Flexible microfluidic devices with three-dimensional in for gas and liquid applications

Lab on A Chip 11, 3249 DOI: 10.1039/c1lc20157c

Citation Report

#	Article	IF	CITATIONS
2	On chip steady liquid–gas phase separation for flexible generation of dissolved gas concentration gradient. Lab on A Chip, 2012, 12, 1281.	3.1	13
3	A three-dimensional microvascular gas exchange unit for carbon dioxide capture. Lab on A Chip, 2012, 12, 1246.	3.1	24
4	Accelerating drug discovery via organs-on-chips. Lab on A Chip, 2013, 13, 4697.	3.1	117
5	A polystyrene-based microfluidic device with three-dimensional interconnected microporous walls for perfusion cell culture. Biomicrofluidics, 2014, 8, 046505.	1.2	25
6	Microtextured polystyrene surfaces for threeâ€dimensional cell culture made by a simple solvent treatment method. Journal of Applied Polymer Science, 2014, 131, .	1.3	6
7	Rapid bench-top fabrication of poly(dimethylsiloxane)/polystyrene microfluidic devices incorporating high-surface-area sensing electrodes. Biomicrofluidics, 2015, 9, 026501.	1.2	21
8	Xurography for 2D and multi-level glucose/O2 microfluidic biofuel cell. Microfluidics and Nanofluidics, 2015, 18, 1407-1416.	1.0	32
9	Post modification of injection molded polystyrene components using green solvents and flexible masks. Sensors and Actuators B: Chemical, 2015, 211, 187-197.	4.0	0
10	A 3D microfluidic device fabrication method using thermopress bonding with multiple layers of polystyrene film. Journal of Micromechanics and Microengineering, 2015, 25, 065005.	1.5	11
11	Stretchable Superhydrophobicity from Monolithic, Three-Dimensional Hierarchical Wrinkles. Nano Letters, 2016, 16, 3774-3779.	4.5	127
12	Flash μ-fluidics: a rapid prototyping method for fabricating microfluidic devices. RSC Advances, 2016, 6, 74822-74832.	1.7	16
13	Compatibility analysis of 3D printer resin for biological applications. Micro and Nano Letters, 2016, 11, 654-659.	0.6	13
14	Optimization of capillary flow through open-microchannel and open-micropillar arrays. Journal Physics D: Applied Physics, 2016, 49, 055501.	1.3	10
15	Recent progress in fabrication and application of polydimethylsiloxane sponges. Journal of Materials Chemistry A, 2017, 5, 16467-16497.	5.2	207
16	Stretchable and durable superhydrophobicity that acts both in air and under oil. Journal of Materials Chemistry A, 2017, 5, 15208-15216.	5.2	56
17	Design and characterization of hydrogel-based microfluidic devices with biomimetic solute transport networks. Biomicrofluidics, 2017, 11, 024104.	1.2	17
18	Razor-printed sticker microdevices for cell-based applications. Lab on A Chip, 2018, 18, 451-462.	3.1	30
19	Microfluidic mixing using PDMS-based microporous structures. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	5

		CITATION REPORT		
#	Article	IF	CITATIONS	
20	Three-Dimensional Compatible Sacrificial Nanoimprint Lithography for Tuning the Wettability of Thermoplastic Materials. Journal of Micro and Nano-Manufacturing, 2018, 6, .	0.8	2	
21	Integration of Electrospray and Digital Light Processing for Freeform Patterning of Porous Microstructures. Advanced Materials Technologies, 2020, 5, 2000578.	3.0	6	