frontiers in Microbiology, 2013, 4, 101.	3.5	33
44	Spatial and temporal patterns of greenhouse gas emissions from Three Gorges Reservoir of China. Biogeosciences, 2013, 10, 1219-1230.	3.3	103
45	Methane and nitrous oxide sources and emissions in a subtropical freshwater reservoir, South East Queensland, Australia. Biogeosciences, 2014, 11, 5245-5258.	3.3	46
46	Physical controls on CH ₄ emissions from a newly flooded subtropical freshwater hydroelectric reservoir: Nam Theun 2. Biogeosciences, 2014, 11, 4251-4269.	3.3	51
47	Anthropogenic and natural methane fluxes in Switzerland synthesized within a spatially explicit inventory. Biogeosciences, 2014, 11, 1941-1959.	3.3	39
48	Semiconductor Sequencing Reveals the Diversity of Bacterial Communities in an Amazonian Reservoir. Aquatic Science and Technology, 2014, 3, 18.	0.1	6
49	Gas transfer velocities of methane and carbon dioxide in a subtropical shallow pond. Tellus, Series B: Chemical and Physical Meteorology, 2022, 66, 23795.	1.6	35
50	Engineering Solutions to the Greenhouse Gases Generated by Hydroelectric Plants. Journal of Energy Resources Technology, Transactions of the ASME, 2014, 136, .	2.3	12
51	Assessing the Spatial and Temporal Variability of Diffusive Methane and Nitrous Oxide Emissions from Subtropical Freshwater Reservoirs. Environmental Science & Technology, 2014, 48, 14499-14507.	10.0	73
52	Using power sector reform as an opportunity to increase the uptake of renewable energy in the power sector: Responding to peak oil and climate change in <scp>C</scp> aribbean and <scp>P</scp> acific small island developing <scp>S</scp> tates, between 1970â€2010. Natural Resources Forum, 2014, 38, 14-26.	3.6	10
53	Spatial and temporal dynamic of the trophic state in a large Amazonian hydroelectric reservoir. , 2014, , ,		0
54	Response of the methanogenic microbial communities in <scp>A</scp> mazonian oxbow lake sediments to desiccation stress. Environmental Microbiology, 2014, 16, 1682-1694.	3.8	60

#ARTICLEIFCITATIONS55Carbon Sequestration in a Large Hydroelectric Reservoir: An Integrative Seismic Approach.3.44556Ecological responses of aquatic macrophytes and benthic macroinvertebrates to dams in the Henares2.03457High Methane Emissions from a Midlatitude Reservoir Draining an Agricultural Watershed.10.07658Progress in the studies on the greenhouse gas emissions from reservoirs. Acta Ecologica Sinica, 2014,1.949

CITATION REPORT

59 Partial pressure of CO 2 and CO 2 emission in a monsoon-driven hydroelectric reservoir (Danjiangkou) Tj ETQq0 0 0 grgBT /Overlock 10 T

60	Dissolved organic carbon and total dissolved nitrogen production by boreal soils and litter: the role of flooding, oxygen concentration, and temperature. Biogeochemistry, 2014, 118, 35-48.	3.5	32
61	Mercury accumulation in bats near hydroelectric reservoirs in Peninsular Malaysia. Ecotoxicology, 2014, 23, 1164-1171.	2.4	24
62	Dam reservoirs role in carbon dynamics requires contextual landscape ecohydrology. Environmental Monitoring and Assessment, 2014, 186, 5985-5988.	2.7	2
63	Emissions of greenhouse gases from Lake Neusiedl, a shallow steppe lake in Eastern Austria. Hydrobiologia, 2014, 731, 125-138.	2.0	21
64	Carbon emission from global hydroelectric reservoirs revisited. Environmental Science and Pollution Research, 2014, 21, 13636-13641.	5.3	44
65	Assessment of the accuracy of different standard methods for determining reservoir capacity and sedimentation. Journal of Soils and Sediments, 2014, 14, 1224-1234.	3.0	14
66	Renewable electricity policy in Asia: A qualitative comparative analysis of factors affecting sustainability transitions. Environmental Innovation and Societal Transitions, 2014, 12, 31-46.	5.5	35
67	Environmentally feasible potential for hydropower development regarding environmental constraints. Energy Policy, 2014, 73, 552-562.	8.8	28
68	Drivers of phytoplankton, bacterioplankton, and zooplankton carbon biomass in tropical hydroelectric reservoirs. Limnologica, 2014, 48, 1-10.	1.5	48
69	Eutrophication reverses whole-lake carbon budgets. Inland Waters, 2014, 4, 41-48.	2.2	165
70	The spatiotemporal distribution of dissolved inorganic and organic carbon in the main stem of the Changjiang (Yangtze) River and the effect of the Three Gorges Reservoir. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 741-757.	3.0	79
71	Energy Systems. , 2015, , 511-598.		11
73	Daily, biweekly, and seasonal temporal scales of <i>p</i> CO ₂ variability in two stratified Mediterranean reservoirs. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 509-520.	3.0	57

	CITATION RE	PORT	
#	Article	IF	CITATIONS
74	Measuring Greenhouse Gas Emissions From China's Reservoirs. Eos, 2014, 95, 1-2.	0.1	4
75	Eos, Transactions, American Geophysical Union Volume 95, Number 1, 7 January 2014. Eos, 2014, 95, 1-12.	0.1	0
76	Effect of interannual variation in winter vertical mixing on CH ₄ dynamics in a subtropical reservoir. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1246-1261.	3.0	24
77	Nitrous oxide emission from the littoral zones of the Miyun Reservoir near Beijing, China. Hydrology Research, 2015, 46, 811-823.	2.7	7
78	Methane formation and consumption processes in Xiangxi Bay of the Three Gorges Reservoir. Scientific Reports, 2014, 4, 4449.	3.3	17
80	Estimating greenhouse gas emissions from future Amazonian hydroelectric reservoirs. Environmental Research Letters, 2015, 10, 124019.	5.2	65
81	Hydropower within the climate, energy and water nexus. , 2015, , 79-107.		3
82	A comparison of methods for the measurement of CO ₂ and CH ₄ emissions from surface water reservoirs: Results from an international workshop held at Three Gorges Dam, June 2012. Limnology and Oceanography: Methods, 2015, 13, 15-29.	2.0	23
83	Seasonal dynamics of carbon and nutrients from two contrasting tropical floodplain systems in the Zambezi River basin. Biogeosciences, 2015, 12, 7535-7547.	3.3	13
84	The effects of river inflow and retention time on the spatial heterogeneity of chlorophyll and water–air CO ₂ fluxes in a tropical hydropower reservoir. Biogeosciences, 2015, 12, 147-162.	3.3	57
85	Spatial and Temporal Correlates of Greenhouse Gas Diffusion from a Hydropower Reservoir in the Southern United States. Water (Switzerland), 2015, 7, 5910-5927.	2.7	20
86	Estimation of Chlorophyll-a Concentration and the Trophic State of the Barra Bonita Hydroelectric Reservoir Using OLI/Landsat-8 Images. International Journal of Environmental Research and Public Health, 2015, 12, 10391-10417.	2.6	126
87	Technical Note: Large overestimation of <i>p</i> CO ₂ calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences, 2015, 12, 67-78.	3.3	244
88	Seasonal Changes in Plankton Food Web Structure and Carbon Dioxide Flux from Southern California Reservoirs. PLoS ONE, 2015, 10, e0140464.	2.5	7
89	Carbon Dioxide Emissions from Reservoirs in the Lower Jordan Watershed. PLoS ONE, 2015, 10, e0143381.	2.5	6
90	Review on the externalities of hydropower: A comparison between large and small hydropower projects in Tibet based on the CO2 equivalent. Renewable and Sustainable Energy Reviews, 2015, 50, 176-185.	16.4	41
91	Damâ€ŧriggered organic carbon sequestration makes the Changjiang (Yangtze) river basin (China) a significant carbon sink. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 39-53.	3.0	74
92	The ecology of methane in streams and rivers: patterns, controls, and global significance. Ecological Monographs, 0, , .	5.4	24

#	Article	IF	CITATIONS
93	Hydrologic, metabolic and chemical regulation of water-column metabolism and atmospheric CO2 exchange in a large continental reservoir during spring and summer. Journal of Great Lakes Research, 2015, 41, 144-154.	1.9	11
94	A global boom in hydropower dam construction. Aquatic Sciences, 2015, 77, 161-170.	1.5	1,512
95	Effect of inundation, oxygen and temperature on carbon mineralization in boreal ecosystems. Science of the Total Environment, 2015, 511, 381-392.	8.0	16
96	Size Does Matter: Importance of Large Bubbles and Small-Scale Hot Spots for Methane Transport. Environmental Science & Technology, 2015, 49, 1268-1276.	10.0	93
97	Carbonate weathering as a driver of CO2 supersaturation in lakes. Nature Geoscience, 2015, 8, 107-111.	12.9	138
98	Revision of methane and carbon dioxide emissions from inland waters in India. Global Change Biology, 2015, 21, 6-8.	9.5	22
99	Methane gas in lake bottom sediments quantified using acoustic backscatter strength. Journal of Soils and Sediments, 2015, 15, 1246-1255.	3.0	16
100	Methane and CO2 emissions from China's hydroelectric reservoirs: a new quantitative synthesis. Environmental Science and Pollution Research, 2015, 22, 5325-5339.	5.3	40
101	Multi-unit hydroelectric generator based on contact electrification and its service behavior. Nano Energy, 2015, 16, 329-338.	16.0	39
102	China's rising hydropower demand challenges water sector. Scientific Reports, 2015, 5, 11446.	3.3	72
103	Beyond carbon: Quantifying environmental externalities as energy for hydroelectric and nuclear power. Energy, 2015, 84, 36-44.	8.8	13
104	Emissions from tropical hydropower and the IPCC. Environmental Science and Policy, 2015, 50, 225-239.	4.9	125
105	The diverse environmental burden of city-scale urban water systems. Water Research, 2015, 81, 398-415.	11.3	56
106	Wind and Solar Power in Brazil and China: Interests, State–Business Relations, and Policy Outcomes. Global Environmental Politics, 2015, 15, 74-94.	3.0	66
107	Use of allochthonous resources by zooplankton in reservoirs. Hydrobiologia, 2015, 758, 257-269.	2.0	16
108	Polymerized cellulose building blocks: relative energy, electronic property, and reactivity from quantum chemical approach. Polymers for Advanced Technologies, 2015, 26, 1336-1339.	3.2	2
109	Energy planning and development in Malaysian Borneo: Assessing the benefits of distributed technologies versus large scale energy mega-projects. Energy Strategy Reviews, 2015, 8, 15-29.	7.3	39
110	Continuous Seasonal River Ebullition Measurements Linked to Sediment Methane Formation. Environmental Science & Technology, 2015, 49, 13121-13129.	10.0	72

#	Article	IF	CITATIONS
111	Seasonal variation of CO 2 diffusion flux from a large subtropical reservoir in East China. Atmospheric Environment, 2015, 103, 129-137.	4.1	36
112	Seasonal patterns in carbon dioxide in 15 mid-continent (USA) reservoirs. Inland Waters, 2016, 6, 265-272.	2.2	14
113	Effect of sporadic destratification, seasonal overturn, and artificial mixing on CH ₄ emissions from a subtropical hydroelectric reservoir. Biogeosciences, 2016, 13, 3647-3663.	3.3	17
114	Low methane (CH ₄) emissions downstream of a monomictic subtropical hydroelectric reservoir (Nam Theun 2, Lao PDR). Biogeosciences, 2016, 13, 1919-1932.	3.3	23
115	CO2 is Dominant Greenhouse Gas Emitted from Six Hydropower Reservoirs in Southeastern United States during Peak Summer Emissions. Water (Switzerland), 2016, 8, 15.	2.7	16
116	Coupling Between Heterotrophic Nanoflagellates and Bacteria in Fresh Waters: Does Latitude Make a Difference?. Frontiers in Microbiology, 2016, 7, 114.	3.5	15
117	High Primary Production Contrasts with Intense Carbon Emission in a Eutrophic Tropical Reservoir. Frontiers in Microbiology, 2016, 7, 717.	3.5	63
118	Hydropower's Biogenic Carbon Footprint. PLoS ONE, 2016, 11, e0161947.	2.5	69
119	Organic carbon burial efficiency in a subtropical hydroelectric reservoir. Biogeosciences, 2016, 13, 3331-3342.	3.3	33
120	The ecology of methane in streams and rivers: patterns, controls, and global significance. Ecological Monographs, 2016, 86, 146-171.	5.4	360
121	The reactivity of plantâ€derived organic matter and the potential importance of priming effects along the lower Amazon River. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1522-1539.	3.0	94
122	Estimates of reservoir methane emissions based on a spatially balanced probabilisticâ€survey. Limnology and Oceanography, 2016, 61, S27.	3.1	50
123	Simulating carbon dioxide exchange in boreal ecosystems flooded by reservoirs. Ecological Modelling, 2016, 327, 1-17.	2.5	11
124	Methane dynamics in subtropical freshwater reservoirs and the mediating microbial communities. Biogeochemistry, 2016, 128, 233-255.	3.5	19
125	Greenhouse gas emissions from Brazil's Amazonian hydroelectric dams. Environmental Research Letters, 2016, 11, 011002.	5.2	47
126	Hydropower externalities: A meta-analysis. Energy Economics, 2016, 57, 66-77.	12.1	57
127	Fossil clam shells reveal unintended carbon cycling consequences of Colorado River management. Royal Society Open Science, 2016, 3, 160170.	2.4	11
128	Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis. BioScience, 2016, 66, 949-964.	4.9	564

	CITATION R	EPORT	
#	Article	IF	CITATIONS
129	Global water footprint assessment of hydropower. Renewable Energy, 2016, 99, 711-720.	8.9	104
130	How well will the <scp>S</scp> urface <scp>W</scp> ater and <scp>O</scp> cean <scp>T</scp> opography (<scp>SWOT</scp>) mission observe global reservoirs?. Water Resources Research, 2016, 52, 2123-2140.	4.2	45
131	Reservoir sedimentation. Journal of Hydraulic Research/De Recherches Hydrauliques, 2016, 54, 595-614.	1.7	289
133	Methane dynamics downstream of a temperate runâ€ofâ€theâ€river reservoir. Limnology and Oceanography, 2016, 61, S188.	3.1	16
134	Aquatic Ecosystems. Ecological Studies, 2016, , 119-148.	1.2	25
135	Five-year changes in soil organic carbon and total nitrogen in coastal wetlands affected by flow-sediment regulation in a Chinese delta. Scientific Reports, 2016, 6, 21137.	3.3	48
136	Future Impacts of Hydroelectric Power Development on Methylmercury Exposures of Canadian Indigenous Communities. Environmental Science & Technology, 2016, 50, 13115-13122.	10.0	41
137	Methane emissions from oceans, coasts, and freshwater habitats: New perspectives and feedbacks on climate. Limnology and Oceanography, 2016, 61, S3.	3.1	39
138	Nuclear power: irreplaceable before and after Fukushima. International Journal of Global Energy Issues, 2016, 39, 394.	0.4	1
139	Enhanced greenhouse gas emission from exposed sediments along a hydroelectric reservoir during an extreme drought event. Environmental Research Letters, 2016, 11, 124003.	5.2	36
140	Quantifying emissions of methane derived from anaerobic organic matter respiration and natural gas extraction in Lake Erie. Limnology and Oceanography, 2016, 61, S356.	3.1	32
141	Variability in Concentrations and Fluxes of Methane in the Indian Estuaries. Estuaries and Coasts, 2016, 39, 1639-1650.	2.2	27
142	Climate Change andÂAgriculture. , 2016, , 465-489.		5
143	Ecological compensation for inundated habitats in hydropower developments based on carbon stock balance. Journal of Cleaner Production, 2016, 114, 334-342.	9.3	35
144	Longâ€ŧerm perspectives on terrestrial and aquatic carbon cycling from palaeolimnology. Wiley Interdisciplinary Reviews: Water, 2016, 3, 211-234.	6.5	27
145	Major changes in CO2 efflux when shallow lakes shift from a turbid to a clear water state. Hydrobiologia, 2016, 778, 33-44.	2.0	22
146	Carbon dioxide emissions from TucuruÃ-reservoir (Amazon biome): New findings based on three-dimensional ecological model simulations. Science of the Total Environment, 2016, 551-552, 676-694.	8.0	22
147	Modeling surface energy fluxes and thermal dynamics of a seasonally ice-covered hydroelectric reservoir. Science of the Total Environment, 2016, 550, 793-805.	8.0	10

#	Article	IF	CITATIONS
148	Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nature Geoscience, 2016, 9, 222-226.	12.9	565
149	The role of waterborne carbon in the greenhouse gas balance of drained and re-wetted peatlands. Aquatic Sciences, 2016, 78, 573-590.	1.5	105
150	Finding academic concerns of the Three Gorges Project based on a topic modeling approach. Ecological Indicators, 2016, 60, 693-701.	6.3	36
151	Air–water CO2 outgassing in the Lower Lakes (Alexandrina and Albert, Australia) following a millennium drought. Science of the Total Environment, 2016, 542, 453-468.	8.0	20
152	Society - Water - Technology. Water Resources Development and Management, 2016, , .	0.4	8
153	Major Water Engineering Projects: Definitions, Framework Conditions, Systemic Effects. Water Resources Development and Management, 2016, , 33-45.	0.4	0
154	Environmental and Social Impacts of Hydroelectric Dams in Brazilian Amazonia: Implications for the Aluminum Industry. World Development, 2016, 77, 48-65.	4.9	160
155	Carbon, nitrogen, phosphorus, and sediment sources and retention in a small eutrophic tropical reservoir. Aquatic Sciences, 2016, 78, 171-189.	1.5	33
156	Carbon stock estimation in the catchment of Kotli Bhel 1A hydroelectric reservoir, Uttarakhand, India. Ecotoxicology and Environmental Safety, 2016, 134, 365-369.	6.0	26
157	Assessment of risk of CHG emissions from Tehri hydropower reservoir, India. Human and Ecological Risk Assessment (HERA), 2016, 22, 71-85.	3.4	38
158	The surface energy budget and interannual variation of the annual total evaporation over a highland lake in Southwest China. Theoretical and Applied Climatology, 2016, 126, 303-312.	2.8	12
159	Environmental impact assessment of increasing electric vehicles in the Brazilian fleet. Journal of Cleaner Production, 2017, 152, 497-507.	9.3	64
160	CO2 emissions from German drinking water reservoirs. Science of the Total Environment, 2017, 581-582, 10-18.	8.0	12
161	Biotic and abiotic controls on CO 2 partial pressure and CO 2 emission in the Tigris River, Turkey. Chemical Geology, 2017, 449, 182-193.	3.3	25
162	Reservoir Water-Level Drawdowns Accelerate and Amplify Methane Emission. Environmental Science & Technology, 2017, 51, 1267-1277.	10.0	91
163	Understanding the drivers of <scp>S</scp> outheast <scp>A</scp> sian biodiversity loss. Ecosphere, 2017, 8, e01624.	2.2	335
164	A method for the assessment of long-term changes in carbon stock by construction of a hydropower reservoir. Ambio, 2017, 46, 566-577.	5.5	8
165	Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands. Global Change Biology, 2017, 23, 3107-3120.	9.5	64

#	Article	IF	CITATIONS
166	Greenhouse gases concentrations and fluxes from subtropical small reservoirs in relation with watershed urbanization. Atmospheric Environment, 2017, 154, 225-235.	4.1	43
168	Methane and nitrous oxide annual emissions from an old eutrophic temperate reservoir. Science of the Total Environment, 2017, 598, 959-972.	8.0	36
169	Microbial Food-Web Drivers in Tropical Reservoirs. Microbial Ecology, 2017, 73, 505-520.	2.8	31
170	Riverine CO ₂ emissions in the Wuding River catchment on the Loess Plateau: Environmental controls and dam impoundment impact. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 1439-1455.	3.0	46
171	Global perturbation of organic carbon cycling by river damming. Nature Communications, 2017, 8, 15347.	12.8	246
172	Damming effects on dissolved inorganic carbon in different kinds of reservoirs in Jialing River, Southwest China. Acta Geochimica, 2017, 36, 581-597.	1.7	10
173	Air–water CO2 and CH4 fluxes along a river–reservoir continuum: Case study in the Pengxi River, a tributary of the Yangtze River in the Three Gorges Reservoir, China. Environmental Monitoring and Assessment, 2017, 189, 223.	2.7	30
174	Estimates of GHG emissions by hydroelectric reservoirs: The Brazilian case. Energy, 2017, 133, 99-107.	8.8	33
175	The role of hydrodynamic sorting on the accumulation and distribution of organic carbon in an impoundment: Englebright Lake, California, USA. Biogeochemistry, 2017, 133, 129-145.	3.5	11
176	Ancient dissolved methane in inland waters revealed by a new collection method at low field concentrations for radiocarbon (14C) analysis. Water Research, 2017, 115, 236-244.	11.3	12
177	Reservoirs as hotspots of fluvial carbon cycling in peatland catchments. Science of the Total Environment, 2017, 580, 398-411.	8.0	6
178	Carbon Emission from Cascade Reservoirs: Spatial Heterogeneity and Mechanisms. Environmental Science & Technology, 2017, 51, 12175-12181.	10.0	56
179	Carbon dioxide emissions from lakes and reservoirs of China: A regional estimate based on the calculated p CO 2. Atmospheric Environment, 2017, 170, 71-81.	4.1	53
180	Bounds testing approach to analyzing the environment Kuznets curve hypothesis with structural beaks: The role of biomass energy consumption in the United States. Energy Economics, 2017, 68, 548-565.	12.1	146
181	How Green is â€~Green' Energy?. Trends in Ecology and Evolution, 2017, 32, 922-935.	8.7	161
182	Carbon footprints of pre-impoundment clearance on reservoir flooded area in China's large hydro-projects: Implications for GHG emissions reduction in the hydropower industry. Journal of Cleaner Production, 2017, 168, 1413-1424.	9.3	31
183	Seasonal and Spatial Dynamics of Gas Ebullition in a Temperate Water‣torage Reservoir. Water Resources Research, 2017, 53, 8266-8276.	4.2	19
184	Can the household sector reduce global warming mitigation costs? sensitivity to key parameters in a TIMES techno-economic energy model. Applied Energy, 2017, 205, 486-498.	10.1	22

#	Article	IF	CITATIONS
185	Carbon footprints of two large hydro-projects in China: Life-cycle assessment according to ISO/TS 14067. Renewable Energy, 2017, 114, 534-546.	8.9	43
186	River sequesters atmospheric carbon and limits the CO2 degassing in karst area, southwest China. Science of the Total Environment, 2017, 609, 92-101.	8.0	37
187	Methane Ebullition in Temperate Hydropower Reservoirs and Implications for US Policy on Greenhouse Gas Emissions. Environmental Management, 2017, 60, 615-629.	2.7	16
189	Carbon and nutrient fluxes from floodplains and reservoirs in the Zambezi basin. Chemical Geology, 2017, 467, 1-11.	3.3	12
190	Role of gas ebullition in the methane budget of a deep subtropical lake: What can we learn from processâ€based modeling?. Limnology and Oceanography, 2017, 62, 2674-2698.	3.1	34
191	CO2 emission and organic carbon burial in the Xinanjiang Reservoir. Acta Geochimica, 2017, 36, 465-468.	1.7	5
192	Organic carbon burial in global lakes and reservoirs. Nature Communications, 2017, 8, 1694.	12.8	307
193	Effects and underlying mechanisms of damming on carbon and nitrogen cycles and transport in rivers of Southwest China: project introduction. Acta Geochimica, 2017, 36, 577-580.	1.7	2
194	Comprehensive assessment of dam impacts on flow regimes with consideration of interannual variations. Journal of Hydrology, 2017, 552, 447-459.	5.4	25
195	Carbon dioxide emissions from the Three Gorges Reservoir, China. Acta Geochimica, 2017, 36, 645-657.	1.7	9
196	Renewable energy and biodiversity: Implications for transitioning to a Green Economy. Renewable and Sustainable Energy Reviews, 2017, 70, 161-184.	16.4	278
197	The future of power generation in Brazil: An analysis of alternatives to Amazonian hydropower development. Energy for Sustainable Development, 2017, 41, 24-35.	4.5	28
198	Whose Hydropower? From Conflictual Management into an Era of Reconciling Environmental Concerns; a Retake of Hydropower Governance towards Win-Win Solutions?. Sustainability, 2017, 9, 1262.	3.2	16
199	The Fate of Carbon in Sediments of the Xingu and Tapajós Clearwater Rivers, Eastern Amazon. Frontiers in Marine Science, 2017, 4, .	2.5	18
200	Regional-scale lateral carbon transport and CO ₂ evasion in temperate stream catchments. Biogeosciences, 2017, 14, 5003-5014.	3.3	10
201	The potential impact of new Andean dams on Amazon fluvial ecosystems. PLoS ONE, 2017, 12, e0182254.	2.5	153
202	Concentração e fluxo de CO2 sobre o reservatório hidrelétrico de Balbina (AM). Engenharia Sanitaria E Ambiental, 2017, 22, 187-193.	0.5	2
203	Dynamics of riverine CO ₂ in the Yangtze River fluvial network and their implications for carbon evasion. Biogeosciences, 2017, 14, 2183-2198.	3.3	33

#	Article	IF	CITATIONS
204	Modeling metabolism in an integrated subtropical watershed-reservoir system. Revista Brasileira De Recursos Hidricos, 2017, 22, .	0.5	0
205	China Came, China Built, China Left?: The Sarawakian Experience with Chinese Dam Building. Journal of Current Chinese Affairs, 2017, 46, 119-158.	1.3	2
206	Greenhouse gas emissions from a semi-arid tropical reservoir in northeastern Brazil. Regional Environmental Change, 2018, 18, 1901-1912.	2.9	12
207	Greenhouse gas emissions of hydropower in the Mekong River Basin. Environmental Research Letters, 2018, 13, 034030.	5.2	63
208	The C-biogeochemistry of a Midwestern USA agricultural impoundment in context: Lake Decatur in the intensively managed landscape critical zone observatory. Biogeochemistry, 2018, 138, 171-195.	3.5	11
209	Response of the Changjiang (Yangtze River) water chemistry to the impoundment of Three Gorges Dam during 2010–2011. Chemical Geology, 2018, 487, 1-11.	3.3	25
210	Importance of Considered Organic Versus Inorganic Source of Carbon to Lakes for Calculating Net Effect on Landscape C Budgets. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 1302-1317.	3.0	18
211	Methane production increases with warming and carbon additions to incubated sediments from a semiarid reservoir. Inland Waters, 2018, 8, 109-121.	2.2	13
212	Riverine CO2 supersaturation and outgassing in a subtropical monsoonal mountainous area (Three) Tj ETQq0 0	ΟrgBJT /Ον	erlock 10 Tf 5
		5.4	44
213	Large but variable methane production in anoxic freshwater sediment upon addition of allochthonous and autochthonous organic matter. Limnology and Oceanography, 2018, 63, 1488-1501.	3.1	121
213 214	Large but variable methane production in anoxic freshwater sediment upon addition of allochthonous and autochthonous organic matter. Limnology and Oceanography, 2018, 63, 1488-1501. CH4 concentrations and fluxes in a subtropical metropolitan river network: Watershed urbanization impacts and environmental controls. Science of the Total Environment, 2018, 622-623, 1079-1089.	J. 1	
	allochthonous and autochthonous organic matter. Limnology and Oceanography, 2018, 63, 1488-1501. CH4 concentrations and fluxes in a subtropical metropolitan river network: Watershed urbanization	3.1	121
214	allochthonous and autochthonous organic matter. Limnology and Oceanography, 2018, 63, 1488-1501. CH4 concentrations and fluxes in a subtropical metropolitan river network: Watershed urbanization impacts and environmental controls. Science of the Total Environment, 2018, 622-623, 1079-1089. Productivity and rainfall drive bacterial metabolism in tropical cascading reservoirs. Hydrobiologia,	3.1 8.0	121 40
214 215	allochthonous and autochthonous organic matter. Limnology and Oceanography, 2018, 63, 1488-1501. CH4 concentrations and fluxes in a subtropical metropolitan river network: Watershed urbanization impacts and environmental controls. Science of the Total Environment, 2018, 622-623, 1079-1089. Productivity and rainfall drive bacterial metabolism in tropical cascading reservoirs. Hydrobiologia, 2018, 809, 233-246. Spatially Resolved Measurements of CO ₂ and CH ₄ Concentration and Gas-Exchange Velocity Highly Influence Carbon-Emission Estimates of Reservoirs. Environmental	3.1 8.0 2.0	121 40 7
214 215 216	 allochthonous and autochthonous organic matter. Limnology and Oceanography, 2018, 63, 1488-1501. CH4 concentrations and fluxes in a subtropical metropolitan river network: Watershed urbanization impacts and environmental controls. Science of the Total Environment, 2018, 622-623, 1079-1089. Productivity and rainfall drive bacterial metabolism in tropical cascading reservoirs. Hydrobiologia, 2018, 809, 233-246. Spatially Resolved Measurements of CO₂ and CH₄ Concentration and Gas-Exchange Velocity Highly Influence Carbon-Emission Estimates of Reservoirs. Environmental Science & amp; Technology, 2018, 52, 607-615. Mitigating Methane: Emerging Technologies To Combat Climate Change's Second Leading Contributor. 	 3.1 8.0 2.0 10.0 	121 40 7 65
214215216217	 allochthonous and autochthonous organic matter. Limnology and Oceanography, 2018, 63, 1488-1501. CH4 concentrations and fluxes in a subtropical metropolitan river network: Watershed urbanization impacts and environmental controls. Science of the Total Environment, 2018, 622-623, 1079-1089. Productivity and rainfall drive bacterial metabolism in tropical cascading reservoirs. Hydrobiologia, 2018, 809, 233-246. Spatially Resolved Measurements of CO₂ and CH₄ Concentration and Gas-Exchange Velocity Highly Influence Carbon-Emission Estimates of Reservoirs. Environmental Science & amp; Technology, 2018, 52, 607-615. Mitigating Methane: Emerging Technologies To Combat Climate Change's Second Leading Contributor. Environmental Science & amp; Technology, 2018, 52, 6084-6097. Cradle-to-grave greenhouse gas emissions from dams in the United States of America. Renewable and 	 3.1 8.0 2.0 10.0 10.0 	121 40 7 65 35
 214 215 216 217 218 	allochthonous and autochthonous organic matter. Limnology and Oceanography, 2018, 63, 1488-1501. CH4 concentrations and fluxes in a subtropical metropolitan river network: Watershed urbanization impacts and environmental controls. Science of the Total Environment, 2018, 622-623, 1079-1089. Productivity and rainfall drive bacterial metabolism in tropical cascading reservoirs. Hydrobiologia, 2018, 809, 233-246. Spatially Resolved Measurements of CO ₂ and CH ₄ Concentration and Gas-Exchange Velocity Highly Influence Carbon-Emission Estimates of Reservoirs. Environmental Science & amp; Technology, 2018, 52, 607-615. Mitigating Methane: Emerging Technologies To Combat Climate ChangeâC™s Second Leading Contributor. Environmental Science & amp; Technology, 2018, 52, 6084-6097. Cradle-to-grave greenhouse gas emissions from dams in the United States of America. Renewable and Sustainable Energy Reviews, 2018, 90, 945-956. Contribution of Methane Formation and Methane Oxidation to Methane Emission from Freshwater	 3.1 8.0 2.0 10.0 10.0 	121 40 7 65 35 61

#	Article	IF	CITATIONS
222	Modelling CO2 emissions from water surface of a boreal hydroelectric reservoir. Science of the Total Environment, 2018, 612, 392-404.	8.0	8
223	Spatial variability of methane (CH ₄) ebullition in a tropical hypereutrophic reservoir: silted areas as a bubble hot spot. Lake and Reservoir Management, 2018, 34, 105-114.	1.3	22
224	Effects of an Experimental Water-level Drawdown on Methane Emissions from a Eutrophic Reservoir. Ecosystems, 2018, 21, 657-674.	3.4	38
225	Greenhouse Gas Emissions from Freshwater Reservoirs: What Does the Atmosphere See?. Ecosystems, 2018, 21, 1058-1071.	3.4	145
226	Assessment of Greenhouse Gas (GHG) Emission from Hydropower Reservoirs in Malaysia. Proceedings (mdpi), 2018, 2, .	0.2	6
227	Methane Emissions from Ecuadorian Hydropower Dams. IOP Conference Series: Earth and Environmental Science, 2018, 151, 012002.	0.3	4
228	Renewable Energy: The Trillion Dollar Opportunity for Chinese Overseas Investment. China and World Economy, 2018, 26, 27-49.	2.1	33
229	Estimating Carbon Dioxide (CO2) Emissions from Reservoirs Using Artificial Neural Networks. Water (Switzerland), 2018, 10, 26.	2.7	25
230	Riverine carbon export in the arid to semiarid Wuding River catchment on the Chinese Loess Plateau. Biogeosciences, 2018, 15, 3857-3871.	3.3	14
231	Renewable vs. conventional energy: which wins the race to sustainable development?. IOP Conference Series: Materials Science and Engineering, 2018, 434, 012310.	0.6	2
232	Impact of global major reservoirs on carbon cycle changes by using an advanced eco-hydrologic and biogeochemical coupling model. Ecological Modelling, 2018, 387, 172-186.	2.5	18
233	Large greenhouse gases emissions from China's lakes and reservoirs. Water Research, 2018, 147, 13-24.	11.3	167
234	Diel and seasonal methane flux across water–air interface of a subtropic eutrophic pond. Toxicological and Environmental Chemistry, 2018, 100, 413-424.	1.2	5
235	Effect of small water retention structures on diffusive CO2 and CH4 emissions along a highly impounded river. Inland Waters, 2018, 8, 449-460.	2.2	5
236	Longitudinal discontinuities in riverine greenhouse gas dynamics generated by dams and urban wastewater. Biogeosciences, 2018, 15, 6349-6369.	3.3	48
237	Carbon Footprint Assessment of Four Normal Size Hydropower Stations in China. Sustainability, 2018, 10, 2018.	3.2	16
238	Overlooked tradeâ€offs of environmentally protective hydropower operation: <scp>I</scp> mpacts to ancillary services and greenhouse gas emissions. River Research and Applications, 2018, 34, 1123-1131.	1.7	5
239	Extreme droughts drive tropical semi-arid eutrophic reservoirs towards CO2 sub-saturation. Acta Limnologica Brasiliensia, 2018, 30, .	0.4	5

ARTICLE IF CITATIONS # Estimation of carbon stock for greenhouse gas emissions from hydropower reservoirs. Stochastic 240 4.0 55 Environmental Research and Risk Assessment, 2018, 32, 3183-3193. The study of carbon in inland waters—from isolated ecosystems to players in the global carbon cycle. 241 118 Limnology and Oceanography Letters, 2018, 3, 41-48. Carbon dioxide emissions from the flat bottom and shallow Nam Theun 2 Reservoir: drawdown area 242 3.3 15 as a neglected pathway to the atmosphere. Biogeosciences, 2018, 15, 1775-1794. Carbon dioxide, methane and nitrous oxide emissions from the human-impacted Seine watershed in 243 France. Science of the Total Environment, 2018, 643, 247-259. Extreme drought boosts CO₂ and CH₄ emissions from reservoir drawdown 244 2.2 44 areas. Inland Waters, 2018, 8, 329-340. Repercussion of Large Scale Hydro Dam Deployment: The Case of Congo Grand Inga Hydro Project. Energies, 2018, 11, 972. 3.1 Modeling and Simulation of Methane Dispersion in the Dam of Santo Antonio – Rondônia/Brazil. 246 0.5 0 Communications in Computer and Information Science, 2018, , 419-430. Carbon dioxide emissions from cascade hydropower reservoirs along the Wujiang River, China. Inland 16 Waters, 2018, 8, 157-166. Greening Development Lending in the Americas: Trends and Determinants. Ecological Economics, 2018, 248 5.7 35 154, 189-200. Energizing development finance? The benefits and risks of China's development finance in the global 249 8.8 54 energy sector. Energy Policy, 2018, 122, 313-321. Reviews and syntheses: Anthropogenic perturbations to carbon fluxes in Asian river systems $\hat{a} \in ``$ 250 3.3 55 concepts, emérging trends, and research challenges. Biogeosciences, 2018, 15, 3049-3069. Mechanisms controlling dissolved CO₂ over-saturation in the Three Gorges Reservoir 2.2 area. Inland Waters, 2018, 8, 148-156. CO2 oversaturation and degassing using chambers and a new gas transfer velocity model from the 253 8.0 21 Three Gorges Reservoir surface. Science of the Total Environment, 2018, 640-641, 908-920. Effects of dams on riverine biogeochemical cycling and ecology. Inland Waters, 2018, 8, 130-140. 254 2.2 58 Methane and Global Environmental Change. Annual Review of Environment and Resources, 2018, 43, 255 13.4 45 165-192. Long-term prediction of greenhouse gas risk to the Chinese hydropower reservoirs. Science of the Total Environment, 2019, 646, 300-308. Methanogenic archaea associated to Microcystis sp. in field samples and in culture. Hydrobiologia, 257 2.0 10 2019, 831, 163-172. Contribution of Flooded Soils to Sediment and Nutrient Fluxes in a Hydropower Reservoir (Sarrans,) Tj ETQq1 1 0.784314 rgBT /Overl 258

#	Article	IF	CITATIONS
259	Redistribution of methane emission hot spots under drawdown conditions. Science of the Total Environment, 2019, 646, 958-971.	8.0	17
260	Methane formation in tropical reservoirs predicted from sediment age and nitrogen. Scientific Reports, 2019, 9, 11017.	3.3	20
262	Magnitudes and Drivers of Greenhouse Gas Fluxes in Floodplain Ponds During Drawdown and Inundation by the Three Gorges Reservoir. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 2499-2517.	3.0	8
263	Soil and water management: opportunities to mitigate nutrient losses to surface waters in the Northern Great Plains. Environmental Reviews, 2019, 27, 447-477.	4.5	50
264	Paradoxical gaps in resilient environmental governance. Environmental Reviews, 2019, , 1-6.	4.5	2
265	Natural Lakes Are a Minor Global Source of N ₂ O to the Atmosphere. Global Biogeochemical Cycles, 2019, 33, 1564-1581.	4.9	40
266	A snapshot of the limnological features in tropical floodplain lakes: the relative influence of climate and land use. Acta Limnologica Brasiliensia, 0, 31, .	0.4	3
267	Distribution patterns of bacterial communities and their potential link to variable viral lysis in temperate freshwater reservoirs. Aquatic Sciences, 2019, 81, 1.	1.5	5
268	Control of the Hydraulic Load on Nitrous Oxide Emissions from Cascade Reservoirs. Environmental Science & Technology, 2019, 53, 11745-11754.	10.0	46
269	The carbon footprint of large- and mid-scale hydropower in China: Synthesis from five China's largest hydro-project. Journal of Environmental Management, 2019, 250, 109363.	7.8	15
270	Reducing greenhouse gas emissions of Amazon hydropower with strategic dam planning. Nature Communications, 2019, 10, 4281.	12.8	126
271	The unintended impact of ecosystem preservation on greenhouse gas emissions: Evidence from environmental constraints on hydropower development in the United States. PLoS ONE, 2019, 14, e0210483.	2.5	5
272	Global regulation of methane emission from natural lakes. Scientific Reports, 2019, 9, 255.	3.3	59
274	Sediment fluxes rather than oxic methanogenesis explain diffusive CH4 emissions from lakes and reservoirs. Scientific Reports, 2019, 9, 243.	3.3	59
275	Phytoplankton gross primary production increases along cascading impoundments in a temperate, low-discharge river: Insights from high frequency water quality monitoring. Scientific Reports, 2019, 9, 6701.	3.3	16
276	Greenhouse gas measurement from Chinese freshwater bodies: AÂreview. Journal of Cleaner Production, 2019, 233, 368-378.	9.3	77
277	Physically controlled CO ₂ effluxes from a reservoir surface in the upper Mekong River Basin: a case study in the Gongguoqiao Reservoir. Biogeosciences, 2019, 16, 2205-2219.	3.3	6
278	Diffusive emissions of methane and nitrous oxide from a cascade of tropical hydropower reservoirs in Kenya. Lakes and Reservoirs: Research and Management, 2019, 24, 127-135.	0.9	7

#	Article	IF	CITATIONS
279	High-frequency measurements of gas ebullition in a Brazilian subtropical reservoir—identification of relevant triggers and seasonal patterns. Environmental Monitoring and Assessment, 2019, 191, 357.	2.7	9
280	Monitoring Reservoir Drought Dynamics with Landsat and Radar/Lidar Altimetry Time Series in Persistently Cloudy Eastern Brazil. Remote Sensing, 2019, 11, 827.	4.0	22
281	Effect of Cascading Reservoirs on the Flow Variation and Thermal Regime in the Lower Reaches of the Jinsha River. Water (Switzerland), 2019, 11, 1008.	2.7	17
282	A comparative life-cycle assessment of hydro-, nuclear and wind power: A China study. Applied Energy, 2019, 249, 37-45.	10.1	106
283	Soils Drowned in Water Impoundments: A New Frontier. Frontiers in Environmental Science, 2019, 7, .	3.3	3
284	Understanding transport and transformation of dissolved inorganic carbon (DIC) in the reservoir system using l'13CDIC and water chemistry. Journal of Hydrology, 2019, 574, 193-201.	5.4	30
285	Hydrodynamic moraine-breach modeling and outburst flood routing - A hazard assessment of the South Lhonak lake, Sikkim. Science of the Total Environment, 2019, 668, 362-378.	8.0	45
286	Carbon dioxide emissions from the Geheyan Reservoir over the Qingjiang River Basin, China. Ecohydrology and Hydrobiology, 2019, 19, 499-514.	2.3	7
287	Methane Emissions from Artificial Waterbodies Dominate the Carbon Footprint of Irrigation: A Study of Transitions in the Food–Energy–Water–Climate Nexus (Spain, 1900–2014). Environmental Science & Technology, 2019, 53, 5091-5101.	10.0	38
288	Flux of organic carbon burial and carbon emission from a large reservoir: implications for the cleanliness assessment of hydropower. Science Bulletin, 2019, 64, 603-611.	9.0	19
289	Comparison of carbon emissions from the southern and northern tributaries of the Three Gorge Reservoir over the Changjiang River Basin, China. Ecohydrology and Hydrobiology, 2019, 19, 515-528.	2.3	9
290	Quantifying net water consumption of Norwegian hydropower reservoirs and related aquatic biodiversity impacts in Life Cycle Assessment. Environmental Impact Assessment Review, 2019, 76, 36-46.	9.2	22
291	A review of carbon sink or source effect on artificial reservoirs. International Journal of Environmental Science and Technology, 2019, 16, 2161-2174.	3.5	21
292	Interaction between carbon dioxide emissions and eutrophication in a drinking water reservoir: A three-dimensional ecological modeling approach. Science of the Total Environment, 2019, 663, 369-379.	8.0	17
293	Water–energy nexus of the Eastern Route of China's South-to-North Water Transfer Project. Water Policy, 2019, 21, 945-963.	1.5	8
294	Winter emissions of <scp>CO</scp> ₂ , <scp>CH</scp> ₄ , and N ₂ O from temperate agricultural dams: fluxes, sources, and processes. Ecosphere, 2019, 10, e02914.	2.2	18
295	Climate Impacts of Hydropower: Enormous Differences among Facilities and over Time. Environmental Science & Technology, 2019, 53, 14070-14082.	10.0	39
296	Terrestrial Vegetation Drives Methane Production in the Sediments of two German Reservoirs. Scientific Reports, 2019, 9, 15944.	3.3	14

#	Article	IF	CITATIONS
297	Limnological effects of a large Amazonian run-of-river dam on the main river and drowned tributary valleys. Scientific Reports, 2019, 9, 16846.	3.3	30
299	Conjunctive use of in situ gas sampling and chromatography with geospatial analysis to estimate greenhouse gas emissions of a large Amazonian hydroelectric reservoir. Science of the Total Environment, 2019, 650, 394-407.	8.0	9
300	Methane diffusive fluxes from sediment exposed in a Brazilian tropical reservoir drawdown zone. Journal of South American Earth Sciences, 2019, 90, 463-470.	1.4	9
301	CO2 emissions from hydroelectric reservoirs in the Tigris River basin, a semi-arid region of southeastern Turkey. Journal of Hydrology, 2019, 569, 782-794.	5.4	5
302	Long-term changes in nutrient dynamics and plankton communities following the creation of a new reservoir. Canadian Journal of Fisheries and Aquatic Sciences, 2019, 76, 1459-1469.	1.4	6
303	Bringing back ecological flows: migratory fish, hydropower and legal maladaptivity in the governance of Finnish rivers. Water International, 2019, 44, 321-336.	1.0	26
304	China's roadmap to low-carbon electricity and water: Disentangling greenhouse gas (GHG) emissions from electricity-water nexus via renewable wind and solar power generation, and carbon capture and storage. Applied Energy, 2019, 235, 31-42.	10.1	60
305	Punching above their weight: Large release of greenhouse gases from small agricultural dams. Global Change Biology, 2019, 25, 721-732.	9.5	64
306	Synthesizing dam-induced land system change. Ambio, 2019, 48, 1183-1194.	5.5	12
307	Modeling Global Riverine DOC Flux Dynamics From 1951 to 2015. Journal of Advances in Modeling Earth Systems, 2019, 11, 514-530.	3.8	34
308	Carbon neutral policy in action: the case of Bhutan. Climate Policy, 2019, 19, 672-687.	5.1	25
309	Determining community preferences to manage conflicts in small hydropower projects in Nepal. Sustainable Water Resources Management, 2019, 5, 1103-1114.	2.1	7
310	Long term follow-up of pCO2, pCH4 and emissions from Eastmain 1 boreal reservoir, and the Rupert diversion bays, Canada. Ecohydrology and Hydrobiology, 2019, 19, 529-540.	2.3	6
311	Polish River Basins and Lakes $\hat{a} \in$ "Part I. Handbook of Environmental Chemistry, 2020, , .	0.4	6
312	Reservoir CO2 evasion flux and controlling factors of carbon species traced by δ13CDIC at different regulating phases of a hydro-power dam. Science of the Total Environment, 2020, 698, 134184.	8.0	8
313	Carbon dioxide supersaturation in highâ€elevation oligotrophic lakes and reservoirs in the Sierra Nevada, California. Limnology and Oceanography, 2020, 65, 612-626.	3.1	5
314	A review of the energy–carbon–water nexus: Concepts, research focuses, mechanisms, and methodologies. Wiley Interdisciplinary Reviews: Energy and Environment, 2020, 9, e358.	4.1	24
315	The importance of considering resource availability restrictions in energy planning: What is the footprint of electricity generation in the Middle East and North Africa (MENA)?. Science of the Total Environment, 2020, 717, 135035.	8.0	21

#	Article	IF	CITATIONS
316	Isotope Constraints on the Sources of Particulate Organic Carbon in a Subtropical Deep Reservoir. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005240.	3.0	2
317	National growth and regional (under)development in Brazil. , 2020, , 71-84.		2
318	A Season of Eddy-Covariance Fluxes Above an Extensive Water Body Based on Observations from a Floating Platform. Boundary-Layer Meteorology, 2020, 174, 433-464.	2.3	5
319	Determining the net environmental performance of hydropower: A new methodological approach by combining life cycle and ecosystem services assessment. Science of the Total Environment, 2020, 712, 136369.	8.0	25
320	Hydrological management constraints on the chemistry of dissolved organic matter in the Three Gorges Reservoir. Water Research, 2020, 187, 116413.	11.3	50
321	Methane and Carbon Dioxide Emissions From Reservoirs: Controls and Upscaling. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005474.	3.0	26
322	Carbon biogeochemical processes in a subtropical karst river–reservoir system. Journal of Hydrology, 2020, 591, 125590.	5.4	21
323	Spatial and temporal variability of methane emissions from cascading reservoirs in the Upper Mekong River. Water Research, 2020, 186, 116319.	11.3	29
324	Particulate organic carbon dynamics with sediment transport in the upper Yangtze River. Water Research, 2020, 184, 116193.	11.3	24
325	Ecosystem-Scale Oxygen Manipulations Alter Terminal Electron Acceptor Pathways in a Eutrophic Reservoir. Ecosystems, 2021, 24, 1281-1298.	3.4	7
326	Inland Waters. , 2020, , 293-360.		4
327	The net GHG emissions of the Three Gorges Reservoir in China: II. Post-impoundment GHG inventories and full-scale synthesis. Journal of Cleaner Production, 2020, 277, 123961.	9.3	6
328	Assessing the life cycle environmental impacts of hydroelectric generation in Ethiopia. Sustainable Energy Technologies and Assessments, 2020, 41, 100795.	2.7	2
330	Isotopic evidence for vertical diversification of methane production pathways in freshwater sediments of Nielisz reservoir (Poland). Catena, 2020, 195, 104803.	5.0	14
331	Rapid shifts in methanotrophic bacterial communities mitigate methane emissions from a tropical hydropower reservoir and its downstream river. Science of the Total Environment, 2020, 748, 141374.	8.0	8
332	Underestimated methane production triggered by phytoplankton succession in river-reservoir systems: Evidence from a microcosm study. Water Research, 2020, 185, 116233.	11.3	31
333	Estimation of Biomass and Soil Carbon Stock in the Hydroelectric Catchment of India and its Implementation to Climate Change. Journal of Sustainable Forestry, 2020, , 1-16.	1.4	18
334	Comparison model learning methods for methane emission prediction of reservoirs on a regional field scale: Performance and adaptation of methods with different experimental datasets. Ecological Engineering, 2020, 157, 105990.	3.6	5

#	Article	IF	CITATIONS
335	Large Spatial Variations in Diffusive CH ₄ Fluxes from a Subtropical Coastal Reservoir Affected by Sewage Discharge in Southeast China. Environmental Science & Technology, 2020, 54, 14192-14203.	10.0	26
336	Effect of hydraulic load on thermal stratification in karst cascade hydropower reservoirs, Southwest China. Journal of Hydrology: Regional Studies, 2020, 32, 100748.	2.4	8
337	Mobilization and Transformation of Mercury Across a Dammed Boreal River Are Linked to Carbon Processing and Hydrology. Water Resources Research, 2020, 56, e2020WR027951.	4.2	11
338	Artificial Intelligence-Driven Circular Economy as a Key Enabler for Sustainable Energy Management. Materials Circular Economy, 2020, 2, 1.	3.2	39
339	Imbalanced Stoichiometric Reservoir Sedimentation Regulates Methane Accumulation in China's Three Gorges Reservoir. Water Resources Research, 2020, 56, e2019WR026447.	4.2	20
340	Evaluating the greenness of hydroelectric projects of Northeast India: a study with special reference to the Tipaimukh project. Decision, 2020, 47, 293-302.	1.5	1
341	Diurnal Pumped‧torage Operation Minimizes Methane Ebullition Fluxes From Hydropower Reservoirs. Water Resources Research, 2020, 56, e2020WR027221.	4.2	9
342	Incorporating Reservoir Greenhouse Gas Emissions into Carbon Footprint of Sugar Produced from Irrigated Sugarcane in Northeastern Nigeria. Sustainability, 2020, 12, 10380.	3.2	3
343	Spatial and Temporal Variability of Diffusive CO ₂ and CH ₄ Fluxes From the Amazonian Reservoir Petitâ€Saut (French Guiana) Reveals the Importance of Allochthonous Inputs for Longâ€Term C Emissions. Global Biogeochemical Cycles, 2020, 34, e2020GB006602.	4.9	17
344	Variability in water chemistry of the Three Gorges Reservoir, China. Heliyon, 2020, 6, e03610.	3.2	6
345	Environmental Impacts of Dam Reservoir Filling in the East Amazon. Frontiers in Water, 2020, 2, .	2.3	17
346	Emission of greenhouse gases from French temperate hydropower reservoirs. Aquatic Sciences, 2020, 82, 1.	1.5	9
347	The carbon footprint of a Malaysian tropical reservoir: measured versus modelled estimates highlight the underestimated key role of downstream processes. Biogeosciences, 2020, 17, 515-527.	3.3	19
348	The Magnitude and Drivers of Methane Ebullition and Diffusion Vary on a Longitudinal Gradient in a Small Freshwater Reservoir. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005205.	3.0	19
349	Comparing methane ebullition variability across space and time in a Brazilian reservoir. Limnology and Oceanography, 2020, 65, 1623-1634.	3.1	32
350	Greenhouse gas fluxes from reservoirs determined by watershed lithology, morphometry, and anthropogenic pressure. Environmental Research Letters, 2020, 15, 044012.	5.2	13
351	The net GHG emissions of the China Three Gorges Reservoir: I. Pre-impoundment GHG inventories and carbon balance. Journal of Cleaner Production, 2020, 256, 120635.	9.3	16
352	Damming effects on river sulfur cycle in karst area: A case study of the Wujiang cascade reservoirs. Agriculture, Ecosystems and Environment, 2020, 294, 106857.	5.3	22

	CITATION R	EPORT	
#	Article	IF	CITATIONS
353	River dam impacts on biogeochemical cycling. Nature Reviews Earth & Environment, 2020, 1, 103-116.	29.7	372
354	Accumulation of organic carbon in a large canyon reservoir in Karstic area, Southwest China. Environmental Science and Pollution Research, 2020, 27, 25163-25172.	5.3	7
355	Varying thermal structure controls the dynamics of CO2 emissions from a subtropical reservoir, south China. Water Research, 2020, 178, 115831.	11.3	35
356	Water–Air Interface Greenhouse Gas Emissions (CO2, CH4, and N2O) Emissions Were Amplified by Continuous Dams in an Urban River in Qinghai–Tibet Plateau, China. Water (Switzerland), 2020, 12, 759.	2.7	9
357	Quantitative Fluxes of the Greenhouse Gases CH4 and CO2 from the Surfaces of Selected Polish Reservoirs. Atmosphere, 2020, 11, 286.	2.3	9
358	Different responses of nitrite- and nitrate-dependent anaerobic methanotrophs to increasing nitrogen loading in a freshwater reservoir. Environmental Pollution, 2020, 263, 114623.	7.5	34
359	High organic carbon burial but high potential for methane ebullition in the sediments of an Amazonian hydroelectric reservoir. Biogeosciences, 2020, 17, 1495-1505.	3.3	15
360	High-resolution monitoring of inland water bodies across China in long time series and water resource changes. Environment, Development and Sustainability, 2021, 23, 3673-3695.	5.0	4
361	Assessment of depthâ€dependent microbial carbonâ€use efficiency in longâ€term fertilized paddy soil using an <scp>¹⁸O–H₂O</scp> approach. Land Degradation and Development, 2021, 32, 199-207.	3.9	8
362	Differential response of microbial diversity and abundance to hydrological residual time and age in cascade reservoirs. Journal of Soils and Sediments, 2021, 21, 1290-1301.	3.0	11
363	Eutrophication Drives Extreme Seasonal CO2 Flux in Lake Ecosystems. Ecosystems, 2021, 24, 434-450.	3.4	19
364	Predicting modeling scenarios of climate change impact on the CO2 emissions from an Amazonian hydroelectric reservoir. Modeling Earth Systems and Environment, 2021, 7, 631-639.	3.4	2
365	Dissolved and emitted methane in the Poyang Lake. Science China Technological Sciences, 2021, 64, 203-212.	4.0	7
366	Lack of methane hotspot in the upstream dam: Case study in a tributary of the Three Gorges Reservoir, China. Science of the Total Environment, 2021, 754, 142151.	8.0	17
367	Diffusive greenhouse gases fluxes from the surface of the Three Gorges Reservoir: Study at a site in Fuling. Acta Ecologica Sinica, 2021, 41, 79-87.	1.9	1
368	Energy and carbon fluxes from an oil sands pit lake. Science of the Total Environment, 2021, 752, 141966.	8.0	11
369	Stable isotope evidence from archived fish scales indicates carbon cycle changes over the four-decade history of the Å~Ãmov Reservoir (Czechia). Science of the Total Environment, 2021, 755, 142550.	8.0	6
370	Landscape changes and their hydrologic effects: Interactions and feedbacks across scales. Earth-Science Reviews, 2021, 212, 103466.	9.1	27

#	Article	IF	CITATIONS
371	Addressing algal blooms by bio-pumps to reduce greenhouse gas production and emissions with multi-path. Chemosphere, 2021, 270, 128666.	8.2	3
372	Total Aquatic Carbon Emissions Across the Boreal Biome of Québec Driven by Watershed Slope. Journal of Geophysical Research G: Biogeosciences, 2021, 126, .	3.0	10
373	Improving the accuracy of electricity carbon footprint: Estimation of hydroelectric reservoir greenhouse gas emissions. Renewable and Sustainable Energy Reviews, 2021, 136, 110433.	16.4	47
374	Lakes in the era of global change: moving beyond singleâ€lake thinking in maintaining biodiversity and ecosystem services. Biological Reviews, 2021, 96, 89-106.	10.4	142
375	Would Africa's largest hydropower dam have profound environmental impacts?. Environmental Science and Pollution Research, 2021, 28, 8936-8944.	5.3	17
376	Hydropower Reservoirs—Benefits and Challenges. , 2021, , .		1
377	Climate change and agriculture. , 2021, , 661-686.		9
378	Spatiotemporal distribution of carbon dioxide partial pressure and its diffusion flux in surface water of Karst wetland. Hupo Kexue/Journal of Lake Sciences, 2021, 33, 854-865.	0.8	1
379	Carbon Monoxide Gas Pollution Control Model Using Reducing Plants. Journal of Environmental Treatment Techniques (discontinued), 2020, 9, 428-434.	0.3	3
380	Soil C _O and CH ₄ Emissions and Their Carbon Isotopic Signatures Linked to Saturated and Drained States of the Three Gorges Reservoir of China. SSRN Electronic Journal, 0, , .	0.4	0
381	Hydropower Generation in Tropical Countries. Green Energy and Technology, 2021, , 33-52.	0.6	1
382	Seasonal variation of nitrogen biogeochemical processes constrained by nitrate dual isotopes in cascade reservoirs, Southwestern China. Environmental Science and Pollution Research, 2021, 28, 26617-26627.	5.3	14
383	CH ₄ variation and main influencing factors of bottom water column in the middle section of Three Gorges Reservoir. Hupo Kexue/Journal of Lake Sciences, 2021, 33, 299-308.	0.8	1
384	Understanding Food Web Mercury Accumulation Through Trophic Transfer and Carbon Processing along a River Affected by Recent Run-of-river Dams. Environmental Science & Technology, 2021, 55, 2949-2959.	10.0	18
385	Spatial mapping of soil properties in Konkan region of India experiencing anthropogenic onslaught. PLoS ONE, 2021, 16, e0247177.	2.5	5
386	Changing sources and processes sustaining surface CO ₂ and CH ₄ fluxes along a tropical river to reservoir system. Biogeosciences, 2021, 18, 1333-1350.	3.3	14
387	Hybrid Multivariate Statistical and Neural Network Model to Predict Greenhouse Gas Emissions. Arabian Journal for Science and Engineering, 2021, 46, 10113-10123.	3.0	1
388	The albedo–climate penalty of hydropower reservoirs. Nature Energy, 2021, 6, 372-377.	39.5	27

	CHATION RE	PORT	
#	Article	IF	Citations
389	The GHGSat-D imaging spectrometer. Atmospheric Measurement Techniques, 2021, 14, 2127-2140.	3.1	62
390	Carbon and Beyond: The Biogeochemistry of Climate in a Rapidly Changing Amazon. Frontiers in Forests and Global Change, 2021, 4, .	2.3	21
391	Substantial decrease in CO2 emissions from Chinese inland waters due to global change. Nature Communications, 2021, 12, 1730.	12.8	71
392	CO ₂ emissions from karst cascade hydropower reservoirs: mechanisms and reservoir effect. Environmental Research Letters, 2021, 16, 044013.	5.2	18
393	Hydropower under climate uncertainty: Characterizing the usable capacity of Brazilian, Colombian and Peruvian power plants under climate scenarios. Energy for Sustainable Development, 2021, 61, 217-229.	4.5	21
394	Hotspots of Diffusive CO ₂ and CH ₄ Emission From Tropical Reservoirs Shift Through Time. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JC006014.	3.0	14
395	Low Diffusive Methane Emissions From the Main Channel of a Large Amazonian Run-of-the-River Reservoir Attributed to High Methane Oxidation. Frontiers in Environmental Science, 2021, 9, .	3.3	6
396	Eutrophication effects on CH4 and CO2 fluxes in a highly urbanized tropical reservoir (Southeast,) Tj ETQq1 1 0.	784314 rg	BT_/Overloc
397	Drivers of Methane Flux Differ Between Lakes and Reservoirs, Complicating Global Upscaling Efforts. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2019JG005600.	3.0	42
398	Interdisciplinary Reservoir Management—A Tool for Sustainable Water Resources Management. Sustainability, 2021, 13, 4498.	3.2	13
399	Methanogenesis exceeds <scp>CH₄</scp> consumption in eutrophic lake sediments. Limnology and Oceanography Letters, 2021, 6, 173-181.	3.9	23
400	The Economic Performance of Hydropower Dams Supported by the World Bank Group, 1975–2015. Energies, 2021, 14, 2673.	3.1	8
401	Clobal carbon budget of reservoirs is overturned by the quantification of drawdown areas. Nature Geoscience, 2021, 14, 402-408.	12.9	70
402	Yearâ€2020 Global Distribution and Pathways of Reservoir Methane and Carbon Dioxide Emissions According to the Greenhouse Gas From Reservoirs (Gâ€res) Model. Global Biogeochemical Cycles, 2021, 35, e2020GB006888.	4.9	44
403	How green can Amazon hydropower be? Net carbon emission from the largest hydropower plant in Amazonia. Science Advances, 2021, 7, .	10.3	18
404	Effects of environmental factors on the methane and carbon dioxide fluxes at the middle of Three Gorges Reservoir. Journal of Water and Climate Change, 2021, 12, 4007-4020.	2.9	4
405	Long-Term Evolution of Greenhouse Gas Emissions From Global Reservoirs. Frontiers in Environmental Science, 2021, 9, .	3.3	12
407	Diel variation of CH4 emission fluxes in a small artificial lake: Toward more accurate methods of observation. Science of the Total Environment, 2021, 784, 147146.	8.0	8

#	Article	IF	CITATIONS
408	Hydropower and environmental sustainability: A holistic assessment using multiple biophysical indicators. Ecological Indicators, 2021, 127, 107748.	6.3	5
409	Spatiotemporal Methane Emission From Global Reservoirs. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006305.	3.0	23
411	A new modelling framework to assess biogenic GHG emissions from reservoirs: The G-res tool. Environmental Modelling and Software, 2021, 143, 105117.	4.5	24
412	Activity and structure of methanogenic microbial communities in sediments of cascade hydropower reservoirs, Southwest China. Science of the Total Environment, 2021, 786, 147515.	8.0	7
413	A state-of-the-art review of greenhouse gas emissions from Indian hydropower reservoirs. Journal of Cleaner Production, 2021, 320, 128806.	9.3	47
414	Life cycle assessment of renewable energy in Africa. Sustainable Production and Consumption, 2021, 28, 1314-1332.	11.0	23
415	Effects of river damming and delta erosion on organic carbon burial in the Changjiang Estuary and adjacent East China Sea inner shelf. Science of the Total Environment, 2021, 793, 148610.	8.0	21
416	Spatial variations in CO2 fluxes in a subtropical coastal reservoir of Southeast China were related to urbanization and land-use types. Journal of Environmental Sciences, 2021, 109, 206-218.	6.1	12
417	Increase of methane emission linked to net cage fish farms in a tropical reservoir. Environmental Challenges, 2021, 5, 100287.	4.2	0
418	Sediment methane production within eutrophic reservoirs: The importance of sedimenting organic matter. Science of the Total Environment, 2021, 799, 149219.	8.0	8
419	Nutrient retention behind a tropical mega-dam: a case study of the Sardar Sarovar Dam, India. SN Applied Sciences, 2021, 3, 1.	2.9	6
420	Neglected Values of Major Water Engineering Projects: Ecosystem Services, Social Impacts, and Economic Valuation. Water Resources Development and Management, 2016, , 65-78.	0.4	2
422	Evolution of the physico-chemical water quality in the Nam Theun 2 Reservoir and downstream rivers for the first 5 years after impoundment. Hydroecologie Appliquee, 2016, 19, 27-61.	1.3	20
423	Nam Theun 2 Reservoir four years after commissioning: significance of drawdown methane emissions and other pathways. Hydroecologie Appliquee, 2016, 19, 119-146.	1.3	16
424	Seasonal and diurnal methane and carbon dioxide emissions from the littoral area of the Miyun Reservoir in Beijing, China. Marine and Freshwater Research, 2018, 69, 751.	1.3	6
425	A model for the data extrapolation of greenhouse gas emissions in the Brazilian hydroelectric system. Environmental Research Letters, 2016, 11, 064012.	5.2	7
427	Why Novel Sanitary Systems are Hardly Introduced?. Journal of Sustainable Development of Energy, Water and Environment Systems, 2019, 7, 13-27.	1.9	6
428	Improving hydropower choices via an online and open access tool. PLoS ONE, 2017, 12, e0179393.	2.5	7

#	Article	IF	CITATIONS
429	Eddy-covariance CO2 fluxes over Itaipu lake, southern Brazil. Revista Brasileira De Recursos Hidricos, 0, 25, .	0.5	4
430	Application of multivariate methods and geoestatistics to model the relationship between CO2 emissions and physicochemical variables in the Hidrosogamoso reservoir, Colombia. Acta Limnologica Brasiliensia, 0, 32, .	0.4	4
431	The role of sediments in the carbon and pollutant cycles in aquatic ecosystems. Acta Limnologica Brasiliensia, 0, 31, .	0.4	20
432	Preliminary study of CO ₂ and CH ₄ fluxes at soil-air interface in drawdown area of the Pengxi River of the Three Gorges Reservoir. Hupo Kexue/Journal of Lake Sciences, 2013, 25, 674-680.	0.8	2
433	Diel variations of air-water CO ₂ and CH ₄ diffusive fluxes in the Pengxi River, Three Gorges Reservoir. Hupo Kexue/Journal of Lake Sciences, 2014, 26, 576-584.	0.8	7
434	Greenhouse gas flux at reservoirs of Jiangxi Province and its influencing factors. Hupo Kexue/Journal of Lake Sciences, 2017, 29, 1000-1008.	0.8	4
435	Temporal and spatial variation of carbon dioxide concentration and its exchange fluxes in Lake Chaohu. Hupo Kexue/Journal of Lake Sciences, 2019, 31, 766-778.	0.8	8
436	The net GHG flux assessment model of reservoir(G-res Tool) and its application in reservoirs in upper reaches of Yangtze River in China. Hupo Kexue/Journal of Lake Sciences, 2019, 31, 1479-1488.	0.8	1
447	Moving toward sustainable environment: The effects of hydropower industry on water quality in EU economies. Energy and Environment, 2022, 33, 1304-1325.	4.6	12
448	Agricultural activity enhances CO2 and CH4 emissions after sediment rewetting in a tropical semiarid reservoir. Hydrobiologia, 2022, 849, 3979-3993.	2.0	4
449	Evaluation of Greenhouse Gas Emissions from Reservoirs: A Review. Sustainability, 2021, 13, 11621.	3.2	9
450	Changes in Microbial Communities along a Water Column in an Amazonian Flooded Area. Aquatic Science and Technology, 2012, 1, .	0.1	1
455	Ebullition fluxes of CO ₂ and CH ₄ in Pengxi River, Three Gorges Reservoir. Hupo Kexue/Journal of Lake Sciences, 2014, 26, 789-798.	0.8	1
458	Gases invernadero en aguas con bajo oxÃgeno en el reservorio eutrófico de Prado (Colombia). Revista De La Academia Colombiana De Ciencias Exactas, Fisicas Y Naturales, 2015, 39, 399.	0.2	0
462	Partial pressure of carbon dioxide in the Xinfengjiang Reservoir of Guangdong Province and its influencing factors. Hupo Kexue/Journal of Lake Sciences, 2018, 30, 770-781.	0.8	2
464	Assessment of the spatial distribution of the direction of greenhouse gas fluxes at the Krasnoyarsk water reservoir in the warm season of 2017. , 2018, , .		0
465	Study of carbonaceous gases fluxes at the Irkutsk water reservoir in the warm season. , 2018, , .		0
466	Contribution of Methane Formation and Methane Oxidation to Methane Emission from Freshwater Systems. , 2019, , 401-430.		3

#	Article	IF	CITATIONS
467	Represas hidroeléctricas en la Amazonia brasileña: impactos ambientales y sociales. Revista De Estudios Brasileños, 2019, 6, 123.	0.2	5
468	Total Organic Carbon in the Water of Polish Dam Reservoirs. Handbook of Environmental Chemistry, 2020, , 189-207.	0.4	1
469	Energy Security and Green Energy in Brazil: The Discourse of Economic Development. International Law and Economics, 2020, , 65-102.	0.2	0
470	NUMERICAL SIMULATION OF METHANE EMISSION FROM AN ARTIFICIAL RESERVOIR. Fundamental and Applied Climatology, 2020, 2, 76-99.	0.4	2
472	Estimation of CO2 emission in reservoir coupling floating chamber and thin boundary layer methods. Science of the Total Environment, 2022, 811, 151438.	8.0	4
473	An Overview of the Adverse Effects of Renewable Energy Sources. International Journal for Research in Applied Science and Engineering Technology, 2020, 8, 477-486.	0.1	1
474	Chinese development finance in the Americas. , 2020, , 123-152.		6
475	Calibration of a management-oriented greenhouse gas emission model for lakes and reservoirs under different distribution of environmental data. Science of the Total Environment, 2020, 734, 138791.	8.0	0
476	Soil CO2 and CH4 emissions and their carbon isotopic signatures linked to saturated and drained states of the Three Gorges Reservoir of China. Environmental Pollution, 2022, 293, 118599.	7.5	10
477	Monitoring global reservoirs using ICESat-2: Assessment on spatial coverage and application potential. Journal of Hydrology, 2022, 604, 127257.	5.4	16
478	Electric Truck Hydropower, a Flexible Solution to Hydropower in Mountainous Regions. SSRN Electronic Journal, 0, , .	0.4	0
479	Estimation of greenhouse gas emissions of a tropical reservoir in Colombia. Journal of Water and Climate Change, 2022, 13, 872-888.	2.9	3
480	The pathway toward pollution mitigation in EU28 region: Does hydropower growth make a difference?. Renewable Energy, 2022, 185, 291-301.	8.9	20
481	Modeling the spatial and temporal variability in surface water CO2 and CH4 concentrations in a newly created complex of boreal hydroelectric reservoirs. Science of the Total Environment, 2022, 815, 152459.	8.0	4
482	Reservoir NO3â^' pollution and chemical weathering: by dual isotopes of Î′15N-NO3â^', Î′18O-NO3â^' and geochemical constraints. Environmental Geochemistry and Health, 2022, 44, 4381-4402.	3.4	3
483	The anaerobic oxidation of methane driven by multiple electron acceptors suppresses the release of methane from the sediments of a reservoir. Journal of Soils and Sediments, 2022, 22, 682-691.	3.0	5
484	Toxicity studies on sediments near hydropower plants on the Ślęza and Bystrzyca rivers, Poland, to establish their potential for use for soil enrichment. Land Degradation and Development, 2022, 33, 756-770.	3.9	14
485	Three Gorges Dam: friend or foe of riverine greenhouse gases?. National Science Review, 2022, 9, .	9.5	27

#	Article	IF	CITATIONS
486	Solar Radiation Components on a Horizontal Surface in a Tropical Coastal City of Salvador. Energies, 2022, 15, 1058.	3.1	2
487	The synergy of environmental and microbial variations caused by hydrologic management affects the carbon emission in the Three Gorges Reservoir. Science of the Total Environment, 2022, 821, 153446.	8.0	4
488	Turnover of dissolved organic carbon fuels nocturnal CO2 emissions from a headwater catchment reservoir, Southeastern China: Effects of ecosystem metabolism on source partitioning of CO2 emissions. Journal of Environmental Sciences, 2022, 121, 98-111.	6.1	3
489	Reservoirs change pCO2 and water quality of downstream rivers: Evidence from three reservoirs in the Seine Basin. Water Research, 2022, 213, 118158.	11.3	4
490	Accounting for Methane Dynamics in the Upper Yangtze River Valley Dammed Reservoir in China: A Hierarchical Bayesian Modeling Approach. SSRN Electronic Journal, 0, , .	0.4	0
491	Estimation of Methane Emissions from Reservoirs Based on Country-Specific Trophic State Assessment in Korea. Water (Switzerland), 2022, 14, 562.	2.7	0
493	Implementación de la técnica de medición y primer registro de gases de efecto invernadero (CO2, CH4 y) Tj I	т <u>Qq</u> 0 0 0	rgBT /Overlo
494	Greenhouse gas emissions from Mexican inland waters: first estimation and uncertainty using an upscaling approach. Inland Waters, 2022, 12, 294-310.	2.2	4
495	Potential impacts of climate, land use and land cover changes on hydropower generation in West Africa: a review. Environmental Research Letters, 2022, 17, 043005.	5.2	14
496	La transizione energetica nell'attuale contesto globale. Rivista Geographica Italiana, 2022, , 81-104.	0.2	1
497	Florida's urban stormwater ponds are net sources of carbon to the atmosphere despite increased carbon burial over time. Communications Earth & Environment, 2022, 3, .	6.8	13
498	Carbon dioxide and methane fluxes from mariculture ponds: The potential of sediment improvers to reduce carbon emissions. Science of the Total Environment, 2022, 829, 154610.	8.0	8
499	Out of gas: re-flooding does not boost carbon emissions from drawdown areas in semiarid reservoirs after prolonged droughts. Aquatic Sciences, 2022, 84, 1.	1.5	3
500	A Review of Quantifying pCO2 in Inland Waters with a Global Perspective: Challenges and Prospects of Implementing Remote Sensing Technology. Remote Sensing, 2021, 13, 4916.	4.0	8

501	Characteristics of carbon source greenhouse gas flux in the water–air formation in the middle and upper reaches of the Three Gorges Reservoir. Water Policy, 2022, 24, 49-65.	1.5	0
502	Anthropogenic regulation governs nutrient cycling and biological succession in hydropower reservoirs. Science of the Total Environment, 2022, 834, 155392.	8.0	9
503	Carbon intensity of global existing and future hydropower reservoirs. Renewable and Sustainable Energy Reviews, 2022, 162, 112433.	16.4	9
504	Getting lost tracking the carbon footprint of hydropower. Renewable and Sustainable Energy Reviews, 2022, 162, 112408,	16.4	7

#	Article	IF	CITATIONS
505	Green House Gas emissions from Hydropower Reservoirs: Policy and Challenges. , 2016, , .		3
506	Place-based interpretation of the sustainable development goals for the land-river interface. Sustainability Science, 2022, 17, 1695-1714.	4.9	6
507	Study on carbon dioxide emission from reservoirs with different regulation types and its empirical prediction model. Environmental Science and Pollution Research, 2022, 29, 69705-69716.	5.3	2
508	State of science in carbon budget assessments for temperate forests and grasslands. , 2022, , 237-270.		0
509	Tropical ecosystem greenhouse gas accounting. , 2022, , 271-309.		0
510	Challenges Regionalizing Methane Emissions Using Aquatic Environments in the Amazon Basin as Examples. Frontiers in Environmental Science, 2022, 10, .	3.3	4
511	Effects of hydropower management on the sediment composition and metabolism of a small Alpine lake. Hydroecologie Appliquee, 2022, 22, 1.	1.3	0
512	Systems Accounting for Carbon Emissions by Hydropower Plant. Sustainability, 2022, 14, 6939.	3.2	5
513	Greenhouse gas emissions and their relationship with hydropower generation in a tropical reservoir in Colombia. Water Policy, 0, , .	1.5	0
514	A review of how life cycle assessment has been used to assess the environmental impacts of hydropower energy. Renewable and Sustainable Energy Reviews, 2022, 167, 112684.	16.4	29
515	Climate change and water justice. , 2022, , 399-418.		1
516	Greenhouse gases concentrations and emissions from a small subtropical cascaded river-reservoir system. Journal of Hydrology, 2022, 612, 128190.	5.4	2
517	Potential hydropower contribution to mitigate climate risk and build resilience in Africa. Nature Climate Change, 2022, 12, 719-727.	18.8	11
518	The drawdown phase of dam decommissioning is a hot moment of gaseous carbon emissions from a temperate reservoir. Inland Waters, 2022, 12, 451-462.	2.2	3
519	Sedimentation supports life-cycle CH4 production and accumulation in a river valley reservoir: A hierarchical Bayesian modeling approach. Water Research, 2022, 222, 118861.	11.3	3
521	Anthropogenically driven climate and landscape change effects on inland water carbon dynamics: What have we learned and where are we going?. Global Change Biology, 2022, 28, 5601-5629.	9.5	24
522	Hydro-Energy Potential Assessment in the Context of E-Flows for Himalayan Upland Rivers. Water, Air, and Soil Pollution, 2022, 233, .	2.4	1
524	Spatial dynamics of dissolved organic matter among different segments of a large-scale reservoir in the water-level declining period. Frontiers in Environmental Science, 0, 10, .	3.3	0

• Arrent: F CHARDER 528 Stimuting Drivers and Pathways for Hydroelectric Reservoir Methane Emissions Using a New Methanistic Model, Journal of Cephysical Research C. Bingeosciences, 2022, 127, 71 3.0 6.0 529 Optimitic Simulation of CO2 flux in a hydropower reservoir in Southwest China. Journal of Hydrology. 6.0 100 520 Second 1, 225, 51, 1019-1029. 6.0 100 100 100 520 Second 2, 122, 51, 0119-1029. 6.0 100 <td< th=""><th></th><th></th><th></th><th></th></td<>				
3235 Mechanistic Model, Journal of Geophysical Research C: Biogeosciences, 2022, 127, \$2.00 \$3.00 \$6 2020 Dynamic simulation of CO2 flux in a hydropower reservoir in Southwest China. Journal of Hydrology, 2022, 613, 128354. \$2.4 \$2 2021 Biodiversity risks and safeguards of China36 [®] Ms hydropower financing in Belt and Road Initiative (BRI) 6.8 10 2022 Co2. dynamics in a small and old subtropical reservoir in East Asia: Environmental controls driving 8.00 1 2030 Reservoir CO2 and CH4 emissions and their climate impact over the period 19006€"2060. Nature 12.0 24 2031 India66 [®] Contribution to Creenhouse Cas Emission from Freshwater Ecosystems: A Comprehensive Co2 and CH4 emissions and their climate impact over the period 19006€"2060. Nature 12.0 4 2031 Reservoir CO2 and CH4 emissions and their climate impact over the period 19006€"2060. Nature 12.0 24 2031 India66 [®] Contribution to Creenhouse Cas Emission from Freshwater Ecosystems: A Comprehensive geospatial distabase of nearly 1004€% 000 reservoirs in China. Earth System Science Data, 2.0 4 2032 Spatiotemporal dynamics, community essembly and functional potential of sedimentary archaea in the servoir in fuero in store store the Microbiology Ecology, 2022, 95, 5.7 4 2033 Accomprehensive geospatial distabase o	#	Article	IF	CITATIONS
10.10 2022, 613, 128354. 1.1 1.1 10.11 1.1 1.1 1.1 10.12 Biodiversity risks and safeguards of Chinade™s hydropower financing in Belt and Road Initiative (BRI) 6.8 1.0 10.12 CO2 dynamics in a small and old subtropical reservoir in East Asis: Environmental controls driving 8.0 1 10.12 Reservoir CO2 and CH4 emissions and their climate impact over the period 19004C*2060. Nature 12.9 2.4 10.11 Reservoir CO2 and CH4 emissions and their climate impact over the period 19004C*2060. Nature 12.9 2.4 10.11 Reservoir CO2 and CH4 emissions and their climate impact over the period 19004C*2060. Nature 12.9 2.4 10.11 Reservoir CO2 and CH4 emissions and their climate impact over the period 19004C*2060. Nature 12.9 2.4 10.11 Reservoir Co2 and CH4 emission foom Freshwater Ecosystems: A Comprehensive 2.7 4 10.12 Reservoir coaction of stochasticity and nutrient load. FEMS Microbiology Ecology. 2022, 9.8,. 2.7 4 10.12 Reservoir Coaction of stochasticity and nutrient load. FEMS Microbiology Ecology. 2022, 9.8,. 2.7 0 10.13 A comprehensive geospatial database of nearly 1005€% 4000 reservoirs in China. Earth System Science Data.	525		3.0	6
327 countries. One Earth, 2022, 5, 1019-1029. 6.38 10 528 CO2 dynamics in a small and old subtropical reservoir in East Asia: Environmental controls driving sessonial and spatial variability. Science of the Total Environment, 2023, 856, 159047. 8.0 1 529 Reservoir CO2 and CH4 emissions and their climate limpact over the period 190046"2060. Nature Cesscience, 2022, 15, 700-705. 12.9 24 530 India6CM2 Contribution to Croenhouse Cas Emission from Freshwater Ecosystems: A Comprehensive 2.7 4 5312 Spatiotemporal dynamics, community assembly and functional potential of sedimentary archaea in 2.7 4 532 Spatiotemporal dynamics, control of stochasticity and nutrient load. FEMS Microbiology Ecology, 2022, 9, 8, . 2.7 4 533 Study on the Migration Law of Dissolved Organic Matter in Mine Water Treatment Station. Water 2.7 0 534 Changes in Water Chemistry Associated with Rainstorm Events Increase Carbon Emissions from the Inflowing River Mouth of Magn Drinking Water Reservoir. Environmental Science Ramp; 10.00 23 537 Patterns in riverine carbon, nutrient and suspended solids export to the Eastern James Bay: links to climate, hydrology and landscape. Biogeochemistry, 2022, 14, 16494-16503. 3.5 4 538 tuplications of large hydro dams for decarbonising Ghand's energy consistent with Paris climate 4.5 2	526	Dynamic simulation of CO2 flux in a hydropower reservoir in Southwest China. Journal of Hydrology, 2022, 613, 128354.	5.4	2
328 seasonial and spatial variability. Science of the Total Environment, 2023, 856, 159047. 8.0 1 529 Reservoir CO2 and CH4 emissions and their climate impact over the period 1900& "2060. Nature (2022, 15, 700.705. 12.9 24 530 India& Ms Contribution to Creenhouse Cas Emission from Freshwater Ecosystems: A Comprehensive (2.7) 4 531 Spatiotemporal dynamics, community assembly and functional potential of sedimentary archaea in reservoirs: coaction of stochasticity and nutrient load. FEMS Microbiology Ecology, 2022, 98, . 2.7 4 532 Spatiotemporal dynamics, community assembly and functional potential of sedimentary archaea in 2.7 4 533 Comprehensive geocpatial database of nearly 10046% 000 reservoirs in China. Earth System Science Data, 2.9 533 535 Study on the Migration Law of Dissolved Organic Matter in Mine Water Treatment Station. Water 2.7 0 536 Fundomig River Mouth of a Mager Drinking Water Reservoir. Environmental Science & amp: rechnology, 2022, 16, 1444-16505. 10.0 23 537 Patterns in riverine carbon, nutrient and suspended solids export to the Eastern James Bay: links to 2.1 3.5 4 548 Implications of large hydro dams for decarbonising Chana's energy consistent with Paris climate 4.5 2.2 2 549 Patterns in riverine carbon, nutrient and wate-heat re	527		6.8	10
529 Geoscience, 2022, 15, 700-705. 12.9 24 530 Indiaä ^{CM} s Contribution to Greenhouse Gas Enission from Freshwater Ecosystems: A Comprehensive 2.7 4 530 Indiaä ^{CM} s Contribution to Greenhouse Gas Enission from Freshwater Ecosystems: A Comprehensive 2.7 4 531 Spatiotemporal dynamics, community assembly and functional potential of sedimentary archaea in reservoirs: coaction of stochasticity and nutrient load. FEMS Microbiology Ecology, 2022, 98. 2.7 4 533 A comprehensive geospatial database of nearly 1008C%-000 reservoirs in China. Earth System Science Data, 2022, 14, 4017-4034. 9.9 33 534 Changes in Water Chemistry Associated with Rainstorm Events Increase Carbon Emissions from the Inflowing Rover Mouth of a Major Drinking Water Reservoir. Environmental Science & amp; rechnology, 2022, 50, 16494-1650. 10.0 23 537 Patterns in riverine carbon, nutrient and suspended solids export to the Eastern James Bay: links to climate, hydrology and landscape. Biogeochemistry, 2022, 161, 291-314. 3.5 4 539 Wasted and excess energy in the hydropower sector. A European assessment of tallrace hydrokinetic potential, degassing-methane capture and waste-heat recovery. Applied Energy, 2023, 329, 120213. 10.1 7 540 Embodied carbon emissions induced by the construction of hydropower Infrastructure in China. Energy Policy, 2023, 173, 113404. 12	528		8.0	1
B30 Review. Water (Switzerland), 2022, 14, 2965. 2.7 4 B32 Spatiotemporal dynamics, community assembly and functional potential of sedimentary archaea in reservoirs: coaction of stochasticity and nutrient load. FEMS Microbiology Ecology, 2022, 98, . 2.7 4 B33 A comprehensive geospatial database of nearly 1008€‰000 reservoirs in China. Earth System Science Data, 2.9 9.9 33 B34 Study on the Migration Law of Dissolved Organic Matter in Mine Water Treatment Station. Water 2.7 0 Changes in Water Chemistry Associated with Rainstorm Events Increase Carbon Emissions from the Inflowing River Mouth of a Major Drinking Water Reservoir. Environmental Science & Samp; Technology, 2022, 56, 16494-16505. 0.0 23 Patterns in riverine carbon, nutrient and suspended solids export to the Eastern James Bay: links to climate, hydrology and landscape. Biogeochemistry, 2022, 161, 291-314. 3.5 4 B38 Implications of large hydro dams for decarbonising Chana's energy consistent with Paris climate objectives. Energy for Sustainable Development, 2022, 71, 433 446. 4.5 2 B39 Wasted and excess energy in the hydropower sector: A European assessment of tailrace hydrokinetic potential, degassing-methane capture and waste-heat recovery. Applied Energy, 2023, 329, 120213. 10.1 7 B41 Total Social Costs and Benefits of Long-Distance Hydropower Transmission. Environmental Science Eastry Policy, 2023, 173, 113404. <td>529</td> <td></td> <td>12.9</td> <td>24</td>	529		12.9	24
532 reservoirs: coaction of stochasticity and nutrient load. FEMS Microbiology Ecology, 2022, 98, . 2.7 4 533 Accomprehensive geospatial database of nearly 1003€‰000 reservoirs in China. Earth System Science Data, 2022, 14, 4017.4034. 9.9 33 535 Study on the Migration Law of Dissolved Organic Matter in Mine Water Treatment Station. Water 2.7 0 536 Changes in Water Chemistry Associated with Rainstorm Events Increase Carbon Emissions from the Informing River Mouth of a Major Drinking Water Reservoir. Environmental Science & Amp; Technology, 2022, 56, 16494-16505. 10.0 23 537 Patterns in riverine carbon, nutrient and suspended solids export to the Eastern James Bay: links to climate, hydrology and landscape. Biogeochemistry, 2022, 71, 433-446. 3.5 4 538 Implications of large hydro dams for decarbonising Chana's energy consistent with Paris climate objectives. Energy for Sustainable Development, 2022, 71, 433-446. 2 540 Embodied carbon emissions induced by the construction of hydropower Infrastructure in China. Energy Policy, 2023, 173, 113404. 6.8 12 541 Total Social Costs and Benefits of Long-Distance Hydropower Transmission. Environmental Science Kamp; Technology, 2022, 56, 17510-17522. 1 1 542 Variability in modelled reservoir greenhouse gas emissions: comparison of select US hydropower reservoirs against global estimates. Environmental Research Communications,	530	India's Contribution to Greenhouse Gas Emission from Freshwater Ecosystems: A Comprehensive Review. Water (Switzerland), 2022, 14, 2965.	2.7	4
3332022, 14, 4017-4034.9.933535Study on the Migration Law of Dissolved Organic Matter in Mine Water Treatment Station. Water2.70536Inflowing River Mouth of a Major Drinking Water Reservoir. Environmental Science & amp; Technology, 2022, 56, 16494-16505.10.023537Patterns in riverine carbon, nutrient and suspended solids export to the Eastern James Bay: links to climate, hydrology and landscape. Biogeochemistry, 2022, 161, 291-314.3.54538Implications of large hydro dams for decarbonising Chana's energy consistent with Paris climate objectives. Energy for Sustainable Development, 2022, 71, 433-446.2539Wasted and excess energy in the hydropower sector: A European assessment of tailrace hydrokinetic potential, degassing-methane capture and waste-heat recovery. Applied Energy, 2023, 329, 120213.10.17540Embodied carbon emissions induced by the construction of hydropower infrastructure in China. Energy Policy, 2022, 56, 17510-17522.10.01541Total Social Costs and Benefits of Long-Distance Hydropower Transmission. Environmental Science & amp; Technology, 2022, 56, 17510-17522.10.01542Variability in modelled reservoir greenhouse gas emissions: comparison of select US hydropower reservoirs against global estimates. Environmental Research Communications, 2022, 4, 121008.2.31541Spatial and temporal variations of discloved CO2. CH4 and N20 in Lakes Edward and George (East) Ti ELO00.00 reBL (Overlock 10.115 S)10.15	532		2.7	4
533 (Switzerland), 2022, 14, 3339. 2.7 0 534 (Switzerland), 2022, 14, 3339. 2.7 0 536 (Inflowing River Mouth of a Major Drinking Water Reservoir. Environmental Science & amp; Technology, 2022, 56, 16494-16505. 10.0 23 537 Patterns in riverine carbon, nutrient and suspended solids export to the Eastern James Bay: links to climate, hydrology and landscape. Biogeochemistry, 2022, 161, 291-314. 3.5 4 538 Implications of large hydro dams for decarbonising Ghana's energy consistent with Paris climate objectives. Energy for Sustainable Development, 2022, 71, 433-446. 4.5 2 539 Wasted and excess energy in the hydropower sector: A European assessment of tailrace hydrokinetic potential, degassing-methane capture and waste-heat recovery. Applied Energy, 2023, 329, 120213. 10.1 7 540 Embodied carbon emissions induced by the construction of hydropower infrastructure in China. Energy Policy, 2023, 173, 113404. 8.8 12 541 Total Social Costs and Benefits of Long-Distance Hydropower Transmission. Environmental Science & amp; Technology, 2022, 56, 17510-17522. 10.0 1 542 Variability in modelled reservoir greenhouse gas emissions: comparison of select US hydropower reservoirs against global estimates. Environmental Research Communications, 2022, 4, 121008. 2.3 1 542 Variability in modell	533	A comprehensive geospatial database of nearly 100 000 reservoirs in China. Earth System Science Data, 2022, 14, 4017-4034.	9.9	33
536Inflowing River Mouth of a Major Drinking Water Reservoir. Environmental Science & amp; Technology, 2022, 56, 16494-16505.10.023537Patterns in riverine carbon, nutrient and suspended solids export to the Eastern James Bay: links to climate, hydrology and landscape. Biogeochemistry, 2022, 161, 291-314.3.54538Implications of large hydro dams for decarbonising Ghana's energy consistent with Paris climate objectives. Energy for Sustainable Development, 2022, 71, 433-446.4.52539Wasted and excess energy in the hydropower sector: A European assessment of tailrace hydrokinetic potential, degassing-methane capture and waste-heat recovery. Applied Energy, 2023, 329, 120213.10.17540Embodied carbon emissions induced by the construction of hydropower Infrastructure in China. Energy Policy, 2023, 173, 113404.8.812541Total Social Costs and Benefits of Long-Distance Hydropower Transmission. Environmental Science & amp; Technology, 2022, 56, 17510-17522.10.01542Variability in modelled reservoir greenhouse gas emissions: comparison of select US hydropower reservoirs against global estimates. Environmental Research Communications, 2022, 4, 121008.2.31542Spatial and temporal variations of dissolved CO2. CH4 and N2O in Lakes Edward and George (East) Ti ELOOO 0 0 reBI /Overlock 10 If 5	535		2.7	0
337climate, hydrology and landscape. Biogeochemistry, 2022, 161, 291-314.3.54538Implications of large hydro dams for decarbonising Chana's energy consistent with Paris climate objectives. Energy for Sustainable Development, 2022, 71, 433-446.4.52539Wasted and excess energy in the hydropower sector: A European assessment of tailrace hydrokinetic potential, degassing-methane capture and waste-heat recovery. Applied Energy, 2023, 329, 120213.10.17540Embodied carbon emissions induced by the construction of hydropower infrastructure in China. Energy Policy, 2023, 173, 113404.8.812541Total Social Costs and Benefits of Long-Distance Hydropower Transmission. Environmental Science 	536	Inflowing River Mouth of a Major Drinking Water Reservoir. Environmental Science & amp;	10.0	23
338objectives. Energy for Sustainable Development, 2022, 71, 433-446.4.32539Wasted and excess energy in the hydropower sector: A European assessment of tailrace hydrokinetic potential, degassing-methane capture and waste-heat recovery. Applied Energy, 2023, 329, 120213.10.17540Embodied carbon emissions induced by the construction of hydropower infrastructure in China. Energy Policy, 2023, 173, 113404.8.812541Total Social Costs and Benefits of Long-Distance Hydropower Transmission. Environmental Science & amp; Technology, 2022, 56, 17510-17522.10.01542Variability in modelled reservoir greenhouse gas emissions: comparison of select US hydropower reservoirs against global estimates. Environmental Research Communications, 2022, 4, 121008.2.31541Spatial and temporal variations of dissolved CO2. CH4 and N2O in Lakes Edward and George (East) Ti ETOO0 0.0 reBT /Overlock 10 If 5	537		3.5	4
539potential, degassing-methane capture and waste-heat recovery. Applied Energy, 2023, 329, 120213.10.17540Embodied carbon emissions induced by the construction of hydropower infrastructure in China. Energy Policy, 2023, 173, 113404.8.812541Total Social Costs and Benefits of Long-Distance Hydropower Transmission. Environmental Science & amp; Technology, 2022, 56, 17510-17522.10.01542Variability in modelled reservoir greenhouse gas emissions: comparison of select US hydropower reservoirs against global estimates. Environmental Research Communications, 2022, 4, 121008.2.31Spatial and temporal variations of dissolved CO2. CH4 and N2O in Lakes Edward and George (East) Ti ETOO0.0.0 rgBT /Overlock 10.0 ff 5	538	Implications of large hydro dams for decarbonising Ghana's energy consistent with Paris climate objectives. Energy for Sustainable Development, 2022, 71, 433-446.	4.5	2
540Energy Policy, 2023, 173, 113404.8.812541Total Social Costs and Benefits of Long-Distance Hydropower Transmission. Environmental Science & amp; Technology, 2022, 56, 17510-17522.10.01542Variability in modelled reservoir greenhouse gas emissions: comparison of select US hydropower reservoirs against global estimates. Environmental Research Communications, 2022, 4, 121008.2.31542Spatial and temporal variations of dissolved CO2. CH4 and N2O in Lakes Edward and George (East) Ti ETOo0.0.0 rgBT /Overlock 10 Tf 5	539	Wasted and excess energy in the hydropower sector: A European assessment of tailrace hydrokinetic potential, degassing-methane capture and waste-heat recovery. Applied Energy, 2023, 329, 120213.	10.1	7
541 & amp; Technology, 2022, 56, 17510-17522. 10.0 1 542 Variability in modelled reservoir greenhouse gas emissions: comparison of select US hydropower reservoirs against global estimates. Environmental Research Communications, 2022, 4, 121008. 2.3 1 542 Spatial and temporal variations of dissolved CO2. CH4 and N2O in Lakes Edward and George (East) Ti ETOq0.0.0 rgBT /Overlock 10.115	540		8.8	12
reservoirs against global estimates. Environmental Research Communications, 2022, 4, 121008.	541	Total Social Costs and Benefits of Long-Distance Hydropower Transmission. Environmental Science & Technology, 2022, 56, 17510-17522.	10.0	1
Spatial and temporal variations of dissolved CO2, CH4 and N2O in Lakes Edward and George (East) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5	542	Variability in modelled reservoir greenhouse gas emissions: comparison of select US hydropower reservoirs against global estimates. Environmental Research Communications, 2022, 4, 121008.	2.3	1
	544	Spatial and temporal variations of dissolved CO2, CH4 and N2O in Lakes Edward and George (East) Tj ETQq0 0 C) rgBT /Ove	erlock 10 Tf 5

545	Knowledge domain of greenhouse gas emissions from hydropower reservoirs: Hotspots, frontiers and future perspectives. Frontiers in Environmental Science, 0, 10, .	3.3	0
-----	--	-----	---

#	Article	IF	CITATIONS
546	Numerical Simulation of Methane Emission from an Artificial Reservoir. Izvestiya - Atmospheric and Oceanic Physics, 2022, 58, 649-659.	0.9	0
547	Carbon footprint of Vidraru hydropower development. IOP Conference Series: Earth and Environmental Science, 2023, 1136, 012061.	0.3	0
549	Index-Based Spatiotemporal Assesment Of Water Quality In Tarbela Reservoir, Pakistan (1990â^'2020). Geography, Environment, Sustainability, 2023, 15, 232-242.	1.3	3
550	River ecosystem metabolism and carbon biogeochemistry in a changing world. Nature, 2023, 613, 449-459.	27.8	82
551	Ecosystem Metabolism Is the Dominant Source of Carbon Dioxide in Three Young Boreal Cascadeâ€Reservoirs (La Romaine Complex, Québec). Journal of Geophysical Research G: Biogeosciences, 2023, 128, .	3.0	0
552	Digitalization and real-time control to mitigate environmental impacts along rivers: Focus on artificial barriers, hydropower systems and European priorities. Science of the Total Environment, 2023, 875, 162489.	8.0	9
553	Comprehensive study on cascade hydropower stations in the lower reaches of Yalong river for power generation and ecology. Energy for Sustainable Development, 2023, 73, 236-246.	4.5	3
554	Spatial patterns of diffusive greenhouse gas emissions from cascade hydropower reservoirs. Journal of Hydrology, 2023, 619, 129343.	5.4	1
555	Eddy Covariance Data Reveal That a Small Freshwater Reservoir Emits a Substantial Amount of Carbon Dioxide and Methane. Journal of Geophysical Research G: Biogeosciences, 2023, 128, .	3.0	0
556	Monitoring and analysis of CO ₂ and CH ₄ fluxes in the Three Gorges Reservoir. Hupo Kexue/Journal of Lake Sciences, 2023, 35, 423-434.	0.8	1
557	Greenhouse gas emissions from hydroelectric reservoirs: mechanistic understanding of influencing factors and future prospect. Environmental Science and Pollution Research, 0, , .	5.3	1
558	Sediment and Nutrient Trapping by River Dams: A Critical Review Based on 15-Year Big Data. Current Pollution Reports, 2023, 9, 165-173.	6.6	5
559	Spatial variations of dissolved greenhouse gases and emission fluxes in a large reservoir during the stratification and mixing periods. Hupo Kexue/Journal of Lake Sciences, 2023, 35, 1082-1096.	0.8	1
560	Modeling and simulation of hydro energy systems. , 2023, , 519-535.		0
561	Development of subsurface chlorophyll maximum layer and its contribution to the primary productivity of water column in a large subtropical reservoir. Environmental Research, 2023, 231, 116118.	7.5	3
562	Understanding the fluxes of greenhouse gases in reservoirs under the inspiration of Margalef. , 2023, 42, 1.		0
563	A Review of Pumped Hydro Storage Systems. Energies, 2023, 16, 4516.	3.1	7
564	Three Gorges Dam Operations Affect the Carbon Dioxide Budget of a Large Downstream Connected Lake. Geophysical Research Letters, 2023, 50, .	4.0	3

#	Article	IF	Citations
565	Integrated assessment of the net carbon footprint of small hydropower plants. Environmental Research Letters, 0, , .	5.2	1
566	Terrigenous organic carbon contributes to reservoir carbon emissions: Potential role of the microbial community along a trophic gradient. Journal of Hydrology, 2023, 621, 129601.	5.4	0
567	Impacts of hydropower development on locals' livelihoods in the Global South. World Development, 2023, 169, 106285.	4.9	4
568	Changing temporal and spatial patterns of methane emission from rivers by reservoir dams: a review. Environmental Science and Pollution Research, 2023, 30, 74485-74499.	5.3	1
569	Carbon emissions affected by real-time reservoir operation: a hydrodynamic modeling approach coupled with air-water mass transfer. Water Research, 2023, 241, 120118.	11.3	1
570	Estimation of methane emissions from reservoirs for hydroelectric generation in Costa Rica. Revista Facultad De IngenierÃa, 0, , .	0.5	1
571	Quantifying the trade-offs in re-operating dams for the environment in the Lower Volta River. Hydrology and Earth System Sciences, 2023, 27, 2001-2017.	4.9	0
572	Vertical Divergence Characteristics of Dissolved Inorganic Carbon and Influencing Factors in a Karst Deep-Water Reservoir, Southwest China. Atmosphere, 2023, 14, 1111.	2.3	0
573	Large hydropower projects increase stressÂdespite compensation efforts: Evidence from the Brazilian Amazon. PLoS ONE, 2023, 18, e0284760.	2.5	2
574	The Mechanisms Controlling the CO2 Outgassing of a Karst Spring–River–Lake Continuum: Evidence from Baotuquan Spring Drainage Area, Jinan City, Northern China. Water (Switzerland), 2023, 15, 2567.	2.7	0
575	Carbon footprint of reservoirs in Bucharest. E3S Web of Conferences, 2023, 404, 02001.	0.5	0
576	Spatiotemporal Patterns of Methane and Nitrous Oxide Emissions in China's Inland Waters Identified by Machine Learning Technique. ACS ES&T Water, 2024, 4, 936-947.	4.6	1
577	Hydropower policy in Ecuador: an analysis from environmental perspective and recommendations for future policymaking. Local Environment, 2023, 28, 1608-1628.	2.4	0
578	Global carbon dioxide emissions analysis based on time series visualization. Frontiers in Physics, 0, 11, .	2.1	0
579	A Review of Greenhouse Gas Emissions by Hydropower Reservoirs. Journal of Geoscience and Environment Protection, 2023, 11, 203-215.	0.5	0
580	The implications of Fe speciation for the humic substance stability of ternary Fe(III)–montmorillonite–humic substance systems. Clay Minerals, 0, , 1-10.	0.6	0
581	Understanding How Reservoir Operations Influence Methane Emissions: A Conceptual Model. Water (Switzerland), 2023, 15, 4112.	2.7	0
582	Impact of Reservoir Operation Policies on Spatiotemporal Dynamics of Sediment Methane Production and Release in a Large Reservoir. Water Resources Research, 2023, 59, .	4.2	0

#	Article	IF	CITATIONS
583	Sediment respiration dynamics and its contribution to carbon emissions in stratified reservoirs. Journal of Environmental Management, 2024, 349, 119472.	7.8	0
584	Unraveling the factors influencing CO2 emissions from hydroelectric reservoirs in karst and non-karst regions: A comparative analysis. Water Research, 2024, 248, 120893.	11.3	5
587	China's Belt & Road Initiative hydropower cooperation: what can be improved?. Renewable Energy, 2024, 221, 119789.	8.9	0
588	Methane flux at the water-gas interface is influenced by complex interactions among phytoplankton, phosphorus inputs and methane-functional bacteria: A microcosm systems study. Science of the Total Environment, 2024, 912, 169373.	8.0	0
589	Influence of hydrological features on CO2 and CH4 concentrations in the surface water of lakes, Southwest China: A seasonal and mixing regime analysis. Water Research, 2024, 251, 121131.	11.3	0
590	Terrestrial dissolved organic matter inputs accompanied by dissolved oxygen depletion and declining pH exacerbate CO2 emissions from a major Chinese reservoir. Water Research, 2024, 251, 121155.	11.3	1
591	Spatio-temporal patterns and drivers of CH4 and CO2 fluxes from rivers and lakes in highly urbanized areas. Science of the Total Environment, 2024, 918, 170689.	8.0	0
592	Quantifying the contribution of methane diffusion and ebullition from agricultural ditches. Science of the Total Environment, 2024, 919, 170912.	8.0	0
593	Carbon sequestration and decreased CO2 emission caused by biological carbon pump effect: Insights from diel hydrochemical variations in subtropical karst reservoirs. Journal of Hydrology, 2024, 632, 130909.	5.4	0
594	Carbon Emissions From Chinese Inland Waters: Current Progress and Future Challenges. Journal of Geophysical Research G: Biogeosciences, 2024, 129, .	3.0	0
595	High-frequency dynamics of CO2 emission flux and its influencing factors in a subtropical karst groundwater-fed reservoir, south China. Environmental Research, 2024, 251, 118552.	7.5	0
596	Carbon Footprint Drivers in China's Municipal Wastewater Treatment Plants and Mitigation Opportunities through Electricity and Chemical Efficiency. Engineering, 2024, , .	6.7	0
597	Potential Effect of Hydropower Dam on Global Warming – A Field Study of Biomethane Formation at Aono Dam. Lecture Notes in Civil Engineering, 2024, , 3-11.	0.4	0
598	Greenhouse gas emissions (CO ₂ –CH ₄ –N ₂ O) along a large reservoirâ€downstream river continuum: The role of seasonal hypoxia. Limnology and Oceanography, 0,	3.1	0
599	Particulate organic carbon sedimentation triggers lagged methane emissions in a eutrophic reservoir. Limnology and Oceanography Letters, 0, , .	3.9	0