Effects of Ultrasound Pretreatment on the Enzymatic H and on the Emulsifying Properties of Hydrolysates

Journal of Agricultural and Food Chemistry 59, 2600-2609 DOI: 10.1021/jf103771x

Citation Report

#	Article	IF	CITATIONS
1	Functional properties of protein hydrolysates from pea (<i>Pisum sativum</i> , <i>L</i>) seeds. International Journal of Food Science and Technology, 2012, 47, 1457-1467.	2.7	56
2	Properties of protein powder prepared from Cape hake by-products. Journal of Food Engineering, 2012, 108, 268-275.	5.2	43
3	Effect of Oxidation on the Emulsifying Properties of Myofibrillar Proteins. Food and Bioprocess Technology, 2013, 6, 1703-1712.	4.7	169
4	Effect of oxidation on the emulsifying properties of soy protein isolate. Food Research International, 2013, 52, 26-32.	6.2	116
5	Partial Characterization of Ultrafiltrated Soy Protein Hydrolysates with Antioxidant and Free Radical Scavenging Activities. Journal of Food Science, 2013, 78, C1152-8.	3.1	19
6	Physicochemical Properties of Dryâ€Heated Peanut Protein Isolate Conjugated with Dextran or Gum Arabic. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 1801-1807.	1.9	14
7	Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions. Food Hydrocolloids, 2013, 30, 647-655.	10.7	583
8	The effect of high intensity ultrasonic pre-treatment on the properties of soybean protein isolate gel induced by calcium sulfate. Food Hydrocolloids, 2013, 32, 303-311.	10.7	222
9	Response surface optimization of angiotensin converting enzyme inhibition of milk protein concentrate hydrolysates in vitro after ultrasound pretreatment. Innovative Food Science and Emerging Technologies, 2013, 20, 133-139.	5.6	28
10	Emulsifying and surface properties of citric acid deamidated wheat gliadin. Journal of Cereal Science, 2013, 58, 68-75.	3.7	31
11	Changes in Protein Characteristics during Soybean Storage under Adverse Conditions As Related to Tofu Making. Journal of Agricultural and Food Chemistry, 2013, 61, 387-393.	5.2	28
12	Fragmented proteins as food emulsion stabilizers: A theoretical study. Biopolymers, 2014, 101, 945-958.	2.4	13
13	Effects of ultrasound on the structure and physical properties of black bean protein isolates. Food Research International, 2014, 62, 595-601.	6.2	460
14	Influence of ultrasonic treatment on the structure and emulsifying properties of peanut protein isolate. Food and Bioproducts Processing, 2014, 92, 30-37.	3.6	217
15	Effect of ultrasound treatment on the wet heating Maillard reaction between β-conglycinin and maltodextrin and on the emulsifying properties of conjugates. European Food Research and Technology, 2014, 238, 129-138.	3.3	48
16	Effect of power ultrasound pretreatment on peptidic profiles and angiotensin converting enzyme inhibition of milk protein concentrate hydrolysates. Journal of the Science of Food and Agriculture, 2014, 94, 2420-2428.	3.5	26
17	Synergy of Licorice Extract and Pea Protein Hydrolysate for Oxidative Stability of Soybean Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2014, 62, 8204-8213.	5.2	28
18	Protein Modification During Ingredient Preparation and Food Processing: Approaches to Improve Food Processability and Nutrition. Food and Bioprocess Technology, 2014, 7, 1853-1893.	4.7	86

#	Article	IF	CITATIONS
19	Techno-functional properties of pea (Pisum sativum) protein isolates: A review. Acta Periodica Technologica, 2015, , 1-18.	0.2	83
20	Emulsifiers as food texture modifiers. , 2015, , 27-49.		10
21	Effects of multi-frequency power ultrasound on the enzymolysis and structural characteristics of corn gluten meal. Ultrasonics Sonochemistry, 2015, 24, 55-64.	8.2	170
22	Enzymolysis kinetics of garlic powder with single frequency countercurrent ultrasound pretreatment. Food and Bioproducts Processing, 2015, 95, 292-297.	3.6	17
23	Modification of starch octenylsuccinate by β-amylase hydrolysis in order to increase its emulsification properties. Food Hydrocolloids, 2015, 48, 55-61.	10.7	54
24	Effects of a Dualâ€Frequency Frequencyâ€Sweeping Ultrasound Treatment on the Properties and Structure of the Zein Protein. Cereal Chemistry, 2015, 92, 193-197.	2.2	25
25	Effect of ultrasound pre-treatment on formation of transglutaminase-catalysed soy protein hydrogel as a riboflavin vehicle for functional foods. Journal of Functional Foods, 2015, 19, 182-193.	3.4	87
26	Innovative applications of high-intensity ultrasound in the development of functional food ingredients: Production of protein hydrolysates and bioactive peptides. Food Research International, 2015, 77, 685-696.	6.2	127
27	Ultrasonication and food technology: A review. Cogent Food and Agriculture, 2015, 1, 1071022.	1.4	122
28	Pretreatment of garlic powder using sweep frequency ultrasound and single frequency countercurrent ultrasound: Optimization and comparison for ACE inhibitory activities. Ultrasonics Sonochemistry, 2015, 23, 109-115.	8.2	34
29	Effect of high intensity ultrasound on physicochemical and functional properties of aggregated soybean β-conglycinin and glycinin. Food Hydrocolloids, 2015, 45, 102-110.	10.7	159
30	Efeitos da temperatura e umidade durante o armazenamento semi-hermético sobre parâmetros de avaliação da qualidade dos grãos e do óleo de soja. Semina:Ciencias Agrarias, 2016, 37, 131.	0.3	18
31	Effect of ultrasound treatment on the wet heating Maillard reaction between mung bean [<i>Vigna radiate</i> (L.)] protein isolates and glucose and on structural and physicoâ€chemical properties of conjugates. Journal of the Science of Food and Agriculture, 2016, 96, 1532-1540.	3.5	66
32	Effect of Pretreatments on Hydrolysis Efficiency and Antioxidative Activity of Hydrolysates Produced from Bighead Carp (<i>Aristichthys nobilis</i>). Journal of Aquatic Food Product Technology, 2016, 25, 916-927.	1.4	8
33	Effects of power ultrasound on oxidation and structure of beef proteins during curing processing. Ultrasonics Sonochemistry, 2016, 33, 47-53.	8.2	206
34	Effect of ultrasonic pretreatment on physicochemical characteristics and rheological properties of soy protein/sugar Maillard reaction products. Journal of Food Science and Technology, 2016, 53, 2342-2351.	2.8	77
35	Improvement of emulsifying properties of soy protein through selective hydrolysis: Interfacial shear rheology of adsorption layer. Food Hydrocolloids, 2016, 60, 453-460.	10.7	68
36	Transglutaminase-induced gelation properties of soy protein isolate and wheat gluten mixtures with high intensity ultrasonic pretreatment. Ultrasonics Sonochemistry, 2016, 31, 590-597.	8.2	137

#	Article	IF	CITATIONS
37	Effect of high intensity ultrasound on physicochemical and functional properties of soybean glycinin at different ionic strengths. Innovative Food Science and Emerging Technologies, 2016, 34, 205-213.	5.6	94
38	Influence of microcrystalline cellulose on the microrheological property and freeze-thaw stability of soybean protein hydrolysate stabilized curcumin emulsion. LWT - Food Science and Technology, 2016, 66, 590-597.	5.2	135
39	Effect of ultrasonic pretreatment on kinetics of gelatin hydrolysis by collagenase and its mechanism. Ultrasonics Sonochemistry, 2016, 29, 495-501.	8.2	35
40	Soy protein nano-aggregates with improved functional properties prepared by sequential pH treatment and ultrasonication. Food Hydrocolloids, 2016, 55, 200-209.	10.7	179
41	Modification of soy protein hydrolysates by Maillard reaction: Effects of carbohydrate chain length on structural and interfacial properties. Colloids and Surfaces B: Biointerfaces, 2016, 138, 70-77.	5.0	91
42	Effects and mechanism of ultrasound pretreatment on rapeseed protein enzymolysis. Journal of the Science of Food and Agriculture, 2016, 96, 1159-1166.	3.5	39
43	Effects of high intensity unltrasound on structural and physicochemical properties of myosin from silver carp. Ultrasonics Sonochemistry, 2017, 37, 150-157.	8.2	76
44	Effects of degree of hydrolysis (DH) on the functional properties of egg yolk hydrolysate with alcalase. Journal of Food Science and Technology, 2017, 54, 669-678.	2.8	75
45	Modifying the physicochemical properties of pea protein by pH-shifting and ultrasound combined treatments. Ultrasonics Sonochemistry, 2017, 38, 835-842.	8.2	283
46	Effect of ultrasonic pretreatment on the antioxidant properties of porcine liver protein hydrolysates. International Journal of Food Science and Technology, 2017, 52, 1392-1399.	2.7	11
47	High intensity ultrasound treatment of protein isolate extracted from dephenolized sunflower meal: Effect on physicochemical and functional properties. Ultrasonics Sonochemistry, 2017, 39, 511-519.	8.2	205
48	Microstructure and model solute transport properties of transglutaminaseâ€induced soya protein gels: effect of enzyme dosage, protein composition and solute size. International Journal of Food Science and Technology, 2017, 52, 1527-1533.	2.7	3
50	Effects of pulsed ultrasound on rheological and structural properties of chicken myofibrillar protein. Ultrasonics Sonochemistry, 2017, 38, 225-233.	8.2	129
51	Ultrasoundâ€induced changes in physical and functional properties of whey proteins. International Journal of Food Science and Technology, 2017, 52, 381-388.	2.7	62
52	Comparative Studies on Physicochemical Properties of Bovine Serum Albumin–Glucose and Galactose Conjugates Formed by Glycation Combined with Ultrasonic Pretreatment. International Journal of Food Engineering, 2017, 13, .	1.5	3
53	Effect of combination of high-intensity ultrasound treatment and dextran glycosylation on structural and interfacial properties of buckwheat protein isolates. Bioscience, Biotechnology and Biochemistry, 2017, 81, 1891-1898.	1.3	46
54	Functionalizing soy protein nano-aggregates with pH-shifting and mano-thermo-sonication. Journal of Colloid and Interface Science, 2017, 505, 836-846.	9.4	111
55	Characterization of a salt-tolerant aminopeptidase from marine Bacillus licheniformis SWJS33 that improves hydrolysis and debittering efficiency for soy protein isolate. Food Chemistry, 2017, 214, 347-353	8.2	44

#	Article	IF	CITATIONS
56	Effects of high intensity ultrasound modification on physicochemical property and water in myofibrillar protein gel. Ultrasonics Sonochemistry, 2017, 34, 960-967.	8.2	241
57	Improving the hydrolysis efficiency of soy sauce residue using ultrasonic probe-assisted enzymolysis technology. Ultrasonics Sonochemistry, 2017, 35, 351-358.	8.2	30
58	Effects of ultrasound treatment on physicochemical and emulsifying properties of whey proteins pre- and post-thermal aggregation. Food Hydrocolloids, 2017, 63, 668-676.	10.7	173
59	Heat and/or ultrasound pretreatments motivated enzymolysis of corn gluten meal: Hydrolysis kinetics and protein structure. LWT - Food Science and Technology, 2017, 77, 488-496.	5.2	62
60	Effects of ultrasound pre-treatment on the structure of \hat{I}^2 -conglycinin and glycinin and the antioxidant activity of their hydrolysates. Food Chemistry, 2017, 218, 165-172.	8.2	107
61	Effect of Low-Frequency Ultrasonic-Assisted Enzymolysis on the Physicochemical and Antioxidant Properties of Corn Protein Hydrolysates. Journal of Food Quality, 2017, 2017, 1-10.	2.6	45
62	Coprodutos do óleo de soja na dieta de codornas: impactos sobre a qualidade durante o armazenamento. Brazilian Journal of Food Technology, 2017, 21, .	0.8	1
64	Chemical Modifications of Lipids and Proteins by Nonthermal Food Processing Technologies. Journal of Agricultural and Food Chemistry, 2018, 66, 5041-5054.	5.2	57
65	Impact of Interfacial Composition on Lipid and Protein Co-Oxidation in Oil-in-Water Emulsions Containing Mixed Emulisifers. Journal of Agricultural and Food Chemistry, 2018, 66, 4458-4468.	5.2	64
66	Physical relation and mechanism of ultrasonic bactericidal activity on pathogenic E. coli with WPI. Microbial Pathogenesis, 2018, 117, 73-79.	2.9	17
67	Effects of highâ€intensity ultrasound pretreatment with different levels of power output on the antioxidant properties of alcalase hydrolyzates from Quinoa (<i>Chenopodium quinoa</i> Willd.) protein isolate. Cereal Chemistry, 2018, 95, 518-526.	2.2	28
68	Effect of high intensity ultrasound pretreatment on functional and structural properties of micellar casein concentrates. Ultrasonics Sonochemistry, 2018, 47, 10-16.	8.2	75
69	Multiple layers and conjugate materials for food emulsion stabilization. Critical Reviews in Food Science and Nutrition, 2018, 58, 877-892.	10.3	53
70	Enzymolysis reaction kinetics and thermodynamics of rapeseed protein with sequential dualâ€frequency ultrasound pretreatment. International Journal of Food Science and Technology, 2018, 53, 72-80.	2.7	13
71	The effect of ultrasound on the alkali extraction of proteins from eggshell membranes. Journal of the Science of Food and Agriculture, 2018, 98, 1765-1772.	3.5	9
72	The effect of high solid concentrations on enzymatic hydrolysis of soya bean protein isolate and antioxidant activity of the resulting hydrolysates. International Journal of Food Science and Technology, 2018, 53, 954-961.	2.7	16
73	Influence of Ultrasonication Prior to Glycation on the Physicochemical Properties of Bovine Serum Albumin–galactose Conjugates. Food Science and Technology Research, 2018, 24, 35-44.	0.6	10
74	High-Pressure Homogenization Pre-Treatment Improved Functional Properties of Oyster Protein Isolate Hydrolysates. Molecules, 2018, 23, 3344.	3.8	13

			(
#	Article	IF	CITATIONS
75	Effect of electrochemical modification on the structural characteristics and emulsion storage stability of soy protein isolate. Process Biochemistry, 2018, 75, 166-172.	3.7	21
76	Effects of ultrasound on structure and functional properties of mussel (<i>Mytilus edulis</i>) protein isolates. Journal of Food Processing and Preservation, 2018, 42, e13690.	2.0	17
77	Conformational and Functional Properties of Soybean Proteins Produced by Extrusion-Hydrolysis Approach. International Journal of Analytical Chemistry, 2018, 2018, 1-11.	1.0	18
78	Effects of Limited Hydrolysis and High-Pressure Homogenization on Functional Properties of Oyster Protein Isolates. Molecules, 2018, 23, 729.	3.8	15
79	Effects of highâ€intensity ultrasound treatment on functional properties of plum (<i>Pruni domesticae) Tj ETQq0</i>	0.0 rgBT	Oyerlock 10

80	Covalent modification of soy protein isolate by (â^)â€epigallocatechinâ€3â€gallate: effects on structural and emulsifying properties. Journal of the Science of Food and Agriculture, 2018, 98, 5683-5689.	3.5	31
81	Effects of slit divergent ultrasound and enzymatic treatment on the structure and antioxidant activity of arrowhead protein. Ultrasonics Sonochemistry, 2018, 49, 294-302.	8.2	63
82	Effect of different oils and ultrasound emulsification conditions on the physicochemical properties of emulsions stabilized by soy protein isolate. Ultrasonics Sonochemistry, 2018, 49, 283-293.	8.2	145
83	Pickering emulsions stabilized by compound modified areca taro (Colocasia esculenta (L.) Schott) starch with ball-milling and OSA. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 556, 185-194.	4.7	30
84	Characterization of heat-stable whey protein: Impact of ultrasound on rheological, thermal, structural and morphological properties. Ultrasonics Sonochemistry, 2018, 49, 333-342.	8.2	88
85	Effect of Ultrasound Technology on Food and Nutritional Quality. Advances in Food and Nutrition Research, 2018, 84, 207-240.	3.0	39
86	Impact of interfacial composition on co-oxidation of lipids and proteins in oil-in-water emulsions: Competitive displacement of casein by surfactants. Food Hydrocolloids, 2019, 87, 20-28.	10.7	78
87	Effects of Different Denaturants on Properties and Performance of Soy Protein-Based Adhesive. Polymers, 2019, 11, 1262.	4.5	37
88	Preparation and properties of ferulic acid-sugar beet pulp pectin ester and its application as a physical and antioxidative stabilizer in a fish oil-water emulsion. International Journal of Biological Macromolecules, 2019, 139, 290-297.	7.5	19
89	Effects of heating or ultrasound treatment on the enzymolysis and the structure characterization of hempseed protein isolates. Journal of Food Science and Technology, 2019, 56, 3337-3346.	2.8	28
90	Effect of high intensity ultrasound on the structure and physicochemical properties of soy protein isolates produced by different denaturation methods. Food Hydrocolloids, 2019, 97, 105216.	10.7	78
91	Surface modification of cellulose nanofibrils with protein nanoparticles for enhancing the stabilization of O/W pickering emulsions. Food Hydrocolloids, 2019, 97, 105180.	10.7	74
92	Effects of ultrasonic pretreatment on the structure and functionality of chicken bone protein prepared by enzymatic method. Food Chemistry, 2019, 299, 125103.	8.2	74

#	Article	IF	CITATIONS
93	Effects of Edible Coatings Based on Ultrasound-treated Fish Proteins Hydrolysate in Quality Attributes of Chilled Bonito Fillets. Journal of Aquatic Food Product Technology, 2019, 28, 999-1012.	1.4	18
94	Influence of transglutaminaseâ€assisted ultrasound treatment on the structure and functional properties of soy protein isolate. Journal of Food Processing and Preservation, 2019, 43, e14203.	2.0	23
95	Study on the Preparation and Conjugation Mechanism of the Phosvitin-Gallic Acid Complex with an Antioxidant and Emulsifying Capability. Polymers, 2019, 11, 1464.	4.5	3
96	Influence of Protein Hydrolysis on the Freeze-thaw Stability of Emulsions Prepared with Soy Protein - Dextran Conjugates. Journal of Oleo Science, 2019, 68, 959-965.	1.4	5
97	Relationship between surface functional properties and flexibility of soy protein isolate-glucose conjugates. Food Hydrocolloids, 2019, 95, 349-357.	10.7	117
98	Effects of Enzymatic Hydrolysis of Fava Bean Protein Isolate by Alcalase on the Physical and Oxidative Stability of Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2019, 67, 6625-6632.	5.2	59
99	Effects of different ionic strengths on the physicochemical properties of plant and animal proteins-stabilized emulsions fabricated using ultrasound emulsification. Ultrasonics Sonochemistry, 2019, 58, 104627.	8.2	78
100	Preparation and characterization of emulsion stabilized by octenyl succinic anhydride-modified dextrin for improving storage stability and curcumin encapsulation. Food Chemistry, 2019, 294, 326-332.	8.2	74
101	Gelling and emulsifying properties of soy protein hydrolysates in the presence of a neutral polysaccharide. Food Chemistry, 2019, 294, 216-223.	8.2	67
102	Improving the stability of oil-in-water emulsions by using mussel myofibrillar proteins and lecithin as emulsifiers and high-pressure homogenization. Journal of Food Engineering, 2019, 258, 1-8.	5.2	66
103	Effect of High Pressure Treatment on Interfacial Properties, Structure and Oxidative Stability of Soy Protein Isolate-Stabilized Emulsions. Journal of Oleo Science, 2019, 68, 409-418.	1.4	13
104	Structural and Functional Changes in Ultrasonicated Oyster Protein Isolates. International Journal of Food Engineering, 2019, 15, .	1.5	10
105	Effects of high pressure homogenize treatment on the physicochemical and emulsifying properties of proteins from scallop (Chlamys farreri). Food Hydrocolloids, 2019, 94, 537-545.	10.7	46
106	Improved freeze-thaw stability of o/w emulsions prepared with soybean protein isolate modified by papain and transglutaminase. LWT - Food Science and Technology, 2019, 104, 195-201.	5.2	27
107	Protein extracted from symbiotic culture of Chlorella pyrenoidosa and Yarrowia lipolytica shows structure-related detoxifying effects against 2, 2'-azobis (2-methyl-propanimidamidine) dihydrochloride induced oxidative stress. Algal Research, 2019, 44, 101701.	4.6	3
108	Correlation Between the Water Solubility and Secondary Structure of Tilapia-Soybean Protein Co-Precipitates. Molecules, 2019, 24, 4337.	3.8	29
109	Complexation of rice proteins and whey protein isolates by structural interactions to prepare soluble protein composites. LWT - Food Science and Technology, 2019, 101, 207-213.	5.2	63
110	Effect of ultrasound pretreatment with mono-frequency and simultaneous dual frequency on the mechanical properties and microstructure of whey protein emulsion gels. Food Hydrocolloids, 2019, 89, 434-442.	10.7	88

#	Article	IF	CITATIONS
111	Effects of ultrasound treatment on the physicochemical and emulsifying properties of proteins from scallops (Chlamys farreri). Food Hydrocolloids, 2019, 89, 707-714.	10.7	58
112	Ultrasound as a potential process to tenderize beef: Sensory and technological parameters. Ultrasonics Sonochemistry, 2019, 53, 134-141.	8.2	73
113	Effect of high-intensity ultrasound on the compositional, physicochemical, biochemical, functional and structural properties of canola (Brassica napus L.) protein isolate. Food Research International, 2019, 121, 947-956.	6.2	81
114	Conformational and physicochemical properties of quinoa proteins affected by different conditions of high-intensity ultrasound treatments. Ultrasonics Sonochemistry, 2019, 51, 186-196.	8.2	86
115	O/W Pickering Emulsion Templated Organo-hydrogels with Enhanced Mechanical Strength and Energy Storage Capacity. ACS Applied Bio Materials, 2019, 2, 480-487.	4.6	26
116	Physical properties of emulsion gels formulated with sonicated soy protein isolate. International Journal of Food Science and Technology, 2019, 54, 451-459.	2.7	24
117	Impact of heating treatments on physical stability and lipid-protein co-oxidation in oil-in-water emulsion prepared with soy protein isolates. Food Hydrocolloids, 2020, 100, 105167.	10.7	65
118	Influence of ultrasound-assisted sodium bicarbonate marination on the curing efficiency of chicken breast meat. Ultrasonics Sonochemistry, 2020, 60, 104808.	8.2	65
119	Analysis in protein profile, antioxidant activity and structure-activity relationship based on ultrasound-assisted liquid-state fermentation of soybean meal with Bacillus subtilis. Ultrasonics Sonochemistry, 2020, 64, 104846.	8.2	38
120	The separation and identification of the residual antigenic fragments in soy protein hydrolysates. Journal of Food Biochemistry, 2020, 44, e13144.	2.9	7
121	Assembling of the interfacial layer affects the physical and oxidative stability of faba bean protein-stabilized oil-in-water emulsions with chitosan. Food Hydrocolloids, 2020, 102, 105614.	10.7	41
122	Aggregation and emulsifying properties of soybean protein isolate pretreated by combination of dual-frequency ultrasound and ionic liquids. Journal of Molecular Liquids, 2020, 301, 112394.	4.9	24
123	Improving the gel properties of transgenic microbial transglutaminase cross-linked soybean-whey mixed protein by ultrasonic pretreatment. Process Biochemistry, 2020, 91, 104-112.	3.7	53
124	Food processing for the improvement of plant proteins digestibility. Critical Reviews in Food Science and Nutrition, 2020, 60, 3367-3386.	10.3	156
125	Amphiphilic and amphoteric aqueous soy protein colloids and their cohesion and adhesion to cellulose. Industrial Crops and Products, 2020, 144, 112041.	5.2	6
126	Exploring the structure-function relationship of Great Northern and navy bean (Phaseolus vulgaris) Tj ETQq1 1 0. Biological Macromolecules, 2020, 162, 1516-1525.	.784314 rg 7.5	gBT /Overloc 29
127	Effects of ultrasound and ohmic heating pretreatments on hydrolysis, antioxidant and antibacterial activities of whey protein concentrate and its fractions. LWT - Food Science and Technology, 2020, 131, 109913.	5.2	31
128	Simultaneous Ultrasound and Heat Enhance Functional Properties of Glycosylated Lactoferrin. Molecules, 2020, 25, 5774.	3.8	8

#		IE	CITATIONS
#	Addition of cationic guar-gum and oleic acid improved the stability of plasma emulsions prepared with	IF 10.7	15
129	enzymatically hydrolyzed egg yolk. Food Hydrocolloids, 2020, 105, 105827.	10.7	15
130	Mixed plant-based emulsifiers inhibit the oxidation of proteins and lipids in walnut oil-in-water emulsions: Almond protein isolate-camellia saponin. Food Hydrocolloids, 2020, 109, 106136.	10.7	46
131	Physicochemical and emulsifying properties of mussel water-soluble proteins as affected by lecithin concentration. International Journal of Biological Macromolecules, 2020, 163, 180-189.	7.5	26
132	Effects of ultrasound on functional properties, structure and glycation properties of proteins: a review. Critical Reviews in Food Science and Nutrition, 2021, 61, 2471-2481.	10.3	43
133	Restructuring of soy protein employing ultrasound: Effect on hydration, gelation, thermal, in-vitro protein digestibility and structural attributes. LWT - Food Science and Technology, 2020, 132, 109781.	5.2	38
134	High-Intensity Ultrasound Treatment on Soy Protein after Selectively Proteolyzing Glycinin Component: Physical, Structural, and Aggregation Properties. Foods, 2020, 9, 839.	4.3	22
135	The functional modification of legume proteins by ultrasonication: A review. Trends in Food Science and Technology, 2020, 98, 107-116.	15.1	141
136	Modification of soy protein isolates using combined pre-heat treatment and controlled enzymatic hydrolysis for improving foaming properties. Food Hydrocolloids, 2020, 105, 105764.	10.7	75
137	Effects of enzyme type and process time on hydrolysis degree, electrophoresis bands and antioxidant properties of hydrolyzed proteins derived from defatted Bunium persicum Bioss. press cake. Heliyon, 2020, 6, e03365.	3.2	55
138	Functionalisation of flaxseed proteins assisted by ultrasonication to produce coatings enriched with raspberries phytochemicals. LWT - Food Science and Technology, 2020, 124, 109180.	5.2	17
139	Faba bean protein in reduced fat/cholesterol mayonnaise: extraction and physico-chemical modification process. Journal of Food Science and Technology, 2020, 57, 1774-1785.	2.8	28
140	Improvement in enzymolysis efficiency and changes in conformational attributes of corn gluten meal by dual-frequency slit ultrasonication action. Ultrasonics Sonochemistry, 2020, 64, 105038.	8.2	32
141	Application of ultrasound-assisted physical mixing treatment improves in vitro protein digestibility of rapeseed napin. Ultrasonics Sonochemistry, 2020, 67, 105136.	8.2	35
142	Characterization of Pickering emulsions stabilized by OSA-modified sweet potato residue cellulose: Effect of degree of substitute and concentration. Food Hydrocolloids, 2020, 108, 105915.	10.7	29
143	Food Allergy: Etiology, Allergens, and Analytical Strategies. , 2021, , 175-196.		4
144	Molecular structural modification of duck egg white protein conjugates with monosaccharides for improving emulsifying capacity. Food Hydrocolloids, 2021, 111, 106271.	10.7	54
145	Laccase cross-linking of sonicated α-Lactalbumin improves physical and oxidative stability of CLA oil in water emulsion. Ultrasonics Sonochemistry, 2021, 71, 105365.	8.2	13
146	Emulsifying and emulsion stabilizing properties of soy protein hydrolysates, covalently bonded to polysaccharides: The impact of enzyme choice and the degree of hydrolysis. Food Hydrocolloids, 2021, 113, 106519.	10.7	43

#	Article	IF	CITATIONS
147	The impact of ultrasound duration on the structure of β-lactoglobulin. Journal of Food Engineering, 2021, 292, 110365.	5.2	56
148	Effect of ultrasonic treatment on peanut protein isolateâ€oat dietary fibre mixture gels induced by transglutaminase. International Journal of Food Science and Technology, 2021, 56, 2233-2243.	2.7	12
149	Proteolysis efficiency and structural traits of corn gluten meal: Impact of different frequency modes of a low-power density ultrasound. Food Chemistry, 2021, 344, 128609.	8.2	17
150	Combined ultrasound and heat pretreatment improve the enzymatic hydrolysis of clam (Aloididae) Tj ETQq1 1 102596.	0.784314 r 5.6	gBT /Overloc 32
151	From Data Mining of Chitinophaga sp. Genome to Enzyme Discovery of a Hyperthermophilic Metallocarboxypeptidase. Microorganisms, 2021, 9, 393.	3.6	5
152	Ultrasoundâ€assisted extraction and modification of plantâ€based proteins: Impact on physicochemical, functional, and nutritional properties. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 1457-1480.	11.7	141
153	Polymerized Whey Protein Concentrate-Based Glutathione Delivery System: Physicochemical Characterization, Bioavailability and Sub-Chronic Toxicity Evaluation. Molecules, 2021, 26, 1824.	3.8	4
154	Effects of the degree of substitution of OSA on the properties of starch microparticle-stabilized emulsions. Carbohydrate Polymers, 2021, 255, 117546.	10.2	32
155	Comparative study of highâ€intensity ultrasound and highâ€pressure homogenization on physicochemical properties of peanut proteinâ€stabilized emulsions and emulsion gels. Journal of Food Process Engineering, 2021, 44, e13710.	2.9	14
156	Effects of Pulsed Electric Fields and Ultrasound Processing on Proteins and Enzymes: A Review. Processes, 2021, 9, 722.	2.8	34
157	Effects of pulsed ultrasound treatment on the physicochemical and textural properties of chicken myofibrillar protein gel. Food Science and Technology International, 2022, 28, 309-319.	2.2	3
158	Ultrasonication effects on physicochemical and emulsifying properties of Cyperus esculentus seed (tiger nut) proteins. LWT - Food Science and Technology, 2021, 142, 110979.	5.2	56
159	Seabuckthorn (Hippophae rhamnoides L.), a novel seed protein concentrate: isolation and modification by high power ultrasound and characterization for its functional and structural properties. Journal of Food Measurement and Characterization, 2021, 15, 4371-4379.	3.2	11
160	Impact of pH on the interaction between soybean protein isolate and oxidized bacterial cellulose at oil-water interface: Dilatational rheological and emulsifying properties. Food Hydrocolloids, 2021, 115, 106609.	10.7	52
161	An arginine aminopeptidase from marine <i>Bacillus axarquiensis</i> SWJSX8 and its application in improving pumpkin seed protein hydrolysis. International Journal of Food Science and Technology, 2021, 56, 4680-4689.	2.7	2
162	Effect of ultrasonication pretreatment followed by enzymatic hydrolysis of caprine milk proteins and on antioxidant and angiotensin converting enzyme (ACE) inhibitory activity of peptides thus produced. International Dairy Journal, 2021, 118, 105026.	3.0	23
163	Changes of Soybean Protein during Tofu Processing. Foods, 2021, 10, 1594.	4.3	19
164	Valorization of ultrasound assisted restructured soy protein: Impact on the quality characteristics of instant noodles. LWT - Food Science and Technology, 2021, 147, 111599.	5.2	15

#	Article	IF	CITATIONS
165	Comparative study of whey protein isolate and gelatin treated by pH-shifting combined with ultrasonication in loading resveratrol. Food Hydrocolloids, 2021, 117, 106694.	10.7	18
166	Structural characterization of modified whey protein isolates using cold plasma treatment and its applications in emulsion oleogels. Food Chemistry, 2021, 356, 129703.	8.2	26
167	Technological and bioactive properties of wheat glutenin hydrolysates prepared with various commercial proteases. LWT - Food Science and Technology, 2021, 149, 111787.	5.2	22
168	Enzymatic modifications of gluten protein: Oxidative enzymes. Food Chemistry, 2021, 356, 129679.	8.2	32
169	Influence of Pre-/Postultrasound on Forming a Molten Globule-Like Conformation and Improving the Emulsifying Properties of Thermally Induced Soybean Protein Aggregates. ACS Food Science & Technology, 2021, 1, 1514-1522.	2.7	3
170	The physical stability of plant-based drinks and the analysis methods thereof. Food Hydrocolloids, 2021, 118, 106770.	10.7	26
171	Investigation of the consequences of ultrasound on the physicochemical, emulsification, and gelatinization characteristics of citric acid–treated whey protein isolate. Journal of Dairy Science, 2021, 104, 10628-10639.	3.4	4
172	Per- and poly-fluoroalkyl substance remediation from soil and sorbents: A review of adsorption behaviour and ultrasonic treatment. Chemosphere, 2021, 282, 131025.	8.2	35
173	Physico-chemical characterization of protein stabilized oil-in-water emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602, 125045.	4.7	22
174	Concentrated O/W Pickering emulsions stabilized by soy protein/cellulose nanofibrils: Influence of pH on the emulsification performance. Food Hydrocolloids, 2020, 108, 106025.	10.7	61
175	Influence of solvent polarity of ethonal/water binary solvent on the structural, emulsifying, interfacial rheology properties of gliadin nanoparticles. Journal of Molecular Liquids, 2021, 344, 117976.	4.9	8
176	Mild preheating improves cholesterol-lowering benefits of soy protein via enhancing hydrophobicity of its gastrointestinal digests: An in vitro study. Food Hydrocolloids, 2022, 124, 107282.	10.7	8
177	Impact of Ultra-Sonication on Gelation Process in Dairy Products Incorporated with Polysaccharides. Food and Nutrition Sciences (Print), 2020, 11, 327-335.	0.4	1
178	Impact of Ultra-Sonication on Gelation Process in Dairy Products Incorporated with Polysaccharides. Food and Nutrition Sciences (Print), 2020, 10, 327-335.	0.4	0
179	Applications of Mouse Models to the Study of Food Allergy. Methods in Molecular Biology, 2021, 2223, 1-17.	0.9	7
180	Molecular structure modification of ovalbumin through controlled glycosylation with dextran for its emulsibility improvement. International Journal of Biological Macromolecules, 2022, 194, 1-8.	7.5	30
181	Comparative study of protein-lipid co-oxidation in whey protein isolate-stabilised oil-in-water emulsions prepared by different homogenisation methods. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 633, 127916.	4.7	11
182	Effect of low frequency ultrasound on the functional characteristics of isolated lupin protein. Food Hydrocolloids, 2022, 124, 107345.	10.7	32

#	Article	IF	CITATIONS
183	Multi-dimensional analysis of rennet-induced micellar casein gels after ultrasound. International Dairy Journal, 2022, 126, 105293.	3.0	11
184	Factors impacting the antioxidant/prooxidant activity of tea polyphenols on lipids and proteins in oil-in-water emulsions. LWT - Food Science and Technology, 2022, 156, 113024.	5.2	25
185	Multifaceted functionality of <scp>l</scp> -arginine in modulating the emulsifying properties of pea protein isolate and the oxidation stability of its emulsions. Food and Function, 2022, 13, 1336-1347.	4.6	10
186	Structural and emulsifying properties of soybean protein isolate glycated with glucose based on <scp>pH</scp> treatment. Journal of the Science of Food and Agriculture, 2022, 102, 4462-4472.	3.5	10
187	Influence of ultrasonic pretreatment on structural properties and biological activities of lupin protein hydrolysate. International Journal of Food Science and Technology, 2022, 57, 1729-1738.	2.7	15
188	Structural and interfacial characteristics of ultrasonicated lipophilic-protein-stabilized high internal phase Pickering emulsions. LWT - Food Science and Technology, 2022, 158, 113160.	5.2	13
189	Structure, interfacial adsorption and emulsifying properties of potato protein isolate modified by chitosan. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 638, 128314.	4.7	14
190	Effect of ultrasound on functional properties, flavor characteristics, and storage stability of soybean milk. Food Chemistry, 2022, 381, 132158.	8.2	27
191	Influence of Emerging Technologies on the Utilization of Plant Proteins. Frontiers in Nutrition, 2022, 9, 809058.	3.7	27
192	Modification of emulsifying properties of mussel myofibrillar proteins by high-intensity ultrasonication treatment and the stability of O/W emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128511.	4.7	23
193	Flavor Formation of a Novel Cream-Soy Protein Isolate Mixed Flavor by Fermentation in Combination with Two-Step Enzymatic Hydrolysis. SSRN Electronic Journal, 0, , .	0.4	0
194	Ultrasonicâ€assisted phosphate curing: a novel approach to improve curing rate and chicken meat quality. International Journal of Food Science and Technology, 2022, 57, 2906-2917.	2.7	8
195	Ultrasound-assisted processing: Science, technology and challenges for the plant-based protein industry. Ultrasonics Sonochemistry, 2022, 84, 105955.	8.2	31
196	Effects of Ultrasonic Treatment on the Structure, Functional Properties of Chickpea Protein Isolate and Its Digestibility In Vitro. Foods, 2022, 11, 880.	4.3	45
197	Changes of hexanal content in fermented soymilk: Induced by lactic acid bacterial fermentation and thermal treatment. Journal of Food Processing and Preservation, 2022, 46, .	2.0	9
198	Review: regulation on structure, rheological properties and aroma volatile compounds of fermented chickpea milk by enzymatic catalysis. International Journal of Food Science and Technology, 2022, 57, 3665-3680.	2.7	5
199	Physicochemical properties and aroma release of gelatin-stabilized rapeseed oil-in-water emulsions as affected by pH. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642, 128706.	4.7	4
200	Improving the enzymolysis efficiency of lupin protein by ultrasound pretreatment: Effect on antihypertensive, antidiabetic and antioxidant activities of the hydrolysates. Food Chemistry, 2022, 383, 132457.	8.2	24

#	Article	IF	CITATIONS
201	Effects of different curing methods on edible quality and myofibrillar protein characteristics of pork. Food Chemistry, 2022, 387, 132872.	8.2	19
202	Impact of processing and storage on protein digestibility and bioavailability of legumes. Food Reviews International, 2023, 39, 4697-4724.	8.4	21
203	Effect of ultrasound pretreatment on the functional and bioactive properties of legumes protein hydrolysates and peptides: A comprehensive review. Food Reviews International, 2023, 39, 5423-5445.	8.4	7
204	Rancidity-induced protein oxidation affects the interfacial dynamic properties and the emulsion rheological behavior of rice bran protein. Food Hydrocolloids, 2022, 131, 107794.	10.7	13
205	Preparation, Characterization, and Antioxidant Properties of Phycocyanin Complexes Based on Sodium Alginate and Lysozyme. Frontiers in Nutrition, 2022, 9, .	3.7	3
206	Recent application of protein hydrolysates in food texture modification. Critical Reviews in Food Science and Nutrition, 2023, 63, 10412-10443.	10.3	13
207	Effect of ultrasonic technique on properties of soy meal-based wood adhesive. International Journal of Adhesion and Adhesives, 2022, , 103217.	2.9	0
208	Alanine aminopeptidase from Bacillus licheniformis E7 expressed in Bacillus subtilis efficiently hydrolyzes soy protein to small peptides and free amino acids. LWT - Food Science and Technology, 2022, 165, 113642.	5.2	7
209	The effects of combined enzymatic and physical modifications of lentil protein applying Alcalase, Flavourzyme, microbial transglutaminase, and ultrasound: antioxidant, antihypertension, and antidiabetic activities. Journal of Food Measurement and Characterization, 2022, 16, 3743-3759.	3.2	5
210	Development of Millettia speciosa champ polysaccharide conjugate stabilized oil-in-water emulsion for oral delivery of Î ² -carotene: Protection effect and in vitro digestion fate. Food Chemistry, 2022, 397, 133764.	8.2	9
211	Effects of Different Amounts of Corn Silk Polysaccharide on the Structure and Function of Peanut Protein Isolate Glycosylation Products. Foods, 2022, 11, 2214.	4.3	2
212	Aggregation of egg white peptides (EWP) induced by proanthocyanidins: A promising fabrication strategy for EWP emulsion. Food Chemistry, 2023, 400, 134019.	8.2	18
213	Ultrasonic-assisted pH shift-induced interfacial remodeling for enhancing the emulsifying and foaming properties of perilla protein isolate. Ultrasonics Sonochemistry, 2022, 89, 106108.	8.2	30
214	Optimization of high pressure homogenization conditions to produce nanostructured lipid carriers using natural and synthetic emulsifiers. Food Research International, 2022, 160, 111746.	6.2	9
215	Study on adhesive properties of soybean meal-based adhesives modified by ultrasonic-chemical treatment. International Journal of Adhesion and Adhesives, 2022, 118, 103237.	2.9	1
216	Application of ultrasound treatment to improve the technofunctional properties of hemp protein isolate. Future Foods, 2022, 6, 100176.	5.4	23
217	Application of power ultrasound for plant protein extraction, modification and allergen reduction – A review. Applied Food Research, 2022, 2, 100219.	4.0	26
218	Effects of different fatty acid ligands on the host-guest interaction of astaxanthin-bovine serum albumin: Thermodynamical analysis, binding site identification, and in vivo antioxidant evaluation. Food Hydrocolloids, 2023, 134, 108112.	10.7	5

#	Article	IF	CITATIONS
219	Physical and emulsifying properties of pea protein: influence of combined physical modification by flaxseed gum and ultrasonic treatment. Food Science and Human Wellness, 2023, 12, 431-441.	4.9	17
220	Ultrasound-Assisted Extraction of Artocarpus heterophyllus L. Leaf Protein Concentrate: Solubility, Foaming, Emulsifying, and Antioxidant Properties of Protein Hydrolysates. Colloids and Interfaces, 2022, 6, 50.	2.1	8
221	Fabrication and Characterization of the Egg-White Protein Chitosan Double-Layer Emulsion. Molecules, 2022, 27, 6036.	3.8	1
222	Increased sulfur-containing amino acid content and altered conformational characteristics of soybean proteins by rebalancing 11S and 7S compositions. Frontiers in Plant Science, 0, 13, .	3.6	3
223	Effect of hydrolysis on the emulsification and antioxidant properties of plant-sourced proteins. Current Opinion in Food Science, 2022, 48, 100949.	8.0	14
224	Ultrasound-modified protein-based colloidal particles: Interfacial activity, gelation properties, and encapsulation efficiency. Advances in Colloid and Interface Science, 2022, 309, 102768.	14.7	20
225	Effect of fermented cream with partial substitution of soy protein isolate on bread quality and volatile compounds. Food Bioscience, 2022, 50, 102142.	4.4	5
226	Effect of Ultrasound-Assisted Sodium Bicarbonate Treatment on Aggregation and Conformation of Reduced-Salt Pork Myofibrillar Protein. Molecules, 2022, 27, 7493.	3.8	8
227	High-intensity ultrasound improved the physicochemical and gelling properties of Litopenaeus vannamei myofibrillar protein. Ultrasonics Sonochemistry, 2022, 90, 106217.	8.2	17
228	Synergistic influence of ultrasound and dietary fiber addition on transglutaminase-induced peanut protein gel and its application for encapsulation of lutein. Food Hydrocolloids, 2023, 137, 108374.	10.7	18
229	Spectroscopic techniques for elucidation of structural changes in temperate cowpea cultivars under germination: A useful tool for quality determination and industrial application. Applied Food Research, 2023, 3, 100246.	4.0	0
230	Structural characteristics and acid-induced emulsion gel properties of heated soy protein isolate–soy oligosaccharide glycation conjugates. Food Hydrocolloids, 2023, 137, 108408.	10.7	25
231	Effect of Nonthermal Treatments on the Properties of Natural Food Additives. , 2023, , 269-301.		0
232	Relation of amino acid composition, hydrophobicity, and molecular weight with antidiabetic, antihypertensive, and antioxidant properties of mixtures of corn gluten and soy protein hydrolysates. Food Science and Nutrition, 2023, 11, 1257-1271.	3.4	16
233	Changes in Emulsifying Properties, Droplet Size, Turbidity and Lipid Oxidation of Pea Protein Nanoemulsions Exposed to High-Intensity Ultrasound and High-Pressure Homogenization during Storage. Akademik Gıda, 0, , 336-342.	0.8	1
234	Functional Properties of Corn Byproduct-Based Emulsifier Prepared by Hydrothermal–Alkaline. Molecules, 2023, 28, 665.	3.8	1
235	Extraction of structurally intact and well-stabilized rice bran oil bodies as natural pre-emulsified O/W emulsions and investigation of their rheological properties and components interaction. Food Research International, 2023, 164, 112457.	6.2	10
236	Sonication-microwave synergistic extraction of proteins from plant sources and its effect on protein. , 2023, , 291-344.		0

#	Article	IF	CITATIONS
237	pH and ultrasound driven structure-function relationships of soy protein hydrolysate. Innovative Food Science and Emerging Technologies, 2023, 85, 103324.	5.6	10
238	Structural and physicochemical properties of the different ultrasound frequency modified Qingke protein. Ultrasonics Sonochemistry, 2023, 94, 106338.	8.2	11
239	Correlation between interfacial layer properties and physical stability of food emulsions: current trends, challenges, strategies, and further perspectives. Advances in Colloid and Interface Science, 2023, 313, 102863.	14.7	27
240	Structural characterization of soy protein hydrolysates and their transglutaminase-induced gelation properties. LWT - Food Science and Technology, 2023, 179, 114668.	5.2	6
241	Influence of Bulk Nanobubbles Generated by Acoustic Cavitation on Powder Microstructure and Rehydration Characteristics of Spray-Dried Milk Protein Concentrate Powders. Nanomaterials, 2023, 13, 1093.	4.1	2
242	Phytosterols photooxidation in O/W emulsion: Influence of emulsifier composition and interfacial properties. Food Hydrocolloids, 2023, 142, 108698.	10.7	2
243	Fabrication of a novel antioxidant emulsifier through tuning the molecular interaction between soy protein isolates and young apple polyphenols. Food Chemistry, 2023, 420, 136110.	8.2	8
244	Ultrasound-assisted limited enzymatic hydrolysis of high concentrated soy protein isolate: Alterations on the functional properties and its relation with hydrophobicity and molecular weight. Ultrasonics Sonochemistry, 2023, 95, 106414.	8.2	9
245	Postharvest ripening of two varieties of corns: Structure, antioxidant activities and physicochemical properties of zein. Food Chemistry: X, 2023, 18, 100680.	4.3	3
246	Impact of ultrasonication and blanching as a pre-treatment on quality parameter of dried and rehydrated bitter gourd. Food Science and Technology International, 0, , 108201322311773.	2.2	1
247	High-intensity ultrasound modified the functional properties of Neosalanx taihuensis myofibrillar protein and improved its emulsion stability. Ultrasonics Sonochemistry, 2023, 97, 106458.	8.2	15
248	Effects of Food Factors and Processing on Protein Digestibility and Gut Microbiota. Journal of Agricultural and Food Chemistry, 2023, 71, 8685-8698.	5.2	4
249	Emulsifying property, antioxidant activity, and bitterness of soybean protein isolate hydrolysate obtained by Corolase PP under high hydrostatic pressure. Food Science and Human Wellness, 2024, 13, 1271-1278.	4.9	0
250	Plantâ€based foods as meat and fat substitutes. Food Science and Nutrition, 2023, 11, 4898-4911.	3.4	5
251	Effects of Different Molecular Weight Oxidized Dextran as Crosslinkers on Stability and Antioxidant Capacity of Curcumin-Loaded Nanoparticles. Foods, 2023, 12, 2533.	4.3	0
252	The structural and functional properties changing of peanut protein isolate (PPI) via different treatments and their application in pork meatballs production. LWT - Food Science and Technology, 2023, 184, 115046.	5.2	1
253	Whether branching-point substitution contributes to improving the emulsifying property of starch modified with octenyl succinic anhydride?. Food Hydrocolloids, 2023, 144, 109066.	10.7	0
254	Plant-based proteins: A review of factors modifying the protein structure and affecting emulsifying properties. , 2023, 3, 100397.		1

#	Article	IF	CITATIONS
255	Chemical structure and bio-functional properties of Arthrospira platensis peptides produced by ultrasonication-enzymolysis: Their emulsification capabilities. Process Biochemistry, 2023, 132, 191-199.	3.7	5
256	Hybrid Nanoflowers Bloom From Disintegrated Food Proteins Towards Natural Pigments Stabilization. ACS Sustainable Chemistry and Engineering, 2023, 11, 13554-13565.	6.7	2
257	Effect of polysaccharides on conformational changes and functional properties of protein-polyphenol binary complexes: A comparative study. International Journal of Biological Macromolecules, 2023, 253, 126890.	7.5	1
258	Ultrasonic and homogenization: An overview of the preparation of an edible protein–polysaccharide complex emulsion. Comprehensive Reviews in Food Science and Food Safety, 2023, 22, 4242-4281.	11.7	0
259	Influence of mealworms (Tenebrio molitor larvae) and their protein derivatives on the structural and rheological properties of tofu. Food Hydrocolloids, 2024, 147, 109399.	10.7	1
260	Monitoring of carbon dioxide and equilibrium moisture content for early detection of physicochemical and morphological changes in soybeans stored in vertical silos. Food Chemistry, 2024, 436, 137721.	8.2	2
261	Transglutaminase-induced soybean protein isolate cold-set gels treated with combination of ultrasound and high pressure: Physicochemical properties and structural characterization. International Journal of Biological Macromolecules, 2023, 253, 127525.	7.5	2
262	Effects of ultrasound pretreatment on the enzymolysis of hybrid sturgeon (Huso dauricus ×) Tj ETQq1 1 0.7843 hydrolysates. LWT - Food Science and Technology, 2023, 188, 115421.	314 rgBT , 5.2	Overlock 10 0
263	Ultrasound-assisted pH shift-induced interfacial remodeling for enhancing soluble yeast protein content: Effects on structure and interfacial properties of proteins under different treatment conditions. Food Hydrocolloids, 2024, 149, 109521.	10.7	0
264	Effects of ultrasound-assisted cooking on the physicochemical properties and microstructure of pork meatballs. Meat Science, 2024, 208, 109382.	5.5	0
265	Effect of Ultrasonic-Assisted Enzymatic Hydrolysis on Functional Properties and Antioxidant Activity of Eri Silkworm Pupa Protein Isolate. International Journal of Food Science, 2023, 2023, 1-10.	2.0	0
266	Research of Multicopper Oxidase and Its Degradation of Histamine in Lactiplantibacillus plantarum LPZN19. Microorganisms, 2023, 11, 2724.	3.6	1
267	Effects of thermal treatment on foam properties and simulated <i>in vitro</i> digestion properties of α″actalbumin–tea saponin complex. International Journal of Dairy Technology, 0, , .	2.8	0
268	Elucidating pH dynamics in Pickering emulsions stabilized by soybean protein isolate and nicotinamide mononucleotide: Enhancing emulsification and curcumin delivery mechanisms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 683, 133024.	4.7	1
269	How does ultrasound-assisted ionic liquids (UA-ILs) pretreatment affect the functional properties of soy protein hydrolysates? A critical review Trends in Food Science and Technology, 2024, 143, 104313.	15.1	1
270	Plant protein solubility: A challenge or insurmountable obstacle. Advances in Colloid and Interface Science, 2024, 324, 103074.	14.7	1
271	The effect of organic acids on high-moisture extrusion of soy protein isolate: Comparison between monocarboxylic acid and polycarboxylic acids. Food Bioscience, 2024, 58, 103664.	4.4	0
272	Hydrolysis in food processing and its impact on allergenicity of food. , 2024, , .		0

#	Article	IF	CITATIONS
273	Unveiling the contribution of <scp>Osborne</scp> protein fractions to the physicochemical and functional properties of alkaline and enzymatically extracted green lentil proteins. , 0, , .		0
274	Soy protein hydrogels with filler emulsion particles coated by hydrolyzed protein. , 0, , .		0
275	Soybean Meal: The Reservoir of High-Quality Protein. , 2024, , 31-52.		0
276	Study on stabilized mechanism of high internal phase Pickering emulsions based on commercial yeast proteins: Modulating the characteristics of Pickering particle via sonication. Ultrasonics Sonochemistry, 2024, 104, 106843.	8.2	0
277	Improved Bioactivity and Functional Qualities of Millet Protein Enzyme Hydrolysates by Ultrasonication. Industrial & Engineering Chemistry Research, 2024, 63, 5380-5396.	3.7	0