A low mass for Mars from Jupiterâ€s™early gas-driven m

Nature 475, 206-209 DOI: 10.1038/nature10201

Citation Report

#	Article	IF	CITATIONS
2	The Origin and Early Evolution of Life on Earth. Annual Review of Earth and Planetary Sciences, 1990, 18, 317-356.	4.6	127
4	Terrestrial planet formation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19165-19170.	3.3	32
5	Stable isotopes and the noncarbonaceous derivation of ureilites, in common with nearly all differentiated planetary materials. Geochimica Et Cosmochimica Acta, 2011, 75, 6912-6926.	1.6	85
6	Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth and Planetary Science Letters, 2011, 311, 93-100.	1.8	517
7	Brown dwarfs and free-floating planets. , 0, , 209-216.		0
8	Formation and evolution. , 0, , 217-254.		3
9	The terrestrial Planet V hypothesis as the mechanism for the origin of the late heavy bombardment. Astronomy and Astrophysics, 2011, 535, A41.	2.1	5
10	Two phase, inward-then-outward migration of Jupiter and Saturn in the gaseous solar nebula. Astronomy and Astrophysics, 2011, 533, A131.	2.1	60
11	Chemistry of the Solar System Revealed in the Interiors of the Giant Planets. Proceedings of the International Astronomical Union, 2011, 7, 249-260.	0.0	1
12	Asteroid (21) Lutetia as a remnant of Earth's precursor planetesimals. Icarus, 2011, 216, 650-659.	1.1	45
13	The Origin and Evolution of the Asteroid Belt—Implications for Vesta and Ceres. Space Science Reviews, 2011, 163, 41-61.	3.7	65
14	PHOTOEVAPORATION AS A TRUNCATION MECHANISM FOR CIRCUMPLANETARY DISKS. Astronomical Journal, 2011, 142, 168.	1.9	34
15	Migration & Extra-solar Terrestrial Planets: Watering the Planets. Proceedings of the International Astronomical Union, 2012, 8, 229-234.	0.0	0
16	THE COLOR DIFFERENCES OF KUIPER BELT OBJECTS IN RESONANCE WITH NEPTUNE. Astronomical Journal, 2012, 144, 169.	1.9	63
17	INCORPORATION OF A LATE-FORMING CHONDRULE INTO COMET WILD 2. Astrophysical Journal Letters, 2012, 745, L19.	3.0	73
18	Shaping of the Inner Solar System by the Gas-Driven Migration of Jupiter. Proceedings of the International Astronomical Union, 2012, 8, 204-211.	0.0	0
19	Main-Belt Comets as Tracers of Ice in the Inner Solar System. Proceedings of the International Astronomical Union, 2012, 8, 212-218.	0.0	3
20	Silicon Isotope Evidence Against an Enstatite Chondrite Earth. Science, 2012, 335, 1477-1480.	6.0	145

#	Article	IF	CITATIONS
21	STATISTICAL STUDY OF THE EARLY SOLAR SYSTEM'S INSTABILITY WITH FOUR, FIVE, AND SIX GIANT PLANETS. Astronomical Journal, 2012, 144, 117.	1.9	277
22	INSTABILITY-DRIVEN DYNAMICAL EVOLUTION MODEL OF A PRIMORDIALLY FIVE-PLANET OUTER SOLAR SYSTEM. Astrophysical Journal Letters, 2012, 744, L3.	3.0	109
23	COLLISIONS BETWEEN GRAVITY-DOMINATED BODIES. I. OUTCOME REGIMES AND SCALING LAWS. Astrophysical Journal, 2012, 745, 79.	1.6	330
24	A PHOTOCHEMICAL MODEL FOR THE CARBON-RICH PLANET WASP-12b. Astrophysical Journal, 2012, 745, 77.	1.6	79
25	RAPID FORMATION OF SATURN AFTER JUPITER COMPLETION. Astrophysical Journal, 2012, 756, 70.	1.6	29
26	Rapid growth of gas-giant cores by pebble accretion. Astronomy and Astrophysics, 2012, 544, A32.	2.1	644
27	<i>Herschel</i> measurements of theÂD/H and ¹⁶ 0/ ¹⁸ 0 ratios in water in the Oort-cloud comet C/2009ÂP1 (Garradd). Astronomy and Astrophysics, 2012, 544, L15.	2.1	115
28	THE COMPOSITIONAL DIVERSITY OF EXTRASOLAR TERRESTRIAL PLANETS. II. MIGRATION SIMULATIONS. Astrophysical Journal, 2012, 760, 44.	1.6	72
29	INTERACTIONS BETWEEN MODERATE- AND LONG-PERIOD GIANT PLANETS: SCATTERING EXPERIMENTS FOR SYSTEMS IN ISOLATION AND WITH STELLAR FLYBYS. Astrophysical Journal, 2012, 754, 57.	1.6	54
30	CHONDRULE FORMATION IN BOW SHOCKS AROUND ECCENTRIC PLANETARY EMBRYOS. Astrophysical Journal, 2012, 752, 27.	1.6	86
31	Traditional formation scenarios fail to explain 4:3 mean motion resonances. Monthly Notices of the Royal Astronomical Society, 2012, 426, 187-202.	1.6	48
32	Density of asteroids. Planetary and Space Science, 2012, 73, 98-118.	0.9	453
33	Building Terrestrial Planets. Annual Review of Earth and Planetary Sciences, 2012, 40, 251-275.	4.6	392
34	Expected science return of spatially-extended in-situ exploration at small Solar system bodies. , 2012, , .		27
35	The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth and Planetary Science Letters, 2012, 313-314, 56-66.	1.8	745
36	The onset of the lunar cataclysm as recorded in its ancient crater populations. Earth and Planetary Science Letters, 2012, 325-326, 27-38.	1.8	103
37	The Dawn Mission to Minor Planets 4 Vesta and 1 Ceres. , 2012, , .		29
38	THE CHEMICAL COMPOSITION OF CO-RICH COMET C/2009 P1 (GARRADD) AT <i>R</i> _h = 2.4 and 2.0 AU BEFORE PERIHELION. Astrophysical Journal Letters, 2012, 748, L13.	3.0	50

#	Article	IF	CITATIONS
39	Populating the asteroid belt from two parent source regions due to the migration of giant planets—"The Grand Tack― Meteoritics and Planetary Science, 2012, 47, 1941-1947.	0.7	118
40	The origin of chondrules and chondrites: Debris from lowâ€velocity impacts between molten planetesimals?. Meteoritics and Planetary Science, 2012, 47, 2170-2192.	0.7	97
41	The planetesimal bow shock model for chondrule formation: A more quantitative assessment of the standard (fixed Jupiter) case. Meteoritics and Planetary Science, 2012, 47, 1715-1727.	0.7	15
42	High surface porosity as the origin of emissivity features in asteroid spectra. Icarus, 2012, 221, 1162-1172.	1.1	73
43	Asteroids (65) Cybele, (107) Camilla and (121) Hermione: Infrared spectral diversity among the Cybeles. Icarus, 2012, 221, 453-455.	1.1	12
44	On the origin of elemental abundances in the terrestrial planets. Icarus, 2012, 221, 859-874.	1.1	46
45	A sawtooth-like timeline for the first billion years of lunar bombardment. Earth and Planetary Science Letters, 2012, 355-356, 144-151.	1.8	217
46	Magmatic water in the martian meteorite Nakhla. Earth and Planetary Science Letters, 2012, 359-360, 84-92.	1.8	70
47	The Provenances of Asteroids, and Their Contributions to the Volatile Inventories of the Terrestrial Planets. Science, 2012, 337, 721-723.	6.0	511
48	Planet Formation. , 0, , 73-86.		0
49	The Early Earth. , 2012, , 89-114.		9
50	OUTWARD MIGRATION OF JUPITER AND SATURN IN EVOLVED GASEOUS DISKS. Astrophysical Journal, 2012, 757, 50.	1.6	83
51	Debris disks as signposts of terrestrial planet formation. Astronomy and Astrophysics, 2012, 541, A11.	2.1	73
52	CAN PLANETARY INSTABILITY EXPLAIN THE <i>KEPLER</i> DICHOTOMY?. Astrophysical Journal, 2012, 758, 39.	1.6	124
53	ON THE EFFECT OF GIANT PLANETS ON THE SCATTERING OF PARENT BODIES OF IRON METEORITE FROM THE TERRESTRIAL PLANET REGION INTO THE ASTEROID BELT: A CONCEPT STUDY. Astrophysical Journal, 2012, 749, 113.	1.6	27
54	JOVIAN EARLY BOMBARDMENT: PLANETESIMAL EROSION IN THE INNER ASTEROID BELT. Astrophysical Journal, 2012, 750, 8.	1.6	50
55	<i>WISE</i> / <i>NEOWISE</i> OBSERVATIONS OF THE JOVIAN TROJAN POPULATION: TAXONOMY. Astrophysical Journal, 2012, 759, 49.	1.6	90
56	Solar Wind and Solar System Matter After Mission Genesis. , 2012, , .		2

	CITATION R	CITATION REPORT	
#	ARTICLE	IF	CITATIONS
57	END STAGE OF PLANET FORMATION. Astrophysical Journal, 2012, 751, 32.	1.6	154
58	The accretion of Uranus and Neptune by collisions among planetary embryos in the vicinity of Jupiter and Saturn. Astronomy and Astrophysics, 2012, 540, A71.	2.1	5
59	The proto-Earth as a significant source of lunar material. Nature Geoscience, 2012, 5, 251-255.	5.4	335
60	Two Different Sources of Water for the Early Solar Nebula. Origins of Life and Evolution of Biospheres, 2012, 42, 81-92.	0.8	1
61	Water, heat, bombardment: The evolution and current state of (2) Pallas. Icarus, 2012, 218, 478-488.	1.1	11
62	A comparison between rubble-pile and monolithic targets in impact simulations: Application to asteroid satellites and family size distributions. Icarus, 2012, 219, 57-76.	1.1	45
63	Outer Main Belt asteroids: Identification and distribution of four 3-μm spectral groups. Icarus, 2012, 219, 641-654.	1.1	156
64	On the aerodynamic redistribution of chondrite components in protoplanetary disks. Icarus, 2012, 220, 162-173.	1.1	54
65	Overview of the rocky component of Wild 2 comet samples: Insight into the early solar system, relationship with meteoritic materials and the differences between comets and asteroids. Meteoritics and Planetary Science, 2012, 47, 453-470.	0.7	70
66	Chondrules: Precursors and interactions with the nebular gas. Meteoritics and Planetary Science, 2012, 47, 1120-1138.	0.7	38
67	Debris from terrestrial planet formation: the Moon-forming collision. Monthly Notices of the Royal Astronomical Society, 2012, 425, 657-679.	1.6	123
68	Geo-neutrinos. Progress in Particle and Nuclear Physics, 2013, 73, 1-34.	5.6	24
69	The thermo-chemical evolution of Asteroid 21 Lutetia. Icarus, 2013, 224, 126-143.	1.1	14
70	The bulk composition of Mars. Chemie Der Erde, 2013, 73, 401-420.	0.8	196
71	Dynamical and collisional constraints on a stochastic late veneer on the terrestrial planets. Icarus, 2013, 226, 671-681.	1.1	59
72	The classification of CM and CR chondrites using bulk H, C and N abundances and isotopic compositions. Geochimica Et Cosmochimica Acta, 2013, 123, 244-260.	1.6	211
73	The near-Earth objects and their potential threat to our planet. Astronomy and Astrophysics Review, 2013, 21, 1.	9.1	46

74Below One Earth: The Detection, Formation, and Properties of Subterrestrial Worlds. Space Science Reviews, 2013, 180, 71-99.	3.7	10
---	-----	----

	CHATION RE	PORT	
# 75	ARTICLE On the chronology of lunar origin and evolution. Astronomy and Astrophysics Review, 2013, 21, 1.	lF 9.1	Citations
76	Spectroscopy of planetary atmospheres in our Galaxy. Astronomy and Astrophysics Review, 2013, 21, 1.	9.1	102
77	The Science of Exoplanets and Their Systems. Astrobiology, 2013, 13, 793-813.	1.5	10
78	The early impact histories of meteorite parent bodies. Meteoritics and Planetary Science, 2013, 48, 1894-1918.	0.7	49
79	Terrestrial Accretion Under Oxidizing Conditions. Science, 2013, 339, 1194-1197.	6.0	180
80	The Formation of Mars: Building Blocks and Accretion Time Scale. Space Science Reviews, 2013, 174, 11-25.	3.7	75
81	Core Formation and Mantle Differentiation on Mars. Space Science Reviews, 2013, 174, 27-48.	3.7	54
82	Outgassing History and Escape of the Martian Atmosphere and Water Inventory. Space Science Reviews, 2013, 174, 113-154.	3.7	159
83	Small planetesimals in a massive disk formed Mars. Icarus, 2013, 225, 122-130.	1.1	36
84	An initial meteoroid stream survey in the southern hemisphere using the Southern Argentina Agile Meteor Radar (SAAMER). Icarus, 2013, 223, 677-683.	1.1	16
85	Late-stage planetary accretion including hit-and-run collisions and fragmentation. Icarus, 2013, 224, 43-56.	1.1	154
86	GROUND-BASED INFRARED DETECTIONS OF CO IN THE CENTAUR-COMET 29P/SCHWASSMANN-WACHMANN 1 AT 6.26 AU FROM THE SUN. Astrophysical Journal, 2013, 766, 100.	1.6	40
87	High-resolution infrared spectroscopic measurements of Comet 2P/Encke: Unusual organic composition and low rotational temperatures. Icarus, 2013, 223, 298-307.	1.1	26
88	Black rain: The burial of the Galilean satellites in irregular satellite debris. Icarus, 2013, 223, 775-795.	1.1	30
89	Water transport in protoplanetary disks and the hydrogen isotopic composition of chondrites. Icarus, 2013, 223, 722-732.	1.1	50
90	The origins of volatiles in the terrestrial planets. Geochimica Et Cosmochimica Acta, 2013, 105, 146-171.	1.6	182
91	Introducing the Eulalia and new Polana asteroid families: Re-assessing primitive asteroid families in the inner Main Belt. Icarus, 2013, 225, 283-297.	1.1	105
92	N-body simulations of oligarchic growth of Mars: Implications for Hf–W chronology. Earth and Planetary Science Letters, 2013, 366, 6-16.	1.8	26

		CITATION REPORT		
#	Article		IF	CITATIONS
93	Observational signatures of the giant planets collisions. Planetary and Space Science, 2	013, 78, 64-68.	0.9	1
94	Orbital clustering of martian Trojans: An asteroid family in the inner Solar System?. Icard 144-153.	us, 2013, 224,	1.1	19
95	Redox state during core formation on asteroid 4-Vesta. Earth and Planetary Science Let 75-82.	ters, 2013, 373,	1.8	50
96	A two-stage scenario for the formation of the Earth's mantle and core. Earth and Planet Letters, 2013, 365, 97-107.	ary Science	1.8	34
97	The Formation and Dynamics of Super-Earth Planets. Annual Review of Earth and Planet 2013, 41, 469-495.	ary Sciences,	4.6	48
98	Thermal consequences of impacts in the early solar system. Meteoritics and Planetary S 48, 2559-2576.	science, 2013,	0.7	39
99	The bright end of the exo-Zodi luminosity function: disc evolution and implications for educations for educations detectability. Monthly Notices of the Royal Astronomical Society, 2013, 433, 2334-235	exo-Earth 66.	1.6	78
100	Temporary capture of planetesimals by a giant planet and implication for the origin of in satellites. Monthly Notices of the Royal Astronomical Society, 2013, 431, 1709-1718.	rregular	1.6	31
101	Main-belt comets in the Palomar Transient Factory survey – I. The search for extended Notices of the Royal Astronomical Society, 2013, 433, 3115-3132.	dness. Monthly	1.6	28
102	TERRESTRIAL PLANET FORMATION AROUND THE CIRCUMBINARY HABITABLE ZONE: IN THE PLANETESIMAL SWARM. Astrophysical Journal Letters, 2013, 763, L8.	WARD MIGRATION IN	3.0	8
103	CAPTURE OF PLANETESIMALS BY GAS DRAG FROM CIRCUMPLANETARY DISKS. Astrono 146, 140.	omical Journal, 2013,	1.9	43
104	Tides in Astronomy and Astrophysics. Lecture Notes in Physics, 2013, , .		0.3	37
105	WATER IN PROTOPLANETARY DISKS: DEUTERATION AND TURBULENT MIXING. Astroph 779, 11.	ysical Journal, 2013,	1.6	80
106	Constraining the primordial orbits of the terrestrial planets. Monthly Notices of the Roy Astronomical Society, 2013, 433, 3417-3427.	al	1.6	71
107	THE INFLUENCE OF OUTER SOLAR SYSTEM ARCHITECTURE ON THE STRUCTURE AND E OORT CLOUD. Astronomical Journal, 2013, 146, 16.	EVOLUTION OF THE	1.9	16
108	CONDITION FOR CAPTURE INTO FIRST-ORDER MEAN MOTION RESONANCES AND APP CONSTRAINTS ON THE ORIGIN OF RESONANT SYSTEMS. Astrophysical Journal, 2013, 7	LICATION TO 75, 34.	1.6	66
109	A COMPOUND MODEL FOR THE ORIGIN OF EARTH'S WATER. Astrophysical Journal, 20	13, 767, 54.	1.6	81
110	Primordial Origins of Earth's Carbon. Reviews in Mineralogy and Geochemistry, 2013, 7	5, 149-181.	2.2	69

#	Article	IF	CITATIONS
111	A <i>HERSCHEL</i> STUDY OF D/H IN WATER IN THE JUPITER-FAMILY COMET 45P/HONDA-MRKOS-PAJDUÅÃKOVÕAND PROSPECTS FOR D/H MEASUREMENTS WITH CCAT. Astrophysical Journal Letters, 2013, 774, L3.	3.0	73
112	Habitability in Different Milky Way Stellar Environments: A Stellar Interaction Dynamical Approach. Astrobiology, 2013, 13, 491-509.	1.5	29
113	Physical properties of B-type asteroids from WISE data. Astronomy and Astrophysics, 2013, 554, A71.	2.1	34
114	Theoretical models of planetary system formation: mass vs. semi-major axis. Astronomy and Astrophysics, 2013, 558, A109.	2.1	126
115	The D/H ratio in the atmospheres of Uranus and Neptune from <i>Herschel</i> -PACS observations. Astronomy and Astrophysics, 2013, 551, A126.	2.1	76
116	ON THE RELATIVE SIZES OF PLANETS WITHIN <i>KEPLER</i> MULTIPLE-CANDIDATE SYSTEMS. Astrophysical Journal, 2013, 763, 41.	1.6	112
117	Nebular gas drag and planetary accretion with eccentric high-mass planets. Astronomy and Astrophysics, 2013, 552, A66.	2.1	3
118	Common source for Earth and Moon water. Nature, 2013, , .	13.7	0
119	TERRESTRIAL PLANET FORMATION DURING THE MIGRATION AND RESONANCE CROSSINGS OF THE GIANT PLANETS. Astrophysical Journal, 2013, 773, 65.	1.6	48
120	Separating gas-giant and ice-giant planets by halting pebble accretion. Astronomy and Astrophysics, 2014, 572, A35.	2.1	306
121	Stellar irradiated discs and implications on migration of embedded planets. Astronomy and Astrophysics, 2014, 564, A135.	2.1	79
122	Similar origin for low- and high-albedo Jovian Trojans and Hilda asteroids?. Astronomy and Astrophysics, 2014, 568, L7.	2.1	12
123	Classification of Meteorites and Their Genetic Relationships. , 2014, , 1-63.		76
124	CONSTRAINING THE DUST COMA PROPERTIES OF COMET C/SIDING SPRING (2013 A1) AT LARGE HELIOCENTRIC DISTANCES. Astrophysical Journal Letters, 2014, 797, L8.	3.0	21
125	MULTIPLE AND FAST: THE ACCRETION OF ORDINARY CHONDRITE PARENT BODIES. Astrophysical Journal, 2014, 791, 120.	1.6	75
126	Geochemical and Planetary Dynamical Views on the Origin of Earth's Atmosphere and Oceans. , 2014, , 1-35.		23
127	On the origin and composition of Theia: Constraints from new models of the Giant Impact. Icarus, 2014, 242, 316-328.	1.1	49
128	Chondrites and Their Components. , 2014, , 65-137.		102

# 129	ARTICLE Scenarios of giant planet formation and evolution and their impact on the formation of habitable terrestrial planets. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130072.	IF 1.6	Citations 9
130	No universal minimum-mass extrasolar nebula: evidence against <i>in situ</i> accretion of systems of hot super-Earths. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 440, L11-L15.	1.2	126
131	Pressure–temperature evolution of primordial solar system solids during impact-induced compaction. Nature Communications, 2014, 5, 5451.	5.8	103
132	Dynamical evolution of an eccentric planet and a less massive debris disc. Monthly Notices of the Royal Astronomical Society, 2014, 443, 2541-2560.	1.6	83
133	TERRESTRIAL PLANET FORMATION IN THE PRESENCE OF MIGRATING SUPER-EARTHS. Astrophysical Journal, 2014, 794, 11.	1.6	63
134	Formation and Physical Properties of Asteroids. Elements, 2014, 10, 19-24.	0.5	9
135	Asteroids: New Challenges, New Targets. Elements, 2014, 10, 11-17.	0.5	10
136	OUTWARD MIGRATION OF JUPITER AND SATURN IN 3:2 OR 2:1 RESONANCE IN RADIATIVE DISKS: IMPLICATIONS FOR THE GRAND TACK AND NICE MODELS. Astrophysical Journal Letters, 2014, 795, L11.	3.0	91
137	The Orgueil meteorite: 150Âyears of history. Meteoritics and Planetary Science, 2014, 49, 1769-1794.	0.7	45
138	The science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets. Planetary and Space Science, 2014, 104, 122-140.	0.9	56
139	The comparative exploration of the ice giant planets with twin spacecraft: Unveiling the history of our Solar System. Planetary and Space Science, 2014, 104, 93-107.	0.9	31
140	THE UNEXPECTEDLY BRIGHT COMET C/2012 F6 (LEMMON) UNVEILED AT NEAR-INFRARED WAVELENGTHS. Astronomical Journal, 2014, 147, 15.	1.9	29
141	The science case for the Planet Formation Imager (PFI). Proceedings of SPIE, 2014, , .	0.8	10
142	FORMING CHONDRULES IN IMPACT SPLASHES. I. RADIATIVE COOLING MODEL. Astrophysical Journal, 2014, 794, 91.	1.6	32
143	TERRESTRIAL PLANET FORMATION IN A PROTOPLANETARY DISK WITH A LOCAL MASS DEPLETION: A SUCCESSFUL SCENARIO FOR THE FORMATION OF MARS. Astrophysical Journal, 2014, 782, 31.	1.6	98
144	Correlations between the stellar, planetary, and debris components of exoplanet systems observed by <i>Herschel</i> . Astronomy and Astrophysics, 2014, 565, A15.	2.1	50
145	The Grand Tack model: a critical review. Proceedings of the International Astronomical Union, 2014, 9, 194-203.	0.0	26
146	CHEMODYNAMICAL DEUTERIUM FRACTIONATION IN THE EARLY SOLAR NEBULA: THE ORIGIN OF WATER ON EARTH AND IN ASTEROIDS AND COMETS. Astrophysical Journal, 2014, 784, 39.	1.6	86

#	Article	IF	CITATIONS
147	Setting the Stage for Habitable Planets. Life, 2014, 4, 35-65.	1.1	3
148	Eccentric planets and stellar evolution as a cause of polluted white dwarfs. Monthly Notices of the Royal Astronomical Society, 2014, 439, 2442-2458.	1.6	134
149	Lunar and terrestrial planet formation in the Grand Tack scenario. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130174.	1.6	92
150	EXTREME CONDITIONS IN A CLOSE ANALOG TO THE YOUNG SOLAR SYSTEM: <i>HERSCHEL</i> OBSERVATIONS OF Ϊμ ERIDANI. Astrophysical Journal Letters, 2014, 791, L11.	3.0	33
151	Unexpected D-type interlopers in the inner main belt. Icarus, 2014, 229, 392-399.	1.1	44
152	Aqueous alteration on main belt primitive asteroids: Results from visible spectroscopy. Icarus, 2014, 233, 163-178.	1.1	75
153	Water formation in early solar nebula: II–Collapsing cloud core. Planetary and Space Science, 2014, 98, 233-253.	0.9	7
154	Variations in the O-isotope composition of gas during the formation of chondrules from the CR chondrites. Geochimica Et Cosmochimica Acta, 2014, 132, 50-74.	1.6	55
155	Dynamics of the terrestrial planets from a large number of N-body simulations. Earth and Planetary Science Letters, 2014, 392, 28-38.	1.8	67
156	Highly siderophile elements in Earth's mantle as a clock for the Moon-forming impact. Nature, 2014, 508, 84-87.	13.7	191
157	The Stardust Mission: Analyzing Samples from the Edge of the Solar System. Annual Review of Earth and Planetary Sciences, 2014, 42, 179-205.	4.6	145
158	Earth-like habitats in planetary systems. Planetary and Space Science, 2014, 98, 254-267.	0.9	32
159	Evolution of water reservoirs on Mars: Constraints from hydrogen isotopes in martian meteorites. Earth and Planetary Science Letters, 2014, 394, 179-185.	1.8	97
160	Forming Terrestrial Planets. Science, 2014, 344, 479-480.	6.0	7
161	Escape of the martian protoatmosphere and initial water inventory. Planetary and Space Science, 2014, 98, 106-119.	0.9	83
162	Formation of brucite and cronstedtite-bearing mineral assemblages on Ceres. Icarus, 2014, 228, 13-26.	1.1	47
163	Localized sources of water vapour on the dwarf planet (1) Ceres. Nature, 2014, 505, 525-527.	13.7	301
164	Solar System evolution from compositional mapping of the asteroid belt. Nature, 2014, 505, 629-634.	13.7	362

#	Article	IF	CITATIONS
165	How Did Early Earth Become Our Modern World?. Annual Review of Earth and Planetary Sciences, 2014, 42, 151-178.	4.6	82
166	Exploring the origins of carbon in terrestrial worlds ^{â€} . Faraday Discussions, 2014, 168, 61.	1.6	63
167	Earth's Uranium and Thorium content and geoneutrinos fluxes based on enstatite chondrites. Earth and Planetary Science Letters, 2014, 407, 1-8.	1.8	18
168	Dynamical corotation torques on low-mass planets. Monthly Notices of the Royal Astronomical Society, 2014, 444, 2031-2042.	1.6	92
169	Impact chemistry of methanol: Implications for volatile evolution on icy satellites and dwarf planets, and cometary delivery to the Moon. Icarus, 2014, 243, 39-47.	1.1	6
170	THE MEASURED COMPOSITIONS OF URANUS AND NEPTUNE FROM THEIR FORMATION ON THE CO ICE LINE. Astrophysical Journal, 2014, 793, 9.	1.6	63
171	FORMATION, TIDAL EVOLUTION, AND HABITABILITY OF THE KEPLER-186 SYSTEM. Astrophysical Journal, 2014, 793, 3.	1.6	55
172	A water–ice rich minor body from the early Solar System: The CR chondrite parent asteroid. Earth and Planetary Science Letters, 2014, 407, 48-60.	1.8	50
173	60Fe–60Ni chronology of core formation in Mars. Earth and Planetary Science Letters, 2014, 390, 264-274.	1.8	98
174	Planet Formation. , 2014, , 55-72.		7
174 175	Planet Formation. , 2014, , 55-72. The Origin and Earliest History of the Earth. , 2014, , 149-211.		7
174 175 177	Planet Formation., 2014,, 55-72. The Origin and Earliest History of the Earth., 2014,, 149-211. Asteroids., 2014,, 365-415.		7 12 28
174 175 177 178	Planet Formation., 2014,, 55-72. The Origin and Earliest History of the Earth., 2014,, 149-211. Asteroids., 2014,, 365-415. Interferometric meteor head echo observations using the Southern Argentina Agile Meteor Radar. Journal of Geophysical Research: Space Physics, 2014, 119, 2269-2287.	0.8	7 12 28 28
174 175 177 178 179	Planet Formation., 2014,, 55-72. The Origin and Earliest History of the Earth., 2014,, 149-211. Asteroids., 2014,, 365-415. Interferometric meteor head echo observations using the Southern Argentina Agile Meteor Radar. Journal of Geophysical Research: Space Physics, 2014, 119, 2269-2287. Formation, Habitability, and Detection of Extrasolar Moons. Astrobiology, 2014, 14, 798-835.	0.8	7 12 28 28 120
174 175 177 178 178 179	Planet Formation., 2014,, 55-72. The Origin and Earliest History of the Earth., 2014,, 149-211. Asteroids., 2014,, 365-415. Interferometric meteor head echo observations using the Southern Argentina Agile Meteor Radar. Journal of Geophysical Research: Space Physics, 2014, 119, 2269-2287. Formation, Habitability, and Detection of Extrasolar Moons. Astrobiology, 2014, 14, 798-835. Transport of solids in protoplanetary disks: Comparing meteorites and astrophysical models. Comptes Rendus - Geoscience, 2014, 346, 3-12.	0.8	7 12 28 28 120 21
174 175 177 178 179 180	Planet Formation., 2014,, 55-72. The Origin and Earliest History of the Earth., 2014,, 149-211. Asteroids., 2014,, 365-415. Interferometric meteor head echo observations using the Southern Argentina Agile Meteor Radar. Journal of Geophysical Research: Space Physics, 2014, 119, 2269-2287. Formation, Habitability, and Detection of Extrasolar Moons. Astrobiology, 2014, 14, 798-835. Transport of solids in protoplanetary disks: Comparing meteorites and astrophysical models. Comptes Rendus - Geoscience, 2014, 346, 3-12. Olivine-dominated asteroids: Mineralogy and origin. Icarus, 2014, 228, 288-300.	0.8 1.5 0.4 1.1	7 12 28 28 120 21 52
174 175 177 178 179 180 181	Planet Formation., 2014,, 55-72. The Origin and Earliest History of the Earth., 2014,, 149-211. Asteroids., 2014,, 365-415. Interferometric meteor head echo observations using the Southern Argentina Agile Meteor Radar. Journal of Geophysical Research: Space Physics, 2014, 119, 2269-2287. Formation, Habitability, and Detection of Extrasolar Moons. Astrobiology, 2014, 14, 798-835. Transport of solids in protoplanetary disks: Comparing meteorites and astrophysical models. Comptes Rendus - Geoscience, 2014, 346, 3-12. Olivine-dominated asteroids: Mineralogy and origin. Icarus, 2014, 228, 288-300. The oxygen isotope composition of diogenites: Evidence for early global melting on a single, compositionally diverse, HED parent body. Earth and Planetary Science Letters, 2014, 390, 165-174.	0.8 1.5 0.4 1.1	7 12 28 28 120 21 21 52 50

#	Article	IF	Citations
184	Moon, Mars, Mercury: Basin formation ages and implications for the maximum surface age and the migration of gaseous planets. Earth and Planetary Science Letters, 2014, 400, 54-65.	1.8	36
185	Water delivery and giant impacts in the â€~Grand Tack' scenario. Icarus, 2014, 239, 74-84.	1.1	209
186	Constraining the cratering chronology of Vesta. Planetary and Space Science, 2014, 103, 131-142.	0.9	41
187	Forming the cores of giant planets from the radial pebble flux in protoplanetary discs. Astronomy and Astrophysics, 2014, 572, A107.	2.1	305
188	Searches for HCl and HF in comets 103P/Hartley 2 and C/2009 P1 (Garradd) with the <i>Herschel</i> Space Observatory. Astronomy and Astrophysics, 2014, 562, A5.	2.1	19
189	Complex organic molecules in protoplanetary disks. Astronomy and Astrophysics, 2014, 563, A33.	2.1	169
190	Planetesimal fragmentation and giant planet formation: the role of planet migration. Proceedings of the International Astronomical Union, 2014, 9, 204-207.	0.0	0
191	Rapid planetesimal formation in the inner protoplanetary disk. Proceedings of the International Astronomical Union, 2014, 9, 208-211.	0.0	2
192	Collisions of Planetesimals and Formation of Planets. Proceedings of the International Astronomical Union, 2015, 10, 251-252.	0.0	0
193	Erosive Hit-and-Run Impact Events: Debris Unbound. Proceedings of the International Astronomical Union, 2015, 10, 9-15.	0.0	1
194	DIVISION A COMMISSION 7: CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY. Proceedings of the International Astronomical Union, 2015, 11, 24-45.	0.0	0
195	DIVISION F COMMISSION 15: PHYSICAL STUDY OF COMETS AND MINOR PLANETS. Proceedings of the International Astronomical Union, 2015, 11, 316-339.	0.0	1
198	THE SOLAR SYSTEM AS AN EXOPLANETARY SYSTEM. Astrophysical Journal, 2015, 810, 105.	1.6	44
199	SOFIA INFRARED SPECTROPHOTOMETRY OF COMET C/2012 K1 (PAN-STARRS). Astrophysical Journal, 2015, 809, 181.	1.6	9
200	Conditions for water ice lines and Mars-mass exomoons around accreting super-Jovian planets at 1â~'20 AU from Sun-like stars. Astronomy and Astrophysics, 2015, 578, A19.	2.1	28
201	The structure of protoplanetary discs around evolving young stars. Astronomy and Astrophysics, 2015, 575, A28.	2.1	227
202	Toward an understanding of phyllosilicate mineralogy in the outer main asteroid belt. Icarus, 2015, 257, 185-193.	1.1	39
203	The formation of the Galilean moons and Titan in the Grand Tack scenario. Astronomy and Astrophysics, 2015, 579, L4.	2.1	21

#	Article	IF	CITATIONS
204	One of the closest exoplanet pairs to the 3:2 mean motion resonance: K2-19b and c. Astronomy and Astrophysics, 2015, 582, A33.	2.1	37
205	EXTERNAL PHOTOEVAPORATION OF THE SOLAR NEBULA. II. EFFECTS ON DISK STRUCTURE AND EVOLUTION WITH NON-UNIFORM TURBULENT VISCOSITY DUE TO THE MAGNETOROTATIONAL INSTABILITY. Astrophysical Journal, 2015, 815, 112.	1.6	17
206	The great dichotomy of the Solar System: Small terrestrial embryos and massive giant planet cores. Icarus, 2015, 258, 418-429.	1.1	191
207	Pbâ€Pb dating of individual chondrules from the <scp>CB</scp> _a chondrite Gujba: Assessment of the impact plume formation model. Meteoritics and Planetary Science, 2015, 50, 1197-1216.	0.7	104
208	Terrestrial-type planet formation. Astronomy and Astrophysics, 2015, 584, A47.	2.1	6
209	Accretion of Uranus and Neptune from inward-migrating planetary embryos blocked by Jupiter and Saturn. Astronomy and Astrophysics, 2015, 582, A99.	2.1	63
210	Forming terrestrial planets and delivering water. Proceedings of the International Astronomical Union, 2015, 11, 427-430.	0.0	1
211	Nebular dead zone effects on the D/H ratio in chondrites and comets. Astronomy and Astrophysics, 2015, 583, A58.	2.1	6
213	The growth of planets by pebble accretion in evolving protoplanetary discs. Astronomy and Astrophysics, 2015, 582, A112.	2.1	295
214	Jupiter's role in sculpting the early Solar System. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4189-4190.	3.3	2
215	News Feature: Space fossils. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3849-3851.	3.3	1
216	Five steps in the evolution from protoplanetary to debris disk. Astrophysics and Space Science, 2015, 357, 1.	0.5	75
217	Introduction to â€~Pluto, Charon, and the Kuiper Belt Objects': Pluto on the Eve of the New Horizons Encounter. , 2015, , 637-651.		4
218	The role of planetary formation and evolution in shaping the composition of exoplanetary atmospheres. Experimental Astronomy, 2015, 40, 501-522.	1.6	20
219	Cometary Isotopic Measurements. Space Science Reviews, 2015, 197, 47-83.	3.7	112
220	Comprehensive study of carbon and oxygen isotopic compositions, trace element abundances, and cathodoluminescence intensities of calcite in the Murchison CM chondrite. Geochimica Et Cosmochimica Acta, 2015, 161, 101-117.	1.6	31
221	Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres. Nature, 2015, 528, 241-244.	13.7	276
222	Terrestrial planet formation constrained by Mars and the structure of the asteroid belt. Monthly Notices of the Royal Astronomical Society, 2015, 453, 3620-3635.	1.6	94

#	Article	IF	Citations
223	THE EVOLUTION OF ASTEROIDS IN THE JUMPING-JUPITER MIGRATION MODEL. Astronomical Journal, 2015, 150, 186.	1.9	80
224	How the Solar System didn't form. Nature, 2015, 528, 202-203.	13.7	4
225	ASTEROID LIGHT CURVES FROM THE PALOMAR TRANSIENT FACTORY SURVEY: ROTATION PERIODS AND PHASE FUNCTIONS FROM SPARSE PHOTOMETRY. Astronomical Journal, 2015, 150, 75.	1.9	66
226	Cosmochemical fractionation by collisional erosion during the Earth's accretion. Nature Communications, 2015, 6, 8295.	5.8	20
227	COMPOSITIONAL EVOLUTION DURING ROCKY PROTOPLANET ACCRETION. Astrophysical Journal, 2015, 813, 72.	1.6	77
228	GAS GIANT PLANETS AS DYNAMICAL BARRIERS TO INWARD-MIGRATING SUPER-EARTHS. Astrophysical Journal Letters, 2015, 800, L22.	3.0	89
229	Impact features of enstatite-rich meteorites. Chemie Der Erde, 2015, 75, 1-28.	0.8	42
230	The feeding zones of terrestrial planets and insights into Moon formation. Icarus, 2015, 252, 161-174.	1.1	74
231	DISCOVERY AND CHARACTERISTICS OF THE RAPIDLY ROTATING ACTIVE ASTEROID (62412) 2000 SY178 IN THE MAIN BELT. Astronomical Journal, 2015, 149, 44.	1.9	26
232	BINARY CANDIDATES IN THE JOVIAN TROJAN AND HILDA POPULATIONS FROM <i>NEOWISE </i> LIGHT CURVES. Astrophysical Journal, 2015, 799, 191.	1.6	15
233	Noble gases, nitrogen, and methane from the deep interior to the atmosphere of Titan. Icarus, 2015, 250, 570-586.	1.1	41
234	Reactive ammonia in the solar protoplanetary disk and the origin of Earth's nitrogen. Nature Geoscience, 2015, 8, 97-101.	5.4	21
235	A collisional origin to Earth's non-chondritic composition?. Icarus, 2015, 247, 291-300.	1.1	72
236	EXTERNAL PHOTOEVAPORATION OF THE SOLAR NEBULA: JUPITER's NOBLE GAS ENRICHMENTS. Astrophysical Journal, 2015, 798, 9.	1.6	42
237	Exoplanetary Geophysics: An Emerging Discipline. , 2015, , 673-694.		14
238	Brief follow-up on recent studies of Theia's accretion. Icarus, 2015, 258, 14-17.	1.1	7
239	Micrometer-scale U–Pb age domains in eucrite zircons, impact re-setting, and the thermal history of the HED parent body. Icarus, 2015, 245, 367-378.	1.1	32
240	Melting and mixing states of the Earth's mantle after the Moon-forming impact. Earth and Planetary Science Letters, 2015, 427, 286-295.	1.8	140

#	Article	IF	CITATIONS
241	Exploring the dwarf planets. Nature Physics, 2015, 11, 608-611.	6.5	0
242	Eight billion asteroids in the Oort cloud. Monthly Notices of the Royal Astronomical Society, 2015, 446, 2059-2064.	1.6	52
243	Exogenic Dynamics, Cratering, and Surface Ages. , 2015, , 327-365.		27
244	Asteroids and Comets. , 2015, , 487-528.		2
245	INTERPLANETARY DUST PARTICLES AS SAMPLES OF ICY ASTEROIDS. Astrophysical Journal, 2015, 806, 204.	1.6	85
246	The Composition and Major Reservoirs of the Earth Around the Time of the Moon-Forming Giant Impact. , 2015, , 11-42.		1
247	Formation of the Earth's Core. , 2015, , 43-79.		40
248	Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite. Nature Communications, 2015, 6, 7444.	5.8	150
249	Diverse impactors in Apollo 15 and 16 impact melt rocks: Evidence from osmium isotopes and highly siderophile elements. Geochimica Et Cosmochimica Acta, 2015, 155, 122-153.	1.6	32
250	Asteroid (90) Antiope: Another icy member of the Themis family?. Icarus, 2015, 254, 150-156.	1.1	29
251	Is Vesta an intact and pristine protoplanet?. Icarus, 2015, 254, 190-201.	1.1	30
252	A new recipe for Earth formation. Nature, 2015, 520, 299-300.	13.7	3
253	A protracted timeline for lunar bombardment from mineral chemistry, Ti thermometry and U–Pb geochronology of Apollo 14 melt breccia zircons. Contributions To Mineralogy and Petrology, 2015, 169, 1.	1.2	61
254	On the Evolution of Comets. Space Science Reviews, 2015, 197, 271-296.	3.7	23
255	Jupiter's decisive role in the inner Solar System's early evolution. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4214-4217.	3.3	101
256	The formation of the solar system. Physica Scripta, 2015, 90, 068001.	1.2	51
257	Planet heating prevents inward migration of planetary cores. Nature, 2015, 520, 63-65.	13.7	127
258	The comet-like composition of a protoplanetary disk as revealed by complex cyanides. Nature, 2015, 520, 198-201.	13.7	192

#	Article	IF	CITATIONS
259	VOLATILE DELIVERY TO PLANETS FROM WATER-RICH PLANETESIMALS AROUND LOW-MASS STARS. Astrophysical Journal, 2015, 804, 9.	1.6	84
260	LIFETIME AND SPECTRAL EVOLUTION OF A MAGMA OCEAN WITH A STEAM ATMOSPHERE: ITS DETECTABILITY BY FUTURE DIRECT IMAGING. Astrophysical Journal, 2015, 806, 216.	1.6	60
261	Capture of planets into mean-motion resonances and the origins of extrasolar orbital architectures. Monthly Notices of the Royal Astronomical Society, 2015, 451, 2589-2609.	1.6	91
262	Growing the terrestrial planets from the gradual accumulation of submeter-sized objects. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14180-14185.	3.3	142
263	Origin and history of ureilitic material in the solar system: The view from asteroidÂ2008 <scp>TC</scp> ₃ and the Almahata Sitta meteorite. Meteoritics and Planetary Science, 2015, 50, 782-809.	0.7	92
264	Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Science Advances, 2015, 1, e1500109.	4.7	331
265	Likely detection of water-rich asteroid debris in a metal-polluted white dwarf. Monthly Notices of the Royal Astronomical Society, 2015, 450, 2083-2093.	1.6	85
266	NUMERICALLY PREDICTED INDIRECT SIGNATURES OF TERRESTRIAL PLANET FORMATION. Astrophysical Journal, 2015, 806, 23.	1.6	27
267	WATER ICE LINES AND THE FORMATION OF GIANT MOONS AROUND SUPER-JOVIAN PLANETS. Astrophysical Journal, 2015, 806, 181.	1.6	64
268	Double-ringed debris discs could be the work of eccentric planets: explaining the strange morphology of HD 107146. Monthly Notices of the Royal Astronomical Society, 2015, 453, 3330-3341.	1.6	33
269	Laboratory Studies Towards Understanding Comets. Space Science Reviews, 2015, 197, 101-150.	3.7	18
270	Constraints from Comets on the Formation and Volatile Acquisition of the Planets and Satellites. Space Science Reviews, 2015, 197, 297-342.	3.7	25
271	Origin and Evolution of the Cometary Reservoirs. Space Science Reviews, 2015, 197, 191-269.	3.7	140
272	Collisionless encounters and the origin of the lunar inclination. Nature, 2015, 527, 492-494.	13.7	48
273	Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water. Icarus, 2015, 248, 89-108.	1.1	328
274	The main-belt comets: The Pan-STARRS1 perspective. Icarus, 2015, 248, 289-312.	1.1	48
275	In search of the source of asteroid (101955) Bennu: Applications of the stochastic YORP model. Icarus, 2015, 247, 191-217.	1.1	125
276	Bulk chemical and Hf–W isotopic consequences of incomplete accretion during planet formation. Icarus, 2015, 245, 145-152.	1.1	24

#	Article	IF	CITATIONS
277	TWO NEW LONG-PERIOD GIANT PLANETS FROM THE MCDONALD OBSERVATORY PLANET SEARCH AND TWO STARS WITH LONG-PERIOD RADIAL VELOCITY SIGNALS RELATED TO STELLAR ACTIVITY CYCLES. Astrophysical Journal, 2016, 818, 34.	1.6	53
278	FORMING CHONDRITES IN A SOLAR NEBULA WITH MAGNETICALLY INDUCED TURBULENCE. Astrophysical Journal Letters, 2016, 820, L12.	3.0	13
279	Asteroid flux towards circumprimary habitable zones in binary star systems. Astronomy and Astrophysics, 2016, 591, A120.	2.1	5
280	KELT-14b AND KELT-15b: AN INDEPENDENT DISCOVERY OF WASP-122b AND A NEW HOT JUPITER. Astronomical Journal, 2016, 151, 138.	1.9	42
281	THE LICK-CARNEGIE EXOPLANET SURVEY: HD 32963—A NEW JUPITER ANALOG ORBITING A SUN-LIKE STAR. Astrophysical Journal, 2016, 817, 104.	1.6	60
282	MEASUREMENTS OF WATER SURFACE SNOW LINES IN CLASSICAL PROTOPLANETARY DISKS. Astrophysical Journal, 2016, 818, 22.	1.6	58
283	Magnitude and timing of the giant planet instability: A reassessment from the perspective of the asteroid belt. Astronomy and Astrophysics, 2016, 592, A72.	2.1	11
284	The chlorine isotope composition of Martian meteorites 2. Implications for the early solar system and the formation of Mars. Meteoritics and Planetary Science, 2016, 51, 2111-2126.	0.7	38
285	The Climate of Early Mars. Annual Review of Earth and Planetary Sciences, 2016, 44, 381-408.	4.6	267
286	News Feature: The Mars anomaly. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3704-3707.	3.3	0
287	Early scattering of the solar protoplanetary disk recorded in meteoritic chondrules. Science Advances, 2016, 2, e1601001.	4.7	21
288	IN SITU FORMATION AND DYNAMICAL EVOLUTION OF HOT JUPITER SYSTEMS. Astrophysical Journal, 2016, 829, 114.	1.6	215
289	The habitability of Proxima Centauri b. Astronomy and Astrophysics, 2016, 596, A111.	2.1	165
290	Timing of the formation and migration of giant planets as constrained by CB chondrites. Science Advances, 2016, 2, e1601658.	4.7	38
291	THE ASTEROID BELT AS A RELIC FROM A CHAOTIC EARLY SOLAR SYSTEM. Astrophysical Journal, 2016, 833, 40.	1.6	62
292	THE SPIRAL WAVE INSTABILITY INDUCED BY A GIANT PLANET. I. PARTICLE STIRRING IN THE INNER REGIONS OF PROTOPLANETARY DISKS. Astrophysical Journal, 2016, 833, 126.	1.6	43
293	Close-in planetesimal formation by pile-up of drifting pebbles. Astronomy and Astrophysics, 2016, 594, A105.	2.1	168
294	ANALYSIS OF TERRESTRIAL PLANET FORMATION BY THE GRAND TACK MODEL: SYSTEM ARCHITECTURE AND TACK LOCATION. Astrophysical Journal, 2016, 821, 75.	1.6	73

#	Article	IF	CITATIONS
295	COMPOSITIONAL HOMOGENEITY OF CM PARENT BODIES. Astronomical Journal, 2016, 152, 54.	1.9	44
296	THE MAGELLAN PFS PLANET SEARCH PROGRAM: RADIAL VELOCITY AND STELLAR ABUNDANCE ANALYSES OF THE 360 au, METAL-POOR BINARY "TWINS―HD 133131A & B*. Astronomical Journal, 2016, 152, 167.	1.9	58
297	Did Jupiter's core form in the innermost parts of the Sun's protoplanetary disc?. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2962-2972.	1.6	46
298	Potential Jupiter-Family comet contamination of the main asteroid belt. Icarus, 2016, 277, 19-38.	1.1	37
299	Refractory and semi-volatile organics at the surface of comet 67P/Churyumov-Gerasimenko: Insights from the VIRTIS/Rosetta imaging spectrometer. Icarus, 2016, 272, 32-47.	1.1	127
300	Is the Grand Tack model compatible with the orbital distribution of main belt asteroids?. Icarus, 2016, 272, 114-124.	1.1	43
301	Highly Siderophile Elements in Earth, Mars, the Moon, and Asteroids. , 2016, , 161-238.		7
302	Detection and characterization of circumstellar material with a WFIRST or EXO-C coronagraphic instrument: simulations and observational methods. Journal of Astronomical Telescopes, Instruments, and Systems, 2016, 2, 011022.	1.0	2
303	AstRoMap European Astrobiology Roadmap. Astrobiology, 2016, 16, 201-243.	1.5	99
304	A TRANSITING JUPITER ANALOG. Astrophysical Journal, 2016, 820, 112.	1.6	40
305	ON THE FORMATION OF SUPER-EARTHS WITH IMPLICATIONS FOR THE SOLAR SYSTEM. Astrophysical Journal, 2016, 822, 90.	1.6	32
306	TERRESTRIAL PLANET FORMATION FROM AN ANNULUS. Astronomical Journal, 2016, 152, 68.	1.9	63
307	Highly siderophile elements were stripped from Earth's mantle by iron sulfide segregation. Science, 2016, 353, 1141-1144.	6.0	95
308	Dirhodium-catalyzed C-H arene amination using hydroxylamines. Science, 2016, 353, 1144-1147.	6.0	224
309	Late veneer and late accretion to the terrestrial planets. Earth and Planetary Science Letters, 2016, 455, 85-93.	1.8	57
310	Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites. Earth and Planetary Science Letters, 2016, 454, 293-303.	1.8	220
313	The early thermal evolution of Mars. Meteoritics and Planetary Science, 2016, 51, 138-154.	0.7	13
314	Magnesium and 54Cr isotope compositions of carbonaceous chondrite chondrules – Insights into early disk processes. Geochimica Et Cosmochimica Acta, 2016, 191, 118-138.	1.6	73

ATION R

#	Article	IF	CITATIONS
315	Olivine on Vesta as exogenous contaminants brought by impacts: Constraints from modeling Vesta's collisional history and from impact simulations. Icarus, 2016, 280, 328-339.	1.1	17
316	The importance of sulfur for the behavior of highly-siderophile elements during Earth's differentiation. Geochimica Et Cosmochimica Acta, 2016, 194, 123-138.	1.6	54
317	The Astrobiology Primer v2.0. Astrobiology, 2016, 16, 561-653.	1.5	133
318	Mars: a small terrestrial planet. Astronomy and Astrophysics Review, 2016, 24, 1.	9.1	22
319	SELF-DESTRUCTING SPIRAL WAVES: GLOBAL SIMULATIONS OF A SPIRAL-WAVE INSTABILITY IN ACCRETION DISKS. Astrophysical Journal, 2016, 829, 13.	1.6	26
320	Water in the Martian interior—The geodynamical perspective. Meteoritics and Planetary Science, 2016, 51, 1959-1992.	0.7	20
321	The sustainability of habitability on terrestrial planets: Insights, questions, and needed measurements from Mars for understanding the evolution of Earthâ€like worlds. Journal of Geophysical Research E: Planets, 2016, 121, 1927-1961.	1.5	72
322	CAPTURE OF TRANS-NEPTUNIAN PLANETESIMALS IN THE MAIN ASTEROID BELT. Astronomical Journal, 2016, 152, 39.	1.9	100
323	THE FORMATION OF CORES OF GIANT PLANETS AT CONVERGENCE ZONES OF PLANETARY MIGRATION. Astrophysical Journal, 2016, 830, 65.	1.6	21
325	Challenges in planet formation. Journal of Geophysical Research E: Planets, 2016, 121, 1962-1980.	1.5	127
326	ROCKY PLANET FORMATION: QUICK AND NEAT. Astrophysical Journal, 2016, 831, 8.	1.6	27
327	The primordial nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 592, A63.	2.1	159
328	Inner solar system material discovered in the Oort cloud. Science Advances, 2016, 2, e1600038.	4.7	45
329	AN INFRARED SEARCH FOR HDO IN COMET D/2012 S1 (ISON) AND IMPLICATIONS FOR iSHELL. Astrophysical Journal, 2016, 816, 101.	1.6	3
330	Formation of terrestrial planets in disks with different surface density profiles. Celestial Mechanics and Dynamical Astronomy, 2016, 124, 235-268.	0.5	42
331	Dynamical sequestration of the Moon-forming impactor in co-orbital resonance with Earth. Icarus, 2016, 275, 239-248.	1.1	5
332	Fossilized condensation lines in the Solar System protoplanetary disk. Icarus, 2016, 267, 368-376.	1.1	152
333	Compression of Fe–Si–H alloys to core pressures. Geophysical Research Letters, 2016, 43, 3686-3692.	1.5	31

#	Article	IF	CITATIONS
334	Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact. Science, 2016, 351, 493-496.	6.0	203
335	The building blocks of Earth and Mars: A close genetic link. Earth and Planetary Science Letters, 2016, 434, 151-160.	1.8	46
336	Impact-induced melting during accretion of the Earth. Progress in Earth and Planetary Science, 2016, 3,	1.1	31
337	Perspectives on Comets, Comet-like Asteroids, and Their Predisposition to Provide an Environment That Is Friendly to Life. Astrobiology, 2016, 16, 311-323.	1.5	2
338	Full-lifetime simulations of multiple unequal-mass planets across all phases of stellar evolution. Monthly Notices of the Royal Astronomical Society, 2016, 458, 3942-3967.	1.6	95
339	Insights into Planet Formation from Debris Disks. Space Science Reviews, 2016, 205, 231-265.	3.7	43
340	JUMPING JUPITER CAN EXPLAIN MERCURY'S ORBIT. Astrophysical Journal Letters, 2016, 820, L30.	3.0	48
341	The <i>James Webb Space Telescope</i> 's Plan for Operations and Instrument Capabilities for Observations in the Solar System. Publications of the Astronomical Society of the Pacific, 2016, 128, 018001.	1.0	25
342	Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2011-2016.	3.3	152
343	EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON THE DELIVERY OF ATMOPHILE ELEMENTS DURING TERRESTRIAL PLANET FORMATION. Astrophysical Journal, 2016, 818, 15.	1.6	33
344	Jupiter: Cosmic Jekyll and Hyde. Astrobiology, 2016, 16, 23-38.	1.5	20
345	GRASPING THE NATURE OF POTENTIALLY HAZARDOUS ASTEROIDS. Astronomical Journal, 2016, 151, 11.	1.9	21
346	GLOBAL HIGH-RESOLUTION N-BODY SIMULATION OF PLANET FORMATION. I. PLANETESIMAL-DRIVEN MIGRATION. Astrophysical Journal, 2016, 819, 30.	1.6	4
347	Accretion timescales and style of asteroidal differentiation in an 26Al-poor protoplanetary disk. Geochimica Et Cosmochimica Acta, 2016, 176, 295-315.	1.6	40
348	Highly siderophile element abundances in Eoarchean komatiite and basalt protoliths. Contributions To Mineralogy and Petrology, 2016, 171, 1.	1.2	9
349	Highly Siderophile Elements in Earth, Mars, the Moon, and Asteroids. Reviews in Mineralogy and Geochemistry, 2016, 81, 161-238.	2.2	115
350	JIRAM, the Jovian Infrared Auroral Mapper. Space Science Reviews, 2017, 213, 393-446.	3.7	91
351	Astrobiology and the Possibility of Life on Earth and Elsewhere…. Space Science Reviews, 2017, 209, 1-42.	3.7	66

ARTICLE IF CITATIONS # Population synthesis of planet formation using a torque formula with dynamic effects. Geoscience 352 4.3 6 Frontiers, 2017, 8, 215-222. DIFFERENT ORIGINS OR DIFFERENT EVOLUTIONS? DECODING THE SPECTRAL DIVERSITY AMONG C-TYPE ASTEROIDS. Astronomical Journal, 2017, 153, 72. Zero age planetary orbit of gas giant planets revisited: reinforcement of the link with stellar 354 1.6 23 metallicity. Monthly Notices of the Royal Astronomical Society, 2017, 464, 3309-3314. Melting and differentiation of early-formed asteroids: The perspective from high precision oxygen 132 isotope studies. Chemie Der Erde, 2017, 77, 1-43. Chlorine Isotope Geochemistry. Reviews in Mineralogy and Geochemistry, 2017, 82, 345-378. 356 2.2 40 Ruthenium isotopic evidence for an inner Solar System origin of the late veneer. Nature, 2017, 541, 13.7 525-527. A divergent heritage for complex organics in Isheyevo lithic clasts. Geochimica Et Cosmochimica Acta, 358 1.6 14 2017, 205, 119-148. United theory of planet formation (i): Tandem regime. New Astronomy, 2017, 54, 7-23. 0.8 28 Constraining the Giant Planets' Initial Configuration from Their Evolution: Implications for the 360 1.9 84 Timing of the Planetary Instability. Astronomical Journal, 2017, 153, 153. Possible origin of Theia, the Moonâ€forming impactor with Earth. Astronomische Nachrichten, 2017, 338, 366-374. Prevalence of chaos in planetary systems formed through embryo accretion. Icarus, 2017, 288, 88-98. 362 7 1.1 Lifetime of the solar nebula constrained by meteorite paleomagnetism. Science, 2017, 355, 623-627. 363 6.0 147 Modeling the Historical Flux of Planetary Impactors. Astronomical Journal, 2017, 153, 103. 364 1.9 70 Planetesimals in Debris Disks., 2017, , 340-362. The cool and distant formation of Mars. Earth and Planetary Science Letters, 2017, 468, 85-93. 366 1.8 37 Early accretion of water and volatile elements to the inner Solar System: evidence from angrites. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 367 <u>20</u>160209. Ejection of iron-bearing giant-impact fragments and the dynamical and geochemical influence of the 368 1.8 31 fragment re-accretion. Earth and Planetary Science Letters, 2017, 470, 87-95. Cataclysm No More: New Views on the Timing and Delivery of Lunar Impactors. Origins of Life and 369 Evolution of Biospheres, 2017, 47, 261-280.

#	Article	IF	CITATIONS
370	The origin of inner Solar System water. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20150384.	1.6	46
371	Terrestrial Planet Formation: Dynamical Shake-up and the Low Mass of Mars. Astronomical Journal, 2017, 153, 216.	1.9	49
372	The olivine-dominated composition of the Eureka family of Mars Trojan asteroids. Monthly Notices of the Royal Astronomical Society, 2017, 466, 489-495.	1.6	14
373	Yarkovsky V-shape identification of asteroid families. Icarus, 2017, 282, 290-312.	1.1	32
374	Mass determination of K2-19b and K2-19c from radial velocities and transit timing variations. Astronomy and Astrophysics, 2017, 601, A128.	2.1	8
375	The structure of terrestrial bodies: Impact heating, corotation limits, and synestias. Journal of Geophysical Research E: Planets, 2017, 122, 950-982.	1.5	81
376	Hayabusa2 Mission Overview. Space Science Reviews, 2017, 208, 3-16.	3.7	228
377	Aqueous origins of bright salt deposits on Ceres. Icarus, 2017, 296, 289-304.	1.1	48
378	A colossal impact enriched Mars' mantle with noble metals. Geophysical Research Letters, 2017, 44, 5978-5985.	1.5	26
379	Angrite meteorites record the onset and flux of water to the inner solar system. Geochimica Et Cosmochimica Acta, 2017, 212, 156-166.	1.6	33
380	Tungsten Isotopes in Planets. Annual Review of Earth and Planetary Sciences, 2017, 45, 389-417.	4.6	78
381	The bulk valence state of Fe and the origin of water in chondrites. Geochimica Et Cosmochimica Acta, 2017, 211, 115-132.	1.6	42
382	New Insights on Planet Formation in WASP-47 from a Simultaneous Analysis of Radial Velocities and Transit Timing Variations. Astronomical Journal, 2017, 153, 265.	1.9	55
383	Setting the scene: what did we know before Rosetta?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160247.	1.6	15
384	Planetesimal Clearing and Size-dependent Asteroid Retention by Secular Resonance Sweeping during the Depletion of the Solar Nebula. Astrophysical Journal, 2017, 836, 207.	1.6	24
385	Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6712-6716.	3.3	439
386	Optical spectroscopy and photometry of main-belt asteroids with a high orbital inclination. Research in Astronomy and Astrophysics, 2017, 17, 17.	0.7	1
388	Signatures of Hit-and-run Collisions. , 2017, , 7-37.		9

#	Article	IF	Citations
389	Using the Main Asteroid Belt to Constrain Planetesimal and Planet Formation. , 0, , 38-68.		0
390	Origin and Evolution of Volatile-rich Asteroids. , 2017, , 92-114.		11
391	Stable Isotope Evidence for the Differentiation and Evolution of Planetesimals. , 0, , 246-266.		2
392	Composition of Solar System Small Bodies. , 2017, , 269-297.		14
393	Collisions of Terrestrial Worlds: The Occurrence of Extreme Mid-infrared Excesses around Low-mass Field Stars. Astronomical Journal, 2017, 153, 165.	1.9	27
394	Thermal evolution of planetesimals during accretion. Icarus, 2017, 285, 103-117.	1.1	6
395	The accretion and impact history of the ordinary chondrite parent bodies. Geochimica Et Cosmochimica Acta, 2017, 200, 201-217.	1.6	65
396	Gallium isotopic evidence for the fate of moderately volatile elements in planetary bodies and refractory inclusions. Earth and Planetary Science Letters, 2017, 479, 330-339.	1.8	25
397	The Diverse Population of Small Bodies of the Solar System. , 2017, , 1-25.		0
398	A review of Planetesimals: early differentiation and consequences for planets, edited by L. T. Elkins-Tanton and B. P. Weiss. Contemporary Physics, 2017, 58, 353-355.	0.8	0
399	Disk Evolution and the Fate of Water. Space Science Reviews, 2017, 212, 813-834.	3.7	7
400	Water and Volatiles in the Outer Solar System. Space Science Reviews, 2017, 212, 835-875.	3.7	44
401	Exploring the volatile composition of comets C/2012 F6 (Lemmon) and C/2012 S1 (ISON) with ALMA. Astronomy and Astrophysics, 2017, 604, A131.	2.1	5
402	Formation of solar system analogues – I. Looking for initial conditions through a population synthesis analysis. Monthly Notices of the Royal Astronomical Society, 2017, 471, 2753-2770.	1.6	44
403	Formation of the Proto-Earth in the Solar Nebula. , 2017, , 25-58.		0
404	The Giant Impact Made the Present Earth–Moon Systemâ^—. , 2017, , 59-100.		0
405	The empty primordial asteroid belt. Science Advances, 2017, 3, e1701138.	4.7	99
406	A deeper view of the CoRoT-9 planetary system. Astronomy and Astrophysics, 2017, 603, A43.	2.1	9

#	Article	IF	CITATIONS
407	The Late Heavy Bombardment. Annual Review of Earth and Planetary Sciences, 2017, 45, 619-647.	4.6	173
408	A Martian origin for the Mars Trojan asteroids. Nature Astronomy, 2017, 1, .	4.2	19
409	Aqueous geochemistry in icy world interiors: Equilibrium fluid, rock, and gas compositions, and fate of antifreezes and radionuclides. Geochimica Et Cosmochimica Acta, 2017, 212, 324-371.	1.6	74
410	Small Jupiter Trojans Survey with the Subaru/Hyper Suprime-Cam [*] . Astronomical Journal, 2017, 154, 71.	1.9	54
411	Formation, stratification, and mixing of the cores of Earth and Venus. Earth and Planetary Science Letters, 2017, 474, 375-386.	1.8	63
412	Escape and evolution of Mars's CO ₂ atmosphere: Influence of suprathermal atoms. Journal of Geophysical Research E: Planets, 2017, 122, 1321-1337.	1.5	19
413	Steamworlds: Atmospheric Structure and Critical Mass of Planets Accreting Icy Pebbles. Astrophysical Journal, 2017, 849, 30.	1.6	34
414	Chondrules: Ubiquitous Chondritic Solids Tracking the Evolution of the Solar Protoplanetary Disk. Astrophysics and Space Science Library, 2017, , 161-195.	1.0	14
415	Geochemical Constraints on the Size of the Moonâ€Forming Giant Impact. Geophysical Research Letters, 2017, 44, 11,770.	1.5	10
417	The composition of Solar system asteroids and Earth/Mars moons, and the Earth–Moon composition similarity. Monthly Notices of the Royal Astronomical Society, 2017, 469, 3597-3609.	1.6	38
418	Origin of water in the inner Solar System: Planetesimals scattered inward during Jupiter and Saturn's rapid gas accretion. Icarus, 2017, 297, 134-148.	1.1	197
419	Origin of the Earth: A proposal of new model called ABEL. Geoscience Frontiers, 2017, 8, 253-274.	4.3	50
420	Sensitivities of Earth's core and mantle compositions to accretion and differentiation processes. Earth and Planetary Science Letters, 2017, 458, 252-262.	1.8	42
421	Nebular ingassing as a source of volatiles to the Terrestrial planets. Chemical Geology, 2017, 448, 137-150.	1.4	53
422	A pebbles accretion model with chemistry and implications for the Solar system. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4282-4298.	1.6	21
423	Tandem planet formation for solar system-like planetary systems. Geoscience Frontiers, 2017, 8, 223-231.	4.3	7
424	Search for primitive matter in the Solar System. Icarus, 2017, 282, 375-379.	1.1	9
425	Water in type I chondrules of Paris CM chondrite. Geochimica Et Cosmochimica Acta, 2017, 199, 75-90.	1.6	18

#	Article	IF	CITATIONS
426	Stochasticity and predictability in terrestrial planet formation. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2170-2188.	1.6	39
427	Chemical enrichment of giant planets and discs due to pebble drift. Monthly Notices of the Royal Astronomical Society, 2017, 469, 3994-4011.	1.6	148
428	Atmospheric signatures of giant exoplanet formation by pebble accretion. Monthly Notices of the Royal Astronomical Society, 2017, 469, 4102-4115.	1.6	134
429	The asteroid belt outer region under jumping-Jupiter migration. Monthly Notices of the Royal Astronomical Society, 2017, 470, 2680-2686.	1.6	21
430	The Main Belt Comets and ice in the Solar System. Astronomy and Astrophysics Review, 2017, 25, 1.	9.1	60
431	Outer Architecture of Kepler-11: Constraints from Coplanarity. Astronomical Journal, 2017, 153, 227.	1.9	30
432	Stable habitable zones of single Jovian planet systems. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4494-4507.	1.6	33
433	Perturbation of Compact Planetary Systems by Distant Giant Planets. Monthly Notices of the Royal Astronomical Society, 0, , stx182.	1.6	33
434	Bayesian evidence for the prevalence of waterworlds. Monthly Notices of the Royal Astronomical Society, 2017, 468, 2803-2815.	1.6	39
435	Small D-type asteroids in the NEO population: new targets for space missions. Monthly Notices of the Royal Astronomical Society, 2018, 476, 4481-4487.	1.6	18
436	The Delivery of Water During Terrestrial Planet Formation. Space Science Reviews, 2018, 214, 1.	3.7	76
437	The proposed Caroline ESA M3 mission to a Main Belt Comet. Advances in Space Research, 2018, 62, 1921-1946.	1.2	9
438	Isotopic Dichotomy among Meteorites and Its Bearing on the Protoplanetary Disk. Astrophysical Journal, 2018, 854, 164.	1.6	76
439	The Origin of the Moon Within a Terrestrial Synestia. Journal of Geophysical Research E: Planets, 2018, 123, 910-951.	1.5	200
440	The late accretion and erosion of Vesta's crust recorded by eucrites and diogenites as an astrochemical window into the formation of Jupiter and the early evolution of the Solar System. Icarus, 2018, 311, 224-241.	1.1	3
441	A large planetary body inferred from diamond inclusions in a ureilite meteorite. Nature Communications, 2018, 9, 1327.	5.8	56
442	On the Terminal Rotation Rates of Giant Planets. Astronomical Journal, 2018, 155, 178.	1.9	67
443	Origin of Light Noble Gases (He, Ne, and Ar) on Earth: A Review. Geochemistry, Geophysics, Geosystems, 2018, 19, 979-996.	1.0	20

#	Article	IF	CITATIONS
444	Water and the Interior Structure of Terrestrial Planets and Icy Bodies. Space Science Reviews, 2018, 214, 1.	3.7	33
445	An Infrared Spectroscopic Study Toward the Formation of Alkylphosphonic Acids and Their Precursors in Extraterrestrial Environments. Astrophysical Journal, Supplement Series, 2018, 234, 6.	3.0	18
446	Multi-band photometry of trans-Neptunian objects in the Subaru Hyper Suprime-Cam survey. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	10
447	Water Reservoirs in Small Planetary Bodies: Meteorites, Asteroids, and Comets. Space Science Reviews, 2018, 214, 1.	3.7	88
448	CASTAway: An asteroid main belt tour and survey. Advances in Space Research, 2018, 62, 1998-2025.	1.2	18
449	Thermal infrared and optical photometry of Asteroidal Comet C/2002ÂCE10. Icarus, 2018, 304, 95-100.	1.1	5
450	The timeline of the lunar bombardment: Revisited. Icarus, 2018, 305, 262-276.	1.1	186
451	Collisional stripping of planetary crusts. Earth and Planetary Science Letters, 2018, 484, 276-286.	1.8	56
452	The retention of dust in protoplanetary disks: Evidence from agglomeratic olivine chondrules from the outer Solar System. Geochimica Et Cosmochimica Acta, 2018, 223, 405-421.	1.6	32
453	Impact splash chondrule formation during planetesimal recycling. Icarus, 2018, 302, 27-43.	1.1	79
454	Do planets remember how they formed?. Monthly Notices of the Royal Astronomical Society, 2018, 473, 784-795.	1.6	18
455	Iron diapirs entrain silicates to the core and initiate thermochemical plumes. Nature Communications, 2018, 9, 71.	5.8	11
456	Mars' growth stunted by an early giant planet instability. Icarus, 2018, 311, 340-356.	1.1	108
457	Long-Lived Near-Earth Asteroid 2013 RB6. Solar System Research, 2018, 52, 61-63.	0.3	1
458	Dynamical Evolution of Planetary Systems. , 2018, , 1-19.		0
459	Interstellar Interlopers: Number Density and Origin of â€~Oumuamua-like Objects. Astrophysical Journal Letters, 2018, 855, L10.	3.0	121
460	Giant Planet Formation and Migration. Space Science Reviews, 2018, 214, 1.	3.7	19
461	A dynamical context for the origin of Phobos and Deimos. Monthly Notices of the Royal Astronomical Society, 2018, 475, 2452-2466.	1.6	26

#	Article	IF	CITATIONS
462	2004 EW ₉₅ : A Phyllosilicate-bearing Carbonaceous Asteroid in the Kuiper Belt. Astrophysical Journal Letters, 2018, 855, L26.	3.0	15
463	Candidate Water Vapor Lines to Locate the H ₂ O Snowline through High-dispersion Spectroscopic Observations. III. Submillimeter H ₂ ¹⁶ O and H ₂ ¹⁸ O Lines. Astrophysical Journal, 2018, 855, 62.	1.6	18
464	From Disks to Planets: The Making of Planets and Their Early Atmospheres. An Introduction. Space Science Reviews, 2018, 214, 1.	3.7	8
465	Inward migration of the TRAPPIST-1 planets as inferred from their water-rich compositions. Nature Astronomy, 2018, 2, 297-302.	4.2	91
466	Reconstructing the size distribution of the primordial Main Belt. Icarus, 2018, 304, 14-23.	1.1	21
467	Hf-W chronology of CR chondrites: Implications for the timescales of chondrule formation and the distribution of 26Al in the solar nebula. Geochimica Et Cosmochimica Acta, 2018, 222, 284-304.	1.6	106
468	The Castalia mission to Main Belt Comet 133P/Elst-Pizarro. Advances in Space Research, 2018, 62, 1947-1976.	1.2	27
469	Escape and fractionation of volatiles and noble gases from Mars-sized planetary embryos and growing protoplanets. Icarus, 2018, 307, 327-346.	1.1	43
470	Oxygen isotopic ratios of primordial water in carbonaceous chondrites. Earth and Planetary Science Letters, 2018, 481, 264-272.	1.8	25
471	Origin and abundance of water in carbonaceous asteroids. Earth and Planetary Science Letters, 2018, 482, 23-32.	1.8	59
472	Radial mixing and Ru–Mo isotope systematics under different accretion scenarios. Earth and Planetary Science Letters, 2018, 482, 105-114.	1.8	19
473	Spectral decomposition of asteroid Itokawa based on principal component analysis. Icarus, 2018, 299, 386-395.	1.1	7
474	Tandem Planetary Formation Theory. Journal of Geography (Chigaku Zasshi), 2018, 127, 577-607.	0.1	3
475	The Formation of the Solar System: A Recipe for Worlds. Elements, 2018, 14, 113-118.	0.5	3
476	ABEL Model of the Two-step Formation of the Earth and the Significance of ABEL Bombardment to Produce a Habitable Planet. Journal of Geography (Chigaku Zasshi), 2018, 127, 647-682.	0.1	2
477	Planetary formation and water delivery in the habitable zone around solar-type stars in different dynamical environments. Astronomy and Astrophysics, 2018, 609, A76.	2.1	13
478	Shifting of the resonance location for planets embedded in circumstellar disks. Astronomy and Astrophysics, 2018, 611, A37.	2.1	8
479	Chemical Composition of the Outer Core. Journal of Geography (Chigaku Zasshi), 2018, 127, 631-646.	0.1	3

		CITATION REP	ORT	
#	Article		IF	CITATIONS
480	The GJ 504 system revisited. Astronomy and Astrophysics, 2018, 618, A63.		2.1	45
481	The Young Sun, Conditions on the Early Earth, and the Origin of Life. Geomagnetism and Aeror 2018, 58, 877-887.	iomy,	0.2	1
482	Colors of Centaurs observed by the Subaru/Hyper Suprime-Cam and implications for their origi Publication of the Astronomical Society of Japan, 2018, 70, .	n.	1.0	1
483	Formation of Terrestrial Planets. , 2018, , 2365-2423.			12
484	Planetary Population Synthesis. , 2018, , 2425-2474.			46
485	Dynamical Evolution of Planetary Systems. , 2018, , 2523-2541.			5
486	Feedstocks of the Terrestrial Planets. Space Science Reviews, 2018, 214, 1.		3.7	15
487	The Primordial Solar Wind as a Sculptor of Terrestrial Planet Formation. Astrophysical Journal Letters, 2018, 869, L17.		3.0	5
488	Toward understanding the origin of asteroid geometries. Astronomy and Astrophysics, 2018, 6	520, A167.	2.1	18
489	The Origin and Evolution of Saturn, with Exoplanet Perspective. , 2018, , 5-43.			23
490	The Interior of Saturn. , 2018, , 44-68.			6
491	The Elusive Origin of Mercury. , 2018, , 497-515.			21
492	Thermal evolution and sintering of chondritic planetesimals. Astronomy and Astrophysics, 201 A147.	8, 615,	2.1	6
493	The Effect of Jupiter's Formation on the Distribution of Refractory Elements and Inclusions in Meteorites. Astrophysical Journal, Supplement Series, 2018, 238, 11.		3.0	158
494	The Hot Jupiter Period–Mass Distribution as a Signature of in situ Formation. Astrophysical Jo Letters, 2018, 866, L2.	ournal	3.0	29
495	The curious case of Mars' formation. Astronomy and Astrophysics, 2018, 617, A17.		2.1	17
496	(121514) 1999 UJ ₇ : A primitive, slow-rotating Martian Trojan. Astronomy and Ast 2018, 618, A178.	rophysics,	2.1	4
497	The Diverse Population of Small Bodies of the Solar System. , 2018, , 395-419.			1

ARTICLE IF CITATIONS # It's Complicated: A Big Data Approach to Exploring Planetesimal Evolution in the Presence of Jovian 498 1.9 26 Planets. Astronomical Journal, 2018, 156, 232. Formation of the terrestrial planets in the solar system around 1 au via radial concentration of 499 2.1 planetesimals. Astronomy and Astrophysics, 2018, 612, L5. 501 Radial velocities., 0,, 17-80. 0 Astrometry., 0,, 81-102. Timing., 0, , 103-118. 503 0 Microlensing., 0,, 119-152. 506 Host stars., 0,, 373-428. 0 Brown dwarfs and free-floating planets., 0,, 429-448. 508 Formation and evolution., 0,, 449-558. 0 509 Interiors and atmospheres., 0,, 559-648. 510 The solar system. , 0, , 649-700. 0 Two Hyperbolic Baldheads in the Solar System: 2017 U7 and 2018 C2. Astronomical Journal, 2018, 156, 73. Excitation of a Primordial Cold Asteroid Belt as an Outcome of Planetary Instability. Astrophysical 519 1.6 39 Journal, 2018, 864, 50. Formation of terrestrial planets. Proceedings of the International Astronomical Union, 2018, 14, 141-147. Formation of Terrestrial Planets., 2018, , 1-59. 521 0 Orbital Alignment of Main-belt Comets. Astronomical Journal, 2018, 155, 142. Properties of the single Jovian planet population and the pursuit of Solar system analogues. Monthly 523 12 1.6 Notices of the Royal Astronomical Society, 2018, 477, 3646-3658. 524 SPRITE: A Saturn probe new frontiers mission., 2018,,.

	CITATION R	EPORT	
#	Article	IF	CITATIONS
525	Size Distribution of Small Hilda Asteroids ^{â^—} . Astronomical Journal, 2018, 156, 30.	1.9	8
526	Planetary Population Synthesis. , 2018, , 1-50.		7
527	Multiple Mechanisms of Transient Heating Events in the Protoplanetary Disk. , 0, , 11-56.		16
528	Oxygen Isotope Characteristics of Chondrules from Recent Studies by Secondary Ion Mass Spectrometry. , 0, , 196-246.		17
529	Formation of Chondrules by Planetesimal Collisions. , 0, , 343-360.		8
530	Formation of Chondrules by Shock Waves. , 0, , 375-399.		8
531	Summary of Key Outcomes. , 0, , 428-436.		1
532	Formation of Solar system analogues – II. Post-gas-phase growthand water accretion in extended discs via N-body simulations. Monthly Notices of the Royal Astronomical Society, 2018, 479, 5362-5384.	1.6	6
533	Linking Water-Rich Asteroids and Meteorites. , 2018, , 371-408.		2
534	Water and Volatile Inventories of Mercury, Venus, the Moon, and Mars. Space Science Reviews, 2018, 214, 1.	3.7	27
535	Science exploration and instrumentation of the OKEANOS mission to a Jupiter Trojan asteroid using the solar power sail. Planetary and Space Science, 2018, 161, 99-106.	0.9	31
536	Comet Pond II: Synergistic Intersection of Concentrated Extraterrestrial Materials and Planetary Environments to Form Procreative Darwinian Ponds. Life, 2018, 8, 12.	1.1	10
537	Ferromanganese Crusts and Nodules: Rocks That Grow. Encyclopedia of Earth Sciences Series, 2018, , 477-483.	0.1	3
538	Core-mantle fractionation of carbon in Earth and Mars: The effects of sulfur. Geochimica Et Cosmochimica Acta, 2018, 238, 477-495.	1.6	38
539	Saturn's Formation and Early Evolution at the Origin of Jupiter's Massive Moons. Astronomical Journal, 2018, 155, 224.	1.9	26
540	Origin and evolution of the atmospheres of early Venus, Earth and Mars. Astronomy and Astrophysics Review, 2018, 26, 1.	9.1	124
541	Effects of core formation on the Hf–W isotopic composition of the Earth and dating of the Moon-forming impact. Earth and Planetary Science Letters, 2018, 499, 257-265.	1.8	21
542	Transits. , 0, , 153-328.		0

ARTICLE IF CITATIONS # Ceres's global and localized mineralogical composition determined by Dawn's Visible and Infrared 543 0.7 29 Spectrometer (<scp>VIR</scp>). Meteoritics and Planetary Science, 2018, 53, 1844-1865. Transforming Dust to Planets. Space Science Reviews, 2018, 214, 1. 544 Sublimation of icy planetesimals and the delivery of water to the habitable zone around solar type 545 2 1.6 stars. Monthly Notices of the Royal Astronomical Society, 2018, 479, 1392-1400. Jupiter's Influence on the Building Blocks of Mars and Earth. Geophysical Research Letters, 2018, 45, 546 5908-5917. Carbonaceous and noncarbonaceous iron meteorites: Differences in chemical, physical, and 547 0.7 41 collective properties. Meteoritics and Planetary Science, 2018, 53, 2357-2371. Impactâ€induced chemical fractionation as inferred from hypervelocity impact experiments with silicate projectiles and metallic targets. Meteoritics and Planetary Science, 2018, 53, 2306-2326. Dynamical Evolution of the Early Solar System. Annual Review of Astronomy and Astrophysics, 2018, 549 8.1 173 56, 137-174. Water in the history of Mars: An assessment. Planetary and Space Science, 2019, 166, 70-89. Impact degassing and atmospheric erosion on Venus, Earth, and Mars during the late accretion. Icarus, 551 25 1.1 2019, 317, 48-58. The origin of the unique achondrite Northwest Africa 6704: Constraints from petrology, chemistry 1.6 and Re–Os, O and Ti isotope systematics. Geochimica Et Cosmochimica A<u>cta, 2019, 245, 597-627.</u> Onset of Giant Planet Migration before 4480 Million Years Ago. Astrophysical Journal, 2019, 881, 44. 553 82 1.6 Geoscience for Understanding Habitability in the Solar System and Beyond. Space Science Reviews, 554 2019, 215, 1. A Plutoâ€"Charon Sonata: Dynamical Limits on the Masses of the Small Satellites. Astronomical Journal, 555 1.9 12 2019, 158, 69. Constraints on terrestrial planet formation timescales and equilibration processes in the Grand Tack scenario from Hf-W isotopic evolution. Earth and Planetary Science Letters, 2019, 522, 210-218. 1.8 Migration of D-type asteroids from the outer Solar System inferred from carbonate in meteorites. 557 4.2 40 Nature Astronomy, 2019, 3, 910-915. Formation of planetary systems by pebble accretion and migration. Astronomy and Astrophysics, 2019, 149 627, A83. Introduction to the Special Issue: Ice on Ceres. Journal of Geophysical Research E: Planets, 2019, 124, 559 1.51 1639-1649. Refractory inclusions in carbonaceous chondrites: Records of early solar system processes. Meteoritics and Planetary Science, 2019, 54, 1647-1691.

#	Article	IF	CITATIONS
561	History of the Terminal Cataclysm Paradigm: Epistemology of a Planetary Bombardment That Never (?) Happened. Geosciences (Switzerland), 2019, 9, 285.	1.0	40
562	New metric to quantify the similarity between planetary systems: application to dimensionality reduction using T-SNE. Astronomy and Astrophysics, 2019, 624, A45.	2.1	17
563	The origin of unequilibrated EH chondrites – Constraints from in situ analysis of Si isotopes, major and trace elements in silicates and metal. Geochimica Et Cosmochimica Acta, 2019, 267, 300-321.	1.6	14
564	On the Origin(s) and Evolution of Earth's Carbon. Elements, 2019, 15, 307-312.	0.5	10
565	Revolutionizing Our Understanding of the Solar System via Sample Return from Mercury. Space Science Reviews, 2019, 215, 1.	3.7	10
566	The Properties of Planetesimal Collisions under Jupiter's Perturbation and the Application to Chondrule Formation via Impact Jetting. Astrophysical Journal, 2019, 884, 37.	1.6	1
567	Measuring the Orbital Parameters of Radial Velocity Systems in Mean-motion Resonance: A Case Study of HD 200964. Astronomical Journal, 2019, 158, 136.	1.9	3
568	Origin and Evolution of Distinct Molybdenum Isotopic Variabilities within Carbonaceous and Noncarbonaceous Reservoirs. Astrophysical Journal, 2019, 883, 62.	1.6	23
569	Origin and abundances of H2O in the terrestrial planets, Moon, and asteroids. Earth and Planetary Science Letters, 2019, 526, 115771.	1.8	59
570	Probabilities of Collisions of Planetesimals from Different Regions of the Feeding Zone of the Terrestrial Planets with the Forming Planets and the Moon. Solar System Research, 2019, 53, 332-361.	0.3	7
571	Acquisition of terrestrial neon during accretion – A mixture of solar wind and planetary components. Geochimica Et Cosmochimica Acta, 2019, 264, 141-164.	1.6	6
572	Origin and Early Differentiation of Carbon and Associated Life-Essential Volatile Elements on Earth. , 2019, , 4-39.		20
573	The tumultuous childhood of the Solar System. Nature Astronomy, 2019, 3, 889-890.	4.2	2
574	Mineralogically zoned chondrules in ordinary chondrites as evidence for open system chondrule behaviour. Geochimica Et Cosmochimica Acta, 2019, 249, 1-16.	1.6	18
575	Delivery of carbon, nitrogen, and sulfur to the silicate Earth by a giant impact. Science Advances, 2019, 5, eaau3669.	4.7	74
576	The early instability scenario: Terrestrial planet formation during the giant planet instability, and the effect of collisional fragmentation. Icarus, 2019, 321, 778-790.	1.1	72
577	On the principal building blocks of Mars and Earth. Icarus, 2019, 322, 121-134.	1.1	19
578	A resonant pair of warm giant planets revealed by TESS. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4980-4986.	1.6	27

#	Article	IF	CITATIONS
579	Rocky super-Earths or waterworlds: the interplay of planet migration, pebble accretion, and disc evolution. Astronomy and Astrophysics, 2019, 624, A109.	2.1	62
580	Extended chondrule formation intervals in distinct physicochemical environments: Evidence from Al-Mg isotope systematics of CR chondrite chondrules with unaltered plagioclase. Geochimica Et Cosmochimica Acta, 2019, 260, 133-160.	1.6	30
581	Noble Gases: A Record of Earth's Evolution and Mantle Dynamics. Annual Review of Earth and Planetary Sciences, 2019, 47, 389-419.	4.6	56
582	Two accreting protoplanets around the young star PDS 70. Nature Astronomy, 2019, 3, 749-754.	4.2	283
583	Water delivery to the TRAPPIST-1 planets. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2191-2199.	1.6	14
584	Hydrogen Limits Carbon in Liquid Iron. Geophysical Research Letters, 2019, 46, 5190-5197.	1.5	42
585	Energy Dissipation in Large Collisions—No Change in Planet Formation Outcomes. Astrophysical Journal, 2019, 876, 103.	1.6	21
586	Excitation and Depletion of the Asteroid Belt in the Early Instability Scenario. Astronomical Journal, 2019, 157, 38.	1.9	42
587	Formation of planetary systems by pebble accretion and migration: growth of gas giants. Astronomy and Astrophysics, 2019, 623, A88.	2.1	117
588	JWST/NIRSpec Prospects on Transneptunian Objects. Frontiers in Astronomy and Space Sciences, 2019, 6, .	1.1	4
589	Oort cloud asteroids: collisional evolution, the Nice Model, and the Grand Tack. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5511-5518.	1.6	9
590	New clues to ancient water on Itokawa. Science Advances, 2019, 5, eaav8106.	4.7	53
591	Dynamical Constraints on Mercury's Collisional Origin. Astronomical Journal, 2019, 157, 208.	1.9	23
592	Determination of the water content and D/H ratio of the martian mantle by unraveling degassing and crystallization effects in nakhlites. Geochimica Et Cosmochimica Acta, 2019, 266, 382-415.	1.6	18
593	Dust Continuum Emission and the Upper Limit Fluxes of Submillimeter Water Lines of the Protoplanetary Disk around HD 163296 Observed by ALMA. Astrophysical Journal, 2019, 875, 96.	1.6	28
594	Geophysical evidence that Saturn's Moon Phoebe originated from a C-type asteroid reservoir. Monthly Notices of the Royal Astronomical Society, 2019, 486, 538-543.	1.6	12
595	Formation of Planetary Systems. , 2019, , 179-196.		1
596	Accretion of the asteroids: Implications for their thermal evolution. Meteoritics and Planetary Science, 2019, 54, 1115-1132.	0.7	37

#	Article	IF	CITATIONS
597	Evolution of Early Atmosphere. , 2019, , 197-207.		0
598	Consequences of planetary migration on the minor bodies of the early solar system. Astronomy and Astrophysics, 2019, 623, A169.	2.1	51
599	Isotopic evidence for volatile replenishment of the Moon during the Late Accretion. National Science Review, 2019, 6, 1247-1254.	4.6	5
600	Two Jovian Planets around the Giant Star HD 202696: A Growing Population of Packed Massive Planetary Pairs around Massive Stars?. Astronomical Journal, 2019, 157, 93.	1.9	20
601	Effect of Different Angular Momentum Transport Mechanisms on the Distribution of Water in Protoplanetary Disks. Astrophysical Journal, 2019, 875, 43.	1.6	6
602	Spitzer Detection of the Transiting Jupiter-analog Exoplanet Kepler-167e. Astrophysical Journal Letters, 2019, 873, L17.	3.0	20
603	IDP-like Asteroids Formed Later than 5 Myr After Ca–Al-rich Inclusions. Astrophysical Journal, 2019, 875, 30.	1.6	13
604	Planetesimals to terrestrial planets: Collisional evolution amidst a dissipating gas disk. Icarus, 2019, 329, 88-100.	1.1	44
605	Circumstellar Dust Distribution in Systems with Two Planets in Resonance. Astronomical Journal, 2019, 157, 45.	1.9	8
606	The Mystery of Ceres' Activity. Journal of Geophysical Research E: Planets, 2019, 124, 205-208.	1.5	6
607	Chromium Isotopic Evidence for an Early Formation of Chondrules from the Ornans CO Chondrite. Astrophysical Journal, 2019, 873, 82.	1.6	27
608	A comparative study of size frequency distributions of Jupiter Trojans, Hildas and main belt asteroids: A clue to planet migration history. Planetary and Space Science, 2019, 169, 78-85.	0.9	12
609	Is the ring inside or outside the planet?: the effect of planet migration on dust rings. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3678-3695.	1.6	36
610	Planet Formation and Disk-Planet Interactions. Saas-Fee Advanced Course, 2019, , 151-260.	1.1	4
611	Is Earth special?. Earth-Science Reviews, 2019, 192, 445-470.	4.0	4
612	Dissipation of the Solar System's debris disk recorded in primitive meteorites. Nature Astronomy, 2019, 3, 326-331.	4.2	4
613	The fate of nitrogen during core-mantle separation on Earth. Geochimica Et Cosmochimica Acta, 2019, 251, 87-115.	1.6	34
614	BrangÃ ¤ e: a new family of Barbarian asteroids. Monthly Notices of the Royal Astronomical Society, 2019, 485, 570-576.	1.6	6

#	Article	IF	Citations
615	地殻æµë½"ã®èµ∙æ⁰・å^†å,ƒã•å‰å«•ç¾è±¡. Journal of Geography (Chigaku Zasshi), 2019, 128, 761-783.	0.1	3
616	Jupiter formed as a pebble pile around the N ₂ ice line. Astronomy and Astrophysics, 2019, 632, L11.	2.1	48
617	Constraining the Formation of the Four Terrestrial Planets in the Solar System. Astrophysical Journal, 2019, 883, 130.	1.6	22
618	On the inclinations of the Jupiter Trojans. Astronomy and Astrophysics, 2019, 631, A89.	2.1	16
619	Olivine-dominated A-type asteroids in the main belt: Distribution, abundance and relation to families. Icarus, 2019, 322, 13-30.	1.1	49
620	Compositional distributions and evolutionary processes for the near-Earth object population: Results from the MIT-Hawaii Near-Earth Object Spectroscopic Survey (MITHNEOS). Icarus, 2019, 324, 41-76.	1.1	123
621	Core formation, mantle differentiation and core-mantle interaction within Earth and the terrestrial planets. Tectonophysics, 2019, 760, 165-198.	0.9	67
622	The origin of water on Earth: stars or diamonds?. Rendiconti Lincei, 2019, 30, 261-268.	1.0	4
623	Properties of small meteoroids studied by meteor video observations. Astronomy and Astrophysics, 2019, 621, A68.	2.1	27
624	Isotopic ratios of Saturn's rings and satellites: Implications for the origin of water and Phoebe. Icarus, 2019, 321, 791-802.	1.1	29
625	Origin of the Earth and the Late Heavy Bombardment. , 2019, , 27-47.		5
626	Compositional differences among Bright Spots on the Ceres surface. Icarus, 2019, 320, 202-212.	1.1	33
627	The composition and structure of Ceres' interior. Icarus, 2020, 335, 113404.	1.1	19
628	Fluid Dynamics of Earth's Core: Geodynamo, Inner Core Dynamics, Core Formation. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2020, , 129-212.	0.3	1
629	Fluid Mechanics of Planets and Stars. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2020, , .	0.3	0
630	Impact bombardment chronology of the terrestrial planets from 4.5â€ [−] Ga to 3.5â€ [−] Ga. Icarus, 2020, 338, 113514.	1.1	38
631	Effects of protoplanetary nebula on orbital dynamics of planetesimals in the outer Solar system. Celestial Mechanics and Dynamical Astronomy, 2020, 132, 1.	0.5	3
632	Dynamical evidence for an early giant planet instability. Icarus, 2020, 339, 113605.	1.1	60

#	Article	IF	CITATIONS
633	Primordial organic matter in the xenolithic clast in the Zag H chondrite: Possible relation to D/P asteroids. Geochimica Et Cosmochimica Acta, 2020, 271, 61-77.	1.6	12
634	The great isotopic dichotomy of the early Solar System. Nature Astronomy, 2020, 4, 32-40.	4.2	117
635	Secular resonance sweeping and orbital excitation in decaying disks. Celestial Mechanics and Dynamical Astronomy, 2020, 132, 1.	0.5	7
636	A record of the final phase of giant planet migration fossilized in the asteroid belt's orbital structure. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 492, L56-L60.	1.2	21
637	Chemical compositions of the outer core examined by first principles calculations. Earth and Planetary Science Letters, 2020, 531, 116009.	1.8	37
638	Potassium isotope anomalies in meteorites inherited from the protosolar molecular cloud. Science Advances, 2020, 6, .	4.7	42
639	Evolution of the Earth's atmosphere during Late Veneer accretion. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5334-5362.	1.6	17
640	How Special Is the Solar System?. , 2020, , 412-457.		0
641	Escape and Accretion by Cratering Impacts: Formulation of Scaling Relations for High-speed Ejecta. Astrophysical Journal, 2020, 898, 30.	1.6	8
642	The NC-CC Isotope Dichotomy: Implications for the Chemical and Isotopic Evolution of the Early Solar System. Space Science Reviews, 2020, 216, 1.	3.7	27
643	Centaur and giant planet crossing populations: origin and distribution. Celestial Mechanics and Dynamical Astronomy, 2020, 132, 1.	0.5	17
644	Earth's water may have been inherited from material similar to enstatite chondrite meteorites. Science, 2020, 369, 1110-1113.	6.0	164
645	A Probabilistic Approach to Determination of Ceres' Average Surface Composition From Dawn Visibleâ€Infrared Mapping Spectrometer and Gamma Ray and Neutron Detector Data. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006606.	1.5	11
646	Can narrow discs in the inner Solar system explain the four terrestrial planets?. Monthly Notices of the Royal Astronomical Society, 2020, 496, 3688-3699.	1.6	6
647	Weak Magnetic Fields in the Outer Solar Nebula Recorded in CR Chondrites. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006260.	1.5	22
648	What is the Oxygen Isotope Composition of Venus? The Scientific Case for Sample Return from Earth's "Sister―Planet. Space Science Reviews, 2020, 216, 1.	3.7	9
649	The Non-carbonaceous–Carbonaceous Meteorite Dichotomy. Space Science Reviews, 2020, 216, 1.	3.7	94
650	Formation of Giant Planet Satellites. Astrophysical Journal, 2020, 894, 143.	1.6	45

#	Article	IF	CITATIONS
651	Relict Ocean Worlds: Ceres. Space Science Reviews, 2020, 216, 1.	3.7	14
652	California-Kepler Survey. IX. Revisiting the Minimum-mass Extrasolar Nebula with Precise Stellar Parameters. Astronomical Journal, 2020, 159, 247.	1.9	15
653	The Solar Wind Prevents Reaccretion of Debris after Mercury's Giant Impact. Planetary Science Journal, 2020, 1, 7.	1.5	9
654	NanoSIMS isotopic investigation of xenolithic carbonaceous clasts from the kapoeta howardite. Geochimica Et Cosmochimica Acta, 2020, 283, 243-264.	1.6	6
655	Precometary organic matter: A hidden reservoir of water inside the snow line. Scientific Reports, 2020, 10, 7755.	1.6	16
656	Searching for water ice in the coma of interstellar object 2I/Borisov. Astronomy and Astrophysics, 2020, 634, L6.	2.1	11
657	Primordial formation of major silicates in a protoplanetary disc with homogeneous ²⁶ Al/ ²⁷ Al. Science Advances, 2020, 6, eaay9626.	4.7	21
658	Exploring the Bimodal Solar System via Sample Return from the Main Asteroid Belt: The Case for Revisiting Ceres. Space Science Reviews, 2020, 216, 59.	3.7	6
659	Retrograde orbits excess among observable interstellar objects. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5386-5398.	1.6	4
660	Interpreting the Cratering Histories of Bennu, Ryugu, and Other Spacecraft-explored Asteroids. Astronomical Journal, 2020, 160, 14.	1.9	34
661	Extreme close encounters between proto-Mercury and proto-Venus in terrestrial planet formation. Monthly Notices of the Royal Astronomical Society, 2020, 496, 3781-3785.	1.6	5
662	Constraints on the Distances and Timescales of Solid Migration in the Early Solar System from Meteorite Magnetism. Astrophysical Journal, 2020, 896, 103.	1.6	21
663	Type II migration strikes back – an old paradigm for planet migration in discs. Monthly Notices of the Royal Astronomical Society, 2020, 492, 1318-1328.	1.6	8
664	Jupiter's heavy-element enrichment expected from formation models. Astronomy and Astrophysics, 2020, 634, A31.	2.1	36
665	Development of a Numerical Simulation Method for Rocky Body Impacts and Theoretical Analysis of Asteroidal Shapes. Springer Theses, 2020, , .	0.0	0
666	Formation of primitive achondrites by partial melting of alkali-undepleted planetesimals in the inner solar system. Geochimica Et Cosmochimica Acta, 2020, 277, 358-376.	1.6	19
667	The role of Bells in the continuous accretion between the <scp>CM</scp> and <scp>CR</scp> chondrite reservoirs. Meteoritics and Planetary Science, 2020, 55, 575-590.	0.7	26
668	Collisional Evolution of Meter- to Kilometer-sized Planetesimals in Mean Motion Resonances: Implications for Inward Planet Shepherding. Astrophysical Journal, 2020, 890, 170.	1.6	4

	CHAIGH		
#	Article	IF	CITATIONS
669	Setting the Stage: Planet Formation and Volatile Delivery. Space Science Reviews, 2020, 216, 1.	3.7	24
670	Linking asteroids and meteorites to the primordial planetesimal population. Geochimica Et Cosmochimica Acta, 2020, 277, 377-406.	1.6	93
671	Earths in Other Solar Systems' N-body Simulations: The Role of Orbital Damping in Reproducing the Kepler Planetary Systems. Astrophysical Journal, 2020, 897, 72.	1.6	15
672	Dynamics of core-mantle separation: Influence of viscosity contrast and metal/silicate partition coefficients on the chemical equilibrium. Physics of the Earth and Planetary Interiors, 2020, 306, 106547.	0.7	4
673	Capture and migration of Jupiter and Saturn in mean motion resonance in a gaseous protoplanetary disc. Monthly Notices of the Royal Astronomical Society, 2020, 492, 6007-6018.	1.6	7
674	Probing space to understand Earth. Nature Reviews Earth & Environment, 2020, 1, 170-181.	12.2	24
675	Star formation in accretion discs and SMBH growth. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3732-3743.	1.6	47
676	Iron isotope evidence for very rapid accretion and differentiation of the proto-Earth. Science Advances, 2020, 6, eaay7604.	4.7	54
677	Silicate Melting and Vaporization During Rocky Planet Formation. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006227.	1.5	24
678	Realistic collisional water transport during terrestrial planet formation. Astronomy and Astrophysics, 2020, 634, A76.	2.1	16
679	The composition of Mars. Geochimica Et Cosmochimica Acta, 2020, 273, 137-162.	1.6	116
680	Observations of Planetary Systems. , 2020, , 1-48.		0
681	Terrestrial Planet Formation. , 2020, , 181-219.		0
682	Experimental and Simulation Efforts in the Astrobiological Exploration of Exooceans. Space Science Reviews, 2020, 216, 9.	3.7	25
684	Protoplanetary Disk Structure. , 2020, , 49-85.		0
685	Protoplanetary Disk Evolution. , 2020, , 86-140.		0
686	Planetesimal Formation. , 2020, , 141-180.		0
687	Giant Planet Formation. , 2020, , 220-246.		0

ARTICLE IF CITATIONS # Early Evolution of Planetary Systems., 2020, , 247-300. 688 0 Evidence for Asteroid Scattering and Distal Solar System Solids From Meteorite Paleomagnetism. 1.6 Astrophysical Journal, 2020, 892, 126. Dry late accretion inferred from Venus's coupled atmosphere and internal evolution. Nature 694 5.4 27 Geoscience, 2020, 13, 265-269. Fingerprints of giant planets in the composition of solar twins. Monthly Notices of the Royal Astronomical Society, 2020, 493, 5079-5088. Accretion of a large LL parent planetesimal from a recently formed chondrule population. Science 696 4.7 8 Advances, 2020, 6, eaay8641. $Metal \widehat{a} \in ``silicate partitioning of W and Mo and the role of carbon in controlling their abundances in the bulk silicate earth. Geochimica Et Cosmochimica Acta, 2021, 293, 40-69.$ 1.6 698 Isotopically distinct terrestrial planets via local accretion. Icarus, 2021, 354, 114052. 1.1 13 Isotopic signatures as tools to reconstruct the primordial architecture of the Solar System. Earth 699 1.8 and Planetary Science Letters, 2021, 555, 116705. Did Mars Possess a Dense Atmosphere During the First \$sim400\$ Million Years?. Space Science Reviews, 700 3.7 15 2021, 217, 1. Formation of Venus, Earth and Mars: Constrained by Isotopes. Space Science Reviews, 2021, 217, 1. Science Goals and Mission Objectives for the Future Exploration of Ice Giants Systems: A Horizon 2061 702 3.7 11 Perspective. Space Science Reviews, 2021, 217, 1. Efficiency characterization of the V-shape asteroid family detection method. Icarus, 2021, 357, 114218. 1.1 The Role of Early Giant-planet Instability in Terrestrial Planet Formation. Astronomical Journal, 2021, 704 1.9 35 161, 50. Origin and Evolution of Atmospheres., 2021, , 1-29. The origin of the Moon's Earth-like tungsten isotopic composition from dynamical and geochemical 706 5.8 5 modeling. Nature Communications, 2021, 12, 35. Chromium Isotopic Evidence for Mixing of NC and CC Reservoirs in Polymict Ureilites: Implications for Dynamical Models of the Early Solar System. Planetary Science Journal, 2021, 2, 13. Learning about comets from the study of mass distributions and fluxes of meteoroid streams. 708 1.6 11 Monthly Notices of the Royal Astronomical Society, 2022, 512, 2277-2289. Characterizing the Manx Candidate A/2018 V3. Planetary Science Journal, 2021, 2, 33. 1.5

CITATION REP	ORT

#	ARTICLE	IF	CITATIONS
710	Assessment of Cr Isotopic Heterogeneities of Volatile-rich Asteroids Based on Multiple Planet Formation Models. Astrophysical Journal, 2021, 908, 64.	1.6	6
711	Evaluating the Oâ€Crâ€Mo isotope signatures in various meteorites representing core–mantle–crust fragments: Implications for partially differentiated planetesimal(s) accreted in the early outer solar system. Meteoritics and Planetary Science, 2021, 56, 393-403.	0.7	0
712	A thermophysical and dynamical study of the Hildas, (1162) Larissa, and (1911) Schubart. Monthly Notices of the Royal Astronomical Society, 2021, 502, 4981-4992.	1.6	1
713	Migration of Jupiter-mass planets in low-viscosity discs. Astronomy and Astrophysics, 2021, 646, A166.	2.1	22
714	The Fundamental Connections between the Solar System and Exoplanetary Science. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006643.	1.5	15
715	Hybrid Accretion of Carbonaceous Chondrites by Radial Transport across the Jupiter Barrier. Astrophysical Journal, 2021, 910, 70.	1.6	12
716	Bridge to the stars: A mission concept to an interstellar object. Planetary and Space Science, 2021, 197, 105137.	0.9	17
717	Tracing the Formation History of Giant Planets in Protoplanetary Disks with Carbon, Oxygen, Nitrogen, and Sulfur. Astrophysical Journal, 2021, 909, 40.	1.6	67
718	Hot Jupiters: Origins, Structure, Atmospheres. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006629.	1.5	53
719	Compact pebbles and the evolution of volatiles in the interstellar comet 2I/Borisov. Nature Astronomy, 2021, 5, 586-593.	4.2	17
720	Dynamical Avenues for Mercury's Origin. I. The Lone Survivor of a Primordial Generation of Short-period Protoplanets. Astronomical Journal, 2021, 161, 240.	1.9	12
721	Protoplanetary disk formation from the collapse of a prestellar core. Astronomy and Astrophysics, 2021, 648, A101.	2.1	24
722	Dynamical evolution of the inner asteroid belt. Monthly Notices of the Royal Astronomical Society, 2021, 505, 1917-1939.	1.6	11
723	Earth and Mars – Distinct inner solar system products. Chemie Der Erde, 2021, 81, 125746.	0.8	13
724	Erosion and Accretion by Cratering Impacts on Rocky and Icy Bodies. Astrophysical Journal, 2021, 913, 77.	1.6	0
725	Growing Mars fast: High-resolution GPU simulations of embryo formation. Icarus, 2021, 359, 114305.	1.1	21
726	Experimental evidence for hydrogen incorporation into Earth's core. Nature Communications, 2021, 12, 2588.	5.8	63
727	On planetary systems as ordered sequences. Monthly Notices of the Royal Astronomical Society, 2021, 505, 2224-2246.	1.6	2

#	Article	IF	Citations
728	How much water was delivered from the asteroid belt to the Earth after its formation?. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 506, L6-L10.	1.2	7
729	What Can Meteorites Tell Us About the Formation of Jupiter?. AGU Advances, 2021, 2, e2020AV000376.	2.3	6
730	A Stellar Mass Dependence of Structured Disks: A Possible Link with Exoplanet Demographics. Astronomical Journal, 2021, 162, 28.	1.9	55
731	Thermophysical evolution of planetesimals in the primordial disc. Monthly Notices of the Royal Astronomical Society, 2021, 505, 5654-5685.	1.6	29
732	Dynamical Avenues for Mercury's Origin. II. In Situ Formation in the Inner Terrestrial Disk. Astronomical Journal, 2021, 162, 3.	1.9	10
733	Dependencies of Mantle Shock Heating in Pairwise Accretion. Astrophysical Journal Letters, 2021, 915, L32.	3.0	7
734	Same family, different neighborhoods: Visible near-infrared (0.7–2.45Âμm) spectral distinctions of D-type asteroids at different heliocentric distances. Icarus, 2021, 363, 114295.	1.1	5
735	A Spectral Investigation of Aqueously and Thermally Altered CM, CMâ€An, and CY Chondrites Under Simulated Asteroid Conditions for Comparison With OSIRISâ€REx and Hayabusa2 Observations. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006827.	1.5	15
736	Early terrestrial planet formation by torque-driven convergent migration of planetary embryos. Nature Astronomy, 2021, 5, 898-902.	4.2	18
737	AMBITION – comet nucleus cryogenic sample return. Experimental Astronomy, 2022, 54, 1077-1128.	1.6	4
738	Quantitative estimates of impact induced crustal erosion during accretion and its influence on the Sm/Nd ratio of the Earth. Icarus, 2021, 363, 114412.	1.1	8
739	The astrophysical context of collision processes in meteorites. Meteoritics and Planetary Science, 2021, 56, 1406-1421.	0.7	5
740	White dwarf planetary debris dependence on physical structure distributions within asteroid belts. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4031-4047.	1.6	7
742	Light elements in the Earth's core. Nature Reviews Earth & Environment, 2021, 2, 645-658.	12.2	69
743	Electron Holography Details the Tagish Lake Parent Body and Implies Early Planetary Dynamics of the Solar System. Astrophysical Journal Letters, 2021, 917, L5.	3.0	2
744	Oort cloud Ecology. Astronomy and Astrophysics, 2021, 652, A144.	2.1	11
745	Migration processes in the Solar System and their role in the evolution of the Earth and planets. Physics-Uspekhi, 2023, 66, 2-31.	0.8	8
746	Terrestrial planet formation in a circumbinary disc around a coplanar binary. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3461-3472.	1.6	11

#	Article	IF	Citations
747	Investigating the Relationship between (3200) Phaethon and (155140) 2005 UD through Telescopic and Laboratory Studies. Planetary Science Journal, 2021, 2, 190.	1.5	12
748	How drifting and evaporating pebbles shape giant planets. Astronomy and Astrophysics, 2021, 654, A72.	2.1	37
749	Timing of Martian core formation from models of Hf–W evolution coupled with N-body simulations. Geochimica Et Cosmochimica Acta, 2022, 316, 295-308.	1.6	5
750	Olivine-rich achondrites from Vesta and the missing mantle problem. Nature Communications, 2021, 12, 5443.	5.8	8
751	Common feedstocks of late accretion for the terrestrial planets. Nature Astronomy, 2021, 5, 1286-1296.	4.2	9
752	A terrestrial convergence. Nature Astronomy, 2021, 5, 875-876.	4.2	6
753	NORTHWEST AFRICA (NWA) 12563 and ungrouped C2 chondrites: Alteration styles and relationships to asteroids. Geochimica Et Cosmochimica Acta, 2021, 311, 238-273.	1.6	7
754	Born extra-eccentric: A broad spectrum of primordial configurations of the gas giants that match their present-day orbits. Icarus, 2021, 367, 114556.	1.1	7
755	The early instability scenario: Mars' mass explained by Jupiter's orbit. Icarus, 2021, 367, 114585.	1.1	11
756	Taurid complex smoking gun: Detection of cometary activity. Planetary and Space Science, 2021, 207, 105306.	0.9	6
757	Dark primitive asteroids account for a large share of K/Pg-scale impacts on the Earth. Icarus, 2021, 368, 114621.	1.1	9
758	The terrestrial planet formation paradox inferred from high-resolution N-body simulations. Icarus, 2022, 371, 114692.	1.1	13
759	Nucleosynthetic Heterogeneities in Meteorites. , 2021, , 242-257.		0
760	The Origin and Evolution of the Asteroid Belt—Implications for Vesta and Ceres. , 2011, , 41-61.		1
761	Outgassing History and Escape of the Martian Atmosphere and Water Inventory. Space Sciences Series of ISSI, 2012, , 113-154.	0.0	6
762	Recent Developments in Planet Migration Theory. Lecture Notes in Physics, 2013, , 201-253.	0.3	32
763	Dynamical Evolution of Planetary Systems. , 2013, , 63-109.		30
764	JIRAM, the Jovian Infrared Auroral Mapper. , 2014, , 271-324.		4

#	Article	IF	CITATIONS
765	Similarities between terrestrial planets at the time life appeared on Earth. Physics of Life Reviews, 2020, 34-35, 92-93.	1.5	1
768	Continued activity in P/2013 P5 PANSTARRS. Astronomy and Astrophysics, 2014, 563, A75.	2.1	27
769	Formation of terrestrial planets in disks evolving via disk winds and implications for the origin of the solar system's terrestrial planets. Astronomy and Astrophysics, 2015, 579, A65.	2.1	26
770	A new equation of state applied to planetary impacts. Astronomy and Astrophysics, 2020, 643, A40.	2.1	7
771	Constraining the parameter space for the solar nebula. Astronomy and Astrophysics, 2020, 640, A61.	2.1	18
772	Photoevaporation of the Jovian circumplanetary disk. Astronomy and Astrophysics, 2020, 638, A135.	2.1	7
773	Influence of planetary gas accretion on the shape and depth of gaps in protoplanetary discs. Astronomy and Astrophysics, 2020, 643, A133.	2.1	29
774	A significant mutual inclination between the planets within the <i>Ï€</i> Mensae system. Astronomy and Astrophysics, 2020, 640, A73.	2.1	32
775	Connecting planet formation and astrochemistry. Astronomy and Astrophysics, 2020, 642, A229.	2.1	32
776	The eccentricity distribution of giant planets and their relation to super-Earths in the pebble accretion scenario. Astronomy and Astrophysics, 2020, 643, A66.	2.1	30
777	Migration of gap-opening planets in 3D stellar-irradiated accretion disks. Astronomy and Astrophysics, 2020, 642, A219.	2.1	7
778	Solar System Physics for Exoplanet Research. Publications of the Astronomical Society of the Pacific, 2020, 132, 102001.	1.0	29
779	A tale of planet formation: from dust to planets. Research in Astronomy and Astrophysics, 2020, 20, 164.	0.7	37
780	Losing oceans: The effects of composition on the thermal component of impact-driven atmospheric loss. Monthly Notices of the Royal Astronomical Society, 2020, 501, 587-595.	1.6	12
781	Probing the impact of varied migration and gas accretion rates for the formation of giant planets in the pebble accretion scenario. Monthly Notices of the Royal Astronomical Society, 2021, 501, 2017-2028.	1.6	18
782	The birth environment of planetary systems. Royal Society Open Science, 2020, 7, 201271.	1.1	28
783	D/H ratios of the inner Solar System. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20150390.	1.6	42
784	Machine learning applied to simulations of collisions between rotating, differentiated planets. Computational Astrophysics and Cosmology, 2020, 7, 2.	22.7	13

#	Article	IF	CITATIONS
785	Origin of Earth's oceans: An assessment of the total amount, history and supply of water. Geochemical Journal, 2016, 50, 27-42.	0.5	54
786	Constraints on mechanisms of chondrule formation from chondrule precursors and chronology of transient heating events in the protoplanetary disk. Geochemical Journal, 2017, 51, 45-68.	0.5	20
787	The Compositional Structure of the Asteroid Belt. , 2015, , .		249
788	Astronomical Observations of Volatiles on Asteroids. , 2015, , .		22
789	The Complex History of Trojan Asteroids. , 2015, , .		12
790	New Paradigms for Asteroid Formation. , 2015, , .		17
791	The Dynamical Evolution of the Asteroid Belt. , 2015, , .		23
792	DUST COAGULATION IN THE VICINITY OF A GAP-OPENING JUPITER-MASS PLANET. Astrophysical Journal, 2016, 823, 80.	1.6	25
793	The Influence of Orbital Resonances on the Water Transport to Objects in the Circumprimary Habitable Zone of Binary Star Systems. Astronomical Journal, 2017, 153, 269.	1.9	7
794	Where Did They Come From, Where Did They Go: Grazing Fireballs. Astronomical Journal, 2020, 159, 191.	1.9	7
795	Modeling the Chronologies and Size Distributions of Ceres and Vesta Craters. Astronomical Journal, 2020, 160, 110.	1.9	9
796	Turbulence Sets the Length Scale for Planetesimal Formation: Local 2D Simulations of Streaming Instability and Planetesimal Formation. Astrophysical Journal, 2020, 901, 54.	1.6	69
797	Can Chondrules Be Produced by the Interaction of Jupiter with the Protosolar Disk?. Astrophysical Journal, 2020, 901, 60.	1.6	7
798	An Ideal Testbed for Planet–Disk Interaction: Two Giant Protoplanets in Resonance Shaping the PDS 70 Protoplanetary Disk. Astrophysical Journal Letters, 2019, 884, L41.	3.0	57
799	Embryo Formation with GPU Acceleration: Reevaluating the Initial Conditions for Terrestrial Accretion. Planetary Science Journal, 2020, 1, 18.	1.5	23
800	Could the Migration of Jupiter Have Accelerated the Atmospheric Evolution of Venus?. Planetary Science Journal, 2020, 1, 42.	1.5	9
801	Colliding in the Shadows of Giants: Planetesimal Collisions during the Growth and Migration of Gas Giants. Planetary Science Journal, 2020, 1, 45.	1.5	15
802	Volatile-rich Asteroids in the Inner Solar System. Planetary Science Journal, 2020, 1, 82.	1.5	7

#	Article	IF	CITATIONS
803	The formation of wide <i>exoKuiper</i> belts from migrating dust traps. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5638-5656.	1.6	9
804	GAUSS - genesis of asteroids and evolution of the solar system. Experimental Astronomy, 0, , 1.	1.6	5
805	Hydrodynamic Model of Hα Emission from Accretion Shocks of a Proto-giant Planet and Circumplanetary Disk. Astrophysical Journal, 2021, 921, 10.	1.6	8
806	Numerous chondritic impactors and oxidized magma ocean set Earth's volatile depletion. Scientific Reports, 2021, 11, 20894.	1.6	11
807	Collisional mixing between inner and outer solar system planetesimals inferred from the Nedagolla iron meteorite. Meteoritics and Planetary Science, 2022, 57, 261-276.	0.7	3
808	The Helium Elemental and Isotopic Compositions of the Earth's Core Based on Ab Initio Simulations. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB023106.	1.4	6
809	Sample return of primitive matter from the outer Solar System. Experimental Astronomy, 0, , 1.	1.6	2
811	The Formation of Mars: Building Blocks and Accretion Time Scale. Space Sciences Series of ISSI, 2012, , 11-25.	0.0	0
812	Core Formation and Mantle Differentiation on Mars. Space Sciences Series of ISSI, 2012, , 27-48.	0.0	0
813	Planet Formation. , 2014, , 1-6.		0
814	Formation of telluric planets and the origin of terrestrial water. BIO Web of Conferences, 2014, 2, 01003.	0.1	0
815	Deep Impact and Related Missions. , 2014, , 1-18.		0
816	Planet Formation. , 2015, , 1912-1916.		0
817	Deep Impact and Related Missions. , 2015, , 513-534.		0
818	Insights into Planet Formation from Debris Disks. Space Sciences Series of ISSI, 2016, , 273-307.	0.0	1
819	Chapter 3 Origin of the Solar System. , 2016, , 31-50.		0
820	Disk Evolution and the Fate of Water. Space Sciences Series of ISSI, 2017, , 233-254.	0.0	0
821	Water and Volatiles in the Outer Solar System. Space Sciences Series of ISSI, 2017, , 191-231.	0.0	0

#	Article	IF	CITATIONS
822	Laboratory Studies Towards Understanding Comets. , 2017, , 101-150.		0
823	On the Evolution of Comets. , 2017, , 271-296.		0
824	Cometary Isotopic Measurements. , 2017, , 47-83.		0
825	Hayabusa2 Mission Overview. , 2017, , 3-16.		1
826	Origin and Evolution of the Cometary Reservoirs. , 2017, , 191-269.		0
827	Constraints from Comets on the Formation and Volatile Acquisition of the Planets and Satellites. , 2017, , 297-342.		0
828	Formation and Evolution of the Earth. Encyclopedia of Earth Sciences Series, 2018, , 1-18.	0.1	0
829	Formation and Evolution of the Earth. Encyclopedia of Earth Sciences Series, 2018, , 498-513.	0.1	0
830	Water Reservoirs in Small Planetary Bodies: Meteorites, Asteroids, and Comets. Space Sciences Series of ISSI, 2018, , 35-81.	0.0	0
831	The Delivery of Water During Terrestrial Planet Formation. Space Sciences Series of ISSI, 2018, , 291-314.	0.0	0
832	From Disks to Planets: The Making of Planets and Their Early Atmospheres. An Introduction. Space Sciences Series of ISSI, 2018, , 5-39.	0.0	0
833	Water and Volatile Inventories of Mercury, Venus, the Moon, and Mars. Space Sciences Series of ISSI, 2018, , 151-189.	0.0	0
834	Giant Planet Formation and Migration. Space Sciences Series of ISSI, 2018, , 255-289.	0.0	0
835	The proposed origin of our solar system with planet migration. The Proceedings of the International Conference on Creationism, 2018, 8, 71-81.	0.0	0
836	Water and the Interior Structure of Terrestrial Planets and Icy Bodies. Space Sciences Series of ISSI, 2018, , 343-375.	0.0	0
837	Planet formation imager: project update. , 2018, , .		0
842	Xenoliths in ordinary chondrites and ureilites: Implications for early solar system dynamics. Meteoritics and Planetary Science, 2021, 56, 1949-1987.	0.7	3
843	Abundance and importance of petrological type 1 chondritic material. Meteoritics and Planetary Science, 2022, 57, 277-301.	0.7	5

#	Article	IF	CITATIONS
844	Interactions among Noninteracting Particles in Planet Formation Simulations. Astrophysical Journal Letters, 2020, 898, L46.	3.0	3
845	ISOTOPIC DICHOTOMY AMONG METEORITES AND IMPLICATIONS FOR THE EVOLUTION OF THE PROTOPLANETARY DISK. Proceedings of the Lunar and Planetary Science Conference., 2018, 2018, .	0.0	0
846	NEBULAR HISTORY OF DIFFERENTIATED AND CHONDRITIC PLANETESIMALS. Meteoritics and Planetary Science, 2018, 81, 6168.	0.7	0
848	Solar wind contributions to Earth's oceans. Nature Astronomy, 2021, 5, 1275-1285.	4.2	22
849	Formation and evolution of the core. , 2022, , 247-280.		0
850	Early planetary processes and light elements in iron-dominated cores. Acta Geochimica, 0, , .	0.7	4
851	Distant Formation and Differentiation of Outer Main Belt Asteroids and Carbonaceous Chondrite Parent Bodies. AGU Advances, 2022, 3, .	2.3	11
852	Martian moons exploration MMX: sample return mission to Phobos elucidating formation processes of habitable planets. Earth, Planets and Space, 2022, 74, .	0.9	51
853	Constraining giant planet formation with synthetic ALMA images of the Solar System's natal protoplanetary disk. Astronomy and Astrophysics, 2022, 659, A6.	2.1	4
854	Planet Formation: Key Mechanisms and Global Models. Astrophysics and Space Science Library, 2022, , 3-82.	1.0	16
855	Large planets may not form fractionally large moons. Nature Communications, 2022, 13, 568.	5.8	4
856	The metal–silicate partitioning of carbon during Earth's accretion and its distribution in the early solar system. Earth and Planetary Science Letters, 2022, 580, 117374.	1.8	15
857	Stratification in planetary cores by liquid immiscibility in Fe-S-H. Nature Communications, 2022, 13, 644.	5.8	9
858	Cosmochemical Models for the Formation and Evolution of Solar Systems. , 2022, , 370-399.		0
859	Planetesimal rings as the cause of the Solar System's planetary architecture. Nature Astronomy, 2022, 6, 357-366.	4.2	43
860	A design of dust analyzer for future Main Belt Comet exploration mission. Advances in Space Research, 2022, 69, 3880-3890.	1.2	1
861	Possible Activity in 468861 (2013 LU28). Planetary Science Journal, 2022, 3, 34.	1.5	2
862	Early planet formation in embedded protostellar disks. Astronomy and Astrophysics, 2022, 662, A90.	2.1	7

# 863	ARTICLE Building Terrestrial Planets: Why Results of Perfect-merging Simulations Are Not Quantitatively Reliable Approximations to Accurate Modeling of Terrestrial Planet Formation. Astrophysical Journal,	IF 1.6	CITATIONS
864	Evidence of a primordial isotopic gradient in the inner region of the solar protoplanetary disc. Astronomy and Astrophysics, 2022, 660, A36.	2.1	2
865	Accretion regions of meteorite parent bodies inferred from a two-endmember isotopic mixing model. Monthly Notices of the Royal Astronomical Society, 2022, 513, 363-373.	1.6	6
866	Origin and Dynamical Evolution of the Asteroid Belt. , 2022, , 227-249.		9
867	Collisional Evolution of the Main Belt as Recorded by Vesta. , 2022, , 250-261.		1
868	Exploring multiple generations of planetary embryos. Astronomy and Astrophysics, 2022, 666, A90.	2.1	7
869	Remote Observations of the Main Belt. , 2022, , 3-25.		0
870	Presolar grain dynamics: Creating nucleosynthetic variations through a combination of drag and viscous evolution. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5874-5894.	1.6	4
871	Isotopic Constraints on the Formation of the Main Belt. , 2022, , 212-226.		1
872	A temporal shift of chondrule generation from the inner to outer Solar System inferred from oxygen isotopes and Al-Mg chronology of chondrules from primitive CM and CO chondrites. Geochimica Et Cosmochimica Acta, 2022, 322, 194-226.	1.6	23
873	Effects of pebble accretion on the growth and composition of planetesimals in the inner Solar system. Monthly Notices of the Royal Astronomical Society, 2022, 511, 158-175.	1.6	6
874	Mercury as the Relic of Earth and Venus Outward Migration. Astrophysical Journal Letters, 2021, 923, L16.	3.0	8
875	Shapes, structures, and evolution of small bodies. Astrodynamics, 2021, 5, 293-329.	1.5	17
876	Size Distributions of Bluish and Reddish Small Main-belt Asteroids Obtained by Subaru/Hyper Suprime-Cam*. Astronomical Journal, 2021, 162, 280.	1.9	4
877	Terrestrial planet formation from lost inner solar system material. Science Advances, 2021, 7, eabj7601.	4.7	49
878	Did Earth Eat Its Leftovers? Impact Ejecta as a Component of the Late Veneer. Planetary Science Journal, 2022, 3, 83.	1.5	1
879	Distinguishing the Origin of Asteroid (16) Psyche. Space Science Reviews, 2022, 218, 17.	3.7	13
880	Nucleation and growth of iron pebbles explains the formation of iron-rich planets akin to Mercury. Astronomy and Astrophysics, 2022, 662, A19.	2.1	15

		CITATION RE	PORT	
#	Article		IF	CITATIONS
881	Asteroids accretion, differentiation, and break-up in the Vesta source region: Evidence cosmochemistry of mesosiderites. Geochimica Et Cosmochimica Acta, 2022, 329, 135-	from 151.	1.6	4
882	Optical observations and dust modelling of comet 156P/Russell-LINEAR. Icarus, 2022, 3	383, 115042.	1.1	5
883	The dissipation of the solar nebula constrained by impacts and core cooling in planetes Astronomy, 2022, 6, 812-818.	imals. Nature	4.2	4
884	Dynamical constraints on the evolution of the inner asteroid belt and the sources of m Proceedings of the International Astronomical Union, 2021, 15, 1-19.	eteorites.	0.0	2
885	Water and organics in meteorites. , 2022, , 67-110.			4
886	The Possible Formation of Jupiter from Supersolar Gas. Planetary Science Journal, 2022	, 3, 141.	1.5	7
887	Melting phase relations in Fe–Si–H at high pressure and implications for Earth' crystallization. Scientific Reports, 2022, 12, .	s inner core	1.6	8
888	Hiding Planets Near and Far: The Parameter Space of Hidden Companions for Known Pl Astrophysical Journal, 2022, 932, 78.	anetary Systems.	1.6	2
889	Highâ€Pressure Melting Curve of FeH: Implications for Eutectic Melting Between Fe an FeH. Journal of Geophysical Research: Solid Earth, 2022, 127, .	d Nonâ€Magnetic	1.4	7
890	On the origin and evolution of the asteroid Ryugu: A comprehensive geochemical pers Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2022, 98	bective. , 227-282.	1.6	77
891	<i>Gaia</i> Data Release 3. Astronomy and Astrophysics, 2023, 674, A35.		2.1	16
892	CHAPTER 1. Origin of the Universe and Planetary Systems. Chemical Biology, 2022, , 1-	20.	0.1	0
893	The Mass Loss of the Main Asteroid Belt and Mars' Zone Caused by the Impact of S Jupiter: I: Numerical Calculations of the Dust Evolution. Solar System Research, 2022, 5	iolar Radiation and i6, 183-190.	0.3	3
894	Zinc isotope anomalies in primitive meteorites identify the outer solar system as an impof Earth's volatile inventory. Icarus, 2022, 386, 115172.	portant source	1.1	27
895	The LCO Outbursting Objects Key Project: Overview and Year 1 Status. Planetary Scier 3, 173.	ice Journal, 2022,	1.5	5
896	Solid Accretion onto Neptune-mass Planets. I. In Situ Accretion and Constraints from the of Uranus and Neptune. Astrophysical Journal, 2022, 935, 101.	ne Metallicity	1.6	0
897	Composition of inner main-belt planetesimals. Astronomy and Astrophysics, 2022, 665	, A83.	2.1	8
898	Explaining mercury via a single giant impact is highly unlikely. Monthly Notices of the R Astronomical Society, 2022, 515, 5576-5586.	loyal	1.6	4

#	Article	IF	CITATIONS
899	Nitrogen isotope evidence for Earth's heterogeneous accretion of volatiles. Nature Communications, 2022, 13, .	5.8	11
900	Planetesimal Dynamics in the Presence of a Giant Planet. II. Dependence on Planet Mass and Eccentricity. Astrophysical Journal, 2022, 935, 113.	1.6	2
901	Impact induced atmosphere-mantle exchange sets the volatile elemental ratios on primitive Earths. Earth and Planetary Science Letters, 2022, 594, 117741.	1.8	9
902	Rethinking the role of the giant planet instability in terrestrial planet formation models. Icarus, 2023, 389, 115260.	1.1	5
903	Implications of Jupiter Inward Gas-driven Migration for the Inner Solar System. Astrophysical Journal Letters, 2022, 936, L24.	3.0	10
904	Melting Experiments on Feâ€Oâ€H and Feâ€H: Evidence for Eutectic Melting in Feâ€FeH and Implications for Hydrogen in the Core. Geophysical Research Letters, 2022, 49, .	1.5	5
905	Chemical Diversity in Protoplanetary Disks and Its Impact on the Formation History of Giant Planets. Astrophysical Journal, 2022, 937, 36.	1.6	23
906	Kharkiv database of asteroid absolute magnitudes: Comparative analysis with other datasets. Astronomy and Astrophysics, 0, , .	2.1	1
907	From Solar System to Exoplanets: What can we learn from Planetary Spectroscopy?. Research in Astronomy and Astrophysics, 2022, 22, 122001.	0.7	1
908	Antarctic micrometeorite composed of <scp>CP</scp> and <scp>CS IDP</scp> â€like material: A microâ€breccia originated from a partially iceâ€melted cometâ€like small body. Meteoritics and Planetary Science, 2022, 57, 2042-2062.	0.7	1
909	Main Belt Comets and other "Interlopers―in the Solar System. Universe, 2022, 8, 518.	0.9	1
910	Solar System/Exoplanet Science Synergies in a multidecadal perspective. , 2023, , 17-64.		0
911	From planetary exploration goals to technology requirements. , 2023, , 177-248.		1
912	From science questions to Solar System exploration. , 2023, , 65-175.		0
913	Origin of life-forming volatile elements in the inner Solar System. Nature, 2022, 611, 245-255.	13.7	12
914	A Survey of CO, CO ₂ , and H ₂ O in Comets and Centaurs. Planetary Science Journal, 2022, 3, 247.	1.5	17
915	The effect of collisional erosion on the composition of Earth-analog planets in Grand Tack models: Implications for the formation of the Earth. Icarus, 2022, , 115325.	1.1	0
916	Investigating the feasibility of an impact-induced Martian Dichotomy. Icarus, 2023, 392, 115395.	1.1	3

#	Apticie	IF	CITATIONS
" 917	Other Worlds in the Cosmos: From Philosophy to Scientific Reality. , 2022, , 299-330.		0
918	The accretion of planet Earth. Nature Reviews Earth & Environment, 2023, 4, 19-35.	12.2	4
919	Asymmetry in the number of L4 and L5 Jupiter Trojans driven by jumping Jupiter. Astronomy and Astrophysics, 2023, 669, A68.	2.1	6
920	Rocky Histories: The Effect of High Excitations on the Formation of Rocky Planets. Astrophysical Journal, 2022, 940, 144.	1.6	0
921	A 16 hr Transit of Kepler-167 e Observed by the Ground-based Unistellar Telescope Network. Astrophysical Journal Letters, 2022, 940, L39.	3.0	5
922	Direct measurement of decimetre-sized rocky material in the Oort cloud. Nature Astronomy, 2023, 7, 318-329.	4.2	4
923	Multiverse Predictions for Habitability: Planetary Characteristics. Universe, 2023, 9, 2.	0.9	3
924	Inconsistency between the Ancient Mars and Moon Impact Records of Megameter-scale Craters. Planetary Science Journal, 2022, 3, 274.	1.5	1
925	Contribution of Ryugu-like material to Earth's volatile inventory by Cu and Zn isotopic analysis. Nature Astronomy, 2023, 7, 182-189.	4.2	15
926	Simultaneous gas accretion onto a pair of giant planets: Impact on their final mass and on the protoplanetary disk structure. Astronomy and Astrophysics, 0, , .	2.1	3
927	Photometric Properties of Jupiter Trojans Detected by the Dark Energy Survey. Planetary Science Journal, 2022, 3, 269.	1.5	1
928	Meteorites and the RNA World: Synthesis of Nucleobases in Carbonaceous Planetesimals and the Role of Initial Volatile Content. Astrophysical Journal, 2023, 942, 50.	1.6	3
930	Comparisons of the core and mantle compositions of earth analogs from different terrestrial planet formation scenarios. Icarus, 2023, 394, 115425.	1.1	3
931	Lunar explorations—Discovering water, minerals, and underground caves andÂtunnel complexes. , 2023, , 399-452.		0
932	Terrestrial planet formation from a ring. Icarus, 2023, 396, 115497.	1.1	3
933	Characterisation of the new target of the NASA Lucy mission: Asteroid 152830 Dinkinesh (1999 VD57). Astronomy and Astrophysics, 2023, 672, A174.	2.1	2
934	Mercury's formation within the early instability scenario. Icarus, 2023, 394, 115445.	1.1	0
935	Simulations of triple microlensing events I: detectability of a scaled Sun–Jupiter–Saturn system. Monthly Notices of the Royal Astronomical Society, 2023, 520, 4540-4553.	1.6	Ο

#	Article	IF	CITATIONS
936	Early Water Delivery to Terrestrial Planet Regions during the Stages of Jupiter's Formation and Migration in the Grand Tack Model. Planetary Science Journal, 2023, 4, 32.	1.5	1
937	Making the Solar System. Astrophysical Journal, 2023, 944, 127.	1.6	2
938	Late accretion of Ceres-like asteroids and their implantation into the outer main belt. Nature Astronomy, 2023, 7, 524-533.	4.2	5
939	The Habitability of Venus. Space Science Reviews, 2023, 219, .	3.7	10
940	Near-ultraviolet absorption distribution of primitive asteroids from spectrophotometric surveys. Astronomy and Astrophysics, 2023, 672, A189.	2.1	0
941	Planetary population synthesis and the emergence of four classes of planetary system architectures. European Physical Journal Plus, 2023, 138, .	1.2	9
942	The Dynamical Consequences of a Super-Earth in the Solar System. Planetary Science Journal, 2023, 4, 38.	1.5	3
943	Migration of pairs of giant planets in low-viscosity discs. Astronomy and Astrophysics, 2023, 672, A190.	2.1	3
944	Degassing of early-formed planetesimals restricted water delivery to Earth. Nature, 2023, 615, 854-857.	13.7	9
945	Terrestrial planet and asteroid belt formation by Jupiter–Saturn chaotic excitation. Scientific Reports, 2023, 13, .	1.6	2
946	GTasb3D: A Novel 3D Framework for Modeling Thermal Evolution and Rarefied Flows in Porous Active Small Bodies with Various Shapes. Planetary Science Journal, 2023, 4, 60.	1.5	0
947	Upper limits of water contents in olivine and orthopyroxene of equilibrated chondrites and several achondrites. Meteoritics and Planetary Science, 2023, 58, 705-721.	0.7	3
948	Statistical implications of the <i>n</i> Â= 1 observation of 1I/â€~Oumuamua. Monthly Notices of the Royal Astronomical Society: Letters, 2023, 523, L9-L14.	1.2	3
954	Setting the Stage: Formation and Earliest Evolution of Io. Astrophysics and Space Science Library, 2023, , 41-93.	1.0	1
959	Planet Formation. , 2023, , 2352-2356.		0
973	Violent collision rocks a young planetary system. Nature, 2023, 622, 249-250.	13.7	0
985	The Solar System's ices and their origin. , 2024, , xix-xxv.		0
986	Small icy bodies in the inner Solar System. , 2024, , 261-281.		1

#	Article	IF	CITATIONS
989	Origin and evolution of Earth's water inventory. , 2024, , .		0