Local evaluation of the Interaction between Soil Biosph diffusion scheme using four pedotransfer functions

Journal of Geophysical Research 116, DOI: 10.1029/2011jd016002

Citation Report

#	Article	IF	CITATIONS
3	The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2. Geoscientific Model Development, 2012, 5, 773-791.	1.3	459
4	Impact of precipitation and land biophysical variables on the simulated discharge of European and Mediterranean rivers. Hydrology and Earth System Sciences, 2012, 16, 3351-3370.	1.9	36
5	The effects of snowpack properties and plant strategies on litter decomposition during winter in subalpine meadows. Plant and Soil, 2013, 363, 215-229.	1.8	88
6	The CNRM-CM5.1 global climate model: description and basic evaluation. Climate Dynamics, 2013, 40, 2091-2121.	1.7	1,008
8	Intercomparison of retrieval algorithms for the specific surface area of snow from near-infrared satellite data in mountainous terrain, and comparison with the output of a semi-distributed snowpack model. Cryosphere, 2013, 7, 741-761.	1.5	32
10	The GREENROOF module (v7.3) for modelling green roof hydrological and energetic performances within TEB. Geoscientific Model Development, 2013, 6, 1941-1960.	1.3	34
11	Reconciling soil thermal and hydrological lower boundary conditions in land surface models. Journal of Geophysical Research D: Atmospheres, 2013, 118, 7819-7834.	1.2	85
12	Response of land surface fluxes and precipitation to different soil bottom hydrological conditions in a general circulation model. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,725.	1.2	56
13	The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes. Geoscientific Model Development, 2013, 6, 929-960.	1.3	527
14	Seasonal evolution of snow permeability under equi-temperature and temperature-gradient conditions. Cryosphere, 2013, 7, 1915-1929.	1.5	20
15	Suitability of modelled and remotely sensed essential climate variables for monitoring Euro-Mediterranean droughts. Geoscientific Model Development, 2014, 7, 931-946.	1.3	40
16	Integrating ASCAT surface soil moisture and GEOV1 leaf area index into the SURFEX modelling platform: a land data assimilation application over France. Hydrology and Earth System Sciences, 2014, 18, 173-192.	1.9	86
17	Evaluation of root water uptake in the ISBA-A-gs land surface model using agricultural yield statistics over France. Hydrology and Earth System Sciences, 2014, 18, 4979-4999.	1.9	19
18	Testing conceptual and physically based soil hydrology schemes against observations for the Amazon Basin. Geoscientific Model Development, 2014, 7, 1115-1136.	1.3	49
19	Predicting the response of the Amazon rainforest to persistent drought conditions under current and future climates: a major challenge for global land surface models. Geoscientific Model Development, 2014, 7, 2933-2950.	1.3	39
20	Assimilation of surface soil moisture into a multilayer soil model: design and evaluation at local scale. Hydrology and Earth System Sciences, 2014, 18, 673-689.	1.9	38
22	Benchmarking of L-band soil microwave emission models. Remote Sensing of Environment, 2014, 140, 407-419.	4.6	23
23	Introduction of groundwater capillary rises using subgrid spatial variability of topography into the ISBA land surface model. Journal of Geophysical Research D: Atmospheres, 2014, 119, 11,065.	1.2	48

#	Article	IF	CITATIONS
24	Augmentations to the Noah Model Physics for Application to the Yellow River Source Area. Part I: Soil Water Flow. Journal of Hydrometeorology, 2015, 16, 2659-2676.	0.7	54
25	Evaluation of Regional-Scale River Depth Simulations Using Various Routing Schemes within a Hydrometeorological Modeling Framework for the Preparation of the SWOT Mission. Journal of Hydrometeorology, 2015, 16, 1821-1842.	0.7	11
26	Assessment of model estimates of land-atmosphere CO ₂ exchange across Northern Eurasia. Biogeosciences, 2015, 12, 4385-4405.	1.3	25
27	Comparing the ensemble and extended Kalman filters for in situ soil moisture assimilation with contrasting conditions. Hydrology and Earth System Sciences, 2015, 19, 4811-4830.	1.9	20
28	Evaluation of land surface model simulations of evapotranspiration over a 12-year crop succession: impact of soil hydraulic and vegetation properties. Hydrology and Earth System Sciences, 2015, 19, 3109-3131.	1.9	26
29	Improving the ISBA _{CC} land surface model simulation of water and carbon fluxes and stocks over the Amazon forest. Geoscientific Model Development, 2015, 8, 1709-1727.	1.3	33
31	Controls of soil hydraulic characteristics on modeling groundwater recharge under different climatic conditions. Journal of Hydrology, 2015, 521, 470-481.	2.3	31
32	The Plumbing of Land Surface Models: Benchmarking Model Performance. Journal of Hydrometeorology, 2015, 16, 1425-1442.	0.7	191
33	Impacts of snow and organic soils parameterization on northern Eurasian soil temperature profiles simulated by the ISBA land surface model. Cryosphere, 2016, 10, 853-877.	1.5	91
34	Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area. Cryosphere, 2016, 10, 287-306.	1.5	29
35	Simulated high-latitude soil thermal dynamics during the past 4 decades. Cryosphere, 2016, 10, 179-192.	1.5	17
36	Modeling flash floods in southern France for road management purposes. Journal of Hydrology, 2016, 541, 190-205.	2.3	22
37	Modeling Soil Processes: Review, Key Challenges, and New Perspectives. Vadose Zone Journal, 2016, 15, 1-57.	1.3	445
38	Warm Season Evaluation of Soil Moisture Prediction in the Soil, Vegetation, and Snow (SVS) Scheme. Journal of Hydrometeorology, 2016, 17, 2315-2332.	0.7	41
39	Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009. Global Biogeochemical Cycles, 2016, 30, 1015-1037.	1.9	116
40	Flood forecasting and alert system for Arda River basin. Journal of Hydrology, 2016, 541, 457-470.	2.3	21
41	Evaluation of Noah Frozen Soil Parameterization for Application to a Tibetan Meadow Ecosystem. Journal of Hydrometeorology, 2017, 18, 1749-1763.	0.7	37
42	Twentieth entury Hydrometeorological Reconstructions to Study the Multidecadal Variations of the Water Cycle Over France. Water Resources Research, 2017, 53, 8366-8382.	1.7	16

#	Article	IF	CITATIONS
43	Pedotransfer Functions in Earth System Science: Challenges and Perspectives. Reviews of Geophysics, 2017, 55, 1199-1256.	9.0	316
44	A soil column model for predicting the interaction between water table and evapotranspiration. Water Resources Research, 2017, 53, 5877-5898.	1.7	8
45	Providing a non-deterministic representation of spatial variability of precipitation in the Everest region. Hydrology and Earth System Sciences, 2017, 21, 4879-4893.	1.9	23
46	SURFEX v8.0 interface with OASIS3-MCT to couple atmosphere with hydrology, ocean, waves and sea-ice models, from coastal to global scales. Geoscientific Model Development, 2017, 10, 4207-4227.	1.3	50
47	A multiphysical ensemble system of numerical snow modelling. Cryosphere, 2017, 11, 1173-1198.	1.5	74
48	Sequential assimilation of satellite-derived vegetation and soil moisture products using SURFEX_v8.0: LDAS-Monde assessmentÂover the Euro-Mediterranean area. Geoscientific Model Development, 2017, 10, 3889-3912.	1.3	88
49	Global evaluation of runoff from 10 state-of-the-art hydrological models. Hydrology and Earth System Sciences, 2017, 21, 2881-2903.	1.9	146
50	The interactions between soil–biosphere–atmosphere (ISBA) land surface model multi-energy balance (MEB) option in SURFEXv8 – Part 2: Introduction of a litter formulation and model evaluation for local-scale forest sites. Geoscientific Model Development, 2017, 10, 1621-1644.	1.3	19
51	Use of reflected GNSS SNR data to retrieve either soil moisture or vegetation height from a wheat crop. Hydrology and Earth System Sciences, 2017, 21, 4767-4784.	1.9	37
52	The effect of satellite-derived surface soil moisture and leaf area index land data assimilation on streamflow simulations over France. Hydrology and Earth System Sciences, 2017, 21, 2015-2033.	1.9	38
53	Evaluating the performance of coupled snow–soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site. Geoscientific Model Development, 2017, 10, 3461-3479.	1.3	37
54	The interactions between soil–biosphere–atmosphere land surface model with a multi-energy balance (ISBA-MEB) option in SURFEXv8 – Part 1: Model description. Geoscientific Model Development, 2017, 10, 843-872.	1.3	70
55	Impacts of climate change on the hydrological cycle over France and associated uncertainties. Comptes Rendus - Geoscience, 2018, 350, 141-153.	0.4	32
56	Future changes in peak river flows across northern Eurasia as inferred from an ensemble of regional climate projections under the IPCC RCP8.5 scenario. Climate Dynamics, 2018, 50, 215-230.	1.7	49
57	Ensemble-based flash-flood modelling: Taking into account hydrodynamic parameters and initial soil moisture uncertainties. Journal of Hydrology, 2018, 560, 480-494.	2.3	20
58	Impacts of the Soil Water Transfer Parameterization on the Simulation of Evapotranspiration over a 14-Year Mediterranean Crop Succession. Journal of Hydrometeorology, 2018, 19, 3-25.	0.7	14
59	Assimilation of passive microwave AMSR-2 satellite observations in a snowpack evolution model over northeastern Canada. Hydrology and Earth System Sciences, 2018, 22, 5711-5734.	1.9	24
60	AÂnonparametric statistical technique for combining global precipitation datasets: development and hydrological evaluationÂover the Iberian Peninsula. Hydrology and Earth System Sciences, 2018, 22, 1371-1389.	1.9	68

#	Article	IF	Citations
61	Hydrological assessment of atmospheric forcing uncertainty in the Euro-Mediterranean area using a land surface model. Hydrology and Earth System Sciences, 2018, 22, 2091-2115.	1.9	14
62	Simulation and Assimilation of Passive Microwave Data Using a Snowpack Model Coupled to a Calibrated Radiative Transfer Model Over Northeastern Canada. Water Resources Research, 2018, 54, 4823-4848.	1.7	20
63	Deriving surface soil moisture from reflected GNSS signal observations from a grassland site in southwestern France. Hydrology and Earth System Sciences, 2018, 22, 1931-1946.	1.9	20
64	Multi-Criteria Evaluation of Snowpack Simulations in Complex Alpine Terrain Using Satellite and In Situ Observations. Remote Sensing, 2018, 10, 1171.	1.8	22
65	ERA-5 and ERA-Interim driven ISBA land surface model simulations: which one performs better?. Hydrology and Earth System Sciences, 2018, 22, 3515-3532.	1.9	243
66	Investigating the impact of soil moisture on European summer climate in ensemble numerical experiments. Climate Dynamics, 2019, 52, 4011-4026.	1.7	10
67	Infiltration from the Pedon to Global Grid Scales: An Overview and Outlook for Land Surface Modeling. Vadose Zone Journal, 2019, 18, 1-53.	1.3	56
68	Recent Changes in the ISBA TRIP Land Surface System for Use in the CNRMâ€CM6 Climate Model and in Global Offâ€Line Hydrological Applications. Journal of Advances in Modeling Earth Systems, 2019, 11, 1207-1252.	1.3	120
69	Inclusion of CO2 flux modelling in an urban canopy layer model and an evaluation over an old European city centre. Atmospheric Environment: X, 2019, 3, 100042.	0.8	12
70	Assimilation of Synthetic SWOT River Depths in a Regional Hydrometeorological Model. Water (Switzerland), 2019, 11, 78.	1.2	6
71	Linear Optimal Runoff Aggregate (LORA): a global gridded synthesis runoff product. Hydrology and Earth System Sciences, 2019, 23, 851-870.	1.9	35
72	A New Processâ€Based Soil Methane Scheme: Evaluation Over Arctic Field Sites With the ISBA Land Surface Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 293-326.	1.3	16
73	Evaluation of Sub-Kilometric Numerical Simulations of C-Band Radar Backscatter over the French Alps against Sentinel-1 Observations. Remote Sensing, 2019, 11, 8.	1.8	7
74	An Evaluation of the EnKF vs. EnOI and the Assimilation of SMAP, SMOS and ESA CCI Soil Moisture Data over the Contiguous US. Remote Sensing, 2019, 11, 478.	1.8	18
75	Sub-kilometer Precipitation Datasets for Snowpack and Glacier Modeling in Alpine Terrain. Frontiers in Earth Science, 2019, 7, .	0.8	29
76	Application of physical snowpack models in support of operational avalanche hazard forecasting: A status report on current implementations and prospects for the future. Cold Regions Science and Technology, 2020, 170, 102910.	1.6	55
77	Forcing and evaluating detailed snow cover models with stratigraphy observations. Cold Regions Science and Technology, 2020, 180, 103163.	1.6	12
78	An ensemble square root filter for the joint assimilation of surface soil moisture and leaf area index within the Land Data Assimilation System LDAS-Monde: application over the Euro-Mediterranean region. Hydrology and Earth System Sciences, 2020, 24, 325,347	1.9	25

#	Article	IF	CITATIONS
79	Incorporating moisture content in surface energy balance modeling of a debris-covered glacier. Cryosphere, 2020, 14, 1555-1577.	1.5	15
80	HCLIM38: a flexible regional climate model applicable for different climate zones from coarse to convection-permitting scales. Geoscientific Model Development, 2020, 13, 1311-1333.	1.3	46
81	From Monitoring to Forecasting Land Surface Conditions Using a Land Data Assimilation System: Application over the Contiguous United States. Remote Sensing, 2020, 12, 2020.	1.8	7
82	Validation of the SNTHERM Model Applied for Snow Depth, Grain Size, and Brightness Temperature Simulation at Meteorological Stations in China. Remote Sensing, 2020, 12, 507.	1.8	10
83	A global-scale evaluation of extreme event uncertainty in the <i>eartH2Observe</i> project. Hydrology and Earth System Sciences, 2020, 24, 75-92.	1.9	6
84	Evaluating Precipitation Datasets Using Surface Water and Energy Budget Closure. Journal of Hydrometeorology, 2020, 21, 989-1009.	0.7	11
85	How Well Can Land-Surface Models Represent the Diurnal Cycle of Turbulent Heat Fluxes?. Journal of Hydrometeorology, 2021, 22, 77-94.	0.7	6
86	Capability of the variogram to quantify the spatial patterns of surface fluxes and soil moisture simulated by land surface models. Progress in Physical Geography, 2021, 45, 279-293.	1.4	1
87	High-Resolution SMAP-Derived Root-Zone Soil Moisture Using an Exponential Filter Model Calibrated per Land Cover Type. Remote Sensing, 2021, 13, 1112.	1.8	9
88	A multi-sourced assessment of the spatiotemporal dynamics of soil moisture in the MARINE flash flood model. Hydrology and Earth System Sciences, 2021, 25, 1425-1446.	1.9	2
89	Assimilation of the SCATSAR-SWI with SURFEX: Impact of Local Observation Errors in Austria. Monthly Weather Review, 2021, 149, 773-791.	0.5	1
90	Hydrological Functioning of Maize Crops in Southwest France Using Eddy Covariance Measurements and a Land Surface Model. Water (Switzerland), 2021, 13, 1481.	1.2	2
91	Coupling detailed urban energy and water budgets with TEB-Hydro model: Towards an assessment tool for nature based solution performances. Urban Climate, 2021, 39, 100925.	2.4	2
92	The Effect of Soil on the Summertime Surface Energy Budget of a Humid Subarctic Tundra in Northern Quebec, Canada. Journal of Hydrometeorology, 2021, 22, 2547-2564.	0.7	4
93	GRACE-REC: a reconstruction of climate-driven water storage changes over the last century. Earth System Science Data, 2019, 11, 1153-1170.	3.7	144
94	The latest improvements with SURFEX v8.0 of the Safran–Isba–Modcou hydrometeorological model for France. Geoscientific Model Development, 2020, 13, 3925-3946.	1.3	25
95	ISBA-MEB (SURFEX v8.1): model snow evaluation for local-scale forest sites. Geoscientific Model Development, 2020, 13, 6523-6545.	1.3	4
96	Evapotranspiration partition using the multiple energy balance version of the ISBA-A-g _s land surface model over two irrigated crops in a semi-arid Mediterranean region (Marrakech, Morocco). Hydrology and Earth System Sciences, 2020, 24, 3789-3814.	1.9	10

#	Article	IF	CITATIONS
97	Data assimilation for continuous global assessment of severe conditions over terrestrial surfaces. Hydrology and Earth System Sciences, 2020, 24, 4291-4316.	1.9	18
109	Suivi en temps réel des sécheresses : de l'analyse à la prévision saisonnière. Houille Blanche, 2020, 1 82-92.	06 _{0.3}	0
111	Characterizing snow instability with avalanche problem types derived from snow cover simulations. Cold Regions Science and Technology, 2022, 194, 103462.	1.6	12
112	On the energy budget of a low-Arctic snowpack. Cryosphere, 2022, 16, 127-142.	1.5	8
113	Assimilation of Satellite-Derived Soil Moisture and Brightness Temperature in Land Surface Models: A Review. Remote Sensing, 2022, 14, 770.	1.8	5
115	Detailed mapping and modeling of urban vegetation: what are the benefits for microclimatic simulations with Town Energy Balance (TEB) at neighborhood scale ?. Journal of Applied Meteorology and Climatology, 2022, , .	0.6	0
116	Assimilation of passive microwave vegetation optical depth in LDAS-Monde: a case study over the continental USA. Biogeosciences, 2022, 19, 2557-2581.	1.3	4
117	Quality of Soil Simulation by the INM RAS–MSU Soil Scheme as a Part of the SL-AV Weather Prediction Model. Russian Meteorology and Hydrology, 2022, 47, 159-173.	0.2	4
118	Snow properties at the forest–tundra ecotone: predominance of water vapor fluxes even in deep, moderately cold snowpacks. Cryosphere, 2022, 16, 3357-3373.	1.5	2
119	Does Flash Flood Model Performance Increase with Complexity? Signature and Sensitivity-Based Comparison of Conceptual and Process-Oriented Models on French Mediterranean Cases. Hydrology, 2022, 9, 141.	1.3	0
120	To the Origin of a Wintertime Screen-Level Temperature Bias at High Altitude in a Kilometric NWP Model. Journal of Hydrometeorology, 2023, 24, 53-71.	0.7	3
121	Interactions between precipitation, evapotranspiration and soil-moisture-based indices to characterize drought with high-resolution remote sensing and land-surface model data. Natural Hazards and Earth System Sciences, 2022, 22, 3461-3485.	1.5	10
122	Spatial Variability of Nocturnal Stability Regimes in an Operational Weather Prediction Model. Boundary-Layer Meteorology, 2023, 186, 373-397.	1.2	1
123	On the Evaluation of the SAR-Based Copernicus Snow Products in the French Alps. Geosciences (Switzerland), 2022, 12, 420.	1.0	2
124	What added value of CNRM-AROME convection-permitting regional climate model compared to CNRM-ALADIN regional climate model for urban climate studies ? Evaluation over Paris area (France).	1.7	2

Climate Dynamics, 2023, 61, 1643-1661.