Mapping forest canopy height globally with spaceborne

Journal of Geophysical Research 116, DOI: 10.1029/2011jg001708

Citation Report

#	Article	IF	CITATIONS
1	Estimation of tree heights using remote sensing data and an Allometric Scaling and Resource Limitations (ASRL) model. , 2012, , .		1
2	Dryland ecohydrology and climate change: critical issues and technical advances. Hydrology and Earth System Sciences, 2012, 16, 2585-2603.	1.9	241
3	Biome-Scale Forest Properties in Amazonia Based on Field and Satellite Observations. Remote Sensing, 2012, 4, 1245-1271.	1.8	22
4	Global remote sensing of water–chlorophyll ratio in terrestrial plant leaves. Ecology and Evolution, 2012, 2, 2549-2556.	0.8	0
5	Above-ground Biomass. , 2012, , 467-499.		0
6	The role of trace gas flux networks in the biogeosciences. Eos, 2012, 93, 217-218.	0.1	22
7	Lidar plots — a new large-area data collection option: context, concepts, and case study. Canadian Journal of Remote Sensing, 2012, 38, 600-618.	1.1	98
8	Mapping Canopy Height and Growing Stock Volume Using Airborne Lidar, ALOS PALSAR and Landsat ETM+. Remote Sensing, 2012, 4, 3320-3345.	1.8	55
9	The role of the land biosphere in climate change mitigation. , 0, , 202-244.		1
10	A framework for benchmarking land models. Biogeosciences, 2012, 9, 3857-3874.	1.3	267
11	SRTM vegetation removal and hydrodynamic modeling accuracy. Water Resources Research, 2013, 49, 5276-5289.	1.7	105
12	Taking stock of circumboreal forest carbon with ground measurements, airborne and spaceborne LiDAR. Remote Sensing of Environment, 2013, 137, 274-287.	4.6	85
13	Evaluating Prospects for Improved Forest Parameter Retrieval From Satellite LiDAR Using a Physically-Based Radiative Transfer Model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6, 45-53.	2.3	13
14	Synergistic Use of Satellite Laser Altimetry and Shuttle Radar Topography Mission DEM for Estimating Ground Elevation Over Mountainous Vegetated Areas. IEEE Geoscience and Remote Sensing Letters, 2013, 10, 481-485.	1.4	7
15	The characterization of digital surface model from stereo imagery over vegetated areas. , 2013, , .		1
16	Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. International Journal of Remote Sensing, 2013, 34, 2607-2654.	1.3	1,263
17	Forest biomass patterns across northeast China are strongly shaped by forest height. Forest Ecology and Management, 2013, 293, 149-160.	1.4	33
18	Evaluation of forest interception estimation in the continental scale Australian Water Resources Assessment – Landscape (AWRA-L) model. Journal of Hydrology, 2013, 499, 210-223.	2.3	20

#	Article	IF	CITATIONS
19	Classification of forest composition using polarimetric decomposition in multiple landscapes. Remote Sensing of Environment, 2013, 131, 206-214.	4.6	28
20	Largeâ€scale hydrologic and hydrodynamic modeling of the Amazon River basin. Water Resources Research, 2013, 49, 1226-1243.	1.7	302
21	Forest canopy height estimation using ICESat/GLAS data and error factor analysis in Hokkaido, Japan. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 81, 12-18.	4.9	55
22	Achieving accuracy requirements for forest biomass mapping: A spaceborne data fusion method for estimating forest biomass and LiDAR sampling error. Remote Sensing of Environment, 2013, 130, 153-170.	4.6	58
23	SMOS Level 2 Retrieval Algorithm Over Forests: Description and Generation of Global Maps. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6, 1430-1439.	2.3	57
24	A LiDAR-based approach for a multi-purpose characterization of Alpine forests: an Italian case study. IForest, 2013, 6, 156-168.	0.5	28
25	How did we get here? An early history of forestry lidar ¹ . Canadian Journal of Remote Sensing, 2013, 39, S6-S17.	1.1	45
26	Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. International Journal of Digital Earth, 2013, 6, 427-448.	1.6	562
27	Use of various remote sensing land cover products for plant functional type mapping over Siberia. Earth System Science Data, 2013, 5, 331-348.	3.7	24
28	SMOS L2 retrieval results over the American continent and comparisons with independent data sources. , 2013, , .		Ο
29	Investigating the agreement between global canopy height maps and airborne Lidar derived height estimates over Canada. Canadian Journal of Remote Sensing, 2013, 39, S139-S151.	1.1	26
30	Simulation of lidar waveforms with a time-dependent radiosity algorithm. Canadian Journal of Remote Sensing, 2013, 39, S126-S138.	1.1	7
31	Moving Toward Consistent ALS Monitoring of Forest Attributes across Canada. Photogrammetric Engineering and Remote Sensing, 2013, 79, 159-173.	0.3	19
32	Measuring tropical forest carbon stocks. , 0, , 44-67.		1
33	A comprehensive benchmarking system for evaluating global vegetation models. Biogeosciences, 2013, 10, 3313-3340.	1.3	119
34	Allometric Scaling and Resource Limitations Model of Tree Heights: Part 2. Site Based Testing of the Model. Remote Sensing, 2013, 5, 202-223.	1.8	15
35	Allometric Scaling and Resource Limitations Model of Tree Heights: Part 1. Model Optimization and Testing over Continental USA. Remote Sensing, 2013, 5, 284-306.	1.8	18
36	Estimates of Forest Growing Stock Volume for Sweden, Central Siberia, and Québec Using Envisat Advanced Synthetic Aperture Radar Backscatter Data. Remote Sensing, 2013, 5, 4503-4532.	1.8	36

#	Article	IF	CITATIONS
37	Tropical montane forests are a larger than expected global carbon store. Biogeosciences, 2014, 11, 2741-2754.	1.3	103
38	Exploiting Growing Stock Volume Maps for Large Scale Forest Resource Assessment: Cross-Comparisons of ASAR- and PALSAR-Based GSV Estimates with Forest Inventory in Central Siberia. Forests, 2014, 5, 1753-1776.	0.9	13
39	Large Area Mapping of Boreal Growing Stock Volume on an Annual and Multi-Temporal Level Using PALSAR L-Band Backscatter Mosaics. Forests, 2014, 5, 1999-2015.	0.9	13
40	Forest Canopy Heights in the Pacific Northwest Based on InSAR Phase Discontinuities across Short Spatial Scales. Remote Sensing, 2014, 6, 3210-3226.	1.8	7
41	Allometric Scaling and Resource Limitations Model of Tree Heights: Part 3. Model Optimization and Testing over Continental China. Remote Sensing, 2014, 6, 3533-3553.	1.8	17
42	Annual Detection of Forest Cover Loss Using Time Series Satellite Measurements of Percent Tree Cover. Remote Sensing, 2014, 6, 8878-8903.	1.8	42
43	Slope Estimation from ICESat/GLAS. Remote Sensing, 2014, 6, 10051-10069.	1.8	23
44	The Uncertainty of Plot-Scale Forest Height Estimates from Complementary Spaceborne Observations in the Taiga-Tundra Ecotone. Remote Sensing, 2014, 6, 10070-10088.	1.8	15
45	A National, Detailed Map of Forest Aboveground Carbon Stocks in Mexico. Remote Sensing, 2014, 6, 5559-5588.	1.8	100
46	Mapping Forest Height in Alaska Using GLAS, Landsat Composites, and Airborne LiDAR. Remote Sensing, 2014, 6, 12409-12426.	1.8	18
47	Estimating spatial variation in Alberta forest biomass from a combination of forest inventory and remote sensing data. Biogeosciences, 2014, 11, 2793-2808.	1.3	46
48	Biophsyical constraints on gross primary production by the terrestrial biosphere. Biogeosciences, 2014, 11, 5987-6001.	1.3	59
49	Individual tree segmentation over large areas using airborne LiDAR point cloud and very high resolution optical imagery. , 2014, , .		5
50	Improved simulation of fire–vegetation interactions in the Land surface Processes and eXchanges dynamic global vegetation model (LPX-Mv1). Geoscientific Model Development, 2014, 7, 2411-2433.	1.3	28
51	Integrating Disparate Lidar Data at the National Scale to Assess the Relationships between Height Above Ground, Land Cover and Ecoregions. Photogrammetric Engineering and Remote Sensing, 2014, 80, 59-70.	0.3	5
52	Parameterization of aerodynamic roughness of China's land surface vegetation from remote sensing data. Journal of Applied Remote Sensing, 2014, 8, 083528.	0.6	2
53	Regional-scale application of lidar: Variation in forest canopy structure across the southeastern US. Forest Ecology and Management, 2014, 329, 214-226.	1.4	31
54	Development and mapping of fuel characteristics and associated fire potentials for South America. International Journal of Wildland Fire, 2014, 23, 643.	1.0	17

#	Article	IF	CITATIONS
55	SMOS Retrieval Results Over Forests: Comparisons With Independent Measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7, 3858-3866.	2.3	42
56	Regional-scale mapping of tree cover, height and main phenological tree types using airborne laser scanning data. Remote Sensing of Environment, 2014, 147, 156-172.	4.6	24
57	Forest structure drives global diversity of primates. Journal of Animal Ecology, 2014, 83, 1523-1530.	1.3	66
58	Deriving and validating Leaf Area Index (LAI) at multiple spatial scales through lidar remote sensing: A case study in Sierra National Forest, CA. Remote Sensing of Environment, 2014, 143, 131-141.	4.6	145
60	Determinants of maximum tree height in <i>Eucalyptus</i> species along a rainfall gradient in Victoria, Australia. Ecology, 2014, 95, 2991-3007.	1.5	97
61	Mapping forest stand age in China using remotely sensed forest height and observation data. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1163-1179.	1.3	63
62	Forest Canopy Height Extraction in Rugged Areas With ICESat/GLAS Data. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 4650-4657.	2.7	32
63	Impact of Topographic Correction on Estimation of Aboveground Boreal Biomass Using Multi-temporal, L-Band Backscatter. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7, 3262-3273.	2.3	19
64	Estimation of Forest Canopy Height Over Mountainous Areas Using Satellite Lidar. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7, 3157-3166.	2.3	26
65	Large-scale retrieval of leaf area index and vertical foliage profile from the spaceborne waveform lidar (GLAS/ICESat). Remote Sensing of Environment, 2014, 154, 8-18.	4.6	66
66	Potential contributions of remote sensing to ecosystem service assessments. Progress in Physical Geography, 2014, 38, 328-353.	1.4	126
67	An Assessment of Methods and Remote-Sensing Derived Covariates for Regional Predictions of 1 km Daily Maximum Air Temperature. Remote Sensing, 2014, 6, 8639-8670.	1.8	19
68	Application of Physically-Based Slope Correction for Maximum Forest Canopy Height Estimation Using Waveform Lidar across Different Footprint Sizes and Locations: Tests on LVIS and GLAS. Remote Sensing, 2014, 6, 6566-6586.	1.8	26
69	Improving ecosystem productivity modeling through spatially explicit estimation of optimal light use efficiency. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1755-1769.	1.3	64
70	Development of a 10-year (2001–2010) 0.1° data set of land-surface energy balance for mainland China. Atmospheric Chemistry and Physics, 2014, 14, 13097-13117.	1.9	69
71	A high-resolution global flood hazard model. Water Resources Research, 2015, 51, 7358-7381.	1.7	353
72	Vegetation Greening and Climate Change Promote Multidecadal Rises of Global Land Evapotranspiration. Scientific Reports, 2015, 5, 15956.	1.6	265
73	Small Sample Sizes Yield Biased Allometric Equations in Temperate Forests. Scientific Reports, 2015, 5, 17153.	1.6	75

#	Article	IF	CITATIONS
74	Hypo-endemic onchocerciasis hotspots: defining areas of high risk through micro-mapping and environmental delineation. Infectious Diseases of Poverty, 2015, 4, 36.	1.5	23
75	Recent trends (2003–2013) of land surface heat fluxes on the southern side of the central Himalayas, Nepal. Journal of Geophysical Research D: Atmospheres, 2015, 120, 11,957.	1.2	11
76	Regional scale rain-forest height mapping using regression-kriging of spaceborne and airborne LiDAR data: Application on French Guiana. , 2015, , .		1
77	Differential effects of environmental heterogeneity on global mammal species richness. Global Ecology and Biogeography, 2015, 24, 1072-1083.	2.7	48
78	Linking vertebrate species richness to tree canopy height on a global scale. Global Ecology and Biogeography, 2015, 24, 814-825.	2.7	34
79	Water availability predicts forest canopy height at the globalÂscale. Ecology Letters, 2015, 18, 1311-1320.	3.0	87
80	National Forest Aboveground Biomass Mapping from ICESat/GLAS Data and MODIS Imagery in China. Remote Sensing, 2015, 7, 5534-5564.	1.8	57
81	The Yale Interactive terrestrial Biosphere model version 1.0: description, evaluation and implementation into NASA GISS ModelE2. Geoscientific Model Development, 2015, 8, 2399-2417.	1.3	73
82	Constraining ecosystem carbon dynamics in a data-limited world: integrating ecological "common sense" in a model–data fusion framework. Biogeosciences, 2015, 12, 1299-1315.	1.3	89
83	Mapping Forest Canopy Height over Continental China Using Multi-Source Remote Sensing Data. Remote Sensing, 2015, 7, 8436-8452.	1.8	19
84	Prediction of Canopy Heights over a Large Region Using Heterogeneous Lidar Datasets: Efficacy and Challenges. Remote Sensing, 2015, 7, 11036-11060.	1.8	21
85	SRTM DEM Correction in Vegetated Mountain Areas through the Integration of Spaceborne LiDAR, Airborne LiDAR, and Optical Imagery. Remote Sensing, 2015, 7, 11202-11225.	1.8	44
86	Mapping Forest Canopy Height Across Large Areas by Upscaling ALS Estimates with Freely Available Satellite Data. Remote Sensing, 2015, 7, 12563-12587.	1.8	44
87	Review of Machine Learning Approaches for Biomass and Soil Moisture Retrievals from Remote Sensing Data. Remote Sensing, 2015, 7, 16398-16421.	1.8	294
88	A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes. Geoscientific Model Development, 2015, 8, 2035-2065.	1.3	71
89	Laser vision: lidar as a transformative tool to advance critical zone science. Hydrology and Earth System Sciences, 2015, 19, 2881-2897.	1.9	37
90	Correction of Interferometric and Vegetation Biases in the SRTMGL1 Spaceborne DEM with Hydrological Conditioning towards Improved Hydrodynamics Modeling in the Amazon Basin. Remote Sensing, 2015, 7, 16108-16130.	1.8	21
91	Forest Height Estimation by Means of Pol-InSAR Data Inversion: The Role of the Vertical Wavenumber. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 5294-5311.	2.7	148

#	Article	IF	CITATIONS
92	Mapping Annual Precipitation across Mainland China in the Period 2001–2010 from TRMM3B43 Product Using Spatial Downscaling Approach. Remote Sensing, 2015, 7, 5849-5878.	1.8	59
93	Predicting weather-associated impacts in outage management utilizing the GIS framework. , 2015, , .		14
94	A review of lowâ€cost spaceâ€borne data for flood modelling: topography, flood extent and water level. Hydrological Processes, 2015, 29, 3368-3387.	1.1	107
95	Forest biomass is strongly shaped by forest height across boreal to tropical forests in China. Journal of Plant Ecology, 0, , rtv001.	1.2	9
96	Threatened species impact assessments: survey effort requirements based on criteria for cumulative impacts. Diversity and Distributions, 2015, 21, 620-630.	1.9	7
97	Automated integration of lidar into the LANDFIRE product suite. Remote Sensing Letters, 2015, 6, 247-256.	0.6	17
99	Parameterizing the aerodynamic roughness length on a regional scale based on multi-source remote-sensing data. International Journal of Remote Sensing, 2015, 36, 3483-3502.	1.3	1
100	Joint Use of ICESat/GLAS and Landsat Data in Land Cover Classification: A Case Study in Henan Province, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8, 511-522.	2.3	18
101	Carbon stocks of mangroves within the Zambezi River Delta, Mozambique. Forest Ecology and Management, 2015, 354, 139-148.	1.4	89
102	Development of Onboard Digital Elevation and Relief Databases for ICESat-2. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 2011-2020.	2.7	14
103	A new 500-m resolution map of canopy height for Amazon forest using spaceborne LiDAR and cloud-free MODIS imagery. International Journal of Applied Earth Observation and Geoinformation, 2015, 43, 92-101.	1.4	13
104	Combining satellite lidar, airborne lidar, and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of North America. Canadian Journal of Forest Research, 2015, 45, 838-855.	0.8	78
105	Impact of model structure and parameterization on Penman–Monteith type evaporation models. Journal of Hydrology, 2015, 525, 521-535.	2.3	87
106	An overview of existing and promising technologies for national forest monitoring. Annals of Forest Science, 2015, 72, 779-788.	0.8	17
107	Extraction of ground surface elevation from ZY-3 winter stereo imagery over deciduous forested areas. Remote Sensing of Environment, 2015, 159, 194-202.	4.6	29
108	Virtual constellations for global terrestrial monitoring. Remote Sensing of Environment, 2015, 170, 62-76.	4.6	158
109	Regional forest biomass estimation using ICESat/GLAS spaceborne LiDAR over Borneo. Carbon Management, 2015, 6, 19-33.	1.2	12
110	Calibration of Aboveground Forest Carbon Stock Models for Major Tropical Forests in Central Sumatra Using Airborne LiDAR and Field Measurement Data. IEEE Journal of Selected Topics in Applied Farth Observations and Remote Sensing, 2015, 8, 661-673	2.3	18

ARTICLE IF CITATIONS # Measurement of Forest Above-Ground Biomass Using Active and Passive Remote Sensing at Large 111 3.4 34 (Subnational to Global) Scales. Current Forestry Reports, 2015, 1, 162-177. Conservation Status of Diurnal Raptors in Venezuela. Journal of Raptor Research, 2015, 49, 441-449. 0.2 Observing terrestrial ecosystems and the carbon cycle from space. Global Change Biology, 2015, 21, 113 4.2 339 1762-1776. Examining the utility of satellite-based wind sheltering estimates for lake hydrodynamic modeling. 114 Remote Sensing of Environment, 2015, 156, 551-560. Spaceborne potential for examining taiga–tundra ecotone form and vulnerability. Biogeosciences, 115 1.3 17 2016, 13, 3847-3861. Quantifying Multi-Decadal Change of Planted Forest Cover Using Airborne LiDAR and Landsat Imagery. 1.8 Remote Sensing, 2016, 8, 62. Characterizing leaf area index (LAI) and vertical foliage profile (VFP) over the United States. 117 1.3 23 Biogeosciences, 2016, 13, 239-252. A Quantitative Method for Long-Term Water Erosion Impacts on Productivity with a Lack of Field 118 1.6 Experiments: A Case Study in Huaihe Watershed, China. Sustainability, 2016, 8, 675. Generation of a global fuel data set using the Fuel Characteristic Classification System. 119 30 1.3 Biogeosciences, 2016, 13, 2061-2076. The GEWEX LandFlux project: evaluation of model evaporation using tower-based and globally gridded 1.3 forcing data. Geoscientific Model Development, 2016, 9, 283-305. The WACMOS-ET project – PartÂ1: Tower-scale evaluation of four remote-sensing-based 121 1.9 164 evapotranspiration algorithms. Hydrology and Earth System Sciences, 2016, 20, 803-822. Mapping Global Forest Aboveground Biomass with Spaceborne LiDAR, Optical Imagery, and Forest 1.8 108 Inventory Data. Remote Sensing, 2016, 8, 565. Perspectives on Open Access High Resolution Digital Elevation Models to Produce Global Flood 123 0.8 44 Hazard Layers. Frontiers in Earth Science, 2016, 3, . Non-Parametric Retrieval of Aboveground Biomass in Siberian Boreal Forests with ALOS PALSAR Interferometric Coherence and Backscatter Intensity. Journal of Imaging, 2016, 2, 1. 124 1.7 Regional Scale Rain-Forest Height Mapping Using Regression-Kriging of Spaceborne and Airborne LiDAR 125 1.8 38 Data: Application on French Guiana. Remote Sensing, 2016, 8, 240. LiCHy: The CAF's LiDAR, CCD and Hyperspectral Integrated Airborne Observation System. Remote 1.8 70 Sensing, 2016, 8, 398. Sensitivity of L-Band SAR Backscatter to Aboveground Biomass of Global Forests. Remote Sensing, 2016, 127 1.8 106 8, 522. Mapping Forest Health Using Spectral and Textural Information Extracted from SPOT-5 Satellite 1.8 Images. Remote Sensing, 2016, 8, 719.

#	Article	IF	CITATIONS
129	Disentangling the Role of Climate, Topography and Vegetation in Species Richness Gradients. PLoS ONE, 2016, 11, e0152468.	1.1	62
130	Global Biogeography. , 0, , 422-450.		Ο
131	Weak Environmental Controls of Tropical Forest Canopy Height in the Guiana Shield. Remote Sensing, 2016, 8, 747.	1.8	2
132	Leaf mass per area, not total leaf area, drives differences in aboveâ€ground biomass distribution among woody plant functional types. New Phytologist, 2016, 212, 368-376.	3.5	30
133	Large-Scale Biomass Classification in Boreal Forests With TanDEM-X Data. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 5935-5951.	2.7	39
134	An integrated panâ€ŧropical biomass map using multiple reference datasets. Global Change Biology, 2016, 22, 1406-1420.	4.2	469
135	On the use of SRTM and altimetry data for flood modeling in dataâ€sparse regions. Water Resources Research, 2016, 52, 2901-2918.	1.7	56
136	Potential change in forest types and stand heights in central Siberia in a warming climate. Environmental Research Letters, 2016, 11, 035016.	2.2	35
137	Estimation of above-ground biomass in forest stands from regression on their basal area and height. Forestry Studies, 2016, 64, 70-92.	0.1	7
138	Forest Canopy Height Estimation from Calipso Lidar Measurement. EPJ Web of Conferences, 2016, 119, 22005.	0.1	1
139	The importance of data type, laser spot density and modelling method for vegetation height mapping in continental China. International Journal of Remote Sensing, 2016, 37, 6127-6148.	1.3	4
140	Validation of the new SRTM digital elevation model (NASADEM) with ICESAT/GLAS over the United States. , 2016, , .		7
141	Prospects of the ICESat-2 laser altimetry mission for savanna ecosystem structural studies based on airborne simulation data. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 118, 68-82.	4.9	56
142	Mapping tree height distributions in Sub-Saharan Africa using Landsat 7 and 8 data. Remote Sensing of Environment, 2016, 185, 221-232.	4.6	107
143	Conservation status and protection of three Antillean endemic damselflies. Journal of Insect Conservation, 2016, 20, 277-284.	0.8	7
144	Geographic patterns of species richness of diurnal raptors in Venezuela. Biodiversity and Conservation, 2016, 25, 1037-1052.	1.2	2
145	Seeing the forest from drones: Testing the potential of lightweight drones as a tool for long-term forest monitoring. Biological Conservation, 2016, 198, 60-69.	1.9	185
146	Hyper-resolution mapping of regional storm surge and tide flooding: comparison of static and dynamic models. Natural Hazards, 2016, 82, 571-590.	1.6	80

#	Article	IF	CITATIONS
147	Characterization of Forests with LiDAR Technology. , 2016, , 331-362.		2
148	Evaluation of terrain and canopy height products in central African tropical forests. International Journal of Remote Sensing, 2016, 37, 5365-5387.	1.3	8
149	TanDEM-X elevation model data for canopy height and aboveground biomass retrieval in a tropical peat swamp forest. International Journal of Remote Sensing, 2016, 37, 5021-5044.	1.3	22
150	Rethinking flood hazard at the global scale. Geophysical Research Letters, 2016, 43, 10,249.	1.5	41
151	Magnitude, spatial distribution and uncertainty of forest biomass stocks in Mexico. Remote Sensing of Environment, 2016, 183, 265-281.	4.6	83
152	Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions. Remote Sensing in Ecology and Conservation, 2016, 2, 122-131.	2.2	243
153	The Role of Maps in Capturing Distal Drivers of Deforestation and Degradation: A Case Study in Central Mozambique. , 2016, , 91-109.		1
154	Biomass turnover time in terrestrial ecosystems halved by land use. Nature Geoscience, 2016, 9, 674-678.	5.4	108
155	Application of the metabolic scaling theory and water–energy balance equation to model largeâ€scale patterns of maximum forest canopy height. Global Ecology and Biogeography, 2016, 25, 1428-1442.	2.7	8
156	Global patterns and determinants of forest canopy height. Ecology, 2016, 97, 3265-3270.	1.5	81
157	Climate–vegetation–fire interactions and feedbacks: trivial detail or major barrier to projecting the future of the Earth system?. Wiley Interdisciplinary Reviews: Climate Change, 2016, 7, 910-931.	3.6	76
158	Implementation of spaceborne lidarâ€retrieved canopy height in the WRF model. Journal of Geophysical Research D: Atmospheres, 2016, 121, 6863-6876.	1.2	5
159	Positive biodiversity-productivity relationship predominant in global forests. Science, 2016, 354, .	6.0	864
160	Global evapotranspiration derived by ETMonitor model based on earth observations. , 2016, , .		6
161	Deriving global parameter estimates for the Noah land surface model using FLUXNET and machine learning. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,218.	1.2	34
162	Mapping growing stock at 1-km spatial resolution for Spanish forest areas from ground forest inventory data and GLAS canopy height. , 2016, , .		1
163	Global rainfall interception loss derived from multi-source satellite earth observations. , 2016, , .		2
164	SMOS forest optical depth intercomparisons over pan-tropical biomes. , 2016, , .		1

#	Article	IF	CITATIONS
165	Defining functional biomes and monitoring their change globally. Global Change Biology, 2016, 22, 3583-3593.	4.2	56
166	Overview and status of vegetation lidar mission MOLI. , 2016, , .		0
167	ICESat/GLAS Canopy Height Sensitivity Inferred from Airborne Lidar. Photogrammetric Engineering and Remote Sensing, 2016, 82, 351-363.	0.3	7
168	Development and evaluation of a framework for global flood hazard mapping. Advances in Water Resources, 2016, 94, 87-102.	1.7	242
169	A multi-sensor approach towards a global vegetation corrected SRTM DEM product. Remote Sensing of Environment, 2016, 182, 49-59.	4.6	149
170	Research and application of city ventilation assessments based on satellite data and <scp>CIS</scp> technology: a case study of the Yanqi Lake Ecoâ€city in Huairou District, Beijing. Meteorological Applications, 2016, 23, 320-327.	0.9	20
171	Continental-Scale Canopy Height Modeling by Integrating National, Spaceborne, and Airborne LiDAR Data. Canadian Journal of Remote Sensing, 2016, 42, 574-590.	1.1	12
172	Demonstrating soil moisture remote sensing with observations from the UK TechDemoSatâ€1 satellite mission. Geophysical Research Letters, 2016, 43, 3317-3324.	1.5	174
173	Regional and historical factors supplement current climate in shaping global forest canopy height. Journal of Ecology, 2016, 104, 469-478.	1.9	55
174	A combined GLAS and MODIS estimation of the global distribution of mean forest canopy height. Remote Sensing of Environment, 2016, 174, 24-43.	4.6	67
175	Canopy Height Model (CHM) Derived From a TanDEM-X InSAR DSM and an Airborne Lidar DTM in Boreal Forest. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9, 381-397.	2.3	38
176	SIBBORK: A new spatially-explicit gap model for boreal forest. Ecological Modelling, 2016, 320, 182-196.	1.2	17
177	Spatial distribution of forest aboveground biomass in China: Estimation through combination of spaceborne lidar, optical imagery, and forest inventory data. Remote Sensing of Environment, 2016, 173, 187-199.	4.6	166
178	A technique to increase the efficiency of artefacts identification in lidar-based canopy height models. International Journal of Remote Sensing, 2016, 37, 1658-1670.	1.3	4
179	Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada. Remote Sensing of Environment, 2016, 176, 188-201.	4.6	105
180	The assessment of mangrove biomass and carbon in West Africa: a spatially explicit analytical framework. Wetlands Ecology and Management, 2016, 24, 153-171.	0.7	16
181	The efficacy of calibrating hydrologic model using remotely sensed evapotranspiration and soil moisture for streamflow prediction. Journal of Hydrology, 2016, 535, 509-524.	2.3	80
182	The Dual-Band PolInSAR Method for Forest Parametrization. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9, 3189-3201.	2.3	18

#	Article	IF	CITATIONS
183	Landsat 8 and ICESat-2: Performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass. Remote Sensing of Environment, 2016, 185, 233-242.	4.6	60
184	Conservation policy and the measurement ofÂforests. Nature Climate Change, 2016, 6, 192-196.	8.1	136
185	Seeing the Fields and Forests: Application of Surface-Layer Theory and Flux-Tower Data to Calculating Vegetation Canopy Height. Boundary-Layer Meteorology, 2016, 158, 165-182.	1.2	33
186	Mapping regional distribution of land surface heat fluxes on the southern side of the central Himalayas using TESEBS. Theoretical and Applied Climatology, 2016, 124, 835-846.	1.3	7
187	Global variations in ecosystemâ€scale isohydricity. Global Change Biology, 2017, 23, 891-905.	4.2	226
188	Stand age and species richness dampen interannual variation of ecosystem-level photosynthetic capacity. Nature Ecology and Evolution, 2017, 1, 48.	3.4	85
189	The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sensing of Environment, 2017, 190, 260-273.	4.6	600
190	Conditions influencing the adoption of effective anti-deforestation policies in South America's commodity frontiers. Global Environmental Change, 2017, 43, 1-14.	3.6	62
191	A Global Dynamic Long-Term Inundation Extent Dataset at High Spatial Resolution Derived through Downscaling of Satellite Observations. Journal of Hydrometeorology, 2017, 18, 1305-1325.	0.7	62
192	Quantifying Forest Biomass Carbon Stocks From Space. Current Forestry Reports, 2017, 3, 1-18.	3.4	85
193	Global patterns of woody residence time and its influence on model simulation of aboveground biomass. Global Biogeochemical Cycles, 2017, 31, 821-835.	1.9	18
194	Empirically Derived Sensitivity of Vegetation to Climate across Global Gradients of Temperature and Precipitation. Journal of Climate, 2017, 30, 5835-5849.	1.2	31
195	The global distribution of Earth's critical zone and its controlling factors. Geophysical Research Letters, 2017, 44, 3201-3208.	1.5	35
196	Mapping vegetation heights in China using slope correction ICESat data, SRTM, MODIS-derived and climate data. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 129, 189-199.	4.9	35
197	Two new species of Bothriurus Peters, 1861 (Scorpiones, Bothriuridae)Âfrom Northeastern Brazil. Zootaxa, 2017, 4258, 238.	0.2	7
198	Exploring the relationship between canopy height and terrestrial plant diversity. Plant Ecology, 2017, 218, 899-908.	0.7	34
199	The effects of forest canopy shading and turbulence on boundary layer ozone. Nature Communications, 2017, 8, 15243.	5.8	68
200	A highâ€accuracy map of global terrain elevations. Geophysical Research Letters, 2017, 44, 5844-5853.	1.5	772

#	Article	IF	CITATIONS
201	Climateâ€biomes, pedoâ€biomes or pyroâ€biomes: which world view explains the tropical forest–savanna boundary in South America?. Journal of Biogeography, 2017, 44, 2319-2330.	1.4	45
202	Optimizing spaceborne LiDAR and very high resolution optical sensor parameters for biomass estimation at ICESat/GLAS footprint level using regression algorithms. Progress in Physical Geography, 2017, 41, 247-267.	1.4	36
203	Mapping spatial distribution of forest age in China. Earth and Space Science, 2017, 4, 108-116.	1.1	79
204	A method for mapping Australian woody vegetation cover by linking continental-scale field data and long-term Landsat time series. International Journal of Remote Sensing, 2017, 38, 679-705.	1.3	47
205	Tropical protected areas reduced deforestation carbon emissions by one third from 2000–2012. Scientific Reports, 2017, 7, 14005.	1.6	48
206	Open land-use map: a regional land-use mapping strategy for incorporating OpenStreetMap with earth observations. Geo-Spatial Information Science, 2017, 20, 269-281.	2.4	50
208	Airborne LiDAR Applications in Forest Landscapes. , 2017, , 147-185.		1
209	Spatial heterogeneity of biomass and forest structure of the Amazon rain forest: Linking remote sensing, forest modelling and field inventory. Global Ecology and Biogeography, 2017, 26, 1292-1302.	2.7	52
210	Forest structures across Europe. Geoscience Data Journal, 2017, 4, 17-28.	1.8	24
211	Fire disturbance data improves the accuracy of remotely sensed estimates of aboveground biomass for boreal forests in eastern Canada. Remote Sensing Applications: Society and Environment, 2017, 8, 71-82.	0.8	0
213	Interannual Variation in Hydrologic Budgets in an Amazonian Watershed with a Coupled Subsurface–Land Surface Process Model. Journal of Hydrometeorology, 2017, 18, 2597-2617.	0.7	17
214	Interacting Effects of Leaf Water Potential and Biomass on Vegetation Optical Depth. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 3031-3046.	1.3	91
215	Evaluation and Enhancement of Permafrost Modeling With the <scp>NASA</scp> Catchment Land Surface Model. Journal of Advances in Modeling Earth Systems, 2017, 9, 2771-2795.	1.3	8
216	Advances in land modeling of KIAPS based on the Noah Land Surface Model. Asia-Pacific Journal of Atmospheric Sciences, 2017, 53, 361-373.	1.3	20
217	Continental Estimates of Canopy Gap Fraction by Active Remote Sensing. Canadian Journal of Remote Sensing, 2017, 43, 345-359.	1.1	2
218	Fine-resolution forest tree height estimation across the Sierra Nevada through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery. International Journal of Digital Earth, 2017, 10, 307-323.	1.6	30
219	Relationships between individualâ€tree mortality and waterâ€balance variables indicate positive trends in water stressâ€induced tree mortality across North America. Global Change Biology, 2017, 23, 1691-1710.	4.2	100
220	Ancient Amazonian populations left lasting impacts on forest structure. Ecosphere, 2017, 8, e02035.	1.0	36

#	Article	IF	CITATIONS
221	Using precipitation, vertical root distribution, and satelliteâ€retrieved vegetation information to parameterize water stress in a <scp>P</scp> enmanâ€ <scp>M</scp> onteith approach to evapotranspiration modeling under <scp>M</scp> editerranean climate. Journal of Advances in Modeling Earth Systems, 2017, 9, 168-192.	1.3	36
222	Estimation of Forest Biomass Patterns across Northeast China Based on Allometric Scale Relationship. Forests, 2017, 8, 288.	0.9	6
223	Modeling surface water dynamics in the Amazon Basin using MOSART-Inundation v1.0: impacts of geomorphological parameters and river flow representation. Geoscientific Model Development, 2017, 10, 1233-1259.	1.3	48
224	Estimating Mangrove Canopy Height and Above-Ground Biomass in the Everglades National Park with Airborne LiDAR and TanDEM-X Data. Remote Sensing, 2017, 9, 702.	1.8	29
225	Fire Behavior Simulation from Global Fuel and Climatic Information. Forests, 2017, 8, 179.	0.9	16
226	Spatial relationships between above-ground biomass and bird species biodiversity in Palawan, Philippines. PLoS ONE, 2017, 12, e0186742.	1.1	5
227	Estimation of vegetation loss coefficients and canopy penetration depths from smap radiometer and ICESat lidar data. , 2017, , .		0
228	PHYSICS-based retrieval of scattering albedo and vegetation optical depth using multi-sensor data integration. , 2017, , .		Ο
229	The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions. Geoscientific Model Development, 2017, 10, 1175-1197.	1.3	159
230	Two-Dimensional Dam-Break Flood Analysis in Data-Scarce Regions: The Case Study of Chipembe Dam, Mozambique. Water (Switzerland), 2017, 9, 432.	1.2	39
231	Estimating Canopy Gap Fraction Using ICESat GLAS within Australian Forest Ecosystems. Remote Sensing, 2017, 9, 59.	1.8	7
232	Assessing the impact of hydrodynamics on large-scale flood wave propagation – a case study for the Amazon Basin. Hydrology and Earth System Sciences, 2017, 21, 117-132.	1.9	26
233	The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism. Hydrology and Earth System Sciences, 2017, 21, 3427-3440.	1.9	177
234	Urban surface effects on current and future climate. Urban Climate, 2018, 24, 121-138.	2.4	13
235	Mapping boreal forest biomass from a SRTM and TanDEM-X based on canopy height model and Landsat spectral indices. International Journal of Applied Earth Observation and Geoinformation, 2018, 68, 202-213.	1.4	23
236	Photon counting LiDAR: An adaptive ground and canopy height retrieval algorithm for ICESat-2 data. Remote Sensing of Environment, 2018, 208, 154-170.	4.6	116
237	El Niño drought increased canopy turnover in Amazon forests. New Phytologist, 2018, 219, 959-971.	3.5	65
238	Diverse responses of different structured forest to drought in Southwest China through remotely sensed data. International Journal of Applied Earth Observation and Geoinformation, 2018, 69, 217-225.	1.4	17

#	Article	IF	CITATIONS
239	The importance of forest structure for carbon fluxes of the Amazon rainforest. Environmental Research Letters, 2018, 13, 054013.	2.2	60
240	A global corrected SRTM DEM product for vegetated areas. Remote Sensing Letters, 2018, 9, 393-402.	0.6	36
241	Gap models and their individual-based relatives in the assessment of the consequences of global change. Environmental Research Letters, 2018, 13, 033001.	2.2	56
242	Hydraulic correction method (HCM) to enhance the efficiency of SRTM DEM in flood modeling. Journal of Hydrology, 2018, 559, 56-70.	2.3	35
243	Essential biodiversity variables are not global. Biodiversity and Conservation, 2018, 27, 1277-1288.	1.2	34
244	Integrating remote sensing and demography for more efficient and effective assessment of changing mountain forest distribution. Ecological Informatics, 2018, 43, 106-115.	2.3	20
245	Integrated risk mapping and landscape characterisation of lymphatic filariasis and loiasis in South West Nigeria. Parasite Epidemiology and Control, 2018, 3, 21-35.	0.6	16
246	CoastalDEM: A global coastal digital elevation model improved from SRTM using a neural network. Remote Sensing of Environment, 2018, 206, 231-239.	4.6	103
247	Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature, 2018, 553, 73-76.	13.7	422
248	Relative influence of spatial over environmental and historical processes on the taxonomic and phylogenetic beta diversity of Neotropical phyllostomid bat assemblages. Journal of Biogeography, 2018, 45, 617-627.	1.4	15
249	Characterization of forest carbon stocks at the landscape scale in the Argentine Dry Chaco. Forest Ecology and Management, 2018, 424, 21-27.	1.4	12
250	Annual forest aboveground biomass changes mapped using ICESat/GLAS measurements, historical inventory data, and time-series optical and radar imagery for Guangdong province, China. Agricultural and Forest Meteorology, 2018, 259, 23-38.	1.9	42
251	Modelling species responses to extreme weather provides new insights into constraints on range and likely climate change impacts for Australian mammals. Ecography, 2018, 41, 308-320.	2.1	44
252	Modeling three-dimensional forest structures to drive canopy radiative transfer simulations of bidirectional reflectance factor. International Journal of Digital Earth, 2018, 11, 981-1000.	1.6	5
253	Estimating aboveground woody biomass change in Kalahari woodland: combining field, radar, and optical data sets. International Journal of Remote Sensing, 2018, 39, 577-606.	1.3	14
254	Disentangling vegetation and climate as drivers of Australian vertebrate richness. Ecography, 2018, 41, 1147-1160.	2.1	28
255	Vegetation demographics in Earth System Models: A review of progress and priorities. Global Change Biology, 2018, 24, 35-54.	4.2	478
256	Abiotic and biotic predictors of macroecological patterns in bird and butterfly coloration. Ecological Monographs, 2018, 88, 204-224.	2.4	36

#	Article	IF	CITATIONS
257	Models meet data: Challenges and opportunities in implementing land management in Earth system models. Global Change Biology, 2018, 24, 1470-1487.	4.2	86
258	Modelling forest canopy height by integrating airborne LiDAR samples with satellite Radar and multispectral imagery. International Journal of Applied Earth Observation and Geoinformation, 2018, 66, 159-173.	1.4	61
259	Beyond climate control on species range: The importance of soil data to predict distribution of Amazonian plant species. Journal of Biogeography, 2018, 45, 190-200.	1.4	81
260	Tree spatial patterns and stand attributes in temperate forests: The importance of plot size, sampling design, and null model. Forest Ecology and Management, 2018, 407, 125-134.	1.4	42
261	Indications of Surface and Sub-Surface Hydrologic Properties from SMAP Soil Moisture Retrievals. Hydrology, 2018, 5, 36.	1.3	7
262	A Forest Attribute Mapping Framework: A Pilot Study in a Northern Boreal Forest, Northwest Territories, Canada. Remote Sensing, 2018, 10, 1338.	1.8	18
263	Merging Unmanned Aerial Systems (UAS) Imagery and Echo Soundings with an Adaptive Sampling Technique for Bathymetric Surveys. Remote Sensing, 2018, 10, 1362.	1.8	35
264	Applications of Open-Access Remotely Sensed Data for Flood Modelling and Mapping in Developing Regions. Hydrology, 2018, 5, 39.	1.3	25
265	Smos L-Band Vegetation Optical Depth is Highly Sensitive to Aboveground Biomass. , 2018, , .		3
266	Remotely-sensed productivity clusters capture global biodiversity patterns. Scientific Reports, 2018, 8, 16261.	1.6	18
267	Indirect Estimation of Structural Parameters in South African Forests Using MISR-HR and LiDAR Remote Sensing Data. Remote Sensing, 2018, 10, 1537.	1.8	5
268	Global 5 km resolution estimates of secondary evaporation including irrigation through satellite data assimilation. Hydrology and Earth System Sciences, 2018, 22, 4959-4980.	1.9	38
269	Forest Background. , 2018, , 78-103.		4
270	Multi-Frequency Estimation of Canopy Penetration Depths from SMAP/AMSR2 Radiometer and Icesat Lidar Data. , 2018, , .		3
271	Spatial and Temporal Properties of SMOS Retrieval Over Tropical Forests. , 2018, , .		0
272	A First-Order Radiative Transfer Model for Global Soil Moisture Retrievals Under Vegetation Canopies. , 2018, , .		1
273	Estimating Gravimetric Moisture of Vegetation Using an Attenuation-Based Multi-Sensor Approach. , 2018, , .		7
274	Forest Vertical Structure from MODIS BRDF Shape Indicators. , 2018, , .		2

ARTICLE IF CITATIONS # Vegetation Structure (LiDAR)., 2018, , 104-116. 275 1 Comparing TanDEMâ€X Data With Frequently Used DEMs for Flood Inundation Modeling. Water 276 1.7 Resources Research, 2018, 54, 10,205. A Forest Evapotranspiration Paradox Investigated Using Lysimeter Data. Vadose Zone Journal, 2018, 17, 277 26 1.3 1-7. SMAP soil moisture improves global evapotranspiration. Remote Sensing of Environment, 2018, 219, 278 131 1-14. Characterization of higher-order scattering from vegetation with SMAP measurements. Remote 279 4.6 29 Sensing of Environment, 2018, 219, 324-338. Disentangling direct and indirect effects of water availability, vegetation, and topography on avian 280 1.6 diversity. Scientific Reports, 2018, 8, 15475. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature, 2018, 561, 281 13.7 332 538-541. Landcover-Dependent Assessment of the Relative Height Accuracy in TanDEM-X DEM Products. IEEE 1.4 Geoscience and Remote Sensing Letters, 2018, 15, 1892-1896. The Transferability of Random Forest in Canopy Height Estimation from Multi-Source Remote Sensing 283 29 1.8 Data. Remote Sensing, 2018, 10, 1183. Tall Amazonian forests are less sensitive to precipitation variability. Nature Geoscience, 2018, 11, 284 5.4 405-409. Multivariate estimation for accurate and logically consistent forest-attributes maps at macroscales. 285 0.8 3 Canadian Journal of Forest Research, 2018, 48, 345-359. Climate differentiates forest structure across a residential macrosystem. Science of the Total Environment, 2018, 639, 1164-1174. Canopy area of large trees explains aboveground biomass variations across neotropical forest 287 1.3 32 landscapes. Biogeosciences, 2018, 15, 3377-3390. Fast matrix treatment of 3-D radiative transfer in vegetation canopies: SPARTACUS-Vegetation 1.1. Geoscientific Model Development, 2018, 11, 339-350. 1.3 Automated Estimation of Standing Dead Tree Volume Using Voxelized Terrestrial Lidar Data. IEEE 289 2.7 13 Transactions on Geoscience and Remote Sensing, 2018, 56, 6484-6503. Forest drought resistance distinguished by canopy height. Environmental Research Letters, 2018, 13, 2.2 075003. Climate limits on European forest structure across space and time. Global and Planetary Change, 2018, 291 1.6 12 169, 168-178. Introduction to Remote Sensing for Conservation Practitioners., 0,, 26-53.

#	Article	IF	CITATIONS
293	Estimating the vegetation canopy height using micro-pulse photon-counting LiDAR data. Optics Express, 2018, 26, A520.	1.7	72
294	European Forest Cover During the Past 12,000 Years: A Palynological Reconstruction Based on Modern Analogs and Remote Sensing. Frontiers in Plant Science, 2018, 9, 253.	1.7	65
295	An evaluation of SMOS L-band vegetation optical depth (L-VOD) data sets: high sensitivity of L-VOD to above-ground biomass in Africa. Biogeosciences, 2018, 15, 4627-4645.	1.3	97
296	Impacts of Water Stress on Forest Recovery and Its Interaction with Canopy Height. International Journal of Environmental Research and Public Health, 2018, 15, 1257.	1.2	15
297	Incorporation of Stem Water Content into Vegetation Optical Depth for Crops and Woodlands. Remote Sensing, 2018, 10, 273.	1.8	8
298	Comparison of visible and multi-satellite global inundation datasets at high-spatial resolution. Remote Sensing of Environment, 2018, 216, 427-441.	4.6	42
299	Role and Impact of the Urban Environment in a Numerical Forecast of an Intense Summertime Precipitation Event over Tokyo. Journal of the Meteorological Society of Japan, 2018, 96A, 77-94.	0.7	20
300	Spatial scale dependence of factors driving climate regulation services in the Americas. Global Ecology and Biogeography, 2018, 27, 828-838.	2.7	9
301	Mapping Lorey's height over Hyrcanian forests of Iran using synergy of ICESat/GLAS and optical images. European Journal of Remote Sensing, 2018, 51, 100-115.	1.7	13
302	Use of the SAR Shadowing Effect for Deforestation Detection with Sentinel-1 Time Series. Remote Sensing, 2018, 10, 1250.	1.8	76
303	Coupling of ecosystem-scale plant water storage and leaf phenology observed by satellite. Nature Ecology and Evolution, 2018, 2, 1428-1435.	3.4	114
304	Temporal Dynamics of Aerodynamic Canopy Height Derived From Eddy Covariance Momentum Flux Data Across North American Flux Networks. Geophysical Research Letters, 2018, 45, 9275-9287.	1.5	31
305	Evapotranspiration. , 2018, , 25-50.		2
306	Post-drought decline of the Amazon carbon sink. Nature Communications, 2018, 9, 3172.	5.8	95
307	Key ecological research questions for Central European forests. Basic and Applied Ecology, 2018, 32, 3-25.	1.2	71
308	Impacts of domestic cattle on forest and woody ecosystems in southern South America. Plant Ecology, 2018, 219, 913-925.	0.7	30
310	Exploring the Influence of Various Factors on Slope Estimation Using Large-Footprint LiDAR Data. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 6611-6621.	2.7	4
311	Vertical stratification influences global patterns of biodiversity. Ecography, 2019, 42, 249-249.	2.1	68

#	Article	IF	CITATIONS
312	Origins and Assembly of Malesian Rainforests. Annual Review of Ecology, Evolution, and Systematics, 2019, 50, 119-143.	3.8	46
313	Recent Advances in Forest Observation with Visual Interpretation of Very High-Resolution Imagery. Surveys in Geophysics, 2019, 40, 839-862.	2.1	31
314	The Importance of Consistent Global Forest Aboveground Biomass Product Validation. Surveys in Geophysics, 2019, 40, 979-999.	2.1	106
315	Synthetic aperture radar sensitivity to forest changes: A simulations-based study for the Romanian forests. Science of the Total Environment, 2019, 689, 1104-1114.	3.9	28
316	Accuracy assessment of the TanDEM-X 90 Digital Elevation Model for selected floodplain sites. Remote Sensing of Environment, 2019, 232, 111319.	4.6	93
317	Constructing a Finer-Resolution Forest Height in China Using ICESat/GLAS, Landsat and ALOS PALSAR Data and Height Patterns of Natural Forests and Plantations. Remote Sensing, 2019, 11, 1740.	1.8	12
318	Estimating aboveground biomass in subtropical forests of China by integrating multisource remote sensing and ground data. Remote Sensing of Environment, 2019, 232, 111341.	4.6	46
319	Synergy of ICESat-2 and Landsat for Mapping Forest Aboveground Biomass with Deep Learning. Remote Sensing, 2019, 11, 1503.	1.8	61
320	Annual continuous fields of woody vegetation structure in the Lower Mekong region from 2000â€2017 Landsat time-series. Remote Sensing of Environment, 2019, 232, 111278.	4.6	91
321	Estimation of Forest Structural Attributes Using ICESat/GLAS-Spaceborne Laser Altimetry Data in the Western Ghats Region of India. Journal of Geovisualization and Spatial Analysis, 2019, 3, 1.	2.1	4
322	The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty. Journal of Advances in Modeling Earth Systems, 2019, 11, 4245-4287.	1.3	692
323	Tree aboveground biomass and species richness of the mature tropical forests of Darien, Panama, and their role in global climate change mitigation and biodiversity conservation. Conservation Science and Practice, 2019, 1, e42.	0.9	4
324	Simultaneous retrieval of global scale Vegetation Optical Depth, surface roughness, and soil moisture using X-band AMSR-E observations. Remote Sensing of Environment, 2019, 234, 111473.	4.6	30
325	Estimation of relative canopy absorption and scattering at L-, C- and X-bands. Remote Sensing of Environment, 2019, 233, 111384.	4.6	24
326	Northern Hemisphere Atmospheric Stilling Accelerates Lake Thermal Responses to a Warming World. Geophysical Research Letters, 2019, 46, 11983-11992.	1.5	65
327	Version 4 of the SMAP Levelâ€4 Soil Moisture Algorithm and Data Product. Journal of Advances in Modeling Earth Systems, 2019, 11, 3106-3130.	1.3	104
328	Reconstruction of the disturbance history of a temperate coniferous forest through stand-level analysis of airborne LiDAR data. Forestry, 0, , .	1.2	2
329	From small-scale forest structure to Amazon-wide carbon estimates. Nature Communications, 2019, 10, 5088.	5.8	25

# 330	ARTICLE Improved derivation of forest stand canopy height structure using harmonized metrics of full-waveform data. Remote Sensing of Environment, 2019, 235, 111436.	IF 4.6	CITATIONS
331	Metabolic rhythms in flowing waters: An approach for classifying river productivity regimes. Limnology and Oceanography, 2019, 64, 1835-1851.	1.6	52
332	Exploring rain forest diversification using demographic model testing in the African foamâ€nest treefrog <i>Chiromantis rufescens</i> . Journal of Biogeography, 2019, 46, 2706-2721.	1.4	28
333	Parametric Sensitivity of Vegetation Dynamics in the TRIFFID Model and the Associated Uncertainty in Projected Climate Change Impacts on Western U.S. Forests. Journal of Advances in Modeling Earth Systems, 2019, 11, 2787-2813.	1.3	11
334	Country-wide high-resolution vegetation height mapping with Sentinel-2. Remote Sensing of Environment, 2019, 233, 111347.	4.6	113
335	Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sensing of Environment, 2019, 233, 111383.	4.6	276
336	Quantifying the biophysical effects of forests on local air temperature using a novel three-layered land surface energy balance model. Environment International, 2019, 132, 105080.	4.8	19
337	Threats to the populations of two endemic brushturkey species in Indonesian New Guinea. Journal of Asia-Pacific Biodiversity, 2019, 12, 488-492.	0.2	4
338	Monitoring boreal avian populations: how can we estimate trends and trajectories from noisy data?. Avian Conservation and Ecology, 2019, 14, .	0.3	16
339	Climate Benefits of Intact Amazon Forests and the Biophysical Consequences of Disturbance. Frontiers in Forests and Global Change, 2019, 2, .	1.0	54
340	Vegetation optical depth at L-band and above ground biomass in the tropical range: Evaluating their relationships at continental and regional scales. International Journal of Applied Earth Observation and Geoinformation, 2019, 77, 151-161.	1.4	20
341	Generation of Large-Scale Moderate-Resolution Forest Height Mosaic With Spaceborne Repeat-Pass SAR Interferometry and Lidar. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 770-787.	2.7	16
342	Mangroves in the Galapagos islands: Distribution and dynamics. PLoS ONE, 2019, 14, e0209313.	1.1	18
343	Models ignoring spatial heterogeneities of forest age will significantly overestimate the climate effects on litterfall in China. Science of the Total Environment, 2019, 661, 492-503.	3.9	11
344	Definition and measurement of tree cover: A comparative analysis of field-, lidar- and landsat-based tree cover estimations in the Sierra national forests, USA. Agricultural and Forest Meteorology, 2019, 268, 258-268.	1.9	24
345	Characterizing global forest canopy cover distribution using spaceborne lidar. Remote Sensing of Environment, 2019, 231, 111262.	4.6	79
346	BARRA v1.0: the Bureau of Meteorology Atmospheric high-resolution Regional Reanalysis for Australia. Geoscientific Model Development, 2019, 12, 2049-2068.	1.3	86
347	Challenges, Opportunities, and Pitfalls for Global Coupled Hydrologicâ€Hydraulic Modeling of Floods. Water Resources Research, 2019, 55, 5277-5300.	1.7	52

#	Article	IF	CITATIONS
348	The tree-canopy effect in gravity forward modelling. Geophysical Journal International, 2019, 219, 271-289.	1.0	7
349	Synthesis of Leaf-on and Leaf-off Unmanned Aerial Vehicle (UAV) Stereo Imagery for the Inventory of Aboveground Biomass of Deciduous Forests. Remote Sensing, 2019, 11, 889.	1.8	19
350	Digital mapping of peatlands – A critical review. Earth-Science Reviews, 2019, 196, 102870.	4.0	102
351	Effect of Site Attributes and Matrix Composition on Neotropical Primate Species Richness and Functional Traits: A Comparison Among Regions. Diversity, 2019, 11, 83.	0.7	4
352	Atmospheric boundary layer dynamics from balloon soundings worldwide: CLASS4GL v1.0. Geoscientific Model Development, 2019, 12, 2139-2153.	1.3	15
353	Long-range depth imaging using a single-photon detector array and non-local data fusion. Scientific Reports, 2019, 9, 8075.	1.6	46
354	Upscaling Forest Biomass from Field to Satellite Measurements: Sources of Errors and Ways to Reduce Them. Surveys in Geophysics, 2019, 40, 881-911.	2.1	61
355	Impact of light-absorbing particles on snow albedo darkening and associated radiative forcing over high-mountain Asia: high-resolution WRF-Chem modeling and new satellite observations. Atmospheric Chemistry and Physics, 2019, 19, 7105-7128.	1.9	46
356	Latitudinal effects of anthropogenic factors driving raptor species richness across the American continent. Journal of Biogeography, 2019, 46, 1948-1958.	1.4	7
357	A Brief Review of Random Forests for Water Scientists and Practitioners and Their Recent History in Water Resources. Water (Switzerland), 2019, 11, 910.	1.2	336
358	Patterns and ecological determinants of woody plant height in eastern Eurasia and its relation to primary productivity. Journal of Plant Ecology, 2019, 12, 791-803.	1.2	15
359	Seasonal Flooding Causes Intensification of the River Breeze in the Central Amazon. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5178-5197.	1.2	10
360	Mapping Forest Height from TanDEM-X Interferometric Coherence Data in Northwest Territories, Canada. Canadian Journal of Remote Sensing, 2019, 45, 290-307.	1.1	5
361	Intercomparison of remote-sensing based evapotranspiration algorithms over amazonian forests. International Journal of Applied Earth Observation and Geoinformation, 2019, 80, 280-294.	1.4	26
362	Species distribution modeling reveals strongholds and potential reintroduction areas for the world's largest eagle. PLoS ONE, 2019, 14, e0216323.	1.1	29
363	Climate and plant trait strategies determine tree carbon allocation to leaves and mediate future forest productivity. Global Change Biology, 2019, 25, 3395-3405.	4.2	53
364	Mapping Canopy Heights of Poplar Plantations in Plain Areas Using ZY3-02 Stereo and Multispectral Data. ISPRS International Journal of Geo-Information, 2019, 8, 106.	1.4	7
365	Mapping Maximum Tree Height of the Great Khingan Mountain, Inner Mongolia Using the Allometric Scaling and Resource Limitations Model. Forests, 2019, 10, 380.	0.9	3

ARTICLE IF CITATIONS Development and Validation of a Photo-Based Measurement System to Calculate the Debarking 366 1.8 2 Percentages of Processed Logs. Remote Sensing, 2019, 11, 1133. Mapping Europe into local climate zones. PLoS ONE, 2019, 14, e0214474. 367 1.1 123 UAV RTK/PPK Methodâ€"An Optimal Solution for Mapping Inaccessible Forested Areas?. Remote Sensing, 368 1.8 126 2019, 11, 721. Acquisition of Forest Attributes for Decision Support at the Forest Enterprise Level Using 0.9 Remote-Sensing Techniquesâ€"A Review. Forests, 2019, 10, 273. Satellite-based vegetation optical depth as an indicator of drought-driven tree mortality. Remote 370 4.6 79 Sensing of Environment, 2019, 227, 125-136. <u>Updates</u> to the Noah Land Surface Model in WRF MAQ to Improve Simulated Meteorology, Air Quality, 371 1.3 and Deposition. Journal of Advances in Modeling Earth Systems, 2019, 11, 231-256. Slope-adaptive waveform metrics of large footprint lidar for estimation of forest aboveground 372 4.6 44 biomass. Remote Sensing of Environment, 2019, 224, 386-400. Cloudy with a chance of speciation: integrative taxonomy reveals extraordinary divergence within a 28 Mesoámerican cloud forest bird. Biological Journal of the Linnean Society, 2019, 126, 1-15. Forest type and height are important in shaping the altitudinal change of radial growth response to 374 1.6 14 climate change. Scientific Reports, 2019, 9, 1336. The relationship of woody plant size and leaf nutrient content to large \hat{s} cale productivity for forests across the Americas. Journal of Ecology, 2019, 107, 2278-2290. Seasonal and Interannual Patterns and Controls of Hydrological Fluxes in an Amazon Floodplain Lake 376 1.7 30 With a Surfaceâ€Subsurface Process Model. Water Resources Research, 2019, 55, 3056-3075. Beyond MRV: high-resolution forest carbon modeling for climate mitigation planning over Maryland, 2.2 34 USA. Environmental Research Letters, 2019, 14, 045013. A Structural Classification of Australian Vegetation Using ICESat/GLAS, ALOS PALSAR, and Landsat 378 1.8 30 Sensor Data. Remote Sensing, 2019, 11, 147. The Relevance of Forest Structure for Biomass and Productivity in Temperate Forests: New Perspectives for Remote Sensing. Surveys in Geophysics, 2019, 40, 709-734. 379 2.1 Emergent relationships with respect to burned area in global satellite observations and fire-enabled 380 1.3 85 vegetation models. Biogeosciences, 2019, 16, 57-76. Use and categorization of Light Detection and Ranging vegetation metrics in avian diversity and species distribution research. Diversity and Distributions, 2019, 25, 1045-1059. Performance of Laser-Based Electronic Devices for Structural Analysis of Amazonian Terra-Firme 382 1.8 7 Forests. Remote Sensing, 2019, 11, 510. The role of understory phenology and productivity in the carbon dynamics of longleaf pine savannas. Ecosphere, 2019, 10, e02675.

#	Article	IF	CITATIONS
384	Retrieval of Forest Vertical Structure from PolInSAR Data by Machine Learning Using LIDAR-Derived Features. Remote Sensing, 2019, 11, 381.	1.8	21
385	Tree height explains stand volume of closed-canopy stands: Evidence from forest inventory data of China. Forest Ecology and Management, 2019, 438, 51-56.	1.4	21
386	Photon-Counting Lidar: An Adaptive Signal Detection Method for Different Land Cover Types in Coastal Areas. Remote Sensing, 2019, 11, 471.	1.8	25
387	Comparison and integration of lidar and photogrammetric point clouds for mapping pre-fire forest structure. Remote Sensing of Environment, 2019, 224, 154-166.	4.6	38
388	Role of forest regrowth in global carbon sink dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4382-4387.	3.3	370
389	Environmental factors associated with the distribution of Loa loa vectors Chrysops spp. in Central and West Africa: seeing the forest for the trees. Parasites and Vectors, 2019, 12, 72.	1.0	3
390	Mapping Forest Canopy Height in Mountainous Areas Using ZiYuan-3 Stereo Images and Landsat Data. Forests, 2019, 10, 105.	0.9	9
391	Estimating Forest Canopy Height Using MODIS BRDF Data Emphasizing Typical-Angle Reflectances. Remote Sensing, 2019, 11, 2239.	1.8	19
392	A Framework for Retrieving a Time-Varying Effective Scattering Albedo from Satellite Microwave Measurements. , 2019, , .		0
393	Vegetation. , 2019, , 145-159.		1
393 394	Vegetation. , 2019, , 145-159. Mapping Forested Floodplain Topography Using InSAR and Radar Altimetry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 5189-5198.	2.3	1
393 394 395	Vegetation., 2019,, 145-159. Mapping Forested Floodplain Topography Using InSAR and Radar Altimetry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 5189-5198. An assessment of human impacts on endangered red pandas (<i>Ailurus fulgens</i>) living in the Himalaya. Ecology and Evolution, 2019, 9, 13413-13425.	2.3 0.8	1 7 19
393 394 395 396	Vegetation., 2019,, 145-159. Mapping Forested Floodplain Topography Using InSAR and Radar Altimetry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 5189-5198. An assessment of human impacts on endangered red pandas (<i>Ailurus fulgens</i>) living in the Himalaya. Ecology and Evolution, 2019, 9, 13413-13425. Estimating Grassland Carbon Stocks in Hulunber China, Using Landsat8 Oli Imagery and Regression Kriging â€. Sensors, 2019, 19, 5374.	2.3 0.8 2.1	1 7 19 7
393 394 395 396	 Vegetation., 2019, , 145-159. Mapping Forested Floodplain Topography Using InSAR and Radar Altimetry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 5189-5198. An assessment of human impacts on endangered red pandas (<i>Ailurus fulgens</i>) living in the Himalaya. Ecology and Evolution, 2019, 9, 13413-13425. Estimating Grassland Carbon Stocks in Hulunber China, Using Landsat8 Oli Imagery and Regression Kriging â€. Sensors, 2019, 19, 5374. Data Processing and Analysis Approach to Retrieve Carbon Dioxide Weighted-Column Mixing Ratio and 2-<inline-formula> <tex-math notation="LaTeX">\$mu\$ </tex-math> </inline-formula> m Reflectance With an Airborne Laser Absorption Spectrometer. IEEE Transactions on Geoscience and Remote Sensing, 2019, 27, 958, 971 	2.3 0.8 2.1 2.7	1 7 19 7
 393 394 395 396 397 398 	Vegetation., 2019, , 145-159. Mapping Forested Floodplain Topography Using InSAR and Radar Altimetry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 5189-5198. An assessment of human impacts on endangered red pandas (<i>Ailurus fulgens</i>) living in the Himalaya. Ecology and Evolution, 2019, 9, 13413-13425. Estimating Grassland Carbon Stocks in Hulunber China, Using Landsat8 Oli Imagery and Regression Kriging â€. Sensors, 2019, 19, 5374. Data Processing and Analysis Approach to Retrieve Carbon Dioxide Weighted-Column Mixing Ratio and 2-cinline-formula> (tex-math notation="LaTeX">\$mu\$ Data Processing and Analysis Approach to Retrieve Carbon Dioxide Weighted-Column Mixing Ratio and 2-cinline-formula> (12 FX") \$mu\$ Clobal transferability of local climate zone models. Urban Climate, 2019, 27, 46-63.	2.3 0.8 2.1 2.7 2.4	1 7 19 7 1 1 76
 393 394 395 396 397 398 399 	Vegetation., 2019, , 145-159. Mapping Forested Floodplain Topography Using InSAR and Radar Altimetry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 5189-5198. An assessment of human impacts on endangered red pandas (<i>Ailurus fulgens</i>) living in the Himalaya. Ecology and Evolution, 2019, 9, 13413-13425. Estimating Grassland Carbon Stocks in Hulunber China, Using Landsat8 Oli Imagery and Regression Kriging ã€. Sensors, 2019, 19, 5374. Data Processing and Analysis Approach to Retrieve Carbon Dioxide Weighted-Column Mixing Ratio and 2-(inline-formula> (tex-math notation="LaTeX">\$mu\$ (/inline-formula> m Reflectance With an Airborne Laser Absorption Spectrometer. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 958-971. Global transferability of local climate zone models. Urban Climate, 2019, 27, 46-63. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nature Geoscience, 2019, 12, 40-45.	2.3 0.8 2.1 2.7 2.4 5.4	1 7 19 7 1 1 76 279
 393 394 395 396 397 398 399 400 	Vegetation., 2019,, 145-159. Mapping Forested Floodplain Topography Using InSAR and Radar Altimetry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 5189-5198. An assessment of human impacts on endangered red pandas (<i>Ailurus fulgens</i>) living in the Himalaya. Ecology and Evolution, 2019, 9, 13413-13425. Estimating Grassland Carbon Stocks in Hulunber China, Using Landsat8 Oli Imagery and Regression Kriging a€. Sensors, 2019, 19, 5374. Data Processing and Analysis Approach to Retrieve Carbon Dioxide Weighted-Column Mixing Ratio and 2-(inline-formula> (tex-math notation="LaTeX"> Smu\$ <td>2.3 0.8 2.1 2.7 2.4 5.4 4.6</td> <td>1 7 19 7 1 1 76 279 245</td>	2.3 0.8 2.1 2.7 2.4 5.4 4.6	1 7 19 7 1 1 76 279 245

#	Article	IF	Citations
402	Integration of multi-resource remotely sensed data and allometric models for forest aboveground biomass estimation in China. Remote Sensing of Environment, 2019, 221, 225-234.	4.6	68
403	Prediction of forest aboveground net primary production from highâ€resolution vertical leafâ€area profiles. Ecology Letters, 2019, 22, 538-546.	3.0	8
404	Satellite and Station Observations Demonstrate Water Availability's Effect on Continental‧cale Evaporative and Photosynthetic Land Surface Dynamics. Water Resources Research, 2019, 55, 540-554.	1.7	34
405	How do bat, rodent, and marsupial communities respond to spatial and environmental gradients? Insights from a deconstruction of mammal beta diversity from the Atlantic Forest of South America. Oecologia, 2019, 189, 851-861.	0.9	10
406	Analysis of Vegetation Optical Depth and Soil Moisture Retrieved by SMOS Over Tropical Forests. IEEE Geoscience and Remote Sensing Letters, 2019, 16, 504-508.	1.4	16
407	The International Treeâ€Ring Data Bank (<scp>ITRDB</scp>) revisited: Data availability and global ecological representativity. Journal of Biogeography, 2019, 46, 355-368.	1.4	123
408	Stem–Leaf Segmentation and Phenotypic Trait Extraction of Individual Maize Using Terrestrial LiDAR Data. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 1336-1346.	2.7	92
409	Evaluation and calibration of a high-resolution soil moisture product for wildfire prediction and management. Agricultural and Forest Meteorology, 2019, 264, 27-39.	1.9	15
410	Potential distribution of and priority conservation areas for the Endangered Caatinga howler monkey <i>Alouatta ululata</i> in north-eastern Brazil. Oryx, 2020, 54, 794-802.	0.5	10
411	Canopy height explains species richness in the largest clade of Neotropical lianas. Global Ecology and Biogeography, 2020, 29, 26-37.	2.7	17
412	Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling. New Phytologist, 2020, 225, 26-36.	3.5	144
413	Unveiling geographical gradients of species richness from scant occurrence data. Global Ecology and Biogeography, 2020, 29, 748-759.	2.7	5
414	Available and missing data to model impact of climate change on European forests. Ecological Modelling, 2020, 416, 108870.	1.2	58
415	Global canopy rainfall interception loss derived from satellite earth observations. Ecohydrology, 2020, 13, e2186.	1.1	41
416	Bird's nest fern epiphytes facilitate herpetofaunal arboreality and climate refuge in two paleotropic canopies. Oecologia, 2020, 192, 297-309.	0.9	15
417	Aboveground biomass. , 2020, , 543-580.		2
418	Misinterpretation of Asian savannas as degraded forest can mislead management and conservation policy under climate change. Biological Conservation, 2020, 241, 108293.	1.9	30
419	Geographical patterns and current and shortâ€ŧerm historical correlates of phylogenetic diversity and endemism for New World primates. Journal of Biogeography, 2020, 47, 890-902.	1.4	4

#	Article	IF	CITATIONS
420	New forest biomass carbon stock estimates in Northeast Asia based on multisource data. Global Change Biology, 2020, 26, 7045-7066.	4.2	20
421	Validation of ICESat-2 terrain and canopy heights in boreal forests. Remote Sensing of Environment, 2020, 251, 112110.	4.6	99
422	Spatial epidemiology of yellow fever: Identification of determinants of the 2016-2018 epidemics and at-risk areas in Brazil. PLoS Neglected Tropical Diseases, 2020, 14, e0008691.	1.3	23
423	Habitat suitability model of endangered Latidens salimalii and the probable consequences of global warming. Tropical Ecology, 2020, 61, 570-582.	0.6	13
424	A New Method for Generating a Global Forest Aboveground Biomass Map From Multiple High-Level Satellite Products and Ancillary Information. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 2587-2597.	2.3	23
425	Amazon rainforest photosynthesis increases in response to atmospheric dryness. Science Advances, 2020, 6, .	4.7	98
426	Accuracy Assessment of GEDI Terrain Elevation and Canopy Height Estimates in European Temperate Forests: Influence of Environmental and Acquisition Parameters. Remote Sensing, 2020, 12, 3948.	1.8	70
427	An Evaluation of Eight Machine Learning Regression Algorithms for Forest Aboveground Biomass Estimation from Multiple Satellite Data Products. Remote Sensing, 2020, 12, 4015.	1.8	58
428	Bryophytes are predicted to lag behind future climate change despite their high dispersal capacities. Nature Communications, 2020, 11, 5601.	5.8	47
429	Global Carbon Cycle and Climate Feedbacks in the NASA GISS ModelE2.1. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002030.	1.3	15
430	Canopy parkour: movement ecology of post-hatch dispersal in a gliding nymphal stick insect (<i>Extatosoma tiaratum</i>). Journal of Experimental Biology, 2020, 223, .	0.8	6
431	Retrieving individual tree heights from a point cloud generated with optical imagery from an unmanned aerial vehicle (UAV). Canadian Journal of Forest Research, 2020, 50, 1012-1024.	0.8	4
432	Evaluation of the Weather Research and Forecasting model in simulating fire weather for the south-west of Western Australia. International Journal of Wildland Fire, 2020, 29, 779.	1.0	2
433	Deconstructing species richness–environment relationships in Neotropical lianas. Journal of Biogeography, 2020, 47, 2168-2180.	1.4	8
434	Effects of Chinese Privet on Bees and Their Vertical Distribution in Riparian Forests. Forest Science, 2020, 66, 416-423.	0.5	10
435	Forest age mapping based on multiple-resource remote sensing data. Environmental Monitoring and Assessment, 2020, 192, 734.	1.3	14
436	Estimation of LAI with the LiDAR Technology: A Review. Remote Sensing, 2020, 12, 3457.	1.8	50
437	Fusion of Multiple Gridded Biomass Datasets for Generating a Global Forest Aboveground Biomass Map. Remote Sensing, 2020, 12, 2559.	1.8	21

#	Article	IF	CITATIONS
438	GISSâ€E2.1: Configurations and Climatology. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002025.	1.3	234
439	Fire Danger Observed from Space. Surveys in Geophysics, 2020, 41, 1437-1459.	2.1	17
440	The Best of Both Worlds? Integrating Sentinel-2 Images and airborne LiDAR to Characterize Forest Regeneration. Remote Sensing, 2020, 12, 2440.	1.8	4
441	Effectiveness of protected areas in conserving tropical forest birds. Nature Communications, 2020, 11, 4461.	5.8	83
442	Highly Local Model Calibration with a New GEDI LiDAR Asset on Google Earth Engine Reduces Landsat Forest Height Signal Saturation. Remote Sensing, 2020, 12, 2840.	1.8	52
443	Combining expert and crowd-sourced training data to map urban form and functions for the continental US. Scientific Data, 2020, 7, 264.	2.4	64
444	Tamm review: Leaf Area Index (LAI) is both a determinant and a consequence of important processes in vegetation canopies. Forest Ecology and Management, 2020, 477, 118496.	1.4	64
445	Use of Fractal Analysis in the Evaluation of Deforested Areas in Romania. , 2020, , .		0
446	Woody vegetation cover, height and biomass at 25-m resolution across Australia derived from multiple site, airborne and satellite observations. International Journal of Applied Earth Observation and Geoinformation, 2020, 93, 102209.	1.4	20
447	Estimating Time Since the Last Stand-Replacing Disturbance (TSD) from Spaceborne Simulated GEDI Data: A Feasibility Study. Remote Sensing, 2020, 12, 3506.	1.8	7
448	Including vegetation dynamics in an atmospheric chemistry-enabled general circulation model: linking LPJ-GUESS (v4.0) with the EMAC modelling system (v2.53). Geoscientific Model Development, 2020, 13, 1285-1309.	1.3	12
449	Forest canopy height coâ€determines taxonomic and functional richness, but not functional dispersion of mammals and birds globally. Global Ecology and Biogeography, 2020, 29, 1350-1359.	2.7	25
450	A Method for Tree Detection Based on Similarity with Geometric Shapes of 3D Geospatial Data. ISPRS International Journal of Geo-Information, 2020, 9, 298.	1.4	4
451	Linking life and landscape with remote sensing. Developments in Earth Surface Processes, 2020, 23, 129-182.	2.8	0
452	Evaluation of the Simard et al. 2011 Global Canopy Height Map in Boreal Forests. Remote Sensing, 2020, 12, 1114.	1.8	1
453	Challenges in Estimating Tropical Forest Canopy Height from Planet Dove Imagery. Remote Sensing, 2020, 12, 1160.	1.8	21
454	A Pathway to the Automated Global Assessment of Water Level in Reservoirs with Synthetic Aperture Radar (SAR). Remote Sensing, 2020, 12, 1353.	1.8	7
455	Pervasive shifts in forest dynamics in a changing world. Science, 2020, 368, .	6.0	576

ARTICLE IF CITATIONS # Geomorpho90m, empirical evaluation and accuracy assessment of global high-resolution 456 2.4 72 geomorphometric layers. Scientific Data, 2020, 7, 162. Climate change promotes transitions to tall evergreen vegetation in tropical Asia. Global Change 4.2 Biology, 2020, 26, 5106-5124. Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to 458 3.4 134 extreme drought. Nature Ecology and Evolution, 2020, 4, 1075-1083. Remote sensing and statistical analysis of the effects of hurricane MarÃa on the forests of Puerto Rico. Remote Sensing of Environment, 2020, 247, 111940. Analysis of Variation in Distance, Number, and Distribution of Spotting in Southeast Australian 460 1.2 20 Wildfires. Fire, 2020, 3, 10. Mapping the Global Mangrove Forest Aboveground Biomass Using Multisource Remote Sensing Data. 1.8 Remote Sensing, 2020, 12, 1690. Remotely sensed thermal decay rate: an index for vegetation monitoring. Scientific Reports, 2020, 10, 462 1.6 7 9812. Nonparametric machine learning for mapping forest cover and exploring influential factors. 1.9 Landscape Ecology, 2020, 35, 1683-1699. Identifying areas at risk of droughtâ€induced tree mortality across Southâ€Eastern Australia. Global 464 4.2 79 Change Biology, 2020, 26, 5716-5733. Canopy Height Estimation Using Sentinel Series Images through Machine Learning Models in a 1.8 Mangrove Forest. Remote Sensing, 2020, 12, 1519. African biomes are most sensitive to changes in CO<sub&gt;2&lt;/sub&gt; under recent and near-future CO<sub&gt;2&lt;/sub&gt; conditions. Biogeosciences, 2020, 466 1.3 6 17, 1147-1167. The potential of remote sensing-based models on global water-use efficiency estimation: An evaluation and intercomparison of an ecosystem model (BESS) and algorithm (MODIS) using site level and upscaled eddy covariance data. Ágricultural and Forest Meteorology, 2020, 287, 107959. Monitoring tropical forests under a functional perspective with satelliteâ€based vegetation optical 468 4.2 15 depth. Global Change Biology, 2020, 26, 3402-3416. Persistence and Plasticity in Conifer Waterâ€Use Strategies. Journal of Geophysical Research G: 1.3 24 Biogeosciences, 2020, 125, e2018JG004845. Regional Tropical Aboveground Biomass Mapping with L-Band Repeat-Pass Interferometric Radar, 470 7 1.8 Sparse Lidar, and Multiscale Superpixels. Remote Sensing, 2020, 12, 2048. Remote Sensing of Forest Biomass Using GNSS Reflectometry. IEEE Journal of Selected Topics in Applied 471 Earth Observations and Remote Sensing, 2020, 13, 2351-2368. Using ICESat-2 to Estimate and Map Forest Aboveground Biomass: A First Example. Remote Sensing, 472 1.8 61 2020, 12, 1824. A Method for Solving LiDAR Waveform Decomposition Parameters Based on a Variable Projection 473 Algorithm. Complexity, 2020, 2020, 1-13.

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
474	Mapping forest type and age in China's plantations. Science of the Total Environment, 2020, 744, 140790.	3.9	37
475	Ozone exchange within and above an irrigated Californian orchard. Tellus, Series B: Chemical and Physical Meteorology, 2022, 72, 1723346.	0.8	28
476	Developing a Scene-Based Triangulated Irregular Network (TIN) Technique for Individual Tree Crown Reconstruction with LiDAR Data. Forests, 2020, 11, 28.	0.9	13
477	Accuracy assessment of the global forest watch tree cover 2000 in China. International Journal of Applied Earth Observation and Geoinformation, 2020, 87, 102033.	1.4	18
478	Developing a method to estimate building height from Sentinel-1 data. Remote Sensing of Environment, 2020, 240, 111705.	4.6	83
479	Digital Terrain, Surface, and Canopy Height Models From InSAR Backscatter-Height Histograms. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 3754-3777.	2.7	12
480	Vulnerability of small forest patches to fire in the Paraiba do Sul River Valley, southeast Brazil: Implications for restoration of the Atlantic Forest biome. Forest Ecology and Management, 2020, 465, 118095.	1.4	20
481	Space-Borne GNSS-R Signal Over a Complex Topography: Modeling and Validation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 1218-1233.	2.3	36
482	Hurricane effects on Neotropical lizards span geographic and phylogenetic scales. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10429-10434.	3.3	43
483	Unraveling the habitat preferences of two closely related bumbleÂbee species in Eastern Europe. Ecology and Evolution, 2020, 10, 4773-4790.	0.8	11
484	Quantifying urban forest structure with open-access remote sensing data sets. Urban Forestry and Urban Greening, 2020, 50, 126653.	2.3	31
485	Competing effects of soil fertility and toxicity on tropical greening. Scientific Reports, 2020, 10, 6725.	1.6	6
486	The BIOMASS Level 2 Prototype Processor: Design and Experimental Results of Above-Ground Biomass Estimation. Remote Sensing, 2020, 12, 985.	1.8	16
487	Hindcast and forecast of daily inundation extents using satellite SAR and altimetry data with rotated empirical orthogonal function analysis: Case study in Tonle Sap Lake Floodplain. Remote Sensing of Environment, 2020, 241, 111732.	4.6	19
488	Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sensing of Environment, 2021, 253, 112165.	4.6	436
489	Microgeography, Not Just Latitude, Drives Climate Overlap on Mountains from Tropical to Polar Ecosystems. American Naturalist, 2021, 197, 75-92.	1.0	21
490	Comparison and Validation of Satellite-Derived Digital Surface/Elevation Models over India. Journal of the Indian Society of Remote Sensing, 2021, 49, 971-986.	1.2	3
491	Integration of allometric equations in the water cloud model towards an improved retrieval of forest stem volume with L-band SAR data in Sweden. Remote Sensing of Environment, 2021, 253, 112235.	4.6	19

ARTICLE IF CITATIONS Lidar sheds new light on plant phenomics for plant breeding and management: Recent advances and 492 4.9 82 future prospects. ISPRS journal of Photogrammetry and Remote Sensing, 2021, 171, 202-223. Interannual variability of ecosystem iso/anisohydry is regulated by environmental dryness. New 3.5 23 Phytologist, 2021, 229, 2562-2575. Global Soil Moisture Retrievals From the Chinese FY-3D Microwave Radiation Imager. IEEE Transactions 494 2.7 14 on Geoscience and Remote Sensing, 2021, 59, 4018-4032. Detection of Low Elevation Outliers in TanDEM-X DEMs With Histogram and Adaptive TIN. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-13. Canopy Height Estimation in Mediterranean Forests of Spain With TanDEM-X Data. IEEE Journal of 496 2.3 16 Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 2956-2970. Understanding the effects of human disturbance on scorpion diversity in Brazilian tropical forests. 497 0.8 Journal of Insect Conservation, 2021, 25, 147-158. 498 Flood Detection and Monitoring with EO Data Tools and Systems., 2021, , 195-215. 2 New Metrics and the Combinations for Estimating Forest Biomass From GLAS Data. IEEE Journal of 400 2.3 Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 7830-7839. A Comparison of Machine Learning Approaches to Improve Free Topography Data for Flood Modelling. 500 1.8 14 Remote Sensing, 2021, 13, 275. A web-based platform LANDSCAPE FIRES: regional-level fire management information system for 1 Northern Ukraine., 2021, , . Low-Cost Retina-Like Robotic Lidars Based on Incommensurable Scanning. IEEE/ASME Transactions on 502 3.7 41 Mechatronics, 2022, 27, 58-68. Shaping the Global High-Resolution TanDEM-X Digital Elevation Model. IEEE Journal of Selected Topics 2.3 in Applied Earth Observations and Remote Sensing, 2021, 14, 7198-7212. Mapping Woody Volume of Mediterranean Forests by Using SAR and Machine Learning: A Case Study in 504 1.8 6 Central Italy. Remote Sensing, 2021, 13, 809. Using indicator species to detect high quality habitats in an East African forest biodiversity hotspot. Biodiversity and Conservation, 2021, 30, 903-915. 1.2 Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using 506 49 4.9 machine-learning. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 172, 79-94. Lidar Boosts 3D Ecological Observations and Modelings: A Review and Perspective. IEEE Geoscience and Remote Sensing Magazine, 2021, 9, 232-257. Maximum height of mountain forests abruptly decreases above an elevation breakpoint. GIScience and 508 2.4 7 Remote Sensing, 2021, 58, 442-454. Determination of Structural Characteristics of Old-Growth Forest in Ukraine Using Spaceborne 509 1.8 LiDAR. Remote Sensing, 2021, 13, 1233.

#	Article	IF	CITATIONS
510	Regionalization of an Existing Global Forest Canopy Height Model for Forests of the Southern United States. Remote Sensing, 2021, 13, 1722.	1.8	2
511	An improved remote sensing based approach for predicting actual Evapotranspiration by integrating LiDAR. Advances in Space Research, 2021, 68, 1732-1753.	1.2	2
512	Environmental Factors Are Stronger Predictors of Primate Species' Distributions Than Basic Biological Traits. International Journal of Primatology, 2021, 42, 404-425.	0.9	4
513	Mapping the Forest Canopy Height in Northern China by Synergizing ICESat-2 with Sentinel-2 Using a Stacking Algorithm. Remote Sensing, 2021, 13, 1535.	1.8	32
514	Environmental Factors Associated With Loa loa Microfilaria Prevalence and Intensity in Diverse Bioecological Zones of Cameroon. Frontiers in Tropical Diseases, 2021, 2, .	0.5	0
515	Woody-biomass projections and drivers of change in sub-Saharan Africa. Nature Climate Change, 2021, 11, 449-455.	8.1	23
516	Tree line advance reduces mixing and oxygen concentrations in arctic–alpine lakes through wind sheltering and organic carbon supply. Global Change Biology, 2021, 27, 4238-4253.	4.2	18
517	Forest Height Estimation from a Robust TomoSAR Method in the Case of Small Tomographic Aperture with Airborne Dataset at L-Band. Remote Sensing, 2021, 13, 2147.	1.8	5
518	Climate change and elevated CO ₂ favor forest over savanna under different future scenarios in South Asia. Biogeosciences, 2021, 18, 2957-2979.	1.3	14
519	Using machine learning to produce a very high resolution land-cover map for Ireland. Advances in Science and Research, 0, 18, 65-87.	1.0	5
520	Tree Localization and Monitoring on Autonomous Drones employing Deep Learning. , 2021, , .		3
521	ESTIMATION OF OPTIMAL CROWN COVERAGE AND CANOPY SHAPE FOR SHADOW ESTIMATION ON TROPICAL MOIST BROADLEAF FOREST. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, V-3-2021, 211-217.	0.0	1
522	A seasonally dynamic model of light at the stream surface. Freshwater Science, 2021, 40, 286-301.	0.9	14
523	Protected area networks do not represent unseen biodiversity. Scientific Reports, 2021, 11, 12275.	1.6	21
524	True color 3D imaging optimization with missing spectral bands based on hyperspectral LiDAR. Optics Express, 2021, 29, 20406.	1.7	4
525	Generating indicator species for bird monitoring within the humid forests of northeast Central America. Environmental Monitoring and Assessment, 2021, 193, 413.	1.3	1
526	Before and After: A Multiscale Remote Sensing Assessment of the Sinop Dam, Mato Grosso, Brazil. Earth, 2021, 2, 303-330.	0.9	3
527	Assessment of surface roughness and fractional vegetation coverage in the CoLM for modeling regional land surface temperature. Agricultural and Forest Meteorology, 2021, 303, 108390.	1.9	9

#	Article	IF	CITATIONS
528	An Improved Method for Pan-Tropical Above-Ground Biomass and Canopy Height Retrieval Using CYGNSS. Remote Sensing, 2021, 13, 2491.	1.8	6
530	Do drivers of nature visitation vary spatially? The importance of context for understanding visitation of nature areas in Europe and North America. Science of the Total Environment, 2021, 776, 145190.	3.9	10
531	A Regional Earth System Data Lab for Understanding Ecosystem Dynamics: An Example from Tropical South America. Frontiers in Earth Science, 2021, 9, .	0.8	5
532	<i>Living Earth</i> : Implementing national standardised land cover classification systems for Earth Observation in support of sustainable development. Big Earth Data, 2021, 5, 368-390.	2.0	11
533	Estimating global aerodynamic parameters in 1982–2017 using remote-sensing data and a turbulent transfer model. Remote Sensing of Environment, 2021, 260, 112428.	4.6	18
534	Remote-sensing estimates of forest structure and dynamics as indicators of habitat quality for Magellanic woodpeckers. Ecological Indicators, 2021, 126, 107634.	2.6	17
536	BARRA v1.0: kilometre-scale downscaling of an Australian regional atmospheric reanalysis over four midlatitude domains. Geoscientific Model Development, 2021, 14, 4357-4378.	1.3	18
537	Global Coordination in Plant Physiological and Rooting Strategies in Response to Water Stress. Global Biogeochemical Cycles, 2021, 35, e2020GB006758.	1.9	16
538	Estimation of subcanopy topography based on single-baseline TanDEM-X InSAR data. Journal of Geodesy, 2021, 95, 1.	1.6	9
539	The critical role of tree species and human disturbance in determining the macrofungal diversity in Europe. Global Ecology and Biogeography, 2021, 30, 2084-2100.	2.7	9
540	Remote Sensing of Global Daily Evapotranspiration based on a Surface Energy Balance Method and Reanalysis Data. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD032873.	1.2	32
541	A global map of root biomass across the world's forests. Earth System Science Data, 2021, 13, 4263-4274.	3.7	19
542	The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations. Earth System Science Data, 2021, 13, 3927-3950.	3.7	123
543	REAL-Fog part 2: A novel approach to calculate high resoluted spatio-temporal fog deposition: A daily fog deposition data set for entire Germany for 1949–2018. Journal of Hydrology, 2021, 599, 126360.	2.3	2
544	Evaluating the performance of CMIP6 Earth system models in simulating global vegetation structure and distribution. Advances in Climate Change Research, 2021, 12, 584-595.	2.1	31
545	Estimation of Evapotranspiration and Its Components across China Based on a Modified Priestley–Taylor Algorithm Using Monthly Multi-Layer Soil Moisture Data. Remote Sensing, 2021, 13, 3118.	1.8	6
546	Comparing airborne and spaceborne photon-counting LiDAR canopy structural estimates across different boreal forest types. Remote Sensing of Environment, 2021, 262, 112510.	4.6	25
547	Consequences of climate change in allopatric speciation and endemism: modeling the biogeography of Dravidogecko. Modeling Earth Systems and Environment, 2022, 8, 3059-3072.	1.9	7

#	Article	IF	CITATIONS
548	Validation of terrestrial biogeochemistry in CMIP6 Earth system models: a review. Geoscientific Model Development, 2021, 14, 5863-5889.	1.3	11
549	Hydraulic adaptability promotes tree life spans under climate dryness. Global Ecology and Biogeography, 2022, 31, 51-61.	2.7	6
550	Trends in Snow Cover Duration Across River Basins in High Mountain Asia From Daily Gap-Filled MODIS Fractional Snow Covered Area. Frontiers in Earth Science, 2021, 9, .	0.8	7
552	Theoretical model considering optimal ranging performance and energy efficiency for photon-counting lidars with multiple detectors. Applied Optics, 2021, 60, 8838.	0.9	3
553	Reappraisal of SMAP inversion algorithms for soil moisture and vegetation optical depth. Remote Sensing of Environment, 2021, 264, 112627.	4.6	20
554	ASCAT IB: A radar-based vegetation optical depth retrieved from the ASCAT scatterometer satellite. Remote Sensing of Environment, 2021, 264, 112587.	4.6	19
555	Performance evaluation of GEDI and ICESat-2 laser altimeter data for terrain and canopy height retrievals. Remote Sensing of Environment, 2021, 264, 112571.	4.6	133
556	Aerodynamic resistance and Bowen ratio explain the biophysical effects of forest cover on understory air and soil temperatures at the global scale. Agricultural and Forest Meteorology, 2021, 308-309, 108615.	1.9	9
557	Derivation of a Bayesian fire spread model using large-scale wildfire observations. Environmental Modelling and Software, 2021, 144, 105127.	1.9	20
558	Improving forest above ground biomass estimates over Indian forests using multi source data sets with machine learning algorithm. Ecological Informatics, 2021, 65, 101392.	2.3	29
559	Inconsistent changes in NPP and LAI determined from the parabolic LAI versus NPP relationship. Ecological Indicators, 2021, 131, 108134.	2.6	24
560	A CNN-based approach for the estimation of canopy heights and wood volume from GEDI waveforms. Remote Sensing of Environment, 2021, 265, 112652.	4.6	28
561	Spatial patterns of global-scale forest root-shoot ratio and their controlling factors. Science of the Total Environment, 2021, 800, 149251.	3.9	9
562	Multi-cyclone analysis and machine learning model implications of cyclone effects on forests. International Journal of Applied Earth Observation and Geoinformation, 2021, 103, 102528.	1.4	2
563	The impact of geolocation uncertainty on GEDI tropical forest canopy height estimation and change monitoring. Science of Remote Sensing, 2021, 4, 100024.	2.2	38
564	Could the environment limit dispersal between Sunda and Sahul?. Journal of Vegetation Science, 2021, 32, .	1.1	6
565	Retrieval and validation of forest background reflectivity from daily Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) data across European forests. Biogeosciences, 2021, 18, 621-635.	1.3	12
566	Remote Sensing of Vegetation. Ecological Studies, 2019, , 231-252.	0.4	3

#	Article	IF	CITATIONS
567	Estimating aboveground biomass and forest canopy cover with simulated ICESat-2 data. Remote Sensing of Environment, 2019, 224, 1-11.	4.6	95
568	A carbon monitoring system for mapping regional, annual aboveground biomass across the northwestern USA. Environmental Research Letters, 2020, 15, 095003.	2.2	32
571	Forest height estimation and change monitoring based on artificial neural network using Geoscience Laser Altimeter System and Landsat data. Journal of Applied Remote Sensing, 2019, 14, 1.	0.6	8
572	Discovering forest height changes based on spaceborne lidar data of ICESat-1 in 2005 and ICESat-2 in 2019: a case study in the Beijing-Tianjin-Hebei region of China. Forest Ecosystems, 2020, 7, .	1.3	17
573	Spatial Configuration of Drought Disturbance and Forest Gap Creation across Environmental Gradients. PLoS ONE, 2016, 11, e0157154.	1.1	22
574	Earth Observations for Monitoring Water Resources. , 2016, , 79-143.		1
575	Difference and uncertainty of forest coverage estimation in China. Biodiversity Science, 2015, 23, 830-834.	0.2	2
576	Planning for Large-Scale Wind and Solar Power in South Africa: Identifying Cost-Effective Deployment Strategies Using Spatiotemporal Modeling. SSRN Electronic Journal, 0, , .	0.4	2
577	Age and growth rate of congeneric tree species (Hymenaea spp Leguminosae) inhabiting different tropical biomes. Erdkunde, 2017, 71, 45-57.	0.4	24
578	Mapping Regional Landscape by Using OpenstreetMap (OSM). , 2019, , 771-790.		2
589	The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA). Earth System		100
	Science Data, 2020, 12, 177-196.	3.7	129
590	A spatially explicit database of wind disturbances in European forests over the periodÂ2000–2018. Earth System Science Data, 2020, 12, 257-276.	3 .7 3.7	129 52
590 595	A spatially explicit database of wind disturbances in European forests over the periodÂ2000–2018. Earth System Science Data, 2020, 12, 257-276. Clobal distribution of hydrologic controls on forest growth. Hydrology and Earth System Sciences, 2020, 24, 4625-4639.	3.7 3.7 1.9	129 52 26
590 595 599	Science Data, 2020, 12, 177-196. A spatially explicit database of wind disturbances in European forests over the periodÂ2000–2018. Earth System Science Data, 2020, 12, 257-276. Clobal distribution of hydrologic controls on forest growth. Hydrology and Earth System Sciences, 2020, 24, 4625-4639. Prospects of photon counting lidar for savanna ecosystem structural studies. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XL-1, 141-147.	3.73.71.90.2	129 52 26 17
590 595 599 600	Science Data, 2020, 12, 177-198. A spatially explicit database of wind disturbances in European forests over the periodÂ2000–2018. Earth System Science Data, 2020, 12, 257-276. Clobal distribution of hydrologic controls on forest growth. Hydrology and Earth System Sciences, 2020, 24, 4625-4639. Prospects of photon counting lidar for savanna ecosystem structural studies. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XL-1, 141-147. Clobal mapping of potential natural vegetation: an assessment of machine learning algorithms for estimating land potential. Peerl, 2018, 6, e5457.	 3.7 3.7 1.9 0.2 0.9 	129 52 26 17 94
590 595 599 600 601	Science Data, 2020, 12, 177-196. A spatially explicit database of wind disturbances in European forests over the periodÂ2000–2018. Earth System Science Data, 2020, 12, 257-276. Global distribution of hydrologic controls on forest growth. Hydrology and Earth System Sciences, 2020, 24, 4625-4639. Prospects of photon counting lidar for savanna ecosystem structural studies. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XL-1, 141-147. Global mapping of potential natural vegetation: an assessment of machine learning algorithms for estimating land potential. Peerl, 2018, 6, e5457. Estimating Bare Earth in Sparse Boreal Forests With WorldView Stereo Imagery. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	 3.7 3.7 1.9 0.2 0.9 1.4 	129 52 26 17 94 0
 590 595 599 600 601 602 	Science Data, 2020, 12, 177-196. A spatially explicit database of wind disturbances in European forests over the periodÂ2000–2018. Earth System Science Data, 2020, 12, 257-276. Global distribution of hydrologic controls on forest growth. Hydrology and Earth System Sciences, 2020, 24, 4625-4639. Prospects of photon counting lidar for savanna ecosystem structural studies. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XL-1, 141-147. Global mapping of potential natural vegetation: an assessment of machine learning algorithms for estimating land potential. Peerl, 2018, 6, e5457. Estimating Bare Earth in Sparse Boreal Forests With WorldView Stereo Imagery. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5. Mapping of Forest Height in Northwest Hunan, China Using Multi-Source Satellite Data. , 2021, , .	 3.7 3.7 1.9 0.2 0.9 1.4 	129 52 26 17 94 0

#	Article	IF	CITATIONS
604	Tropical Forest Canopy Structure and Change Assessment Using Landsat, GEDI, and Airborne Lidar Data. , 2021, , .		0
605	Improving Forest Baseline Maps in Tropical Wetlands Using GEDI-Based Forest Height Information and Sentinel-1. Forests, 2021, 12, 1374.	0.9	12
606	When adaptive radiations collide: Different evolutionary trajectories between and within island and mainland lizard clades. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
607	Time-variations of zeroth-order vegetation absorption and scattering at L-band. Remote Sensing of Environment, 2021, 267, 112726.	4.6	7
609	Comparing Tree Heights among Montane Forest Blocks of Kenya Using LiDAR Data from GLAS. Open Journal of Forestry, 2015, 05, 80-89.	0.1	1
610	Image Processing of Radar And Lidar in Tropical Forestry. , 2015, , 1-24.		0
611	Image Processing of Radar and Lidar in Tropical Forestry. , 2016, , 635-661.		0
612	A NEAR-GLOBAL BARE-EARTH DEM FROM SRTM. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLI-B4, 137-141.	0.2	1
613	8. Downscaling on Demand: Examples in Forest Canopy Mapping. , 2016, , 229-246.		0
614	Mapeamento da cobertura vegetal a partir de imagens de alta resolução obtidas por VANT. , 0, , 5095-5105.		0
615	Mapping Regional Landscape by Using OpenstreetMap (OSM). Advances in Geospatial Technologies Book Series, 2017, , 138-157.	0.1	0
616	A Study on the Spatial-Temporal Patterns of the Structure and Productivity of Qin Mountain—A Case of the Matoutan Forest, China. World Journal of Forestry, 2018, 07, 94-104.	0.0	0
617	Mapping tree height in agroforestry system using Landsat 8 data. , 2018, , .		1
618	Land surface satellite remote sensing gap analysis. , 2018, , .		0
619	An Introduction to the Biogeography of South American Anurans. , 2019, , 1-8.		1
620	Estimation of Vegetation Structure Parameters From SMAP Radar Intensity Observations. IEEE Transactions on Geoscience and Remote Sensing, 2020, , 1-17.	2.7	4
621	Satellite-derived leaf area index and roughness length information for surface–atmosphere exchange modelling: a case study for reactive nitrogen deposition in north-western Europe using LOTOS-EUROS v2.0. Geoscientific Model Development, 2020, 13, 2451-2474.	1.3	5
624	Potential Distribution of Plestiodon copei (Squamata: Scincidae), an Endemic and Threatened Lizard of Mexico. South American Journal of Herpetology, 2020, 18, .	0.5	1

#	Article	IF	CITATIONS
625	Forest canopy height variation in relation to topography and forest types in central Japan with LiDAR. Forest Ecology and Management, 2022, 503, 119792.	1.4	10
626	Efficacy of Advanced Remote Sensing (Hyperspectral and LIDAR) in Enhancing Forest Resources Management. Advances in Environmental Engineering and Green Technologies Book Series, 2020, , 97-121.	0.3	0
628	Regularized Dual-Channel Algorithm for the Retrieval of Soil Moisture and Vegetation Optical Depth From SMAP Measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 102-114.	2.3	13
629	PALS, ICESat/GLAS ve ICESat-2 Lazer Sistemleri ve Kullanım Alanları. Geomatik, 2020, 5, 27-35.	1.0	2
630	Limitations of soil moisture and formation rate on vegetation growth in karst areas. Science of the Total Environment, 2022, 810, 151209.	3.9	38
631	Maintaining forest cover to enhance temperature buffering under future climate change. Science of the Total Environment, 2022, 810, 151338.	3.9	39
632	The interactive global fire module pyrE (v1.0). Geoscientific Model Development, 2020, 13, 3091-3118.	1.3	1
633	Forest Management with Advance Geoscience: Future Prospects. Environmental Science and Engineering, 2021, , 3-31.	0.1	1
634	SMOS L-VOD Retrieved by Level 2 Algorithm and its Correlation With GEDI LIDAR Products. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 11870-11878.	2.3	4
635	The Potential of Spaceborne GNSS Reflectometry for Soil Moisture, Biomass, and Freeze–Thaw Monitoring: Summary of a European Space Agency-funded study. IEEE Geoscience and Remote Sensing Magazine, 2022, 10, 8-38.	4.9	12
636	Global estimates of 500Âm daily aerodynamic roughness length from MODIS data. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 183, 336-351.	4.9	16
637	Land Use Increases the Correlation between Tree Cover and Biomass Carbon Stocks in the Global Tropics. Land, 2021, 10, 1217.	1.2	3
638	Remote Sensing Technologies for Assessing Climate-Smart Criteria in Mountain Forests. Managing Forest Ecosystems, 2022, , 399-433.	0.4	5
639	Spatial and temporal scales of canopy disturbance and recovery across an oldâ€growth tropical rain forest landscape. Ecological Monographs, 2022, 92, .	2.4	1
640	Natural and Anthropogenic Variation of Stand Structure and Aboveground Biomass in Niger Delta Mangrove Forests. Frontiers in Forests and Global Change, 2021, 4, .	1.0	2
641	Detectability of the Critically Endangered Araucaria angustifolia Tree Using Worldview-2 Images, Google Earth Engine and UAV-LiDAR. Land, 2021, 10, 1316.	1.2	2
642	Unimodal and Multimodal Perception for Forest Management: Review and Dataset. Computation, 2021, 9, 127.	1.0	9
643	Tropical tall forests are more sensitive and vulnerable to drought than short forests. Global Change Biology, 2022, 28, 1583-1595.	4.2	20

#	Article	IF	CITATIONS
645	Neural network guided interpolation for mapping canopy height of China's forests by integrating GEDI and ICESat-2 data. Remote Sensing of Environment, 2022, 269, 112844.	4.6	68
646	Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission. Remote Sensing of Environment, 2022, 270, 112845.	4.6	108
647	Evaluating Current and Future Sensor-Specific Biomass Calibration in the Tallest Mangrove Forest on Earth. , 2020, , .		1
648	Forest Canopy Height Mapping by Synergizing ICESat-2, Sentinel-1, Sentinel-2 and Topographic Information Based on Machine Learning Methods. Remote Sensing, 2022, 14, 364.	1.8	22
649	An Improved Forest Structure Data Set for Europe. Remote Sensing, 2022, 14, 395.	1.8	4
650	Global camera trap synthesis highlights the importance of protected areas in maintaining mammal diversity. Conservation Letters, 2022, 15, .	2.8	35
651	Determinants of habitat occupancy and spatial segregation of primates in the central Western Ghats, India. Primates, 2022, 63, 137-147.	0.7	2
652	A stacking ensemble algorithm for improving the biases of forest aboveground biomass estimations from multiple remotely sensed datasets. CIScience and Remote Sensing, 2022, 59, 234-249.	2.4	28
653	Identifying Forest Structural Types along an Aridity Gradient in Peninsular Spain: Integrating Low-Density LiDAR, Forest Inventory, and Aridity Index. Remote Sensing, 2022, 14, 235.	1.8	9
654	Satellite evidence of canopy-height dependence of forest drought resistance in southwestern China. Environmental Research Letters, 2022, 17, 025005.	2.2	5
655	Unraveling Long-Term Flood Risk Dynamics Across the Murray-Darling Basin Using a Large-Scale Hydraulic Model and Satellite Data. Frontiers in Water, 2022, 3, .	1.0	3
656	Environmental differences explain subtle yet detectable genetic structure in a widespread pollinator. Bmc Ecology and Evolution, 2022, 22, 8.	0.7	0
657	Assessing multi-year-drought vulnerability in dense Mediterranean-climate forests using water-balance-based indicators. Journal of Hydrology, 2022, 606, 127431.	2.3	10
658	A data-driven estimate of litterfall and forest carbon turnover and the drivers of their inter-annual variabilities in forest ecosystems across China. Science of the Total Environment, 2022, 821, 153341.	3.9	4
659	Watershed Classification Predicts Streamflow Regime and Organic Carbon Dynamics in the Northeast Pacific Coastal Temperate Rainforest. Global Biogeochemical Cycles, 2022, 36, .	1.9	13
660	Plant-water sensitivity regulates wildfire vulnerability. Nature Ecology and Evolution, 2022, 6, 332-339.	3.4	21
661	Digital elevation modeling through forests: the challenge of the Amazon. Acta Amazonica, 2022, 52, 69-80.	0.3	3
662	Characterizing the Response of Vegetation Cover to Water Limitation in Africa Using Geostationary Satellites. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	3

#	Article	IF	CITATIONS
663	Decadal Lake Volume Changes (2003–2020) and Driving Forces at a Global Scale. Remote Sensing, 2022, 14, 1032.	1.8	13
664	Biophysical feedback of forest canopy height on land surface temperature over contiguous United States. Environmental Research Letters, 2022, 17, 034002.	2.2	4
665	Climate Change Risks to Global Forest Health: Emergence of Unexpected Events of Elevated Tree Mortality Worldwide. Annual Review of Plant Biology, 2022, 73, 673-702.	8.6	117
666	Modelling Fire Behavior to Assess Community Exposure in Europe: Combining Open Data and Geospatial Analysis. ISPRS International Journal of Geo-Information, 2022, 11, 198.	1.4	5
667	TimeSpec4LULC: a global multispectral time series database for training LULC mapping models with machine learning. Earth System Science Data, 2022, 14, 1377-1411.	3.7	3
668	Constraining a land cover map with satellite-based aboveground biomass estimates over Africa. Geoscientific Model Development, 2022, 15, 2599-2617.	1.3	1
669	Decipher soil organic carbon dynamics and driving forces across China using machine learning. Global Change Biology, 2022, 28, 3394-3410.	4.2	52
670	Integrating remote sensing with ecology and evolution to advance biodiversity conservation. Nature Ecology and Evolution, 2022, 6, 506-519.	3.4	84
671	Global field observations of tree die-off reveal hotter-drought fingerprint for Earth's forests. Nature Communications, 2022, 13, 1761.	5.8	171
672	Importance of the forest state in estimating biomass losses from tropical forests: combining dynamic forest models and remote sensing. Biogeosciences, 2022, 19, 1891-1911.	1.3	3
673	Impact of the Anthropocene on the status of the world's small carnivores: A global macroecological perspective. Journal of Biogeography, 2022, 49, 916-929.	1.4	4
674	DarkCideS 1.0, a global database for bats in karsts and caves. Scientific Data, 2022, 9, 155.	2.4	7
675	An ecological indicator system for shallow landslide analysis. Catena, 2022, 214, 106211.	2.2	9
676	Forest height mapping using inventory and multi-source satellite data over Hunan Province in southern China. Forest Ecosystems, 2022, 9, 100006.	1.3	15
677	Climate change impacts plant carbon balance, increasing mean future carbon use efficiency but decreasing total forest extent at dry range edges. Ecology Letters, 2022, 25, 498-508.	3.0	13
678	Can't see the wood for the trees? Canopy physiognomy influences the distribution of peninsular Indian flying lizards. Journal of Biogeography, 2022, 49, 1-13.	1.4	5
679	Fusing Sentinel-1 and -2 to Model GEDI-Derived Vegetation Structure Characteristics in GEE for the Paraguayan Chaco. Remote Sensing, 2021, 13, 5105.	1.8	21
680	Exploring the Relationship between Forest Canopy Height and Canopy Density from Spaceborne LiDAR Observations. Remote Sensing, 2021, 13, 4961.	1.8	3

#	Article	IF	CITATIONS
681	Systematic Approach for Remote Sensing of Historical Conflict Landscapes with UAV-Based Laserscanning. Sensors, 2022, 22, 217.	2.1	7
684	Efficacy of Advanced Remote Sensing (Hyperspectral and LIDAR) in Enhancing Forest Resources Management. , 2022, , 1714-1733.		0
685	The Shift from Energy to Water Limitation in Local Canopy Height from Temperate to Tropical Forests in China. Forests, 2022, 13, 639.	0.9	1
686	Differential Impacts of Climatic and Land Use Changes on Habitat Suitability and Protected Area Adequacy across the Asian Elephant's Range. Sustainability, 2022, 14, 4933.	1.6	4
687	Integration of VIIRS Observations with GEDI-Lidar Measurements to Monitor Forest Structure Dynamics from 2013 to 2020 across the Conterminous United States. Remote Sensing, 2022, 14, 2320.	1.8	7
688	The Grain-for-Green project offsets warming-induced soil organic carbon loss and increases soil carbon stock in Chinese Loess Plateau. Science of the Total Environment, 2022, 837, 155469.	3.9	19
689	Assessing Amazon rainforest regrowth with GEDI and ICESat-2 data. Science of Remote Sensing, 2022, 5, 100051.	2.2	8
690	LiDAR metrics predict suitable forest foraging areas of endangered Mouse-eared bats (Myotis myotis). Forest Ecology and Management, 2022, 515, 120210.	1.4	4
691	A Comparison of Multitemporal Airborne Laser Scanning Data and the Fuel Characteristics Classification System for Estimating Fuel Load and Consumption. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	3
692	Mapping the forest litterfall mercury deposition in China. Science of the Total Environment, 2022, 839, 156288.	3.9	2
693	Regional "Bare-Earth―Digital Terrain Model for Costa Rica Based on NASADEM Corrected for Vegetation Bias. Remote Sensing, 2022, 14, 2421.	1.8	1
694	GriddingMachine, a database and software for Earth system modeling at global and regional scales. Scientific Data, 2022, 9, .	2.4	4
695	Cabruca agroforestry systems reduce vulnerability of cacao plantations to climate change in southern Bahia. Agronomy for Sustainable Development, 2022, 42, .	2.2	7
696	Vegetation greening and climate change promote an increase in evapotranspiration across Siberia. Journal of Hydrology, 2022, 610, 127965.	2.3	6
697	Factors affecting relative height and ground elevation estimations of GEDI among forest types across the conterminous USA. GIScience and Remote Sensing, 2022, 59, 975-999.	2.4	28
698	The shape of trees: Reimagining forest ecology in three dimensions with remote sensing. Journal of Ecology, 2022, 110, 1730-1745.	1.9	16
699	Global relationships in tree functional traits. Nature Communications, 2022, 13, .	5.8	29
700	About Tree Height Measurement: Theoretical and Practical Issues for Uncertainty Quantification and Mapping. Forests, 2022, 13, 969.	0.9	2

#	Article	IF	CITATIONS
701	On the link between tree size and ecosystem carbon sequestration capacity across continental forests. Ecosphere, 2022, 13, .	1.0	3
703	Paninvasion severity assessment of a U.S. grape pest to disrupt the global wine market. Communications Biology, 2022, 5, .	2.0	8
704	Satellite Altimetry: Achievements and Future Trends by a Scientometrics Analysis. Remote Sensing, 2022, 14, 3332.	1.8	11
705	Formulation of a Consistent Multiâ€Species Canopy Description for Hydrodynamic Models Embedded in Largeâ€Scale Landâ€Surface Representations of Mixedâ€Forests. Journal of Geophysical Research C: Biogeosciences, 2022, 127, .	1.3	1
706	Analyzing Canopy Height Patterns and Environmental Landscape Drivers in Tropical Forests Using NASA's GEDI Spaceborne LiDAR. Remote Sensing, 2022, 14, 3172.	1.8	7
707	Carbon monitoring and above ground biomass trends: Anchor forest opportunities for tribal, private and federal relationships. Trees, Forests and People, 2022, 9, 100302.	0.8	0
709	Quantifying the Global Power Needed for Sap Ascent in Plants. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	2
710	Mixed tropical forests canopy height mapping from spaceborne LiDAR GEDI and multisensor imagery using machine learning models. Remote Sensing Applications: Society and Environment, 2022, 27, 100817.	0.8	1
711	Estimation of evapotranspiration using all-weather land surface temperature and variational trends with warming temperatures for the River Source Region in Southwest China. Journal of Hydrology, 2022, 613, 128346.	2.3	4
712	Adoption of Digital Aerial Photogrammetry in Forest Planning: A Case Study of Canavese Forestry Consortium, NW Italy with Technical and Economic Issues. Land, 2022, 11, 1350.	1.2	0
713	Conjugate sparse plus low rank models for efficient Bayesian interpolation of large spatial data. Environmetrics, 2023, 34, .	0.6	4
714	Modeling Shadow with Voxel-Based Trees for Sentinel-2 Reflectance Simulation in Tropical Rainforest. Remote Sensing, 2022, 14, 4088.	1.8	0
715	An integrative bioinformatics pipeline shows that honeybeeâ€associated microbiomes are driven primarily by pollen composition. Insect Science, 0, , .	1.5	0
716	Retrieving global leaf chlorophyll content from MERIS data using a neural network method. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 192, 66-82.	4.9	14
717	Characterizing canopy cover with ICESat-2: A case study of southern forests in Texas and Alabama, USA. Remote Sensing of Environment, 2022, 281, 113242.	4.6	14
718	Species Richness and Beta Diversity Patterns of American Marsupials. , 2022, , 1-16.		0
719	A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth System Science Data, 2022, 14, 3835-3873.	3.7	55
720	Characterizing Global Patterns of Mangrove Canopy Height and Aboveground Biomass Derived from SRTM Data. Forests, 2022, 13, 1545.	0.9	1

#	Article	IF	CITATIONS
721	Ecological Niche Overlap and Prediction of the Potential Distribution of Two Sympatric Ficus (Moraceae) Species in the Indo-Burma Region. Forests, 2022, 13, 1420.	0.9	3
722	Forest Height Mapping Using Feature Selection and Machine Learning by Integrating Multi-Source Satellite Data in Baoding City, North China. Remote Sensing, 2022, 14, 4434.	1.8	22
723	Vegetation complexity and pool size predict species richness of forest birds. Frontiers in Ecology and Evolution, 0, 10, .	1.1	1
724	Retrieval of Live Fuel Moisture Content Based on Multi-Source Remote Sensing Data and Ensemble Deep Learning Model. Remote Sensing, 2022, 14, 4378.	1.8	6
725	Observation-based assessment of secondary water effects on seasonal vegetation decay across Africa. Frontiers in Big Data, 0, 5, .	1.8	0
726	Vertical stratification patterns of tropical forest vertebrates: a metaâ€analysis. Biological Reviews, 2023, 98, 99-114.	4.7	7
727	Integrating spaceborne LiDAR and Sentinel-2 images to estimate forest aboveground biomass in Northern China. Carbon Balance and Management, 2022, 17, .	1.4	12
728	Global land surface evapotranspiration monitoring by ETMonitor model driven by multi-source satellite earth observations. Journal of Hydrology, 2022, 613, 128444.	2.3	25
729	Construction of Artificial Forest Point Clouds by Laser SLAM Technology and Estimation of Carbon Storage. Applied Sciences (Switzerland), 2022, 12, 10838.	1.3	0
730	Spatially Continuous Mapping of Forest Canopy Height in Canada by Combining GEDI and ICESat-2 with PALSAR and Sentinel. Remote Sensing, 2022, 14, 5158.	1.8	24
731	Hydrography90m: a new high-resolution global hydrographic dataset. Earth System Science Data, 2022, 14, 4525-4550.	3.7	18
732	Diverse Responses of Multiple Satelliteâ€Derived Vegetation Greenup Onsets to Dry Periods in the Amazon. Geophysical Research Letters, 2022, 49, .	1.5	3
733	Evaluation of NASA's GEDI Lidar Observations for Estimating Biomass in Temperate and Tropical Forests. Forests, 2022, 13, 1686.	0.9	8
734	Estimation of National Forest Aboveground Biomass from Multi-Source Remotely Sensed Dataset with Machine Learning Algorithms in China. Remote Sensing, 2022, 14, 5487.	1.8	7
735	Humid tropical vertebrates are at lower risk of extinction and population decline in forests with higher structural integrity. Nature Ecology and Evolution, 2022, 6, 1840-1849.	3.4	8
736	Areal extent of vegetative cover: A challenge to regional upscaling of methane emissions. Aquatic Botany, 2023, 184, 103592.	0.8	5
737	Spaceborne LiDAR Surveying and Mapping. , 0, , .		1
738	SiDroForest: a comprehensive forest inventory of Siberian boreal forest investigations including drone-based point clouds, individually labeled trees, synthetically generated tree crowns, and Sentinel-2 labeled image patches. Earth System Science Data, 2022, 14, 4967-4994.	3.7	2

#	Article	IF	CITATIONS
739	A Comparison of Machine Learning and Geostatistical Approaches for Mapping Forest Canopy Height over the Southeastern US Using ICESat-2. Remote Sensing, 2022, 14, 5651.	1.8	8
740	A study on Singapore's vegetation cover and land use change using remote sensing. , 2022, , .		0
741	Comparison of forest stand height interpolation of GEDI and ICESat-2 LiDAR measurements over tropical and sub-tropical forests in India. Environmental Monitoring and Assessment, 2023, 195, .	1.3	5
742	Sentinel2GlobalLULC: A Sentinel-2 RGB image tile dataset for global land use/cover mapping with deep learning. Scientific Data, 2022, 9, .	2.4	11
743	Modeling demographic-driven vegetation dynamics and ecosystem biogeochemical cycling in NASA GISS's Earth system model (ModelE-BiomeE v.1.0). Geoscientific Model Development, 2022, 15, 8153-8180.	1.3	2
744	Hierarchical Bayesian geostatistics for C stock prediction in disturbed plantation forest in Zimbabwe. Ecological Informatics, 2023, 73, 101934.	2.3	4
745	Mapping Forest Canopy Height at Large Scales Using ICESat-2 and Landsat: An Ecological Zoning Random Forest Approach. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1-16.	2.7	2
746	Evaluating Data Inter-Operability of Multiple UAV–LiDAR Systems for Measuring the 3D Structure of Savanna Woodland. Remote Sensing, 2022, 14, 5992.	1.8	4
747	Predicting the Forest Canopy Height from LiDAR and Multi-Sensor Data Using Machine Learning over India. Remote Sensing, 2022, 14, 5968.	1.8	9
748	Siberian carbon sink reduced by forest disturbances. Nature Geoscience, 2023, 16, 56-62.	5.4	27
749	Estimating forest aboveground biomass using temporal features extracted from multiple satellite data products and ensemble machine learning algorithm. Geocarto International, 2023, 38, .	1.7	2
750	Vegetation Shift of Juniperus macropoda Boisser Forest in Response to Climate Change in North-Western Himalayas, India. Forests, 2022, 13, 2088.	0.9	1
751	Assessing the influence of calibration methodology and model structure on glacio-hydrological simulations in the Cheakamus River Basin, British Columbia, Canada. Journal of Hydrology X, 2022, 17, 100144.	0.8	0
752	Global net biome CO ₂ exchange predicted comparably well using parameter–environment relationships and plant functional types. Global Change Biology, 2023, 29, 2256-2273.	4.2	3
753	Seasonal peak photosynthesis is hindered by late canopy development in northern ecosystems. Nature Plants, 2022, 8, 1484-1492.	4.7	8
754	Forest structure and individual tree inventories of northeastern Siberia along climatic gradients. Earth System Science Data, 2022, 14, 5695-5716.	3.7	1
755	Exploring the Best-Matching Plant Traits and Environmental Factors for Vegetation Indices in Estimates of Global Gross Primary Productivity. Remote Sensing, 2022, 14, 6316.	1.8	4
756	Landsat-Scale Regional Forest Canopy Height Mapping Using ICESat-2 Along-Track Heights: Case Study of Eastern Texas, Remote Sensing, 2023, 15, 1,	1.8	4

#	Article	IF	CITATIONS
757	Improving GEDI Forest Canopy Height Products by Considering the Stand Age Factor Derived from Time-Series Remote Sensing Images: A Case Study in Fujian, China. Remote Sensing, 2023, 15, 467.	1.8	3
758	Windthrow characteristics and their regional association with rainfall, soil, and surface elevation in the Amazon. Environmental Research Letters, 2023, 18, 014030.	2.2	4
759	Impacts of shifting phenology on boundary layer dynamics in North America in the CESM. Agricultural and Forest Meteorology, 2023, 330, 109286.	1.9	5
761	Global and local drivers of the relative importance of allochthonous and autochthonous energy sources to freshwater food webs. Ecography, 2023, 2023, .	2.1	3
762	Estimating canopy height change using machine learning by coupling WorldView-2 stereo imagery with Landsat-7 data. International Journal of Remote Sensing, 2023, 44, 631-645.	1.3	1
763	Investigating hydroclimatic impacts of the 168–158 BCE volcanic quartet and their relevance to the Nile River basin and Egyptian history. Climate of the Past, 2023, 19, 249-275.	1.3	2
764	Human fingerprint on structural density of forests globally. Nature Sustainability, 2023, 6, 368-379.	11.5	15
765	Investigation of ICESat-2 Data Capabilities for Forest-Height Estimation over Russia. Cosmic Research, 2022, 60, S10-S17.	0.2	0
766	Data-driven predictions of potential Leishmania vectors in the Americas. PLoS Neglected Tropical Diseases, 2023, 17, e0010749.	1.3	1
767	Mapping the Forest Height by Fusion of ICESat-2 and Multi-Source Remote Sensing Imagery and Topographic Information: A Case Study in Jiangxi Province, China. Forests, 2023, 14, 454.	0.9	7
768	Age-related patterns and climatic driving factors of drought-induced forest mortality in Northeast China. Agricultural and Forest Meteorology, 2023, 332, 109360.	1.9	7
769	Estimating and mapping forest age across Canada's forested ecosystems. Remote Sensing of Environment, 2023, 290, 113529.	4.6	11
770	The Forest Resistance to Droughts Differentiated by Tree Height in Central Europe. Journal of Geophysical Research G: Biogeosciences, 2023, 128, .	1.3	1
771	The woody crown network model incorporates maximum height. Ecological Modelling, 2023, 481, 110345.	1.2	0
772	Operational forecasting inundation extents using REOF analysis (FIER) over lower Mekong and its potential economic impact on agriculture. Environmental Modelling and Software, 2023, 162, 105643.	1.9	5
773	Landsat, MODIS, and VIIRS snow cover mapping algorithm performance as validated by airborne lidar datasets. Cryosphere, 2023, 17, 567-590.	1.5	11
774	Comparative Analysis of Remote Sensing and Geo-Statistical Techniques to Quantify Forest Biomass. Forests, 2023, 14, 379.	0.9	5
775	Europe's Potential Wood Supply by Harvesting System. Forests, 2023, 14, 398.	0.9	4

#	Article	IF	CITATIONS
776	A Proposed Ensemble Feature Selection Method for Estimating Forest Aboveground Biomass from Multiple Satellite Data. Remote Sensing, 2023, 15, 1096.	1.8	6
777	Regional Stem Volume Mapping: A Feasibility Assessment of Scaling Tree-Level Estimates. Forests, 2023, 14, 506.	0.9	0
778	A Methodological Framework for Mapping Canopy Cover Using ICESat-2 in the Southern USA. Remote Sensing, 2023, 15, 1548.	1.8	2
779	High and dry: integrative taxonomy of the Andean spider genus <i>Nerudia</i> (Araneae: Pholcidae). Zoological Journal of the Linnean Society, 2023, 198, 534-591.	1.0	4
780	Validation of FABDEM, a global bare-earth elevation model, against UAV-lidar derived elevation in a complex forested mountain catchment. Environmental Research Communications, 2023, 5, 031009.	0.9	7
781	Forest Structural and Functional Attribute Upscaling Using Spaceborne LiDAR Data. , 2023, , 293-342.		0
782	Correction of UAV LiDAR-derived grassland canopy height based on scan angle. Frontiers in Plant Science, 0, 14, .	1.7	2
783	Spaceborne LiDAR reveals the effectiveness of European Protected Areas in conserving forest height and vertical structure. Communications Earth & Environment, 2023, 4, .	2.6	5
784	A practical exploration of land cover impacts on surface and air temperature when they are most consequential. , 2023, 2, 025007.		2
798	Species Richness and Beta Diversity Patterns of American Marsupials. , 2023, , 623-638.		0
811	The global biogeography of tree leaf form and habit. Nature Plants, 2023, 9, 1795-1809.	4.7	1
846	Monitoring Earth's climate variables with satellite laser altimetry. Nature Reviews Earth & Environment, 2024, 5, 120-136.	12.2	0