Evaluation of an entraining droplet activation parameter

Journal of Geophysical Research 116, DOI: 10.1029/2010jd015324

Citation Report

CITATION	DEDODT

#	Article	IF	CITATIONS
1	Global distribution and climate forcing of marine organic aerosol: 1. Model improvements and evaluation. Atmospheric Chemistry and Physics, 2011, 11, 11689-11705.	4.9	87
2	Resolving both entrainment-mixing and number of activated CCN in deep convective clouds. Atmospheric Chemistry and Physics, 2011, 11, 12887-12900.	4.9	79
3	Uncertainty associated with convective wet removal of entrained aerosols in a global climate model. Atmospheric Chemistry and Physics, 2012, 12, 10725-10748.	4.9	43
4	Relationships between particles, cloud condensation nuclei and cloud droplet activation during the third Pallas Cloud Experiment. Atmospheric Chemistry and Physics, 2012, 12, 11435-11450.	4.9	29
5	Incorporating an advanced aerosol activation parameterization into WRFâ€CAM5: Model evaluation and parameterization intercomparison. Journal of Geophysical Research D: Atmospheres, 2015, 120, 6952-6979.	3.3	21
6	A study of aerosol activation at the cloud edge with high resolution numerical simulations. Atmospheric Research, 2015, 153, 49-58.	4.1	4
7	Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12053-12058.	7.1	107
8	Global atmospheric particle formation from CERN CLOUD measurements. Science, 2016, 354, 1119-1124.	12.6	289
9	Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic. Atmospheric Chemistry and Physics, 2016, 16, 715-738.	4.9	32
10	Clobal impact of mineral dust on cloud droplet number concentration. Atmospheric Chemistry and Physics, 2017, 17, 5601-5621.	4.9	59
11	CCN Activity, Variability and Influence on Droplet Formation during the HygrA-Cd Campaign in Athens. Atmosphere, 2017, 8, 108.	2.3	10
12	Regional new particle formation as modulators of cloud condensation nuclei and cloud droplet number in the eastern Mediterranean. Atmospheric Chemistry and Physics, 2019, 19, 6185-6203.	4.9	26
13	Biomass burning aerosol as aÂmodulator of the droplet number in the southeast Atlantic region. Atmospheric Chemistry and Physics, 2020, 20, 3029-3040.	4.9	43
14	On the drivers of droplet variability in alpine mixed-phase clouds. Atmospheric Chemistry and Physics, 2021, 21, 10993-11012.	4.9	10
15	Constraining the Twomey effect from satellite observations: issues and perspectives. Atmospheric Chemistry and Physics, 2020, 20, 15079-15099.	4.9	49
17	Aerosol–stratocumulus interactions: towards a better process understanding using closures between observations and large eddy simulations. Atmospheric Chemistry and Physics, 2022, 22, 12417-12441.	4.9	0
18	Towards reliable retrievals of cloud droplet number for non-precipitating planetary boundary layer clouds and their susceptibility to aerosol. Frontiers in Remote Sensing, 0, 3, .	3.5	1
20	New Particle Formation Events Can Reduce Cloud Droplets in Boundary Layer Clouds at the Continental Scale. Geophysical Research Letters, 2024, 51, .	4.0	0