Structural and Vibrational Properties of Liquid Water fr Functionals

Journal of Chemical Theory and Computation 7, 3054-3061 DOI: 10.1021/ct200329e

Citation Report

CITATION REDORT

#	Article	IF	CITATIONS
2	Entropy of Liquid Water from Ab Initio Molecular Dynamics. Journal of Physical Chemistry B, 2011, 115, 14190-14195.	1.2	45
3	Predicting the acidity constant of a goethite hydroxyl group from first principles. Journal of Physics Condensed Matter, 2012, 24, 124105.	0.7	28
4	Reply to "Comment on `Structure and dynamics of liquid water on rutile TiO2(110)' ― Physical Review B, 2012, 85, .	' 1.1	30
5	A Process for Visualizing Disordered Molecular Data with a Case Study in Bulk Water. , 2012, , .		1
6	CO2 Capture by Metal–Organic Frameworks with van der Waals Density Functionals. Journal of Physical Chemistry A, 2012, 116, 4957-4964.	1.1	92
7	Dispersion Interactions and Vibrational Effects in Ice as a Function of Pressure: A First Principles Study. Physical Review Letters, 2012, 108, 105502.	2.9	55
8	Toward a Universal Water Model: First Principles Simulations from the Dimer to the Liquid Phase. Journal of Physical Chemistry Letters, 2012, 3, 3765-3769.	2.1	137
9	First-Principles Study of the Infrared Spectra of the Ice Ih (0001) Surface. Journal of Physical Chemistry A, 2012, 116, 9255-9260.	1.1	9
10	Anomalous Nuclear Quantum Effects in Ice. Physical Review Letters, 2012, 108, 193003.	2.9	110
11	Autocatalytic and Cooperatively Stabilized Dissociation of Water on a Stepped Platinum Surface. Journal of the American Chemical Society, 2012, 134, 19217-19222.	6.6	53
12	Improved description of soft layered materials with van der Waals density functional theory. Journal of Physics Condensed Matter, 2012, 24, 424216.	0.7	150
13	Structure and Dynamics of Liquid Water from ab Initio Molecular Dynamics—Comparison of BLYP, PBE, and revPBE Density Functionals with and without van der Waals Corrections. Journal of Chemical Theory and Computation, 2012, 8, 3902-3910.	2.3	247
14	MOLECULAR BIOLOGY AT THE QUANTUM LEVEL: CAN MODERN DENSITY FUNCTIONAL THEORY FORGE THE PATH?. Nano LIFE, 2012, 02, 1230006.	0.6	8
15	A simplified implementation of van der Waals density functionals for first-principles molecular dynamics applications. Journal of Chemical Physics, 2012, 136, 224107.	1.2	49
16	Microscopic properties of liquid water from combined ab initio molecular dynamics and energy decomposition studies. Physical Chemistry Chemical Physics, 2013, 15, 15746.	1.3	55
17	Raman Spectra of Liquid Water from <i>Ab Initio</i> Molecular Dynamics: Vibrational Signatures of Charge Fluctuations in the Hydrogen Bond Network. Journal of Chemical Theory and Computation, 2013, 9, 4124-4130.	2.3	74
18	A closer look at supercritical water. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6250-6251.	3.3	29
19	First-principles energetics of water clusters and ice: A many-body analysis. Journal of Chemical Physics, 2013, 139, 244504.	1.2	34

#	Article	IF	CITATIONS
20	Coordination and Hydrolysis of Plutonium Ions in Aqueous Solution Using Car–Parrinello Molecular Dynamics Free Energy Simulations. Journal of Physical Chemistry A, 2013, 117, 12256-12267.	1.1	35
21	Room temperature compressibility and diffusivity of liquid water from first principles. Journal of Chemical Physics, 2013, 139, 194502.	1.2	54
22	Hydration structure of salt solutions from <i>ab initio</i> molecular dynamics. Journal of Chemical Physics, 2013, 138, 014501.	1.2	158
23	Electronic excitations in light absorbers for photoelectrochemical energy conversion: first principles calculations based on many body perturbation theory. Chemical Society Reviews, 2013, 42, 2437.	18.7	157
24	AbÂinitioStudies of Ionization Potentials of Hydrated Hydroxide and Hydronium. Physical Review Letters, 2013, 111, 087801.	2.9	25
25	The quantum nature of the OH stretching mode in ice and water probed by neutron scattering experiments. Journal of Chemical Physics, 2013, 139, 074504.	1.2	39
26	On the accuracy of van der Waals inclusive density-functional theory exchange-correlation functionals for ice at ambient and high pressures. Journal of Chemical Physics, 2013, 139, 154702.	1.2	119
27	Trends in the Adsorption and Dissociation of Water Clusters on Flat and Stepped Metallic Surfaces. Journal of Physical Chemistry C, 2014, 118, 29990-29998.	1.5	27
28	First Principles Methods: A Perspective from Quantum Monte Carlo. Entropy, 2014, 16, 287-321.	1.1	33
29	The individual and collective effects of exact exchange and dispersion interactions on the <i>ab initio</i> structure of liquid water. Journal of Chemical Physics, 2014, 141, 084502.	1.2	276
30	Infrared absorption and Raman scattering spectra of water under pressure via first principles molecular dynamics. Journal of Chemical Physics, 2014, 141, 044501.	1.2	16
31	Dispersion corrected RPBE studies of liquid water. Journal of Chemical Physics, 2014, 141, 064501.	1.2	102
32	Modeling Potential Energy Surfaces: From First-Principle Approaches to Empirical Force Fields. Entropy, 2014, 16, 322-349.	1.1	7
33	Aqueous solutions: state of the art in <i>ab initio</i> molecular dynamics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20120482.	1.6	121
34	Solvent-Induced Proton Hopping at a Water–Oxide Interface. Journal of Physical Chemistry Letters, 2014, 5, 474-480.	2.1	82
35	Computational investigation of structural and electronic properties of aqueous interfaces of GaN, ZnO, and a GaN/ZnO alloy. Physical Chemistry Chemical Physics, 2014, 16, 12057-12066.	1.3	39
36	Dissolution of NaCl nanocrystals: an ab initio molecular dynamics study. Physical Chemistry Chemical Physics, 2014, 16, 17437-17446.	1.3	29
37	Friction of Water on Graphene and Hexagonal Boron Nitride from <i>Ab Initio</i> Methods: Very Different Slippage Despite Very Similar Interface Structures. Nano Letters, 2014, 14, 6872-6877.	4.5	326

CITATION REPORT

#	Article	IF	CITATIONS
38	Dielectric constant and low-frequency infrared spectra for liquid water and ice Ih within the E3B model. Journal of Chemical Physics, 2014, 141, 084508.	1.2	25
39	Electronic Structure of Aqueous Sulfuric Acid from First-Principles Simulations with Hybrid Functionals. Journal of Physical Chemistry Letters, 2014, 5, 2562-2567.	2.1	24
40	Structure, Dynamics, and Spectral Diffusion of Water from First-Principles Molecular Dynamics. Journal of Physical Chemistry C, 2014, 118, 29401-29411.	1.5	139
41	Analyzing the errors of DFT approximations for compressed water systems. Journal of Chemical Physics, 2014, 141, 014104.	1.2	16
42	Hydration structure of Na ⁺ and K ⁺ from <i>ab initio</i> molecular dynamics based on modern density functional theory. Molecular Physics, 2014, 112, 1448-1456.	0.8	37
43	Development of a "First Principles―Water Potential with Flexible Monomers. II: Trimer Potential Energy Surface, Third Virial Coefficient, and Small Clusters. Journal of Chemical Theory and Computation, 2014, 10, 1599-1607.	2.3	313
44	Development of a "First-Principles―Water Potential with Flexible Monomers. III. Liquid Phase Properties. Journal of Chemical Theory and Computation, 2014, 10, 2906-2910.	2.3	292
45	The random phase approximation applied to ice. Journal of Chemical Physics, 2014, 140, 084502.	1.2	45
46	Water Structures at Metal Electrodes Studied by Ab Initio Molecular Dynamics Simulations. Journal of the Electrochemical Society, 2014, 161, E3015-E3020.	1.3	81
47	Quantum Monte Carlo Benchmark of Exchange-Correlation Functionals for Bulk Water. Journal of Chemical Theory and Computation, 2014, 10, 2355-2362.	2.3	39
48	Role of van der Waals corrections in first principles simulations of alkali metal ions in aqueous solutions. Journal of Chemical Physics, 2015, 143, 194510.	1.2	30
49	Structural Properties of Liquid Water and Ice Ih from Ab-Initio Molecular Dynamics with a Non-Local Correlation Functional. Energies, 2015, 8, 9383-9391.	1.6	20
50	Catechol and HCl Adsorption on TiO ₂ (110) in Vacuum and at the Water–TiO ₂ Interface. Journal of Physical Chemistry Letters, 2015, 6, 2277-2281.	2.1	32
51	A systematic study of chloride ion solvation in water using van der Waals inclusive hybrid density functional theory. Molecular Physics, 2015, 113, 2842-2854.	0.8	47
52	Local structure analysis in <i>ab initio</i> liquid water. Molecular Physics, 2015, 113, 2829-2841.	0.8	96
53	Nuclear quantum effects in liquid water from path-integral simulations using an <i>ab initio</i> force-matching approach. Molecular Physics, 2015, 113, 808-822.	0.8	32
54	The Melting Temperature of Liquid Water with the Effective Fragment Potential. Journal of Physical Chemistry Letters, 2015, 6, 3555-3559.	2.1	10
55	<i> <i>Ab initio</i> </i> molecular dynamics simulation of liquid water by quantum Monte Carlo. Journal of Chemical Physics, 2015, 142, 144111.	1.2	59

#	Article	IF	CITATIONS
56	Hydrogen Bonding and Related Properties in Liquid Water: A Car–Parrinello Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2015, 119, 8926-8938.	1.2	73
57	Structural and configurational properties of nanoconfined monolayer ice from first principles. Scientific Reports, 2016, 6, 18651.	1.6	61
58	Water adsorption on the LaMnO3 surface. Journal of Chemical Physics, 2016, 144, 064701.	1.2	5
59	Perspective: How good is DFT for water?. Journal of Chemical Physics, 2016, 144, 130901.	1.2	571
60	Structure and dynamics of aqueous solutions from PBE-based first-principles molecular dynamics simulations. Journal of Chemical Physics, 2016, 145, 154501.	1.2	87
61	The structure of water at a Pt(111) electrode and the potential of zero charge studied from first principles. Journal of Chemical Physics, 2016, 144, 194701.	1.2	127
62	Nuclear Quantum Effects in Water and Aqueous Systems: Experiment, Theory, and Current Challenges. Chemical Reviews, 2016, 116, 7529-7550.	23.0	439
63	Vibrational Spectroscopy and Dynamics of Water. Chemical Reviews, 2016, 116, 7590-7607.	23.0	300
64	Interplay between Vacuum-Grown Monolayers of Alkylphosphonic Acids and the Performance of Organic Transistors Based on Dinaphtho[2,3- <i>b</i> :2′,3′- <i>f</i>]thieno[3,2- <i>b</i>]thiophene. ACS Applied Materials & Interfaces, 2016, 8, 25405-25414.	4.0	16
65	<i>AbÂinitio</i> Electronic Structure of Liquid Water. Physical Review Letters, 2016, 117, 186401.	2.9	64
66	Strong Coupling between Nanofluidic Transport and Interfacial Chemistry: How Defect Reactivity Controls Liquid–Solid Friction through Hydrogen Bonding. Journal of Physical Chemistry Letters, 2016, 7, 1381-1386.	2.1	33
67	Why Is MP2-Water "Cooler―and "Denser―than DFT-Water?. Journal of Physical Chemistry Letters, 2016 7, 680-684.	' 2.1	47
68	Probing Defects and Correlations in the Hydrogen-Bond Network of ab Initio Water. Journal of Chemical Theory and Computation, 2016, 12, 1953-1964.	2.3	51
69	Modelling heterogeneous interfaces for solar water splitting. Nature Materials, 2017, 16, 401-408.	13.3	252
70	Path integral molecular dynamics at zero thermal temperature. Chemical Physics Letters, 2017, 674, 33-37.	1.2	0
71	First-Principles Models for van der Waals Interactions in Molecules and Materials: Concepts, Theory, and Applications. Chemical Reviews, 2017, 117, 4714-4758.	23.0	408
72	Local and Global Effects of Dissolved Sodium Chloride on the Structure of Water. Journal of Physical Chemistry Letters, 2017, 8, 1496-1502.	2.1	87
73	Ab initio molecular dynamics simulations of liquid water using high quality meta-GGA functionals. Chemical Science, 2017, 8, 3554-3565.	3.7	95

CITATION REPORT

#	Article	IF	CITATIONS
74	Vibrational Modes of Hydrogen Hydrates: A First-Principles Molecular Dynamics and Raman Spectra Study. Journal of Physical Chemistry C, 2017, 121, 3690-3696.	1.5	29
75	Quantum and classical inter-cage hopping of hydrogen molecules in clathrate hydrate: temperature and cage-occupation effects. Physical Chemistry Chemical Physics, 2017, 19, 717-728.	1.3	28
76	X-ray absorption of liquid water by advanced <i>ab initio</i> methods. Physical Review B, 2017, 96, .	1.1	11
77	Lead and selenite adsorption at water–goethite interfaces from first principles. Journal of Physics Condensed Matter, 2017, 29, 365101.	0.7	8
78	Quadrupolar NMR Relaxation from ab Initio Molecular Dynamics: Improved Sampling and Cluster Models versus Periodic Calculations. Journal of Chemical Theory and Computation, 2017, 13, 4397-4409.	2.3	14
79	Communication: Influence of external static and alternating electric fields on water from long-time non-equilibrium <i>ab initio</i> molecular dynamics. Journal of Chemical Physics, 2017, 147, 031102.	1.2	57
80	Molecular polarizability of water from local dielectric response theory. Physical Review B, 2017, 96, .	1.1	15
81	Unusual Influence of Fluorinated Anions on the Stretching Vibrations of Liquid Water. Journal of Physical Chemistry B, 2018, 122, 3141-3152.	1.2	8
82	Statistical variances of diffusional properties from ab initio molecular dynamics simulations. Npj Computational Materials, 2018, 4, .	3.5	240
83	A Versatile Multiple Time Step Scheme for Efficient <i>ab Initio</i> Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2018, 14, 2834-2842.	2.3	24
84	Equilibration and analysis of first-principles molecular dynamics simulations of water. Journal of Chemical Physics, 2018, 148, 124501.	1.2	41
85	Study of hydrogen-molecule guests in type II clathrate hydrates using a force-matched potential model parameterised from ab initio molecular dynamics. Journal of Chemical Physics, 2018, 148, 102323.	1.2	18
86	Structural, electronic, and dynamical properties of liquid water by <i>ab initio</i> molecular dynamics based on SCAN functional within the canonical ensemble. Journal of Chemical Physics, 2018, 148, 164505.	1.2	58
87	First-Principles Simulations of Liquid Water Using a Dielectric-Dependent Hybrid Functional. Journal of Physical Chemistry Letters, 2018, 9, 3068-3073.	2.1	82
88	Force Field for Water Based on Neural Network. Journal of Physical Chemistry Letters, 2018, 9, 3232-3240.	2.1	46
89	Structure of Electrode-Electrolyte Interfaces, Modeling of Double Layer and Electrode Potential. , 2018, , 1-34.		0
90	Computational Modeling of Electrocatalytic Reactions. , 2018, , 455-465.		0
91	Evaluation of Gas-to-Liquid 170 Chemical Shift of Water: A Test Case for Molecular and Periodic Approaches. Journal of Chemical Theory and Computation, 2018, 14, 4041-4051.	2.3	2

CITATION REPORT

#	Article	IF	CITATIONS
92	Pressure dependence of structural properties of ice VII: An <i>ab initio</i> molecular-dynamics study. Journal of Chemical Physics, 2018, 148, 204505.	1.2	7
93	Measuring surface charge: Why experimental characterization and molecular modeling should be coupled. Current Opinion in Colloid and Interface Science, 2018, 37, 101-114.	3.4	39
94	The Quest for Accurate Liquid Water Properties from First Principles. Journal of Physical Chemistry Letters, 2018, 9, 5009-5016.	2.1	70
95	OH radical in water from ab initio molecular dynamics simulation employing hybrid functionals. Journal of Chemical Physics, 2019, 151, 064111.	1.2	8
96	First-principles study of the infrared spectrum in liquid water from a systematically improved description of H-bond network. Physical Review B, 2019, 99, .	1.1	27
97	Structure and Dynamics of Water at the Water–Air Interface Using First-Principles Molecular Dynamics Simulations. II. NonLocal vs Empirical van der Waals Corrections. Journal of Chemical Theory and Computation, 2019, 15, 3836-3843.	2.3	12
98	Ion Association in Lanthanide Chloride Solutions. Chemistry - A European Journal, 2019, 25, 8725-8740.	1.7	5
99	The dielectric constant: Reconciling simulation and experiment. Journal of Chemical Physics, 2019, 150, 084108.	1.2	28
100	Ensemble first-principles molecular dynamics simulations of water using the SCAN meta-GGA density functional. Journal of Chemical Physics, 2019, 151, 164101.	1.2	24
101	Contribution of the density-functional-based tight-binding scheme to the description of water clusters: methods, applications and extension to bulk systems. Molecular Simulation, 2019, 45, 249-268.	0.9	17
102	Polarization Corrections and the Hydration Free Energy of Water. Journal of Chemical Theory and Computation, 2019, 15, 1065-1078.	2.3	29
103	Ab initio thermodynamics of liquid and solid water. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1110-1115.	3.3	201
104	First-principles modeling of water permeation through periodically porous graphene derivatives. Journal of Colloid and Interface Science, 2019, 538, 367-376.	5.0	16
105	Ab initio simulations of liquid electrolytes for energy conversion and storage. International Journal of Quantum Chemistry, 2019, 119, e25795.	1.0	14
106	Similarities and differences between potassium and ammonium ions in liquid water: a first-principles study. Physical Chemistry Chemical Physics, 2020, 22, 2540-2548.	1.3	33
107	Accurate Water Properties from an Efficient ab Initio Method. Journal of Chemical Theory and Computation, 2020, 16, 974-987.	2.3	15
108	Simulation of Liquids with the Tight-Binding Density-Functional Approach and Improved Atomic Charges. Journal of Physical Chemistry B, 2020, 124, 7421-7432.	1.2	4
109	Vibrational Spectra of the OH Radical in Water: Ab Initio Molecular Dynamics Simulations and Quantum Chemical Calculations Using Hybrid Functionals. Advanced Theory and Simulations, 2020, 3, 2000174.	1.3	5

	CITATION R	EPORT	
#	Article	IF	CITATIONS
110	Isotope effects in x-ray absorption spectra of liquid water. Physical Review B, 2020, 102, .	1.1	6
111	Water-ion permselectivity of narrow-diameter carbon nanotubes. Science Advances, 2020, 6, .	4.7	58
112	Hydrogen Intramolecular Stretch Redshift in the Electrostatic Environment of Type II Clathrate Hydrates from SchrĶdinger Equation Treatment. Applied Sciences (Switzerland), 2020, 10, 8504.	1.3	1
113	<i>Ab initio</i> nanofluidics: disentangling the role of the energy landscape and of density correlations on liquid/solid friction. Nanoscale, 2020, 12, 10994-11000.	2.8	27
114	Self-interaction error overbinds water clusters but cancels in structural energy differences. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11283-11288.	3.3	57
115	Probing the intermolecular coupled vibrations in a water cluster with inelastic electron tunneling spectroscopy. Journal of Chemical Physics, 2020, 152, 234301.	1.2	2
116	Enabling Large-Scale Condensed-Phase Hybrid Density Functional Theory Based <i>Ab Initio</i> Molecular Dynamics. 1. Theory, Algorithm, and Performance. Journal of Chemical Theory and Computation, 2020, 16, 3757-3785.	2.3	29
118	Self-consistent electrostatic embedding for liquid phase polarization. Journal of Molecular Liquids, 2021, 322, 114550.	2.3	7
119	First-principles study of dehydration interfaces between diaspore and corundum, gibbsite and boehmite and γ-Al2O3: Energetic stability, interface charge effects, and dehydration defects. Applied Surface Science, 2021, 541, 148501.	3.1	19
120	Interplay of physically different properties leading to challenges in separating lanthanide cations – an <i>ab initio</i> molecular dynamics and experimental study. Physical Chemistry Chemical Physics, 2021, 23, 5750-5759.	1.3	3
121	<i>Ab initio</i> molecular dynamics on quantum computers. Journal of Chemical Physics, 2021, 154, 164103.	1.2	15
122	Foldamer-based ultrapermeable and highly selective artificial water channels that exclude protons. Nature Nanotechnology, 2021, 16, 911-917.	15.6	54
123	Water Breakup at Fe ₂ O ₃ –Hematite/Water Interfaces: Influence of External Electric Fields from Nonequilibrium <i>Ab Initio</i> Molecular Dynamics. Journal of Physical Chemistry Letters, 2021, 12, 6818-6826.	2.1	9
124	Nuclear quantum effects on the quasiparticle properties of the chloride anion aqueous solution within the GW approximation. Physical Review B, 2021, 104, .	1.1	6
125	Electric-field-promoted photo-electrochemical production of hydrogen from water splitting. Journal of Molecular Liquids, 2021, 342, 116949.	2.3	11
126	Thermophysical properties of water using reactive force fields. Journal of Chemical Physics, 2021, 155, 114501.	1.2	7
127	Investigating the Accuracy of Water Models through the Van Hove Correlation Function. Journal of Chemical Theory and Computation, 2021, 17, 5992-6005.	2.3	9
128	Structure and Dynamics of Liquid Water from ab Initio Molecular Dynamics—Comparison of BLYP, PBE, and revPBE Density Functionals with and without van der Waals Corrections. Journal of Chemical Theory and Computation, 2012, 8, 3902-3910.	2.3	116

ARTICLE IF CITATIONS # Validating first-principles molecular dynamics calculations of oxide/water interfaces with x-ray 129 0.9 12 reflectivity data. Physical Review Materials, 2020, 4, . Possibility of realizing superionic ice VII in external electric fields of planetary bodies. Science Advances, 2020, 6, eaaz2915. Dielectric properties of ice VII under the influence of time-alternating external electric fields. 131 1.3 1 Physical Chemistry Chemical Physics, 2021, , . Structure of Electrode-Electrolyte Interfaces, Modeling of Double Layer and Electrode Potential., 2020, , 1439-1472. Enabling Large-Scale Condensed-Phase Hybrid Density Functional Theory-Based <i>Ab Initio</i> Molecular Dynamics II: Extensions to the Ísobaric–Isoenthalpic and Isobaric–Isothermal Ensembles. 133 2.3 7 Journal of Chemical Theory and Computation, 2021, 17, 7789-7813. Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chemical Reviews, 2022, 122, 6117-6321. 23.0 Improving the Accuracy of Atomistic Simulations of the Electrochemical Interface. Chemical Reviews, 135 23.0 39 2022, 122, 10651-10674. On the solvation model and infrared spectroscopy of liquid water. Chemical Physics Letters, 2022, 801, 1.2 139739. Fluorofoldamer-Based Salt- and Proton-Rejecting Artificial Water Channels for Ultrafast Water 137 4.5 12 Transport. Nano Letters, 2022, 22, 4831-4838. Understanding speciation and solvation of glyphosate from first principles simulations. Journal of 2.3 Molecular Liquids, 2022, 365, 120154. Born-Oppenheimer molecular dynamics and electronic properties of liquid H2S: The importance of a 139 2.3 2 non-local approach to dispersion interactions. Journal of Molecular Liquids, 2022, 366, 120252. Data-driven many-body potentials from density functional theory for aqueous phase chemistry. Chemical Physics Reviews, 2023, 4, .

CITATION REPORT