The community Noah land surface model with multipar Model description and evaluation with local-scale meas

Journal of Geophysical Research 116, DOI: 10.1029/2010jd015139

Citation Report

#	Article	IF	CITATIONS
1	The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. Journal of Geophysical Research, 2011, 116, .	3.3	475
2	Pursuing the method of multiple working hypotheses for hydrological modeling. Water Resources Research, 2011, 47, .	1.7	414
3	River Network Routing on the NHDPlus Dataset. Journal of Hydrometeorology, 2011, 12, 913-934.	0.7	166
4	Assimilation of Satellite-Observed Snow Albedo in a Land Surface Model. Journal of Hydrometeorology, 2012, 13, 1119-1130.	0.7	28
5	How Physical Parameterizations Can Modulate Internal Variability in a Regional Climate Model. Journals of the Atmospheric Sciences, 2012, 69, 714-724.	0.6	35
6	Can a Regional Climate Model Improve the Ability to Forecast the North American Monsoon?. Journal of Climate, 2012, 25, 8212-8237.	1.2	82
8	Land surface Verification Toolkit (LVT) – a generalized framework for land surface model evaluation. Geoscientific Model Development, 2012, 5, 869-886.	1.3	54
9	Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities. Hydrology and Earth System Sciences, 2012, 16, 3863-3887.	1.9	350
10	Noah-GEM and Land Data Assimilation System (LDAS) based downscaling of global reanalysis surface fields: Evaluations using observations from a CarboEurope agricultural site. Computers and Electronics in Agriculture, 2012, 86, 55-74.	3.7	11
11	Continentalâ€scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDASâ€2): 2. Validation of modelâ€simulated streamflow. Journal of Geophysical Research, 2012, 117, .	3.3	229
12	Towards a comprehensive assessment of model structural adequacy. Water Resources Research, 2012, 48, .	1.7	317
13	The role of groundwater in the Amazon water cycle: 1. Influence on seasonal streamflow, flooding and wetlands. Journal of Geophysical Research, 2012, 117, .	3.3	113
14	The role of groundwater in the Amazon water cycle: 2. Influence on seasonal soil moisture and evapotranspiration. Journal of Geophysical Research, 2012, 117, .	3.3	71
15	Earth System Model, Modeling the Land Component of. , 2012, , 139-168.		6
16	A comparison of 1701 snow models using observations from an alpine site. Advances in Water Resources, 2013, 55, 131-148.	1.7	235
17	Catchments as reactors: a comprehensive approach for water fluxes and solute turnover. Environmental Earth Sciences, 2013, 69, 317-333.	1.3	71
18	Ensemble square root filter assimilation of near-surface soil moisture and reference-level observations into a coupled land surface-boundary layer model. Journal of Meteorological Research, 2013, 27, 541-555.	1.0	2
19	Overview of the Large-Scale Biosphere–Atmosphere Experiment in Amazonia Data Model Intercomparison Project (LBA-DMIP). Agricultural and Forest Meteorology, 2013, 182-183, 111-127.	1.9	55

<u> </u>			<u> </u>	
(17	ΓΔΤΙ	10N	KEDUB	Г
\sim				

#	Article	IF	CITATIONS
20	A perspective on urban canopy layer modeling for weather, climate and air quality applications. Urban Climate, 2013, 3, 13-39.	2.4	72
21	Inter-annual variability of carbon and water fluxes in Amazonian forest, Cerrado and pasture sites, as simulated by terrestrial biosphere models. Agricultural and Forest Meteorology, 2013, 182-183, 145-155.	1.9	30
22	A decade of Predictions in Ungauged Basins (PUB)—a review. Hydrological Sciences Journal, 2013, 58, 1198-1255.	1.2	821
23	Regional-scale river flow modeling using off-the-shelf runoff products, thousands of mapped rivers and hundreds of stream flow gauges. Environmental Modelling and Software, 2013, 42, 116-132.	1.9	39
24	WRFv3.2-SPAv2: development and validation of a coupled ecosystem–atmosphere model, scaling from surface fluxes of CO ₂ and energy to atmospheric profiles. Geoscientific Model Development, 2013, 6, 1079-1093.	1.3	18
27	Incremental Correction for the Dynamical Downscaling of Ensemble Mean Atmospheric Fields. Monthly Weather Review, 2013, 141, 3087-3101.	0.5	26
28	Global patterns in base flow index and recession based on streamflow observations from 3394 catchments. Water Resources Research, 2013, 49, 7843-7863.	1.7	200
29	Enhancing the representation of subgrid land surface characteristics in land surface models. Geoscientific Model Development, 2013, 6, 1609-1622.	1.3	20
30	A Spatially Distributed Model to Simulate Water, Energy, and Vegetation Dynamics Using Information from Regional Climate Models. Earth Interactions, 2013, 17, 1-44.	0.7	56
31	Development of a Coupled Land Surface Hydrologic Model and Evaluation at a Critical Zone Observatory. Journal of Hydrometeorology, 2013, 14, 1401-1420.	0.7	85
32	Evaluation of a coupled eventâ€driven phenology and evapotranspiration model for croplands in the United States northern Great Plains. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5065-5081.	1.2	6
33	Multiresponse, multiobjective calibration as a diagnostic tool to compare accuracy and structural limitations of five coupled soil-plant models and CLM3.5. Water Resources Research, 2013, 49, 8200-8221.	1.7	40
34	A flood episode in northern Italy: multi-model and single-model mesoscale meteorological ensembles for hydrological predictions. Hydrology and Earth System Sciences, 2013, 17, 2107-2120.	1.9	28
35	On the contribution of groundwater storage to interannual streamflow anomalies in the Colorado River basin. Hydrology and Earth System Sciences, 2013, 17, 1475-1491.	1.9	27
36	High-resolution interactive modelling of the mountain glacier–atmosphere interface: an application over the Karakoram. Cryosphere, 2013, 7, 779-795.	1.5	71
37	Assessing optimal set of implemented physical parameterization schemes in a multi-physics land surface model using genetic algorithm. Geoscientific Model Development, 2014, 7, 2517-2529.	1.3	27
38	Translating aboveground cosmic-ray neutron intensity to high-frequency soil moisture profiles at sub-kilometer scale. Hydrology and Earth System Sciences, 2014, 18, 4363-4379.	1.9	46
39	Evaluating the Utah Energy Balance (UEB) snow model in the Noah land-surface model. Hydrology and Earth System Sciences, 2014, 18, 3553-3570.	1.9	15

		EPORT	
#	Article	IF	CITATIONS
40	A sensitivity study of high-resolution regional climate simulations to three land surface models over the western United States. Journal of Geophysical Research D: Atmospheres, 2014, 119, 7271-7291.	1.2	57
41	WRF Model Sensitivity to Land Surface Model and Cumulus Parameterization under Short-Term Climate Extremes over the Southern Great Plains of the United States. Journal of Climate, 2014, 27, 7703-7724.	1.2	45
42	Impacts of modified Richards equation on RegCM4 regional climate modeling over East Asia. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,642.	1.2	14
43	Regional Model Simulations of the 2008 Drought in Southern South America Using a Consistent Set of Land Surface Properties. Journal of Climate, 2014, 27, 6754-6778.	1.2	38
44	Comparison of Next-Day Convection-Allowing Forecasts of Storm motion on 1- and 4-km Grids. Weather and Forecasting, 2014, 29, 878-893.	0.5	24
45	Understanding Uncertainties in Future Colorado River Streamflow. Bulletin of the American Meteorological Society, 2014, 95, 59-78.	1.7	159
46	Zonal Gradients in the Lower Atmosphere and Upper Ocean across the Windward Antilles during Midsummer 2012. Journal of Applied Meteorology and Climatology, 2014, 53, 731-741.	0.6	2
47	The Use of Similarity Concepts to Represent Subgrid Variability in Land Surface Models: Case Study in a Snowmelt-Dominated Watershed. Journal of Hydrometeorology, 2014, 15, 1717-1738.	0.7	33
48	Comparison of varied complexity models simulating recharge at the field scale. Hydrological Processes, 2014, 28, 2091-2102.	1.1	23
49	A Trial to Improve Surface Heat Exchange Simulation through Sensitivity Experiments over a Desert Steppe Site. Journal of Hydrometeorology, 2014, 15, 664-684.	0.7	18
50	Assessment of Roughness Length Schemes Implemented within the Noah Land Surface Model for High-Altitude Regions. Journal of Hydrometeorology, 2014, 15, 921-937.	0.7	55
51	A simple framework to estimate distributed soil temperature from discrete air temperature measurements in dataâ€scarce regions. Journal of Geophysical Research D: Atmospheres, 2014, 119, 407-417.	1.2	31
52	Sensitivity of global terrestrial gross primary production to hydrologic states simulated by the Community Land Model using two runoff parameterizations. Journal of Advances in Modeling Earth Systems, 2014, 6, 658-679.	1.3	48
53	Impacts of forest harvest on cold season land surface conditions and landâ€atmosphere interactions in northern <scp>G</scp> reat <scp>L</scp> akes states. Journal of Advances in Modeling Earth Systems, 2014, 6, 923-937.	1.3	6
54	Seasonal to yearly assessment of temperature and precipitation trends in the North Western Mediterranean Basin by dynamical downscaling of climate scenarios at high resolution (1971–2050). Climatic Change, 2014, 122, 243-256.	1.7	25
55	Evaluating the effect of rainfall variability on vegetation establishment in a semidesert grassland. Environmental Monitoring and Assessment, 2014, 186, 395-406.	1.3	17
56	On the use of nudging techniques for regional climate modeling: application for tropical convection. Climate Dynamics, 2014, 43, 1693-1714.	1.7	21
57	Projections of temperature and precipitation extremes in the North Western Mediterranean Basin by dynamical downscaling of climate scenarios at high resolution (1971–2050). Climatic Change, 2014, 122, 567-582.	1.7	37

#	Article	IF	CITATIONS
58	Estimating the impact of land use change on surface energy partition based on the Noah model. Frontiers of Earth Science, 2014, 8, 18-31.	0.9	5
59	A case study of aerosol impacts on summer convective clouds and precipitation over northern China. Atmospheric Research, 2014, 142, 142-157.	1.8	50
60	Analysis of the variability of canopy resistance over a desert steppe site in Inner Mongolia, China. Advances in Atmospheric Sciences, 2014, 31, 681-692.	1.9	10
61	Climate change impacts on Great Lakes Basin precipitation extremes. Journal of Geophysical Research D: Atmospheres, 2014, 119, 10,799-10,812.	1.2	49
62	Mechanisms of water supply and vegetation demand govern the seasonality and magnitude of evapotranspiration in Amazonia and Cerrado. Agricultural and Forest Meteorology, 2014, 191, 33-50.	1.9	105
63	Comparison of prognostic and diagnostic surface flux modeling approaches over the Nile River basin. Water Resources Research, 2014, 50, 386-408.	1.7	68
64	An integrated modelling framework of catchmentâ€scale ecohydrological processes: 2. The role of water subsidy by overland flow on vegetation dynamics in a semiâ€arid catchment. Ecohydrology, 2014, 7, 815-827.	1.1	20
65	An integrated modelling framework of catchmentâ€scale ecohydrological processes: 1. Model description and tests over an energyâ€limited watershed. Ecohydrology, 2014, 7, 427-439.	1.1	68
66	Assessing five evolving microbial enzyme models against field measurements from a semiarid savannah-What are the mechanisms of soil respiration pulses?. Geophysical Research Letters, 2014, 41, 6428-6434.	1.5	42
67	Assessment of simulated water balance from Noah, Noahâ€MP, CLM, and VIC over CONUS using the NLDAS test bed. Journal of Geophysical Research D: Atmospheres, 2014, 119, 13,751.	1.2	127
68	Incorporating dynamic root growth enhances the performance of Noah-MP at two contrasting winter wheat field sites. Water Resources Research, 2014, 50, 1337-1356.	1.7	47
69	Modeling seasonal snowpack evolution in the complex terrain and forested Colorado Headwaters region: A model intercomparison study. Journal of Geophysical Research D: Atmospheres, 2014, 119, 13,795.	1.2	95
70	Toward a better integration of biological data from precipitation manipulation experiments into Earth system models. Reviews of Geophysics, 2014, 52, 412-434.	9.0	39
71	Climate controls how ecosystems size the root zone storage capacity at catchment scale. Geophysical Research Letters, 2014, 41, 7916-7923.	1.5	138
72	Soil moisture and soil properties estimation in the Community Land Model with synthetic brightness temperature observations. Water Resources Research, 2014, 50, 6081-6105.	1.7	87
73	Hydrological evaluation of the Noahâ€MP land surface model for the Mississippi River Basin. Journal of Geophysical Research D: Atmospheres, 2014, 119, 23-38.	1.2	151
74	Comparisons of the Noah-MP land surface model simulations with measurements of forest and crop sites in Amazonia. Meteorology and Atmospheric Physics, 2015, 127, 711-723.	0.9	18
75	Groundwater in the <scp>E</scp> arth's critical zone: Relevance to largeâ€scale patterns and processes. Water Resources Research, 2015, 51, 3052-3069.	1.7	164

#	Article	IF	CITATIONS
76	A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles. Reviews of Geophysics, 2015, 53, 819-895.	9.0	174
77	Modified treatment of intercepted snow improves the simulated forest albedo in the Canadian Land Surface Scheme. Hydrological Processes, 2015, 29, 3208-3226.	1.1	29
78	Are we unnecessarily constraining the agility of complex process-based models?. Water Resources Research, 2015, 51, 716-728.	1.7	123
79	WRF simulations of two extreme snowfall events associated with contrasting extratropical cyclones over the western and central Himalaya. Journal of Geophysical Research D: Atmospheres, 2015, 120, 3114-3138.	1.2	66
80	Decomposition of sources of errors in seasonal streamflow forecasting over the U.S. Sunbelt. Journal of Geophysical Research D: Atmospheres, 2015, 120, 11,809.	1.2	31
81	Modeled responses of summer climate to realistic land use/cover changes from the 1980s to the 2000s over eastern China. Journal of Geophysical Research D: Atmospheres, 2015, 120, 167-179.	1.2	22
82	Under anopy turbulence and root water uptake of a <scp>T</scp> ibetan meadow ecosystem modeled by <scp>N</scp> oahâ€ <scp>MP</scp> . Water Resources Research, 2015, 51, 5735-5755.	1.7	23
83	Assessing and improving Noahâ€MP land model simulations for the central Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9258-9278.	1.2	96
84	Augmentations to the Noah Model Physics for Application to the Yellow River Source Area. Part I: Soil Water Flow. Journal of Hydrometeorology, 2015, 16, 2659-2676.	0.7	54
85	Benchmark analysis of forecasted seasonal temperature over different climatic areas. Geoscience Letters, 2015, 2, .	1.3	4
86	A statistical concept to assess the uncertainty in Bayesian model weights and its impact on model ranking. Water Resources Research, 2015, 51, 7524-7546.	1.7	30
87	Estimation of humanâ€induced changes in terrestrial water storage through integration of <scp>GRACE</scp> satellite detection and hydrological modeling: A case study of the <scp>Y</scp> angtze <scp>R</scp> iver basin. Water Resources Research, 2015, 51, 8494-8516.	1.7	60
88	Improving the representation of hydrologic processes in Earth System Models. Water Resources Research, 2015, 51, 5929-5956.	1.7	366
89	Hyper-resolution global hydrological modelling: what is next?. Hydrological Processes, 2015, 29, 310-320.	1.1	280
90	Observation of intrinsically bright terrestrial gamma ray flashes from the Mediterranean basin. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12143-12156.	1.2	26
91	Simulations of a cold-air pool associated with elevated wintertime ozone in the Uintah Basin, Utah. Atmospheric Chemistry and Physics, 2015, 15, 135-151.	1.9	34
92	Global Maps of Streamflow Characteristics Based on Observations from Several Thousand Catchments*. Journal of Hydrometeorology, 2015, 16, 1478-1501.	0.7	136
93	Sensitivity of regional evapotranspiration partitioning to variation in woody plant cover: insights from experimental dryland tree mosaics. Global Ecology and Biogeography, 2015, 24, 1040-1048.	2.7	28

#	Article	IF	CITATIONS
94	Simulating highâ€resolution soil moisture patterns in the Shale Hills watershed using a land surface hydrologic model. Hydrological Processes, 2015, 29, 4624-4637.	1.1	29
95	Evaluation of snow cover fraction for regional climate simulations in the Sierra Nevada. International Journal of Climatology, 2015, 35, 2472-2484.	1.5	34
96	Evapotranspiration in Northern Eurasia: Impact of forcing uncertainties on terrestrial ecosystem model estimates. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2647-2660.	1.2	26
97	Sensitivity of the regional European boreal climate to changes in surface properties resulting from structural vegetation perturbations. Biogeosciences, 2015, 12, 3071-3087.	1.3	12
98	SPHY v2.0: Spatial Processes in HYdrology. Geoscientific Model Development, 2015, 8, 2009-2034.	1.3	84
99	Flood and drought hydrologic monitoring: the role of model parameter uncertainty. Hydrology and Earth System Sciences, 2015, 19, 3239-3251.	1.9	46
100	Impact of debris cover on glacier ablation and atmosphere–glacier feedbacks in the Karakoram. Cryosphere, 2015, 9, 1617-1632.	1.5	64
101	Role of Surface Energy Exchange for Simulating Wind Turbine Inflow: A Case Study in the Southern Great Plains, USA. Atmosphere, 2015, 6, 21-49.	1.0	8
102	Soil Moisture Estimation by Assimilating L-Band Microwave Brightness Temperature with Geostatistics and Observation Localization. PLoS ONE, 2015, 10, e0116435.	1.1	10
103	Hydrometeorological multi-model ensemble simulations of the 4 November 2011 flash flood event in Genoa, Italy, in the framework of the DRIHM project. Natural Hazards and Earth System Sciences, 2015, 15, 537-555.	1.5	47
104	Enhanced fixed-size parallel speedup with the Muskingum method using a trans-boundary approach and a large subbasins approximation. Water Resources Research, 2015, 51, 7547-7571.	1.7	19
105	Integrated modeling of aerosol, cloud, precipitation and land processes at satellite-resolved scales. Environmental Modelling and Software, 2015, 67, 149-159.	1.9	95
106	Soil moisture drought detection and multi-temporal variability across China. Science China Earth Sciences, 2015, 58, 1798-1813.	2.3	30
107	A Comparison between Simulated and Observed Surface Energy Balance at the Svalbard Archipelago. Journal of Applied Meteorology and Climatology, 2015, 54, 1102-1119.	0.6	16
108	A unified approach for processâ€based hydrologic modeling: 2. Model implementation and case studies. Water Resources Research, 2015, 51, 2515-2542.	1.7	173
109	Quantifying regional, seasonal and interannual contributions of environmental factors on isoprene and monoterpene emissions estimates over eastern Texas. Atmospheric Environment, 2015, 106, 120-128.	1.9	22
110	Calibration and evaluation of a flood forecasting system: Utility of numerical weather prediction model, data assimilation and satellite-based rainfall. Journal of Hydrology, 2015, 523, 49-66.	2.3	184
111	Clearâ€sky stable boundary layers with low winds over snowâ€covered surfaces. Part 1: WRF model evaluation. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 2165-2184.	1.0	28

#	Article	IF	CITATIONS
112	Evaluation of a high-resolution historical simulation over China: climatology and extremes. Climate Dynamics, 2015, 45, 2013-2031.	1.7	102
113	Simulation and improvement of land surface processes in Nameqie, Central Tibetan Plateau, using the Community Land Model (CLM3.5). Environmental Earth Sciences, 2015, 73, 7343-7357.	1.3	20
114	Evolution of forest precipitation water storage measurement methods. Hydrological Processes, 2015, 29, 2504-2520.	1.1	55
115	Surface Water and Energy Budgets for the Mississippi River Basin in Three NCEP Reanalyses. Journal of Hydrometeorology, 2015, 16, 857-873.	0.7	8
116	Evaluation of modeled wind field for dispersion modeling. Atmospheric Research, 2015, 166, 150-156.	1.8	8
117	Quantitative precipitation estimation based on high-resolution numerical weather prediction and data assimilation with WRF – a performance test. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 67, 25047.	0.8	27
119	Effects of Hydrologic Model Choice and Calibration on the Portrayal of Climate Change Impacts. Journal of Hydrometeorology, 2015, 16, 762-780.	0.7	84
120	Comparative analysis of meteorological performance of coupled chemistry-meteorology models in the context of AQMEII phase 2. Atmospheric Environment, 2015, 115, 470-498.	1.9	85
121	An Observational and Modeling Study of Impacts of Bark Beetle–Caused Tree Mortality on Surface Energy and Hydrological Cycles. Journal of Hydrometeorology, 2015, 16, 744-761.	0.7	27
123	Investigation of sea-breeze convergence in Salento Peninsula (southeastern Italy). Atmospheric Research, 2015, 160, 68-79.	1.8	27
124	The effect of groundwater interaction in North American regional climate simulations with WRF/Noah-MP. Climatic Change, 2015, 129, 485-498.	1.7	114
125	Evaluating the Influence of Plant-Specific Physiological Parameterizations on the Partitioning of Land Surface Energy Fluxes. Journal of Hydrometeorology, 2015, 16, 517-533.	0.7	24
126	Diagnosing Neglected Soil Moisture Source–Sink Processes via a Thermal Infrared–Based Two-Source Energy Balance Model. Journal of Hydrometeorology, 2015, 16, 1070-1086.	0.7	60
127	A unified approach for processâ€based hydrologic modeling: 1. Modeling concept. Water Resources Research, 2015, 51, 2498-2514.	1.7	354
128	Atmospheric Wake of Madeira: First Aerial Observations and Numerical Simulations. Journals of the Atmospheric Sciences, 2015, 72, 4755-4776.	0.6	22
129	Augmentations to the Noah Model Physics for Application to the Yellow River Source Area. Part II: Turbulent Heat Fluxes and Soil Heat Transport. Journal of Hydrometeorology, 2015, 16, 2677-2694.	0.7	49
130	Highâ€resolution modeling of atmospheric dynamics in the Nepalese Himalaya. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9882-9896.	1.2	85
131	Do we need a Community Hydrological Model?. Water Resources Research, 2015, 51, 7777-7784.	1.7	57

#	Article	IF	CITATIONS
132	Establishment and analysis of a High-Resolution Assimilation Dataset of the water-energy cycle in China. Physics and Chemistry of the Earth, 2015, 87-88, 126-141.	1.2	6
133	Resolving the life cycle alters expected impacts of climate change. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150837.	1.2	123
134	The Impact of the Temperature Inversion Breakup on the Exchange of Heat and Mass in an Idealized Valley: Sensitivity to the Radiative Forcing. Journal of Applied Meteorology and Climatology, 2015, 54, 2199-2216.	0.6	31
135	Evaluation of NLDASâ€2 evapotranspiration against tower flux site observations. Hydrological Processes, 2015, 29, 1757-1771.	1.1	49
136	Root structural and functional dynamics in terrestrial biosphere models – evaluation and recommendations. New Phytologist, 2015, 205, 59-78.	3.5	214
137	12 September 2012: A supercell outbreak in NE Italy?. Atmospheric Research, 2015, 153, 98-118.	1.8	32
138	The climatic mass balance of Svalbard glaciers: a 10-year simulation with a coupled atmosphere–glacier mass balance model. Cryosphere, 2016, 10, 1089-1104.	1.5	50
139	Integration of nitrogen dynamics into the Noah-MP land surface model v1.1 for climate and environmental predictions. Geoscientific Model Development, 2016, 9, 1-15.	1.3	31
140	Spatio-temporal assessment of WRF, TRMM and in situ precipitation data in aÂtropical mountain environment (CordilleraÂBlanca,ÂPeru). Hydrology and Earth System Sciences, 2016, 20, 125-141.	1.9	41
141	Simulating the impacts of chronic ozone exposure on plant conductance and photosynthesis, and on the regional hydroclimate using WRF/Chem. Environmental Research Letters, 2016, 11, 114017.	2.2	12
142	3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar. Atmospheric Measurement Techniques, 2016, 9, 1701-1720.	1.2	47
143	HYPERstream: a multi-scale framework for streamflow routing in large-scale hydrological model. Hydrology and Earth System Sciences, 2016, 20, 2047-2061.	1.9	17
144	Parameterization of the snow-covered surface albedo in the Noah-MP Version 1.0 by implementing vegetation effects. Geoscientific Model Development, 2016, 9, 1073-1085.	1.3	25
145	Soil Moisture Retrievals Using Optical/TIR Methods. , 2016, , 47-72.		5
146	Modeling plant–water interactions: an ecohydrological overview from the cell to the global scale. Wiley Interdisciplinary Reviews: Water, 2016, 3, 327-368.	2.8	163
147	HydroBlocks: a fieldâ€scale resolving land surface model for application over continental extents. Hydrological Processes, 2016, 30, 3543-3559.	1.1	75
148	Mesoscale Model Evaluation Testbed (MMET): A Resource for Transitioning NWP Innovations from Research to Operations (R2O). Bulletin of the American Meteorological Society, 2016, 97, 2135-2147.	1.7	4
149	Will the Tibetan Plateau warming depend on elevation in the future?. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3969-3978.	1.2	75

#	Article	IF	CITATIONS
150	How do hydrologic modeling decisions affect the portrayal of climate change impacts?. Hydrological Processes, 2016, 30, 1071-1095.	1.1	52
151	A Numerical Study of Sea Breeze and Spatiotemporal Variation in the Coastal Atmospheric Boundary Layer at Hainan Island, China. Boundary-Layer Meteorology, 2016, 161, 543-560.	1.2	10
152	Basinâ€scale assessment of the land surface water budget in the National Centers for Environmental Prediction operational and research NLDASâ€⊋ systems. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2750-2779.	1.2	35
153	Globalâ€scale regionalization of hydrologic model parameters. Water Resources Research, 2016, 52, 3599-3622.	1.7	241
154	Assessing uncertainties in the Noahâ€MP ensemble simulations of a cropland site during the Tibet Joint International Cooperation program field campaign. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9576-9596.	1.2	56
155	Estimating surface turbulent heat fluxes from land surface temperature and soil moisture observations using the particle batch smoother. Water Resources Research, 2016, 52, 9086-9108.	1.7	26
156	Characteristics and predictability of a supercell during HyMeX SOP1. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 2839-2853.	1.0	30
157	Noahâ€MPâ€Crop: Introducing dynamic crop growth in the Noahâ€MP land surface model. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,953.	1.2	61
158	Predicting Nearâ€5urface Moisture Content of Saline Soils from Nearâ€Infrared Reflectance Spectra with a Modified Gaussian Model. Soil Science Society of America Journal, 2016, 80, 1496-1506.	1.2	18
159	Impacts of Noah model physics on catchmentâ€scale runoff simulations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 807-832.	1.2	26
160	Effects of soilâ€ŧype datasets on regional terrestrial water cycle simulations under different climatic regimes. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14,387.	1.2	24
161	Implementation and evaluation of a generalized radiative transfer scheme within canopy in the soilâ€vegetationâ€atmosphere transfer (SVAT) model. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,145.	1.2	8
163	A philosophical basis for hydrological uncertainty. Hydrological Sciences Journal, 2016, 61, 1666-1678.	1.2	98
164	First assimilation of temperature lidar data into an NWP model: impact on the simulation of the temperature field, inversion strength and PBL depth. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 2882-2896.	1.0	20
165	The impact of standard and hardâ€coded parameters on the hydrologic fluxes in the Noahâ€MP land surface model. Journal of Geophysical Research D: Atmospheres, 2016, 121, 10,676.	1.2	101
166	Basinâ€scale assessment of the land surface energy budget in the National Centers for Environmental Prediction operational and research NLDASâ€2 systems. Journal of Geophysical Research D: Atmospheres, 2016, 121, 196-220.	1.2	16
167	Improved meteorology from an updated WRF/CMAQ modeling system with MODIS vegetation and albedo. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2393-2415.	1.2	32
168	Effects of modified soil waterâ€heat physics on RegCM4 simulations of climate over the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2016, 121, 6692-6712.	1.2	34

#	Article	IF	CITATIONS
169	Enhanced soil moisture drying in transitional regions under a warming climate. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2542-2555.	1.2	63
170	Effects of different regional climate model resolution and forcing scales on projected hydrologic changes. Journal of Hydrology, 2016, 541, 1003-1019.	2.3	31
171	Investigation of an extreme Koshava wind episode of 30 January–4 February 2014. Atmospheric Science Letters, 2016, 17, 199-206.	0.8	7
172	The Role of Land Surface Processes on Tropical Cyclones: Introduction to Land Surface Models. , 2016, , 221-246.		5
174	Evaluation of GLDAS-1 and GLDAS-2 Forcing Data and Noah Model Simulations over China at the Monthly Scale. Journal of Hydrometeorology, 2016, 17, 2815-2833.	0.7	107
175	Impacts of a Groundwater Scheme on Hydroclimatological Conditions over Southern South America. Journal of Hydrometeorology, 2016, 17, 2959-2978.	0.7	13
176	Implementation of spaceborne lidarâ€retrieved canopy height in the WRF model. Journal of Geophysical Research D: Atmospheres, 2016, 121, 6863-6876.	1.2	5
177	An evaluation of highâ€resolution regional climate model simulations of snow cover and albedo over the Rocky Mountains, with implications for the simulated snowâ€albedo feedback. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9069-9088.	1.2	63
178	Understanding evapotranspiration trends and their driving mechanisms over the NLDAS domain based on numerical experiments using CLM4.5. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7729-7745.	1.2	10
179	What Causes Weak Orographic Rain Shadows? Insights from Case Studies in the Cascades and Idealized Simulations. Journals of the Atmospheric Sciences, 2016, 73, 4077-4099.	0.6	18
180	Deriving global parameter estimates for the Noah land surface model using FLUXNET and machine learning. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,218.	1.2	34
181	Effects of a Groundwater Scheme on the Simulation of Soil Moisture and Evapotranspiration over Southern South America. Journal of Hydrometeorology, 2016, 17, 2941-2957.	0.7	25
182	Empirical modeling and spatio-temporal patterns of urban evapotranspiration for the Phoenix metropolitan area, Arizona. GIScience and Remote Sensing, 2016, 53, 778-792.	2.4	30
183	The fan of influence of streams and channel feedbacks to simulated land surface water and carbon dynamics. Water Resources Research, 2016, 52, 880-902.	1.7	34
184	Evaluation of streamflow simulation results of land surface models in GLDAS on the Tibetan plateau. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,180.	1.2	47
185	The incorporation of an organic soil layer in the Noah-MP land surface model and its evaluation over a boreal aspen forest. Atmospheric Chemistry and Physics, 2016, 16, 8375-8387.	1.9	25
186	Precipitation response of monsoon lowâ€pressure systems to an idealized uniform temperature increase. Journal of Geophysical Research D: Atmospheres, 2016, 121, 6258-6272.	1.2	10
187	Improving the theoretical underpinnings of processâ€based hydrologic models. Water Resources Research, 2016, 52, 2350-2365.	1.7	80

#	Article	IF	CITATIONS
188	Sensitivity of a regional climate model to land surface parameterization schemes for East Asian summer monsoon simulation. Climate Dynamics, 2016, 47, 2293-2308.	1.7	34
189	What is Missing from the Prescription of Hydrology for Land Surface Schemes?. Journal of Hydrometeorology, 2016, 17, 2013-2039.	0.7	25
190	Downslope Windstorms of San Diego County. Part I: A Case Study. Monthly Weather Review, 2016, 144, 529-552.	0.5	48
191	An upgraded scheme of surface physics for Antarctic ice sheet and its implementation in the WRF model. Science Bulletin, 2016, 61, 576-584.	4.3	4
192	Effects of Roughness Length Parameterizations on Regional-Scale Land Surface Modeling of Alpine Grasslands in the Yangtze River Basin. Journal of Hydrometeorology, 2016, 17, 1069-1085.	0.7	17
193	Low-pressure systems and extreme precipitation in central India: sensitivity to temperature changes. Climate Dynamics, 2016, 47, 465-480.	1.7	13
194	Charred forests accelerate snow albedo decay: parameterizing the postâ€fire radiative forcing on snow for three years following fire. Hydrological Processes, 2016, 30, 3855-3870.	1.1	32
195	A Method of Aggregating Heterogeneous Subgrid Land-Cover Input Data for Multiscale Urban Parameterization. Journal of Applied Meteorology and Climatology, 2016, 55, 1889-1905.	0.6	2
196	Evaluating the Climate Effects of Reforestation in New England Using a Weather Research and Forecasting (WRF) Model Multiphysics Ensemble. Journal of Climate, 2016, 29, 5141-5156.	1.2	24
197	Investigation of PBL schemes combining the WRF model simulations with scanning water vapor differential absorption lidar measurements. Journal of Geophysical Research D: Atmospheres, 2016, 121, 624-649.	1.2	56
198	Calibration to Improve Forward Model Simulation of Microwave Emissivity at GPM Frequencies Over the U.S. Southern Great Plains. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 1103-1117.	2.7	8
199	Effects of root water uptake formulation on simulated water and energy budgets at local and basin scales. Environmental Earth Sciences, 2016, 75, 1.	1.3	34
200	Evaluating Regional and Global Hydrological Models against Streamflow and Evapotranspiration Measurements. Journal of Hydrometeorology, 2016, 17, 995-1010.	0.7	62
201	High-Resolution WRF Model Simulations of Critical Land Surface-Atmosphere Interactions Within Arid and Temperate Climates (WRFCLIM). , 2016, , 607-622.		2
202	Improving Noah land surface model performance using near real time surface albedo and green vegetation fraction. Agricultural and Forest Meteorology, 2016, 218-219, 171-183.	1.9	48
203	Technical review of large-scale hydrological models for implementation in operational flood forecasting schemes on continental level. Environmental Modelling and Software, 2016, 75, 68-76.	1.9	174
204	Variability of modeled runoff over China and its links to climate change. Climatic Change, 2017, 144, 433-445.	1.7	10
205	A Tiling Approach to Represent Subgrid Snow Variability in Coupled Land Surface–Atmosphere Models. Journal of Hydrometeorology, 2017, 18, 49-63.	0.7	21

#	Article	IF	CITATIONS
206	Comparing potential recharge estimates from three Land Surface Models across the western US. Journal of Hydrology, 2017, 545, 410-423.	2.3	22
207	The Purdue Agro-climatic (PAC) dataset for the U.S. Corn Belt: Development and initial results. Climate Risk Management, 2017, 15, 61-72.	1.6	7
208	The Sensitivity of the Terrestrial Surface Energy and Water Balance Estimates in the WRF Model to Lower Surface Boundary Representations: A South Norway Case Study. Journal of Hydrometeorology, 2017, 18, 265-284.	0.7	12
209	Water budget closure based on GRACE measurements and reconstructed evapotranspiration using GLDAS and water use data for two large densely-populated mid-latitude basins. Journal of Hydrology, 2017, 547, 585-599.	2.3	59
210	Sensitivity of Convection-Allowing Forecasts to Land Surface Model Perturbations and Implications for Ensemble Design. Monthly Weather Review, 2017, 145, 2001-2025.	0.5	18
211	Effects of multilayer snow scheme on the simulation of snow: <scp>O</scp> ffline <scp>N</scp> oah and coupled with <scp>NCEP</scp> <scp>CFS</scp> v2. Journal of Advances in Modeling Earth Systems, 2017, 9, 271-290.	1.3	27
212	Assessment of Noah land surface model with various runoff parameterizations over a Tibetan river. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1488-1504.	1.2	37
213	Slower snowmelt in a warmer world. Nature Climate Change, 2017, 7, 214-219.	8.1	354
214	Effects of the surface heterogeneities on the local climate of a fragmented landscape in Amazonia using a tile approach in the Eta/Noahâ€ <scp>MP</scp> model. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 1565-1580.	1.0	10
215	The Simulated Response of Diurnal Mountain Winds to Regionally Enhanced Warming Caused by the Snow Albedo Feedback. Journals of the Atmospheric Sciences, 2017, 74, 49-67.	0.6	15
216	Effects of topographic smoothing on the simulation of winter precipitation in High Mountain Asia. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1456-1474.	1.2	32
217	Incorporating Snow Albedo Feedback into Downscaled Temperature and Snow Cover Projections for California's Sierra Nevada. Journal of Climate, 2017, 30, 1417-1438.	1.2	51
218	Evaluation of Noah Frozen Soil Parameterization for Application to a Tibetan Meadow Ecosystem. Journal of Hydrometeorology, 2017, 18, 1749-1763.	0.7	37
219	How much groundwater did California's Central Valley lose during the 2012–2016 drought?. Geophysical Research Letters, 2017, 44, 4872-4879.	1.5	90
220	Observational breakthroughs lead the way to improved hydrological predictions. Water Resources Research, 2017, 53, 2591-2597.	1.7	23
221	Numerical Simulations of a Tornadic Supercell over the Mediterranean. Weather and Forecasting, 2017, 32, 1209-1226.	0.5	30
222	Glacial Inception on Baffin Island: The Role of Insolation, Meteorology, and Topography. Journal of Climate, 2017, 30, 4047-4064.	1.2	16
223	A Case Study of Observed and Modeled Barrier Flow in the Denmark Strait in May 2015. Monthly Weather Review, 2017, 145, 2385-2404.	0.5	9

#	Article	IF	CITATIONS
224	Benchmarking of a Physically Based Hydrologic Model. Journal of Hydrometeorology, 2017, 18, 2215-2225.	0.7	79
225	Impact of Tibetan Plateau Surface Heating on Persistent Extreme Precipitation Events in Southeastern China. Monthly Weather Review, 2017, 145, 3485-3505.	0.5	33
226	Effects of the Alps and Apennines on forecasts for Po Valley convection in two HyMeX cases. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 2420-2435.	1.0	11
227	Continental-scale convection-permitting modeling of the current and future climate of North America. Climate Dynamics, 2017, 49, 71-95.	1.7	362
228	Validation of SMAP soil moisture for the SMAPVEX15 field campaign using a hyperâ€resolution model. Water Resources Research, 2017, 53, 3013-3028.	1.7	47
229	Comparison of Methods to Estimate Snow Water Equivalent at the Mountain Range Scale: A Case Study of the California Sierra Nevada. Journal of Hydrometeorology, 2017, 18, 1101-1119.	0.7	54
230	Anthropogenic warming impacts on California snowpack during drought. Geophysical Research Letters, 2017, 44, 2511-2518.	1.5	79
231	On the Long-Term Hydroclimatic Sustainability of Perennial Bioenergy Crop Expansion over the United States. Journal of Climate, 2017, 30, 2535-2557.	1.2	23
232	Comparison and Assessment of Three Advanced Land Surface Models in Simulating Terrestrial Water Storage Components over the United States. Journal of Hydrometeorology, 2017, 18, 625-649.	0.7	61
233	Urbanisation and urban climate of a tropical conurbation, Klang Valley, Malaysia. Urban Climate, 2017, 19, 54-71.	2.4	25
234	An analytical test case for snow models. Water Resources Research, 2017, 53, 909-922.	1.7	7
235	Significant and Inevitable End-of-Twenty-First-Century Advances in Surface Runoff Timing in California's Sierra Nevada. Journal of Hydrometeorology, 2017, 18, 3181-3197.	0.7	17
236	Land surface sensitivity of monsoon depressions formed over Bay of Bengal using improved high-resolution land state. Dynamics of Atmospheres and Oceans, 2017, 80, 155-172.	0.7	7
237	Optimization of Noah and Noah_MP WRF Land Surface Schemes in Snow-Melting Conditions over Complex Terrain. Monthly Weather Review, 2017, 145, 4727-4745.	0.5	39
238	Impact of Snow Grain Shape and Black Carbon–Snow Internal Mixing on Snow Optical Properties: Parameterizations for Climate Models. Journal of Climate, 2017, 30, 10019-10036.	1.2	66
239	Evaluating Seasonal Orographic Precipitation in the Interior Western United States Using Gauge Data, Gridded Precipitation Estimates, and a Regional Climate Simulation. Journal of Hydrometeorology, 2017, 18, 2541-2558.	0.7	29
240	Rivers and Floodplains as Key Components of Global Terrestrial Water Storage Variability. Geophysical Research Letters, 2017, 44, 10,359.	1.5	90
241	Effect of a positive Sea Surface Temperature anomaly on a Mediterranean tornadic supercell. Scientific Reports, 2017, 7, 12828.	1.6	39

# 242	ARTICLE The 2016 Southeastern U.S. Drought: An Extreme Departure From Centennial Wetting and Cooling.	IF 1.2	CITATIONS
243	Upper Blue Nile basin water budget from a multi-model perspective. Journal of Hydrology, 2017, 555, 535-546.	2.3	39
244	Impacts of spectral nudging on the simulated surface air temperature in summer compared with the selection of shortwave radiation and land surface model physics parameterization in a high-resolution regional atmospheric model. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 164, 259-267	0.6	5
245	Modulation of Soil Initial State on WRF Model Performance Over China. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,278.	1.2	8
246	Development of a land surface model with coupled snow and frozen soil physics. Water Resources Research, 2017, 53, 5085-5103.	1.7	76
247	A case study involving single observation experiments performed over snowy Siberia using a coupled atmosphereâ€land modelling system. Atmospheric Science Letters, 2017, 18, 106-111.	0.8	13
248	On simulation improvement of the <scp>N</scp> oah_ <scp>LSM</scp> by coupling with a hydrological model using a doubleâ€excess runoff production scheme in the <scp>GRAPES</scp> _ <scp>M</scp> eso model. Meteorological Applications, 2017, 24, 512-520.	0.9	3
249	A realistic meteorological assessment of perennial biofuel crop deployment: a Southern Great Plains perspective. GCB Bioenergy, 2017, 9, 1024-1041.	2.5	6
250	Regional water budgets and hydroclimatic trend variations in Xinjiang from 1951 to 2000. Climatic Change, 2017, 144, 447-460.	1.7	17
251	On the diurnal cycle of surface energy fluxes in the North American monsoon region using the WRFâ€Hydro modeling system. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9024-9049.	1.2	26
252	Mapping Surface Heat Fluxes by Assimilating SMAP Soil Moisture and GOES Land Surface Temperature Data. Water Resources Research, 2017, 53, 10858-10877.	1.7	32
253	Increased rainfall volume from future convective storms in the US. Nature Climate Change, 2017, 7, 880-884.	8.1	211
254	Pedotransfer Functions in Earth System Science: Challenges and Perspectives. Reviews of Geophysics, 2017, 55, 1199-1256.	9.0	316
255	Simulating Impacts of Real-World Wind Farms on Land Surface Temperature Using the WRF Model: Validation with Observations. Monthly Weather Review, 2017, 145, 4813-4836.	0.5	26
256	A Systematic Evaluation of Noahâ€MP in Simulating Landâ€Atmosphere Energy, Water, and Carbon Exchanges Over the Continental United States. Journal of Geophysical Research D: Atmospheres, 2017, 122, 12,245.	1.2	92
257	Spatial Variability of Wet Troposphere Delays Over Inland Water Bodies. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,329.	1.2	5
258	Quantification of the relative role of land-surface processes and large-scale forcing in dynamic downscaling over the Tibetan Plateau. Climate Dynamics, 2017, 48, 1705-1721.	1.7	65
259	Multi-year climate variability in the Southwestern United States within a context of a dynamically downscaled twentieth century reanalysis. Climate Dynamics, 2017, 49, 4217-4236.	1.7	7

#	Article	IF	CITATIONS
260	The More Extreme Nature of North American Monsoon Precipitation in the Southwestern United States as Revealed by a Historical Climatology of Simulated Severe Weather Events. Journal of Applied Meteorology and Climatology, 2017, 56, 2509-2529.	0.6	62
261	Using the particle swarm optimization algorithm to calibrate the parameters relating to the turbulent flux in the surface layer in the source region of the Yellow River. Agricultural and Forest Meteorology, 2017, 232, 606-622.	1.9	15
262	The spatiotemporal variability of precipitation over the Himalaya: evaluation of one-year WRF model simulation. Climate Dynamics, 2017, 49, 2179-2204.	1.7	62
263	The Influence of Fire-Induced Surface Changes on the Diurnal Temperature Changes over the Hayman Fire Scar. Journal of Applied Meteorology and Climatology, 2017, 56, 45-67.	0.6	2
264	Evaluation and improvement of the default soil hydraulic parameters for the Noah Land Surface Model. Geoderma, 2017, 285, 247-259.	2.3	37
265	A novel approach for unraveling the energy balance of water surfaces with a single depth temperature measurement. Limnology and Oceanography, 2017, 62, 89-103.	1.6	8
266	Stomatal response to humidity and <scp>CO</scp> ₂ implicated in recent decline in <scp>US</scp> evaporation. Global Change Biology, 2017, 23, 1140-1151.	4.2	58
267	The Southern China Monsoon Rainfall Experiment (SCMREX). Bulletin of the American Meteorological Society, 2017, 98, 999-1013.	1.7	144
268	Meltwater runoff in a changing climate (1951–2099) at Chhota Shigri Glacier, Western Himalaya, Northern India. Annals of Glaciology, 2017, 58, 47-58.	2.8	23
269	Interaction Between Ecohydrologic Dynamics and Microtopographic Variability Under Climate Change. Water Resources Research, 2017, 53, 8383-8403.	1.7	24
270	Modeled effects of irrigation on surface climate in the Heihe River Basin, Northwest China. Journal of Geophysical Research D: Atmospheres, 2017, 122, 7881-7895.	1.2	43
271	An improved parameterization of the allocation of assimilated carbon to plant parts in vegetation dynamics for <scp>N</scp> oahâ€ <scp>MP</scp> . Journal of Advances in Modeling Earth Systems, 2017, 9, 1776-1794.	1.3	16
272	Quantifying the contribution of land use change to surface temperature in the lower reaches of the Yangtze River. Atmospheric Chemistry and Physics, 2017, 17, 4989-4996.	1.9	41
273	A soil column model for predicting the interaction between water table and evapotranspiration. Water Resources Research, 2017, 53, 5877-5898.	1.7	8
274	Similarity Assessment of Land Surface Model Outputs in the North American Land Data Assimilation System. Water Resources Research, 2017, 53, 8941-8965.	1.7	34
275	Toward seamless hydrologic predictions across spatial scales. Hydrology and Earth System Sciences, 2017, 21, 4323-4346.	1.9	81
276	Picturing and modeling catchments by representative hillslopes. Hydrology and Earth System Sciences, 2017, 21, 1225-1249.	1.9	42
277	Validation of Spaceborne and Modelled Surface Soil Moisture Products with Cosmic-Ray Neutron Probes. Remote Sensing, 2017, 9, 103.	1.8	87

#	Article	lF	CITATIONS
278	New Approach for Calculating the Effective Dielectric Constant of the Moist Soil for Microwaves. Remote Sensing, 2017, 9, 732.	1.8	38
279	Assessing a Multi-Platform Data Fusion Technique in Capturing Spatiotemporal Dynamics of Heterogeneous Dryland Ecosystems in Topographically Complex Terrain. Remote Sensing, 2017, 9, 981.	1.8	10
280	Study of the Spatiotemporal Characteristics of Meltwater Contribution to the Total Runoff in the Upper Changjiang River Basin. Water (Switzerland), 2017, 9, 165.	1.2	7
281	Parameterizing Deep Water Percolation Improves Subsurface Temperature Simulations by a Multilayer Firn Model. Frontiers in Earth Science, 2017, 5, .	0.8	16
282	Numerical Simulation of Sea Breeze Convergence over Antarctic Peninsula. Advances in Meteorology, 2017, 2017, 1-11.	0.6	1
283	Impact of the Choice of Land Surface Scheme on a Simulated Heatwave Event: The Case of Sichuan-Chongqing Area, China. Advances in Meteorology, 2017, 2017, 1-17.	0.6	7
284	A meteo-hydrological modelling system for the reconstruction of river runoff: the case of the Ofanto river catchment. Natural Hazards and Earth System Sciences, 2017, 17, 1741-1761.	1.5	19
285	A strategy to represent impacts of subgrid-scale topography on snow evolution in the Canadian Land Surface Scheme. Annals of Glaciology, 2017, 58, 1-10.	2.8	15
286	Global evaluation of runoff from 10 state-of-the-art hydrological models. Hydrology and Earth System Sciences, 2017, 21, 2881-2903.	1.9	146
287	Quantifying the added value of convection-permitting climate simulations in complex terrain: a systematic evaluation of WRF over the Himalayas. Earth System Dynamics, 2017, 8, 507-528.	2.7	46
288	The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism. Hydrology and Earth System Sciences, 2017, 21, 3427-3440.	1.9	177
289	Incorporating remote sensing-based ET estimates into the Community Land Model version 4.5. Hydrology and Earth System Sciences, 2017, 21, 3557-3577.	1.9	7
290	Satellite Chlorophyll Fluorescence and Soil Moisture Observations Lead to Advances in the Predictive Understanding of Global Terrestrial Coupled Carbonâ€Water Cycles. Global Biogeochemical Cycles, 2018, 32, 360-375.	1.9	42
291	Multi-model ensemble projections of European river floods and high flows at 1.5, 2, and 3 degrees global warming. Environmental Research Letters, 2018, 13, 014003.	2.2	104
292	Canopy profile sensitivity on surface layer simulations evaluated by a multiple canopy layer higher order closure land surface model. Agricultural and Forest Meteorology, 2018, 252, 192-207.	1.9	11
293	Quantifying spatial and temporal patterns of flow intermittency using spatially contiguous runoff data. Journal of Hydrology, 2018, 559, 861-872.	2.3	26
294	GHI calculation sensitivity on microphysics, land- and cumulus parameterization in WRF over the Reunion Island. Atmospheric Research, 2018, 204, 12-20.	1.8	12
295	Implementing Dynamic Root Optimization in Noahâ€MP for Simulating Phreatophytic Root Water Uptake. Water Resources Research, 2018, 54, 1560-1575.	1.7	44

#	Article	IF	CITATIONS
296	Using WRFâ€Urban to Assess Summertime Air Conditioning Electric Loads and Their Impacts on Urban Weather in Beijing. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2475-2490.	1.2	33
297	Numerical Study of the Role of Microphysical Latent Heating and Surface Heat Fluxes in a Severe Precipitation Event in the Warm Sector over Southern China. Asia-Pacific Journal of Atmospheric Sciences, 2018, 54, 77-90.	1.3	10
298	Insights into Atmospheric Predictability through Global Convection-Permitting Model Simulations. Journals of the Atmospheric Sciences, 2018, 75, 1477-1497.	0.6	73
299	Changes in Hurricanes from a 13-Yr Convection-Permitting Pseudo–Global Warming Simulation. Journal of Climate, 2018, 31, 3643-3657.	1.2	120
300	Recent Atmospheric Variability at Kibo Summit, Kilimanjaro, and Its Relation to Climate Mode Activity. Journal of Climate, 2018, 31, 3875-3891.	1.2	16
301	Anthropogenic warming exacerbates European soil moisture droughts. Nature Climate Change, 2018, 8, 421-426.	8.1	439
302	Using nested discretization for a detailed yet computationally efficient simulation of local hydrology in a distributed hydrologic model. Scientific Reports, 2018, 8, 5785.	1.6	12
303	Assessment of Land Surface Models in a High-Resolution Atmospheric Model during Indian Summer Monsoon. Pure and Applied Geophysics, 2018, 175, 3671-3696.	0.8	20
304	An Assessment of High-Resolution Gridded Temperature Datasets over California. Journal of Climate, 2018, 31, 3789-3810.	1.2	41
305	An Investigation of Errors in Distributed Models' Stream Discharge Prediction Due to Channel Routing. Journal of the American Water Resources Association, 2018, 54, 742-751.	1.0	9
306	Long-term trend analysis on total and extreme precipitation over Shasta Dam watershed. Science of the Total Environment, 2018, 626, 244-254.	3.9	46
307	Spatiotemporal variability of snow cover and snow water equivalent in the last three decades over Eurasia. Journal of Hydrology, 2018, 559, 238-251.	2.3	70
308	Missing pieces to modeling the Arctic-Boreal puzzle. Environmental Research Letters, 2018, 13, 020202.	2.2	61
309	High-Resolution Historical Climate Simulations over Alaska. Journal of Applied Meteorology and Climatology, 2018, 57, 709-731.	0.6	17
310	A New Estimate of North American Mountain Snow Accumulation From Regional Climate Model Simulations. Geophysical Research Letters, 2018, 45, 1423-1432.	1.5	46
311	Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1080-E1089.	3.3	376
312	Spatial modeling of permafrost distribution and properties on the Qinghaiâ€Tibet Plateau. Permafrost and Periglacial Processes, 2018, 29, 86-99.	1.5	69
313	The Character and Causes of Elevation-Dependent Warming in High-Resolution Simulations of Rocky Mountain Climate Change. Journal of Climate, 2018, 31, 2093-2113.	1.2	56

#	Article	IF	CITATIONS
314	Evaluation of the WRFâ€Urban Modeling System Coupled to Noah and Noahâ€MP Land Surface Models Over a Semiarid Urban Environment. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2387-2408.	1.2	68
315	Evaluation of Forward Operators for Polarimetric Radars Aiming for Data Assimilation. Journal of the Meteorological Society of Japan, 2018, 96A, 157-174.	0.7	6
316	Simulations of wind erosion along the Qinghai-Tibet Railway in north-central Tibet. Aeolian Research, 2018, 32, 192-201.	1.1	31
317	How Well Does Noah-MP Simulate the Regional Mean and Spatial Variability of Topsoil Water Content in Two Agricultural Landscapes in Southwest Germany?. Journal of Hydrometeorology, 2018, 19, 555-573.	0.7	7
318	The Simulated Impact of the Snow Albedo Feedback on the Large-Scale Mountain–Plain Circulation East of the Colorado Rocky Mountains. Journals of the Atmospheric Sciences, 2018, 75, 755-774.	0.6	10
319	High-resolution precipitation data derived from dynamical downscaling using the WRF model for the Heihe River Basin, northwest China. Theoretical and Applied Climatology, 2018, 131, 1249-1259.	1.3	15
320	The impacts of different land surface parameterization schemes on Northeast China snowfall simulation. Meteorology and Atmospheric Physics, 2018, 130, 583-590.	0.9	8
321	Comparative analysis of different underlying surfaces using a high-resolution assimilation dataset in semi-arid areas in China. Theoretical and Applied Climatology, 2018, 134, 817-828.	1.3	1
322	Sensitivity of WRF-Chem model to land surface schemes: Assessment in a severe dust outbreak episode in the Central Mediterranean (Apulia Region). Atmospheric Research, 2018, 201, 168-180.	1.8	26
323	The introspective may achieve more: Enhancing existing Geoscientific models with native-language emulated structural reflection. Computers and Geosciences, 2018, 110, 32-40.	2.0	5
324	Spatiotemporal Evaluation of Simulated Evapotranspiration and Streamflow over Texas Using the WRFâ€Hydroâ€RAPID Modeling Framework. Journal of the American Water Resources Association, 2018, 54, 40-54.	1.0	51
325	Mesoscale Simulations of Australian Direct Normal Irradiance, Featuring an Extreme Dust Event. Journal of Applied Meteorology and Climatology, 2018, 57, 493-515.	0.6	9
326	Uncertainty in Future Summer Precipitation in the Laurentian Great Lakes Basin: Dynamical Downscaling and the Influence of Continental-Scale Processes on Regional Climate Change. Journal of Climate, 2018, 31, 2651-2673.	1.2	23
327	Prediction of heavy rainfall over Chennai Metropolitan City, Tamil Nadu, India: Impact of microphysical parameterization schemes. Atmospheric Research, 2018, 202, 219-234.	1.8	39
328	Which way do you lean? Using slope aspect variations to understand Critical Zone processes and feedbacks. Earth Surface Processes and Landforms, 2018, 43, 1133-1154.	1.2	70
329	A warm-season comparison of WRF coupled to the CLM4.0, Noah-MP, and Bucket hydrology land surface schemes over the central USA. Theoretical and Applied Climatology, 2018, 134, 801-816.	1.3	13
330	Detecting geothermal anomalies and evaluating LST geothermal component by combining thermal remote sensing time series and land surface model data. Remote Sensing of Environment, 2018, 204, 534-552.	4.6	36
331	A 30â€year convectionâ€permitting regional climate simulation over the interior western United States. Part I: Validation. International Journal of Climatology, 2018, 38, 3684-3704.	1.5	27

#	Article	IF	CITATIONS
332	Modelling the impacts of projected sea ice decline on the low atmosphere and nearâ€surface permafrost on the North Slope of Alaska. International Journal of Climatology, 2018, 38, 5491-5504.	1.5	5
333	100 Years of Progress in Hydrology. Meteorological Monographs, 2018, 59, 25.1-25.51.	5.0	16
334	Downslope Windstorms of San Diego County. Part II: Physics Ensemble Analyses and Gust Forecasting. Weather and Forecasting, 2018, 33, 539-559.	0.5	26
335	The role of regional feedbacks in glacial inception on Baffin Island: the interaction of ice flow and meteorology. Climate of the Past, 2018, 14, 1441-1462.	1.3	1
336	Impact of Wave Number Choice in Spectral Nudging Applications During a South Atlantic Convergence Zone Event. Frontiers in Earth Science, 2018, 6, .	0.8	6
337	Spatial variability in snow precipitation and accumulation in COSMO–WRF simulations and radar estimations over complex terrain. Cryosphere, 2018, 12, 3137-3160.	1.5	32
338	Projections of urban climate in the 2050s in a fastâ€growing city in Southeast Asia: The greater Ho Chi Minh City metropolitan area, Vietnam. International Journal of Climatology, 2018, 38, 4155-4171.	1.5	39
339	A Groundwater and Runoff Formulation for Weather and Climate Models. Journal of Advances in Modeling Earth Systems, 2018, 10, 1809-1832.	1.3	32
340	Groundwater Withdrawals Under Drought: Reconciling GRACE and Land Surface Models in the United States High Plains Aquifer. Water Resources Research, 2018, 54, 5282-5299.	1.7	49
341	Dynamical Drivers of the Local Wind Regime in a Himalayan Valley. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,186.	1.2	16
342	Ingestion of Sentinel-Derived Remote Sensing Products in Numerical Weather Prediction Models: First Results of the ESA Steam Project. , 2018, , .		2
343	Examination of the Physical Atmosphere in the Great Lakes Region and Its Potential Impact on Air Quality—Overwater Stability and Satellite Assimilation. Journal of Applied Meteorology and Climatology, 2018, 57, 2789-2816.	0.6	22
344	Residuals of Tropospheric Delays from GNSS Data and Ray-Tracing as a Potential Indicator of Rain and Clouds. Remote Sensing, 2018, 10, 1917.	1.8	15
345	Evaluation of Simulated Snow and Snowmelt Timing in the Community Land Model Using Satelliteâ€Based Products and Streamflow Observations. Journal of Advances in Modeling Earth Systems, 2018, 10, 2933-2951.	1.3	12
346	New Statistical Methods for Precipitation Bias Correction Applied to WRF Model Simulations in the Antisana Region, Ecuador. Journal of Hydrometeorology, 2018, 19, 2021-2040.	0.7	16
347	The Combined ASTER and MODIS Emissivity over Land (CAMEL) Global Broadband Infrared Emissivity Product. Remote Sensing, 2018, 10, 1027.	1.8	12
348	Simulated Kelvin–Helmholtz Waves over Terrain and Their Microphysical Implications. Journals of the Atmospheric Sciences, 2018, 75, 2787-2800.	0.6	15
349	Uncertainties of 3D soil hydraulic parameters in streamflow simulations using a distributed hydrological model system. Journal of Hydrology, 2018, 567, 12-24.	2.3	8

#	Article	IF	CITATIONS
350	Chemical weathering of small catchments on the Southeastern Tibetan Plateau I: Water sources, solute sources and weathering rates. Chemical Geology, 2018, 500, 159-174.	1.4	37
351	Global Investigation of Soil Moisture and Latent Heat Flux Coupling Strength. Water Resources Research, 2018, 54, 8196-8215.	1.7	34
352	Closing the energy balance using a canopy heat capacity and storage concept – a physically based approach for the land component JSBACHv3.11. Geoscientific Model Development, 2018, 11, 3465-3479.	1.3	10
353	Comprehensive Evaluation of the Variable Infiltration Capacity (VIC) Model in the North American Land Data Assimilation System. Journal of Hydrometeorology, 2018, 19, 1853-1879.	0.7	15
354	Effects of El-Niño, Indian Ocean Dipole, and Madden-Julian Oscillation on Surface Air Temperature and Rainfall Anomalies over Southeast Asia in 2015. Atmosphere, 2018, 9, 352.	1.0	23
355	Influence of Tibetan Plateau snow cover on East Asian atmospheric circulation at medium-range time scales. Nature Communications, 2018, 9, 4243.	5.8	95
356	Modeling Regional Pollution Transport Events During KORUSâ€AQ: Progress and Challenges in Improving Representation of Landâ€Atmosphere Feedbacks. Journal of Geophysical Research D: Atmospheres, 2018, 123, 10732-10756.	1.2	10
357	High-Resolution Discharge Forecasting for Snowmelt and Rainfall Mixed Events. Water (Switzerland), 2018, 10, 56.	1.2	8
358	Hydrologic Observation, Model, and Theory Congruence on Evapotranspiration Variance: Diagnosis of Multiple Observations and Land Surface Models. Water Resources Research, 2018, 54, 9074-9095.	1.7	11
359	Ambient Factors Controlling the Wintertime Precipitation Distribution Across Mountain Ranges in the Interior Western United States. Part I: Insights from Regional Climate Simulations. Journal of Applied Meteorology and Climatology, 2018, 57, 1931-1954.	0.6	4
360	Impact of different microphysical parameterizations on extreme snowfall events in the Southern Andes. Weather and Climate Extremes, 2018, 21, 65-75.	1.6	19
361	The Land surface Data Toolkit (LDT v7.2) $\hat{a} \in$ a data fusion environment for land data assimilation systems. Geoscientific Model Development, 2018, 11, 3605-3621.	1.3	45
362	Controlled Experiments of Hillslope Coevolution at the Biosphere 2 Landscape Evolution Observatory: Toward Prediction of Coupled Hydrological, Biogeochemical, and Ecological Change. , 0, , .		9
363	Improved regional-scale groundwater representation by the coupling of the mesoscale Hydrologic Model (mHM v5.7) to the groundwater model OpenGeoSys (OGS). Geoscientific Model Development, 2018, 11, 1989-2007.	1.3	18
364	Impacts of Land Cover and Soil Texture Uncertainty on Land Model Simulations Over the Central Tibetan Plateau. Journal of Advances in Modeling Earth Systems, 2018, 10, 2121-2146.	1.3	41
365	Anthropogenic Warming Impacts on Today's Sierra Nevada Snowpack and Flood Risk. Geophysical Research Letters, 2018, 45, 6215-6222.	1.5	55
366	Evaluation of Agricultural Land Cover Representations on Regional Climate Model Simulations in the Brazilian Cerrado. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5163-5176.	1.2	12
367	Simulated satellite imagery at subâ€kilometre resolution by the Hong Kong Observatory. Weather, 2018, 73, 139-144.	0.6	11

#	Article	IF	CITATIONS
368	Projecting wildfire emissions over the south-eastern United States to mid-century. International Journal of Wildland Fire, 2018, 27, 313.	1.0	4
369	Bias correction of global irradiance modelled with weather and research forecasting model over Paraguay. Solar Energy, 2018, 170, 201-211.	2.9	13
370	Using a spatially-distributed hydrologic biogeochemistry model with a nitrogen transport module to study the spatial variation of carbon processes in a Critical Zone Observatory. Ecological Modelling, 2018, 380, 8-21.	1.2	23
371	Pairing FLUXNET sites to validate model representations of land-use/land-cover change. Hydrology and Earth System Sciences, 2018, 22, 111-125.	1.9	38
372	The Impact of Spatial Resolution, Land Use, and Spinup Time on Resolving Spatial Precipitation Patterns in the Himalayas. Journal of Hydrometeorology, 2018, 19, 1565-1581.	0.7	62
373	Simulating the effects of chronic ozone exposure on hydrometeorology and crop productivity using a fully coupled crop, meteorology and air quality modeling system. Agricultural and Forest Meteorology, 2018, 260-261, 287-299.	1.9	7
374	New Observed Data Sets for the Validation of Hydrology and Land Surface Models in Cold Climates. Water Resources Research, 2018, 54, 5190-5197.	1.7	10
375	URB-Solar: An Open-Source Tool for Solar Power Prediction in Urban Areas. Journal of Solar Energy Engineering, Transactions of the ASME, 2018, 140, .	1.1	2
376	Insights into Hydrometeorological Factors Constraining Flood Prediction Skill during the May and October 2015 Texas Hill Country Flood Events. Journal of Hydrometeorology, 2018, 19, 1339-1361.	0.7	26
377	Evaluating Different Machine Learning Methods for Upscaling Evapotranspiration from Flux Towers to the Regional Scale. Journal of Geophysical Research D: Atmospheres, 2018, 123, 8674-8690.	1.2	141
378	Projected increases and shifts in rain-on-snow flood risk over western North America. Nature Climate Change, 2018, 8, 808-812.	8.1	261
379	Understanding coastal wetland hydrology with a new regionalâ€scale, processâ€based hydrological model. Hydrological Processes, 2018, 32, 3158-3173.	1.1	38
380	A systematic assessment and reduction of parametric uncertainties for a distributed hydrological model. Journal of Hydrology, 2018, 564, 697-711.	2.3	28
381	Effect of Mesoscale Land Use Change on Characteristics of Convective Boundary Layer: Semi-Idealized Large Eddy Simulations over Northwest China. Journal of Meteorological Research, 2018, 32, 421-432.	0.9	1
382	Simulating the Impacts of Irrigation and Dynamic Vegetation Over the North China Plain on Regional Climate. Journal of Geophysical Research D: Atmospheres, 2018, 123, 8017-8034.	1.2	38
383	Evaluations of WRF Sensitivities in Surface Simulations with an Ensemble Prediction System. Atmosphere, 2018, 9, 106.	1.0	8
384	Comparative assessment of RAMS and WRF short-term forecasts over Eastern Iberian Peninsula using various in-situ observations, remote sensing products and uncoupled land surface model datasets. Atmospheric Research, 2018, 213, 476-491.	1.8	6
385	Climate change alters low flows in Europe under global warming of 1.5, 2, and 3â€Â°C. Hydrology and Earth System Sciences, 2018, 22, 1017-1032.	1.9	146

#	Article	IF	CITATIONS
386	High-resolution simulation of Asian monsoon response to regional uplift of the Tibetan Plateau with regional climate model nested with global climate model. Global and Planetary Change, 2018, 169, 34-47.	1.6	14
387	Attribution of Flux Partitioning Variations between Land Surface Models over the Continental U.S Remote Sensing, 2018, 10, 751.	1.8	23
388	Modeling Hydroclimatic Change in Southwest Louisiana Rivers. Water (Switzerland), 2018, 10, 596.	1.2	14
389	An Improved Soil Moisture Parametrization for Regional Climate Simulations in Europe. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7331-7339.	1.2	5
390	WRF-based simulation of an extreme precipitation event over the Central Himalayas: Atmospheric mechanisms and their representation by microphysics parameterization schemes. Atmospheric Research, 2018, 214, 21-35.	1.8	53
391	The Efficiency of Data Assimilation. Water Resources Research, 2018, 54, 6374-6392.	1.7	27
392	Exploiting Soil Moisture, Precipitation, and Streamflow Observations to Evaluate Soil Moisture/Runoff Coupling in Land Surface Models. Geophysical Research Letters, 2018, 45, 4869-4878.	1.5	56
393	Characteristics of Water Vapor Turbulence Profiles in Convective Boundary Layers During the Dry and Wet Seasons Over Darwin. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4818-4836.	1.2	5
394	Why Do Largeâ€6cale Land Surface Models Produce a Low Ratio of Transpiration to Evapotranspiration?. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9109-9130.	1.2	47
395	Coupling the land surface model Noah-MP with the generic crop growth model Gecros: Model decros del description, calibration and validation. Agricultural and Forest Meteorology, 2018, 262, 322-339.	1.9	17
396	Development and Application of the Heat Pulse Method for Soil Physical Measurements. Reviews of Geophysics, 2018, 56, 567-620.	9.0	103
397	Impacts of Agricultural Expansion (1910s–2010s) on the Water Cycle in the Songneng Plain, Northeast China. Remote Sensing, 2018, 10, 1108.	1.8	13
398	Using the Weather Research and Forecasting (WRF) Model for Precipitation Forecasting in an Andean Region with Complex Topography. Atmosphere, 2018, 9, 304.	1.0	44
399	A Numerical Water Tracer Model for Understanding Event-Scale Hydrometeorological Phenomena. Journal of Hydrometeorology, 2018, 19, 947-967.	0.7	8
400	Parameter Sensitivity of the Noah-MP Land Surface Model with Dynamic Vegetation. Journal of Hydrometeorology, 2018, 19, 815-830.	0.7	33
401	Temporal and spatial variations of soil moisture – Precipitation feedback in East China during the East Asian summer monsoon period: A sensitivity study. Atmospheric Research, 2018, 213, 163-172.	1.8	24
402	Assessment of Soil Moistureâ€Temperature Feedbacks With the CCSMâ€WRF Model System Over East Asia. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6822-6839.	1.2	9
403	Implementation of a vector-based river network routing scheme in the community WRF-Hydro modeling framework for flood discharge simulation. Environmental Modelling and Software, 2018, 107, 1-11.	1.9	49

#	Article	IF	CITATIONS
404	Assessment of a High-Resolution Climate Model for Surface Water and Energy Flux Simulations over Global Land: An Intercomparison with Reanalyses. Journal of Hydrometeorology, 2018, 19, 1115-1129.	0.7	3
405	Impact of soil freeze-thaw mechanism on the runoff dynamics of two Tibetan rivers. Journal of Hydrology, 2018, 563, 382-394.	2.3	44
406	Impacts of subgrid-scale orography parameterization on simulated atmospheric fields over Korea using a high-resolution atmospheric forecast model. Meteorology and Atmospheric Physics, 2019, 131, 975-985.	0.9	7
407	WRF downscaling improves ERA-Interim representation of precipitation around a tropical Andean valley during El Niñ0: implications for GCM-scale simulation of precipitation over complex terrain. Climate Dynamics, 2019, 52, 3609-3629.	1.7	31
408	The application of multi-mission satellite data assimilation for studying water storage changes over South America. Science of the Total Environment, 2019, 647, 1557-1572.	3.9	32
409	The impact of SST on the wind and air temperature simulations: a case study for the coastal region of the Rio de Janeiro state. Meteorology and Atmospheric Physics, 2019, 131, 1083-1097.	0.9	9
410	Deciphering the contrasting climatic trends between the central Himalaya and Karakoram with 36 years of WRF simulations. Climate Dynamics, 2019, 52, 159-180.	1.7	33
411	An improved vegetation emissivity scheme for land surface modeling and its impact on snow cover simulations. Climate Dynamics, 2019, 53, 6215-6226.	1.7	11
412	Information Theory for Model Diagnostics: Structural Error is Indicated by Tradeâ€Off Between Functional and Predictive Performance. Water Resources Research, 2019, 55, 6534-6554.	1.7	29
413	A flood inundation forecast of Hurricane Harvey using a continental-scale 2D hydrodynamic model. Journal of Hydrology X, 2019, 4, 100039.	0.8	60
414	A parallel workflow implementation for PEST version 13.6 in high-performance computing for WRF-Hydro version 5.0: a case study over the midwestern United States. Geoscientific Model Development, 2019, 12, 3523-3539.	1.3	14
415	Infiltration from the Pedon to Global Grid Scales: An Overview and Outlook for Land Surface Modeling. Vadose Zone Journal, 2019, 18, 1-53.	1.3	56
416	Analyzing Machine Learning Predictions of Passive Microwave Brightness Temperature Spectral Difference Over Snow-Covered Terrain in High Mountain Asia. Frontiers in Earth Science, 2019, 7, .	0.8	13
417	Hydrological Forecasts and Projections for Improved Decision-Making in the Water Sector in Europe. Bulletin of the American Meteorological Society, 2019, 100, 2451-2472.	1.7	52
418	A Spatial Pattern Analysis of Land Surface Roughness Heterogeneity and its Relationship to the Initiation of Weak Tornadoes. Earth Interactions, 2019, 23, 1-28.	0.7	4
419	Using 4-km WRF CONUS simulations to assess impacts of the surface coupling strength on regional climate simulation. Climate Dynamics, 2019, 53, 6397-6416.	1.7	12
420	Lessons Learned From Modeling Irrigation From Field to Regional Scales. Journal of Advances in Modeling Earth Systems, 2019, 11, 2428-2448.	1.3	25
421	Diagnosing Bias in Modeled Soil Moisture/Runoff Coefficient Correlation Using the SMAP Level 4 Soil Moisture Product. Water Resources Research, 2019, 55, 7010-7026.	1.7	25

#	Article	IF	CITATIONS
422	Parameter Sensitivity Analysis for Computationally Intensive Spatially Distributed Dynamical Environmental Systems Models. Journal of Advances in Modeling Earth Systems, 2019, 11, 2896-2909.	1.3	21
423	Explosive Cyclogenesis around the Korean Peninsula in May 2016 from a Potential Vorticity Perspective: Case Study and Numerical Simulations. Atmosphere, 2019, 10, 322.	1.0	6
424	A review of the global soil property maps for Earth system models. Soil, 2019, 5, 137-158.	2.2	94
425	Investigating Land Surface Effects on the Moisture Transport over South America with a Moisture Tagging Model. Journal of Climate, 2019, 32, 6627-6644.	1.2	37
426	A Joint Soilâ€Vegetationâ€Atmospheric Water Tagging Procedure With WRFâ€Hydro: Implementation and Application to the Case of Precipitation Partitioning in the Upper Danube River Basin. Water Resources Research, 2019, 55, 6217-6243.	1.7	30
427	The Effect of QPF on Real-Time Deterministic Hydrologic Forecast Uncertainty. Journal of Hydrometeorology, 2019, 20, 1687-1705.	0.7	9
428	An Advanced Multiple‣ayer Canopy Model in the WRF Model With Largeâ€Eddy Simulations to Simulate Canopy Flows and Scalar Transport Under Different Stability Conditions. Journal of Advances in Modeling Earth Systems, 2019, 11, 2330-2351.	1.3	17
429	Scale Issues in Soil Hydrology. Vadose Zone Journal, 2019, 18, 1-10.	1.3	32
430	The multiscale routing model mRM v1.0: simple river routing at resolutions from 1 to 50 km. Geoscientific Model Development, 2019, 12, 2501-2521.	1.3	38
431	Wind Resource Assessment for Alaska's Offshore Regions: Validation of a 14-Year High-Resolution WRF Data Set. Energies, 2019, 12, 2780.	1.6	13
432	How good is the OpenPOWER architecture for high-performance CPU-oriented weather forecasting applications?. Journal of Supercomputing, 2019, 75, 6178-6193.	2.4	2
433	Assessing Retrospective National Water Model Streamflow with Respect to Droughts and Low Flows in the Colorado River Basin. Journal of the American Water Resources Association, 2019, 55, 964-975.	1.0	17
434	Analysis of an extreme weather event in a hyper-arid region using WRF-Hydro coupling, station, and satellite data. Natural Hazards and Earth System Sciences, 2019, 19, 1129-1149.	1.5	44
435	Adaptation and sustainability of water management for rice agriculture in temperate regions: The Italian caseâ€study. Land Degradation and Development, 2019, 30, 2033-2047.	1.8	26
436	Thermal Effects of the Surface Heat Flux on Cloud Systems over the Tibetan Plateau in Boreal Summer. Journal of Climate, 2019, 32, 4699-4714.	1.2	15
437	The Value of Accurate High-Resolution and Spatially Continuous Snow Information to Streamflow Forecasts. Journal of Hydrometeorology, 2019, 20, 731-749.	0.7	19
438	Assessing the Performance of Separate Bias Kalman Filter in Correcting the Model Bias for Estimation of Soil Moisture Profiles. Journal of Meteorological Research, 2019, 33, 519-527.	0.9	2
439	Characterizing Biases in Mountain Snow Accumulation From Global Data Sets. Water Resources Research, 2019, 55, 9873-9891.	1.7	36

#	Article	IF	CITATIONS
440	NCA-LDAS: Overview and Analysis of Hydrologic Trends for the National Climate Assessment. Journal of Hydrometeorology, 2019, 20, 1595-1617.	0.7	17
441	Anthropogenic shift towards higher risk of flash drought over China. Nature Communications, 2019, 10, 4661.	5.8	236
442	Seasonal Hydropower Planning for Data‣carce Regions Using Multimodel Ensemble Forecasts, Remote Sensing Data, and Stochastic Programming. Water Resources Research, 2019, 55, 8583-8607.	1.7	17
443	Unravelling the March 1972 northwest Greenland windstorm with highâ€resolution numerical simulations. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 3409-3431.	1.0	9
444	The Role of Soil Moisture Feedbacks in Future Summer Temperature Change over East Asia. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12034-12056.	1.2	15
445	Assimilation of Remotely Sensed LAI Into CLM4CN Using DART. Journal of Advances in Modeling Earth Systems, 2019, 11, 2768-2786.	1.3	20
446	When Does Vapor Pressure Deficit Drive or Reduce Evapotranspiration?. Journal of Advances in Modeling Earth Systems, 2019, 11, 3305-3320.	1.3	134
447	The Quinault Blowdown: A Microscale Wind Event Driven by a Mountain-Wave Rotor. Bulletin of the American Meteorological Society, 2019, 100, 977-986.	1.7	0
448	A decision support system for indirect potable reuse based on integrated modeling and futurecasting. Journal of Water Reuse and Desalination, 2019, 9, 263-281.	1.2	2
449	Approximating Input Data to a Snowmelt Model Using Weather Research and Forecasting Model Outputs in Lieu of Meteorological Measurements. Journal of Hydrometeorology, 2019, 20, 847-862.	0.7	12
450	Assimilation of Remotely Sensed Leaf Area Index into the Noah-MP Land Surface Model: Impacts on Water and Carbon Fluxes and States over the Continental United States. Journal of Hydrometeorology, 2019, 20, 1359-1377.	0.7	70
451	Modeling boreal forest evapotranspiration and water balance at stand and catchment scales: a spatial approach. Hydrology and Earth System Sciences, 2019, 23, 3457-3480.	1.9	28
452	Evaluating the Uncertainty of Terrestrial Water Budget Components Over High Mountain Asia. Frontiers in Earth Science, 2019, 7, .	0.8	47
453	Determining the Optimized Hub Height of Wind Turbine Using the Wind Resource Map of South Korea. Energies, 2019, 12, 2949.	1.6	12
454	Evaluation of twelve evapotranspiration products from machine learning, remote sensing and land surface models over conterminous United States. Journal of Hydrology, 2019, 578, 124105.	2.3	92
455	Decomposition of Future Moisture Flux Changes over the Tibetan Plateau Projected by Global and Regional Climate Models. Journal of Climate, 2019, 32, 7037-7053.	1.2	15
456	Water Storage Trends in High Mountain Asia. Frontiers in Earth Science, 2019, 7, .	0.8	26
457	Systematic Hydrological Evaluation of the Noah-MP Land Surface Model over China. Advances in Atmospheric Sciences, 2019, 36, 1171-1187.	1.9	21

#	Article	IF	CITATIONS
458	Improving soil moisture and runoff simulations at 3 km over Europe using land surface data assimilation. Hydrology and Earth System Sciences, 2019, 23, 277-301.	1.9	22
459	Improving Land Surface Temperature Simulation in CoLM Over the Tibetan Plateau Through Fractional Vegetation Cover Derived From a Remotely Sensed Clumping Index and Modelâ€Simulated Leaf Area Index. Journal of Geophysical Research D: Atmospheres, 2019, 124, 2620-2642.	1.2	18
460	Trends and Interannual Variability in Terrestrial Water Storage Over the Eastern United States, 2003–2016. Water Resources Research, 2019, 55, 1928-1950.	1.7	18
461	Strategies to Improve and Evaluate Physicsâ€Based Hyperresolution Hydrologic Simulations at Regional Basin Scales. Water Resources Research, 2019, 55, 1129-1152.	1.7	21
462	Land Surface Processes. Springer Atmospheric Sciences, 2019, , 349-370.	0.4	9
463	Pacific Ocean Forcing and Atmospheric Variability Are the Dominant Causes of Spatially Widespread Droughts in the Contiguous United States. Journal of Geophysical Research D: Atmospheres, 2019, 124, 2507-2524.	1.2	10
464	Coupling the Common Land Model to ECHAM5 Atmospheric General Circulation Model. Journal of Meteorological Research, 2019, 33, 251-263.	0.9	6
465	Testing model representations of snowpack liquid water percolation across multiple climates. Water Resources Research, 2019, 55, 4820.	1.7	13
466	Regional and Global Land Data Assimilation Systems: Innovations, Challenges, and Prospects. Journal of Meteorological Research, 2019, 33, 159-189.	0.9	63
467	Seasonal temperatures and hydrological conditions improve the prediction of West Nile virus infection rates in Culex mosquitoes and human case counts in New York and Connecticut. PLoS ONE, 2019, 14, e0217854.	1.1	39
468	Multivariate calibration of large scale hydrologic models: The necessity and value of a Pareto optimal approach. Advances in Water Resources, 2019, 130, 129-146.	1.7	20
469	Largeâ€scale regional model biases in the extratropical North Atlantic storm track and impacts on downstream precipitation. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 2718-2732.	1.0	7
470	Shallow Cumulus Representation and Its Interaction with Radiation and Surface at the Convection Gray Zone. Monthly Weather Review, 2019, 147, 2467-2483.	0.5	6
471	Assessment and Reduction of the Physical Parameterization Uncertainty for Noahâ€MP Land Surface Model. Water Resources Research, 2019, 55, 5518-5538.	1.7	31
472	Using phase lags to evaluate model biases in simulating the diurnal cycle of evapotranspiration: a case study in Luxembourg. Hydrology and Earth System Sciences, 2019, 23, 515-535.	1.9	21
473	Pathways of ice-wedge degradation in polygonal tundra under different hydrological conditions. Cryosphere, 2019, 13, 1089-1123.	1.5	46
474	Spatio-temporal analysis of compound hydro-hazard extremes across theÂUK. Advances in Water Resources, 2019, 130, 77-90.	1.7	37
475	Precipitation Extremes and Flood Frequency in a Changing Climate in Southeastern Virginia. Journal of the American Water Resources Association, 2019, 55, 780-799.	1.0	18

#	Article	IF	CITATIONS
476	Assimilation of Satellite-Based Snow Cover and Freeze/Thaw Observations Over High Mountain Asia. Frontiers in Earth Science, 2019, 7, .	0.8	20
477	Effects of Model Horizontal Grid Resolution on Short- and Medium-Term Daily Temperature Forecasts for Energy Consumption Application in European Cities. Advances in Meteorology, 2019, 2019, 1-12.	0.6	7
478	Increased flood risk in Indian sub-continent under the warming climate. Weather and Climate Extremes, 2019, 25, 100212.	1.6	90
479	Estimation of Surface Heat Fluxes Over the Central Tibetan Plateau using the Maximum Entropy Production Model. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6827-6840.	1.2	12
480	Analytical Propagation of Runoff Uncertainty Into Discharge Uncertainty Through a Large River Network. Geophysical Research Letters, 2019, 46, 8102-8113.	1.5	13
481	Variations in the Simulation of Climate Change Impact Indices due to Different Land Surface Schemes over the Mediterranean, Middle East and Northern Africa. Atmosphere, 2019, 10, 26.	1.0	18
482	Estimation of saturated hydraulic conductivity with pedotransfer functions: A review. Journal of Hydrology, 2019, 575, 1011-1030.	2.3	117
483	Contrasting Meteorological Drivers of the Glacier Mass Balance Between the Karakoram and Central Himalaya. Frontiers in Earth Science, 2019, 7, .	0.8	47
484	Evaluation of the WRF-Lake Model over Two Major Freshwater Lakes in China. Journal of Meteorological Research, 2019, 33, 219-235.	0.9	9
485	An Evaluation of Simulated Precipitation Characteristics during OLYMPEX. Journal of Hydrometeorology, 2019, 20, 1147-1164.	0.7	14
486	Uncertainties in Evapotranspiration Estimates over West Africa. Remote Sensing, 2019, 11, 892.	1.8	28
487	A surface temperature and moisture intercomparison study of the Weather Research and Forecasting model, inâ€situ measurements and satellite observations over the Atacama Desert. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 2202-2220.	1.0	17
488	Development mechanisms for Mediterranean tropicalâ€like cyclones (medicanes). Quarterly Journal of the Royal Meteorological Society, 2019, 145, 1444-1460.	1.0	64
489	Rebuilding a Microwave Soil Moisture Product Using Random Forest Adopting AMSR-E/AMSR2 Brightness Temperature and SMAP over the Qinghai–Tibet Plateau, China. Remote Sensing, 2019, 11, 683.	1.8	43
490	Implementation of the Land Surface Processes into a Vector Vorticity Equation Model (VVM) to Study its Impact on Afternoon Thunderstorms over Complex Topography in Taiwan. Asia-Pacific Journal of Atmospheric Sciences, 2019, 55, 701-717.	1.3	11
491	An Overview of Global Leaf Area Index (LAI): Methods, Products, Validation, and Applications. Reviews of Geophysics, 2019, 57, 739-799.	9.0	396
492	Multi-year surface radiative properties and vegetation parameters for hydrologic modeling in regions of complex terrain—Methodology and evaluation over the Integrated Precipitation and Hydrology Experiment 2014 domain. Journal of Hydrology: Regional Studies, 2019, 22, 100596.	1.0	5
493	Evaluation of Land Surface Subprocesses and Their Impacts on Model Performance With Global Flux Data. Journal of Advances in Modeling Earth Systems, 2019, 11, 1329-1348.	1.3	10

#	Article	IF	CITATIONS
494	A Reassessment of North American River Basin Coolâ€6eason Precipitation: Developments From a New Mountain Climatology Data Set. Water Resources Research, 2019, 55, 3502-3519.	1.7	14
495	Ambient Factors Controlling the Wintertime Precipitation Distribution across Mountain Ranges in the Interior Western United States. Part II: Changes in Orographic Precipitation Distribution in a Pseudo–Global Warming Simulation. Journal of Applied Meteorology and Climatology, 2019, 58, 695-715.	0.6	7
496	Thaw processes in ice-rich permafrost landscapes represented with laterally coupled tiles in a land surface model. Cryosphere, 2019, 13, 591-609.	1.5	57
497	Updates to the Noah Land Surface Model in WRF MAQ to Improve Simulated Meteorology, Air Quality, and Deposition. Journal of Advances in Modeling Earth Systems, 2019, 11, 231-256.	1.3	39
498	The Impact of Biomass Heat Storage on the Canopy Energy Balance and Atmospheric Stability in the Community Land Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 83-98.	1.3	21
499	Enhancing the Structure of the WRF-Hydro Hydrologic Model for Semiarid Environments. Journal of Hydrometeorology, 2019, 20, 691-714.	0.7	44
500	Evaluation of Turbulence Stability Schemes of Land Models for Stable Conditions. Journal of Geophysical Research D: Atmospheres, 2019, 124, 3072-3089.	1.2	11
501	Evaluating Simulated Microphysics during OLYMPEX Using GPM Satellite Observations. Journals of the Atmospheric Sciences, 2019, 76, 1093-1105.	0.6	11
502	West Antarctic surface melt event of January 2016 facilitated by föhn warming. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 687-704.	1.0	16
503	Use of remote sensing and long-term in-situ time-series data in an integrated hydrological model of the Central Kalahari Basin, Southern Africa. Hydrogeology Journal, 2019, 27, 1541-1562.	0.9	18
504	Improving probabilistic hydroclimatic projections through high-resolution convection-permitting climate modeling and Markov chain Monte Carlo simulations. Climate Dynamics, 2019, 53, 1613-1636.	1.7	31
505	Dynamically Downscaled Climate Simulations of the Indian Monsoon in the Instrumental Era: Physics Parameterization Impacts and Precipitation Extremes. Journal of Applied Meteorology and Climatology, 2019, 58, 831-852.	0.6	11
506	Atmospheric River–Induced Precipitation and Snowpack during the Western United States Cold Season. Journal of Hydrometeorology, 2019, 20, 613-630.	0.7	16
507	Assessment of Emission Reduction Scenarios with a Focus on the Impact of Vehicle Fleets on Tehran Air Quality: Case Study. Transportation Research Record, 2019, 2673, 197-207.	1.0	13
508	Model-data fusion of hydrologic simulations and GRACE terrestrial water storage observations to estimate changes in water table depth. Advances in Water Resources, 2019, 128, 13-27.	1.7	14
509	Why Does Amazon Precipitation Decrease When Tropical Forests Respond to Increasing CO ₂ ?. Earth's Future, 2019, 7, 450-468.	2.4	53
510	Land Surface Hydrological Models. , 2019, , 437-477.		0
511	100 Years of Progress in Boundary Layer Meteorology. Meteorological Monographs, 2019, 59, 9.1-9.85.	5.0	61

#	Articie	IF	CITATIONS
512	Surface albedo and reflectance: Review of definitions, angular and spectral effects, and intercomparison of major data sources in support of advanced solar irradiance modeling over the Americas. Solar Energy, 2019, 182, 194-212.	2.9	58
513	POLARIS Soil Properties: 30â€m Probabilistic Maps of Soil Properties Over the Contiguous United States. Water Resources Research, 2019, 55, 2916-2938.	1.7	77
514	A numerical analysis of aggregation error in evapotranspiration estimates due to heterogeneity of soil moisture and leaf area index. Agricultural and Forest Meteorology, 2019, 269-270, 335-350.	1.9	8
515	Integration of GRACE Data for Improvement of Hydrological Models. Springer Water, 2019, , 1-22.	0.2	Ο
516	Different representations of canopy structure—A large source of uncertainty in global land surface modeling. Agricultural and Forest Meteorology, 2019, 269-270, 119-135.	1.9	13
518	Terrestrial Biosphere Models. , 2019, , 1-24.		4
519	Quantitative Description of Ecosystems. , 2019, , 25-39.		0
520	Fundamentals of Energy and Mass Transfer. , 2019, , 40-52.		0
521	Mathematical Formulation of Biological Flux Rates. , 2019, , 53-63.		0
522	Soil Temperature. , 2019, , 64-79.		1
523	Turbulent Fluxes and Scalar Profiles in the Surface Layer. , 2019, , 80-100.		2
524	Surface Energy Fluxes. , 2019, , 101-114.		1
525	Soil Moisture. , 2019, , 115-133.		0
526	Hydrologic Scaling and Spatial Heterogeneity. , 2019, , 134-151.		0
527	Leaf Temperature and Energy Fluxes. , 2019, , 152-166.		0
528	Leaf Photosynthesis. , 2019, , 167-188.		2
529	Stomatal Conductance. , 2019, , 189-212.		1
530	Plant Hydraulics. , 2019, , 213-227.		2

#	Article	IF	CITATIONS
531	Radiative Transfer. , 2019, , 228-259.		1
532	Plant Canopies. , 2019, , 260-279.		0
533	Scalar Canopy Profiles. , 2019, , 280-300.		0
534	Biogeochemical Models. , 2019, , 301-321.		0
535	Soil Biogeochemistry. , 2019, , 322-343.		0
536	Vegetation Demography. , 2019, , 344-364.		1
537	Canopy Chemistry. , 2019, , 365-380.		0
541	A Relationship Between Uralâ€Siberian Blocking and Himalayan Weather Anomalies. Earth and Space Science, 2019, 6, 1633-1651.	1.1	2
542	Use of the WRF-DA 3D-Var Data Assimilation System to Obtain Wind Speed Estimates in Regular Grids from Measurements at Wind Farms in Uruguay. Data, 2019, 4, 142.	1.2	7
543	Evaluation of Seasonal Water Budget Components Over the Major Drainage Basins of North America Using an Ensemble-Based Land Surface Model Approach. , 2019, , .		0
544	Spatiotemporal Trend Analysis of Soil Moisture Retrieved From Three NLDAS-Based Advanced Land Surface Models over the United States: A Comparative Study. , 2019, , .		0
545	Numerical Investigations of Atmospheric Rivers and the Rain Shadow over the Santa Clara Valley. Atmosphere, 2019, 10, 114.	1.0	5
546	Global Sensitivity Analysis of the SCOPE Model in Sentinel-3 Bands: Thermal Domain Focus. Remote Sensing, 2019, 11, 2424.	1.8	21
547	Evaluating Forecast Skills of Moisture from Convective-Permitting WRF-ARW Model during 2017 North American Monsoon Season. Atmosphere, 2019, 10, 694.	1.0	14
548	Urban Areas and Urban–Rural Contrasts under Climate Change: What Does the EURO-CORDEX Ensemble Tell Us?—Investigating near Surface Humidity in Berlin and Its Surroundings. Atmosphere, 2019, 10, 730.	1.0	25
549	Lee wave detection over the Mediterranean Sea using the Advanced Infra-Red WAter Vapour Estimator (AIRWAVE) total column water vapour (TCWV) dataset. Atmospheric Measurement Techniques, 2019, 12, 6683-6693.	1.2	0
550	Impact of Effective Roughness Length on Mesoscale Meteorological Simulations over Heterogeneous Land Surfaces in Taiwan. Atmosphere, 2019, 10, 805.	1.0	3
551	Vegetation. , 2019, , 145-159.		1

#	Article	IF	CITATIONS
552	High-resolution regional climate modeling and projection over western Canada using a weather research forecasting model with a pseudo-global warming approach. Hydrology and Earth System Sciences, 2019, 23, 4635-4659.	1.9	68
553	Can Convectionâ€Permitting Modeling Provide Decent Precipitation for Offline Highâ€Resolution Snowpack Simulations Over Mountains?. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12631-12654.	1.2	31
554	Numerical Simulation of the Irrigation Effects on Surface Fluxes and Local Climate in Typical Mountainâ€Oasisâ€Desert Systems in the Central Asia Arid Area. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12485-12506.	1.2	28
555	Radar Altimetry as a Proxy for Determining Terrestrial Water Storage Variability in Tropical Basins. Remote Sensing, 2019, 11, 2487.	1.8	6
556	Adjustment of Radarâ€Gauge Rainfall Discrepancy Due to Raindrop Drift and Evaporation Using the Weather Research and Forecasting Model and Dualâ€Polarization Radar. Water Resources Research, 2019, 55, 9211-9233.	1.7	17
557	A Wetâ€Bulb Temperatureâ€Based Rainâ€Snow Partitioning Scheme Improves Snowpack Prediction Over the Drier Western United States. Geophysical Research Letters, 2019, 46, 13825-13835.	1.5	39
558	Climate change impacts on groundwater storage in the Central Valley, California. Climatic Change, 2019, 157, 387-406.	1.7	30
559	Assimilation and Direct Insertion of Sentinel Products in the WRF Weather Forecast Model. , 2019, , .		0
560	Assessment of simulated soil moisture from WRF Noah, Noah-MP, and CLM land surface schemes for landslide hazard application. Hydrology and Earth System Sciences, 2019, 23, 4199-4218.	1.9	36
561	Exploring the Utility of Machine Learning-Based Passive Microwave Brightness Temperature Data Assimilation over Terrestrial Snow in High Mountain Asia. Remote Sensing, 2019, 11, 2265.	1.8	29
562	Assimilating GRACE Into a Land Surface Model in the Presence of an Irrigationâ€Induced Groundwater Trend. Water Resources Research, 2019, 55, 11274-11294.	1.7	42
563	Summer- and Wintertime Variations of the Surface and Near-Surface Urban Heat Island in a Semiarid Environment. Weather and Forecasting, 2019, 34, 1849-1865.	0.5	8
564	Improving Land Surface Hydrological Simulations in China Using CLDAS Meteorological Forcing Data. Journal of Meteorological Research, 2019, 33, 1194-1206.	0.9	38
565	100 Years of Progress in Applied Meteorology. Part III: Additional Applications. Meteorological Monographs, 2019, 59, 24.1-24.35.	5.0	5
566	Evaluation of WRF Modeling in Relation to Different Land Surface Schemes and Initial and Boundary Conditions: A Snow Event Simulation Over the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2019, 124, 209-226.	1.2	41
567	Impact of Future Climate and Vegetation on the Hydrology of an Arctic Headwater Basin at the Tundra–Taiga Transition. Journal of Hydrometeorology, 2019, 20, 197-215.	0.7	23
568	Role of Lateral Terrestrial Water Flow on the Regional Water Cycle in a Complex Terrain Region: Investigation With a Fully Coupled Model System. Journal of Geophysical Research D: Atmospheres, 2019, 124, 507-529.	1.2	49
569	Integrated Surface and Subsurface Hydrological Modeling with Snowmelt and Pore Water Freeze–Thaw. Ground Water, 2019, 57, 63-74.	0.7	32

#	Article	IF	CITATIONS
570	Legacy, Rather Than Adequacy, Drives the Selection of Hydrological Models. Water Resources Research, 2019, 55, 378-390.	1.7	111
571	Development and Evaluation of a Pan-European Multimodel Seasonal Hydrological Forecasting System. Journal of Hydrometeorology, 2019, 20, 99-115.	0.7	51
572	Time and ecological resilience: can diurnal animals compensate for climate change by shifting to nocturnal activity?. Ecological Monographs, 2019, 89, e01334.	2.4	79
573	Understanding Endâ€ofâ€Century Snowpack Changes Over California's Sierra Nevada. Geophysical Research Letters, 2019, 46, 933-943.	1.5	28
574	On the simulation of sensible heat flux over the Tibetan Plateau using different thermal roughness length parameterization schemes. Theoretical and Applied Climatology, 2019, 137, 1883-1893.	1.3	12
575	The Importance of Near-Surface Winter Precipitation Processes in Complex Alpine Terrain. Journal of Hydrometeorology, 2019, 20, 177-196.	0.7	20
576	On the short-term simulation of heat waves in the Southeast Mediterranean: Sensitivity of the WRF model to various physics schemes. Atmospheric Research, 2019, 218, 99-116.	1.8	16
577	A modeling study of the influence of initial soil moisture on summer precipitation during the East Asian summer monsoon. Dynamics of Atmospheres and Oceans, 2019, 85, 72-82.	0.7	5
578	On the Sensitivity of the Precipitation Partitioning Into Evapotranspiration and Runoff in Land Surface Parameterizations. Water Resources Research, 2019, 55, 95-111.	1.7	54
580	Land Surface Processes Relevant to Sub-seasonal to Seasonal (S2S) Prediction. , 2019, , 165-181.		12
581	Impact of microphysics parameterizations and horizontal resolutions on simulation of "MORA― tropical cyclone over Bay of Bengal using Numerical Weather Prediction Model. Meteorology and Atmospheric Physics, 2019, 131, 1483-1495.	0.9	14
582	Estimating actual evapotranspiration from stony-soils in montane ecosystems. Agricultural and Forest Meteorology, 2019, 265, 183-194.	1.9	21
583	Subdaily to Seasonal Change of Surface Energy and Water Flux of the Haihe River Basin in China: Noah and Noah-MP Assessment. Advances in Atmospheric Sciences, 2019, 36, 79-92.	1.9	3
584	Towards a computationally efficient free-surface groundwater flow boundary condition for large-scale hydrological modelling. Advances in Water Resources, 2019, 123, 225-233.	1.7	13
585	Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States. Climate Dynamics, 2020, 55, 383-408.	1.7	110
586	A new mechanism for warm-season precipitation response to global warming based on convection-permitting simulations. Climate Dynamics, 2020, 55, 343-368.	1.7	84
587	Dynamical downscaling improves upon gridded precipitation products in the Sierra Nevada, California. Climate Dynamics, 2020, 55, 111-129.	1.7	27
588	Evaluation of convection-permitting WRF CONUS simulation on the relationship between soil moisture and heatwaves. Climate Dynamics, 2020, 55, 235-252.	1.7	17

#	Article	IF	CITATIONS
589	Simulating the convective precipitation diurnal cycle in North America's current and future climate. Climate Dynamics, 2020, 55, 369-382.	1.7	33
590	Simulating North American mesoscale convective systems with a convection-permitting climate model. Climate Dynamics, 2020, 55, 95-110.	1.7	125
591	Hindcast of extreme rainfall with high-resolution WRF: model ability and effect of physical schemes. Theoretical and Applied Climatology, 2020, 139, 639-658.	1.3	6
592	Improving RAMS and WRF mesoscale forecasts over two distinct vegetation covers using an appropriate thermal roughness length parameterization. Agricultural and Forest Meteorology, 2020, 280, 107791.	1.9	4
593	Near surface air temperature lapse rates over complex terrain: a WRF based analysis of controlling factors and processes for the central Himalayas. Climate Dynamics, 2020, 54, 329-349.	1.7	10
594	Comparative analysis of the meteorological elements simulated by different land surface process schemes in the WRF model in the Yellow River source region. Theoretical and Applied Climatology, 2020, 139, 145-162.	1.3	15
595	Variability of monsoon lowâ€level jet and associated rainfall over India. International Journal of Climatology, 2020, 40, 1067-1089.	1.5	42
596	Evaluation and comparison of multiple evapotranspiration data models over the contiguous United States: Implications for the next phase of NLDAS (NLDAS-Testbed) development. Agricultural and Forest Meteorology, 2020, 280, 107810.	1.9	45
597	Evaluating satellite-based and reanalysis precipitation datasets with gauge-observed data and hydrological modeling in the Xihe River Basin, China. Atmospheric Research, 2020, 234, 104746.	1.8	57
598	Evaluation of WRF land surface schemes in land-atmosphere exchange simulations over grassland in Southeast Tibet. Atmospheric Research, 2020, 234, 104739.	1.8	9
599	An optimal ensemble of the Noah-MP land surface model for simulating surface heat fluxes over a typical subtropical forest in South China. Agricultural and Forest Meteorology, 2020, 281, 107815.	1.9	15
600	Dynamically Downscaled Climate Change Projections for the South Asian Monsoon: Mean and Extreme Precipitation Changes and Physics Parameterization Impacts. Journal of Climate, 2020, 33, 2311-2331.	1.2	15
601	A multiscale analysis of the tornadoes of 30–31 May 2019 in south-central Chile. Atmospheric Research, 2020, 236, 104811.	1.8	10
602	A hybrid method for PM2.5 source apportionment through WRF-Chem simulations and an assessment of emission-reduction measures in western China. Atmospheric Research, 2020, 236, 104787.	1.8	12
603	Impact of Aerosols From Urban and Shipping Emission Sources on Terrestrial Carbon Uptake and Evapotranspiration: A Case Study in East Asia. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030818.	1.2	3
604	Meteorological modeling relevant to mesoscale and regional air quality applications: a review. Journal of the Air and Waste Management Association, 2020, 70, 2-43.	0.9	20
605	Convection-permitting regional climate simulation of warm-season precipitation over Eastern China. Climate Dynamics, 2020, 54, 1469-1489.	1.7	36
606	Sensitivity study of the planetary boundary layer and microphysical schemes to the initialization of convection over the Arabian Peninsula. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 846-869.	1.0	25

#	Article	IF	CITATIONS
607	Assessing snow simulation performance of typical combination schemes within Noah-MP in northern Xinjiang, China. Journal of Hydrology, 2020, 581, 124380.	2.3	12
608	Global Estimates of Land Surface Water Fluxes from SMOS and SMAP Satellite Soil Moisture Data. Journal of Hydrometeorology, 2020, 21, 241-253.	0.7	27
609	Predicting Low-Level Wind Shear Using 200-m-Resolution NWP at the Hong Kong International Airport. Journal of Applied Meteorology and Climatology, 2020, 59, 193-206.	0.6	37
610	The role of meteorological forcing and snow model complexity in winter glacier mass balance estimation, Columbia River basin, Canada. Hydrological Processes, 2020, 34, 5085-5103.	1.1	5
611	Soil Evaporation Stress Determines Soil Moistureâ€Evapotranspiration Coupling Strength in Land Surface Modeling. Geophysical Research Letters, 2020, 47, e2020GL090391.	1.5	27
612	Numerical Simulation of an Extremely Severe Cyclonic Storm Hudhud over the North Indian Ocean in a Medium Range Scale: Influence of Cloud Microphysical Schemes. Pure and Applied Geophysics, 2020, 177, 5895-5910.	0.8	6
613	A new meso-microscale coupled modelling framework for wind resource assessment: A validation study. Renewable Energy, 2020, 160, 538-554.	4.3	10
614	Estimation of the Qinghai-Tibetan Plateau runoff and its contribution to large Asian rivers. Science of the Total Environment, 2020, 749, 141570.	3.9	37
615	Sensitivity analysis of urban microclimatic conditions and building energy consumption on urban parameters by means of idealized numerical simulations. Urban Climate, 2020, 34, 100677.	2.4	13
616	A Process-Based, Fully Distributed Soil Erosion and Sediment Transport Model for WRF-Hydro. Water (Switzerland), 2020, 12, 1840.	1.2	10
617	Future precipitation increase from very high resolution ensemble downscaling of extreme atmospheric river storms in California. Science Advances, 2020, 6, eaba1323.	4.7	65
618	Ultra-high resolution regional climate projections for assessing changes in hydrological extremes and underlying uncertainties. Climate Dynamics, 2020, 55, 2031-2051.	1.7	18
619	A high-resolution Asia-Pacific regional coupled prediction system with dynamically downscaling coupled data assimilation. Science Bulletin, 2020, 65, 1849-1858.	4.3	12
620	The impact of cool and green roofs on summertime temperatures in the cities of Jerusalem and Tel Aviv. Science of the Total Environment, 2020, 743, 140568.	3.9	11
621	Determination of earthquake epicentres based upon invariant quantities of GRACE strain gravity tensors. Scientific Reports, 2020, 10, 7636.	1.6	4
622	Multi-nested WRF simulations for studying planetary boundary layer processes on the turbulence-permitting scale in a realistic mesoscale environment. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 72, 1761740.	0.8	17
623	Land Surface Model CAS‣SM: Model Description and Evaluation. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002339.	1.3	10
624	Urbanization Impact on Regional Wind Stilling: A Modeling Study in the Beijingâ€Tianjinâ€Hebei Region of China. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033132.	1.2	15

ARTICLE IF CITATIONS Understanding the Asymmetry of Annual Streamflow Responses to Seasonal Warming in the Western 625 1.7 10 United States. Water Resources Research, 2020, 56, e2020WR027158. The Met Office Operational Soil Moisture Analysis System. Remote Sensing, 2020, 12, 3691. 1.8 Designing and evaluating regional climate simulations for high latitude land use land cover change 627 0.8 12 studies. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 72, 1853437. Understanding Differences in California Climate Projections Produced by Dynamical and Statistical 628 1.2 Downscaling. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032812. Improving the Noahâ€MP Model for Simulating Hydrothermal Regime of the Active Layer in the Permafrost Regions of the Qinghaiâ€Tibet Plateau. Journal of Geophysical Research D: Atmospheres, 629 1.2 23 2020, 125, e2020JD032588. Inversion of soil roughness for estimating soil moisture from time-series Sentinel-1 backscatter observations over Yanco sites. Geocarto International, 2022, 37, 1850-1862. 1.7 Assessment of WRF Land Surface Model Performance over West Africa. Advances in Meteorology, 631 0.6 9 2020, 2020, 1-30. Introduction to the Regional Coupled Model WRF4-LICOM: Performance and Model Intercomparison 1.9 over the Western North Pacific. Advances in Atmospheric Sciences, 2020, 37, 800-816. Generating Proxy SWOT Water Surface Elevations Using WRFâ€Hydro and the CNES SWOT Hydrology 633 1.7 14 Simulator. Water Resources Research, 2020, 56, e2020WR027464. Probabilistic Projections of Hydrological Droughts Through Convectionâ€Permitting Climate Simulations and Multimodel Hydrological Predictions. Journal of Geophysical Research D: 634 1.2 Atmospheres, 2020, 125, e2020JD032914. Future Warming and Intensification of Precipitation Extremes: A "Double Whammy―Leading to 635 22 1.5 Increasing Flood Risk in California. Geophysical Research Letters, 2020, 47, e2020GL088679. Ground heat flux determination based on near-surface soil hydro-thermodynamics. Journal of 2.3 Hydrology, 2020, 591, 125578. Comparative Analysis of Water-Energy Cycle Processes Based on High-Resolution Assimilation Dataset 637 of the Water-Energy Cycle in China Data Over Different Underlying Surfaces in Qinghai-Tibet Plateau. 0.8 5 Frontiers in Earth Science, 2020, 8, . Modeling Snow Surface Spectral Reflectance in a Land Surface Model Targeting Satellite Remote 1.8 Sensing Observations. Remote Sensing, 2020, 12, 3101. Why Is the Terrestrial Water Storage in Dryland Regions Declining? A Perspective Based on Gravity Recovery and Climate Experiment Satellite Observations and Noah Land Surface Model With 639 1.7 18 Multiparameterization Schemes Model Simulations. Water Resources Research, 2020, 56, e2020WR027102. Enhancing the Noahâ€MP Ecosystem Response to Droughts With an Explicit Representation of Plant Water Storage Supplied by Dynamic Root Water Uptake. Journal of Advances in Modeling Earth 640 Systems, 2020, 12, e2020MS002062. Simulation of Continental Shallow Cumulus Populations Using an Observation onstrained 641 Cloudâ€System Resolving Model. Journal of Advances in Modeling Earth Systems, 2020, 12, 1.34 e2020MS002091. Land Cover Impacts on Landâ€Atmosphere Coupling Strength in Climate Simulations With WRF Over 642 1.2 Europe. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031989.
		CITATION REPORT		
#	ARTICLE		IF	CITATIONS
643	Drivers of regional soil water storage memory and persistence. Vadose Zone Journal, 2020, 1	9, e20050.	1.3	5
644	Evaluating Multiple WRF Configurations and Forcing over the Northern Patagonian Icecap (N Baker River Basin. Atmosphere, 2020, 11, 815.	IPI) and	1.0	7
645	Estimating Near Real-Time Hourly Evapotranspiration Using Numerical Weather Prediction M Output and GOES Remote Sensing Data in Iowa. Remote Sensing, 2020, 12, 2337.	odel	1.8	4
646	Incorporating Spatial Variations in Parameters for Improvements of an Evapotranspiration M Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005504.	odel.	1.3	7
647	Applicability Assessment of the 1998–2018 CLDAS Multi-Source Precipitation Fusion Data Journal of Meteorological Research, 2020, 34, 879-892.	set over China.	0.9	24
648	Sensitivity of simulated temperature, precipitation, and global radiation to different WRF configurations over the Carpathian Basin for regional climate applications. Climate Dynamics 55, 2849-2866.	s, 2020,	1.7	21
649	Impacts of Tiled Land Cover Characterization on Global Meteorological Predictions Using the Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032093.	MPASâ€ A.	1.2	1
650	Assessment of Uncertainty Sources in Snow Cover Simulation in the Tibetan Plateau. Journal Geophysical Research D: Atmospheres, 2020, 125, e2020JD032674.	of	1.2	32
651	An Explicit Scheme to Represent the Bidirectional Hydrologic Exchanges Between the Vados Phreatic Aquifer, and River. Water Resources Research, 2020, 56, e2020WR027571.	e Zone,	1.7	6
652	Interactions between snow cover and evaporation lead to higher sensitivity of streamflow to temperature. Communications Earth & Environment, 2020, 1, .		2.6	15
653	Potential of GPM IMERG Precipitation Estimates to Monitor Natural Disaster Triggers in Urba The Case of Rio de Janeiro, Brazil. Remote Sensing, 2020, 12, 4095.	n Areas:	1.8	25
654	Mountain waves near Hong Kong International Airport: observations and highâ€resolution m analysis. Weather, 2022, 77, 20-26.	odel	0.6	1
655	Regionalization of the INM RAS global climate model data by the Polar WRF model in the Arc Conference Series: Earth and Environmental Science, 2020, 606, 012051.	tic. IOP	0.2	1
656	High-resolution hydrometeorological forecast in Southwest China based on a multi-layer nes model. IOP Conference Series: Earth and Environmental Science, 2020, 612, 012062.	ted WRF	0.2	1
657	A synthetic experiment to investigate the potential of assimilating LAI through direct insertic land surface model. Journal of Hydrology X, 2020, 9, 100063.	n in a	0.8	6
658	Performance of Land Surface Schemes in the WRF Model for Climate Simulations over the MENA-CORDEX Domain. Earth Systems and Environment, 2020, 4, 647-665.		3.0	23
659	Analysis of surface ozone episodes using WRF-HYSPLIT model at Biga Peninsula in the Marma of Turkey. Atmospheric Pollution Research, 2020, 11, 2361-2378.	ara region	1.8	7
660	Estimating Crop and Grass Productivity over the United States Using Satellite Solar-Induced Chlorophyll Fluorescence, Precipitation and Soil Moisture Data. Remote Sensing, 2020, 12, 3	434.	1.8	5

#	Article	IF	CITATIONS
661	Data Assimilation Improves Estimates of Climate-Sensitive Seasonal Snow. Current Climate Change Reports, 2020, 6, 81-94.	2.8	27
662	Hydropower dam operation strongly controls Lake Victoria's freshwater storage variability. Science of the Total Environment, 2020, 726, 138343.	3.9	35
663	Quantifying the Impact of Excess Moisture From Transpiration From Crops on an Extreme Heat Wave Event in the Midwestern U.S.: A Topâ€Down Constraint From Moderate Resolution Imaging Spectroradiometer Water Vapor Retrieval. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031941.	1.2	5
664	An Optimal Troposphere Tomography Technique Using the WRF Model Outputs and Topography of the Area. Remote Sensing, 2020, 12, 1442.	1.8	23
665	Quantifying Contributions of Uncertainties in Physical Parameterization Schemes and Model Parameters to Overall Errors in Noahâ€MP Dynamic Vegetation Modeling. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001914.	1.3	11
666	Influence of global climate on freshwater changes in Africa's largest endorheic basin using multi-scaled indicators. Science of the Total Environment, 2020, 737, 139643.	3.9	28
667	An Evaluation Study of the Fully Coupled WRF/WRF-Hydro Modeling System for Simulation of Storm Events with Different Rainfall Evenness in Space and Time. Water (Switzerland), 2020, 12, 1209.	1.2	12
668	Regional landscape futures to moderate projected climate change: a case study in the agro-pastoral transitional zone of North China. Regional Environmental Change, 2020, 20, 1.	1.4	3
669	Exploring Abrupt Alternations Between Wet and Dry Conditions on the Basis of Historical Observations and Convectionâ€Permitting Climate Model Simulations. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031982.	1.2	32
670	Anomaly Kriging Helps to Remove Bias in Spatial Model Runoff Estimates. Water Resources Research, 2020, 56, e2019WR026240.	1.7	3
671	High-resolution fully coupled atmospheric–hydrological modeling: a cross-compartment regional water and energy cycle evaluation. Hydrology and Earth System Sciences, 2020, 24, 2457-2481.	1.9	43
672	Joint Modeling of Crop and Irrigation in the central United States Using the Noahâ€MP Land Surface Model. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002159.	1.3	25
673	Evaluation of Noah-MP Land-Model Uncertainties over Sparsely Vegetated Sites on the Tibet Plateau. Atmosphere, 2020, 11, 458.	1.0	5
674	Convective distribution of dust over the Arabian Peninsula: the impact of model resolution. Atmospheric Chemistry and Physics, 2020, 20, 2967-2986.	1.9	9
675	Development of Korean Air Quality Prediction System version 1 (KAQPS v1) with focuses on practical issues. Geoscientific Model Development, 2020, 13, 1055-1073.	1.3	16
676	Near-global-scale high-resolution seasonal simulations with WRF-Noah-MP v.3.8.1. Geoscientific Model Development, 2020, 13, 1959-1974.	1.3	8
677	The impact of initial conditions on convection-permitting simulations of a flood event over complex mountainous terrain. Hydrology and Earth System Sciences, 2020, 24, 771-791.	1.9	14
678	Multi-physics ensemble snow modelling in the western Himalaya. Cryosphere, 2020, 14, 1225-1244.	1.5	9

#	Article	IF	CITATIONS
679	Analysis of a New MPI Process Distribution for the Weather Research and Forecasting (WRF) Model. Scientific Programming, 2020, 2020, 1-13.	0.5	0
680	Fineâ€Scale Variability of Observed and Simulated Surface Albedo Over the Southern Great Plains. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030559.	1.2	5
681	A Multiscale, Hydrometeorological Forecast Evaluation of National Water Model Forecasts of the May 2018 Ellicott City, Maryland, Flood. Journal of Hydrometeorology, 2020, 21, 475-499.	0.7	34
682	Combining hyper-resolution land surface modeling with SMAP brightness temperatures to obtain 30-m soil moisture estimates. Remote Sensing of Environment, 2020, 242, 111740.	4.6	59
683	Mapping regional evapotranspiration in cloudy skies via variational assimilation of all-weather land surface temperature observations. Journal of Hydrology, 2020, 585, 124790.	2.3	24
684	Plant Water Uptake Thresholds Inferred From Satellite Soil Moisture. Geophysical Research Letters, 2020, 47, e2020GL087077.	1.5	16
685	On the Analysis of the Performance of WRF and NICAM in a Hyperarid Environment. Weather and Forecasting, 2020, 35, 891-919.	0.5	20
686	Characterizing Surface Albedo of Shallow Fresh Snow and Its Importance for Snow Ablation on the Interior of the Tibetan Plateau. Journal of Hydrometeorology, 2020, 21, 815-827.	0.7	41
687	Effects of Lateral Flow on the Convective Environment in a Coupled Hydrometeorological Modeling System in a Semiarid Environment. Journal of Hydrometeorology, 2020, 21, 615-642.	0.7	15
688	A Vision for Hydrological Prediction. Atmosphere, 2020, 11, 237.	1.0	17
689	Impact of Surface Albedo Assimilation on Snow Estimation. Remote Sensing, 2020, 12, 645.	1.8	18
690			
	Evaluation of 15 Year WRF Simulations. Applied Sciences (Switzerland), 2020, 10, 1765.	1.3	14
691	Brazilian maize yields negatively affected by climate after land clearing. Nature Sustainability, 2020, 3, 845-852.	1.3 11.5	14 29
691 692	The Spatiotemporal variability of Temperature and Precipitation Over the Upper Indus Basin: An Evaluation of 15 Year WRF Simulations. Applied Sciences (Switzerland), 2020, 10, 1765. Brazilian maize yields negatively affected by climate after land clearing. Nature Sustainability, 2020, 3, 845-852. Tropical cyclone track prediction using a large-area WRF model at the Hong Kong Observatory. Tropical Cyclone Research and Review, 2020, 9, 67-74.	1.3 11.5 1.0	14 29 15
691 692 693	The Spatiotemporal variability of Temperature and Precipitation Over the Upper Indus Basin: An Evaluation of 15 Year WRF Simulations. Applied Sciences (Switzerland), 2020, 10, 1765. Brazilian maize yields negatively affected by climate after land clearing. Nature Sustainability, 2020, 3, 845-852. Tropical cyclone track prediction using a large-area WRF model at the Hong Kong Observatory. Tropical Cyclone Research and Review, 2020, 9, 67-74. Distinguishing between early- and late-covering crops in the land surface model Noah-MP: impact on simulated surface energy fluxes and temperature. Biogeosciences, 2020, 17, 2791-2805.	1.3 11.5 1.0 1.3	14 29 15 7
691 692 693 694	 The Spatiotemporal Variability of Temperature and Precipitation Over the Upper Indus Basin: An Evaluation of 15 Year WRF Simulations. Applied Sciences (Switzerland), 2020, 10, 1765. Brazilian maize yields negatively affected by climate after land clearing. Nature Sustainability, 2020, 3, 845-852. Tropical cyclone track prediction using a large-area WRF model at the Hong Kong Observatory. Tropical Cyclone Research and Review, 2020, 9, 67-74. Distinguishing between early- and late-covering crops in the land surface model Noah-MP: impact on simulated surface energy fluxes and temperature. Biogeosciences, 2020, 17, 2791-2805. WRF Sensitivity Analysis in Wind and Temperature Fields Simulation for the Northern Sahara and the Mediterranean Basin. Atmosphere, 2020, 11, 259. 	1.3 11.5 1.0 1.3	14 29 15 7 5
 691 692 693 694 695 	The Spatiotemporal Variability of Temperature and Precipitation Over the Upper Indus Basin: An Evaluation of 15 Year WRF Simulations. Applied Sciences (Switzerland), 2020, 10, 1765. Brazilian maize yields negatively affected by climate after land clearing. Nature Sustainability, 2020, 3, 845-852. Tropical cyclone track prediction using a large-area WRF model at the Hong Kong Observatory. Tropical Cyclone Research and Review, 2020, 9, 67-74. Distinguishing between early- and late-covering crops in the land surface model Noah-MP: impact on simulated surface energy fluxes and temperature. Biogeosciences, 2020, 17, 2791-2805. WRF Sensitivity Analysis in Wind and Temperature Fields Simulation for the Northern Sahara and the Mediterranean Basin. Atmosphere, 2020, 11, 259. Sensitivity of simulated climate over the MENA region related to different land surface schemes in the WRF model. Theoretical and Applied Climatology, 2020, 141, 1431-1449.	1.3 11.5 1.0 1.3 1.3	14 29 15 7 5 6

ARTICLE IF CITATIONS Dynamical downscaling simulation and projection for mean and extreme temperature and 697 1.7 32 precipitation over central Asia. Climate Dynamics, 2020, 54, 3279-3306. Sub-kilometer dispersion simulation of a CO tracer for an inter-Andean urban valley. Atmospheric 1.8 Pollution Research, 2020, 11, 928-945. Projected Changes to Extreme Runoff and Precipitation Events From a Downscaled Simulation Over 699 0.8 15 the Western United States. Frontiers in Earth Science, 2020, 7, . Stepwise Assessment of Different Saltation Theories in Comparison with Field Observation Data. Atmosphere, 2020, 11, 10. Improving the Applicability of Hydrologic Models for Foodâ€"Energyâ€"Water Nexus Studies Using 701 1.8 7 Remote Sensing Data. Remote Sensing, 2020, 12, 599. Warming and drying over the central Himalaya caused by an amplification of local mountain circulation. Npj Climate and Atmospheric Science, 2020, 3, . 2.6 Increasing the efficacy of forest thinning for snow using highâ€resolution modeling: A proof of 703 1.1 15 concept in the Lake Tahoe Basin, California, USA. Ecohydrology, 2020, 13, e2203. Impact of land surface physics on the simulation of boundary layer characteristics at a tropical 704 1.8 coastal station. Atmosphéric Research, 2020, 238, 104888. On the Extreme Rainfall Event of 7 May 2017 over the Coastal City of Guangzhou. Part I: Impacts of Urbanization and Orography. Monthly Weather Review, 2020, 148, 955-979. 705 0.5 70 Simulating and Evaluating Atmospheric Riverâ€Induced Precipitation Extremes Along the U.S. Pacific Coast: Case Studies From 1980–2017. Journal of Geophysical Research D: Atmospheres, 2020, 125, 1.2 e2019JD031554. Impact of land surface physics in WRF on the simulation of sea breeze circulation over southeast 707 9 0.9 coast of India. Meteorology and Atmospheric Physics, 2020, 132, 925-943. Comparing global hydrological models and combining them with GRACE by dynamic model data averaging (DMDA). Ádvances in Water Resources, 2020, 138, 103528. Irrigationâ€Induced Potential Evapotranspiration Decrease in the Heihe River Basin, Northwest China, as 709 1.2 7 Simulated by the WRF Model. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031058. The 2018 Kerala floods: a climate change perspective. Climate Dynamics, 2020, 54, 2433-2446. 1.7 Systematic Bias in the Prediction of Warmâ€Rain Hydrometeors in the WDM6 Microphysics Scheme and 711 1.2 21 Modifications. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030756. Large Uncertainties in Runoff Estimations of GLDAS Versions 2.0 and 2.1 in China. Earth and Space Science, 2020, 7, e2019EA000829. The Canadian Surface Prediction Archive (CaSPAr): A Platform to Enhance Environmental Modeling in 713 1.7 24 Canada and Globally. Bulletin of the American Meteorological Society, 2020, 101, E341-E356. Applying Infrared Thermography to Soil Surface Temperature Monitoring: Case Study of a 714 2.1 High-Resolution 48 h Survey in a Vineyard (Anadia, Portugal). Sensors, 2020, 20, 2444.

#	Article	IF	CITATIONS
715	Modeling the Impacts of Nitrogen Dynamics on Regional Terrestrial Carbon and Water Cycles over China with Noah-MP-CN. Advances in Atmospheric Sciences, 2020, 37, 679-695.	1.9	6
716	Improving US extreme precipitation simulation: sensitivity to physics parameterizations. Climate Dynamics, 2020, 54, 4891-4918.	1.7	19
717	Comparison of microwave remote sensing and land surface modeling for surface soil moisture climatology estimation. Remote Sensing of Environment, 2020, 242, 111756.	4.6	73
718	Physical Constraints for Improved Soil Hydraulic Parameter Estimation by Pedotransfer Functions. Water Resources Research, 2020, 56, e2019WR025963.	1.7	15
719	Scaling Pointâ€Scale (Pedo)transfer Functions to Seamless Largeâ€Domain Parameter Estimates for Highâ€Resolution Distributed Hydrologic Modeling: An Example for the Rhine River. Water Resources Research, 2020, 56, e2019WR026807.	1.7	31
720	Modeling groundwater responses to climate change in the Prairie Pothole Region. Hydrology and Earth System Sciences, 2020, 24, 655-672.	1.9	23
721	Recent Near-surface Temperature Trends in the Antarctic Peninsula from Observed, Reanalysis and Regional Climate Model Data. Advances in Atmospheric Sciences, 2020, 37, 477-493.	1.9	48
722	A Hybrid Precipitation Index Inspired by the SPI, PDSI, and MCDI. Part I: Development of the Index. Journal of Hydrometeorology, 2020, 21, 1945-1976.	0.7	4
723	Impacts of landscape changes on local and regional climate: a systematic review. Landscape Ecology, 2020, 35, 1269-1290.	1.9	42
724	Improving the Jarvis-type model with modified temperature and radiation functions for sap flow simulations. Journal of Hydrology, 2020, 587, 124981.	2.3	21
725	In Situ Estimates of Freezing/Melting Point Depression in Agricultural Soils Using Permittivity and Temperature Measurements. Water Resources Research, 2020, 56, e2019WR026020.	1.7	14
726	Assessing Noahâ€MP Parameterization Sensitivity and Uncertainty Interval Across Snow Climates. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030417.	1.2	20
727	Implementing Dynamic Rooting Depth for Improved Simulation of Soil Moisture and Land Surface Feedbacks in Noahâ€MP rop. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001786.	1.3	15
728	Anthropogenic and Climate Contributions on the Changes in Terrestrial Water Storage in India. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032470.	1.2	32
729	Scale Impact of Soil Moisture Observations to Noah-MP Land Surface Model Simulations. Remote Sensing, 2020, 12, 1169.	1.8	0
730	A New Coupled Modeling Approach to Simulate Terrestrial Water Storage in Southern California. Water (Switzerland), 2020, 12, 808.	1.2	3
731	Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling. Hydrology and Earth System Sciences, 2020, 24, 1485-1509.	1.9	130
732	Extreme rainfall event in the Northeast coast of Brazil: a numerical sensitivity study. Meteorology and Atmospheric Physics, 2021, 133, 141-162.	0.9	17

#	Article	IF	CITATIONS
733	WRFâ€based dynamical downscaling of <scp>ERA5</scp> reanalysis data for High Mountain Asia: Towards a new version of the High Asia Refined analysis. International Journal of Climatology, 2021, 41, 743-762.	1.5	97
734	Internal variability versus multiâ€physics uncertainty in a regional climate model. International Journal of Climatology, 2021, 41, E656.	1.5	13
735	Simulation of Passive Microwave Data Toward Efficient Assimilation Over Indian Subcontinent. IEEE Geoscience and Remote Sensing Letters, 2021, 18, 851-855.	1.4	4
736	The role of atmospheric forcings and WRF physical set-up on convective initiation over CÃ ³ rdoba, Argentina. Atmospheric Research, 2021, 250, 105335.	1.8	5
737	Simulated regional dust cycle in the Carpathian Basin and the Adriatic Sea region during the Last Glacial Maximum. Quaternary International, 2021, 581-582, 114-127.	0.7	17
738	Effects of organic soil in the Noah-MP land-surface model on simulated skin and soil temperature profiles and surface energy exchanges for China. Atmospheric Research, 2021, 249, 105284.	1.8	8
739	The tornadoes of 30–31 May 2019 in south-Central Chile: Sensitivity to topography and SST. Atmospheric Research, 2021, 249, 105301.	1.8	4
740	Variability of monsoon inversion over the Arabian Sea and its impact on rainfall. International Journal of Climatology, 2021, 41, E2979.	1.5	12
741	High-resolution spatially explicit land surface model calibration using field-scale satellite-based daily evapotranspiration product. Journal of Hydrology, 2021, 596, 125730.	2.3	14
742	Representing Intercell Lateral Groundwater Flow and Aquifer Pumping in the Community Land Model. Water Resources Research, 2021, 57, .	1.7	22
743	Contribution of South Asian biomass burning to black carbon over the Tibetan Plateau and its climatic impact. Environmental Pollution, 2021, 270, 116195.	3.7	18
744	Assessments of Weather Research and Forecasting Land Surface Models in Precipitation Simulation Over the Tibetan Plateau. Earth and Space Science, 2021, 8, e2020EA001565.	1.1	6
745	Divergent impacts of land use/cover change on summer precipitation in eastern <scp>China</scp> from 1980 to 2000. International Journal of Climatology, 2021, 41, 2360-2374.	1.5	6
746	Irrigation Water Demand Sensitivity to Climate Variability Across the Contiguous United States. Water Resources Research, 2021, 57, 2020WR027738.	1.7	23
747	Application of ensemble method to predict radiation doses from a radioactive release during hypothetical severe accidents at Russian NPP. Journal of Nuclear Science and Technology, 2021, 58, 635-650.	0.7	4
748	Effects of using different urban parametrization schemes and land-cover datasets on the accuracy of WRF model over the City of Ottawa. Urban Climate, 2021, 35, 100737.	2.4	15
749	Meteorological impacts of a novel debrisâ€covered glacier category in a regional climate model across a Himalayan catchment. Atmospheric Science Letters, 2021, 22, e1018.	0.8	2
750	On the analysis of a summertime convective event in a hyperarid environment. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 501-525.	1.0	21

#	Article	IF	CITATIONS
751	Downscaling of seasonal ensemble forecasts to the convectionâ€permitting scale over the Horn of Africa using the <scp>WRF</scp> model. International Journal of Climatology, 2021, 41, E1791.	1.5	1
752	Surface friction contrast between water body and land enhances precipitation downwind of a large lake in Tibet. Climate Dynamics, 2021, 56, 2113-2126.	1.7	10
753	Soil Moisture Responses Associated with Significant Tropical Cyclone Rainfall Events. Journal of Operational Meteorology, 0, , 1-17.	0.9	1
754	Developing a hydrological monitoring and sub-seasonal to seasonal forecasting system for South and Southeast Asian river basins. Hydrology and Earth System Sciences, 2021, 25, 41-61.	1.9	5
755	Mapping future water scarcity in a water abundant nation: Near-term projections for Scotland. Climate Risk Management, 2021, 32, 100302.	1.6	7
756	Balancing Water Demands and Increasing Climate Resilience: Establishing a Baseline Water Risk Assessment Model in Ethiopia. , 0, , .		2
757	Assessment of extremely severe cyclonic storms over Bay of Bengal and performance evaluation of ARW model in the prediction of track and intensity. Theoretical and Applied Climatology, 2021, 143, 1181-1194.	1.3	8
758	Multi-Scale and Multi-Depth Validation of Soil Moisture From the China Land Data Assimilation System. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 9913-9930.	2.3	6
759	Largeâ€eddy simulation of foehn–cold pool interactions in the InnÂValley during PIANO IOP 2. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 944-982.	1.0	17
760	Modeling the spatiotemporal response of dew point temperature, air temperature and rainfall to land use land cover change over West Africa. Modeling Earth Systems and Environment, 2022, 8, 173-198.	1.9	11
761	The impact of snow loss and soil moisture on convective precipitation over the Rocky Mountains under climate warming. Climate Dynamics, 2021, 56, 2915-2939.	1.7	9
762	The Impact of Initial Snow Conditions on the Numerical Weather Simulation of a Northern Rockies Atmospheric River. Journal of Hydrometeorology, 2021, 22, 155-167.	0.7	6
763	Soil Moisture Responses Associated with Significant Tropical Cyclone Rainfall Events. Journal of Operational Meteorology, 0, , 1-17.	0.9	0
764	CMIP6 projects less frequent seasonal soil moisture droughts over China in response to different warming levels. Environmental Research Letters, 2021, 16, 044053.	2.2	31
765	Impacts of land cover heterogeneity and land surface parameterizations on turbulent characteristics and mesoscale simulations. Meteorology and Atmospheric Physics, 2021, 133, 589-610.	0.9	4
766	Informing Improvements in Freeze/Thaw State Classification Using Subpixel Temperature. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-19.	2.7	4
767	Prediction of Active Microwave Backscatter Over Snow-Covered Terrain Across Western Colorado Using a Land Surface Model and Support Vector Machine Regression. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 2403-2417.	2.3	4
768	Improving the representation of cropland sites in the Community Land Model (CLM) version 5.0. Geoscientific Model Development, 2021, 14, 573-601.	1.3	18

#	Article	IF	CITATIONS
769	Scientific and Human Errors in a Snow Model Intercomparison. Bulletin of the American Meteorological Society, 2021, 102, E61-E79.	1.7	38
770	Identification of Dominant Warm-Season Latent Heat Flux Patterns in the Lower Mississippi River Alluvial Valley. Procedia Computer Science, 2021, 185, 1-8.	1.2	0
771	The Impact of Sustained Malaria Control in the Loreto Region of Peru: A Retrospective, Observational, Spatial Interrupted Time Series Analysis of the Pamafro Program. SSRN Electronic Journal, 0, , .	0.4	0
773	Impact of Quasiâ€Idealized Future Land Cover Scenarios at High Latitudes in Complex Terrain. Earth's Future, 2021, 9, e2020EF001838.	2.4	12
774	Modeling Snow Ablation over the Mountains of the Western United States: Patterns and Controlling Factors. Journal of Hydrometeorology, 2021, 22, 297-311.	0.7	9
775	Assessment and Combination of SMAP and Sentinel-1A/B-Derived Soil Moisture Estimates With Land Surface Model Outputs in the Mid-Atlantic Coastal Plain, USA. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 991-1011.	2.7	8
776	Dynamic and thermodynamic impacts of climate change on organized convection in Alaska. Climate Dynamics, 2021, 56, 2569-2593.	1.7	8
777	Classification of Precipitation Type in North China Using Model-Based Explicit Fields of Hydrometeors with Modified Thermodynamic Conditions. Weather and Forecasting, 2021, 36, 91-107.	0.5	6
778	Hydrometeorological Observations and Modeling of an Extreme Rainfall Event Using WRF and WRF-Hydro during the RELAMPAGO Field Campaign in Argentina. Journal of Hydrometeorology, 2021, 22, 331-351.	0.7	14
779	Groundwater Recharge Estimated by Land Surface Models: An Evaluation in the Conterminous United States. Journal of Hydrometeorology, 2021, 22, 499-522.	0.7	9
780	Impacts of land use change on thermodynamic and dynamic changes of precipitation for the Yangtze River Basin, China. International Journal of Climatology, 2021, 41, 3598-3614.	1.5	11
781	Climatology of Sundowner winds in coastal Santa Barbara, California, based on 30Âyr high resolution WRF downscaling. Atmospheric Research, 2021, 249, 105305.	1.8	8
782	Nearâ€Inertial Wave Propagation in the Wake of Super Typhoon Mangkhut: Measurements From a Profiling Float Array. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016749.	1.0	8
783	The southeast asian monsoon: dynamically downscaled climate change projections and high resolution regional ocean modelling on the effects of the Tibetan Plateau. Climate Dynamics, 2021, 56, 2597-2616.	1.7	4
784	A Soil Moistureâ€Dependent Model to Simulate Water Table Depth and Proportions of Surface and Subsurface Runoff and Its Validation at the Basin Scale. Journal of Geophysical Research D: Atmospheres, 2021, 126, .	1.2	1
785	Impact of Soil Moisture Initializations on WRF‣imulated North American Monsoon System. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033858.	1.2	4
786	A Comprehensive Review of Specific Yield in Land Surface and Groundwater Studies. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002270.	1.3	25
787	Description and Evaluation of the Fine Particulate Matter Forecasts in the NCAR Regional Air Quality Forecasting System. Atmosphere, 2021, 12, 302.	1.0	7

~			-			
(†17	ΓΑΤΙ	ION	I K	'FP	O F	?Т
<u> </u>					<u> </u>	

#	Article	IF	CITATIONS
788	Microphysical Enhancement Processes within Stratiform Precipitation on the Barrier and Sub-Barrier Scale of the Olympic Mountains. Monthly Weather Review, 2021, 149, 503-520.	0.5	7
789	Snow Ensemble Uncertainty Project (SEUP): quantification of snow water equivalent uncertainty across North America via ensemble land surface modeling. Cryosphere, 2021, 15, 771-791.	1.5	30
790	The Role of Soil Texture in Local Land Surface–Atmosphere Coupling and Regional Climate. Journal of Hydrometeorology, 2021, 22, 313-330.	0.7	7
791	Towards hyper-resolution land-surface modeling of surface and root zone soil moisture. Journal of Hydrology, 2021, 594, 125945.	2.3	7
792	Turbulence-permitting air pollution simulation for the Stuttgart metropolitan area. Atmospheric Chemistry and Physics, 2021, 21, 4575-4597.	1.9	2
793	Seasonal and diurnal performance of daily forecasts with WRF V3.8.1 over the United Arab Emirates. Geoscientific Model Development, 2021, 14, 1615-1637.	1.3	11
794	Simulating summer mixing heights in California's San Joaquin Valley using the WRF meteorological model with three land surface modules. Meteorology and Atmospheric Physics, 2021, 133, 925-942.	0.9	1
795	WRF Precipitation Performance and Predictability for Systematically Varied Parameterizations over Complex Terrain. Weather and Forecasting, 2021, 36, 893-913.	0.5	12
796	Evaluation of the Effect of Stability Schemes on the Simulation of Land Surface Processes at a Western Tibetan Site. Land, 2021, 10, 253.	1.2	0
797	What determines the sign of the evapotranspiration response to afforestation in European summer?. Biogeosciences, 2021, 18, 1499-1510.	1.3	10
798	Assessment of a Spatiotemporal Deep Learning Approach for Soil Moisture Prediction and Filling the Gaps in Between Soil Moisture Observations. Frontiers in Artificial Intelligence, 2021, 4, 636234.	2.0	29
799	Spatiotemporal distribution and variation of wind erosion over the Tibetan Plateau based on a coupled land-surface wind-erosion model. Aeolian Research, 2021, 50, 100699.	1.1	9
800	Influence of ocean salinity stratification on the tropical Atlantic Ocean surface. Climate Dynamics, 2021, 57, 321-340.	1.7	9
801	The Importance of Scaleâ€Dependent Groundwater Processes in Landâ€Atmosphere Interactions Over the Central United States. Geophysical Research Letters, 2021, 48, e2020GL092171.	1.5	39
802	A Highâ€Resolution Land Data Assimilation System Optimized for the Western United States. Journal of the American Water Resources Association, 2021, 57, 692-710.	1.0	9
803	From Standard Weather Stations to Virtual Micro-Meteorological Towers in Ungauged Sites: Modeling Tool for Surface Energy Fluxes, Evapotranspiration, Soil Temperature, and Soil Moisture Estimations. Remote Sensing, 2021, 13, 1271.	1.8	2
804	The Chilean Tornado Outbreak of May 2019: Synoptic, Mesoscale, and Historical Contexts. Bulletin of the American Meteorological Society, 2021, 102, E611-E634.	1.7	5
805	The Impact of Noah-MP Physical Parameterizations on Modeling Water Availability during Droughts in the Texas-Gulf Region. Journal of Hydrometeorology, 2021, , .	0.7	4

#	Article	IF	CITATIONS
806	High-Resolution Numerical Modelling of Near-Surface Atmospheric Fields in the Complex Terrain of James Ross Island, Antarctic Peninsula. Atmosphere, 2021, 12, 360.	1.0	1
807	Characteristics of Historical Precipitation in High Mountain Asia Based on a 15-Year High Resolution Dynamical Downscaling. Atmosphere, 2021, 12, 355.	1.0	4
808	Spatial and temporal variability in dust storms in the Middle East, 2002–2018: three case studies in July 2009. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	20
809	Variations in Flash Flood–Producing Storm Characteristics Associated with Changes in Vertical Velocity in a Future Climate in the Mississippi River Basin. Journal of Hydrometeorology, 2021, 22, 671-687.	0.7	6
810	Föhn, fire and grazing in Southern Tibet? A 20,000-year multi-proxy record in an alpine ecotonal ecosystem. Quaternary Science Reviews, 2021, 256, 106817.	1.4	12
811	Assessing the simulated soil hydrothermal regime of the active layer from the Noah-MP land surface model (v1.1) in the permafrost regions of the Qinghai–Tibet Plateau. Geoscientific Model Development, 2021, 14, 1753-1771.	1.3	15
812	A Review of Machine Learning Applications in Land Surface Modeling. Earth, 2021, 2, 174-190.	0.9	9
813	Advances in Land Surface Models and Indicators for Drought Monitoring and Prediction. Bulletin of the American Meteorological Society, 2021, 102, E1099-E1122.	1.7	15
814	Physical processes driving intensification of future precipitation in the mid- to high latitudes. Environmental Research Letters, 2021, 16, 034051.	2.2	10
815	Evaluating Baseflow Simulation in the National Water Model: A Case Study in the Northern High Plains Region, USA. Journal of the American Water Resources Association, 2021, 57, 267-280.	1.0	10
816	Impact of global warming on snow in ski areas: A case study using a regional climate simulation over the interior western United States. Journal of Applied Meteorology and Climatology, 2021, , .	0.6	1
817	Evaluation of the WRF Model to Simulate a High-Intensity Rainfall Event over Kampala, Uganda. Water (Switzerland), 2021, 13, 873.	1.2	14
818	Evaluation of High Mountain Asia‣and Data Assimilation System (Version 1) From 2003 to 2016, Part I: A Hyperâ€Resolution Terrestrial Modeling System. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034131.	1.2	5
819	Field-scale soil moisture bridges the spatial-scale gap between drought monitoring and agricultural yields. Hydrology and Earth System Sciences, 2021, 25, 1827-1847.	1.9	23
820	A Scalable Earth Observationsâ€Based Decision Support System for Hydropower Planning in Africa. Journal of the American Water Resources Association, 0, , .	1.0	1
821	Connecting Hydrometeorological Processes to Lowâ€Probability Floods in the Mountainous Colorado Front Range. Water Resources Research, 2021, 57, e2021WR029768.	1.7	8
822	Historical extreme rainfall over the Bangalore city, India, on 14 and 15 August 2017: skill of sub-kilometer forecasts from WRF model. Meteorology and Atmospheric Physics, 2021, 133, 1057-1074.	0.9	5
823	Reducing Solar Radiation Forcing Uncertainty and Its Impact on Surface Energy and Water Fluxes. Journal of Hydrometeorology, 2021, 22, 813-829.	0.7	2

#	Article	IF	CITATIONS
824	Assessing the Ability of WRFâ€BEPÂ+ÂBEM in Reproducing the Wintertime Building Energy Consumption of an Italian Alpine City. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033652.	1.2	15
825	An Impact Study of GNSS RO Data on the Prediction of Typhoon Nepartak (2016) Using a Multiresolution Global Model with 3D-Hybrid Data Assimilation. Weather and Forecasting, 2021, 36, 957-977.	0.5	7
826	Evaluation of the Effect of Low Soil Temperature Stress on the Land Surface Energy Fluxes Simulation in the Site and Global Offline Experiments. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002403.	1.3	2
827	Representation of Plant Hydraulics in the Noahâ€MP Land Surface Model: Model Development and Multiscale Evaluation. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002214.	1.3	50
828	Evaluating Convective Initiation in High-Resolution Numerical Weather Prediction Models Using GOES-16 Infrared Brightness Temperatures. Monthly Weather Review, 2021, 149, 1153-1172.	0.5	10
829	Applying a Physically Based Blowing Snow Diagnostic Parameterization to Improve Wintertime Visibility Forecasts in the WRF Model. Weather and Forecasting, 2021, 36, 615-626.	0.5	3
830	A comprehensive flood inundation mapping for Hurricane Harvey using an integrated hydrological and hydraulic model. Journal of Hydrometeorology, 2021, , .	0.7	8
831	The first multi-model ensemble of regional climate simulations at kilometer-scale resolution, part I: evaluation of precipitation. Climate Dynamics, 2021, 57, 275-302.	1.7	114
832	Near future changes to rain-on-snow events in Norway. Environmental Research Letters, 2021, 16, 064039.	2.2	8
833	Responses of Heat Stress to Temperature and Humidity Changes Due to Anthropogenic Heating and Urban Expansion in South and North China. Frontiers in Earth Science, 2021, 9, .	0.8	7
834	A wavelet-based approach to streamflow event identification and modeled timing error evaluation. Hydrology and Earth System Sciences, 2021, 25, 2599-2615.	1.9	9
835	Impacts of Fully Coupling Land Surface and Flood Models on the Simulation of Large Wetlands' Water Dynamics: The Case of the Inner Niger Delta. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002463.	1.3	16
836	Modeling Profiles of Micrometeorological Variables in a Tropical Premontane Rainforest Using Multi‣ayered CLM (CLMâ€ML). Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002259.	1.3	6
837	Drought Variability over the Conterminous United States for the Past Century. Journal of Hydrometeorology, 2021, 22, 1153-1168.	0.7	16
838	Assimilation of Vegetation Conditions Improves the Representation of Drought over Agricultural Areas. Journal of Hydrometeorology, 2021, 22, 1085-1098.	0.7	12
839	Sensitivity of precipitation and temperature over the Mount Kenya area to physics parameterization options in a high-resolution model simulation performed with WRFV3.8.1. Geoscientific Model Development, 2021, 14, 2691-2711.	1.3	6
840	Deep Learned Process Parameterizations Provide Better Representations of Turbulent Heat Fluxes in Hydrologic Models. Water Resources Research, 2021, 57, e2020WR029328.	1.7	27
841	Time-dependent 3D simulations of tropospheric ozone depletion events in the Arctic spring using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). Atmospheric Chemistry and Physics, 2021, 21, 7611-7638.	1.9	13

#	Article	IF	CITATIONS
842	Daily Patterns of River Herring (<i>Alosa</i> spp.) Spawning Migrations: Environmental Drivers and Variation among Coastal Streams in Massachusetts. Transactions of the American Fisheries Society, 2021, 150, 501-513.	0.6	9
843	Lateral terrestrial water flow contribution to summer precipitation at continental scale – A comparison between Europe and West Africa with <scp>WRFâ€Hydro</scp> â€ŧag ensembles. Hydrological Processes, 2021, 35, e14183.	1.1	17
844	Cutting out the middleman: calibrating and validating a dynamic vegetation model (ED2-PROSPECT5) using remotely sensed surface reflectance. Geoscientific Model Development, 2021, 14, 2603-2633.	1.3	16
845	The evaluation of the potential of global data products for snow hydrological modelling in ungauged high-alpine catchments. Hydrology and Earth System Sciences, 2021, 25, 2869-2894.	1.9	7
846	Quantifying the potential of AQPI gap-filling radar network for streamflow simulation through a WRF-Hydro experiment. Journal of Hydrometeorology, 2021, , .	0.7	4
847	A Detailed, Multiâ€Scale Assessment of an Atmospheric River Event and Its Impact on Extreme Glacier Melt in the Southern Alps of New Zealand. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034217.	1.2	5
848	Impacts of Urbanization, Aerodynamic Roughness, and Land Surface Processes on the Extreme Heavy Rainfall Over Chennai, India. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034017.	1.2	11
849	Variation of Snow Mass in a Regional Climate Model Downscaling Simulation Covering the Tianshan Mountains, Central Asia. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034183.	1.2	11
850	Snowfall and snowpack in the Western U.S. as captured by convection permitting climate simulations: current climate and pseudo global warming future climate. Climate Dynamics, 2021, 57, 2191-2215.	1.7	27
851	CLASSIC v1.0: the open-source community successor to the Canadian Land Surface Scheme (CLASS) and the Canadian Terrestrial Ecosystem Model (CTEM) – Part 2: Global benchmarking. Geoscientific Model Development, 2021, 14, 2371-2417.	1.3	11
852	Dryline characteristics in North America's historical and future climates. Climate Dynamics, 2021, 57, 2171-2188.	1.7	6
853	WRF Grayâ€Zone Simulations of Precipitation Over the Middleâ€East and the UAE: Impacts of Physical Parameterizations and Resolution. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034648.	1.2	23
854	Effects of Incorporating Measured Leaf Optical Properties in Land Surface Models. Frontiers in Earth Science, 2021, 9, .	0.8	2
855	Evaluation of a Flexible Single Ice Microphysics and a Gaussian Probability-Density-Function Macrophysics Scheme in a Single Column Model. Atmosphere, 2021, 12, 638.	1.0	0
856	Surface representation impacts on turbulent heat fluxes in the Weather Research and Forecasting (WRF) model (v.4.1.3). Geoscientific Model Development, 2021, 14, 3939-3967.	1.3	8
857	Drought adaptability of phreatophytes: insight from vertical root distribution in drylands of China. Journal of Plant Ecology, 2021, 14, 1128-1142.	1.2	10
858	Understanding the Information Content in the Hierarchy of Model Development Decisions: Learning From Data. Water Resources Research, 2021, 57, e2020WR027948.	1.7	22
859	Numerical modeling of regional transport of PM2.5 during a severe pollution event in the Beijing–Tianjin–Hebei region in November 2015. Atmospheric Environment, 2021, 254, 118393.	1.9	23

#	ARTICLE	IF	CITATIONS
860	Impact of Lateral Flow on Surface Water and Energy Budgets Over the Southern Great Plains—A Modeling Study. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033659.	1.2	8
861	Continental Hydrologic Intercomparison Project, Phase 1: A Large cale Hydrologic Model Comparison Over the Continental United States. Water Resources Research, 2021, 57, e2020WR028931.	1.7	27
863	Effects of Mosaic Representation of Land Use/Land Cover on Skin Temperature and Energy Fluxes in Noahâ€MP Land Surface Model Over China. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034542.	1.2	3
864	The role of land cover in the climate of glacial Europe. Climate of the Past, 2021, 17, 1161-1180.	1.3	12
865	Impacts of climate change on terrestrial hydrological components and crop water use in the Chesapeake Bay watershed. Journal of Hydrology: Regional Studies, 2021, 35, 100830.	1.0	7
866	Effects of Organized Convection Parameterization on the MJO and Precipitation in E3SMv1. Part I: Mesoscale Heating. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002401.	1.3	14
867	Watershed cale Effective Hydraulic Properties of the Continental United States. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002440.	1.3	8
870	Impacts of Non-Local versus Local Moisture Sources on a Heavy (and Deadly) Rain Event in Israel. Atmosphere, 2021, 12, 855.	1.0	3
871	A framework for quantifying hydrologic effects of soil structure across scales. Communications Earth & Environment, 2021, 2, .	2.6	24
872	Understanding each other's models: an introduction and a standard representation of 16 global water models to support intercomparison, improvement, and communication. Geoscientific Model Development, 2021, 14, 3843-3878.	1.3	41
873	Heterogeneous Changes to Wetlands in the Canadian Prairies Under Future Climate. Water Resources Research, 2021, 57, e2020WR028727.	1.7	14
874	Limitations of WRF land surface models for simulating land use and land cover change in Sub-Saharan Africa and development of an improved model (CLM-AF v. 1.0). Geoscientific Model Development, 2021, 14, 3215-3249.	1.3	18
875	The Impact of Assimilating GPS Precipitable Water Vapor in Convective-Permitting WRF-ARW on North American Monsoon Precipitation Forecasts over Northwest Mexico. Monthly Weather Review, 2021, , .	0.5	10
877	Assessment of Streamflow Predictions Generated Using Multi-model and Multi-precipitation Product Forcing. Journal of Hydrometeorology, 2021, , .	0.7	0
878	Hindcasts of Sea Surface Wind around the Korean Peninsula Using the WRF Model: Added Value Evaluation and Estimation of Extreme Wind Speeds. Atmosphere, 2021, 12, 895.	1.0	3
879	The ENEA-REG system (v1.0), a multi-component regional Earth system model: sensitivity to different atmospheric components over the Med-CORDEX (Coordinated Regional Climate Downscaling) Tj ETQq1 1 0.784	l3114argBT	/Oserlock 10
880	Implementation and Impacts of Surface and Blowing Snow Sources of Arctic Bromine Activation Within WRFâ€Chem 4.1.1. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002391.	1.3	23
881	Sensitivity of South Asian summer monsoon simulation to land surface schemes in Weather Research and Forecasting model. International Journal of Climatology, 0, , .	1.5	2

#	Article	IF	CITATIONS
882	Climatology of the heat low and the intertropical discontinuity in the Arabian Peninsula. International Journal of Climatology, 2022, 42, 1092-1117.	1.5	21
883	Simulation of summer climate over Central Asia shows high sensitivity to different land surface schemes in WRF. Climate Dynamics, 2021, 57, 2249-2268.	1.7	8
884	Quantifying the Impacts of Land Surface Modeling on Hub-Height Wind Speed under Different Soil Conditions. Monthly Weather Review, 2021, , .	0.5	2
885	First attempt of global-scale assimilation of subdaily scale soil moisture estimates from CYGNSS and SMAP into a land surface model. Environmental Research Letters, 2021, 16, 074041.	2.2	18
886	Snow interception modelling: Isolated observations have led to many land surface models lacking appropriate temperature sensitivities. Hydrological Processes, 2021, 35, e14274.	1.1	15
887	Improve the Performance of the Noahâ€MPâ€Crop Model by Jointly Assimilating Soil Moisture and Vegetation Phenology Data. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002394.	1.3	15
888	Flood modeling of a large transboundary river using WRF-Hydro and microwave remote sensing. Journal of Hydrology, 2021, 598, 126391.	2.3	23
889	Extreme Water Level Simulation and Component Analysis in Delaware Estuary during Hurricane Isabel. Journal of the American Water Resources Association, 2022, 58, 19-33.	1.0	1
890	Ensemble Skill Gains Obtained From the Multiâ€Physics Versus Multiâ€Model Approaches for Continentalâ€Scale Hydrological Simulations. Water Resources Research, 2021, 57, e2020WR028846.	1.7	1
891	Cloud resolving simulation of extremely heavy rainfall event over Kerala in August 2018 – Sensitivity to microphysics and aerosol feedback. Atmospheric Research, 2021, 258, 105613.	1.8	12
892	Memory of land surface and subsurface temperature (LST/SUBT) initial anomalies over Tibetan Plateau in different land models. Climate Dynamics, 0, , 1.	1.7	5
893	Role of reservoir regulation and groundwater feedback in a simulated groundâ€soilâ€vegetation continuum: A longâ€term regional scale analysis. Hydrological Processes, 2021, 35, e14341.	1.1	8
894	Physical Processes Affecting Radiation Fog Based on WRF Simulations and Validation. Pure and Applied Geophysics, 2021, 178, 4265-4288.	0.8	5
895	Mass balance and hydrological modeling of the HardangerjÃ,kulen ice cap in south-central Norway. Hydrology and Earth System Sciences, 2021, 25, 4275-4297.	1.9	9
896	Evaluation of Weather Research and Forecasting model downscaled rainfall and its variability over India. International Journal of Climatology, 2022, 42, 1418-1444.	1.5	12
898	Influence of organic matter on soil hydrothermal processes in the Tibetan Plateau: Observation and parameterization. Journal of Hydrometeorology, 2021, , .	0.7	10
900	Snowpack dynamics in the Lebanese mountains from quasi-dynamically downscaled ERA5 reanalysis updated by assimilating remotely sensed fractional snow-covered area. Hydrology and Earth System Sciences, 2021, 25, 4455-4471.	1.9	17
901	High-resolution dynamical downscaling for regional climate projection in Central Asia based on bias-corrected multiple GCMs. Climate Dynamics, 2022, 58, 777-791.	1.7	13

#	Article	IF	CITATIONS
902	A Benchmark to Test Generalization Capabilities of Deep Learning Methods to Classify Severe Convective Storms in a Changing Climate. Earth and Space Science, 2021, 8, e2020EA001490.	1.1	15
903	Reanalysis in Earth System Science: Toward Terrestrial Ecosystem Reanalysis. Reviews of Geophysics, 2021, 59, e2020RG000715.	9.0	24
904	On the cooling potential of urban heating mitigation technologies in a coastal temperate city. Landscape and Urban Planning, 2021, 212, 104106.	3.4	9
905	Evaluation of NOAA National Water Model Parameter Calibration in Semi-Arid Environments Prone to Channel Infiltration. Journal of Hydrometeorology, 2021, , .	0.7	10
906	Assessing implications of irrigation scheme in NASA-Land Information System Framework on land surface fluxes in Punjab, India. Geocarto International, 2022, 37, 6999-7020.	1.7	0
907	Impacts of land use and land cover change and reforestation on summer rainfall in the Yangtze River basin. Hydrology and Earth System Sciences, 2021, 25, 4531-4548.	1.9	3
908	On the Localized Extreme Rainfall over the Great Bay Area in South China with Complex Topography and Strong UHI Effects. Monthly Weather Review, 2021, 149, 2777-2801.	0.5	25
909	Simulating the Climatic Effects of Irrigation Over China by Using the WRFâ€Noah Model System With Mosaic Approach. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034428.	1.2	10
910	Reanalyses and a High-Resolution Model Fail to Capture the "High Tail―of CAPE Distributions. Journal of Climate, 2021, 34, 8699-8715.	1.2	5
911	Ensemble streamflow data assimilation using WRF-Hydro and DART: novel localization and inflation techniques applied to Hurricane Florence flooding. Hydrology and Earth System Sciences, 2021, 25, 5315-5336.	1.9	9
912	Assimilation of Cosmogenic Neutron Counts for Improved Soil Moisture Prediction in a Distributed Land Surface Model. Frontiers in Water, 2021, 3, .	1.0	5
914	Semiâ€Coupling of a Fieldâ€Scale Resolving Landâ€Surface Model and WRFâ€LES to Investigate the Influence of Landâ€Surface Heterogeneity on Cloud Development. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002602.	1.3	14
915	The Critical Effect of Subgridâ€Scale Scheme on Simulating the Climate Impacts of Deforestation. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035133.	1.2	4
916	A rapid refresh ensemble based data assimilation and forecast system for the RELAMPAGO field campaign. Atmospheric Research, 2021, , 105858.	1.8	3
917	Seasonal variation of the surface wind forecast performance of the high-resolution WRF-RTFDDA system over China. Atmospheric Research, 2021, 259, 105673.	1.8	11
918	Mapping dynamic non-perennial stream networks using high-resolution distributed hydrologic simulation: A case study in the upper blue river basin. Journal of Hydrology, 2021, 600, 126522.	2.3	11
919	Modeling Snow Depth and Snow Water Equivalent Distribution and Variation Characteristics in the Irtysh River Basin, China. Applied Sciences (Switzerland), 2021, 11, 8365.	1.3	4
921	Forecasting of pre-monsoon flash flood events in the northeastern Bangladesh using coupled hydrometeorological NWP modelling system. Meteorology and Atmospheric Physics, 2021, 133, 1603-1625.	0.9	3

#	Article	IF	CITATIONS
922	Is the soil moisture precipitation feedback enhanced by heterogeneity and dry soils? A comparative study. Hydrological Processes, 2021, 35, e14332.	1.1	10
923	Estimation of groundwater recharge using multiple climate models in Bayesian frameworks. Journal of Water and Climate Change, 0, , .	1.2	2
924	Quantitative assessment of the parameterization sensitivity of the Noah-MP land surface model with dynamic vegetation using ChinaFLUX data. Agricultural and Forest Meteorology, 2021, 307, 108542.	1.9	7
925	A joint soilâ€vegetationâ€atmospheric modeling procedure of water isotopologues: Implementation and application to different climate zones with WRFâ€Hydroâ€iso. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002562.	1.3	2
926	Impact of assimilating lidar water vapour and temperature profiles with a hybrid ensemble transform Kalman filter: Threeâ€dimensional variational analysis on the convectionâ€permitting scale. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 4163-4185.	1.0	4
927	Evaluation of soil state representation in the NCAR ensemble analysis system. Journal of Hydrology, 2021, 601, 126617.	2.3	4
928	Quantifying the observational requirements of a space-borne LiDAR snow mission. Journal of Hydrology, 2021, 601, 126709.	2.3	6
929	Assessing the utility of remote sensing data to accurately estimate changes in groundwater storage. Science of the Total Environment, 2022, 807, 150635.	3.9	25
930	A study of the fraction of warm rain in a pre-summer rainfall event over South China. Atmospheric Research, 2021, 262, 105792.	1.8	11
931	Validation of Urban Flood Inundation Models Applied Using Nationally Available Data Sets: Novel Analyses of Observed High Water Information. Journal of Hydrologic Engineering - ASCE, 2021, 26, .	0.8	3
932	More severe drought detected by the assimilation of brightness temperature and terrestrial water storage anomalies in Texas during 2010–2013. Journal of Hydrology, 2021, 603, 126802.	2.3	5
933	Incorporating rain-on-snow into the SWAT model results in more accurate simulations of hydrologic extremes. Journal of Hydrology, 2021, 603, 126972.	2.3	18
934	Agricultural and food security impacts from the 2010 Russia flash drought. Weather and Climate Extremes, 2021, 34, 100383.	1.6	29
935	Multimodel assessment of water budget in Indian sub-continental river basins. Journal of Hydrology, 2021, 603, 126977.	2.3	16
937	Uncertainties in the surface layer physics parameterizations. , 2021, , 229-236.		0
938	Evaluating the performances of cloud microphysical parameterizations in WRF for the heavy rainfall event of Kerala (2018). Meteorology and Atmospheric Physics, 2021, 133, 707-737.	0.9	10
939	Passive Microwave Brightness Temperature Assimilation to Improve Snow Mass Estimation Across Complex Terrain in Pakistan, Afghanistan, and Tajikistan. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 8849-8863.	2.3	0
940	Quantifying Uncertainty in the Modelling Process; Future Extreme Flood Event Projections Across the UK. Geosciences (Switzerland), 2021, 11, 33.	1.0	5

#	Article	IF	CITATIONS
941	Investigation of Spatial and Temporal Wind-Speed Variability During Open Cellular Convection with the Model for Prediction Across Scales in Comparison with Measurements. Boundary-Layer Meteorology, 2021, 179, 291-312.	1.2	6
942	Observation and numerical simulation of a weak waterspout at Hong Kong International Airport. Meteorological Applications, 2021, 28, e1975.	0.9	3
943	Clobal Modeling of Precipitation Partitioning by Vegetation and Their Applications. , 2020, , 105-120.		11
944	Evaluation of WRF Parameterization Schemes During Heat-Wave Events Over the Greater Area of South–East Mediterranean. Springer Atmospheric Sciences, 2017, , 17-23.	0.4	2
945	Fusion of In-Situ Soil Moisture and Land Surface Model Estimates Using Localized Ensemble Optimum Interpolation over China. Journal of Meteorological Research, 2020, 34, 1335-1346.	0.9	1
946	How will rainfall change over Hawaiâ€~i in the future? High-resolution regional climate simulation of the Hawaiian Islands. Bulletin of Atmospheric Science and Technology, 2020, 1, 459-490.	0.4	15
947	Improving snow simulation with more realistic vegetation parameters in a regional climate model in the Tianshan Mountains, Central Asia. Journal of Hydrology, 2020, 590, 125525.	2.3	22
949	The Upper Tail of Precipitation in Convectionâ€Permitting Regional Climate Models and Their Utility in Nonstationary Rainfall and Flood Frequency Analysis. Earth's Future, 2020, 8, e2020EF001613.	2.4	16
950	Falsificationâ€Oriented Signatureâ€Based Evaluation for Guiding the Development of Land Surface Models and the Enhancement of Observations. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002132.	1.3	7
951	Climate has contrasting direct and indirect effects on armed conflicts. Environmental Research Letters, 2020, 15, 104017.	2.2	19
952	Analog Site Experiment in the High Andes-Atacama Region: Surface Energy Budget Components on Ojos del Salado from Field Measurements and WRF Simulations. Astrobiology, 2020, 20, 684-700.	1.5	2
953	Changes in South American hydroclimate under projected Amazonian deforestation. Annals of the New York Academy of Sciences, 2020, 1472, 104-122.	1.8	27
954	Assessment of InSAR tropospheric signal correction methods. Journal of Applied Remote Sensing, 2020, 14, .	0.6	9
955	An Assessment of Winter Orographic Precipitation and Cloud-Seeding Potential in Wyoming. Journal of Applied Meteorology and Climatology, 2020, 59, 1217-1238.	0.6	5
956	Evapotranspiration Climatology of Indiana Using In Situ and Remotely Sensed Products. Journal of Applied Meteorology and Climatology, 2020, 59, 2093-2111.	0.6	29
957	Dynamical Downscaling for Southeast Alaska: Historical Climate and Future Projections. Journal of Applied Meteorology and Climatology, 2020, 59, 1607-1623.	0.6	8
958	The Opposing Effects of Reforestation and Afforestation on the Diurnal Temperature Cycle at the Surface and in the Lowest Atmospheric Model Level in the European Summer. Journal of Climate, 2020, 33, 9159-9179.	1.2	25
959	Assessing the Impact of Soil Layer Depth Specification on the Observability of Modeled Soil Moisture and Brightness Temperature. Journal of Hydrometeorology, 2020, 21, 2041-2060.	0.7	9

#	Article	IF	CITATIONS
960	Changes in Future Flash Flood–Producing Storms in the United States. Journal of Hydrometeorology, 2020, 21, 2221-2236.	0.7	13
961	Future Changes in the Hydrologic Cycle Associated with Flood-Producing Storms in California. Journal of Hydrometeorology, 2020, 21, 2607-2621.	0.7	3
962	Understanding the Distinct Impacts of MCS and Non-MCS Rainfall on the Surface Water Balance in the Central United States Using a Numerical Water-Tagging Technique. Journal of Hydrometeorology, 2020, 21, 2343-2357.	0.7	11
963	Model Improvement via Systematic Investigation of Physics Tendencies. Monthly Weather Review, 2020, 148, 671-688.	0.5	14
964	On the Consequences of PBL Scheme Diffusion on UTLS Wave and Turbulence Representation in High-Resolution NWP Models. Monthly Weather Review, 2020, 148, 4247-4265.	0.5	5
965	Influence of initial soil moisture and vegetation conditions on monsoon precipitation events in northwest México. Atmosfera, 2018, 31, 25-45.	0.3	17
966	Assimilation of Lidar Water Vapour Mixing Ratio and Temperature Profiles into a Convection-Permitting Model. Journal of the Meteorological Society of Japan, 2020, 98, 959-986.	0.7	8
967	Comparison of Snow Water Equivalent Estimated in Central Japan by High-Resolution Simulations Using Different Land-Surface Models. Scientific Online Letters on the Atmosphere, 2013, 9, 148-152.	0.6	9
968	Scheme-Based Optimization of Land Surface Model Using a Micro-Genetic Algorithm: Assessment of Its Performance and Usability for Regional Applications. Scientific Online Letters on the Atmosphere, 2015, 11, 129-133.	0.6	11
969	Evaluation of WRF-Chem Model Forecasts of a Prolonged Saharan Dust Episode over the Eastern Alps. Aerosol and Air Quality Research, 2019, 19, 1226-1240.	0.9	9
970	Regional Climate Model Simulation of Surface Moisture Flux Variations in Northern Terrestrial Regions. Atmospheric and Climate Sciences, 2018, 08, 29-54.	0.1	3
971	A Time-Based Framework for Evaluating Hydrologic Routing Methodologies Using Wavelet Transform. Journal of Water Resource and Protection, 2017, 09, 723-744.	0.3	8
972	Local Circulation Features in the Eastern Amazon: High-resolution Simulation. Journal of Aerospace Technology and Management, 2020, , .	0.3	1
974	A weather dependent approach to estimate the annual course of vegetation parameters for water balance simulations on the meso- and macroscale. Advances in Geosciences, 0, 32, 15-21.	12.0	12
975	Computation of daily Penman–Monteith reference evapotranspiration in the Carpathian Region and comparison with Thornthwaite estimates. Advances in Science and Research, 0, 16, 251-259.	1.0	12
976	On the use of the post-closure methods uncertainty band to evaluate the performance of land surface models against eddy covariance flux data. Biogeosciences, 2015, 12, 2311-2326.	1.3	25
978	BAYWRF: a high-resolution present-day climatological atmospheric dataset for Bavaria. Earth System Science Data, 2020, 12, 3097-3112.	3.7	4
979	A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulicÂconductivity curves. Earth System Science Data, 2017, 9, 529-543.	3.7	99

#	Article	IF	CITATIONS
980	Investigating the sensitivity to resolving aerosol interactions in downscaling regional model experiments with WRFv3.8.1 over Europe. Geoscientific Model Development, 2020, 13, 2511-2532.	1.3	12
981	CLASSIC v1.0: the open-source community successor to the Canadian Land Surface Scheme (CLASS) and the Canadian Terrestrial Ecosystem Model (CTEM) – Part 1: Model framework and site-level performance. Geoscientific Model Development, 2020, 13, 2825-2850.	1.3	49
982	The making of the New European Wind Atlas – PartÂ1: Model sensitivity. Geoscientific Model Development, 2020, 13, 5053-5078.	1.3	71
985	A meteorological–hydrological regional ensemble forecast for an early-warning system over small Apennine catchments in Central Italy. Hydrology and Earth System Sciences, 2020, 24, 3135-3156.	1.9	14
986	Assimilation of vegetation optical depth retrievals from passive microwave radiometry. Hydrology and Earth System Sciences, 2020, 24, 3431-3450.	1.9	30
987	The influence of assimilating leaf area index in a land surface model on global water fluxes and storages. Hydrology and Earth System Sciences, 2020, 24, 3775-3788.	1.9	6
988	Adaptive clustering: reducing the computational costs of distributed (hydrological) modelling by exploiting time-variable similarity among model elements. Hydrology and Earth System Sciences, 2020, 24, 4389-4411.	1.9	10
989	Understanding the mass, momentum, and energy transfer in the frozen soil with three levels of model complexities. Hydrology and Earth System Sciences, 2020, 24, 4813-4830.	1.9	30
990	Evaluating a landscape-scale daily water balance model to support spatially continuous representation of flow intermittency throughout stream networks. Hydrology and Earth System Sciences, 2020, 24, 5279-5295.	1.9	10
991	Model representation of the coupling between evapotranspiration and soil water content at different depths. Hydrology and Earth System Sciences, 2020, 24, 581-594.	1.9	11
996	Improving early warning of drought-driven food insecurity in southern Africa using operational hydrological monitoring and forecasting products. Natural Hazards and Earth System Sciences, 2020, 20, 1187-1201.	1.5	17
997	Simulation of extreme rainfall and streamflow events in small Mediterranean watersheds with a one-way-coupled atmospheric–hydrologic modelling system. Natural Hazards and Earth System Sciences, 2020, 20, 2791-2810.	1.5	25
998	Towards understanding the pattern of glacier mass balances in High Mountain Asia using regional climatic modelling. Cryosphere, 2020, 14, 3215-3234.	1.5	32
1001	An intercomparison of mesoscale models at simple sites for wind energy applications. Wind Energy Science, 2017, 2, 211-228.	1.2	17
1002	Comparison of Crop Growth and Evapotranspiration Simulations between Noah Multi Physics Model and CERES-Rice Model. Korean Journal of Agricultural and Forest Meteorology, 2013, 15, 282-290.	0.2	3
1003	Potential of Mapping Global Soil Texture Type From SMAP Soil Moisture Product: A Pilot Study. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-10.	2.7	3
1004	Improving Land Surface Temperature Simulation of NOAH-MP on the Tibetan Plateau. , 2021, , .		1
1005	Convection-permitting regional climate simulations over Tibetan Plateau: re-initialization versus spectral nudging. Climate Dynamics, 2022, 58, 1719-1735.	1.7	10

#	Article	IF	CITATIONS
1006	Classification and Evaluation of Stable and Unstable Cloud Forecasts. Monthly Weather Review, 2021, 150, 81-98.	0.5	1
1007	Improved Forecast Skill Through the Assimilation of Dropsonde Observations From the Atmospheric River Reconnaissance Program. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034967.	1.2	9
1008	Evaluation of convective parameters derived from pressure level and native ERA5 data and different resolution WRF climate simulations over Central Europe. Climate Dynamics, 2022, 58, 1569-1585.	1.7	14
1009	Impact of Noah-LSM Parameterizations on WRF Mesoscale Simulations: Case Study of Prevailing Summer Atmospheric Conditions over a Typical Semi-Arid Region in Eastern Spain. Sustainability, 2021, 13, 11399.	1.6	1
1010	Hydrologic Model Parameter Estimation in Ungauged Basins Using Simulated SWOT Discharge Observations. Water Resources Research, 2021, 57, e2021WR029655.	1.7	4
1011	A micro-genetic algorithm (GA v1.7.1a) for combinatorial optimization of physics parameterizations in the Weather Research and Forecasting model (v4.0.3) for quantitative precipitation forecast in Korea. Geoscientific Model Development, 2021, 14, 6241-6255.	1.3	6
1012	Early warm-season mesoscale convective systems dominate soil moisture–precipitation feedback for summer rainfall in central United States. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
1013	Warm-season mesoscale convective systems over eastern China: convection-permitting climate model simulation and observation. Climate Dynamics, 2021, 57, 3599-3617.	1.7	11
1014	Exploring the Effects of Rooftop Mitigation Strategies on Urban Temperatures and Energy Consumption. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035002.	1.2	17
1015	Direct Radiative Effects in Haboobs. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034814.	1.2	1
1016	Representation of Stony Surfaceâ€Atmosphere Interactions in WRF Reduces Cold and Wet Biases for the Southern Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035291.	1.2	11
1017	Simulation of the role of Caspian Sea surface temperature and air temperature on precipitation intensity in lake-effect snow. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 225, 105777.	0.6	5
1018	Earth System earth system Model, Modeling the Land Component earth system modeling the land component of. , 2012, , 3211-3230.		0
1023	High-Resolution Climate Predictions and Short-Range Forecasts to Improve the Process Understanding and the Representation of Land-Surface Interactions in the WRF Model in Southwest Germany (WRFCLIM). , 2015, , 575-592.		0
1029	Land Surface Hydrological Models. , 2018, , 1-42.		0
1030	An Explosively Developing Extratropical Cyclone Associated with the High Wind-Waves along the East Coast of Korea. Journal of Coastal Research, 2018, 85, 716-720.	0.1	0
1031	Combining Cn2 models to simulate and forecast the optical turbulence in Armazones and Paranal. , 2018, , .		1
1032	Incorporating Sentinel-derived products into numerical weather models: the ESA STEAM project. , 2018, , .		0

#		IF	CITATION
π 1033	Climate Change Studies for Germany and Europe Using High Resolution WRF Simulations. , 2019, ,		0
1000	369-382.		0
1034	The impact of soil initialization on regional decadal climate predictions in Europe. Climate Research, 2019, 77, 139-154.	0.4	1
1036	Stone Content Influence on Land Surface Model Simulation of Soil Moisture and Evapotranspiration at Reynolds Creek Watershed. Journal of Hydrometeorology, 2020, 21, 1889-1904.	0.7	4
1037	Regional Climate Modeling in the Northern Regions. , 2021, , 795-814.		0
1039	Investigating the Assimilation of Leaf Area Index Products at Different Temporal Resolutions in a Land Surface Model. , 2020, , .		0
1040	Multiâ€Objective Adaptive Surrogate Modelingâ€Based Optimization for Distributed Environmental Models Based on Grid Sampling. Water Resources Research, 2021, 57, e2020WR028740.	1.7	3
1041	Multi‣cale Hydrologic Evaluation of the National Water Model Streamflow Data Assimilation. Journal of the American Water Resources Association, 2021, 57, 875-884.	1.0	3
1042	Strength and Challenges of global model MPAS with regional mesh refinement for mid-latitude storm forecasting: a case study. Advances in Geosciences, 0, 56, 77-87.	12.0	0
1043	Implementation and Evaluation of a Unified Turbulence Parameterization Throughout the Canopy and Roughness Sublayer in Noahâ€MP Snow Simulations. Journal of Advances in Modeling Earth Systems, 2021, 13, .	1.3	8
1044	The coupled effect of soil and atmospheric constraints on the vulnerability and water use of two desert riparian ecosystems. Agricultural and Forest Meteorology, 2021, 311, 108701.	1.9	8
1045	A Coupled OpenFOAM-WRF Study on Atmosphere-Wake-Ocean Interaction. Fluids, 2021, 6, 12.	0.8	0
1046	An Examination of the Impact of Grid Spacing on WRF Simulations of Wintertime Precipitation in the Mid-Atlantic United States. Weather and Forecasting, 2020, 35, 2317-2343.	0.5	3
1047	Catchment-Scale Natural Water Balance in Chile. World Water Resources, 2021, , 189-208.	0.4	8
1048	Examining the Impact of Bias Correction on the Prediction Skill of Regional Climate Projections. Atmospheric and Climate Sciences, 2020, 10, 573-596.	0.1	1
1049	Investigating the Effects of Land Use Change on Subsurface, Surface, and Atmospheric Branches of the Hydrologic Cycle in Central Argentina. Water Resources Research, 2021, 57, e2021WR029704.	1.7	5
1050	What Causes the Unobserved Earlyâ€Spring Snowpack Ablation in Convectionâ€Permitting WRF Modeling Over Utah Mountains?. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035284.	1.2	13
1051	High-Resolution WRF Simulation of Extreme Heat Events in Eastern China: Large Sensitivity to Land Surface Schemes. Frontiers in Earth Science, 2021, 9, .	0.8	6
1052	Hydrometeorology and hydrology of flooding in Cape Fear River basin during Hurricane Florence in 2018. Journal of Hydrology, 2021, 603, 127139.	2.3	6

#	Article	IF	CITATIONS
1053	Impact of urbanization on boundary-layer parameters and mesoscale circulations over tropical coastal city, Chennai. Meteorology and Atmospheric Physics, 2022, 134, 1.	0.9	2
1054	Assessing boundary condition and parametric uncertainty in numerical-weather-prediction-modeled, long-term offshore wind speed through machine learning and analog ensemble. Wind Energy Science, 2021, 6, 1363-1377.	1.2	5
1055	HydroBlocks v0.2: enabling a field-scale two-way coupling between the land surface and river networks in Earth system models. Geoscientific Model Development, 2021, 14, 6813-6832.	1.3	11
1056	Assessment of a meteorological mesoscale model's capability to simulate intra-urban thermal variability in a tropical city. Urban Climate, 2021, 40, 101006.	2.4	5
1057	Predictability of Seasonal Streamflow and Soil Moisture in National Water Model and a Humid Alabama–Coosa–Tallapoosa River Basin. Journal of Hydrometeorology, 2020, 21, 1447-1467.	0.7	5
1058	Assimilation of Satellite-Derived Soil Moisture for Improved Forecasts of the Great Plains Low-Level Jet. Monthly Weather Review, 2020, 148, 4607-4627.	0.5	3
1059	Land surface model influence on the simulated climatologies of temperature and precipitation extremes in the WRF v3.9 model over North America. Geoscientific Model Development, 2020, 13, 5345-5366.	1.3	3
1060	Exploring the ecosystem resilience concept with land surface model scenarios. Ecological Modelling, 2022, 464, 109817.	1.2	5
1061	Influence of the WRF model and atmospheric reanalysis on the offshore wind resource potential and cost estimation: A case study for Rio de Janeiro State. Energy, 2022, 240, 122767.	4.5	12
1062	STEMMUS-UEB v1.0.0: integrated modeling of snowpack and soil water and energy transfer with three complexity levels of soil physical processes. Geoscientific Model Development, 2021, 14, 7345-7376.	1.3	2
1063	Coupling a land surface model with a hydrodynamic model for regional flood risk assessment due to climate change: Application to the Susquehanna River near Harrisburg, Pennsylvania. Journal of Flood Risk Management, 2022, 15, e12763.	1.6	2
1064	Assessment of the ParFlow–CLM CONUS 1.0 integrated hydrologic model: evaluation of hyper-resolution water balance components across the contiguous United States. Geoscientific Model Development, 2021, 14, 7223-7254.	1.3	20
1065	Postâ€Processing the National Water Model with Long Shortâ€Term Memory Networks for Streamflow Predictions and Model Diagnostics. Journal of the American Water Resources Association, 2021, 57, 885-905.	1.0	53
1067	A comparison between satellite- and model-based approaches developed in the ESA Irrigation+project framework to estimate irrigation quantities. , 2021, , .		3
1068	Evaluation the WRF Model with Different Land Surface Schemes: Heat Wave Event Simulations and Its Relation to Pacific Variability over Coastal Region, Karachi, Pakistan. Sustainability, 2021, 13, 12608.	1.6	2
1069	Prediction models for urban flood evolution for satellite remote sensing. Journal of Hydrology, 2021, 603, 127175.	2.3	10
1070	Combinational Optimization of the WRF Physical Parameterization Schemes to Improve Numerical Sea Breeze Prediction Using Micro-Genetic Algorithm. Applied Sciences (Switzerland), 2021, 11, 11221.	1.3	12
1071	A multiâ€objective approach to select hydrological models and constrain structural uncertainties for climate impact assessments. Hydrological Processes, 2022, 36, .	1.1	7

#	Article	IF	CITATIONS
1072	The Energy and Mass Balance of Peruvian Glaciers. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034911.	1.2	11
1073	Accounting for Fineâ€Scale Forest Structure is Necessary to Model Snowpack Mass and Energy Budgets in Montane Forests. Water Resources Research, 2021, 57, e2021WR029716.	1.7	10
1074	Modelling chamise fuel moisture content across California: a machine learning approach. International Journal of Wildland Fire, 2022, 31, 136-148.	1.0	8
1076	The Role of Lateral Terrestrial Water Flow on Land-Atmospheric Water Pathways. , 2021, , 487-500.		0
1077	Global Assimilation of Remotely Sensed Leaf Area Index: The Impact of Updating More State Variables Within a Land Surface Model. Frontiers in Water, 2022, 3, .	1.0	5
1078	A comparison of National Water Model retrospective analysis snow outputs at snow telemetry sites across the Western United States. Hydrological Processes, 2022, 36, e14469.	1.1	13
1079	A Microbialâ€Explicit Soil Organic Carbon Decomposition Model (MESDM): Development and Testing at a Semiarid Grassland Site. Journal of Advances in Modeling Earth Systems, 2022, 14, e2021MS002485.	1.3	7
1080	A novel model to estimate sensible heat fluxes in urban areas using satellite-derived data. Remote Sensing of Environment, 2022, 270, 112880.	4.6	7
1081	Evaluating the influence of deep convection on tropopause thermodynamics and lower stratospheric water vapor: A RELAMPAGO case study using the WRF model. Atmospheric Research, 2022, 267, 105986.	1.8	3
1082	SWOT Applications for WRF-Hydro Modeling in Alaska. , 2020, , .		1
1083	Diagnostic Analysis of a Data Assimilation Framework for Improving Snow Mass Estimation in Complex Terrain. , 2020, , .		0
1084	A Study of One Localâ€Scale Convective Precipitation Event Over Central Tibetan Plateau With Large Eddy Simulations. Earth and Space Science, 2022, 9, .	1.1	3
1085	Simulation of Regional Climate over the Indian subcontinent through dynamical downscaling using WRF-ARW model. Theoretical and Applied Climatology, 2022, 148, 391.	1.3	1
1086	Sentinel-1 snow depth retrieval at sub-kilometer resolution over the European Alps. Cryosphere, 2022, 16, 159-177.	1.5	43
1087	Assessment and improvement of Noah-MP for simulating water and heat exchange over alpine grassland in growing season. Science China Earth Sciences, 2022, 65, 536-552.	2.3	9
1088	Effects of ozone–vegetation interactions on meteorology and air quality in China using a two-way coupled land–atmosphere model. Atmospheric Chemistry and Physics, 2022, 22, 765-782.	1.9	7
1089	Regional climate modeling of the diurnal cycle of precipitation and associated atmospheric circulation patterns over an Andean glacier region (Antisana, Ecuador). Climate Dynamics, 2022, 58, 3075-3104.	1.7	8
1090	Sensitivity of land–atmosphere coupling strength to changing atmospheric temperature and moisture over Europe. Earth System Dynamics, 2022, 13, 109-132.	2.7	11

#	Article	IF	Citations
1091	The Compensatory CO ₂ Fertilization and Stomatal Closure Effects on Runoff Projection From 2016–2099 in the Western United States. Water Resources Research, 2022, 58, .	1.7	14
1092	Development of a "nature run―for observing system simulation experiments (OSSEs) for snow mission development. Journal of Hydrometeorology, 2022, , .	0.7	3
1093	Prediction of rapid intensification for land-falling extremely severe cyclonic storms in the Bay of Bengal. Theoretical and Applied Climatology, 2022, 147, 1359-1377.	1.3	2
1094	The Impacts of Hydrometeors and Water Vapor in Stratiform Region on the Evolutions of MCSs and Embedded Convective Cells in a Preâ€Summer Rainfall Event Over South China. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	1
1095	Modeling Large cale Heatwave by Incorporating Enhanced Urban Representation. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	15
1096	Numerical Simulation of Topography Impact on Transport and Source Apportionment on PM2.5 in a Polluted City in Fenwei Plain. Atmosphere, 2022, 13, 233.	1.0	0
1097	Evaluation of a Reanalysisâ€Driven Configuration of WRF4 Over the Western United States From 1980 to 2020. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	9
1098	WRF v.3.9 sensitivity to land surface model and horizontal resolution changes over North America. Geoscientific Model Development, 2022, 15, 413-428.	1.3	7
1099	Amazonian Moisture Recycling Revisited Using WRF With Water Vapor Tracers. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	17
1100	Land transpiration-evaporation partitioning errors responsible for modeled summertime warm bias in the central United States. Nature Communications, 2022, 13, 336.	5.8	25
1101	Effects of Surface Fluxes on Ventilation Pathways and the Intensification of Hurricane Michael (2018). Journals of the Atmospheric Sciences, 2022, 79, 1211-1229.	0.6	2
1102	High-Resolution Regional Climate Modeling and Projection of Heatwave Events over the Yangtze River Basin. Sustainability, 2022, 14, 1141.	1.6	4
1103	Orographic Flow Influence on Precipitation During an Atmospheric River Event at Davis, Antarctica. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	13
1104	Improvement of stomatal resistance and photosynthesis mechanism of Noah-MP-WDDM (v1.42) in simulation of NO ₂ dry deposition velocity in forests. Geoscientific Model Development, 2022, 15, 787-801.	1.3	3
1105	MPR 1.0: a stand-alone multiscale parameter regionalization tool for improved parameter estimation of land surface models. Geoscientific Model Development, 2022, 15, 859-882.	1.3	8
1106	Estimation of Snow Mass Information via Assimilation of C-Band Synthetic Aperture Radar Backscatter Observations Into an Advanced Land Surface Model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 862-875.	2.3	1
1107	Effects of the surface coupling strength in the WRF/Noah-MP model on regional climate simulations over China. Climate Dynamics, 2022, 59, 331-355.	1.7	1
1108	Impact of land surface processes on the simulation of sea breeze circulation and tritium dispersion over the Kaiga complex terrain region near west coast of India using the Weather Research and Forecasting (WRF) model. Atmospheric Environment: X, 2022, 13, 100149	0.8	1

		CITATION REPORT		
#	Article		IF	CITATIONS
1109	The Terrestrial Biosphere Model Farm. Journal of Advances in Modeling Earth Systems,	2022, 14, .	1.3	5
1110	Representation of the autoconversion from cloud to rain using a weighted ensemble a study using WRF v4.1.3. Geoscientific Model Development, 2022, 15, 771-786.	pproach: a case	1.3	3
1111	Changes in land use enhance the sensitivity of tropical ecosystems to fire-climate extra Reports, 2022, 12, 964.	emes. Scientific	1.6	22
1112	The Joint Assimilation of Remotely Sensed Leaf Area Index and Surface Soil Moisture ir Surface Model. Remote Sensing, 2022, 14, 437.	ito a Land	1.8	12
1113	Physicsâ€Based Narrowband Optical Parameters for Snow Albedo Simulation in Climatof Advances in Modeling Earth Systems, 2022, 14, .	te Models. Journal	1.3	6
1114	Lateral terrestrial water fluxes in the LSM of WRFâ€Hydro: Benefits of a 2D groundwat representation. Hydrological Processes, 2022, 36, .	ter	1.1	8
1115	Fully coupled highâ€resolution mediumâ€range forecasts: Evaluation of the hydromet in an ensemble framework. Hydrological Processes, 2022, 36, .	eorological impact	1.1	5
1116	A Source of WRF Simulation Error for the Earlyâ€Summer Warmâ€Sector Heavy Rainfa Coast: Landâ€Sea Thermal Contrast in the Boundary Layer. Journal of Geophysical Res Atmospheres, 2022, 127, .	all Over South China earch D:	1.2	10
1117	The decline in the groundwater table depth over the past four decades in China simula Noah-MP land model. Journal of Hydrology, 2022, 607, 127551.	ited by the	2.3	6
1118	Clear Air Turbulence Observed Across a Tropopause Fold Over the Drake Passage—A Journal of Geophysical Research D: Atmospheres, 2022, 127, .	Case Study.	1.2	9
1119	Wind field numerical simulation in forested regions of complex terrain: A mesoscale st Journal of Wind Engineering and Industrial Aerodynamics, 2022, 222, 104915.	udy using WRF.	1.7	13
1120	An Evaluation of the Extreme Rainfall Event of 2010 over the Kabul River Basin using the Engineering, Technology & Applied Science Research, 2022, 12, 8017-8022.	ne WRF Model.	0.8	1
1121	7 February Chamoli (Uttarakhand, India) Rock-Ice Avalanche Disaster: Model-Simulated Meteorological Conditions. Atmosphere, 2022, 13, 267.	d Prevailing	1.0	9
1122	Forecasting soil erosion and sediment yields during flash floods: The disastrous case o Greece, 2017. Earth Surface Processes and Landforms, 2022, 47, 1744-1760.	f Mandra,	1.2	6
1123	Assimilation of Satellite-Derived Soil Moisture and Brightness Temperature in Land Sur Review. Remote Sensing, 2022, 14, 770.	face Models: A	1.8	5
1124	A Downscaling Intercomparison Study: The Representation of Slope- and Ridge-Scale F Models of Different Complexity. Frontiers in Earth Science, 2022, 10, .	Processes in	0.8	5
1125	Variability and Changes of Unfrozen Soils Below Snowpack. Geophysical Research Lett	zers, 2022, 49, .	1.5	4
1126	High-Resolution NWP Forecast Precipitation Comparison over Complex Terrain of the CA ³ rdoba during RELAMPAGO-CACTI. Weather and Forecasting, 2022, 37, 241-266.	Sierras de	0.5	2

#	Article	IF	CITATIONS
1127	Integrating Remotely Sensed Leaf Area Index with Biome-BGC to Quantify the Impact of Land Use/Land Cover Change on Water Retention in Beijing. Remote Sensing, 2022, 14, 743.	1.8	7
1128	Characteristics of Swell-like Waves in the East Coast of Korea Using Atmospheric and Wave Hindcast Data. Atmosphere, 2022, 13, 286.	1.0	3
1129	Conservation Policy Changes in Protected Areas on Hilltops in Brazil: Effects on Hydrological Response in a Small Watershed. Water Resources Management, 2022, 36, 1251.	1.9	2
1130	Global Evaluation of the Noahâ€MP Land Surface Model and Suggestions for Selecting Parameterization Schemes. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	17
1131	Water Budgets in Ecosystems. , 2016, , 88-132.		3
1132	Optimizing a backscatter forward operator using Sentinel-1 data over irrigated land. Hydrology and Earth System Sciences, 2021, 25, 6283-6307.	1.9	14
1133	INVESTIGATING THE IMPACTS OF DIFFERENT TIME INTEGRATION METHODS IN LAND SURFACE MODELS ON RUNOFF ESTIMATION. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2021, 77, I_253-I_258.	0.0	0
1134	Evaluating the Impact of Planetary Boundary Layer, Land Surface Model, and Microphysics Parameterization Schemes on Simulated GOES-16 Water Vapor Brightness Temperatures. Atmosphere, 2022, 13, 366.	1.0	2
1135	Spatiotemporal Characteristics of NPP Changes in Frozen Ground Areas of the Three-River Headwaters Region, China: A Regional Modeling Perspective. Frontiers in Earth Science, 2022, 10, .	0.8	3
1136	A Methodology to Generate Integrated Land Cover Data for Land Surface Model by Improving Dempster-Shafer Theory. Remote Sensing, 2022, 14, 972.	1.8	8
1139	Interannual variability of air temperature inversions in ice-free area of northern James Ross Island, Antarctica. Theoretical and Applied Climatology, 0, , 1.	1.3	0
1140	Valley–Mountain Circulation Associated with the Diurnal Cycle of Precipitation in the Tropical Andes (Santa River Basin, Peru). Atmosphere, 2022, 13, 344.	1.0	6
1141	Improved Urban Finescale Forecasting During a Heat Wave by Using High-Resolution Urban Canopy Parameters. Frontiers in Climate, 2022, 3, .	1.3	5
1142	Impact of urbanization on the thermal environment of the Chengdu–Chongqing urban agglomeration under complex terrain. Earth System Dynamics, 2022, 13, 341-356.	2.7	8
1143	Unique Windward Measurements and a Mesoscale Simulation of an Extremely Long-Lasting Severe Bora Event. Boundary-Layer Meteorology, 2022, 183, 495-504.	1.2	1
1144	On the Spinâ€Up Strategy for Spatial Modeling of Permafrost Dynamics: A Case Study on the Qinghaiâ€Tibet Plateau. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	7
1145	Assimilation of NASA's Airborne Snow Observatory Snow Measurements for Improved Hydrological Modeling: A Case Study Enabled by the Coupled LIS/WRFâ€Hydro System. Water Resources Research, 2022, 58, .	1.7	12
1146	Modeling an extreme dust deposition event to the French alpine seasonal snowpack in April 2018: Meteorological context and predictions of dust deposition. Journal of Geophysical Research D: Atmospheres, 0, , .	1.2	2

#	Article	IF	CITATIONS
1147	The Mesoscale Response to Global Warming over the Pacific Northwest Evaluated Using a Regional Climate Model Ensemble. Journal of Climate, 2022, 35, 2035-2053.	1.2	6
1148	Exploring the Potential of Long Shortâ€Term Memory Networks for Improving Understanding of Continental―and Regionalâ€5cale Snowpack Dynamics. Water Resources Research, 2022, 58, .	1.7	3
1149	The Skill Assessment of Weather and Research Forecasting and WAVEWATCH-III Models During Recent Meteotsunami Event in the Persian Gulf. Frontiers in Marine Science, 2022, 9, .	1.2	5
1150	Simulation of the Air Quality in Southern California, USA in July and October of the Year 2018. Atmosphere, 2022, 13, 548.	1.0	3
1151	A Calibrationâ€Free Groundwater Module for Improving Predictions of Low Flows. Water Resources Research, 2022, 58, .	1.7	2
1152	Cooling Effects Revealed by Modeling of Wetlands and Landâ€Atmosphere Interactions. Water Resources Research, 2022, 58, .	1.7	7
1153	Analysis and numerical simulation of a supercell tornado at the Hong Kong adjacent waters. Meteorological Applications, 2022, 29, .	0.9	6
1154	Modeling the Hydrologic Influence of Subsurface Tile Drainage Using the National Water Model. Water Resources Research, 2022, 58, .	1.7	9
1155	Comparison between Observed and Simulated Agl Seeding Impacts in a Well-Observed Case from the SNOWIE Field Program. Journal of Applied Meteorology and Climatology, 2022, 61, 345-367.	0.6	3
1156	Evaluation of WRF Cumulus Parameterization Schemes for the Hot Climate of Sudan Emphasizing Crop Growing Seasons. Atmosphere, 2022, 13, 572.	1.0	4
1157	Largeâ€eddy simulations of the atmospheric boundary layer over an Alpine glacier: Impact of synoptic flow direction and governing processes. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 1319-1343.	1.0	8
1158	Preliminary results on estimation of signal fading on telecommunication satellite telemetry signals with hybrid numerical weather prediction and artificial neural network approach under presence of aerosol effect. International Journal of Satellite Communications and Networking, 2022, 40, 305-316.	1.2	1
1159	Simulating land-atmosphere coupling in the Central Valley, California: Investigating soil moisture impacts on boundary layer properties. Agricultural and Forest Meteorology, 2022, 317, 108898.	1.9	6
1160	Simulations of an extreme rainstorm event (1056.7Âmm/day) along the South China coast: The effect of single- and double-moment cloud microphysics schemes on precipitation. Journal of Atmospheric and Solar-Terrestrial Physics, 2022, 230, 105852.	0.6	4
1161	Sensitivity of precipitation in the highlands and lowlands of Peru to physics parameterization options in WRFV3.8.1. Geoscientific Model Development, 2022, 15, 2859-2879.	1.3	3
1162	Implementation of an ensemble Kalman filter in the Community Multiscale Air Quality model (CMAQ) Tj ETQq1 I Geoscientific Model Development, 2022, 15, 2773-2790.	l 0.78431 1.3	4 rgBT /Overld 6
1163	A deep learning-based hybrid model of global terrestrial evaporation. Nature Communications, 2022, 13, 1912.	5.8	44
1164	The Role of Soil Temperature Feedbacks for Summer Air Temperature Variability Under Climate Change Over East Asia. Earth's Future, 2022, 10, .	2.4	4

#	Article	IF	CITATIONS
1165	Assessment of regional carbon monoxide simulations over Africa and insights into source attribution and regional transport. Atmospheric Environment, 2022, 277, 119075.	1.9	4
1166	Simulation of sensible and latent heat fluxes on the Tibetan Plateau from 1981 to 2018. Atmospheric Research, 2022, 271, 106129.	1.8	5
1167	How does precipitation data influence the land surface data assimilation for drought monitoring?. Science of the Total Environment, 2022, 831, 154916.	3.9	10
1168	Impact of COVID-19 lockdown on the atmospheric boundary layer and instability process over Indian region. Science of the Total Environment, 2022, 832, 154995.	3.9	5
1169	Diurnal cycle of surface energy fluxes in high mountain terrain: Highâ€resolution fully coupled atmosphereâ€hydrology modelling and impact of lateral flow. Hydrological Processes, 2021, 35, .	1.1	7
1170	Sensitivity of Summertime Convection to Aerosol Loading and Properties in the United Arab Emirates. Atmosphere, 2021, 12, 1687.	1.0	4
1171	Simulation of atmospheric flow field over the complex terrain of Kaiga using WRF: sensitivity to model resolution and PBL physics. Meteorology and Atmospheric Physics, 2022, 134, .	0.9	6
1172	Dropsonde observations and numerical simulations of intensifying/weakening tropical cyclones over the northern <scp>South China Sea</scp> . Weather, 2022, 77, 332-338.	0.6	6
1173	Impact of Fully Coupled Hydrology-Atmosphere Processes on Atmosphere Conditions: Investigating the Performance of the WRF-Hydro Model in the Three River Source Region on the Tibetan Plateau, China. Water (Switzerland), 2021, 13, 3409.	1.2	3
1174	A new perspective on permafrost boundaries in France during the Last Glacial Maximum. Climate of the Past, 2021, 17, 2559-2576.	1.3	10
1175	Great Lakes Basin Heat Waves: An Analysis of Their Increasing Probability of Occurrence Under Global Warming. Frontiers in Water, 2021, 3, .	1.0	2
1176	Stochastic bias correction for RADARSAT-2 soil moisture retrieved over vegetated areas. Geocarto International, 2022, 37, 9190-9203.	1.7	2
1177	Impact of forcing data and land surface properties on snow simulation in a regional climate model: a case study over the Tianshan Mountains, Central Asia. Journal of Mountain Science, 2021, 18, 3147-3164.	0.8	5
1178	The Effects of Topography and Urban Agglomeration on the Sea Breeze Evolution over the Pearl River Delta Region. Atmosphere, 2022, 13, 39.	1.0	3
1179	Quantifying Temperature and Precipitation Change Caused by Land Cover Change: A Case Study of India Using the WRF Model. Frontiers in Environmental Science, 2021, 9, .	1.5	23
1180	Land–atmosphere interactions in sub-polar and alpine climates in the CORDEX Flagship Pilot Study Land Use and Climate Across Scales (LUCAS) models – Part 2: The role of changing vegetation. Cryosphere, 2022, 16, 1383-1397.	1.5	5
1181	A Numerical Study for Tropical Cyclone Atsani (2020) Past Offshore of Southern Taiwan under Topographic Influences. Atmosphere, 2022, 13, 618.	1.0	1
1182	Evaluating longâ€ŧerm <scp>Oneâ€Way Atmosphereâ€Hydrology</scp> simulations and the impacts of <scp>Twoâ€Way</scp> coupling in four mountain watersheds. Hydrological Processes, 2022, 36, .	1.1	2

#	Article	IF	CITATIONS
1183	Assessment of the WRF Model as a Guidance Tool Into Cloud Seeding Operations in the United Arab Emirates. Earth and Space Science, 2022, 9, .	1.1	5
1184	Assimilation of GNSS and Synoptic Data in a Convection Permitting Limited Area Model: Improvement of Simulated Tropospheric Water Vapor Content. Frontiers in Earth Science, 2022, 10, .	0.8	4
1185	Guidelines and a supporting toolbox for parameterising key soil hydraulic properties in hydrological studies and broader integrated modelling. One Ecosystem, 0, 7, .	0.0	1
1186	Winter and spring climate explains a large portion of interannual variability and trend in western U.S. summer fire burned area. Environmental Research Letters, 2022, 17, 054030.	2.2	18
1187	Afforestation affects rain-on-snow climatology over Norway. Environmental Research Letters, 2022, 17, 054011.	2.2	5
1190	The seasonality of cholera in sub-Saharan Africa: a statistical modelling study. The Lancet Global Health, 2022, 10, e831-e839.	2.9	11
1191	Impacts of Land Surface Parameterizations on Simulations over the Arid and Semiarid Regions: The Case of the Loess Plateau in China. Journal of Hydrometeorology, 2022, 23, 891-907.	0.7	3
1192	Improved runoff simulations for a highly varying soil depth and complex terrain watershed in the Loess Plateau with the Community Land Model version 5. Geoscientific Model Development, 2022, 15, 3405-3416.	1.3	1
1193	A Modified Double-Moment Bulk Microphysics Scheme Geared toward the East Asian Monsoon Region. Advances in Atmospheric Sciences, 2022, 39, 1451-1471.	1.9	1
1194	Soil moisture estimation in South Asia via assimilation of SMAP retrievals. Hydrology and Earth System Sciences, 2022, 26, 2221-2243.	1.9	6
1195	Warming/cooling effect of cropland expansion during the 1900s ~ 2010s in the Heilongjiang Province, Northeast of China. International Journal of Biometeorology, 2022, 66, 1379-1390.	1.3	4
1196	Contributions of External Forcing and Internal Climate Variability to Changes in the Summer Surface Air Temperature over East Asia. Journal of Climate, 2022, 35, 5013-5032.	1.2	3
1197	Influence of South Asian Biomass Burning on Ozone and Aerosol Concentrations Over the Tibetan Plateau. Advances in Atmospheric Sciences, 2022, 39, 1184-1197.	1.9	10
1198	Convection-permitting simulations of historical and possible future climate over the contiguous United States. Climate Dynamics, 2023, 60, 109-126.	1.7	8
1199	Towards effective drought monitoring in the Middle East and North AfricaÂ(MENA) region: implications from assimilating leaf area index and soil moisture into the Noah-MP land surface model for Morocco. Hydrology and Earth System Sciences, 2022, 26, 2365-2386.	1.9	12
1200	Identifying Spatial Patterns of Hydrologic Drought over the Southeast US Using Retrospective National Water Model Simulations. Water (Switzerland), 2022, 14, 1525.	1.2	8
1201	Investigation of the influence of mineral dust on airborne particulate matter during the COVID-19 epidemic in spring 2020 over China. Atmospheric Pollution Research, 2022, 13, 101424.	1.8	6
1202	The Control of Plant and Soil Hydraulics on the Interannual Variability of Plant Carbon Uptake Over the Central US. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	3

#	Article	IF	CITATIONS
1203	Precipitation Estimates and Orographic Gradients Using Snow, Temperature, and Humidity Measurements From a Wirelessâ \in Sensor Network. Water Resources Research, 2022, 58, .	1.7	4
1204	Improved Climate Simulation by Using a Doubleâ€Plume Convection Scheme in a Global Model. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	7
1205	Summer regional climate simulations over Tibetan Plateau: from gray zone to convection permitting scale. Climate Dynamics, 2023, 60, 301-322.	1.7	6
1206	Impact of Ocean–Atmosphere Coupling on the Simulation of a Monsoon Depression Over the Bay of Bengal. Pure and Applied Geophysics, 2022, 179, 2553-2576.	0.8	1
1207	Observational analysis and numerical simulation of sea breeze using WRF model over the Indian southeast coastal region. Meteorology and Atmospheric Physics, 2022, 134, .	0.9	3
1208	The Amazon and La Plata River Basins as Moisture Sources of South America: Climatology and Intraseasonal Variability. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	5
1209	The projection of canadian wind energy potential in future scenarios using a convection-permitting regional climate model. Energy Reports, 2022, 8, 7176-7187.	2.5	5
1210	Satellite soil moisture data assimilation impacts on modeling weather variables and ozone in the southeastern US – Part 2: Sensitivity to dry-deposition parameterizations. Atmospheric Chemistry and Physics, 2022, 22, 7461-7487.	1.9	4
1211	Land–atmosphere interactions in sub-polar and alpine climates in the CORDEX flagship pilot study Land Use and Climate Across Scales (LUCAS) models– PartÂ1: Evaluation of the snow-albedo effect. Cryosphere, 2022, 16, 2403-2419.	1.5	3
1212	UAV-LiDAR Measurement of Vegetation Canopy Structure Parameters and Their Impact on Land–Air Exchange Simulation Based on Noah-MP Model. Remote Sensing, 2022, 14, 2998.	1.8	2
1213	Comparison of the Forecast Performance of WRF Using Noah and Noah-MP Land Surface Schemes in Central Asia Arid Region. Atmosphere, 2022, 13, 927.	1.0	3
1214	Modeling Potential Impacts on Regional Climate Due to Land Surface Changes across Mongolia Plateau. Remote Sensing, 2022, 14, 2947.	1.8	5
1215	Cool-Season Evaluation of FV3-LAM-Based CONUS-Scale Forecasts with Physics Configurations of Experimental RRFS Ensembles. Monthly Weather Review, 2022, 150, 2379-2398.	0.5	3
1216	Assimilation of blended in situ-satellite snow water equivalent into the National Water Model for improving hydrologic simulation in two US river basins. Science of the Total Environment, 2022, 838, 156567.	3.9	3
1217	Quantitative assessment of the parameterization sensitivity of the WRF/Noah-MP model of snow dynamics in the Tianshan Mountains, Central Asia. Atmospheric Research, 2022, 277, 106310.	1.8	4
1218	Representing Irrigation Processes in the Land Surfaceâ€Hydrological Model and a Case Study in the Yangtze River Basin, China. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	5
1219	The Impact of High-Resolution SRTM Topography and Corine Land Cover on Lightning Calculations in WRF. Atmosphere, 2022, 13, 1050.	1.0	1
1220	Polar WRF V4.1.1 simulation and evaluation for the Antarctic and Southern Ocean. Frontiers of Earth Science, 2022, 16, 1005-1024.	0.9	3

#	Article	IF	CITATIONS
1221	Influence of Vegetation on Simulation of the Water Balance and Hydrological Response to El Niño–Southern Oscillation in Western Tropical South America. Journal of Hydrometeorology, 2022, 23, 1737-1757.	0.7	3
1222	Evaluating Ecohydrological Model Sensitivity to Input Variability with an Information-Theory-Based Approach. Entropy, 2022, 24, 994.	1.1	4
1223	An innovative active learning module on snow and climate modeling. Frontiers in Water, 0, 4, .	1.0	0
1224	The Response of Vegetation to Regional Climate Change on the Tibetan Plateau Based on Remote Sensing Products and the Dynamic Global Vegetation Model. Remote Sensing, 2022, 14, 3337.	1.8	8
1225	Diel streamflow cycles suggest more sensitive snowmelt-driven streamflow to climate change than land surface modeling does. Hydrology and Earth System Sciences, 2022, 26, 3393-3417.	1.9	3
1226	Noahâ€MP With the Generic Crop Growth Model Gecros in the WRF Model: Effects of Dynamic Crop Growth on Landâ€Atmosphere Interaction. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	10
1227	On the Discretization of Richards Equation in Canadian Land Surface Models. Atmosphere - Ocean, 2023, 61, 1-11.	0.6	1
1228	Deep learning rainfall–runoff predictions of extreme events. Hydrology and Earth System Sciences, 2022, 26, 3377-3392.	1.9	55
1229	A Central Asia hydrologic monitoring dataset for food and water security applications in Afghanistan. Earth System Science Data, 2022, 14, 3115-3135.	3.7	11
1230	Central tropical Pacific convection drives extreme high temperatures and surface melt on the Larsen C Ice Shelf, Antarctic Peninsula. Nature Communications, 2022, 13, .	5.8	15
1231	Projecting end-of-century climate extremes and their impacts on the hydrology of a representative California watershed. Hydrology and Earth System Sciences, 2022, 26, 3589-3609.	1.9	5
1232	Revisiting parameter sensitivities in the variable infiltration capacity model across a hydroclimatic gradient. Hydrology and Earth System Sciences, 2022, 26, 3419-3445.	1.9	8
1233	Impacts of Changes in Land Use and Land Cover Between 2001 and 2018 on Summertime O ₃ Formation in North China Plain and Surrounding Areas–A Case Study. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	4
1234	Evaluation of Snow and Streamflows Using Noah-MP and WRF-Hydro Models in Aroostook River Basin, Maine. Water (Switzerland), 2022, 14, 2145.	1.2	1
1235	Intensified atmospheric branch of the hydrological cycle over the Tibetan Plateau during the Last Interglacial from a dynamical downscaling perspective. Journal of Geophysical Research D: Atmospheres, 0, , .	1.2	0
1236	Assessment of nine gridded temperature data for modeling of wheat production systems. Computers and Electronics in Agriculture, 2022, 199, 107189.	3.7	7
1237	Improving predictions of evapotranspiration by integrating multi-source observations and land surface model. Agricultural Water Management, 2022, 272, 107827.	2.4	12
1238	Improving simulation of the fog life cycle with high-resolution land data assimilation: A case study from WiFEX. Atmospheric Research, 2022, 278, 106331.	1.8	5

#	Article	IF	CITATIONS
1240	Aridityâ€dependent Land Surface Skin Temperature Biases in CMIP5/6. Geophysical Research Letters, 0, , .	1.5	0
1241	Exploring the role of bedrock representation on plant transpiration response during dry periods at four forested sites in Europe. Biogeosciences, 2022, 19, 3395-3423.	1.3	3
1242	Towards a Unified Setup to Simulate Mid‣atitude and Tropical Mesoscale Convective Systems at Kilometerâ€Scales. Earth and Space Science, 2022, 9, .	1.1	5
1243	Impact of Snowpack on the Land Surface Phenology in the Tianshan Mountains, Central Asia. Remote Sensing, 2022, 14, 3462.	1.8	4
1244	Net irrigation requirement under different climate scenarios using AquaCrop over Europe. Hydrology and Earth System Sciences, 2022, 26, 3731-3752.	1.9	6
1245	Augmentation of WRF-Hydro to simulate overland-flow- and streamflow-generated debris flow susceptibility in burn scars. Natural Hazards and Earth System Sciences, 2022, 22, 2317-2345.	1.5	4
1246	Features of MCSs in the Central United States Using Simulations of ERA5-Forced Convection-Permitting Climate Models. Weather and Forecasting, 2022, 37, 1681-1702.	0.5	2
1247	Remote sensing-based vegetation and soil moisture constraints reduce irrigation estimation uncertainty. Environmental Research Letters, 2022, 17, 084010.	2.2	9
1248	Comparison and evaluation of updates to WRF-Chem (v3.9) biogenic emissions using MEGAN. Geoscientific Model Development, 2022, 15, 6311-6339.	1.3	2
1249	Observations and numerical Âsimulations of sea breezes at Hong Kong International Airport. Weather, 2023, 78, 55-63.	0.6	5
1250	Comparison of the Impacts of Topography and Urbanization on an Extreme Rainfall Event in the Hangzhou Bay Region. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	4
1251	Expanding and Enhancing Streamflow Prediction Capability of the National Water Model Using Real-Time Low-Cost Stage Measurements. Weather and Forecasting, 2022, , .	0.5	0
1252	Typhoon Forecasts with Dynamic Vortex Initialization Using an Unstructured Mesh Global Model. Monthly Weather Review, 2022, 150, 3011-3030.	0.5	4
1253	Impacts of Radio Occultation Data on Typhoon Forecasts as Explored by the Global MPAS-GSI System. Atmosphere, 2022, 13, 1353.	1.0	2
1254	Effects of Fire Diurnal Variation and Plume Rise on U.S. Air Quality During FIREXâ€AQ and WEâ€CAN Based on the Multi‣cale Infrastructure for Chemistry and Aerosols (MUSICAv0). Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	15
1255	Climate change is increasing the risk of a California megaflood. Science Advances, 2022, 8, .	4.7	46
1256	Leveraging Preâ€Storm Soil Moisture Estimates for Enhanced Land Surface Model Calibration in Ungauged Hydrologic Basins. Water Resources Research, 2022, 58, .	1.7	3
1257	Modeling Global Carbon Costs of Plant Nitrogen and Phosphorus Acquisition. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	13

#	Article	IF	CITATIONS
1258	Impact of Warmer Sea Surface Temperature on the Global Pattern of Intense Convection: Insights From a Global Storm Resolving Model. Geophysical Research Letters, 2022, 49, .	1.5	8
1259	Disentangling the Contribution of Moisture Source Change to Isotopic Proxy Signatures: Deuterium Tracing with WRF-Hydro-Iso-Tag and Application to Southern African Holocene Sediment Archives. Journal of Climate, 2022, 35, 7455-7479.	1.2	1
1260	Examining the Role of the Land Surface on Convection Using Highâ€Resolution Model Forecasts Over the Southeastern United States. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	1
1261	Responses and feedbacks of vegetation dynamics to precipitation anomaly over the semiarid area of north China: Evidences from simulations of the <scp>WRFâ€Noah</scp> model. International Journal of Climatology, 2023, 43, 804-817.	1.5	3
1262	Impact of COVID-19 lockdown on the ambient air-pollutants over the Arabian Peninsula. Frontiers in Environmental Science, 0, 10, .	1.5	3
1263	Evaluation of Albedo Schemes in WRF Coupled with Noah-MP on the Parlung No. 4 Glacier. Remote Sensing, 2022, 14, 3934.	1.8	0
1264	Assessment of meteorological settings on air quality modeling system—a proposal for UN-SDG and regulatory studies in non-homogeneous regions in Brazil. Environmental Science and Pollution Research, 0, , .	2.7	1
1265	Asymmetric daytime and nighttime surface temperature feedback induced by crop greening across Northeast China. Agricultural and Forest Meteorology, 2022, 325, 109136.	1.9	15
1266	Projections of Hydroclimatic Extremes in Southeast Alaska under the RCP8.5 Scenario. Earth Interactions, 2022, 26, 180-194.	0.7	3
1267	Understanding the impact of vegetation dynamics on the water cycle in the Noah-MP model. Frontiers in Water, 0, 4, .	1.0	0
1268	Coupling localized Noah-MP-Crop model with the WRF model improved dynamic crop growth simulation across Northeast China. Computers and Electronics in Agriculture, 2022, 201, 107323.	3.7	10
1269	An ensemble approach for predicting future groundwater levels in the Zagreb aquifer impacted by both local recharge and upstream river flow. Journal of Hydrology, 2022, 613, 128433.	2.3	1
1270	Effects of satellite LAI data on modelling land surface temperature and related energy budget in the Noah-MP land surface model. Journal of Hydrology, 2022, 613, 128351.	2.3	2
1271	Evaluating GOES-16 ABI surface brightness temperature observation biases over the central Sierra Nevada of California. Remote Sensing of Environment, 2022, 281, 113221.	4.6	4
1272	A regional hydrological model for arid and semi-arid river basins with consideration of irrigation. Environmental Modelling and Software, 2022, 157, 105531.	1.9	3
1273	Role of changing land use and land cover (LULC) on the 2018 megafloods over Kerala, India. Climate Research, 2022, 89, 1-14.	0.4	6
1274	Klimawandel und Elementargefahren. , 2022, , 305-353.		0
1275	An Experimental 1-km Warn-on-Forecast System for Hazardous Weather Events. Monthly Weather Review, 2022, 150, 3081-3102.	0.5	2

#	Article	IF	CITATIONS
1276	Research on Ice Accumulation of Transmission Lines in Xinjiang. , 2022, , .		3
1277	Assessment of the data assimilation framework for the Rapid Refresh Forecast System v0.1 and impacts on forecasts of a convective storm case study. Geoscientific Model Development, 2022, 15, 6891-6917.	1.3	3
1278	The new Italian Wind Atlas - Atlante EOLico ItaliANo (AEOLIAN). IOP Conference Series: Earth and Environmental Science, 2022, 1073, 012007.	0.2	1
1279	Evaluation of Model Summertime Boundary Layer Cloud Development over Complex Terrain in New York State. Weather and Forecasting, 2022, 37, 2195-2207.	0.5	1
1280	Challenges and benefits of quantifying irrigation through the assimilation of Sentinel-1 backscatter observations into Noah-MP. Hydrology and Earth System Sciences, 2022, 26, 4685-4706.	1.9	14
1281	Using a new local high resolution daily gridded dataset for Attica to statistically downscale climate projections. Climate Dynamics, 2023, 60, 2931-2956.	1.7	5
1282	Tracking the impacts of precipitation phase changes through the hydrologic cycle in snowy regions: From precipitation to reservoir storage. Frontiers in Earth Science, 0, 10, .	0.8	2
1283	Understanding the role of initial soil moisture and precipitation magnitude in flood forecast using a hydrometeorological modelling system. Hydrological Processes, 2022, 36, .	1.1	8
1284	Diagnosing Near-Surface Model Errors with Candidate Physics Parameterization Schemes for the Multiphysics Rapid Refresh Forecast System (RRFS) Ensemble during Winter over the Northeastern United States and Southern Great Plains. Monthly Weather Review, 2023, 151, 39-61.	0.5	1
1285	Can We Use the Water Budget to Infer Upland Catchment Behavior? The Role of Data Set Error Estimation and Interbasin Groundwater Flow. Water Resources Research, 2022, 58, .	1.7	11
1286	Impact of the selected boundary layer schemes and enhanced horizontal resolution on the Weather Research and Forecasting model performance on James Ross Island, Antarctic Peninsula. Czech Polar Reports, 2022, 12, 15-30.	0.2	1
1287	LPJ-GUESS/LSMv1.0: a next-generation land surface model with high ecological realism. Geoscientific Model Development, 2022, 15, 6709-6745.	1.3	10
1288	Evaluation and Optimization of Snow Albedo Scheme in Noahâ€MP Land Surface Model Using In Situ Spectral Observations in the Colorado Rockies. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	7
1289	Advancing global hydrologic modeling with the <scp>GEOGloWS ECMWF</scp> streamflow service. Journal of Flood Risk Management, 0, , .	1.6	8
1290	When and Where Are Multiple Snow Layers Important for Simulations of Snow Accumulation and Melt?. Water Resources Research, 2022, 58, .	1.7	1
1291	The extreme heat wave of July–August 2021 in the Athens urban area (Greece): Atmospheric and human-biometeorological analysis exploiting ultra-high resolution numerical modeling and the local climate zone framework. Science of the Total Environment, 2023, 857, 159300.	3.9	11
1292	Improving Dynamic Vegetation Modeling in Noahâ€MP by Parameter Optimization and Data Assimilation over China's Loess Plateau. Journal of Geophysical Research D: Atmospheres, 0, , .	1.2	2
1293	Quantifying the sources of uncertainty for hydrological predictions with WRF-Hydro over the snow-covered region in the Upper Indus Basin, Pakistan. Journal of Hydrology, 2022, 614, 128500.	2.3	3

#	Article	IF	CITATIONS
1294	Extreme Precipitation Events on the East Coast of Brazil's Northeast: Numerical and Diagnostic Analysis. Water (Switzerland), 2022, 14, 3135.	1.2	0
1295	NASA's Global Precipitation Measurement Mission: Leveraging Stakeholder Engagement & Applications Activities to Inform Decision-making. Remote Sensing Applications: Society and Environment, 2023, 29, 100853.	0.8	1
1296	Medicane Ianos: 4D-Var Data Assimilation of Surface and Satellite Observations into the Numerical Weather Prediction Model WRF. Atmosphere, 2022, 13, 1683.	1.0	3
1297	Changes in near-surface permafrost temperature and active layer thickness in Northeast China in 1961–2020 based on GIPL model. Cold Regions Science and Technology, 2023, 206, 103709.	1.6	7
1298	Can Data Assimilation Improve Short-Term Prediction of Land Surface Variables?. Remote Sensing, 2022, 14, 5172.	1.8	0
1299	Extreme heat loss in the Northern Red Sea and associated atmospheric forcing. Frontiers in Marine Science, 0, 9, .	1.2	1
1300	Flash Drought Onset and Development Mechanisms Captured With Soil Moisture and Vegetation Data Assimilation. Water Resources Research, 2022, 58, .	1.7	6
1301	Optimizing Analog Ensembles for Sub-Daily Precipitation Forecasts. Atmosphere, 2022, 13, 1662.	1.0	2
1302	Cross-Examining Precipitation Products by Rain Gauge, Remote Sensing, and WRF Simulations over a South American Region across the Pacific Coast and Andes. Atmosphere, 2022, 13, 1666.	1.0	2
1303	Quantifying the City-Scale Impacts of Impervious Surfaces on Groundwater Recharge Potential: An Urban Application of WRF–Hydro. Water (Switzerland), 2022, 14, 3143.	1.2	5
1304	Quantifying Flood Frequency Associated with Clustered Mesoscale Convective Systems in the United States. Journal of Hydrometeorology, 2022, 23, 1685-1703.	0.7	3
1305	Discharge and floods projected to increase more than precipitation extremes. Hydrological Processes, 2022, 36, .	1.1	5
1306	Recent Increase of Spring Precipitation over the Three-River Headwaters Region—Water Budget Analysis Based on Global Reanalysis (ERA5) and ET-Tagging Extended Regional Climate Modeling. Journal of Climate, 2022, 35, 7199-7217.	1.2	2
1307	High-resolution regional climate modeling of warm-season precipitation over the Tibetan Plateau: Impact of grid spacing and convective parameterization. Atmospheric Research, 2023, 281, 106498.	1.8	4
1308	Processâ€based calibration of WRFâ€Hydro in a mountainous basin in southwestern U.S Journal of the American Water Resources Association, 0, , .	1.0	0
1309	Trends and spatial variations of rain-on-snow events over the High Mountain Asia. Journal of Hydrology, 2022, 614, 128593.	2.3	5
1310	The Influence of Bare Ground Thermal Roughness Length Parameterization on the Simulation of Nearâ€6urface Air and Skin Temperatures Over the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	1
1311	Assimilation of Remotely Sensed Leaf Area Index Enhances the Estimation of Anthropogenic Irrigation Water Use. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	2

#	Article	IF	CITATIONS
1312	Effect of land–atmosphere process parameterizations on the PM simulation of a river valley city with complex topography. Atmospheric Research, 2023, 281, 106505.	1.8	1
1313	Assimilation of Screen-level Observations for Soil Moisture Analysis in the INM RAS-MSU Multilayer Soil Model Included in the SL-AV Global Atmospheric Modeling System. Russian Meteorology and Hydrology, 2022, 47, 561-575.	0.2	0
1314	Towards mesoscale ensemble prediction for the Guangdong-Hong Kong-Macao Greater Bay Area. IOP Conference Series: Earth and Environmental Science, 2022, 1087, 012033.	0.2	0
1315	Performance of the <scp>WRF</scp> model in simulating climate over northern Asia. International Journal of Climatology, 0, , .	1.5	0
1316	The Dynamics of the Dry and Wet Monsoon <scp>MCS</scp> formation over West Africa: Case assessment of 13th February 2018 and 18th June 2018. Quarterly Journal of the Royal Meteorological Society, 0, , .	1.0	0
1317	On the value of satellite remote sensing to reduce uncertainties of regional simulations of the Colorado River. Hydrology and Earth System Sciences, 2022, 26, 5627-5646.	1.9	6
1318	Spin-up time and internal variability analysis for overlapping time slices in a regional climate model. Climate Dynamics, 0, , .	1.7	2
1319	A Numerical Investigation of Hurricane Florenceâ€Induced Compound Flooding in the Cape Fear Estuary Using a Dynamically Coupled Hydrologicalâ€Ocean Model. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	3
1320	Towards Ensemble-Based Kilometer-Scale Climate Simulations over the Third Pole Region. Climate Dynamics, 2023, 60, 4055-4081.	1.7	5
1321	Precipitation biases and snow physics limitations drive the uncertainties in macroscale modeled snow water equivalent. Hydrology and Earth System Sciences, 2022, 26, 5721-5735.	1.9	6
1322	Estimation of soil moisture and soil temperature over India using the Noah multi-parameterisation land surface model. Modeling Earth Systems and Environment, 2023, 9, 1873-1889.	1.9	2
1323	Sensitivity of Heavy Convective Precipitation Simulations to Changes in Landâ€atmosphere Exchange Processes over China. Journal of Geophysical Research D: Atmospheres, 0, , .	1.2	1
1324	Impact of physical parameterizations on wind simulation with WRF V3.9.1.1 under stable conditions at planetary boundary layer gray-zone resolution: a case study over the coastal regions of North China. Geoscientific Model Development, 2022, 15, 8111-8134.	1.3	7
1325	The Biophysical Impacts of Idealized Afforestation on Surface Temperature in China: Local and Nonlocal Effects. Journal of Climate, 2022, 35, 7833-7852.	1.2	4
1326	A Physical-Based Framework for Estimating the Hourly All-Weather Land Surface Temperature by Synchronizing Geostationary Satellite Observations and Land Surface Model Simulations. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-22.	2.7	4
1327	Improving the estimation of snow depth in the Noah-MP model by combining particle filter and Bayesian model averaging. Journal of Hydrology, 2023, 617, 128877.	2.3	3
1328	Geospatial Weather Affected Terrain Conditions and Hazards (GeoWATCH) description and evaluation. Environmental Modelling and Software, 2023, 160, 105606.	1.9	3
1329	Assessing the maximum potential cooling benefits of irrigation in Australia during the "Angry Summer―of 2012/2013. Weather and Climate Extremes, 2023, 39, 100538.	1.6	1
#	Article	IF	CITATIONS
------	--	-----	-----------
1330	Simulation of a Typical Meiyu Case Over the Yangtze-Huai River in a Record-Breaking Meiyu Period of 2020. Lecture Notes in Electrical Engineering, 2023, , 201-215.	0.3	1
1331	A Review of Current Capabilities and Science Gaps in Water Supply Data, Modeling, and Trends for Water Availability Assessments in the Upper Colorado River Basin. Water (Switzerland), 2022, 14, 3813.	1.2	7
1332	The Impact of Stochastic Perturbations in Physics Variables for Predicting Surface Solar Irradiance. Atmosphere, 2022, 13, 1932.	1.0	3
1333	Towards an Optimal Representation of Subâ€Grid Heterogeneity in Land Surface Models. Water Resources Research, 2022, 58, .	1.7	1
1334	Localized urban canopy model and improved anthropogenic heat parameters in the weather research and forecasting model: Simulation of a warm-sector heavy rainfall event over the pearl river delta urban agglomeration. Frontiers in Environmental Science, 0, 10, .	1.5	1
1335	Lightning Over Central Canada: Skill Assessment for Various Landâ€Atmosphere Model Configurations and Lightning Indices Over a Boreal Study Area. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	2
1336	Improvement of springtime streamflow prediction using a snow hydrology model aided with USDA SNOTEL and in-situ snowpit observations. Hydrology Research, 2022, 53, 1510-1528.	1.1	1
1337	Preface – special issue on "coupled atmosphereâ€hydrological processes: Novel system developments and crossâ€compartment evaluationsâ€. Hydrological Processes, 2022, 36, .	1.1	0
1338	Evaluation of the Performance of CLM5.0 in Soil Hydrothermal Dynamics in Permafrost Regions on the Qinghai–Tibet Plateau. Remote Sensing, 2022, 14, 6228.	1.8	2
1339	Grid-based calibration of the WRF-Hydro with Noah-MP model with improved groundwater and transpiration process equations. Journal of Hydrology, 2023, 617, 128991.	2.3	6
1340	Unrevealing past and future vegetation restoration on the Loess Plateau and its impact on terrestrial water storage. Journal of Hydrology, 2023, 617, 129021.	2.3	6
1341	Intercomparison and evaluation of ten global ET products at site and basin scales. Journal of Hydrology, 2023, 617, 128887.	2.3	9
1342	Evaluation of the precipitation of the East Asia regional reanalysis system mainly over mainland China. International Journal of Climatology, 0, , .	1.5	2
1343	Evaluation of a new observationally based channel parameterization for the National Water Model. Hydrology and Earth System Sciences, 2022, 26, 6121-6136.	1.9	2
1345	WRF Physics Ensemble Performance Evaluation over Continental and Coastal Regions in Germany. Atmosphere, 2023, 14, 17.	1.0	1
1346	Insights From Dayflow: A Historical Streamflow Reanalysis Dataset for the Conterminous United States. Water Resources Research, 2023, 59, .	1.7	4
1347	Evaluation of InSAR Tropospheric Correction by Using Efficient WRF Simulation with ERA5 for Initialization. Remote Sensing, 2023, 15, 273.	1.8	4
1348	Land–Atmosphere Feedbacks Weaken the Cooling Effect of Soil Organic Matter Property toward Deep Soil on the Eastern Tibetan Plateau. Journal of Hydrometeorology, 2023, 24, 105-117.	0.7	1

CITATION REPORT

#	Article	IF	CITATIONS
1349	Meteorological Effects of Green Infrastructure on a Developing Medium Latin American City: A Numerical Modeling Assessment. Sustainability, 2023, 15, 1429.	1.6	1
1350	Impacts of Spatiotemporal Gaps in Satellite Soil Moisture Data on Hydrological Data Assimilation. Water (Switzerland), 2023, 15, 321.	1.2	0
1351	On the Interplay between Desert Dust and Meteorology Based on WRF-Chem Simulations and Remote Sensing Observations in the Mediterranean Basin. Remote Sensing, 2023, 15, 435.	1.8	3
1352	Improving snow albedo parameterization scheme based on remote sensing data. Atmospheric Research, 2023, 284, 106602.	1.8	2
1353	Vertical Motions in Orographic Cloud Systems over the Payette River Basin. Part III: An Evaluation of the Impact of Transient Vertical Motions on Targeting during Orographic Cloud Seeding Operations. Journal of Applied Meteorology and Climatology, 2022, 61, 1753-1777.	0.6	0
1354	Day-Ahead Forecasting for the Tropics with Numerical Weather Prediction and Machine Learning. , 2022, , .		Ο
1355	HDFR: A Hydrologic Data and Modeling System with On-Demand Access to Environmental Sensing Data for Decision Making. , 2023, , .		0
1356	Simulated Trends in Land Surface Sensible Heat Flux on the Tibetan Plateau in Recent Decades. Remote Sensing, 2023, 15, 714.	1.8	2
1357	Interconnected hydrologic extreme drivers and impacts depicted by remote sensing data assimilation. Scientific Reports, 2023, 13, .	1.6	1
1358	Effects of Different Land Use Types on Soil Surface Temperature in the Heihe River Basin. Sustainability, 2023, 15, 3859.	1.6	1
1359	Higher Frozen Soil Permeability Represented in a Hydrological Model Improves Spring Streamflow Prediction From River Basin to Continental Scales. Water Resources Research, 2023, 59, .	1.7	4
1360	Seasonal, Monthly, Daily, and Diel Growth, and Water Status Dynamics of Balsam Fir in a Cold and Humid Boreal Environment. Forests, 2023, 14, 802.	0.9	1
1361	Lateral terrestrial water flow schemes for the Noah-MP land surface model on both natural and urban land surfaces. Journal of Hydrology, 2023, 620, 129410.	2.3	1
1362	Seasonal soil freeze/thaw variability across North America via ensemble land surface modeling. Cold Regions Science and Technology, 2023, 209, 103806.	1.6	Ο
1363	Potential of remote sensing surface temperature- and evapotranspiration-based land-atmosphere coupling metrics for land surface model calibration. Remote Sensing of Environment, 2023, 291, 113557.	4.6	3
1364	Projected changes in extreme streamflow and inland flooding in the mid-21st century over Northeastern United States using ensemble WRF-Hydro simulations. Journal of Hydrology: Regional Studies, 2023, 47, 101371.	1.0	2
1365	High-resolution climate projection over the Tibetan Plateau using WRF forced by bias-corrected CESM. Atmospheric Research, 2023, 286, 106670.	1.8	3
1366	Remote Sensing-Based Estimates of Changes in Stored Groundwater at Local Scales: Case Study for Two Groundwater Subbasins in California's Central Valley. Remote Sensing, 2023, 15, 21_00.	1.8	1

CITATION REPORT

#	Article	IF	CITATIONS
1367	A highâ€impact mesoâ€beta vortex in the Adriatic Sea. Quarterly Journal of the Royal Meteorological Society, 2023, 149, 637-656.	1.0	2
1368	Rural agriculture largely reduces the urban heating effects in China: A tale of the three most developed urban agglomerations. Agricultural and Forest Meteorology, 2023, 331, 109343.	1.9	4
1369	Climate and Human Impacts on Hydrological Processes and Flood Risk in Southern Louisiana. Water Resources Research, 2023, 59, .	1.7	2
1370	Future Simulated Changes in Central U.S. Mesoscale Convective System Rainfall Caused by Changes in Convective and Stratiform Structure. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	0
1371	A Review on the Development of Two-Way Coupled Atmospheric-Hydrological Models. Sustainability, 2023, 15, 2803.	1.6	0
1372	Evaluation of Hourly Precipitation Characteristics from a Global Reanalysis and Variable-Resolution Global Model over the Tibetan Plateau by Using a Satellite-Gauge Merged Rainfall Product. Remote Sensing, 2023, 15, 1013.	1.8	4
1373	The Impacts of Assimilating Fengyun-4A Atmospheric Motion Vectors on Typhoon Forecasts. Atmosphere, 2023, 14, 375.	1.0	2
1374	Observations of vertical velocity from a Doppler <scp>LiDAR</scp> in the urban area of Hong Kong. Weather, 2023, 78, 228-235.	0.6	0
1375	Urban Impact on Landfalling Tropical Cyclone Precipitation: A Numerical Study of Typhoon Rumbia (2018). Advances in Atmospheric Sciences, 2023, 40, 988-1004.	1.9	0
1376	An Application of the Maximum Entropy Production Method in the WRF Noah Land Surface Model. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	4
1377	Evaluation of Hydrogeological Models and Big Data for Quantifying Groundwater Use in Regional River Systems. Water Science and Technology Library, 2023, , 189-206.	0.2	0
1378	Sensitivity Analysis of the Noahâ€MP Land Surface Model for Soil Hydrothermal Simulations Over the Tibetan Plateau. Journal of Advances in Modeling Earth Systems, 2023, 15, .	1.3	1
1379	Performance of Seven Land Surface Schemes in the WRFv4.3 Model for Simulating Precipitation in the Recordâ€Breaking Meiyu Season Over the Yangtze–Huaihe River Valley in China. GeoHealth, 2023, 7, .	1.9	0
1380	On strictly enforced mass conservation constraints for modelling the <scp>Rainfallâ€Runoff</scp> process. Hydrological Processes, 2023, 37, .	1.1	3
1381	Uncertainty of multi-source vegetation products on regional climate simulation in China. Climate Dynamics, 2023, 61, 2991-3008.	1.7	0
1382	Performance of Different Crop Models in Simulating Soil Temperature. Sensors, 2023, 23, 2891.	2.1	1
1383	Diverging Trends in Rainâ€Onâ€Snow Over High Mountain Asia. Earth's Future, 2023, 11, .	2.4	3
1384	Improved Performance of CLM5.0 Model in Frozen Soil Simulation Over Tibetan Plateau by Implementing the Vegetation Emissivity and Gravel Hydrothermal Schemes. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	2

#	Article	IF	CITATIONS
1386	Trend and Interannual Variations of Reactive Nitrogen Deposition in China During 2008–2017 and the Roles of Anthropogenic Emissions and Meteorological Conditions. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	4
1387	Effects of biogenic volatile organic compounds and anthropogenic NOx emissions on O3 and PM2.5 formation over the northern region of Thailand. Frontiers in Environmental Science, 0, 11, .	1.5	2
1388	Irrigationâ€Induced Crop Growth Enhances Irrigation Cooling Effect Over the North China Plain by Increasing Transpiration. Water Resources Research, 2023, 59, .	1.7	3
1389	The Benefits of Using Stateâ€Ofâ€Theâ€Art Digital Soil Properties Maps to Improve the Modeling of Soil Moisture in Land Surface Models. Water Resources Research, 2023, 59, .	1.7	3
1390	Added value of a regional coupled model: the case study for marine heatwaves in the Caribbean. Climate Dynamics, 0, , .	1.7	0
1391	Effects of Elevated Ozone Exposure on Regional Meteorology and Air Quality in China Through Ozoneâ€Vegetation Coupling. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	1
1392	Impact of Revised Trigger and Closure of the Double-Plume Convective Parameterization on Precipitation Simulations over East Asia. Advances in Atmospheric Sciences, 2023, 40, 1225-1243.	1.9	2
1393	Evolution of the Convective Boundary Layer in a WRF Simulation Nested Down to 100Âm Resolution During a Cloudâ€Free Case of LAFE,Ã2017 and Comparison to Observations. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	1
1394	Prediction of Extremely Severe Cyclonic Storm "Fani―Using Moving Nested Domain. Atmosphere, 2023, 14, 637.	1.0	1
1395	Forecasting the precipitable water vapour along lines of sight in the Chajnantor region from a WRF simulation. Monthly Notices of the Royal Astronomical Society, 2023, 522, 457-465.	1.6	0
1396	Calibration and Evaluation of the WRF-Hydro Model in Simulating the Streamflow over the Arid Regions of Northwest China: A Case Study in Kaidu River Basin. Sustainability, 2023, 15, 6175.	1.6	1
1397	Quantifying the Impact of Land Use and Land Cover Change on Moisture Recycling With Convectionâ€Permitting WRFâ€Tagging Modeling in the Agroâ€Pastoral Ecotone of Northern China. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	4
1398	A Theory for the Response of Tropical Moist Convection to Mechanical Orographic Forcing. Journals of the Atmospheric Sciences, 2022, 79, 1761-1779.	0.6	2
1399	Model-based insights into aerosol perturbation on pristine continental convective precipitation. Atmospheric Chemistry and Physics, 2023, 23, 4545-4557.	1.9	0
1400	Soil Moisture Memory of Land Surface Models Utilized in Major Reanalyses Differ Significantly From SMAP Observation. Earth's Future, 2023, 11, .	2.4	3
1401	Revisiting Biophysical Impacts of Greening on Precipitation Over the Loess Plateau of China Using WRF With Water Vapor Tracers. Geophysical Research Letters, 2023, 50, .	1.5	6
1488	Assimilation of In Situ Meteorological Data to Optimize a Weather Service for Mosquito Control. , 0, ,		0
1501	Process-based modelling. , 2024, , 427-476.		0

~		~	
(11		1JED(דסר
\sim	IAL	NLP	ואכ

#	Article	IF	CITATIONS
1532	Parameterizations of Snow Cover, Snow Albedo and Snow Density in Land Surface Models: A Comparative Review. Asia-Pacific Journal of Atmospheric Sciences, 0, , .	1.3	0
1542	Reducing Model Uncertainty in Physical Parameterizations: Combinational Optimizations Using Genetic Algorithm. Springer Atmospheric Sciences, 2023, , 179-202.	0.4	0
1544	Novel Physical Parameterizations in Vegetated Land Surface Processes forÂCarbon Allocations andÂSnow-Covered Surface Albedo. Springer Atmospheric Sciences, 2023, , 157-178.	0.4	0
1619	Regionale Klimamodellierung. , 2023, , 31-45.		0