Carbonate dissolution during subduction revealed by displays

Nature Geoscience 4, 703-706

DOI: 10.1038/ngeo1246

Citation Report

#	Article	IF	CITATIONS
1	Thermodynamic properties of aqueous sodium sulfate solutions to 773 K and 3 GPa derived from acoustic velocity measurements in the diamond anvil cell. Journal of Chemical Physics, 2012, 137, 224501.	1.2	17
2	GEM OLIVINE AND CALCITE MINERALIZATION PRECIPITATED FROM SUBDUCTION-DERIVED FLUIDS IN THE KOHISTAN ARC-MANTLE (PAKISTAN). Canadian Mineralogist, 2012, 50, 1291-1304.	0.3	18
3	Mgâ€metasomatism of metagranitoids from the Alps: genesis and possible tectonic scenarios. Terra Nova, 2012, 24, 423-436.	0.9	23
4	Metamorphic chemical geodynamics in continental subduction zones. Chemical Geology, 2012, 328, 5-48.	1.4	488
5	CaCO3-III and CaCO3-VI, high-pressure polymorphs of calcite: Possible host structures for carbon in the Earth's mantle. Earth and Planetary Science Letters, 2012, 333-334, 265-271.	1.8	91
6	Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration, 2012, 112, 1-20.	1.5	519
7	Metastable equilibrium in the C-H-O system: Graphite deposition in crustal fluids. American Mineralogist, 2012, 97, 1373-1380.	0.9	20
8	Effects of heterogeneous hydration in the incoming plate, slab rehydration, and mantle wedge hydration on slab-derived H 2 O flux in subduction zones. Earth and Planetary Science Letters, 2012, 353-354, 60-71.	1.8	88
9	Diamond and coesite in ultrahigh-pressure–ultrahigh-temperature granulites from Ceuta, Northern Rif, northwest Africa. Mineralogical Magazine, 2012, 76, 683-704.	0.6	27
10	Mineralogy, petrology, U-Pb geochronology, and geologic evolution of the Dabie-Sulu classic ultrahigh-pressure metamorphic terrane, East-Central China. American Mineralogist, 2012, 97, 1533-1543.	0.9	31
11	Precipitation of rutile and ilmenite needles in garnet: Implications for extreme metamorphic conditions in the Acadian Orogen, U.S.A American Mineralogist, 2012, 97, 840-855.	0.9	77
12	Phase relations during peak metamorphism and decompression of the UHP kyanite eclogites, Pohorje Mountains (Eastern Alps, Slovenia). Lithos, 2012, 144-145, 40-55.	0.6	34
13	Thermal structure and metamorphic evolution of the Piemont-Ligurian metasediments in the northern Western Alps. Swiss Journal of Geosciences, 2013, 106, 63-78.	0.5	31
14	The Alps 1: A working geodynamic model for burial and exhumation of (ultra)high-pressure rocks in Alpine-type orogens. Earth and Planetary Science Letters, 2013, 377-378, 114-131.	1.8	60
15	Trace element composition of continentally subducted slabâ€derived melt: insight from multiphase solid inclusions in ultrahighâ€pressure eclogite in the <scp>D</scp> abie orogen. Journal of Metamorphic Geology, 2013, 31, 453-468.	1.6	52
16	Deep Fluids in Subducted Continental Crust. Elements, 2013, 9, 281-287.	0.5	159
17	Linking Time to the Pressure-Temperature Path for Ultrahigh-Pressure Rocks. Elements, 2013, 9, 273-279.	0.5	34
18	Inclusions of Mn-rich eclogitic garnets in diamonds: Evidence for recycling of the Earth's crust. Doklady Earth Sciences, 2013, 453, 1165-1167.	0.2	1

#	Article	IF	Citations
19	Upper crustal deformation in continentâ€continent collision: A case study from the Bernard nappe complex (Valais, Switzerland). Tectonics, 2013, 32, 1320-1342.	1.3	14
20	Carbon isotope heterogeneity in metamorphic diamond from the Kokchetav UHP dolomite marble, northern Kazakhstan. International Geology Review, 2013, 55, 453-467.	1.1	8
21	The Kokchetav Massif, Kazakhstan: "Type locality―of diamond-bearing UHP metamorphic rocks. Journal of Asian Earth Sciences, 2013, 63, 5-38.	1.0	92
22	Omphacite-bearing calcite marble and associated coesite-bearing pelitic schist from the meta-ophiolitic belt of Chinese western Tianshan. Journal of Asian Earth Sciences, 2013, 76, 37-47.	1.0	35
23	Devolatilization history and trace element mobility in deeply subducted sedimentary rocks: Evidence from Western Alps HP/UHP suites. Chemical Geology, 2013, 342, 1-20.	1.4	95
24	UHP metamorphism recorded by kyanite-bearing eclogite in the Seve Nappe Complex of northern JAmtland, Swedish Caledonides. Gondwana Research, 2013, 23, 865-879.	3.0	74
25	A Raman spectroscopic study of diamond and disordered <i>sp</i> ³ â€carbon in the coesiteâ€bearing Straumen Eclogite Pod, Norway. Journal of Metamorphic Geology, 2013, 31, 19-33.	1.6	36
26	Element recycling from subducting slabs to arc crust: A review. Lithos, 2013, 170-171, 208-223.	0.6	442
27	Ingassing, Storage, and Outgassing of Terrestrial Carbon through Geologic Time. Reviews in Mineralogy and Geochemistry, 2013, 75, 183-229.	2.2	302
28	Graphite formation by carbonate reduction during subduction. Nature Geoscience, 2013, 6, 473-477.	5 . 4	155
29	Discovery of diamond in the Troms \tilde{A}_3 Nappe, Scandinavian Caledonides (N. <scp>N</scp> orway). Journal of Metamorphic Geology, 2013, 31, 691-703.	1.6	36
30	Metasomatism and graphite formation at a lithological interface in Malaspina (Alpine Corsica, France). Contributions To Mineralogy and Petrology, 2013, 166, 1687-1708.	1.2	33
31	Metasomatism in Subduction Zones of Subducted Oceanic Slabs, Mantle Wedges, and the Slab-Mantle Interface. Lecture Notes in Earth System Sciences, 2013, , 289-349.	0.5	23
32	An Experimental Study on COH-bearing Peridotite up to 3·2 GPa and Implications for Crust–Mantle Recycling. Journal of Petrology, 2013, 54, 453-479.	1.1	101
33	The Chemistry of Carbon in Aqueous Fluids at Crustal and Upper-Mantle Conditions: Experimental and Theoretical Constraints. Reviews in Mineralogy and Geochemistry, 2013, 75, 109-148.	2.2	115
34	Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9663-9668.	3.3	120
35	Chlorine isotope constraints on fluidâ€rock interactions during subduction and exhumation of the Zermattâ€Saas ophiolite. Geochemistry, Geophysics, Geosystems, 2013, 14, 4370-4391.	1.0	33
36	Hydrothermal Graphitic Carbon. Elements, 2014, 10, 427-433.	0.5	45

#	Article	IF	CITATIONS
37	The tectonometamorphic evolution of the Sesia–Dent Blanche nappes (internal Western Alps): review and synthesis. Swiss Journal of Geosciences, 2014, 107, 309-336.	0.5	91
38	Jadeite- and dolomite-bearing coesite eclogite from western Tianshan, NW China. European Journal of Mineralogy, 2014, 26, 245-256.	0.4	21
39	Evolution of carbon dioxide-bearing saline fluids in the mantle wedge beneath the Northeast Japan arc. Contributions To Mineralogy and Petrology, 2014, 168, 1.	1.2	37
40	Composite carbonate and silicate multiphase solid inclusions in metamorphic garnet from ultrahighâ€ <i>P</i> eclogite in the Dabie orogen. Journal of Metamorphic Geology, 2014, 32, 961-980.	1.6	25
41	Subduction of Continental Crust to Mantle Depth. , 2014, , 309-340.		88
42	Carbon dioxide released from subduction zones by fluid-mediated reactions. Nature Geoscience, 2014, 7, 355-360.	5.4	272
43	A purely structural restoration of the NFP20â€East cross section and potential tectonic overpressure in the Adula nappe (central Alps). Tectonics, 2014, 33, 656-685.	1.3	39
44	Geochemistry of primary-carbonate bearing K-rich igneous rocks in the Awulale Mountains, western Tianshan: Implications for carbon-recycling in subduction zone. Geochimica Et Cosmochimica Acta, 2014, 143, 143-164.	1.6	28
45	Insights into subduction zone sulfur recycling from isotopic analysis of eclogite-hosted sulfides. Chemical Geology, 2014, 365, 1-19.	1.4	73
46	Raman spectroscopy in heavy-mineral studies. Geological Society Special Publication, 2014, 386, 395-412.	0.8	66
47	Garnet variety and zircon ages in UHP meta-sedimentary rocks from the Jubrique zone (Alpuj \tilde{A}_i rride) Tj ETQq0 0 0 International Geology Review, 2014, 56, 845-868.	rgBT /Ov	
48	Important role for organic carbon in subduction-zone fluids in the deep carbon cycle. Nature Geoscience, 2014, 7, 909-913.	5.4	132
49	Subduction zone metamorphic pathway for deep carbon cycling: I. Evidence from HP/UHP metasedimentary rocks, Italian Alps. Chemical Geology, 2014, 386, 31-48.	1.4	89
50	Subduction goes organic. Nature Geoscience, 2014, 7, 860-861.	5.4	4
51	Recycling of crustal materials through study of ultrahigh-pressure minerals in collisional orogens, ophiolites, and mantle xenoliths: A review. Journal of Asian Earth Sciences, 2014, 96, 386-420.	1.0	72
52	Rb–Sr ages from phengite inclusions in garnets from high pressure rocks of the Swiss Western Alps. Earth and Planetary Science Letters, 2014, 395, 205-216.	1.8	39
53	The Alps 2: Controls on crustal subduction and (ultra)highâ€pressure rock exhumation in Alpineâ€type orogens. Journal of Geophysical Research: Solid Earth, 2014, 119, 5987-6022.	1.4	35
54	Chemical and Isotopic Cycling in Subduction Zones. , 2014, , 703-747.		59

#	Article	IF	CITATIONS
55	Diamond formation by carbon saturation in C–O–H fluids during cold subduction of oceanic lithosphere. Geochimica Et Cosmochimica Acta, 2014, 143, 68-86.	1.6	52
56	In situ Raman study and thermodynamic model of aqueous carbonate speciation in equilibrium with aragonite under subduction zone conditions. Geochimica Et Cosmochimica Acta, 2014, 132, 375-390.	1.6	123
57	Diamond Formation: A Stable Isotope Perspective. Annual Review of Earth and Planetary Sciences, 2014, 42, 699-732.	4.6	130
58	Kinematics and dynamics of tectonic nappes: 2-D numerical modelling and implications for high and ultra-high pressure tectonism in the Western Alps. Tectonophysics, 2014, 631, 160-175.	0.9	47
59	Fluid/melt in continental deep subduction zones: Compositions and related geochemical fractionations. Science China Earth Sciences, 2015, 58, 1457-1476.	2.3	26
60	Contrasting styles of (U)HP rock exhumation along the Cenozoic Adriaâ€Europe plate boundary (Western Alps, Calabria, Corsica). Geochemistry, Geophysics, Geosystems, 2015, 16, 1786-1824.	1.0	102
61	An eclogite-bearing continental tectonic slice in the Zermatt–Saas high-pressure ophiolites at Trockener Steg (Zermatt, Swiss Western Alps). Lithos, 2015, 232, 336-359.	0.6	25
62	Shear zone and nappe formation by thermal softening, related stress and temperature evolution, and application to the Alps. Journal of Metamorphic Geology, 2015, 33, 887-908.	1.6	27
63	Current challenges for explaining (ultra)highâ€pressure tectonism in the Pennine domain of the Central and Western Alps. Journal of Metamorphic Geology, 2015, 33, 869-886.	1.6	32
64	Raman Bands Sorted by Nameâ~†â~†â€œTo view the full reference list for the book, click here― , 2015, , 419-43	7.	0
67	Magmatism, mantle evolution and geodynamics at the converging plate margins of Italy. Journal of the Geological Society, 2015, 172, 407-427.	0.9	63
68	Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3997-4006.	3.3	492
69	Ultra-oxidized rocks in subduction m \tilde{A} ©langes? Decoupling between oxygen fugacity and oxygen availability in a Mn-rich metasomatic environment. Lithos, 2015, 226, 116-130.	0.6	47
70	Metal and fluid sources in a potential world-class gold deposit: El-Sid mine, Egypt. International Journal of Earth Sciences, 2015, 104, 645-661.	0.9	21
71	Dynamics of mineral crystallization from precipitated slab-derived fluid phase: first in situ synchrotron X-ray measurements. Contributions To Mineralogy and Petrology, 2015, 169, 1.	1.2	13
72	The chemical behavior of fluids released during deep subduction based on fluid inclusions. American Mineralogist, 2015, 100, 352-377.	0.9	113
73	Subduction zone metamorphic pathway for deep carbon cycling: II. Evidence from HP/UHP metabasaltic rocks and ophicarbonates. Chemical Geology, 2015, 412, 132-150.	1.4	68
74	Discovery of metamorphic microdiamonds from the parautochthonous units of the Variscan French Massif Central. Gondwana Research, 2015, 28, 954-960.	3.0	10

#	Article	IF	Citations
75	Combined geochemistry and geochronology constrains coupled subduction of oceanic and continental crust in the Huwan shear zone, central China. American Mineralogist, 2015, 100, 181-194.	0.9	8
76	Geochemistry and petrology of listvenite in the Samail ophiolite, Sultanate of Oman: Complete carbonation of peridotite during ophiolite emplacement. Geochimica Et Cosmochimica Acta, 2015, 160, 70-90.	1.6	121
77	Compressibility of carbonophosphate bradleyite Na3Mg(CO3)(PO4) by X-ray diffraction and Raman spectroscopy. Physics and Chemistry of Minerals, 2015, 42, 191-201.	0.3	16
78	Diamond in metasedimentary crustal rocks from Pohorje, Eastern Alps: a window to deep continental subduction. Journal of Metamorphic Geology, 2015, 33, 495-512.	1.6	55
79	Dating the initiation of Piemonte-Liguria Ocean subduction: Lu–Hf garnet chronometry of eclogites from the Theodul Glacier Unit (Zermatt-Saas zone, Switzerland). Swiss Journal of Geosciences, 2015, 108, 183-199.	0.5	26
80	Talc–carbonate alteration of ultramafic rocks within the Leka Ophiolite Complex, Central Norway. Lithos, 2015, 227, 21-36.	0.6	39
81	Diamond formation due to a pH drop during fluid–rock interactions. Nature Communications, 2015, 6, 8702.	5.8	76
82	Structures and stability of calcium and magnesium carbonates at mantle pressures. Physical Review B, 2015, 91, .	1.1	70
83	Graphite pseudomorphs after diamonds: An experimental study of graphite morphology and the role of H2O in the graphitisation process. Lithos, 2015, 236-237, 16-26.	0.6	12
84	<i>P-V-T</i> equation of state and high-pressure behavior of CaCO ₃ aragonite. American Mineralogist, 2015, 100, 2323-2329.	0.9	27
85	The solubility of rocks in metamorphic fluids: A model for rock-dominated conditions to upper mantle pressure and temperature. Earth and Planetary Science Letters, 2015, 430, 486-498.	1.8	68
86	UHP impure marbles from the Dabie Mountains: Metamorphic evolution and carbon cycling in continental subduction zones. Lithos, 2015, 212-215, 280-297.	0.6	23
87	Geological map of the Mount Avic massif (Western Alps Ophiolites). Journal of Maps, 2015, 11, 126-135.	1.0	14
88	Triassic to Early Jurassic (<i>c</i> .Â200ÂMa) <scp>UHP</scp> metamorphism in the Central Rhodopes: evidence from U–Pb–Th dating of monazite in diamondâ€bearing gneiss from Chepelare (Bulgaria). Journal of Metamorphic Geology, 2016, 34, 265-291.	1.6	22
89	A possible new UHP unit in the Western Alps as revealed by ancient Roman quern-stones from Costigliole Saluzzo, Italy. European Journal of Mineralogy, 2016, 28, 1215-1232.	0.4	3
90	Zinc isotope evidence for sulfate-rich fluid transfer across subduction zones. Nature Communications, 2016, 7, 13794.	5.8	74
91	Carbonation by fluid–rock interactions at high-pressure conditions: Implications for carbon cycling in subduction zones. Earth and Planetary Science Letters, 2016, 445, 146-159.	1.8	80
92	Geochemical constraints on petrogenesis of marble-hosted eclogites from the Sulu orogen in China. Chemical Geology, 2016, 436, 35-53.	1.4	21

#	Article	IF	CITATIONS
93	Diamonds from Dachine, French Guiana: A unique record of early Proterozoic subduction. Lithos, 2016, 265, 82-95.	0.6	26
94	Quantitative analysis of COH fluids synthesized at HP – HT conditions: an optimized methodology to measure volatiles in experimental capsules. Geofluids, 2016, 16, 841-855.	0.3	16
95	Exhumation of the Dora Maira ultrahighâ€pressure unit by buoyant uprise within a lowâ€viscosity mantle obliqueâ€slip shear zone. Terra Nova, 2016, 28, 348-355.	0.9	11
96	Ocean floor and subduction record in the Zermattâ€Saas rodingites, Valtournanche, Western Alps. Journal of Metamorphic Geology, 2016, 34, 941-961.	1.6	34
97	Deep carbon cycle recorded by calciumâ€silicate rocks (rodingites) in a subductionâ€related ophiolite. Geophysical Research Letters, 2016, 43, 11,635.	1.5	15
98	Magnesium isotopic heterogeneity across the cratonic lithosphere in eastern China and its origins. Earth and Planetary Science Letters, 2016, 451, 77-88.	1.8	36
99	Geochemical Signatures and Inclusions in Apatite as Markers of a Hidden Ultrahigh-Pressure Event (Betic Cordillera, Spain). Journal of Geology, 2016, 124, 277-292.	0.7	1
100	Diamond growth in mantle fluids. Lithos, 2016, 265, 4-15.	0.6	27
101	Implications for metal and volatile cycles from the pH of subduction zone fluids. Nature, 2016, 539, 420-424.	13.7	93
102	Carbon speciation in saline solutions in equilibrium with aragonite at high pressure. Chemical Geology, 2016, 431, 44-53.	1.4	38
103	Dating prograde fluid pulses during subduction by in situ U–Pb and oxygen isotope analysis. Contributions To Mineralogy and Petrology, 2016, 171, 1.	1.2	75
104	Mg-Sr isotopes of low-δ ²⁶ Mg basalts tracing recycled carbonate species: Implication for the initial melting depth of the carbonated mantle in Eastern China. International Geology Review, 2016, 58, 1350-1362.	1.1	53
105	Raman study of diamond-based abrasives, and possible artefacts in detecting UHP microdiamond. Lithos, 2016, 265, 317-327.	0.6	15
106	White mica K–Ar geochronology of HP–UHP units in the Lago di Cignana area, western Alps, Italy: Tectonic implications for exhumation. Lithos, 2016, 248-251, 109-118.	0.6	18
107	Isotopic evidence for iron mobility during subduction. Geology, 2016, 44, 215-218.	2.0	98
108	High-pressure metamorphic age and significance of eclogite-facies continental fragments associated with oceanic lithosphere in the Western Alps (Etirol-Levaz Slice, Valtournenche, Italy). Lithos, 2016, 252-253, 145-159.	0.6	22
109	Carbonation of subduction-zone serpentinite (high-pressure ophicarbonate; Ligurian Western Alps) and implications for the deep carbon cycling. Earth and Planetary Science Letters, 2016, 441, 155-166.	1.8	96
110	Decarbonation of subducting slabs: Insight from petrological–thermomechanical modeling. Gondwana Research, 2016, 36, 314-332.	3.0	30

#	ARTICLE	IF	CITATIONS
111	Kinematics of syn- and post-exhumational shear zones at Lago di Cignana (Western Alps, Italy): constraints on the exhumation of Zermatt–Saas (ultra)high-pressure rocks and deformation along the Combin Fault and Dent Blanche Basal Thrust. International Journal of Earth Sciences, 2017, 106, 215-236.	0.9	11
112	Dissolving dolomite in a stable UHP mineral assemblage: Evidence from Cal-Dol marbles of the Dora-Maira Massif (Italian Western Alps). American Mineralogist, 2017, 102, 42-60.	0.9	33
113	Effects of decarbonation on elemental behaviors during subduction-zone metamorphism: Evidence from a titanite-rich contact between eclogite-facies marble and omphacitite. Journal of Asian Earth Sciences, 2017, 135, 338-346.	1.0	2
114	Microdiamond on Ãreskutan confirms regional UHP metamorphism in the Seve Nappe Complex of the Scandinavian Caledonides. Journal of Metamorphic Geology, 2017, 35, 541-564.	1.6	54
115	Low-l´13C carbonates in the Miocene basalt of the northern margin of the North China Craton: Implications for deep carbon recycling. Journal of Asian Earth Sciences, 2017, 144, 110-125.	1.0	7
116	Geochemical constraints on origin of hydrothermal volatiles from southern Tibet and the Himalayas: Understanding the degassing systems in the India-Asia continental subduction zone. Chemical Geology, 2017, 469, 19-33.	1.4	32
117	CO ₂ â€bearing fluid inclusions associated with diamonds in zircon from the UHP Kokchetav gneisses. Journal of Raman Spectroscopy, 2017, 48, 1566-1573.	1.2	10
118	The behavior of iron and zinc stable isotopes accompanying the subduction of mafic oceanic crust: A case study from <scp>W</scp> estern <scp>A</scp> lpine ophiolites. Geochemistry, Geophysics, Geosystems, 2017, 18, 2562-2579.	1.0	68
119	Diopside, apatite, and rutile in an ultrahigh pressure impure marble from the Dabie Shan, eastern China: A record of eclogite-facies metasomatism during exhumation. Chemical Geology, 2017, 466, 123-139.	1.4	7
120	A new animation of subduction zone processes developed for the undergraduate and community college audience., 2017, 13, 628-643.		6
121	Multiphase solid inclusions in ultrahigh-pressure metamorphic rocks: A snapshot of anatectic melts during continental collision. Journal of Asian Earth Sciences, 2017, 145, 192-204.	1.0	22
122	Polyphase greenschist-facies reactivation of the Dent Blanche Basal Thrust (Western Alps) during progressive Alpine orogeny. Swiss Journal of Geosciences, 2017, 110, 503-521.	0.5	4
123	Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. National Science Review, 2017, 4, 111-120.	4.6	240
124	Redistribution of Iron and Titanium in Highâ€Pressure Ultramafic Rocks. Geochemistry, Geophysics, Geosystems, 2017, 18, 3869-3890.	1.0	8
125	Could sedimentary carbonates be recycled into the lower mantle? Constraints from Mg isotopic composition of Emeishan basalts. Lithos, 2017, 292-293, 250-261.	0.6	18
126	An internally consistent thermodynamic dataset for aqueous species in the system Ca-Mg-Na-K-Al-Si-O-H-C-Cl to 800 °C and 5 kbar. Numerische Mathematik, 2017, 317, 755-806.	0.7	30
127	Silicate dissolution boosts the CO2 concentrations in subduction fluids. Nature Communications, 2017, 8, 616.	5.8	45
128	Element mobility during regional metamorphism in crustal and subduction zone environments with a focus on the rare earth elements (REE). American Mineralogist, 2017, 102, 1796-1821.	0.9	61

#	ARTICLE	IF	CITATIONS
129	Geology of the Saint-Marcel valley metaophiolites (Northwestern Alps, Italy). Journal of Maps, 2017, 13, 707-717.	1.0	8
130	Application of laser Raman micro-analyses to Earth and planetary materials. Journal of Asian Earth Sciences, 2017, 145, 309-333.	1.0	52
131	Ultradeep diamonds originate from deep subducted sedimentary carbonates. Science China Earth Sciences, 2017, 60, 207-217.	2.3	7
132	Progress on petrology of high- and ultrahigh-pressure metamorphic rocks: 25 years. Journal of the Geological Society of Japan, 2017, 123, 661-675.	0.2	1
133	Rollback Orogeny Model for the Evolution of the Swiss Alps. Tectonics, 2018, 37, 1097-1115.	1.3	44
134	Field and petrological study of metasomatism and high-pressure carbonation from lawsonite eclogite-facies terrains, Alpine Corsica. Lithos, 2018, 304-307, 16-37.	0.6	33
135	Intra-slab COH fluid fluxes evidenced by fluid-mediated decarbonation of lawsonite eclogite-facies altered oceanic metabasalts. Lithos, 2018, 304-307, 211-229.	0.6	16
136	Three types of element fluxes from metabasite into peridotite in analogue experiments: Insights into subduction-zone processes. Lithos, 2018, 302-303, 203-223.	0.6	11
137	Degassing of organic carbon during regional metamorphism of pelites, Wepawaug Schist, Connecticut, USA. Chemical Geology, 2018, 490, 30-44.	1.4	13
138	Experimental Phase Relations in Altered Oceanic Crust: Implications for Carbon Recycling at Subduction Zones. Journal of Petrology, 2018, 59, 299-320.	1.1	39
139	Active carbon sequestration in the Alpine mantle wedge and implications for long-term climate trends. Scientific Reports, 2018, 8, 4740.	1.6	21
140	Dating of ultramafic rocks from the Western Alps ophiolites discloses Late Cretaceous subduction ages in the Zermatt-Saas Zone. Geological Magazine, 2018, 155, 298-315.	0.9	35
141	Nappe stack of <scp>P</scp> iemonte– <scp>L</scp> igurian units south of <scp>A</scp> osta <scp>V</scp> alley: New evidence from <scp>U</scp> rtier <scp>V</scp> alley (<scp>W</scp> estern) Tj ETQq0 () OorgeBT/C	Overbock 10 T
142	Elemental and isotopic (C, O, Sr, Nd) compositions of Late Paleozoic carbonated eclogite and marble from the SW Tianshan UHP belt, NW China: Implications for deep carbon cycle. Journal of Asian Earth Sciences, 2018, 153, 307-324.	1.0	17
143	Fourier transform infrared spectroscopy data and carbon isotope characteristics of the ophiolite-hosted diamonds from the Luobusa ophiolite, Tibet, and Ray-Iz ophiolite, Polar Urals. Lithosphere, 2018, 10, 156-169.	0.6	27
144	Neodymium isotope disequilibria in subducted sediments, and potential consequences for subduction-zone recycling. Geology, 2018, 46, 815-818.	2.0	16
145	Fluid properties and dynamics along the seismogenic plate interface., 2018, 14, 469-491.		20
146	2D-thermo-mechanical modelling of spatial P-T variations in heterogeneous shear zones. Italian Journal of Geosciences, 2018, 137, 272-282.	0.4	6

#	Article	IF	CITATIONS
147	From oceanic to continental subduction: Implications for the geochemical and redox evolution of the supra-subduction mantle., 2018, 14, 2311-2336.		41
148	Garnet peridotites reveal spatial and temporal changes in the oxidation potential of subduction. Scientific Reports, 2018, 8, 16411.	1.6	14
149	Experimental Evidence for Opposite Fluxes of Sodium, Potassium, and CO2 during Glaucophane Schist Interaction with Harzburgite and Websterite in Subduction Zones. Petrology, 2018, 26, 599-616.	0.2	3
150	The subduction plate interface: rock record and mechanical coupling (from long to short) Tj ETQq1 1 0.784314 rg	gBT <i> </i> Overl	ock 10 Tf 50 179
151	Rapid migration of CO2-rich micro-fluids in calcite matrices. Scientific Reports, 2018, 8, 14080.	1.6	1
152	Subducted Mg-rich carbonates into the deep mantle wedge. Earth and Planetary Science Letters, 2018, 503, 118-130.	1.8	39
153	Fluid-controlled element transport and mineralization in subduction zones. Solid Earth Sciences, 2018, 3, 87-104.	0.8	12
154	Electrolytic fluid speciation by Gibbs energy minimization and implications for subduction zone mass transfer. Earth and Planetary Science Letters, 2018, 501, 90-102.	1.8	69
155	UHP Ti-chondrodite in the Zermatt-Saas serpentinite: Constraints on a new tectonic scenario. American Mineralogist, 2018, 103, 1002-1005.	0.9	26
156	Magnesium isotope record of fluid metasomatism along the slab-mantle interface in subduction zones. Geochimica Et Cosmochimica Acta, 2018, 237, 312-319.	1.6	17
157	Calcium isotope evidence for subduction-enriched lithospheric mantle under the northern North China Craton. Geochimica Et Cosmochimica Acta, 2018, 238, 55-67.	1.6	39
158	Formation of abiotic hydrocarbon from reduction of carbonate in subduction zones: Constraints from petrological observation and experimental simulation. Geochimica Et Cosmochimica Acta, 2018, 239, 390-408.	1.6	70
159	Carbonate Transfer during the Onset of Slab Devolatilization: New Insights from Fe and Zn Stable Isotopes. Journal of Petrology, 2018, 59, 1145-1166.	1.1	55
160	Fluid–rock interactions in the shallow Mariana forearc: carbon cycling and redox conditions. Solid Earth, 2019, 10, 907-930.	1.2	16
161	Effect of Serpentinite Dehydration in Subducting Slabs on Isotopic Diversity in Recycled Oceanic Crust and Its Role in Isotopic Heterogeneity of the Mantle. Geochemistry, Geophysics, Geosystems, 2019, 20, 5449-5472.	1.0	8
162	Superposed Sedimentary and Tectonic Block-In-Matrix Fabrics in a Subducted Serpentinite Mélange (High-Pressure Zermatt Saas Ophiolite, Western Alps). Geosciences (Switzerland), 2019, 9, 358.	1.0	13
163	Pre-UHP titanite archives pro- and retrograde episodes of fluid-marble-interaction (Dabie Shan UHP) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
164	Deep carbon cycle in subduction zones. Science China Earth Sciences, 2019, 62, 1764-1782.	2.3	23

#	Article	IF	CITATIONS
165	Devolatilization of Subducting Slabs, Part I: Thermodynamic Parameterization and Open System Effects. Geochemistry, Geophysics, Geosystems, 2019, 20, 5667-5690.	1.0	6
166	Diamond growth from organic compounds in hydrous fluids deep within the Earth. Nature Communications, 2019, 10, 4952.	5.8	38
167	Carbonation and decarbonation reactions: Implications for planetary habitability. American Mineralogist, 2019, 104, 1369-1380.	0.9	30
168	CO2-Rich Melts in Earth. , 2019, , 129-162.		10
169	How Do Subduction Zones Regulate the Carbon Cycle?., 2019,, 276-312.		21
170	Petrology and Geochemistry of Serpentinites Associated with the Ultra-High Pressure Lago di Cignana Unit (Italian Western Alps). Journal of Petrology, 2019, 60, 1229-1262.	1.1	20
171	Isotopic Compositions of Sulfides in Exhumed Highâ€Pressure Terranes: Implications for Sulfur Cycling in Subduction Zones. Geochemistry, Geophysics, Geosystems, 2019, 20, 3347-3374.	1.0	42
172	Tracing the Deep Carbon Cycle Using Metal Stable Isotopes: Opportunities and Challenges. Engineering, 2019, 5, 448-457.	3.2	52
173	Graphitic material in fault zones: Implications for fault strength and carbon cycle. Earth-Science Reviews, 2019, 194, 109-124.	4.0	18
174	Diamond isotope compositions indicate altered igneous oceanic crust dominates deep carbon recycling. Earth and Planetary Science Letters, 2019, 516, 190-201.	1.8	53
175	Chlorine and lithium behavior in metasedimentary rocks during prograde metamorphism: A comparative study of exhumed subduction complexes (Catalina Schist and Schistes Lustrés). Lithos, 2019, 336-337, 40-53.	0.6	18
176	Seismicity and mineral destabilizations in the subducting mantle up to 6†GPa, 200†km depth. Lithos, 2019, 334-335, 205-230.	0.6	39
177	Extended Deep Earth Water Model for predicting major element mantle metasomatism. Geochimica Et Cosmochimica Acta, 2019, 254, 192-230.	1.6	72
178	Crustal reworking at convergent margins traced by Fe isotopes in I-type intrusions from the Gangdese arc, Tibetan Plateau. Chemical Geology, 2019, 510, 47-55.	1.4	8
179	On the Role of the Urey Reaction in Extracting Carbon From the Earth's Atmosphere and Adding It to the Continental Crust. Frontiers in Astronomy and Space Sciences, 2019, 6, .	1.1	1
180	Devolatilization of Subducting Slabs, Part II: Volatile Fluxes and Storage. Geochemistry, Geophysics, Geosystems, 2019, 20, 6199-6222.	1.0	17
181	Carbonation and the Urey reaction. American Mineralogist, 2019, 104, 1365-1368.	0.9	2
182	Tectonic implications of P-T paths derived for garnet-bearing felsic gneisses from the Dabie and Sulu ultrahigh pressure terranes, east-central China. Numerische Mathematik, 2019, 319, 788-817.	0.7	5

#	Article	IF	Citations
183	Metamorphism and fluid evolution of the Sumdo eclogite, Tibet: Constraints from mineral chemistry, fluid inclusions and oxygen isotopes. Journal of Asian Earth Sciences, 2019, 172, 292-307.	1.0	10
184	Redox processes and the role of carbon-bearing volatiles from the slab–mantle interface to the mantle wedge. Journal of the Geological Society, 2019, 176, 388-397.	0.9	29
185	Ideal and real structures of different forms of carbon, with some remarks on their geological significance. Journal of the Geological Society, 2019, 176, 337-347.	0.9	17
186	Why are diamonds preserved in UHP metamorphic complexes? Experimental evidence for the effect of pressure on diamond graphitization. International Geology Review, 2019, 61, 504-519.	1.1	7
187	Scales of fluid-rock interaction and carbon mobility in the deeply underplated and HP-Metamorphosed Schistes Lustrés, Western Alps. Lithos, 2020, 354-355, 105229.	0.6	25
188	Recent progresses in plate subduction and element recycling. Solid Earth Sciences, 2020, 5, 1-7.	0.8	8
189	Initiation of the North China Craton destruction: Constraints from the diamond-bearing alkaline basalts from Lan'gan, China. Gondwana Research, 2020, 80, 228-243.	3.0	10
190	Calcium isotopic fractionation during plate subduction: Constraints from back-arc basin basalts. Geochimica Et Cosmochimica Acta, 2020, 270, 379-393.	1.6	29
191	Molybdenum and boron isotopic evidence for carbon-recycling via carbonate dissolution in subduction zones. Geochimica Et Cosmochimica Acta, 2020, 278, 340-352.	1.6	25
192	Metamorphism, fluid behavior and magmatism in oceanic subduction zones. Science China Earth Sciences, 2020, 63, 52-77.	2.3	15
193	Fluid-mediated carbon release from serpentinite-hosted carbonates during dehydration of antigorite-serpentinite in subduction zones. Earth and Planetary Science Letters, 2020, 531, 115964.	1.8	36
194	The formation of graphite-rich eclogite vein in S.W. Tianshan (China) and its implication for deep carbon cycling in subduction zone. Chemical Geology, 2020, 533, 119430.	1.4	13
195	Silicate weathering in anoxic marine sediment as a requirement for authigenic carbonate burial. Earth-Science Reviews, 2020, 200, 102960.	4.0	65
196	Multistage CO2 sequestration in the subduction zone: Insights from exhumed carbonated serpentinites, SW Tianshan UHP belt, China. Geochimica Et Cosmochimica Acta, 2020, 270, 218-243.	1.6	22
197	Carbon dioxide as a proxy for orogenic gold source. Ore Geology Reviews, 2020, 127, 103829.	1.1	4
198	Petrochronological close-up on the thermal structure of a paleo-subduction zone (W. Alps). Earth and Planetary Science Letters, 2020, 547, 116446.	1.8	34
199	Feedback between high-pressure genesis of abiotic methane and strain localization in subducted carbonate rocks. Scientific Reports, 2020, 10, 9848.	1.6	18
200	Tectono-Metamorphic Evolution of Serpentinites from Lanzo Valleys Subduction Complex (Piemonte—Sesia-Lanzo Zone Boundary, Western Italian Alps). Minerals (Basel, Switzerland), 2020, 10, 985.	0.8	3

#	Article	IF	CITATIONS
201	Evaluation and application of the quartz-inclusions-in-epidote mineral barometer. American Mineralogist, 2020, 105, 1140-1151.	0.9	12
202	The origin of arc basalts: New advances and remaining questions. Science China Earth Sciences, 2020, 63, 1969-1991.	2.3	21
203	Formation of Spessartine and CO2 via Rhodochrosite Decarbonation along a Hot Subduction P-T Path. Minerals (Basel, Switzerland), 2020, 10, 703.	0.8	3
204	Dehydration at subduction zones and the geochemistry of slab fluids. Science China Earth Sciences, 2020, 63, 1925-1937.	2.3	7
205	Decarbonation Reactions Involving Ankerite and Dolomite under upper Mantle P,T-Parameters: Experimental Modeling. Minerals (Basel, Switzerland), 2020, 10, 715.	0.8	10
206	Pervasive subduction zone devolatilization recycles CO2 into the forearc. Nature Communications, 2020, 11, 6220.	5.8	44
207	Mg and Zn Isotope Evidence for Two Types of Mantle Metasomatism and Deep Recycling of Magnesium Carbonates. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020684.	1.4	29
210	Tracing fluid transfers in subduction zones: an integrated thermodynamic and & amp; t;i>î & amp; t; >& t;sup>18& t; sup>O fractionation modelling approach. Solid Earth, 2020, 11, 307-328.	1.2	18
211	Significant Î'44/40Ca variations between carbonate- and clay-rich marine sediments from the Lesser Antilles forearc and implications for mantle heterogeneity. Geochimica Et Cosmochimica Acta, 2020, 276, 239-257.	1.6	13
212	Fluid evolution of Indus basin, Ladakh North-West Himalaya, India: constraint from fluid inclusion and oxygen isotope thermometry. International Journal of Earth Sciences, 2020, 109, 669-687.	0.9	7
213	Boron isotope record of peak metamorphic ultrahigh-pressure and retrograde fluid–rock interaction in white mica (Lago di Cignana, Western Alps). Contributions To Mineralogy and Petrology, 2020, 175, 20.	1.2	20
214	Miocene Olivine Leucitites in the Hoh Xil Basin, Northern Tibet: Implications for Intracontinental Lithosphere Melting and Surface Uplift of the Tibetan Plateau. Journal of Petrology, 2020, 61, .	1.1	9
215	Ophicarbonate evolution from seafloor to subduction and implications for deep-Earth C cycling. Chemical Geology, 2020, 546, 119626.	1.4	21
216	Efficient Carbon Recycling at the Centralâ€Northern Lesser Antilles Arc: Implications to Deep Carbon Recycling in Global Subduction Zones. Geophysical Research Letters, 2020, 47, e2020GL086950.	1.5	3
217	Platinum group element mobilization in the mantle enhanced by recycled sedimentary carbonate. Earth and Planetary Science Letters, 2020, 541, 116262.	1.8	15
218	Tectono-metamorphic evolution of UHP Zermatt-Saas serpentinites: a tool for vertical palaeogeographic restoration. International Geology Review, 2021, 63, 1236-1261.	1.1	8
219	HP tectonoâ€metamorphic evolution of the Internal Piedmont Zone in Susa Valley (Western Alps): New petrologic insight from garnet+chloritoidâ€bearing micaschists and Fe–Ti metagabbro. Journal of Metamorphic Geology, 2021, 39, 391-416.	1.6	11
220	Geochemical evidence for forearc metasomatism of peridotite in the Xigaze ophiolite during subduction initiation in Neo-Tethyan Ocean, south to Tibet. Lithos, 2021, 380-381, 105896.	0.6	16

#	Article	IF	Citations
221	Extensive fluid–rock interaction and pressure solution in a UHP fluid pathway recorded by garnetite, Lago di Cignana, Western Alps. Journal of Metamorphic Geology, 2021, 39, 501-518.	1.6	8
222	Insights on the deep carbon cycle from the electrical conductivity of carbon-bearing aqueous fluids. Scientific Reports, 2021, 11, 3745.	1.6	6
224	Under Pressure: High-Pressure Metamorphism in the Alps. Elements, 2021, 17, 17-22.	0.5	12
225	Oxidation of the deep big mantle wedge by recycled carbonates: Constraints from highly siderophile elements and osmium isotopes. Geochimica Et Cosmochimica Acta, 2021, 295, 207-223.	1.6	15
226	Subduction zone sulfur mobilization and redistribution by intraslab fluid–rock interaction. Geochimica Et Cosmochimica Acta, 2021, 297, 40-64.	1.6	9
227	Evolution of Intraplate Alkaline to Tholeiitic Basalts via Interaction Between Carbonated Melt and Lithospheric Mantle. Journal of Petrology, 2021, 62, .	1.1	25
228	Subduction of oceanic lithosphere in the Alps: Selective and archetypal from (slow-spreading) oceans. Earth-Science Reviews, 2021, 214, 103517.	4.0	48
230	Hidden intact coesite in deeply subducted rocks. Earth and Planetary Science Letters, 2021, 558, 116763.	1.8	6
231	Calcium Stable Isotopes of Tonga and Mariana Arc Lavas: Implications for Slab Fluidâ€Mediated Carbonate Transfer in Cold Subduction Zones. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020207.	1.4	4
232	Metasediments Covering Ophiolites in the HP Internal Belt of the Western Alps: Review of Tectono-Stratigraphic Successions and Constraints for the Alpine Evolution. Minerals (Basel,) Tj ETQq1 1 0.7843	140rg8T/C	Dveslock 10 Tf
233	Evidence from HP/UHP metasediments for recycling of isotopically heterogeneous potassium into the mantle. American Mineralogist, 2022, 107, 350-356.	0.9	12
234	Metamorphic microdiamond formation is controlled by water activity, phase transitions and temperature. Scientific Reports, 2021, 11, 7694.	1.6	5
235	Earth's Nitrogen and Carbon Cycles. Space Science Reviews, 2021, 217, 1.	3.7	12
236	Release of CO ₂ in Cold Subduction Zones by Hydrous Carbonatitic Liquids. Geophysical Research Letters, 2021, 48, e2021GL092550.	1.5	5
237	Effect of cationic substitution on the pressure-induced phase transitions in calcium carbonate. American Mineralogist, 2021, 106, 549-558.	0.9	4
238	Rodingitization records from ocean-floor to high pressure metamorphism in the Xigaze ophiolite, southern Tibet. Gondwana Research, 2022, 104, 126-153.	3.0	12
239	Local variations of metamorphic record from compositionally heterogeneous rocks (Cima di) Tj ETQq0 0 0 rgBT /0106126.	Overlock 1 0.6	10 Tf 50 107 ⁻ 4
240	Recycling of Paleo-Asian Ocean carbonates and its influence on the lithospheric composition of the North China Craton. Science China Earth Sciences, 2021, 64, 1346-1362.	2.3	5

#	Article	IF	CITATIONS
241	Deep carbon cycle constrained by carbonate solubility. Nature Communications, 2021, 12, 4311.	5.8	41
242	Comparative Analysis of the Sedimentary Cover Units of the Jurassic Western Tethys Ophiolites in the Northern Apennines and Western Alps (Italy): Processes of the Formation of Mass-Transport and Chaotic Deposits during Seafloor Spreading and Subduction Zone Tectonics. Journal of Geology, 2021, 129. 533-561.	0.7	13
243	Retrograde carbon sequestration in orogenic complexes: A case study from the Chinese southwestern Tianshan. Lithos, 2021, 392-393, 106151.	0.6	4
244	Elastic anisotropies of rocks in a subduction and exhumation setting. Solid Earth, 2021, 12, 1801-1828.	1.2	7
245	Vaterite in a decrepitated diamond-bearing inclusion in zircon from a stromatic migmatite in the Chinese Sulu ultrahigh-pressure metamorphic belt. American Mineralogist, 2022, 107, 1410-1424.	0.9	5
246	Along-dip variations of subduction fluids: The 30–80 km depth traverse of the Schistes Lustrés complex (Queyras-Monviso, W. Alps). Lithos, 2021, 394-395, 106168.	0.6	10
247	Calcium isotope compositions of arc magmas: Implications for Ca and carbonate recycling in subduction zones. Geochimica Et Cosmochimica Acta, 2021, 306, 1-19.	1.6	14
248	Cycling of CO ₂ and N ₂ Along the Hikurangi Subduction Margin, New Zealand: An Integrated Geological, Theoretical, and Isotopic Approach. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009650.	1.0	10
250	Thermodynamic analysis of HP-UHP fluid inclusions: The solute load and chemistry of metamorphic fluids. Geochimica Et Cosmochimica Acta, 2021, 315, 207-229.	1.6	13
251	Carbon flux and alkaline volcanism: Evidence from carbonatite-like carbonate minerals in trachytes, Ulleung Island, South Korea. American Mineralogist, 2022, 107, 1717-1735.	0.9	2
252	Abiotic methane generation through reduction of serpentinite-hosted dolomite: Implications for carbon mobility in subduction zones. Geochimica Et Cosmochimica Acta, 2021, 311, 119-140.	1.6	18
253	Crustal Exhumation of Plutonic and Metamorphic Rocks: Constraints from Fission-Track Thermochronology. Springer Textbooks in Earth Sciences, Geography and Environment, 2019, , 235-257.	0.1	8
254	Raman Spectroscopy of Gases, Water and other Geological Fluids. , 0, , 279-320.		4
255	Microscale Chemistry: Raman Analysis of Fluid and Melt Inclusions. Elements, 2020, 16, 93-98.	0.5	22
256	Subduction-Zone Fluids. Elements, 2020, 16, 395-400.	0.5	45
257	From passive margins to orogens: the link between Zones of Exhumed Subcontinental Mantle and (U)HP metamorphism. Geological Field Trips, 2014, 6, 1-61.	0.3	1
258	Valle d'Aosta section of the Sesia Zone: multi-stage HP metamorphism and assembly of a rifted continental margin. Geological Field Trips, 2014, 6, 1-44.	0.3	4
259	High-Ca vent fluids discharged from the Lutao arc volcanic hydrothermal system are associated with albitization and recycling of marine carbonate. Chemical Geology, 2021, 585, 120583.	1.4	0

#	Article	IF	CITATIONS
260	Die Alpen. , 2018, , 771-839.		0
261	Carbon-bearing fluids forming in the process of metamorphism of subduction zones. Acta Petrologica Sinica, 2019, 35, 89-98.	0.3	1
262	Tracing carbonate dissolution in subducting sediments by zinc and magnesium isotopes. Geochimica Et Cosmochimica Acta, 2022, 319, 56-72.	1.6	10
263	Alpine subduction zone metamorphism in the Palaeozoic successions of the Monti Romani (Northern) Tj ETQq $1\ 1$	0.784314 1.6	rgBT /Over
264	Decoupling of inorganic and organic carbon during slab mantle devolatilisation. Nature Communications, 2022, 13, 308.	5.8	12
265	Effects of hydrostaticity and Mn-substitution on dolomite stability at high pressure. American Mineralogist, 2022, 107, 2234-2241.	0.9	6
266	Magnesium isotope geochemistry of the carbonate-silicate system in subduction zones. National Science Review, 2022, 9, .	4.6	11
267	Carbonated Big Mantle Wedge Extending to the NE Edge of the Stagnant Pacific Slab: Constraints from Late Mesozoic-Cenozoic Basalts from Far Eastern Russia. Journal of Earth Science (Wuhan, China), 2022, 33, 121-132.	1.1	7
268	Subducted fragments of the Liguro-Piemont ocean, Western Alps: Spatial correlations and offscraping mechanisms during subduction. Tectonophysics, 2022, 827, 229267.	0.9	14
269	Contrasting fates of subducting carbon related to different oceanic slabs in East Asia. Geochimica Et Cosmochimica Acta, 2022, 324, 156-173.	1.6	15
270	The fate of subducting carbon tracked by Mg and Zn isotopes: A review and new perspectives. Earth-Science Reviews, 2022, 228, 104010.	4.0	27
271	Lithium in garnet as a tracer of subduction zone metamorphic reactions: The record in ultrahigh-pressure metapelites at Lago di Cignana, Italy. , 2022, 18, 1020-1029.		4
272	Metamorphic diamond from the northeastern margin of Gondwana: Paradigm shifting implications for one of Earth $\hat{a} \in \mathbb{N}$ s largest orogens. Science Advances, 2022, 8, .	4.7	8
273	Mineral Inclusions in Lithospheric Diamonds. Reviews in Mineralogy and Geochemistry, 2022, 88, 307-391.	2.2	29
274	Non-cratonic Diamonds from UHP Metamorphic Terranes, Ophiolites and Volcanic Sources. Reviews in Mineralogy and Geochemistry, 2022, 88, 191-255.	2.2	9
275	In situ determination of magnesite solubility and carbon speciation in water and NaCl solutions under subduction zone conditions. Solid Earth Sciences, 2022, 7, 200-214.	0.8	2
276	Traceâ€element heterogeneity in rutile linked to dislocation structures: Implications for Zrâ€inâ€rutile geothermometry. Journal of Metamorphic Geology, 2023, 41, 3-24.	1.6	3
277	Probing multiscale dissolution dynamics in natural rocks through microfluidics and compositional analysis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	13

#	ARTICLE	IF	CITATIONS
278	The effect of supercritical fluids on Nb-Ta fractionation in subduction zones: Geochemical insights from a coesite-bearing eclogite-vein system. Geochimica Et Cosmochimica Acta, 2022, 335, 23-55.	1.6	9
279	Carbon mobility and exchange in a plate-interface subduction $\tilde{\text{mA}}$ © lange: A case study of meta-ophiolitic rocks in Champorcher Valley, Italian Alps. Lithos, 2022, 428-429, 106813.	0.6	3
280	水引åʿ沉积碳从ä;¯å†²æę片è;移至弧å‰åœ°å¹"的实验约æŸ. SCIENTIA SINICA Terrae, 2022, ,	, .0.1	1
282	Redox species and oxygen fugacity of slab-derived fluids: Implications for mantle oxidation and deep carbon-sulfur cycling. Frontiers in Earth Science, 0, 10, .	0.8	3
283	H2O-induced sedimentary carbon migration from subducting slabs to the forearc mantle. Science China Earth Sciences, 2022, 65, 2175-2187.	2.3	3
284	Massive abiotic methane production in eclogite during cold subduction. National Science Review, 0, , .	4.6	7
285	Recycling of carbonates into the deep mantle beneath central Balkan Peninsula: Mg-Zn isotope evidence. Lithos, 2022, 432-433, 106899.	0.6	0
286	Formation of carbon-bearing silicate melts by melt-metacarbonate interaction at convergent plate margins. Earth and Planetary Science Letters, 2022, 597, 117816.	1.8	5
287	Favorable P–T–ƒO2 conditions for abiotic CH4 production in subducted oceanic crusts: A comparison between CH4-bearing ultrahigh- and CO2-bearing high-pressure eclogite. Geochimica Et Cosmochimica Acta, 2022, 336, 269-290.	1.6	11
288	Sound velocity anomalies of limestone at high pressure and implications for the mantle wedge. High Pressure Research, 2022, 42, 336-348.	0.4	0
289	Decarbonation of subducting carbonate-bearing sediments and basalts of altered oceanic crust: Insights into recycling of CO2 through volcanic arcs. Earth and Planetary Science Letters, 2023, 602, 117945.	1.8	2
290	High-pressure experimental and thermodynamic constraints on the solubility of carbonates in subduction zone fluids. Earth and Planetary Science Letters, 2023, 603, 117989.	1.8	5
291	First finding of continental deep subduction in the Sesia Zone of the Western Alps and implications for subduction dynamics. National Science Review, 2023, 10, .	4.6	5
292	Early release of H2O during subduction of carbonated ultramafic lithologies. Contributions To Mineralogy and Petrology, 2023, 178, .	1.2	4
293	Abiotic Methane Reservoirs in the Western Tianshan HP–UHP Metamorphic Belt, China. Acta Geologica Sinica, 2023, 97, 337-349.	0.8	0
294	Phase Stability and Reactions of Subducting CaCO ₃ under Upper Mantle Conditions. Acta Geologica Sinica, 2023, 97, 309-315.	0.8	1
295	Pervasive hydrous carbonatitic liquids mediate transfer of carbon from the slab to the subarc mantle. Communications Earth & Environment, 2023, 4, .	2.6	5
296	Schistes Lustrés in a hyper-extended continental margin setting and reinterpretation of the limit between the Mont Fort and Tsaté nappes (Middle and Upper Penninics, Western Swiss Alps). Swiss Journal of Geosciences, 2023, 116, .	0.5	O

6

ARTICLE IF CITATIONS

C–O–H fluid-melt-rock interaction in graphitic granulites and problems of quantifying carbon budget in the lower continental crust. Chemical Geology, 2023, 631, 121503.