The tungsten isotopic composition of the Earth†5™ name

Nature 477, 195-198 DOI: 10.1038/nature10399

Citation Report

			0
#	ARTICLE	IF	CITATIONS
2	Earth's patchy late veneer. Nature, 2011, 477, 168-169.	13.7	8
3	Let sleeping DNA lie. Nature, 2011, 477, 169-170.	13.7	2
4	Brown dwarfs and free-floating planets. , 0, , 209-216.		0
5	Formation and evolution. , 0, , 217-254.		3
6	Geoneutrinos. Advances in High Energy Physics, 2012, 2012, 1-34.	0.5	10
7	Nanoporous Gold. RSC Nanoscience and Nanotechnology, 2012, , .	0.2	65
8	A search for thermal excursions from ancient extraterrestrial impacts using Hadean zircon Ti-U-Th-Pb depth profiles. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13486-13492.	3.3	40
9	¹⁸² W Evidence for Long-Term Preservation of Early Mantle Differentiation Products. Science, 2012, 335, 1065-1069.	6.0	211
10	Probing the Mantle Past. Science, 2012, 335, 1051-1052.	6.0	0
11	Nanoporous Gold as a Platform for a Building Block Catalyst. ACS Catalysis, 2012, 2, 2199-2215.	5.5	108
12	Hf–W chronometry of core formation in planetesimals inferred from weakly irradiated iron meteorites. Geochimica Et Cosmochimica Acta, 2012, 99, 287-304.	1.6	75
13	Chapter 1. Introduction to Nanoporous Gold. RSC Nanoscience and Nanotechnology, 2012, , 1-10.	0.2	8
14	Solar Wind and Solar System Matter After Mission Genesis. , 2012, , .		2
15	Two Different Sources of Water for the Early Solar Nebula. Origins of Life and Evolution of Biospheres, 2012, 42, 81-92.	0.8	1
16	Distal Impact Ejecta Layers. Impact Studies, 2013, , .	0.2	53
17	Dynamical and collisional constraints on a stochastic late veneer on the terrestrial planets. Icarus, 2013, 226, 671-681.	1.1	59
18	Deep earth recycling in the Hadean and constraints on surface tectonics. Numerische Mathematik, 2013, 313, 912-932.	0.7	30
19	The Itsaq Gneiss Complex of Greenland: Episodic 3900 to 3660 Ma juvenile crust formation and	0.7	68

#	Article	IF	CITATIONS
20	Early mantle dynamics inferred from 142Nd variations in Archean rocks from southwest Greenland. Earth and Planetary Science Letters, 2013, 377-378, 324-335.	1.8	65
21	Neutron capture on Pt isotopes in iron meteorites and the Hf–W chronology of core formation in planetesimals. Earth and Planetary Science Letters, 2013, 361, 162-172.	1.8	99
22	Late delivery of chondritic hydrogen into the lunar mantle: Insights from mare basalts. Earth and Planetary Science Letters, 2013, 361, 480-486.	1.8	67
23	Secular changes in sedimentation systems and sequence stratigraphy. Gondwana Research, 2013, 24, 468-489.	3.0	99
24	Stagnant-lid tectonics in early Earth revealed by 142Nd variations in late Archean rocks. Earth and Planetary Science Letters, 2013, 373, 83-92.	1.8	167
25	The abundance, distribution, and isotopic composition of Hydrogen in the Moon as revealed by basaltic lunar samples: Implications for the volatile inventory of the Moon. Geochimica Et Cosmochimica Acta, 2013, 122, 58-74.	1.6	127
26	Rare Earth Elements: What and Where They Are. Springer Theses, 2013, , 11-39.	0.0	23
27	On the formation and evolution of asteroid belts and their potential significance for life. Monthly Notices of the Royal Astronomical Society: Letters, 2012, 428, L11-L15.	1.2	58
29	CHAPTER 3. Application of Radiogenic Isotopes in Geosciences: Overview and Perspectives. RSC Detection Science, 2014, , 49-93.	0.0	0
30	On the origin and composition of Theia: Constraints from new models of the Giant Impact. Icarus, 2014, 242, 316-328.	1.1	49
31	Short-Lived Radionuclides and Early Solar System Chronology. , 2014, , 361-395.		28
32	The Geochemistry and Cosmochemistry of Impacts. , 2014, , 73-118.		47
33	Component geochronology in the polyphase ca. 3920 Ma Acasta Gneiss. Geochimica Et Cosmochimica Acta, 2014, 133, 68-96.	1.6	75
34	Highly siderophile elements in Earth's mantle as a clock for the Moon-forming impact. Nature, 2014, 508, 84-87.	13.7	191
35	Constraining the process of Eoarchean TTG formation in the Itsaq Gneiss Complex, southern West Greenland. Earth and Planetary Science Letters, 2014, 388, 374-386.	1.8	84
36	Alpha-decay of 184Os revealed by radiogenic 180W in meteorites: Half life determination and viability as geochronometer. Earth and Planetary Science Letters, 2014, 391, 69-76.	1.8	19
37	The role of detrital zircons in Hadean crustal research. Lithos, 2014, 190-191, 313-327.	0.6	51
38	Effects of magma ocean crystallization and overturn on the development of 142Nd and 182W isotopic heterogeneities in the primordial mantle. Earth and Planetary Science Letters, 2014, 408, 319-330.	1.8	29

#	Article	IF	CITATIONS
39	How Did Early Earth Become Our Modern World?. Annual Review of Earth and Planetary Sciences, 2014, 42, 151-178.	4.6	82
40	Siderophile element constraints on the origin of the Moon. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130258.	1.6	15
41	Nucleosynthetic W isotope anomalies and the Hf–W chronometry of Ca–Al-rich inclusions. Earth and Planetary Science Letters, 2014, 403, 317-327.	1.8	111
42	Chemical Separation of Mo and W from Terrestrial and Extraterrestrial Samples via Anion Exchange Chromatography. Analytical Chemistry, 2014, 86, 4856-4863.	3.2	23
43	New approaches to the Moon's isotopic crisis. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130168.	1.6	33
44	The evolution of Hadean–Eoarchaean geodynamics. Earth and Planetary Science Letters, 2014, 406, 49-58.	1.8	120
45	60Fe–60Ni chronology of core formation in Mars. Earth and Planetary Science Letters, 2014, 390, 264-274.	1.8	98
46	The Origin and Earliest History of the Earth. , 2014, , 149-211.		12
47	Identification of the giant impactor Theia in lunar rocks. Science, 2014, 344, 1146-1150.	6.0	156
48	Carbonado: Physical and chemical properties, a critical evaluation of proposed origins, and a revised genetic model. Earth-Science Reviews, 2014, 130, 49-72.	4.0	20
49	Protracted core formation and rapid accretion of protoplanets. Science, 2014, 344, 1150-1154.	6.0	224
50	Cosmogenic 180W variations in meteorites and re-assessment of a possible 184Os–180W decay system. Geochimica Et Cosmochimica Acta, 2014, 140, 160-176.	1.6	16
51	New insights into the Hadean mantle revealed by 182W and highly siderophile element abundances of supracrustal rocks from the Nuvvuagittuq Greenstone Belt, Quebec, Canada. Chemical Geology, 2014, 383, 63-75.	1.4	67
55	High-Precision Mass-Dependent Molybdenum Isotope Variations in Magmatic Rocks Determined by Double-Spike MC-ICP-MS. Geostandards and Geoanalytical Research, 2015, , n/a-n/a.	1.7	9
56	Planetesimal differentiation revealed by the Hf–W systematics of ureilites. Earth and Planetary Science Letters, 2015, 430, 316-325.	1.8	42
57	Revisiting the deflection dilemma. Astronomy and Geophysics, 2015, 56, 5.15-5.18.	0.1	1
58	The effect of oxygen as a light element in metallic liquids on partitioning behavior. Meteoritics and Planetary Science, 2015, 50, 530-546.	0.7	11
59	Tungsten isotopes in bulk meteorites and their inclusions—Implications for processing of presolar components in the solar protoplanetary disk. Meteoritics and Planetary Science, 2015, 50, 1643-1660.	0.7	7

#	Article	IF	CITATIONS
60	The circular economy. , 0, , 240-278.		1
62	The evolving nature of terrestrial crust from the Hadean, through the Archaean, into the Proterozoic. Precambrian Research, 2015, 258, 48-82.	1.2	198
63	Correlated cosmogenic W and Os isotopic variations in Carbo and implications for Hf–W chronology. Geochimica Et Cosmochimica Acta, 2015, 153, 91-104.	1.6	22
64	Sm–Nd systematics of lunar ferroan anorthositic suite rocks: Constraints on lunar crust formation. Geochimica Et Cosmochimica Acta, 2015, 148, 203-218.	1.6	36
65	Tungsten isotope composition of the Acasta Gneiss Complex. Earth and Planetary Science Letters, 2015, 419, 168-177.	1.8	80
66	Melting and mixing states of the Earth's mantle after the Moon-forming impact. Earth and Planetary Science Letters, 2015, 427, 286-295.	1.8	140
67	In search of late-stage planetary building blocks. Chemical Geology, 2015, 411, 125-142.	1.4	61
68	Possible Biosphere-Lithosphere Interactions Preserved in Igneous Zircon and Implications for Hadean Earth. Astrobiology, 2015, 15, 575-586.	1.5	11
69	Connections between the bulk composition, geodynamics and habitability of Earth. Nature Geoscience, 2015, 8, 587-593.	5.4	54
70	Hf–W chronology of the eucrite parent body. Geochimica Et Cosmochimica Acta, 2015, 156, 106-121.	1.6	51
71	A protracted timeline for lunar bombardment from mineral chemistry, Ti thermometry and U–Pb geochronology of Apollo 14 melt breccia zircons. Contributions To Mineralogy and Petrology, 2015, 169, 1.	1.2	61
72	Lunar tungsten isotopic evidence for the late veneer. Nature, 2015, 520, 534-537.	13.7	139
73	The inner solar system cratering record and the evolution of impactor populations. Research in Astronomy and Astrophysics, 2015, 15, 407-434.	0.7	58
74	Determination of mass-dependent variations in tungsten stable isotope compositions of geological reference materials by double-spike and MC-ICPMS. Journal of Analytical Atomic Spectrometry, 2015, 30, 2334-2342.	1.6	26
75	Extinct isotope heterogeneities in the mantles of Earth and Mars: Implications for mantle stirring rates. Meteoritics and Planetary Science, 2015, 50, 555-567.	0.7	10
76	Formation timescales of CV chondrites from component specific Hf–W systematics. Earth and Planetary Science Letters, 2015, 432, 472-482.	1.8	37
77	The petrogenesis of ultramafic rocks in the > 3.7 Ga Isua supracrustal belt, southern West Greenland: Geochemical evidence for two distinct magmatic cumulate trends. Gondwana Research, 2015, 28, 565-580.	3.0	57
78	Adsorption of Gold on Granular Activated Carbons and New Sources of Renewable and Eco-Friendly Activated Carbons. , 2016, , 95-142.		2

#	Article	IF	CITATIONS
79	Early mantle heterogeneities in the Réunion hotspot source inferred from highly siderophile elements in cumulate xenoliths. Earth and Planetary Science Letters, 2016, 448, 150-160.	1.8	26
80	High-precision measurement of W isotopes in Fe–Ni alloy and the effects from the nuclear field shift. Journal of Analytical Atomic Spectrometry, 2016, 31, 1400-1405.	1.6	36
81	The oxidation state and mass of the Moon-forming impactor. Earth and Planetary Science Letters, 2016, 442, 186-193.	1.8	34
82	Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts. Science, 2016, 352, 809-812.	6.0	130
83	Identifying remnants of early Earth. Science, 2016, 352, 768-769.	6.0	1
84	Late veneer and late accretion to the terrestrial planets. Earth and Planetary Science Letters, 2016, 455, 85-93.	1.8	57
85	Aluminous gneiss derived by weathering of basaltic source rocks in the Neoarchean StorÃ, Supracrustal Belt, southern West Greenland. Chemical Geology, 2016, 441, 63-80.	1.4	17
86	The coupled ¹⁸² Wâ€ ¹⁴² Nd record of early terrestrial mantle differentiation. Geochemistry, Geophysics, Geosystems, 2016, 17, 2168-2193.	1.0	87
87	Petrological Evidence from Komatiites for an Early Earth Carbon and Water Cycle. Journal of Petrology, 2016, 57, 2271-2288.	1.1	22
88	Widespread tungsten isotope anomalies and W mobility in crustal and mantle rocks of the Eoarchean Saglek Block, northern Labrador, Canada: Implications for early Earth processes and W recycling. Earth and Planetary Science Letters, 2016, 448, 13-23.	1.8	51
89	High-Precision Tungsten Isotopic Analysis by Multicollection Negative Thermal Ionization Mass Spectrometry Based on Simultaneous Measurement of W and ¹⁸ 0/ ¹⁶ 0 Isotope Ratios for Accurate Fractionation Correction. Analytical Chemistry, 2016, 88, 1542-1546.	3.2	18
90	Geochemistry and Nd isotopic characteristics of Earth's Hadean mantle and primitive crust. Earth and Planetary Science Letters, 2016, 442, 194-205.	1.8	51
91	Lithophile and siderophile element systematics of Earth's mantle at the Archean–Proterozoic boundary: Evidence from 2.4 Ga komatiites. Geochimica Et Cosmochimica Acta, 2016, 180, 227-255.	1.6	73
92	Highly siderophile element abundances in Eoarchean komatiite and basalt protoliths. Contributions To Mineralogy and Petrology, 2016, 171, 1.	1.2	9
93	Early Earth differentiation investigated through 142Nd, 182W, and highly siderophile element abundances in samples from Isua, Greenland. Geochimica Et Cosmochimica Acta, 2016, 175, 319-336.	1.6	84
94	High-precision analysis of 182 W/ 184 W and 183 W/ 184 W by negative thermal ionization mass spectrometry: Per-integration oxide corrections using measured 18 O/ 16 O. International Journal of Mass Spectrometry, 2017, 414, 80-86.	0.7	45
95	What Hf isotopes in zircon tell us about crust–mantle evolution. Lithos, 2017, 274-275, 304-327.	0.6	78
96	Chemical stratification in the post-magma ocean Earth inferred from coupled 146,147Sm–142,143Nd systematics in ultramafic rocks of the Saglek block (3.25–3.9 Ga; northern Labrador, Canada). Earth and Planetary Science Letters, 2017, 463, 136-150.	1.8	43

#	Article	IF	CITATIONS
98	A colossal impact enriched Mars' mantle with noble metals. Geophysical Research Letters, 2017, 44, 5978-5985.	1.5	26
99	Tungsten Isotopes in Planets. Annual Review of Earth and Planetary Sciences, 2017, 45, 389-417.	4.6	78
100	Origin and Evolution of Water in the Moon's Interior. Annual Review of Earth and Planetary Sciences, 2017, 45, 89-111.	4.6	29
101	142Nd/144Nd inferences on the nature and origin of the source of high 3He/4He magmas. Earth and Planetary Science Letters, 2017, 472, 62-68.	1.8	17
102	Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proceedings of the United States of America, 2017, 114, 6712-6716.	3.3	439
103	Tungsten-182 heterogeneity in modern ocean island basalts. Science, 2017, 356, 66-69.	6.0	171
104	Molybdenum isotope variations in magmatic rocks. Chemical Geology, 2017, 449, 253-268.	1.4	110
105	186Os–187Os and highly siderophile element abundance systematics of the mantle revealed by abyssal peridotites and Os-rich alloys. Geochimica Et Cosmochimica Acta, 2017, 200, 232-254.	1.6	104
106	The terrestrial late veneer from core disruption of a lunar-sized impactor. Earth and Planetary Science Letters, 2017, 480, 25-32.	1.8	95
107	Mantle geochemistry: Insights from ocean island basalts. Science China Earth Sciences, 2017, 60, 1976-2000.	2.3	15
108	Differentiation of the early silicate Earth as recorded by 142 Nd- 143 Nd in 3.8–3.0 Ga rocks from the Anshan Complex, North China Craton. Precambrian Research, 2017, 301, 86-101.	1.2	14
109	Rhenium-osmium isotopes and highly siderophile elements in ultramafic rocks from the Eoarchean Saglek Block, northern Labrador, Canada: implications for Archean mantle evolution. Geochimica Et Cosmochimica Acta, 2017, 216, 286-311.	1.6	20
110	The early differentiation of Mars inferred from Hf–W chronometry. Earth and Planetary Science Letters, 2017, 474, 345-354.	1.8	69
111	High Precision Tungsten Isotope Measurements by MCâ€ICPMS. Acta Geologica Sinica, 2017, 91, 273-274.	0.8	0
112	Water in the Earth's Interior: Distribution and Origin. Space Science Reviews, 2017, 212, 743-810.	3.7	139
113	Long-term preservation of early formed mantle heterogeneity by mobile lid convection: Importance of grainsize evolution. Earth and Planetary Science Letters, 2017, 475, 94-105.	1.8	18
114	Tungsten isotopes and the origin of the Moon. Earth and Planetary Science Letters, 2017, 475, 15-24.	1.8	56
115	Origin of the Earth: A proposal of new model called ABEL. Geoscience Frontiers, 2017, 8, 253-274.	4.3	50

#	Article	IF	CITATIONS
116	Highly siderophile element and 182 W evidence for a partial late veneer in the source of 3.8 Ga rocks from Isua, Greenland. Earth and Planetary Science Letters, 2017, 458, 394-404.	1.8	60
117	Expectation from Geochemistry to High-Pressure and High-Temperature Experiments to Elucidate Earth's Geochemical Evolution. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2017, 27, 246-255.	0.1	0
119	An improved extraction chromatographic purification of tungsten from a silicate matrix for high precision isotopic measurements using MC-ICPMS. Journal of Analytical Atomic Spectrometry, 2018, 33, 569-577.	1.6	21
120	Inefficient volatile loss from the Moon-forming disk: Reconciling the giant impact hypothesis and a wet Moon. Earth and Planetary Science Letters, 2018, 487, 117-126.	1.8	47
121	Tracking Hadean processes in modern basalts with 142-Neodymium. Earth and Planetary Science Letters, 2018, 484, 184-191.	1.8	39
122	A reconnaissance view of tungsten reservoirs in some crustal and mantle rocks: Implications for interpreting W isotopic compositions and crust-mantle W cycling. Geochimica Et Cosmochimica Acta, 2018, 223, 300-318.	1.6	16
123	Asteroid impacts on terrestrial planets: the effects of super-Earths and the role of the ν6 resonance. Monthly Notices of the Royal Astronomical Society, 2018, 473, 295-305.	1.6	37
124	Evidence of Enriched, Hadean Mantle Reservoir from 4.2-4.0 Ga zircon xenocrysts from Paleoarchean TTGs of the Singhbhum Craton, Eastern India. Scientific Reports, 2018, 8, 7069.	1.6	113
125	182W and HSE constraints from 2.7â€ [–] Ga komatiites on the heterogeneous nature of the Archean mantle. Geochimica Et Cosmochimica Acta, 2018, 228, 1-26.	1.6	48
126	No 182W excess in the Ontong Java Plateau source. Chemical Geology, 2018, 485, 24-31.	1.4	35
127	Hf-W chronology of CR chondrites: Implications for the timescales of chondrule formation and the distribution of 26Al in the solar nebula. Geochimica Et Cosmochimica Acta, 2018, 222, 284-304.	1.6	106
128	Heterogeneous delivery of silicate and metal to the Earth by large planetesimals. Nature Geoscience, 2018, 11, 77-81.	5.4	67
129	ABEL Model of the Two-step Formation of the Earth and the Significance of ABEL Bombardment to Produce a Habitable Planet. Journal of Geography (Chigaku Zasshi), 2018, 127, 647-682.	0.1	2
132	Radial velocities. , 0, , 17-80.		0
133	Astrometry. , 0, , 81-102.		0
134	Timing. , 0, , 103-118.		0
135	Microlensing. , 0, , 119-152.		0
137	Host stars. , 0, , 373-428.		0

#	Article	IF	CITATIONS
138	Brown dwarfs and free-floating planets. , 0, , 429-448.		0
139	Formation and evolution. , 0, , 449-558.		0
140	Interiors and atmospheres. , 0, , 559-648.		0
141	The solar system. , 0, , 649-700.		0
149	Tungsten-182 in the upper continental crust: Evidence from glacial diamictites. Chemical Geology, 2018, 494, 144-152.	1.4	40
150	Mineral-Organic Interactions in Prebiotic Synthesis. Nucleic Acids and Molecular Biology, 2018, , 31-83.	0.2	5
151	Ferromanganese Crusts and Nodules: Rocks That Grow. Encyclopedia of Earth Sciences Series, 2018, , 477-483.	0.1	3
152	Tantalum. Encyclopedia of Earth Sciences Series, 2018, , 1419-1421.	0.1	1
153	Variable distribution of s-process Hf and W isotope carriers in chondritic meteorites – Evidence from 174Hf and 180W. Geochimica Et Cosmochimica Acta, 2018, 239, 346-362.	1.6	7
154	Transits. , 0, , 153-328.		0
155	Moonfalls: collisions between the Earth and its past moons. Monthly Notices of the Royal Astronomical Society, 2018, 479, 1711-1721.	1.6	6
156	Early Moon formation inferred from hafnium–tungsten systematics. Nature Geoscience, 2019, 12, 696-700.	5.4	70
157	Temporal evolution of primordial tungsten-182 and 3He/4He signatures in the Iceland mantle plume. Chemical Geology, 2019, 525, 245-259.	1.4	50
158	Age and origin of IIE iron meteorites inferred from Hf-W chronology. Geochimica Et Cosmochimica Acta, 2019, 262, 92-103.	1.6	22
159	The nature of Earth's first crust. Chemical Geology, 2019, 530, 119321.	1.4	40
160	A unified model for hydrogen in the Earth and Moon: No one expects the Theia contribution. Chemie Der Erde, 2019, 79, 125546.	0.8	10
161	Lack of late-accreted material as the origin of 182W excesses in the Archean mantle: Evidence from the Pilbara Craton, Western Australia. Earth and Planetary Science Letters, 2019, 528, 115841.	1.8	31
162	Origin and Early Differentiation of Carbon and Associated Life-Essential Volatile Elements on Earth. ,		20

	CITATION	NKEPORI	
#	Article	IF	CITATIONS
163	Hf-W chronology of ordinary chondrites. Geochimica Et Cosmochimica Acta, 2019, 258, 290-309.	1.6	33
164	Uniform 182W isotope compositions in Eoarchean rocks from the Isua region, SW Greenland: The role of early silicate differentiation and missing late veneer. Geochimica Et Cosmochimica Acta, 2019, 257, 284-310.	1.6	46
165	Chemical Separation of Tungsten and Other Trace Elements for <scp>TIMS</scp> Isotope Ratio Measurements Using Organic Acids. Geostandards and Geoanalytical Research, 2019, 43, 245-259.	1.7	16
166	Tungsten isotopes in mantle plumes: Heads it's positive, tails it's negative. Earth and Planetary Science Letters, 2019, 506, 255-267.	1.8	24
167	Siderophile element constraints on the thermal history of the H chondrite parent body. Geochimica Et Cosmochimica Acta, 2019, 245, 556-576.	1.6	12
168	Origin of the Earth and the Late Heavy Bombardment. , 2019, , 27-47.		5
169	The Acasta Gneiss Complex. , 2019, , 329-347.		8
170	The 3.9–3.6 Ga Itsaq Gneiss Complex of Greenland. , 2019, , 375-399.		9
171	Grain boundary diffusion of W in lower mantle phase with implications for isotopic heterogeneity in oceanic island basalts by core-mantle interactions. Earth and Planetary Science Letters, 2020, 530, 115887.	1.8	16
172	Tungsten isotopic constraints on homogenization of the Archean silicate Earth: Implications for the transition of tectonic regimes. Geochimica Et Cosmochimica Acta, 2020, 278, 51-64.	1.6	21
173	Anomalous 182W in high 3He/4He ocean island basalts: Fingerprints of Earth's core?. Geochimica Et Cosmochimica Acta, 2020, 271, 194-211.	1.6	87
174	Multi-element isotope study of natrocarbonatites (1993 lava flows) from Oldoinyo Lengai volcano, Tanzania: Implications for core-mantle interactions. Journal of African Earth Sciences, 2020, 162, 103725.	0.9	0
175	The tungsten-182 record of kimberlites above the African superplume: Exploring links to the core-mantle boundary. Earth and Planetary Science Letters, 2020, 547, 116473.	1.8	40
176	Ancient helium and tungsten isotopic signatures preserved in mantle domains least modified by crustal recycling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30993-31001.	3.3	41
177	Astronomical context of Solar System formation from molybdenum isotopes in meteorite inclusions. Science, 2020, 370, 837-840.	6.0	27
178	Ultra-depleted 2.05ÂGa komatiites of Finnish Lapland: Products of grainy late accretion or core-mantle interaction?. Chemical Geology, 2020, 554, 119801.	1.4	31
179	A Chromatographic Method for Separation of Tungsten (W) from Silicate Samples for High-Precision Isotope Analysis Using Negative Thermal Ionization Mass Spectrometry. Analytical Chemistry, 2020, 92, 11987-11993.	3.2	5
180	Mantle Evolution of Asia Inferred from Pb Isotopic Signatures of Sources for Late Phanerozoic Volcanic Rocks. Minerals (Basel, Switzerland), 2020, 10, 739.	0.8	2

#	Article	IF	CITATIONS
181	Geochemical Constraints on the Origin of the Moon and Preservation of Ancient Terrestrial Heterogeneities. Space Science Reviews, 2020, 216, 1.	3.7	16
182	Hfâ€₩ chronology of a macrochondrule from the L5/6 chondrite Northwest Africa 8192. Meteoritics and Planetary Science, 2020, 55, 2241-2255.	0.7	2
183	Tungsten Isotope Composition of Archean Crustal Reservoirs and Implications for Terrestrial μ ¹⁸² W Evolution. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009155.	1.0	20
184	Hadean Earth. , 2020, , .		21
185	Ruthenium isotope vestige of Earth's pre-late-veneer mantle preserved in Archaean rocks. Nature, 2020, 579, 240-244.	13.7	67
186	Source of gold in Neoarchean orogenic-type deposits in the North Atlantic Craton, Greenland: Insights for a proto-source of gold in sub-seafloor hydrothermal arsenopyrite in the Mesoarchean. Precambrian Research, 2020, 343, 105717.	1.2	6
187	How to produce isotope anomalies in mantle by using extremely small isotope fractionations: A process-driven amplification effect?. Geochimica Et Cosmochimica Acta, 2020, 291, 19-49.	1.6	4
188	A compositionally heterogeneous martian mantle due to late accretion. Science Advances, 2020, 6, eaay2338.	4.7	24
189	Sulfur isotope characterization of primordial and recycled sources feeding the Samoan mantle plume. Earth and Planetary Science Letters, 2020, 534, 116073.	1.8	20
190	Continuousâ€Flow Extraction of Adjacent Metals—A Disruptive Economic Window for Inâ€Situ Resource Utilization of Asteroids?. Angewandte Chemie - International Edition, 2021, 60, 3368-3388.	7.2	13
191	Kontinuierliche Extraktion benachbarter Metalle im Durchstrombetrieb – ein disruptiver ökonomischer Ansatz zur Inâ€situâ€Rohstoffgewinnung auf Asteroiden?. Angewandte Chemie, 2021, 133, 3408-3431.	1.6	0
192	The Hadean Eon: Hot, Cold, or Just Right?. , 2021, , 206-210.		0
193	Combined Lithophile‣iderophile Isotopic Constraints on Hadean Processes Preserved in Ocean Island Basalt Sources. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009479.	1.0	15
194	Iron isotopes trace primordial magma ocean cumulates melting in Earth's upper mantle. Science Advances, 2021, 7, .	4.7	6
195	Reconciling metal–silicate partitioning and late accretion in the Earth. Nature Communications, 2021, 12, 2913.	5.8	17
196	Mantle plumes and their role in Earth processes. Nature Reviews Earth & Environment, 2021, 2, 382-401.	12.2	78
197	Tungsten-182 evidence for an ancient kimberlite source. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	21
199	Accretion and differentiation of early planetary bodies as recorded in the composition of the silicate Earth. Icarus, 2021, 365, 114497.	1.1	10

	CITATION R	CITATION REPORT	
#	Article	IF	Citations
200	No 182W evidence for early Moon formation. Nature Geoscience, 2021, 14, 714-715.	5.4	8
201	Water in the Earth's Interior: Distribution and Origin. Space Sciences Series of ISSI, 2017, , 83-150.	0.0	2
203	Convective isolation of Hadean mantle reservoirs through Archean time. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	25
204	High-Precision Mass-Dependent Molybdenum Isotope Variations in Magmatic Rocks Determined by Double-Spike MC-ICP-MS. Geostandards and Geoanalytical Research, 2016, , n/a-n/a.	1.7	9
205	High-precision tungsten isotopic measurement by negative thermal ionization mass spectrometry (NTIMS). Acta Petrologica Sinica, 2019, 35, 606-616.	0.3	1
206	A Little Big History of Iberian Gold. Journal of Big History, 2017, 1, 40-58.	0.4	3
207	GENERAL PBâ€ISOTOPE SYSTEMATICS OF SOURCES FOR VOLCANIC ROCKS OF THE LATEST GEODYNAMIC STA IN ASIA. Geodinamika I Tektonofizika, 2019, 10, 507-539.	Ge _{0.3}	2
208	Siderophile Elements in Tracing Planetary Formation and Evolution. Geochemical Perspectives, 2016, 5, 1-145.	3.8	39
209	Effective global mixing of the highly siderophile elements into Earth's mantle inferred from oceanic abyssal peridotites. Geochimica Et Cosmochimica Acta, 2022, 316, 347-362.	1.6	20
210	Collisional mixing between inner and outer solar system planetesimals inferred from the Nedagolla iron meteorite. Meteoritics and Planetary Science, 2022, 57, 261-276.	0.7	3
211	Three enigmas of highly siderophile elements in Earth's mantle. Ganseki Kobutsu Kagaku, 2012, 41, 203-210.	0.1	0
212	Shaped Metal Earth-Delivery Systems. , 2013, , 507-537.		0
213	Formation and Evolution of the Earth. Encyclopedia of Earth Sciences Series, 2018, , 1-18.	0.1	0
214	Tungsten Isotopes. Encyclopedia of Earth Sciences Series, 2018, , 1-5.	0.1	0
215	Formation and Evolution of the Earth. Encyclopedia of Earth Sciences Series, 2018, , 498-513.	0.1	0
216	Tungsten Isotopes. Encyclopedia of Earth Sciences Series, 2018, , 1458-1462.	0.1	0
217	Minerales espaciales: cosas de nadie en beneficio de todos. Derecho PUCP, 2019, , 89-131.	0.0	1
218	Radionuclide Produced Isotopic Variations in Mantle Rocks. , 2020, , 39-58.		0

#	Article	IF	CITATIONS
219	Improved method for highly precise and accurate ¹⁸² W/ ¹⁸⁴ W isotope measurements by multiple collector inductively coupled plasma mass spectrometry and application for terrestrial samples. Geochemical Journal, 2020, 54, 117-127.	0.5	5
220	Nuclear Power and Associated Environmental Issues in the Transition of Exploration and Mining on Earth to the Development of Off-world Natural Resources in the 21st Century. , 0, , 163-213.		3
221	Fractal dimension algorithm for automatic detection of gold mineralization. , 2022, , 251-275.		0
222	Early global mantle chemical and isotope heterogeneity revealed by the komatiite-basalt record: The Western Australia connection. Geochimica Et Cosmochimica Acta, 2022, 320, 238-278.	1.6	13
223	Fifty years of the Eoarchean and the case for evolving uniformitarianism. Precambrian Research, 2021, 367, 106442.	1.2	31
224	No mantle residues in the Isua Supracrustal Belt. Earth and Planetary Science Letters, 2022, 579, 117348.	1.8	15
225	Stable tungsten isotope systematics on the Earth's surface. Geochimica Et Cosmochimica Acta, 2022, 322, 227-243.	1.6	7
226	The komatiite testimony to ancient mantle heterogeneity. Chemical Geology, 2022, 594, 120776.	1.4	13
227	Tungsten and molybdenum isotopic evidence for an impact origin of pallasites. Earth and Planetary Science Letters, 2022, 584, 117440.	1.8	7
228	Upper mantle control on the W isotope record of shallow level plume and intraplate volcanic settings. Earth and Planetary Science Letters, 2022, 585, 117507.	1.8	6
229	Long-term preservation of Hadean protocrust in Earth's mantle. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120241119.	3.3	17
230	182W anomalies in mantle: a brief review. Acta Geochimica, 0, , 1.	0.7	1
231	Earth's geodynamic evolution constrained by 182W in Archean seawater. Nature Communications, 2022, 13, 2701.	5.8	6
232	Tungsten Isotopic Constraints on the Nature of Earth's Accreting Materials. Acta Geologica Sinica, 2022, 96, 1213-1220.	0.8	0
233	A Review of the Lunar 182Hf-182W Isotope System Research. Minerals (Basel, Switzerland), 2022, 12, 759.	0.8	2
234	Origin of the analytical ¹⁸³ W effect and its implications for tungsten isotope analyses. Journal of Analytical Atomic Spectrometry, 2022, 37, 2005-2021.	1.6	9
235	Tungsten isotopic fractionation at the Mariana arc and constraints on the redox conditions of subduction zone fluids. Geochimica Et Cosmochimica Acta, 2022, 334, 135-154.	1.6	1
236	Open-system 182W142Nd isotope evolution of the Earth. Chemical Geology, 2022, 611, 121104.	1.4	1

#	Article	IF	CITATIONS
237	Controls on Pt/Pd ratios in Bushveld magmas and cumulates: a review complemented by new W isotope data. Mineralium Deposita, 0, , .	1.7	0
238	Dissipation of Tungsten-182 Anomalies in the Archean Upper Mantle: Evidence from the Black Hills, South Dakota, USA. Chemical Geology, 2023, 617, 121255.	1.4	4
239	The accretion of planet Earth. Nature Reviews Earth & Environment, 2023, 4, 19-35.	12.2	4
240	Stable W Isotope Measurements of Geological Reference Materials and Tungsten Ore Minerals by <scp>Double Spike MC″CPâ€MS</scp> . Geostandards and Geoanalytical Research, 2023, 47, 169-183.	1.7	1
241	Long-term core–mantle interaction explains W-He isotope heterogeneities. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	6
242	Anatomy of rocky planets formed by rapid pebble accretion. II. Differentiation by accretion energy and thermal blanketing. Astronomy and Astrophysics, 0, , .	2.1	6
243	Origin of ¹⁸² W Anomalies in Ocean Island Basalts. Geochemistry, Geophysics, Geosystems, 2023, 24, .	1.0	2