Triblock Colloids for Directed Self-Assembly

Journal of the American Chemical Society 133, 7725-7727 DOI: 10.1021/ja202360g

Citation Report

#	Article	IF	CITATIONS
2	Fabrication of Binary and Ternary Hybrid Particles Based on Colloidal Lithography. Chemistry of Materials, 2012, 24, 4549-4555.	6.7	24
3	Template-Assisted Fabrication of Patchy Particles with Uniform Patches. Langmuir, 2012, 28, 9915-9919.	3.5	45
4	Staged Self-Assembly of Colloidal Metastructures. Journal of the American Chemical Society, 2012, 134, 11080-11083.	13.7	93
5	Bifunctional Janus beads made by "sandwich―microcontact printing using click chemistry. Journal of Materials Chemistry, 2012, 22, 6190.	6.7	42
7	Tunable Supermicelle Architectures from the Hierarchical Selfâ€Assembly of Amphiphilic Cylindrical B–A–B Triblock Coâ€Micelles. Angewandte Chemie - International Edition, 2012, 51, 11882-11885.	13.8	72
8	Janus and Multiblock Colloidal Particles. Langmuir, 2012, 28, 13555-13561.	3.5	117
9	Chapter 5. Particle Replication in Non-wetting Templates: a Platform for Engineering Shape- and Size-specific Janus Particles. RSC Smart Materials, 2012, , 90-107.	0.1	1
10	Tuning Multiphase Amphiphilic Rods to Direct Self-Assembly. Journal of the American Chemical Society, 2012, 134, 5801-5806.	13.7	55
11	Self-assembly of amphiphilic patchy particles with different cross-linking densities. Soft Matter, 2012, 8, 7073.	2.7	10
12	Efficient Synthesis of Single Gold Nanoparticle Hybrid Amphiphilic Triblock Copolymers and Their Controlled Self-Assembly. Journal of the American Chemical Society, 2012, 134, 7624-7627.	13.7	156
13	Fabrication, properties and applications of Janus particles. Chemical Society Reviews, 2012, 41, 4356.	38.1	570
14	Janus Colloidal Matchsticks. Journal of the American Chemical Society, 2012, 134, 12901-12903.	13.7	75
15	A simulation model for soft triblock Janus particles and their ordered packing. RSC Advances, 2013, 3, 813-822.	3.6	33
16	Stable cluster phase of Janus particles in two dimensions. Soft Matter, 2013, 9, 10694.	2.7	51
17	A vesicle cell under collision with a Janus or homogeneous nanoparticle: translocation dynamics and late-stage morphology. Nanoscale, 2013, 5, 9089.	5.6	50
18	Entropy favours open colloidal lattices. Nature Materials, 2013, 12, 217-222.	27.5	166
19	Self-Assembly of Triblock Janus Nanoparticle in Nanotube. Journal of Chemical Theory and Computation, 2013, 9, 179-187.	5.3	34
20	Organized Self-Assembly of Janus Micromotors with Hydrophobic Hemispheres. Journal of the American Chemical Society, 2013, 135, 998-1001.	13.7	189

# 21	ARTICLE Emerging chirality in nanoscience. Chemical Society Reviews, 2013, 42, 2930-2962.	IF 38.1	Citations 468
22	Self-consistent phonon theory of the crystallization and elasticity of attractive hard spheres. Journal of Chemical Physics, 2013, 138, 084510.	3.0	5
23	Brownian dynamics method for simulation of binding kinetics of patterned colloidal spheres with hydrodynamic interactions. Journal of Chemical Physics, 2013, 138, 174904.	3.0	4
24	Asymmetric organic/metal(oxide) hybrid nanoparticles: synthesis and applications. Nanoscale, 2013, 5, 5151.	5.6	50
25	Template-Assisted GLAD: Approach to Single and Multipatch Patchy Particles with Controlled Patch Shape. Langmuir, 2013, 29, 15755-15761.	3.5	29
26	Entropic effects in the self-assembly of open lattices from patchy particles. Physical Review E, 2013, 87, 062319.	2.1	26
27	Colloidal Lithography. , 2013, , .		5
28	Morphing Metal–Polymer Janus Particles. Advanced Materials, 2014, 26, 899-904.	21.0	36
29	Spatially Controlled Channel Entrances Functionalization of Zeolites L. Advanced Materials, 2014, 26, 3248-3252.	21.0	15
30	Theory of two-dimensional self-assembly of Janus colloids: crystallization and orientational ordering. Soft Matter, 2014, 10, 262-274.	2.7	49
31	Self-assembly of two-patch particles in solution: a Brownian dynamics simulation study. Molecular Simulation, 2014, 40, 449-457.	2.0	8
32	Soft Janus particles: ideal building blocks for template-free fabrication of two-dimensional exotic nanostructures. Soft Matter, 2014, 10, 5472.	2.7	19
33	Orientational order of one-patch colloidal particles in two dimensions. Soft Matter, 2014, 10, 7170-7181.	2.7	43
34	Designing patchy particles for optimum interfacial activity. Physical Chemistry Chemical Physics, 2014, 16, 8283.	2.8	19
35	Reconfigurable assemblies of Janus rods in AC electric fields. Soft Matter, 2014, 10, 1320-1324.	2.7	45
36	Harnessing nonlinear rubber swelling for bulk synthesis of anisotropic hybrid nanoparticles. Journal of Materials Chemistry C, 2014, 2, 8745-8749.	5.5	10
37	Self-assembly of three-dimensional open structures using patchy colloidal particles. Soft Matter, 2014, 10, 7569-7576.	2.7	32
38	Self-assembly of kagome lattices, entangled webs and linear fibers with vibrating patchy particles in two dimensions. Soft Matter, 2014, 10, 9167-9176.	2.7	17

#	Article	IF	CITATIONS
39	Electrolyte effect on gelation behavior of oppositely charged nanocrystalline cellulose and polyelectrolyte. Carbohydrate Polymers, 2014, 114, 57-64.	10.2	15
40	Self-Assembly Behavior of Hairy Colloidal Particles with Different Architectures: Mixed versus Janus. Langmuir, 2014, 30, 12765-12774.	3.5	18
41	Design principles for Bernal spirals and helices with tunable pitch. Nanoscale, 2014, 6, 9448-9456.	5.6	25
42	Natural amphiphilic proteins as tri-block Janus particles: Self-sorting into thermo-responsive gels. Europhysics Letters, 2014, 107, 58003.	2.0	27
43	Hidden Structural Features of Multicompartment Micelles Revealed by Cryogenic Transmission Electron Tomography. ACS Nano, 2014, 8, 11330-11340.	14.6	56
44	Reconfigurable multi-scale colloidal assembly on excluded volume patterns. Scientific Reports, 2015, 5, 13612.	3.3	13
45	Preparation of Highly Monodisperse Monopatch Particles with Orthogonal Click-Type Functionalization and Biorecognition. Small, 2015, 11, 4540-4548.	10.0	21
46	Toward Design Rules of Directional Janus Colloidal Assembly. Annual Review of Physical Chemistry, 2015, 66, 581-600.	10.8	122
47	Reversible Janus particle assembly via responsive host–guest interactions. Chemical Communications, 2015, 51, 2725-2727.	4.1	62
48	Self-assembly of patchy colloidal dumbbells. Journal of Chemical Physics, 2015, 142, 084905.	3.0	43
49	Self-assembly of Janus ellipsoids: a Brownian dynamics simulation with a quantitative nonspherical-particle model. Soft Matter, 2015, 11, 7433-7439.	2.7	14
50	Design of a Kagome lattice from soft anisotropic particles. Soft Matter, 2015, 11, 6663-6668.	2.7	8
51	Colloidal Superstructures Programmed into Magnetic Janus Particles. Advanced Materials, 2015, 27, 874-879.	21.0	88
52	Equilibrium crystal phases of triblock Janus colloids. Journal of Chemical Physics, 2016, 145, 094505.	3.0	31
53	Effect of the surface charge distribution on the fluid phase behavior of charged colloids and proteins. Journal of Chemical Physics, 2016, 145, 155102.	3.0	26
54	Influences of Substrate Adhesion and Particle Size on the Shape Memory Effect of Polystyrene Particles. Langmuir, 2016, 32, 3691-3698.	3.5	35
55	Colloidal Recycling: Reconfiguration of Random Aggregates into Patchy Particles. ACS Nano, 2016, 10, 4322-4329.	14.6	44
56	Electric double layer of anisotropic dielectric colloids under electric fields. European Physical Journal: Special Topics, 2016, 225, 685-698.	2.6	5

#	Article	IF	CITATIONS
58	Supracolloidal fullerene-like cages: design principles and formation mechanisms. Physical Chemistry Chemical Physics, 2016, 18, 32534-32540.	2.8	4
59	Spatial confinement governs orientational order in patchy particles. Scientific Reports, 2016, 6, 27599.	3.3	27
60	Crystals of Janus colloids at various interaction ranges. Journal of Chemical Physics, 2016, 145, .	3.0	20
61	Uniform Plasmonic Response of Colloidal Ag Patchy Particles Prepared by Swinging Oblique Angle Deposition. Langmuir, 2016, 32, 4969-4974.	3.5	14
62	Self-assembly of three-dimensional ensembles of magnetic particles with laterally shifted dipoles. Soft Matter, 2016, 12, 2066-2075.	2.7	26
63	Dynamics of dissipative self-assembly of particles interacting through oscillatory forces. Faraday Discussions, 2016, 186, 399-418.	3.2	15
64	A versatile model for soft patchy particles with various patch arrangements. Soft Matter, 2016, 12, 741-749.	2.7	37
65	Synthesis and assembly of patchy particles: Recent progress and future prospects. Current Opinion in Colloid and Interface Science, 2017, 30, 45-53.	7.4	92
66	Equilibrium gels of limited valence colloids. Current Opinion in Colloid and Interface Science, 2017, 30, 90-96.	7.4	53
67	Density dependence of orientational order in one-patch particles. Soft Matter, 2017, 13, 4997-5007.	2.7	11
68	Inverse patchy colloids: Synthesis, modeling and self-organization. Current Opinion in Colloid and Interface Science, 2017, 30, 8-15.	7.4	46
69	Polymerization-Like Co-Assembly of Silver Nanoplates and Patchy Spheres. ACS Nano, 2017, 11, 7626-7633.	14.6	39
70	Limiting the valence: advancements and new perspectives on patchy colloids, soft functionalized nanoparticles and biomolecules. Physical Chemistry Chemical Physics, 2017, 19, 19847-19868.	2.8	64
71	Seeing the unseen: Imaging rotation in cells with designer anisotropic particles. Micron, 2017, 101, 123-131.	2.2	10
72	Perspective: Outstanding theoretical questions in polymer-nanoparticle hybrids. Journal of Chemical Physics, 2017, 147, 020901.	3.0	154
73	Janus Particle Synthesis, Assembly, and Application. Langmuir, 2017, 33, 6964-6977.	3.5	251
74	Colloidal molecules assembled from binary spheres under an AC electric field. Soft Matter, 2017, 13, 436-444.	2.7	17
76	Crystal growth kinetics of triblock Janus colloids. Journal of Chemical Physics, 2018, 148, 124506.	3.0	16

ARTICLE IF CITATIONS # Single-Janus Rod Tracking Reveals the "Rock-and-Roll―of Endosomes in Living Cells. Langmuir, 2018, 34, 3.5 13 77 1151-1158. Surface self-assembly of colloidal crystals for micro- and nano-patterning. Advances in Colloid and Interface Science, 2018, 251, 97-114. 14.7 124 Janus or homogeneous nanoparticle mediated self-assembly of polymer electrolyte fuel cell 79 3.6 8 membranes. RSC Advances, 2018, 8, 18568-18575. General patchy ellipsoidal particle model for the aggregation behaviors of shape- and/or surface-anisotropic building blocks. Soft Matter, 2018, 14, 7625-7633. Cargos Rotate at Microtubule Intersections during Intracellular Trafficking. Biophysical Journal, 81 0.5 20 2018, 114, 2900-2909. Controlled armoring of metal surfaces with metallodielectric patchy particles. Journal of Chemical Physics, 2019, 150, 174903. 3.0 Staged Surface Patterning and Selfâ€Assembly of Nanoparticles Functionalized with Endâ€Grafted Block 83 2.0 2 Copolymer Ligands. Angewandte Chemie, 2019, 131, 9370-9375. Engineering Surface Patterning of Colloidal Rings through Plateau–Rayleigh Instability. Angewandte Chemie, 2019, 131, 17040-17044. 84 2.0 Engineering Surface Patterning of Colloidal Rings through Plateau–Rayleigh Instability. Angewandte 85 13.8 10 Chemie - International Edition, 2019, 58, 16884-16888. Reconfigurable assembly of charged polymer-modified Janus and non-Janus particles: from 4.6 half-raspberries to colloidal clusters and chains. Nanoscale Advances, 2019, 1, 3715-3726. Activity-Enhanced Self-Assembly of a Colloidal Kagome Lattice. Journal of the American Chemical 87 13.7 30 Society, 2019, 141, 2500-2507. Synthesis of two-patch particles with controlled patch size via nonequilibrium solidification of 3.8 droplets on rods. Polymer, 2019, 177, 91-96. Staged Surface Patterning and Selfâ€Assembly of Nanoparticles Functionalized with Endâ€Grafted Block 89 13.8 41 Copolymer Ligands. Angewandte Chemie - International Edition, 2019, 58, 9269-9274. Synthesis and Self-Assembly of Janus and Triblock Patchy Particles. Frontiers of Nanoscience, 2019, 13, 61-85. Self-organization of gel networks formed by block copolymer stars. Soft Matter, 2019, 15, 3527-3540. 91 2.7 9 A Label-free aptasensor based on Aptamer/NH2 Janus particles for ultrasensitive electrochemical detection of Ochratoxin A. Talanta, 2019, 199, 310-316. Self-assembled multi-layer simple cubic photonic crystals of oppositely charged colloids in 93 2.7 6 confinement. Soft Matter, 2019, 15, 3104-3110. Inverse design of self-assembling colloidal crystals with omnidirectional photonic bandgaps. Soft 94 Matter, 2019, 15, 8808-8826.

#	Article	IF	CITATIONS
95	Directed assembly of photonic crystals through simple substrate patterning. Journal of Chemical Physics, 2019, 150, 014503.	3.0	5
96	Engineering porous two-dimensional lattices <i>via</i> self-assembly of non-convex hexagonal platelets. Molecular Systems Design and Engineering, 2020, 5, 376-384.	3.4	8
97	Polymer-guided assembly of inorganic nanoparticles. Chemical Society Reviews, 2020, 49, 465-508.	38.1	196
98	Nanoimprint lithography: Emergent materials and methods of actuation. Nano Today, 2020, 31, 100838.	11.9	81
99	A Matter of Size and Placement: Varying the Patch Size of Anisotropic Patchy Colloids. International Journal of Molecular Sciences, 2020, 21, 8621.	4.1	3
100	Molecular Patchy Clusters with Controllable Symmetry Breaking for Structural Engineering. ACS Nano, 2020, 14, 13816-13823.	14.6	16
101	Topological defects of dipole patchy particles on a spherical surface. Soft Matter, 2020, 16, 7667-7675.	2.7	3
102	Self-Assembly of Asymmetrically Functionalized Titania Nanoparticles into Nanoshells. Materials, 2020, 13, 4856.	2.9	4
103	Patchy Nanoparticle Synthesis and Self-Assembly. , 2020, , .		3
104	New Patchy Particle Model with Anisotropic Patches for Molecular Dynamics Simulations: Application to a Coarse-Grained Model of Cellulose Nanocrystal. Journal of Chemical Theory and Computation, 2020, 16, 3699-3711.	5.3	13
105	Aggregation shapes of amphiphilic ring polymers: from spherical to toroidal micelles. Colloid and Polymer Science, 2020, 298, 735-745.	2.1	8
106	Hierarchically Chiral Lattice Self-Assembly Induced Circularly Polarized Luminescence. ACS Nano, 2020, 14, 3190-3198.	14.6	52
107	Kinetics-controlled design principles for two-dimensional open lattices using atom-mimicking patchy particles. Nanoscale, 2020, 12, 4544-4551.	5.6	8
108	Viscosity of polyelectrolyte-grafted nanoparticle solutions. Soft Matter, 2021, 17, 3455-3462.	2.7	6
109	Soft topological modes protected by symmetry in rigid mechanical metamaterials. Physical Review B, 2021, 103, .	3.2	5
110	Unconventional-Phase Crystalline Materials Constructed from Multiscale Building Blocks. Chemical Reviews, 2021, 121, 5830-5888.	47.7	57
111	From predictive modelling to machine learning and reverse engineering of colloidal self-assembly. Nature Materials, 2021, 20, 762-773.	27.5	75
112	Softness-Enhanced Self-Assembly of Pyrochlore- and Perovskite-like Colloidal Photonic Crystals from Triblock Janus Particles. Journal of Physical Chemistry Letters, 2021, 12, 7159-7165.	4.6	9

#	Article	IF	Citations
113	Effect of chemical design of grafted polymers on the self-assembled morphology of polymer-tethered nanoparticles in nanotubes. Journal of Physics Condensed Matter, 2021, 33, 365404.	1.8	3
114	Triphasic Polymer Particles Assembled via Microphase Separation with Multiple Functions. Langmuir, 2021, 37, 11818-11834.	3.5	0
115	Phase diagrams of extended and deformed kagome lattices. Physica A: Statistical Mechanics and Its Applications, 2022, 585, 126397.	2.6	1
116	Substrate wettability guided oriented self assembly of Janus particles. Scientific Reports, 2021, 11, 1182.	3.3	12
117	Self-assembly of positively charged polymer patchy micelles in organic solutions and the reversible ultrasound responsivity of the assemblies. Materials Chemistry Frontiers, 2019, 3, 606-614.	5.9	16
118	Impacts of particle surface heterogeneity on the deposition of colloids on flat surfaces. Environmental Science: Nano, 0, , .	4.3	1
119	Experimental Study of Self-Assembling Systems Characterized by Directional Interactions. , 2017, , 91-106.		1
120	Synthesis of Heterocycles Utilizing N-Alkoxyimines and Amides. Heterocycles, 2020, 100, 321.	0.7	1
122	Colloidal cubic diamond photonic crystals through cooperative self-assembly. Soft Matter, 2022, 18, 2654-2662.	2.7	2
123	Self-assembly of colloidal open crystals: programmed to yield. Frontiers of Nanoscience, 2022, , 111-128.	0.6	0
124	Deformable bi-compartmental particles and their application in controlling electric conductivity. Materials Advances, 0, , .	5.4	0
125	Two-Dimensional Structures Formed by Triblock Patchy Particles with Two Different Patches. Langmuir, 2022, 38, 15404-15412.	3.5	2
126	Impact of Inverse Squeezing Flow on the Self-Assembly of Oppositely Charged Colloidal Particles under Electric Field. Physical Review Letters, 2022, 129, .	7.8	3
127	Molecular Alignmentâ€Induced Chemically Patchy Uniaxial Nanoparticles and Their Applications in Antiâ€Counterfeiting and Selfâ€Assembled Superstructures. Angewandte Chemie, 2023, 135, .	2.0	0
128	Programmed Selfâ€Assembly of Single Colloidal Gyroids for Chiral Photonic Crystals. Advanced Materials, 2023, 35, .	21.0	2
129	Bottom-Up Construction of the Interaction between Janus Particles. Journal of Physical Chemistry B, 2023, 127, 1664-1673.	2.6	1
130	Molecular Alignmentâ€Induced Chemically Patchy Uniaxial Nanoparticles and Their Applications in Antiâ€Counterfeiting and Selfâ€Assembled Superstructures. Angewandte Chemie - International Edition, 2023, 62, .	13.8	2
131	Molecular Engineering of Colloidal Atoms. Small, 2023, 19, .	10.0	12

#	Article	IF	CITATIONS
132	Synthesis of patchy particles using gaseous ligands. Journal of Physics Condensed Matter, 2023, 35, 174003.	1.8	1
133	Inverse design of triblock Janus spheres for self-assembly of complex structures in the crystallization slot <i>via</i> digital alchemy. Soft Matter, 2023, 19, 2726-2736.	2.7	1
134	Selfâ€Assembled Tetratic Crystals by Orthogonal Colloidal Force. Small, 2023, 19, .	10.0	2
135	Theory of mobility of inhomogeneous-polymer-grafted particles. Journal of Chemical Physics, 2023, 158, .	3.0	1
137	HIV-1 immature virion network and icosahedral capsids self-assembly with patchy spheres. Molecular Physics, 0, , .	1.7	0
138	A general strategy for designing complex brush architecture using <scp>starâ€like</scp> polymeric grafts. AICHE Journal, 0, , .	3.6	1
139	Synthesis of patchy colloids with different chemical functionalities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 685, 133293.	4.7	0
140	Depletion-induced crystallization of anisotropic triblock colloids. Nanoscale, 2024, 16, 4724-4736.	5.6	0
141	Networks of Limited-Valency Patchy Particles. Physical Review Letters, 2024, 132, .	7.8	0