Heatâ€shock protein 70 modulates toxic extracellular Î transâ€synaptic toxicity

FASEB Journal 25, 326-336 DOI: 10.1096/fj.10-164624

Citation Report

#	Article	IF	CITATIONS
1	Toll-Like Receptor 4 Promotes α-Synuclein Clearance and Survival of Nigral Dopaminergic Neurons. American Journal of Pathology, 2011, 179, 954-963.	1.9	230
2	Protein aggregate spreading in neurodegenerative diseases: Problems and perspectives. Neuroscience Research, 2011, 70, 339-348.	1.0	154
3	Molecular Chaperones in Parkinson's Disease – Present and Future. Journal of Parkinson's Disease, 2011, 1, 299-320.	1.5	63
4	Alpha-Synuclein and the Immune Response in Parkinsonâ \in $^{ m Ms}$ Disease. , 0, , .		1
5	The Hsp70 Chaperone System in Parkinson's Disease. , 2011, , .		3
6	Assessment of α-Synuclein Secretion in Mouse and Human Brain Parenchyma. PLoS ONE, 2011, 6, e22225.	1.1	145
7	Tau Enhances α-Synuclein Aggregation and Toxicity in Cellular Models of Synucleinopathy. PLoS ONE, 2011, 6, e26609.	1.1	115
8	AMPA-receptor-mediated excitatory synaptic transmission is enhanced by iron-induced α-synuclein oligomers. Journal of Neurochemistry, 2011, 117, 868-878.	2.1	60
9	A deadly spread: cellular mechanisms of α-synuclein transfer. Cell Death and Differentiation, 2011, 18, 1425-1433.	5.0	131
10	Pathological roles of α-synuclein in neurological disorders. Lancet Neurology, The, 2011, 10, 1015-1025.	4.9	328
11	Neuropathology underlying clinical variability in patients with synucleinopathies. Acta Neuropathologica, 2011, 122, 187-204.	3.9	357
12	Melittin restores proteasome function in an animal model of ALS. Journal of Neuroinflammation, 2011, 8, 69.	3.1	61
13	Hsc70 Protein Interaction with Soluble and Fibrillar α-Synuclein. Journal of Biological Chemistry, 2011, 286, 34690-34699.	1.6	103
14	Characterization of Oligomer Formation of Amyloid-Î ² Peptide Using a Split-luciferase Complementation Assay. Journal of Biological Chemistry, 2011, 286, 27081-27091.	1.6	65
15	Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. Journal of Experimental Medicine, 2012, 209, 975-986.	4.2	910
16	Soluble Â-Synuclein Is a Novel Modulator of Alzheimer's Disease Pathophysiology. Journal of Neuroscience, 2012, 32, 10253-10266.	1.7	107
17	Antibody-Aided Clearance of Extracellular α-Synuclein Prevents Cell-to-Cell Aggregate Transmission. Journal of Neuroscience, 2012, 32, 13454-13469.	1.7	290
18	Neuropathology in transplants in Parkinson's disease. Progress in Brain Research, 2012, 200, 221-241.	0.9	43

#	Article	IF	CITATIONS
19	Targeting intracellular and extracellular alpha-synuclein as a therapeutic strategy in Parkinson's disease and other synucleinopathies. Expert Opinion on Therapeutic Targets, 2012, 16, 421-432.	1.5	58
20	Neuronâ€ŧoâ€neuron transmission of αâ€synuclein fibrils through axonal transport. Annals of Neurology, 2012, 72, 517-524.	2.8	305
21	A Rationally Designed Six-Residue Swap Generates Comparability in the Aggregation Behavior of α-Synuclein and β-Synuclein. Biochemistry, 2012, 51, 8771-8778.	1.2	22
22	γ-Synuclein: Seeding of α-Synuclein Aggregation and Transmission between Cells. Biochemistry, 2012, 51, 4743-4754.	1.2	79
23	Can Parkinson's disease pathology be propagated from one neuron to another?. Progress in Neurobiology, 2012, 97, 205-219.	2.8	97
24	Molecular Chaperones and Co-Chaperones in Parkinson Disease. Neuroscientist, 2012, 18, 589-601.	2.6	47
25	Identification of Protein Interfaces between α-Synuclein, the Principal Component of Lewy Bodies in Parkinson Disease, and the Molecular Chaperones Human Hsc70 and the Yeast Ssa1p. Journal of Biological Chemistry, 2012, 287, 32630-32639.	1.6	40
26	Trans-cellular Propagation of Tau Aggregation by Fibrillar Species. Journal of Biological Chemistry, 2012, 287, 19440-19451.	1.6	483
27	Inhibition of Amyloid Formation. Journal of Molecular Biology, 2012, 421, 441-465.	2.0	238
28	Beyond α-synuclein transfer: pathology propagation in Parkinson's disease. Trends in Molecular Medicine, 2012, 18, 248-255.	3.5	69
29	α-Synuclein misfolding and Parkinson's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 261-285.	1.8	526
30	Molecular Insights into Parkinson's Disease. Progress in Molecular Biology and Translational Science, 2012, 107, 125-188.	0.9	83
31	Alpha-synuclein: from secretion to dysfunction and death. Cell Death and Disease, 2012, 3, e350-e350.	2.7	239
32	Â-Synuclein in Parkinson's Disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a009399-a009399.	2.9	958
33	Exosomal cell-to-cell transmission of alpha synuclein oligomers. Molecular Neurodegeneration, 2012, 7, 42.	4.4	708
34	Alpha-Synuclein Cell-to-Cell Transfer and Seeding in Grafted Dopaminergic Neurons In Vivo. PLoS ONE, 2012, 7, e39465.	1.1	218
35	α‧ynuclein oligomers oppose longâ€ŧerm potentiation and impair memory through a calcineurinâ€dependent mechanism: relevance to human synucleopathic diseases. Journal of Neurochemistry, 2012, 120, 440-452.	2.1	94
36	The role of α-synuclein in neurodegeneration $\hat{a} \in$ " An update. Translational Neuroscience, 2012, 3, .	0.7	16

ARTICLE IF CITATIONS # Direct detection of alpha synuclein oligomers in vivo. Acta Neuropathologica Communications, 2013, 37 2.4 49 1.6. Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders. Cell 1.5 and Tissue Research, 2013, 352, 33-47. Development and Screening of Contrast Agents for In Vivo Imaging of Parkinson's Disease. Molecular 39 1.3 21 Imaging and Biology, 2013, 15, 585-595. Proteopathic Seeds and Neurodegenerative Diseases. Research and Perspectives in Alzheimer's Disease, 0.1 Molecular chaperones and protein folding as therapeutic targets in Parkinson's disease and other 41 2.4 73 synucleinopathies. Acta Neuropathologica Communications, 2013, 1, 79. Can Intrabodies Serve as Neuroprotective Therapies for Parkinson's Disease? Beginning Thoughts. Journal of Parkinson's Disease, 2013, 3, 581-591. 1.5 The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nature Reviews 43 4.9 1,322 Neuroscience, 2013, 14, 38-48. α‧ynuclein oligomers and clinical implications for Parkinson disease. Annals of Neurology, 2013, 73, 44 2.8 155-169. Small Misfolded Tau Species Are Internalized via Bulk Endocytosis and Anterogradely and 45 436 1.6 Retrogradely Transported in Neurons. Journal of Biological Chemistry, 2013, 288, 1856-1870. Oxidative stress-induced posttranslational modifications of alpha-synuclein: Specific modification of alpha-synuclein by 4-hydroxy-2-nonenal increases dopaminergic toxicity. Molecular and Cellular 1.0 143 Neurosciences, 2013, 54, 71-83. Molecular Chaperones, Alpha-Synuclein, and Neurodegeneration. Molecular Neurobiology, 2013, 47, 47 1.9 47 552-560. Proteolytic clearance of extracellular î±-synuclein as a new therapeutic approach against Parkinson disease. Prion, 2013, 7, 121-126. Opportunities and Challenges for Molecular Chaperone Modulation to Treat Protein-Conformational 49 2.1 13 Brain Diseases. Neurotherapeutics, 2013, 10, 416-428. Toxicity of extracellular secreted alpha-synuclein: Its role in nitrosative stress and 29 neurodegeneration. Neurochemistry International, 2013, 62, 776-783. αâ€Synuclein: The Long Distance Runner. Brain Pathology, 2013, 23, 350-357. 51 2.1 107 Handbook of Parkinson's Disease., 2013,,. \hat{I} ±-Synuclein in CSF of patients with severe traumatic brain injury. Neurology, 2013, 80, 1662-1668. 54 1.571 Glucocerebrosidase, a new player changing the old rules in Lewy body diseases. Biological Chemistry, 1.2 2013, 394, 807-818.

щ		15	CITATIONS
#	ARTICLE Lipid Peroxidation Product 4-Hydroxy-2-Nonenal Promotes Seeding-Capable Oligomer Formation and	IF	CITATIONS
56	Cell-to-Cell Transfer of α-Synuclein. Antioxidants and Redox Signaling, 2013, 18, 770-783.	2.5	99
57	α-Synuclein Oligomers Impair Neuronal Microtubule-Kinesin Interplay. Journal of Biological Chemistry, 2013, 288, 21742-21754.	1.6	117
60	Evidence for Prion-Like Mechanisms in Several Neurodegenerative Diseases: Potential Implications for Immunotherapy. Clinical and Developmental Immunology, 2013, 2013, 1-20.	3.3	30
61	Protein Transmission, Seeding and Degradation: Key Steps for α-Synuclein Prion-Like Propagation. Experimental Neurobiology, 2014, 23, 324-336.	0.7	45
62	Chronic Treatment with Novel Small Molecule Hsp90 Inhibitors Rescues Striatal Dopamine Levels but Not α-Synuclein-Induced Neuronal Cell Loss. PLoS ONE, 2014, 9, e86048.	1.1	35
63	Sequence Complexity of Amyloidogenic Regions in Intrinsically Disordered Human Proteins. PLoS ONE, 2014, 9, e89781.	1.1	18
64	Direct Visualization of CHIP-Mediated Degradation of Alpha-Synuclein In Vivo: Implications for PD Therapeutics. PLoS ONE, 2014, 9, e92098.	1.1	14
65	Autophagy modulates SNCA/α-synuclein release, thereby generating a hostile microenvironment. Autophagy, 2014, 10, 2171-2192.	4.3	174
66	Systematic Comparison of the Effects of Alpha-synuclein Mutations on Its Oligomerization and Aggregation. PLoS Genetics, 2014, 10, e1004741.	1.5	168
67	β1-integrin-dependent migration of microglia in response to neuron-released α-synuclein. Experimental and Molecular Medicine, 2014, 46, e91-e91.	3.2	48
68	Heat Shock Protein 70 Reduces αâ€5ynucleinâ€Induced Predegenerative Neuronal Dystrophy in the αâ€5ynuclein Viral Gene Transfer Rat Model of Parkinson's Disease. CNS Neuroscience and Therapeutics, 2014, 20, 50-58.	1.9	33
69	Noninvasive Bioluminescence Imaging of α-Synuclein Oligomerization in Mouse Brain Using Split Firefly Luciferase Reporters. Journal of Neuroscience, 2014, 34, 16518-16532.	1.7	24
70	Targeting α-Synuclein as a Parkinson's Disease Therapeutic. Topics in Medicinal Chemistry, 2014, , 43-109.	0.4	0
71	α-Synuclein in Parkinson's Disease: Pathogenic Function and Translation into Animal Models. Neurodegenerative Diseases, 2014, 14, 1-17.	0.8	39
72	Histone deacetylase 6 regulates cytotoxic α-synuclein accumulation through induction of the heat shock response. Neurobiology of Aging, 2014, 35, 2316-2328.	1.5	44
73	Hypothesis: A role for EBV-induced molecular mimicry in Parkinson's disease. Parkinsonism and Related Disorders, 2014, 20, 685-694.	1.1	52
74	Pathogenesis of synaptic degeneration in Alzheimer's disease and Lewy body disease. Biochemical Pharmacology, 2014, 88, 508-516.	2.0	196
75	Barcoding heat shock proteins to human diseases: looking beyond the heat shock response. DMM Disease Models and Mechanisms, 2014, 7, 421-434.	1.2	100

#	Article	IF	Citations
76	Parkinson's disease-linked human PARK9/ATP13A2 maintains zinc homeostasis and promotes α-Synuclein externalization via exosomes. Human Molecular Genetics, 2014, 23, 2816-2833.	1.4	205
77	Causes and Consequences of Degeneration of the Dorsal Motor Nucleus of the Vagus Nerve in Parkinson's Disease. Antioxidants and Redox Signaling, 2014, 21, 649-667.	2.5	51
78	Association of heat-shock proteins in various neurodegenerative disorders: is it a master key to open the therapeutic door?. Molecular and Cellular Biochemistry, 2014, 386, 45-61.	1.4	86
79	Systems Approach to Neurodegenerative Disease Biomarker Discovery. Annual Review of Pharmacology and Toxicology, 2014, 54, 457-481.	4.2	45
80	Extracellular α-synuclein—a novel and crucial factor in Lewy body diseases. Nature Reviews Neurology, 2014, 10, 92-98.	4.9	255
81	Targeting heat shock proteins to modulate α-synuclein toxicity. Therapeutic Advances in Neurological Disorders, 2014, 7, 33-51.	1.5	53
82	Membrane interactions and fibrillization of αâ€synuclein play an essential role in membrane disruption. FEBS Letters, 2014, 588, 4457-4463.	1.3	39
83	The H50Q Mutation Enhances α-Synuclein Aggregation, Secretion, and Toxicity. Journal of Biological Chemistry, 2014, 289, 21856-21876.	1.6	152
84	The small GTPase Rab11 co-localizes with Â-synuclein in intracellular inclusions and modulates its aggregation, secretion and toxicity. Human Molecular Genetics, 2014, 23, 6732-6745.	1.4	73
85	Physicochemical Properties of Cells and Their Effects on Intrinsically Disordered Proteins (IDPs). Chemical Reviews, 2014, 114, 6661-6714.	23.0	391
86	Alpha-synuclein spreading in Parkinsonââ,¬â"¢s disease. Frontiers in Neuroanatomy, 2014, 8, 159.	0.9	148
87	Transmission of Soluble and Insoluble α-Synuclein to Mice. Journal of Neuropathology and Experimental Neurology, 2015, 74, 1158-1169.	0.9	14
88	Transmission of Soluble and Insoluble α-Synuclein to Mice. Journal of Neuropathology and Experimental Neurology, 2015, 74, 1158-1169.	0.9	25
89	Disease-modifying therapeutic directions for Lewy-Body dementias. Frontiers in Neuroscience, 2015, 9, 293.	1.4	23
90	α-synuclein interacts with SOD1 and promotes its oligomerization. Molecular Neurodegeneration, 2015, 10, 66.	4.4	29
91	Extracellular ATP induces intracellular alpha-synuclein accumulation via P2X1 receptor-mediated lysosomal dysfunction. Neurobiology of Aging, 2015, 36, 1209-1220.	1.5	32
92	Alpha‧ynuclein Amyloid Oligomers Act as Multivalent Nanoparticles to Cause Hemifusion in Negatively Charged Vesicles. Small, 2015, 11, 2257-2262.	5.2	11
93	Sequence-dependent Internalization of Aggregating Peptides. Journal of Biological Chemistry, 2015, 290, 242-258.	1.6	22

		LFORT	
#	Article	IF	CITATIONS
94	Icariin reduces α-synuclein over-expression by promoting α-synuclein degradation. Age, 2015, 37, 9811.	3.0	6
95	Alpha ynuclein as a Pathological Link Between Chronic Traumatic Brain Injury and Parkinson's Disease. Journal of Cellular Physiology, 2015, 230, 1024-1032.	2.0	127
96	Animal models for prion-like diseases. Virus Research, 2015, 207, 5-24.	1.1	10
97	pH-induced molecular shedding drives the formation of amyloid fibril-derived oligomers. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5691-5696.	3.3	95
98	Lenalidomide reduces microglial activation and behavioral deficits in a transgenic model of Parkinson's disease. Journal of Neuroinflammation, 2015, 12, 93.	3.1	51
99	Activation of MyD88-dependent TLR1/2 signaling by misfolded α-synuclein, a protein linked to neurodegenerative disorders. Science Signaling, 2015, 8, ra45.	1.6	228
100	Extracellular vesicle sorting of α-Synuclein is regulated by sumoylation. Acta Neuropathologica, 2015, 129, 695-713.	3.9	136
101	Targeting α-synuclein oligomers by protein-fragment complementation for drug discovery in synucleinopathies. Expert Opinion on Therapeutic Targets, 2015, 19, 589-603.	1.5	31
102	Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer's disease brain. Nature Communications, 2015, 6, 8490.	5.8	283
103	Chaperones in Neurodegeneration. Journal of Neuroscience, 2015, 35, 13853-13859.	1.7	81
104	Targeting protein aggregation for the treatment of degenerative diseases. Nature Reviews Drug Discovery, 2015, 14, 759-780.	21.5	338
105	TDP-43 is intercellularly transmitted across axon terminals. Journal of Cell Biology, 2015, 211, 897-911.	2.3	263
106	Mutual exacerbation of peroxisome proliferatorâ€activated receptor γ coactivator 1α deregulation and αâ€synuclein oligomerization. Annals of Neurology, 2015, 77, 15-32.	2.8	112
107	Extracellular vesicles including exosomes are mediators of signal transduction: Are they protective or pathogenic?. Proteomics, 2015, 15, 260-271.	1.3	230
108	Spreading of α-synuclein in the face of axonal transport deficits in Parkinson's disease: A speculative synthesis. Neurobiology of Disease, 2015, 77, 276-283.	2.1	59
109	Non-cell-autonomous Neurotoxicity of α-synuclein Through Microglial Toll-like Receptor 2. Experimental Neurobiology, 2016, 25, 113-119.	0.7	77
110	Mechanism of Anti-α-Synuclein Immunotherapy. Journal of Movement Disorders, 2016, 9, 14-19.	0.7	41
111	More than a Rumor Spreads in Parkinson's Disease. Frontiers in Human Neuroscience, 2016, 10, 608.	1.0	11

#	Article	IF	CITATIONS
112	A Rapid, Semi-Quantitative Assay to Screen for Modulators of Alpha-Synuclein Oligomerization Ex vivo. Frontiers in Neuroscience, 2015, 9, 511.	1.4	5
113	Alphaâ€synuclein propagation: New insights from animal models. Movement Disorders, 2016, 31, 161-168.	2.2	100
114	Combination therapies: The next logical Step for the treatment of synucleinopathies?. Movement Disorders, 2016, 31, 225-234.	2.2	45
115	Protein Partners of α‣ynuclein in Health and Disease. Brain Pathology, 2016, 26, 389-397.	2.1	40
116	Dysregulation of autophagy and mitochondrial function in Parkinson's disease. Translational Neurodegeneration, 2016, 5, 19.	3.6	79
117	Tunneling nanotubes spread fibrillar αâ€synuclein by intercellular trafficking of lysosomes. EMBO Journal, 2016, 35, 2120-2138.	3.5	286
118	Tunneling nanotubes: A possible highway in the spreading of tau and other prion-like proteins in neurodegenerative diseases. Prion, 2016, 10, 344-351.	0.9	151
119	Walking the tightrope: proteostasis and neurodegenerative disease. Journal of Neurochemistry, 2016, 137, 489-505.	2.1	176
120	Review: Parkinson's disease: from synaptic loss to connectome dysfunction. Neuropathology and Applied Neurobiology, 2016, 42, 77-94.	1.8	163
121	The neural chaperone proSAAS blocks α-synuclein fibrillation and neurotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4708-15.	3.3	38
122	Functionally different α-synuclein inclusions yield insight into Parkinson's disease pathology. Scientific Reports, 2016, 6, 23116.	1.6	30
124	Aggregated α-Synuclein Increases SOD1 Oligomerization in a Mouse Model of Amyotrophic Lateral Sclerosis. American Journal of Pathology, 2016, 186, 2152-2161.	1.9	17
125	Intracellular formation of α-synuclein oligomers and the effect of heat shock protein 70 characterized by confocal single particle spectroscopy. Biochemical and Biophysical Research Communications, 2016, 477, 76-82.	1.0	4
126	Induction of α-synuclein aggregate formation by CSF exosomes from patients with Parkinson's disease and dementia with Lewy bodies. Brain, 2016, 139, 481-494.	3.7	349
127	HSF Inhibits the Progression of Age-Related Neurodegenerative Diseases. , 2016, , 213-242.		0
128	Heat Shock Factor. , 2016, , .		14
129	Age-dependent defects of alpha-synuclein oligomer uptake in microglia and monocytes. Acta Neuropathologica, 2016, 131, 379-391.	3.9	140
130	Therapeutic approaches in Parkinson's disease andÂrelated disorders. Journal of Neurochemistry, 2016, 139, 346-352.	2.1	46

#	Article	IF	CITATIONS
131	Prions and Protein Assemblies that Convey Biological Information in Health and Disease. Neuron, 2016, 89, 433-448.	3.8	74
132	Immunotherapeutic Approaches Targeting Amyloid-β, α-Synuclein, and Tau for the Treatment of Neurodegenerative Disorders. Neurotherapeutics, 2016, 13, 179-189.	2.1	113
133	Protein aggregation and neurodegeneration in prototypical neurodegenerative diseases: Examples of amyloidopathies, tauopathies and synucleinopathies. Progress in Neurobiology, 2017, 155, 171-193.	2.8	137
134	FLZ Attenuates α-Synuclein-Induced Neurotoxicity by Activating Heat Shock Protein 70. Molecular Neurobiology, 2017, 54, 349-361.	1.9	20
135	Traffic jams and the complex role of α-Synuclein aggregation in Parkinson disease. Small GTPases, 2017, 8, 78-84.	0.7	15
136	Cellular Uptake of α-Synuclein Oligomer-Selective Antibodies is Enhanced by the Extracellular Presence of α-Synuclein and Mediated via Fcl³ Receptors. Cellular and Molecular Neurobiology, 2017, 37, 121-131.	1.7	39
137	Anti-α-synuclein immunotherapy reduces α-synuclein propagation in the axon and degeneration in a combined viral vector and transgenic model of synucleinopathy. Acta Neuropathologica Communications, 2017, 5, 7.	2.4	78
138	The chaperonin CCT inhibits assembly of \hat{l} ±-synuclein amyloid fibrils by a specific, conformation-dependent interaction. Scientific Reports, 2017, 7, 40859.	1.6	48
139	Visualization of prion-like transfer in Huntington's disease models. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 793-800.	1.8	17
140	In vitro α-synuclein neurotoxicity and spreading among neurons and astrocytes using Lewy body extracts from Parkinson disease brains. Neurobiology of Disease, 2017, 103, 101-112.	2.1	96
141	The critical role of Nramp1 in degrading α-synuclein oligomers in microglia under iron overload condition. Neurobiology of Disease, 2017, 104, 61-72.	2.1	15
142	Cellular models as tools for the study of the role of alpha-synuclein in Parkinson's disease. Experimental Neurology, 2017, 298, 162-171.	2.0	49
143	Extracellular TDPâ€43 aggregates target MAPK/MAK/MRK overlapping kinase (MOK) and trigger caspaseâ€3/ILâ€18 signaling in microglia. FASEB Journal, 2017, 31, 2797-2816.	0.2	39
144	Neuropathological Staging of Brain Pathology in Sporadic Parkinson's disease: Separating the Wheat from the Chaff. Journal of Parkinson's Disease, 2017, 7, S71-S85.	1.5	252
145	The Transcellular Propagation and Intracellular Trafficking of α-Synuclein. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a024380.	2.9	28
146	αâ€ S ynuclein Oligomers: A Study in Diversity. Israel Journal of Chemistry, 2017, 57, 699-723.	1.0	16
147	Structural Characteristics of α-Synuclein Oligomers. International Review of Cell and Molecular Biology, 2017, 329, 79-143.	1.6	95
148	Human Astrocytes Transfer Aggregated Alpha-Synuclein via Tunneling Nanotubes. Journal of Neuroscience, 2017, 37, 11835-11853.	1.7	196

	CHAHON	REPORT	
#	Article	IF	Citations
149	The Oligomer Hypothesis in α-Synucleinopathy. Neurochemical Research, 2017, 42, 3362-3371.	1.6	53
	Low molar excess of 4-oxo-2-nonenal and 4-hydroxy-2-nonenal promote oligomerization of		
150	alpha-synuclein through different pathways. Free Radical Biology and Medicine, 2017, 110, 421-431.	1.3	16
151	Protein and Molecular Characterization of a Clinically Compliant Amniotic Fluid Stem Cell-Derived Extracellular Vesicle Fraction Capable of Accelerating Muscle Regeneration Through Enhancement of Angiogenesis. Stem Cells and Development, 2017, 26, 1316-1333.	1.1	42
152	α-synuclein aggregation and its modulation. International Journal of Biological Macromolecules, 2017, 100, 37-54.	3.6	106
153	Expanding role of molecular chaperones in regulating α-synuclein misfolding; implications in Parkinson's disease. Cellular and Molecular Life Sciences, 2017, 74, 617-629.	2.4	23
154	Targeting chaperones, heat shock factor-1, and unfolded protein response: Promising therapeutic approaches for neurodegenerative disorders. Ageing Research Reviews, 2017, 35, 155-175.	5.0	37
155	Potential Modes of Intercellular α-Synuclein Transmission. International Journal of Molecular Sciences, 2017, 18, 469.	1.8	76
156	Investigation of Endocytic Pathways for the Internalization of Exosome-Associated Oligomeric Alpha-Synuclein. Frontiers in Neuroscience, 2017, 11, 172.	1.4	91
157	Protein Quality Control by Molecular Chaperones in Neurodegeneration. Frontiers in Neuroscience, 2017, 11, 185.	1.4	245
158	Possible Function of Molecular Chaperones in Diseases Caused by Propagating Amyloid Aggregates. Frontiers in Neuroscience, 2017, 11, 277.	1.4	19
159	Synuclein misfolding as a therapeutic target. , 2017, , 21-47.		0
160	Role of cellular prion protein in interneuronal amyloid transmission. Progress in Neurobiology, 2018, 165-167, 87-102.	2.8	22
161	Novel DNA Aptamers for Parkinson's Disease Treatment Inhibit α-Synuclein Aggregation and Facilitate its Degradation. Molecular Therapy - Nucleic Acids, 2018, 11, 228-242.	2.3	54
162	Mutant torsinA in the heterozygous DYT1 state compromises HSV propagation in infected neurons and fibroblasts. Scientific Reports, 2018, 8, 2324.	1.6	7
163	Bimolecular Fluorescence Complementation of Alpha-synuclein Demonstrates its Oligomerization with Dopaminergic Phenotype in Mice. EBioMedicine, 2018, 29, 13-22.	2.7	26
164	Release and uptake of pathologic alpha-synuclein. Cell and Tissue Research, 2018, 373, 175-182.	1.5	57
165	An acute functional screen identifies an effective antibody targeting amyloid-β oligomers based on calcium imaging. Scientific Reports, 2018, 8, 4634.	1.6	15
166	Internalization, axonal transport and release of fibrillar forms of alpha-synuclein. Neurobiology of Disease, 2018, 109, 219-225.	2.1	80

#	Article	IF	CITATIONS
167	Interaction of Alpha-synuclein with Cytogaligin, a protein encoded by the proapoptotic gene GALIC. Biochemical and Biophysical Research Communications, 2018, 495, 787-792.	1.0	4
168	Extracellular Interactions of Alpha-Synuclein in Multiple System Atrophy. International Journal of Molecular Sciences, 2018, 19, 4129.	1.8	24
169	α -Synuclein Trafficking in Parkinson's Disease: Insights From Fly and Mouse Models. ASN Neuro, 2018, 10, 175909141881258.	1.5	12
170	Rapid dissemination of alpha-synuclein seeds through neural circuits in an in-vivo prion-like seeding experiment. Acta Neuropathologica Communications, 2018, 6, 96.	2.4	56
171	Intercellular Spread of Protein Aggregates in Neurodegenerative Disease. Annual Review of Cell and Developmental Biology, 2018, 34, 545-568.	4.0	99
172	Import and Export of Misfolded α-Synuclein. Frontiers in Neuroscience, 2018, 12, 344.	1.4	86
173	Non-cell-autonomous actions of α-synuclein: Implications in glial synucleinopathies. Progress in Neurobiology, 2018, 169, 158-171.	2.8	21
174	Sequestration of synaptic proteins by alpha-synuclein aggregates leading to neurotoxicity is inhibited by small peptide. PLoS ONE, 2018, 13, e0195339.	1.1	28
175	The Molecular Mechanism of Alpha-Synuclein Dependent Regulation of Protein Phosphatase 2A Activity. Cellular Physiology and Biochemistry, 2018, 47, 2613-2625.	1.1	11
176	Extracellular α-synuclein levels are regulated by neuronal activity. Molecular Neurodegeneration, 2018, 13, 9.	4.4	100
177	Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nature Reviews Drug Discovery, 2018, 17, 660-688.	21.5	370
178	14-3-3 Proteins Reduce Cell-to-Cell Transfer and Propagation of Pathogenic α-Synuclein. Journal of Neuroscience, 2018, 38, 8211-8232.	1.7	48
179	Generation and Characterization of Stable α-Synuclein Oligomers. Methods in Molecular Biology, 2018, 1779, 61-71.	0.4	3
180	Prion-like propagation of α-synuclein in the gut-brain axis. Brain Research Bulletin, 2018, 140, 341-346.	1.4	11
181	Crucial role of protein oligomerization in the pathogenesis of Alzheimer's and Parkinson's diseases. FEBS Journal, 2018, 285, 3631-3644.	2.2	98
182	Heat Shock Proteins in Neural Signaling: Implications in Health and Disease. Heat Shock Proteins, 2019, , 459-478.	0.2	1
183	Interrogating Amyloid Aggregates using Fluorescent Probes. Chemical Reviews, 2019, 119, 11819-11856.	23.0	184
185	Spreading of α-Synuclein and Tau: A Systematic Comparison of the Mechanisms Involved. Frontiers in Molecular Neuroscience, 2019, 12, 107.	1.4	79

	CHAHON	ILPORT	
#	Article	IF	CITATIONS
186	Antibodies against alphaâ€synuclein: tools and therapies. Journal of Neurochemistry, 2019, 150, 612-625.	2.1	53
187	<i>In vitro</i> models of synucleinopathies: informing on molecular mechanisms and protective strategies. Journal of Neurochemistry, 2019, 150, 535-565.	2.1	33
188	Molecular chaperones biochemistry and role in neurodegenerative diseases. International Journal of Biological Macromolecules, 2019, 131, 396-411.	3.6	18
189	Cyclized NDGA modifies dynamic α-synuclein monomers preventing aggregation and toxicity. Scientific Reports, 2019, 9, 2937.	1.6	31
190	Microglia as modulators of exosomal alpha-synuclein transmission. Cell Death and Disease, 2019, 10, 174.	2.7	142
191	Extracellular HSP70, Neuroinflammation and Protection Against Viral Virulence. Heat Shock Proteins, 2019, , 23-55.	0.2	3
192	InÂVivo Protein Complementation Demonstrates Presynaptic α-Synuclein Oligomerization and Age-Dependent Accumulation of 8–16-mer Oligomer Species. Cell Reports, 2019, 29, 2862-2874.e9.	2.9	26
193	Novel Small Molecules Targeting the Intrinsically Disordered Structural Ensemble of α-Synuclein Protect Against Diverse α-Synuclein Mediated Dysfunctions. Scientific Reports, 2019, 9, 16947.	1.6	25
194	Disruptive membrane interactions of alpha-synuclein aggregates. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 468-482.	1.1	72
195	Alpha Synuclein and Parkinson's Disease. , 2019, , 1-14.		3
196	A characterization of Gaucher iPS-derived astrocytes: Potential implications for Parkinson's disease. Neurobiology of Disease, 2020, 134, 104647.	2.1	50
197	The Role of α-Synuclein Oligomers in Parkinson's Disease. International Journal of Molecular Sciences, 2020, 21, 8645.	1.8	95
198	Fluorescence Phenomena in Amyloid and Amyloidogenic Bionanostructures. Crystals, 2020, 10, 668.	1.0	17
199	Trans-synaptic and retrograde axonal spread of Lewy pathology following pre-formed fibril injection in an in vivo A53T alpha-synuclein mouse model of synucleinopathy. Acta Neuropathologica Communications, 2020, 8, 150.	2.4	36
200	Expression of HSP70 Heat-Shock Proteins under Oxidative Stress. Advances in Gerontology, 2020, 10, 20-25.	0.1	21
201	Remodeling microglia to a protective phenotype in Parkinson's disease?. Neuroscience Letters, 2020, 735, 135164.	1.0	17
202	Anti-aggregation Effects of Phenolic Compounds on $\hat{I}\pm$ -synuclein. Molecules, 2020, 25, 2444.	1.7	18
203	TDP-1/TDP-43 potentiates human α-Synuclein (HASN) neurodegeneration in Caenorhabditis elegans. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165876.	1.8	17

	CITATION R	CITATION REPORT	
#	Article	IF	Citations
204	Targeting α-Synuclein for PD Therapeutics: A Pursuit on All Fronts. Biomolecules, 2020, 10, 391.	1.8	43
205	Chaperones and Proteostasis: Role in Parkinson's Disease. Diseases (Basel, Switzerland), 2020, 8, 24.	1.0	12
206	Protein Quality Control Pathways at the Crossroad of Synucleinopathies. Journal of Parkinson's Disease, 2020, 10, 369-382.	1.5	21
207	Could Heat Therapy Be an Effective Treatment for Alzheimer's and Parkinson's Diseases? A Narrative Review. Frontiers in Physiology, 2019, 10, 1556.	1.3	31
208	<i>APOE</i> genotype regulates pathology and disease progression in synucleinopathy. Science Translational Medicine, 2020, 12, .	5.8	102
209	The GTPase Rab27b regulates the release, autophagic clearance, and toxicity of α-synuclein. Journal of Biological Chemistry, 2020, 295, 8005-8016.	1.6	20
210	Monitoring alphaâ€synuclein oligomerization and aggregation using bimolecular fluorescence complementation assays: What you see is not always what you get. Journal of Neurochemistry, 2021, 157, 872-888.	2.1	18
211	Using artificial intelligence to identify antiâ€hypertensives as possible disease modifying agents in Parkinson's disease. Pharmacoepidemiology and Drug Safety, 2021, 30, 201-209.	0.9	11
212	Hsp70 chaperone blocks α-synuclein oligomer formation via a novel engagement mechanism. Journal of Biological Chemistry, 2021, 296, 100613.	1.6	29
213	Expanding the role of proteasome homeostasis in Parkinson's disease: beyond protein breakdown. Cell Death and Disease, 2021, 12, 154.	2.7	28
214	Parkinson's Disease–Associated LRRK2 Interferes with Astrocyte-Mediated Alpha-Synuclein Clearance. Molecular Neurobiology, 2021, 58, 3119-3140.	1.9	54
215	"Janus-Faced―α-Synuclein: Role in Parkinson's Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 673395.	1.8	8
216	Innovative treatment targeting gangliosides aimed at blocking the formation of neurotoxic α-synuclein oligomers in Parkinson's disease. Glycoconjugate Journal, 2022, 39, 1-11.	1.4	20
217	Imaging protein aggregates in the serum and cerebrospinal fluid in Parkinson's disease. Brain, 2022, 145, 632-643.	3.7	20
218	Parkinson's disease and the gut: Models of an emerging relationship. Acta Biomaterialia, 2021, 132, 325-344.	4.1	15
219	Heat Shock Protein 70 as a Sex-Skewed Regulator of α-Synucleinopathy. Neurotherapeutics, 2021, 18, 2541-2564.	2.1	5
220	All Roads Lead to Rome: Different Molecular Players Converge to Common Toxic Pathways in Neurodegeneration. Cells, 2021, 10, 2438.	1.8	22
221	Exogenous α-synuclein hinders synaptic communication in cultured cortical primary rat neurons. PLoS ONE, 2018, 13, e0193763.	1.1	24

#	Article	IF	CITATIONS
222	Protein Folding and the Challenges of Maintaining Endoplasmic Reticulum Proteostasis in Idiopathic Pulmonary Fibrosis. Annals of the American Thoracic Society, 2017, 14, S410-S413.	1.5	25
223	Hsc70 Ameliorates the Vesicle Recycling Defects Caused by Excess α-Synuclein at Synapses. ENeuro, 2020, 7, ENEURO.0448-19.2020.	0.9	23
224	The Golgi-localized, gamma ear-containing, ARF-binding (GGA) protein family alters alpha synuclein (α-syn) oligomerization and secretion. Aging, 2017, 9, 1677-1697.	1.4	7
225	Drug Targets from Genetics: Alpha-Synuclein. CNS and Neurological Disorders - Drug Targets, 2011, 10, 712-723.	0.8	9
226	Chaperone-dependent Neurodegeneration: A Molecular Perspective on Therapeutic Intervention. , 2013, s10, .		31
227	Towards New Therapies for Parkinson's Disease. , 2011, , .		10
228	LGALS3 (galectin 3) mediates an unconventional secretion of SNCA/α-synuclein in response to lysosomal membrane damage by the autophagic-lysosomal pathway in human midbrain dopamine neurons. Autophagy, 2022, 18, 1020-1048.	4.3	24
229	Molecular chaperones and Parkinson's disease. Neurobiology of Disease, 2021, 160, 105527.	2.1	33
230	Neuropathology of parkinsonism. , 2013, , 239-257.		0
231	Accumulating Evidence Suggests that Parkinson's Disease Is a Prion-Like Disorder. Research and Perspectives in Alzheimer's Disease, 2013, , 97-113.	0.1	0
232	Extracellular α-Synuclein as a Target for Immunotherapy. Methods in Pharmacology and Toxicology, 2016, , 73-83.	0.1	0
234	Engineering Chaperones for Alzheimer's Disease: Insights from Drosophila Models. Heat Shock Proteins, 2019, , 259-272.	0.2	0
238	Association Of Nocturnal Intermittent Hypoxia With Heat Shock Protein 70 In Patients With Obstructive Sleep Apnea: A Pilot Study. Russian Open Medical Journal, 2020, 9, .	0.1	1
240	Molecular chaperones in Parkinson's disease-present and future. Journal of Parkinson's Disease, 2011, 1, 299-320.	1.5	29
242	Relationship of neighboring tissue and gliosis to α-synuclein pathology in a fetal transplant for Parkinson's disease. American Journal of Neurodegenerative Disease, 2012, 1, 49-59.	0.1	22
243	The formation of small aggregates contributes to the neurotoxic effects of tau45-230. Neurochemistry International, 2022, 152, 105252.	1.9	4
244	Small molecule inhibitors of α-synuclein oligomers identified by targeting early dopamine-mediated motor impairment in C. elegans. Molecular Neurodegeneration, 2021, 16, 77.	4.4	13
245	α-Synuclein-mediated neurodegeneration in Dementia with Lewy bodies: the pathobiology of a paradox. Cell and Bioscience, 2021, 11, 196.	2.1	8

#	Article	IF	CITATIONS
246	CHAPTER 10. Protein Oxidation, Quality-Control Mechanisms and Parkinson's Disease. Issues in Toxicology, 0, , 277-324.	0.2	0
248	α-mangostin derivative 4e as a PDE4 inhibitor promote proteasomal degradation of alpha-synuclein in Parkinson's disease models through PKA activation. Phytomedicine, 2022, 101, 154125.	2.3	4
249	Alpha-Synuclein Aggregation Pathway in Parkinson's Disease: Current Status and Novel Therapeutic Approaches. Cells, 2022, 11, 1732.	1.8	37
250	Multivalent protein–protein interactions are pivotal regulators of eukaryotic Hsp70 complexes. Cell Stress and Chaperones, 2022, 27, 397-415.	1.2	11
251	Spreading of alpha-synuclein between different cell types. Behavioural Brain Research, 2023, 436, 114059.	1.2	6
252	Thoracic trauma promotes alpha-Synuclein oligomerization in murine Parkinson's disease. Neurobiology of Disease, 2022, 174, 105877.	2.1	2
253	Clinical application of prion-like seeding in α-synucleinopathies: Early and non-invasive diagnosis and therapeutic development. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	0
254	Regulation of α-synuclein homeostasis and inflammasome activation by microglial autophagy. Science Advances, 2022, 8, .	4.7	12
255	Cellular Models of Alpha-Synuclein Aggregation: What Have We Learned and Implications for Future Study. Biomedicines, 2022, 10, 2649.	1.4	4
256	Potential application of heat shock proteins as therapeutic targets in Parkinson's disease. Neurochemistry International, 2023, 162, 105453.	1.9	5
257	Monitoring α-synuclein aggregation. Neurobiology of Disease, 2023, 176, 105966.	2.1	12
258	Multiple system atrophy: α-Synuclein strains at the neuron-oligodendrocyte crossroad. Molecular Neurodegeneration, 2022, 17, .	4.4	8
259	Natural Products Targeting Hsp90 for a Concurrent Strategy in Glioblastoma and Neurodegeneration. Metabolites, 2022, 12, 1153.	1.3	2
262	Genetic modifiers of synucleinopathies $\hat{a} \in \hat{a}$ lessons from experimental models. , 2023, 2, .		0
263	Cognitive heterogeneity in Parkinson's disease: A mechanistic view. Neuron, 2023, 111, 1531-1546.	3.8	10
266	More than meets the eye in Parkinson's disease and other synucleinopathies: from proteinopathy to lipidopathy. Acta Neuropathologica, 2023, 146, 369-385.	3.9	8