Matrix-embedded cells control osteoclast formation

Nature Medicine 17, 1235-1241 DOI: 10.1038/nm.2448

Citation Report

#	Article	IF	CITATIONS
1	Src inhibitors in the treatment of metastatic bone disease: rationale and clinical data. Clinical linical linvestigation, 2011, 1, 1695-1706.	0.0	22
2	Osteocytes, RANKL and bone loss. Nature Reviews Endocrinology, 2011, 7, 693-693.	9.6	5
3	Regulatory mechanism of osteoclastogenesis by Wnt signaling. Inflammation and Regeneration, 2011, 31, 413-419.	3.7	2
4	Sclerostin Stimulates Osteocyte Support of Osteoclast Activity by a RANKL-Dependent Pathway. PLoS ONE, 2011, 6, e25900.	2.5	419
5	New regulation mechanisms of osteoclast differentiation. Annals of the New York Academy of Sciences, 2011, 1240, E13-8.	3.8	121
6	Osteocyte RANKL in bone homeostasis: a paradigm shift?. Nature Reviews Rheumatology, 2011, 7, 619-619.	8.0	5
7	Emerging Functions of RANKL in Lymphoid Tissues. Frontiers in Immunology, 2012, 3, 261.	4.8	55
8	Systems Genetic Analysis of Osteoblast-Lineage Cells. PLoS Genetics, 2012, 8, e1003150.	3.5	48
9	Osteocytic osteolysis: time for a second look?. BoneKEy Reports, 2012, 1, 229.	2.7	56
11	Update on Bone Anabolics in Osteoporosis Treatment: Rationale, Current Status, and Perspectives. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 311-325.	3.6	285
12	Serum Sclerostin Increases in Healthy Adult Men during Bed Rest. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E1736-E1740.	3.6	109
13	Role of DNA methylation in the regulation of the RANKL-OPG system in human bone. Epigenetics, 2012, 7, 83-91.	2.7	99
14	The multifaceted actions of PTHrP in skeletal metastasis. Future Oncology, 2012, 8, 803-817.	2.4	94
15	Reducing gestational weight gain—a panacea?. Nature Reviews Endocrinology, 2012, 8, 452-454.	9.6	6
16	Mammals and minerals: a story of lactation and lacunae. IBMS BoneKEy, 2012, 9, .	0.0	0
17	The conundrum of glucocorticoid-induced osteoporosis. Nature Reviews Endocrinology, 2012, 8, 451-452.	9.6	15
18	Bone Loss following Spinal Cord Injury in a Rat Model. Journal of Neurotrauma, 2012, 29, 1676-1682.	3.4	23
19	Control of bone resorption in mice by Schnurri-3. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8173-8178.	7.1	31

#	Article	IF	CITATIONS
20	Profilin1 Regulates Sternum Development and Endochondral Bone Formation. Journal of Biological Chemistry, 2012, 287, 33545-33553.	3.4	17
21	Receptor Activator of Nuclear Factor κB Ligand (RANKL) Protein Expression by B Lymphocytes Contributes to Ovariectomy-induced Bone Loss. Journal of Biological Chemistry, 2012, 287, 29851-29860.	3.4	202
22	Treatment of immobilization-related hypercalcaemia with denosumab. CKJ: Clinical Kidney Journal, 2012, 5, 491-495.	2.9	9
23	Immunolocalization of sclerostin synthesized by osteocytes in relation to bone remodeling in the interradicular septa of ovariectomized rats. Journal of Electron Microscopy, 2012, 61, 309-320.	0.9	3
24	Inflammation and Bone Destruction in Arthritis: Synergistic Activity of Immune and Mesenchymal Cells in Joints. Frontiers in Immunology, 2012, 3, 77.	4.8	87
25	Stimulation of Osteogenesis in Bone Defects Implanted with Biodegradable Hydroxyapatite Composed of Rod-Shaped Particles under Mechanical Unloading. Acta Histochemica Et Cytochemica, 2012, 45, 283-292.	1.6	3
26	The multiple facets of glucocorticoid action in rheumatoid arthritis. Nature Reviews Rheumatology, 2012, 8, 645-655.	8.0	115
27	The osteoclast, bone remodelling and treatment of metabolic bone disease. European Journal of Clinical Investigation, 2012, 42, 1332-1341.	3.4	146
28	Osteocyte supply of RANKL meets bone remodeling demand. IBMS BoneKEy, 2012, 9, .	0.0	1
29	Osteoprotection by semaphorin 3A. Nature, 2012, 485, 69-74.	27.8	501
29 30	Osteoprotection by semaphorin 3A. Nature, 2012, 485, 69-74. Selective glucocorticoid receptor modulation maintains bone mineral density in mice. Journal of Bone and Mineral Research, 2012, 27, 2242-2250.	27.8 2.8	501 79
	Selective glucocorticoid receptor modulation maintains bone mineral density in mice. Journal of		
30	Selective glucocorticoid receptor modulation maintains bone mineral density in mice. Journal of Bone and Mineral Research, 2012, 27, 2242-2250. Liver X receptors orchestrate osteoblast/osteoclast crosstalk and counteract pathologic bone loss.	2.8	79
30 31	Selective glucocorticoid receptor modulation maintains bone mineral density in mice. Journal of Bone and Mineral Research, 2012, 27, 2242-2250. Liver X receptors orchestrate osteoblast/osteoclast crosstalk and counteract pathologic bone loss. Journal of Bone and Mineral Research, 2012, 27, 2442-2451. Osteopetrosis rescue upon RANKL administration to <i>Rankl</i>	2.8 2.8	79 35
30 31 32	Selective glucocorticoid receptor modulation maintains bone mineral density in mice. Journal of Bone and Mineral Research, 2012, 27, 2242-2250. Liver X receptors orchestrate osteoblast/osteoclast crosstalk and counteract pathologic bone loss. Journal of Bone and Mineral Research, 2012, 27, 2442-2451. Osteopetrosis rescue upon RANKL administration to <i>Rankl</i> á° <i>(</i>	2.8 2.8 2.8	79 35 44
30 31 32 33	Selective glucocorticoid receptor modulation maintains bone mineral density in mice. Journal of Bone and Mineral Research, 2012, 27, 2242-2250. Liver X receptors orchestrate osteoblast/osteoclast crosstalk and counteract pathologic bone loss. Journal of Bone and Mineral Research, 2012, 27, 2442-2451. Osteopetrosis rescue upon RANKL administration to <i>Rankl</i> h Mineral Research, 2012, 27, 2442-2451. Osteopetrosis rescue upon RANKL administration to <i>Rankl</i> h Osteocyte regulation of bone mineral: a little give and take. Osteoporosis International, 2012, 23, 2067-2079.	2.8 2.8 2.8 3.1	79 35 44 148
30 31 32 33 34	Selective glucocorticoid receptor modulation maintains bone mineral density in mice. Journal of Bone and Mineral Research, 2012, 27, 2242-2250. Liver X receptors orchestrate osteoblast/osteoclast crosstalk and counteract pathologic bone loss. Journal of Bone and Mineral Research, 2012, 27, 2442-2451. Osteopetrosis rescue upon RANKL administration to <i>Rankl</i> human RANKL-dependent ARO. Journal of Bone and Mineral Research, 2012, 27, 2501-2510. Osteocyte regulation of bone mineral: a little give and take. Osteoporosis International, 2012, 23, 2067-2079. Toward Mechanical Systems Biology in Bone. Annals of Biomedical Engineering, 2012, 40, 2475-2487.	2.8 2.8 2.8 3.1 2.5	 79 35 44 148 23

#	Article	IF	CITATIONS
38	Structural differences in the osteocyte network between the calvaria and long bone revealed by three-dimensional fluorescence morphometry, possibly reflecting distinct mechano-adaptations and sensitivities. Biochemical and Biophysical Research Communications, 2012, 417, 765-770.	2.1	52
39	Mechanical loading prevents the stimulating effect of IL-1Î ² on osteocyte-modulated osteoclastogenesis. Biochemical and Biophysical Research Communications, 2012, 420, 11-16.	2.1	61
40	Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations. Bone, 2012, 50, 1115-1122.	2.9	241
41	Serum sclerostin levels in Paget's disease and prostate cancer with bone metastases with a wide range of bone turnover. Bone, 2012, 51, 153-157.	2.9	55
42	Alterations in the osteocyte lacunar–canalicular microenvironment due to estrogen deficiency. Bone, 2012, 51, 488-497.	2.9	102
43	Mechanical regulation of signaling pathways in bone. Gene, 2012, 503, 179-193.	2.2	334
44	The skeleton as an endocrine organ. Nature Reviews Rheumatology, 2012, 8, 674-683.	8.0	132
45	New developments in osteoimmunology. Nature Reviews Rheumatology, 2012, 8, 684-689.	8.0	213
46	Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor γ. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3143-3148.	7.1	331
47	Denosumab for treatment of immobilization-related hypercalcaemia in a patient with advanced renal failure. CKJ: Clinical Kidney Journal, 2012, 5, 566-571.	2.9	20
48	Glucocorticoid-Induced Osteoporosis and Osteonecrosis. Endocrinology and Metabolism Clinics of North America, 2012, 41, 595-611.	3.2	299
49	Denosumab for the management of bone disease in patients with solid tumors. Expert Review of Anticancer Therapy, 2012, 12, 307-322.	2.4	31
50	The collection of NFATc1-dependent transcripts in the osteoclast includes numerous genes non-essential to physiologic bone resorption. Bone, 2012, 51, 902-912.	2.9	35
51	MS-275, a benzamide histone deacetylase inhibitor, prevents osteoclastogenesis by down-regulating c-Fos expression and suppresses bone loss in mice. European Journal of Pharmacology, 2012, 691, 69-76.	3.5	21
52	Estrogen and the skeleton. Trends in Endocrinology and Metabolism, 2012, 23, 576-581.	7.1	604
53	New insights into osteoclastogenic signaling mechanisms. Trends in Endocrinology and Metabolism, 2012, 23, 582-590.	7.1	275
54	Leukemia inhibitory factor: A paracrine mediator of bone metabolism. Growth Factors, 2012, 30, 76-87.	1.7	48
55	Pathophysiology of CKD-MBD. Clinical Reviews in Bone and Mineral Metabolism, 2012, 10, 128-141.	0.8	2

#	Article	IF	CITATIONS
56	Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. Nature Medicine, 2012, 18, 405-412.	30.7	417
57	Progress in RANK ligand biology: bone and beyond. IBMS BoneKEy, 2012, 9, .	0.0	1
58	IL-1β and compressive forces lead to a significant induction of RANKL-expression in primary human cementoblasts. Journal of Orofacial Orthopedics, 2012, 73, 397-412.	1.3	39
59	Osteocytes communicate with osteoclast lineage cells via RANKL. IBMS BoneKEy, 0, 9, .	0.0	6
60	Management of Glucocorticoid-Induced Osteoporosis. Calcified Tissue International, 2012, 91, 225-243.	3.1	77
61	Autoimmune Arthritis. Advances in Immunology, 2012, 115, 45-71.	2.2	74
62	RANKL synthesized by articular chondrocytes contributes to juxta-articular bone loss in chronic arthritis. Arthritis Research and Therapy, 2012, 14, R149.	3.5	49
63	Osteocyte Network; a Negative Regulatory System for Bone Mass Augmented by the Induction of Rankl in Osteoblasts and Sost in Osteocytes at Unloading. PLoS ONE, 2012, 7, e40143.	2.5	81
64	The Role of DNA Methylation in Common Skeletal Disorders. Biology, 2012, 1, 698-713.	2.8	27
65	Osteocytes, bone remodeling and parathyroid hormone. Endocrinology Studies, 2012, 2, 8.	0.2	0
66	α-Tocopheryl Succinate Inhibits Osteoclast Formation by Suppressing Receptor Activator of Nuclear Factor-kappaB Ligand (RANKL) Expression and Bone Resorption. Journal of Bone Metabolism, 2012, 19, 111.	1.3	10
67	Sclerostin: A Novel Key to Bone and Dental Treatment. Current Research in Dentistry, 2012, 3, 18-26.	0.1	0
68	Osteoclast fusion and regulation by RANKL-dependent and independent factors. World Journal of Orthopedics, 2012, 3, 212.	1.8	96
69	Bench to bedside: elucidation of the OPG–RANK–RANKL pathway and the development of denosumab. Nature Reviews Drug Discovery, 2012, 11, 401-419.	46.4	525
70	Genetics of osteoporosis from genome-wide association studies: advances and challenges. Nature Reviews Genetics, 2012, 13, 576-588.	16.3	269
71	Osteocyte RANKL: New insights into the control of bone remodeling. Journal of Bone and Mineral Research, 2012, 27, 499-505.	2.8	246
72	Autophagy: A new player in skeletal maintenance?. Journal of Bone and Mineral Research, 2012, 27, 1439-1447.	2.8	134
73	Daily administration of eldecalcitol (ED-71), an active vitamin D analog, increases bone mineral density by suppressing RANKL expression in mouse trabecular bone. Journal of Bone and Mineral Research, 2012, 27, 461-473.	2.8	82

		CITATION RE	PORT	
#	Article		IF	Citations
74	Glucocorticoid receptor signaling in bone cells. Trends in Molecular Medicine, 2012, 18,	348-359.	6.7	92
75	Bone, sweet bone—osteoporotic fractures in diabetes mellitus. Nature Reviews Endocı 297-305.	inology, 2012, 8,	9.6	295
76	Intercellular Cross-Talk Among Bone Cells: New Factors and Pathways. Current Osteopo Reports, 2012, 10, 109-117.	rosis	3.6	107
77	Osteocyte Signaling in Bone. Current Osteoporosis Reports, 2012, 10, 118-125.		3.6	155
78	Is Psoriatic Arthritis a Result of Abnormalities in Acquired or Innate Immunity?. Current Rheumatology Reports, 2012, 14, 375-382.		4.7	24
79	The Role of Sclerostin in the Pathophysiology of Sclerosing Bone Dysplasias. Clinical Rev and Mineral Metabolism, 2012, 10, 108-116.	iews in Bone	0.8	21
80	Osteocytes: central conductors of bone biology in normal and pathological conditions. Physiologica, 2012, 204, 317-330.	Acta	3.8	44
81	Morphological aspects of the biological function of the osteocytic lacunar canalicular sy of osteocyteâ€derived factors. Oral Science International, 2012, 9, 1-8.	stem and	0.7	18
82	Membrane Trafficking in Osteoblasts and Osteoclasts: New Avenues for Understanding Skeletal Diseases. Traffic, 2012, 13, 1307-1314.	and Treating	2.7	74
83	Novel therapies in benign and malignant bone diseases. , 2012, 134, 338-344.			24
84	Inhibition of mechanical stressâ€induced NFâ€îºB promotes bone formation. Oral Diseas	ses, 2013, 19, 59-64.	3.0	11
85	Osteocyte lacunar density and area in newly formed bone of the augmented sinus. Clinic Implants Research, 2013, 24, 285-289.	cal Oral	4.5	10
86	Muramyl dipeptide responsive pathways in Crohn's disease: from NOD2 and beyond Molecular Life Sciences, 2013, 70, 3391-3404.	. Cellular and	5.4	26
87	Effect of Zoledronate on the Responses of Osteocytes to Acute Parathyroid Hormone. C International, 2013, 92, 576-585.	alcified Tissue	3.1	1
88	The Role of Bone Marrow-Derived Cells During the Bone Healing Process in the GFP Mou Marrow Transplantation Model. Calcified Tissue International, 2013, 92, 296-306.	se Bone	3.1	12
89	Cytokines and the Pathogenesis of Osteoporosis. , 2013, , 915-937.			1
90	Immobilization Osteoporosis. , 2013, , 1139-1171.			7
91	Glucocorticoid-Induced Osteoporosis. , 2013, , 1191-1223.			5

	Сітатіо	n Report	
#	Article	IF	Citations
92	Reflections on Development of Concepts of Intercellular Communication in Bone. , 2013, , 51-69.		0
93	Development of the Skeleton. , 2013, , 97-126.		8
94	Osteoclast Biology. , 2013, , 149-160.		5
95	Osteocyte Biology. , 2013, , 209-234.		5
96	Regulation of Bone Cell Function by Estrogens. , 2013, , 329-344.		0
97	WNT Signaling in Skeletal Homeostasis and Diseases. , 2013, , 411-428.		3
98	Increased Bone Mass in Mice Lacking the Adipokine Apelin. Endocrinology, 2013, 154, 2069-2080.	2.8	31
99	Water extract of Spatholobus suberectus inhibits osteoclast differentiation and bone resorption. BMC Complementary and Alternative Medicine, 2013, 13, 112.	3.7	26
100	Vitamin A Metabolism, Action, and Role in Skeletal Homeostasis. Endocrine Reviews, 2013, 34, 766-797.	20.1	137
101	Osteoimmunology and Bone Homeostasis: Relevance to Spondyloarthritis. Current Rheumatology Reports, 2013, 15, 342.	4.7	22
102	Dentine matrix protein 1 (DMP-1) is a marker of bone-forming tumours. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2013, 462, 583-591.	2.8	15
103	Current perspectives on parathyroid hormone (PTH) and PTH-related protein (PTHrP) as bone anabolic therapies. Biochemical Pharmacology, 2013, 85, 1417-1423.	4.4	94
104	Genetic Background of Implant Failure. , 2013, , 41-59.		0
105	Wnt signalling in osteoporosis: mechanisms and novel therapeutic approaches. Nature Reviews Endocrinology, 2013, 9, 575-583.	9.6	247
106	Biology of Bone and Cartilage. , 2013, , 3-24.		4
107	Strontium Ranelate affects signaling from mechanically-stimulated osteocytes towards osteoclasts and osteoblasts. Bone, 2013, 53, 112-119.	2.9	50
108	The Osteocyte: An Endocrine Cell $\hat{a} \in $ and More. Endocrine Reviews, 2013, 34, 658-690.	20.1	812
109	Vitamin D signaling in osteocytes: Effects on bone and mineral homeostasis. Bone, 2013, 54, 237-243.	2.9	74

ARTICLE IF CITATIONS # Connexin 43 deficiency desensitizes bone to the effects of mechanical unloading through modulation 110 2.9 78 of both arms of bone remodeling. Bone, 2013, 57, 76-83. Molecular determinants of glucocorticoid actions in inflammatory joint diseases. Molecular and 3.2 Cellular Endocrinology, 2013, 380, 108-118. Coupling systems biology with multiscale mechanics, for computer simulations of bone remodeling. 112 6.6 92 Computer Methods in Applied Mechanics and Engineering, 2013, 254, 181-196. Deletion of beta catenin in hypertrophic growth plate chondrocytes impairs trabecular bone 2.9 formation. Bone, 2013, 55, 102-112. Basic Biology of Skeletal Aging: Role of Stress Response Pathways. Journals of Gerontology - Series A 114 3.6 152 Biological Sciences and Medical Sciences, 2013, 68, 1197-1208. NSAID therapy effects on healing of bone, tendon, and the enthesis. Journal of Applied Physiology, 2013, 115, 892-899. 2.5 109 Deciphering Hematopoietic Stem Cells in Their Niches: A Critical Appraisal of Genetic Models, Lineage 117 11.1 148 Tracing, and Imaging Strategies. Cell Stem Cell, 2013, 13, 520-533. Bone Morphogenetic Proteins Signal Via SMAD and Mitogen-activated Protein (MAP) Kinase Pathways 118 3.4 at Distinct Times during Osteoclastogenesis. Journal of Biological Chemistry, 2013, 288, 37230-37240. 119 In vitro and in vivo approaches to study osteocyte biology. Bone, 2013, 54, 296-306. 2.9 143 Serotonin: a novel bone mass controller may have implications for alveolar bone. Journal of Negative 1.4 Results in BioMedicine, 2013, 12, 12. Nitric oxide signaling in mechanical adaptation of bone. Osteoporosis International, 2013, 25, 1427-37. 121 3.1 62 Bone remodelling in inflammatory arthritis. Annals of the Rheumatic Diseases, 2013, 72, ii52-ii55. 0.9 Development of the Endochondral Skeleton. Cold Spring Harbor Perspectives in Biology, 2013, 5, 123 5.5 477 a008334-a008334. Myelopoiesis is regulated by osteocytes through Gsî±-dependent signaling. Blood, 2013, 121, 930-939. 124 1.4 146 Role of paraoxonase-1 in bone anabolic effects of parathyroid hormone in hyperlipidemic mice. 125 2.1 6 Biochemical and Biophysical Research Communications, 2013, 431, 19-24. For whom the bell tolls: Distress signals from long-lived osteocytes and the pathogenesis of 54 metabolic bone diseases. Bone, 2013, 54, 272-278. Advances in Osteoimmunology: Pathophysiologic Concepts and Treatment Opportunities. 127 2.127 International Archives of Allergy and Immunology, 2013, 160, 114-125. Basic Principles of Bone Cell Biology., 2013, , 5-26.

#	Article	IF	CITATIONS
129	Roles of Wnt signals in bone resorption during physiological and pathological states. Journal of Molecular Medicine, 2013, 91, 15-23.	3.9	94
130	Mechanosensation and transduction in osteocytes. Bone, 2013, 54, 182-190.	2.9	390
131	The molecular mechanisms underlying the pharmacological actions of estrogens, SERMs and oxysterols: Implications for the treatment and prevention of osteoporosis. Bone, 2013, 53, 42-50.	2.9	96
132	Mechanical vibration inhibits osteoclast formation by reducing DC-STAMP receptor expression in osteoclast precursor cells. Bone, 2013, 57, 493-498.	2.9	38
133	Effects of PTH on osteocyte function. Bone, 2013, 54, 250-257.	2.9	159
134	Lack of CD47 Impairs Bone Cell Differentiation and Results in an Osteopenic Phenotype in Vivo due to Impaired Signal Regulatory Protein α (SIRPα) Signaling. Journal of Biological Chemistry, 2013, 288, 29333-29344.	3.4	25
135	Osteocyte apoptosis. Bone, 2013, 54, 264-271.	2.9	163
136	Calcium induces pro-anabolic effects on human primary osteoblasts associated with acquisition of mature osteocyte markers. Molecular and Cellular Endocrinology, 2013, 376, 85-92.	3.2	27
137	Osteocytes remove and replace perilacunar mineral during reproductive cycles. Bone, 2013, 54, 230-236.	2.9	82
138	Vitamin D Receptor in Osteoblasts Is a Negative Regulator of Bone Mass Control. Endocrinology, 2013, 154, 1008-1020.	2.8	139
139	Regulation of Bone Resorption by PPARÎ ³ ., 2013, , 103-122.		0
140	WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nature Medicine, 2013, 19, 179-192.	30.7	1,622
141	Functions of the osteocyte network in the regulation of bone mass. Cell and Tissue Research, 2013, 352, 191-198.	2.9	85
142	Osteocyte control of osteoclastogenesis. Bone, 2013, 54, 258-263.	2.9	187
143	Inducible Brown Adipose Tissue, or Beige Fat, Is Anabolic for the Skeleton. Endocrinology, 2013, 154, 2687-2701.	2.8	109
144	Mitogen-Activated Protein Kinase Pathways in Osteoblasts. Annual Review of Cell and Developmental Biology, 2013, 29, 63-79.	9.4	200
145	Glucocorticoid-induced osteoporosis: mechanisms, management, and future perspectives. Lancet Diabetes and Endocrinology,the, 2013, 1, 59-70.	11.4	168
146	Increased mandibular condylar growth in mice with estrogen receptor beta deficiency. Journal of Bone and Mineral Research, 2013, 28, 1127-1134.	2.8	37

#	Article	IF	CITATIONS
147	RANKL subcellular trafficking and regulatory mechanisms in osteocytes. Journal of Bone and Mineral Research, 2013, 28, 1936-1949.	2.8	88
148	Sclerostin Regulates Release of Bone Mineral by Osteocytes by Induction of Carbonic Anhydrase 2. Journal of Bone and Mineral Research, 2013, 28, 2436-2448.	2.8	130
149	CHAPTER 2. Bone Structural Adaptation and Wolff's Law. RSC Smart Materials, 2013, , 17-45.	0.1	3
150	Disruption of the insulin-like growth factor-1 gene in osteocytes impairs developmental bone growth in mice. Bone, 2013, 52, 133-144.	2.9	89
151	Histone deacetylase 3 is required for maintenance of bone mass during aging. Bone, 2013, 52, 296-307.	2.9	66
152	Pathogenesis of Age-Related Bone Loss in Humans. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2013, 68, 1226-1235.	3.6	170
153	Multifunctional properties of RANKL/RANK in cell differentiation, proliferation and metastasis. Future Oncology, 2013, 9, 1609-1622.	2.4	19
154	Haploinsufficiency of osterix in chondrocytes impairs skeletal growth in mice. Physiological Genomics, 2013, 45, 917-923.	2.3	18
155	Suppression of Autophagy in Osteocytes Mimics Skeletal Aging. Journal of Biological Chemistry, 2013, 288, 17432-17440.	3.4	165
156	Notch Signaling in Osteocytes Differentially Regulates Cancellous and Cortical Bone Remodeling. Journal of Biological Chemistry, 2013, 288, 25614-25625.	3.4	87
157	Osteoblasts Subjected to Mechanical Strain Inhibit Osteoclastic Differentiation and Bone Resorption in a Co-Culture System. Annals of Biomedical Engineering, 2013, 41, 2056-2066.	2.5	16
158	Anabolic steroids reduce spinal cord injury-related bone loss in rats associated with increased Wnt signaling. Journal of Spinal Cord Medicine, 2013, 36, 616-622.	1.4	43
159	Cartilage to bone transitions in health and disease. Journal of Endocrinology, 2013, 219, R1-R12.	2.6	67
160	Vps35 loss promotes hyperresorptive osteoclastogenesis and osteoporosis via sustained RANKL signaling. Journal of Cell Biology, 2013, 200, 821-837.	5.2	37
161	Osteoblast Lineage-Specific Effects of Notch Activation in the Skeleton. Endocrinology, 2013, 154, 623-634.	2.8	109
162	Update on Osteocytes (Sun Valley 2012). IBMS BoneKEy, 2013, 10, .	0.0	0
163	Disruption of claudin-18 diminishes ovariectomy-induced bone loss in mice. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E531-E537.	3.5	8
164	The Role of Inflammatory Cytokines, the RANKL/OPG Axis, and the Immunoskeletal Interface in Physiological Bone Turnover and Osteoporosis. Scientifica, 2013, 2013, 1-29.	1.7	155

#	Article	IF	CITATIONS
165	New insights into osteocyte and osteoblast biology: support of osteoclast formation, PTH action and the role of Wnt16 (ASBMR 2013). IBMS BoneKEy, 2013, 10, .	0.0	1
166	The Role of Osteocytes in Bone Resorption during Orthodontic Tooth Movement. Journal of Dental Research, 2013, 92, 340-345.	5.2	65
167	Steroids and osteoporosis: the quest for mechanisms. Journal of Clinical Investigation, 2013, 123, 1919-1921.	8.2	58
168	Nuclear Receptors in Bone Physiology and Diseases. Physiological Reviews, 2013, 93, 481-523.	28.8	67
169	Coordinated transcriptional regulation of bone homeostasis by Ebf1 and Zfp521 in both mesenchymal and hematopoietic lineages. Journal of Experimental Medicine, 2013, 210, 969-985.	8.5	40
170	The Ras-GTPase activity of neurofibromin restrains ERK-dependent FGFR signaling during endochondral bone formation. Human Molecular Genetics, 2013, 22, 3048-3062.	2.9	20
171	The Relevance of Mouse Models for Investigating Age-Related Bone Loss in Humans. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2013, 68, 1209-1217.	3.6	225
172	Monocyte chemoattractant protein-1 is a mediator of the anabolic action of parathyroid hormone on bone. Journal of Bone and Mineral Research, 2013, 28, 1975-1986.	2.8	43
173	Decreased bone formation and increased osteoclastogenesis cause bone loss in mucolipidosis II. EMBO Molecular Medicine, 2013, 5, 1871-1886.	6.9	36
174	Sclerostin antibody inhibits skeletal deterioration due to reduced mechanical loading. Journal of Bone and Mineral Research, 2013, 28, 865-874.	2.8	126
175	EphrinB2/EphB4 inhibition in the osteoblast lineage modifies the anabolic response to parathyroid hormone. Journal of Bone and Mineral Research, 2013, 28, 912-925.	2.8	93
176	An RNA-seq protocol to identify mRNA expression changes in mouse diaphyseal bone: Applications in mice with bone property altering <i>Lrp5</i> mutations. Journal of Bone and Mineral Research, 2013, 28, 2081-2093.	2.8	76
177	Recombinant hormones in osteoporosis. Expert Opinion on Biological Therapy, 2013, 13, 1135-1147.	3.1	1
178	Parathyroid Hormone (PTH)/PTH-related Peptide Type 1 Receptor (PPR) Signaling in Osteocytes Regulates Anabolic and Catabolic Skeletal Responses to PTH. Journal of Biological Chemistry, 2013, 288, 20122-20134.	3.4	139
179	Histone Deacetylase 3 Suppression Increases PH Domain and Leucine-rich Repeat Phosphatase (Phlpp)1 Expression in Chondrocytes to Suppress Akt Signaling and Matrix Secretion. Journal of Biological Chemistry, 2013, 288, 9572-9582.	3.4	74
180	Epidermal Growth Factor Receptor (EGFR) Signaling Regulates Epiphyseal Cartilage Development through β-Catenin-dependent and -independent Pathways. Journal of Biological Chemistry, 2013, 288, 32229-32240.	3.4	50
181	Stimulation of Bone Formation in Cortical Bone of Mice Treated with a Receptor Activator of Nuclear Factor-IºB Ligand (RANKL)-binding Peptide That Possesses Osteoclastogenesis Inhibitory Activity. Journal of Biological Chemistry, 2013, 288, 5562-5571.	3.4	65
182	The Central Nervous System (CNS)-independent Anti-bone-resorptive Activity of Muscle Contraction and the Underlying Molecular and Cellular Signatures. Journal of Biological Chemistry, 2013, 288, 13511-13521.	3.4	53

#	Article	IF	CITATIONS
183	Osteoclasts: New Insights. Bone Research, 2013, 1, 11-26.	11.4	372
184	Advances in osteoclast biology reveal potential new drug targets and new roles for osteoclasts. Journal of Bone and Mineral Research, 2013, 28, 711-722.	2.8	122
185	Report of the CCFA Pediatric Bone, Growth and Muscle Health Workshop, New York City, November 11–12, 2011, With Updates. Inflammatory Bowel Diseases, 2013, 19, 2919-2926.	1.9	18
186	microRNA Expression in Rat Apical Periodontitis Bone Lesion. Bone Research, 2013, 1, 170-185.	11.4	19
187	FOXOs attenuate bone formation by suppressing Wnt signaling. Journal of Clinical Investigation, 2013, 123, 3409-3419.	8.2	190
188	Endogenous Glucocorticoids and Bone. Bone Research, 2013, 1, 107-119.	11.4	37
189	Mice Deficient in NF-κB p50 and p52 or RANK Have Defective Growth Plate Formation and Post-natal Dwarfism. Bone Research, 2013, 1, 336-345.	11.4	23
190	Recent Progress in Osteocyte Research. Endocrinology and Metabolism, 2013, 28, 255.	3.0	11
191	Molecular Aspects of Bone Remodeling. , 2013, , .		11
192	Rib Fractures and Death from Deletion of Osteoblast βcatenin in Adult Mice Is Rescued by Corticosteroids. PLoS ONE, 2013, 8, e55757.	2.5	4
193	The Role of Osteocytes in Targeted Bone Remodeling: A Mathematical Model. PLoS ONE, 2013, 8, e63884.	2.5	57
194	T CellsÂInduce Pre-Metastatic OsteolyticÂDisease and Help Bone Metastases Establishment in a Mouse Model of Metastatic Breast Cancer. PLoS ONE, 2013, 8, e68171.	2.5	93
195	Vitamin A Is a Negative Regulator of Osteoblast Mineralization. PLoS ONE, 2013, 8, e82388.	2.5	63
196	RANKL Cytokine: From Pioneer of the Osteoimmunology Era to Cure for a Rare Disease. Clinical and Developmental Immunology, 2013, 2013, 1-9.	3.3	30
197	Osteoclasts and CD8 T Cells Form a Negative Feedback Loop That Contributes to Homeostasis of Both the Skeletal and Immune Systems. Clinical and Developmental Immunology, 2013, 2013, 1-9.	3.3	19
198	Anti-RANKL antibody was approved for the treatment of osteoporosis in Japan. Japanese Journal of Clinical Immunology, 2013, 36, 209-216.	0.0	3
199	Historically significant events in the discovery of RANK/RANKL/OPG. World Journal of Orthopedics, 2013, 4, 186.	1.8	54
200	Repair of Microdamage in Osteonal Cortical Bone Adjacent to Bone Screw. PLoS ONE, 2014, 9, e89343.	2.5	26

#	Article	IF	CITATIONS
201	Dysregulated Gene Expression in the Primary Osteoblasts and Osteocytes Isolated from Hypophosphatemic Hyp Mice. PLoS ONE, 2014, 9, e93840.	2.5	48
202	SH3BP2 Gain-Of-Function Mutation Exacerbates Inflammation and Bone Loss in a Murine Collagen-Induced Arthritis Model. PLoS ONE, 2014, 9, e105518.	2.5	20
203	Mouse Models for the Evaluation of Osteocyte Functions. Journal of Bone Metabolism, 2014, 21, 55.	1.3	20
204	Role of Osteocyte-derived Insulin-Like Growth Factor I in Developmental Growth, Modeling, Remodeling, and Regeneration of the Bone. Journal of Bone Metabolism, 2014, 21, 41.	1.3	72
205	Skeletal physiology. , 2014, , 145-165.		6
206	Functional heterogeneity of osteocytes in FGF23 production: the possible involvement of DMP1 as a direct negative regulator. BoneKEy Reports, 2014, 3, 543.	2.7	22
207	FisiologÃa del hueso y marcadores bioquÃmicos del recambio óseo. , 2014, , 19-42.		0
208	gp130 in late osteoblasts and osteocytes is required for PTH-induced osteoblast differentiation. Journal of Endocrinology, 2014, 223, 181-190.	2.6	26
209	Targeting IL-6 and RANKL signaling inhibits prostate cancer growth in bone. Clinical and Experimental Metastasis, 2014, 31, 921-933.	3.3	36
210	Modulation of osteoclast differentiation and bone resorption by Rho GTPases. Small GTPases, 2014, 5, e28119.	1.6	73
211	The Expression of Fn14 via Mechanical Stress-activated JNK Contributes to Apoptosis Induction in Osteoblasts. Journal of Biological Chemistry, 2014, 289, 6438-6450.	3.4	37
212	RANKL Expression in Periodontal Disease: Where Does RANKL Come from?. BioMed Research International, 2014, 2014, 1-7.	1.9	65
213	Biology of the RANKLââ,¬â€œRANKââ,¬â€œOPG System in Immunity, Bone, and Beyond. Frontiers in Immunolo 2014, 5, 511.	ogy. 4.8	469
214	A New Method to Investigate How Mechanical Loading of Osteocytes Controls Osteoblasts. Frontiers in Endocrinology, 2014, 5, 208.	3.5	51
215	Blockade of CD26 Signaling Inhibits Human Osteoclast Development. Journal of Bone and Mineral Research, 2014, 29, 2439-2455.	2.8	27
216	Inhibition of Bone Remodeling in Young Mice by Bisphosphonate Displaces the Plasma Cell Niche into the Spleen. Journal of Immunology, 2014, 193, 223-233.	0.8	16
217	Oxytocin and bone. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R970-R977.	1.8	27
218	Palmitic Acid and DGAT1 Deficiency Enhance Osteoclastogenesis, while Oleic Acid-Induced Triglyceride Formation Prevents It. Journal of Bone and Mineral Research, 2014, 29, 1183-1195.	2.8	76

#	Article	IF	CITATIONS
219	Physiological Functions of Osteoblast Lineage and T Cell–Derived RANKL in Bone Homeostasis. Journal of Bone and Mineral Research, 2014, 29, 830-842.	2.8	60
220	Dysapoptosis of Osteoblasts and Osteocytes Increases Cancellous Bone Formation But Exaggerates Cortical Porosity With Age. Journal of Bone and Mineral Research, 2014, 29, 103-117.	2.8	65
221	Shifting Paradigms on the Role of Connexin43 in the Skeletal Response to Mechanical Load. Journal of Bone and Mineral Research, 2014, 29, 275-286.	2.8	44
222	OA10 Is a Novel p38alpha Mitogenâ€Activated Protein Kinase Inhibitor That Suppresses Osteoclast Differentiation and Bone Resorption. Journal of Cellular Biochemistry, 2014, 115, 959-966.	2.6	5
223	Direct Crosstalk Between Cancer and Osteoblast Lineage Cells Fuels Metastatic Growth in Bone via Auto-Amplification of IL-6 and RANKL Signaling Pathways. Journal of Bone and Mineral Research, 2014, 29, 1938-1949.	2.8	33
224	Effect of Oral Bisphosphonates for Osteoporosis on Development of Skeletal Metastases in Women With Breast Cancer: Results From a Pharmaco-Epidemiological Study. Journal of the National Cancer Institute, 2014, 106, .	6.3	26
225	Mutual Enhancement of Differentiation of Osteoblasts and Osteocytes Occurs Through Direct Cell-Cell Contact. Journal of Cellular Biochemistry, 2014, 115, n/a-n/a.	2.6	18
226	Etanercept Administration to Neonatal SH3BP2 Knock-In Cherubism Mice Prevents TNF-α-Induced Inflammation and Bone Loss. Journal of Bone and Mineral Research, 2014, 29, 1170-1182.	2.8	27
227	Vitamin D endocrine system and osteocytes. BoneKEy Reports, 2014, 3, 494.	2.7	31
228	Vibration therapy. Current Opinion in Endocrinology, Diabetes and Obesity, 2014, 21, 447-453.	2.3	54
229	Role of osteocytes in multiple myeloma bone disease. Current Opinion in Supportive and Palliative Care, 2014, 8, 407-413.	1.3	55
230	Chondrocyte β atenin Signaling Regulates Postnatal Bone Remodeling Through Modulation of Osteoclast Formation in a Murine Model. Arthritis and Rheumatology, 2014, 66, 107-120.	5.6	50
231	Osteocytes Produce Interferon-Î ² as a Negative Regulator of Osteoclastogenesis. Journal of Biological Chemistry, 2014, 289, 11545-11555.	3.4	35
232	Atypical Subtrochanteric and Diaphyseal Femoral Fractures: Second Report of a Task Force of the American Society for Bone and Mineral Research. Journal of Bone and Mineral Research, 2014, 29, 1-23.	2.8	1,424
233	Osteocyte function under compressive mechanical force. Japanese Dental Science Review, 2014, 50, 29-39.	5.1	30
234	Osteocyte apoptosis is required for production of osteoclastogenic signals following bone fatigue in vivo. Bone, 2014, 64, 132-137.	2.9	123
235	Osteoblast and osteocyte: Games without frontiers. Archives of Biochemistry and Biophysics, 2014, 561, 3-12.	3.0	266
236	Control of Bone Remodeling by the Peripheral Sympathetic Nervous System. Calcified Tissue International, 2014, 94, 140-151.	3.1	122

#	Article	IF	Citations
237	Molecular Mechanisms of Osteoblast/Osteocyte Regulation by Connexin43. Calcified Tissue International, 2014, 94, 55-67.	3.1	52
238	Talking among Ourselves: Paracrine Control of Bone Formation within the Osteoblast Lineage. Calcified Tissue International, 2014, 94, 35-45.	3.1	28
239	Osteocytes: Master Orchestrators of Bone. Calcified Tissue International, 2014, 94, 5-24.	3.1	373
240	Osteocyte-Driven Bone Remodeling. Calcified Tissue International, 2014, 94, 25-34.	3.1	296
241	IL-6 Alters Osteocyte Signaling toward Osteoblasts but Not Osteoclasts. Journal of Dental Research, 2014, 93, 394-399.	5.2	80
242	Regulatory Mechanisms of RANKL Presentation to Osteoclast Precursors. Current Osteoporosis Reports, 2014, 12, 115-120.	3.6	60
243	Bone and the Innate Immune System. Current Osteoporosis Reports, 2014, 12, 1-8.	3.6	40
244	Decreased activity of osteocyte autophagy with aging may contribute to the bone loss in senile population. Histochemistry and Cell Biology, 2014, 142, 285-295.	1.7	62
245	The Osteocyte as an Orchestrator of Bone Remodeling: An Engineer's Perspective. Clinical Reviews in Bone and Mineral Metabolism, 2014, 12, 2-13.	0.8	11
246	Osteocytes and Osteoclasts, a Relationship Under Strain. Clinical Reviews in Bone and Mineral Metabolism, 2014, 12, 14-26.	0.8	3
247	Bone Cell Senescence: Mechanisms and Perspectives. Journal of Bone and Mineral Research, 2014, 29, 1311-1321.	2.8	65
248	Bone Cells. , 2014, , 3-13.		3
249	Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. BoneKEy Reports, 2014, 3, 481.	2.7	536
250	The chondrocytic journey in endochondral bone growth and skeletal dysplasia. Birth Defects Research Part C: Embryo Today Reviews, 2014, 102, 52-73.	3.6	67
251	Female Mice Lacking Estrogen Receptor-Alpha in Osteoblasts Have Compromised Bone Mass and Strength. Journal of Bone and Mineral Research, 2014, 29, 370-379.	2.8	102
252	Periosteal <scp>PTH</scp> r <scp>P</scp> regulates cortical bone modeling during linear growth in mice. Journal of Anatomy, 2014, 225, 71-82.	1.5	15
253	Carboxyl Terminus of Hsp70â€Interacting Protein Regulation of Osteoclast Formation in Mice Through Promotion of Tumor Necrosis Factor Receptor–Associated Factor 6 Protein Degradation. Arthritis and Rheumatology, 2014, 66, 1854-1863.	5.6	20
254	Deletion of a Single β-Catenin Allele in Osteocytes Abolishes the Bone Anabolic Response to Loading. Journal of Bone and Mineral Research, 2014, 29, 705-715.	2.8	104

#	Article	IF	CITATIONS
255	Runx2 Regulates Endochondral Ossification Through Control of Chondrocyte Proliferation and Differentiation. Journal of Bone and Mineral Research, 2014, 29, 2653-2665.	2.8	126
256	Effects of bioactive lipids and lipoproteins on bone. Trends in Endocrinology and Metabolism, 2014, 25, 53-59.	7.1	64
257	New concepts of breast cell communication to bone. Trends in Endocrinology and Metabolism, 2014, 25, 34-41.	7.1	25
258	Osteocyte control of bone remodeling: is sclerostin a key molecular coordinator of the balanced bone resorption–formation cycles?. Osteoporosis International, 2014, 25, 2685-2700.	3.1	133
259	Osteoimmunology: oncostatin M as a pleiotropic regulator of bone formation and resorption in health and disease. BoneKEy Reports, 2014, 3, 527.	2.7	58
260	Inflammatory factors in the circulation of patients with active rheumatoid arthritis stimulate osteoclastogenesis via endogenous cytokine production by osteoblasts. Osteoporosis International, 2014, 25, 2453-2463.	3.1	31
261	Temporal changes in systemic and local expression of bone turnover markers during six months of sclerostin antibody administration to ovariectomized rats. Bone, 2014, 67, 305-313.	2.9	85
262	Biomechanical forces in the skeleton and their relevance to bone metastasis: Biology and engineering considerations. Advanced Drug Delivery Reviews, 2014, 79-80, 119-134.	13.7	32
263	A method for isolating high quality RNA from mouse cortical and cancellous bone. Bone, 2014, 68, 1-5.	2.9	59
264	Osteocyte-derived RANKL is a critical mediator of the increased bone resorption caused by dietary calcium deficiency. Bone, 2014, 66, 146-154.	2.9	111
265	MicroRNAs and post-transcriptional regulation of skeletal development. Journal of Molecular Endocrinology, 2014, 52, R179-R197.	2.5	55
267	Diverse Osteoclastogenesis of Bone Marrow From Mandible Versus Long Bone. Journal of Periodontology, 2014, 85, 829-836.	3.4	24
268	Parathyroid Hormone Receptor Signaling Induces Bone Resorption in the Adult Skeleton by Directly Regulating the RANKL Gene in Osteocytes. Endocrinology, 2014, 155, 2797-2809.	2.8	92
269	Evidence for the role of connexin 43-mediated intercellular communication in the process of intracortical bone resorption via osteocytic osteolysis. BMC Musculoskeletal Disorders, 2014, 15, 122.	1.9	27
270	Effect of Age on Regulation of Human Osteoclast Differentiation. Journal of Cellular Biochemistry, 2014, 115, 1412-1419.	2.6	70
271	The mineral dissolution function of osteoclasts is dispensable for hypertrophic cartilage degradation during long bone development and growth. Developmental Biology, 2014, 393, 57-70.	2.0	25
272	Sex Steroid Actions in Male Bone. Endocrine Reviews, 2014, 35, 906-960.	20.1	239
273	MiR-7b directly targets DC-STAMP causing suppression of NFATc1 and c-Fos signaling during osteoclast fusion and differentiation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1084-1096.	1.9	81

#	Article	IF	CITATIONS
274	Estrogen receptor \hat{I}_{\pm} in osteocytes regulates trabecular bone formation in female mice. Bone, 2014, 60, 68-77.	2.9	92
275	Altered gene dosage confirms the genetic interaction between FIAT and αNAC. Gene, 2014, 538, 328-333.	2.2	7
276	Microgravity control of autophagy modulates osteoclastogenesis. Bone, 2014, 61, 125-131.	2.9	75
277	Glucocorticoids and bone: local effects and systemic implications. Trends in Endocrinology and Metabolism, 2014, 25, 197-211.	7.1	131
278	Wnt signaling and osteoporosis. Maturitas, 2014, 78, 233-237.	2.4	81
279	Modulation of endochondral ossification by MEK inhibitors PD0325901 and AZD6244 (Selumetinib). Bone, 2014, 59, 151-161.	2.9	22
281	SaOS2 Osteosarcoma Cells as an In Vitro Model for Studying the Transition of Human Osteoblasts to Osteocytes. Calcified Tissue International, 2014, 95, 183-193.	3.1	97
282	Elevated suppressor of cytokine signaling-1 (SOCS-1): a mechanism for dysregulated osteoclastogenesis in HIV transgenic rats. Pathogens and Disease, 2014, 71, 81-89.	2.0	9
283	A review of the differing roles of dead and live osteocytes. Journal of Oral Biosciences, 2014, 56, 101-104.	2.2	2
284	Oscillatory intracellular Ca2+ responses in living bone. Journal of Oral Biosciences, 2014, 56, 49-53.	2.2	1
285	Regulation of cortical and trabecular bone mass by communication between osteoblasts, osteocytes and osteoclasts. Archives of Biochemistry and Biophysics, 2014, 561, 22-28.	3.0	104
286	Decreased bone marrow stromal cells activity involves in unilateral anterior crossbite-induced early subchondral bone loss of temporomandibular joints. Archives of Oral Biology, 2014, 59, 962-969.	1.8	18
287	ERK1 and ERK2 Regulate Chondrocyte Terminal Differentiation During Endochondral Bone Formation. Journal of Bone and Mineral Research, 2015, 30, 765-774.	2.8	60
288	Osteocyte specific responses to soluble and mechanical stimuli in a stem cell derived culture model. Scientific Reports, 2015, 5, 11049.	3.3	42
289	FOXO1 inhibits osteoclastogenesis partially by antagnozing MYC. Scientific Reports, 2015, 5, 16835.	3.3	36
290	OsteoRheumatology: a new discipline?. RMD Open, 2015, 1, e000083.	3.8	9
292	EphrinB2 Signalling in Osteoblast Differentiation, Bone Formation and Endochondral Ossification. Current Molecular Biology Reports, 2015, 1, 148-156.	1.6	5
293	Effects of Deletion of ERα in Osteoblast-Lineage Cells on Bone Mass and Adaptation to Mechanical Loading Differ in Female and Male Mice. Journal of Bone and Mineral Research, 2015, 30, 1468-1480.	2.8	50

#	Article	IF	CITATIONS
295	Sclerostin Antibody Preserves the Morphology and Structure of Osteocytes and Blocks the Severe Skeletal Deterioration After Motor-Complete Spinal Cord Injury in Rats. Journal of Bone and Mineral Research, 2015, 30, 1994-2004.	2.8	60
297	Inflammatory focal bone destruction in femoral heads with endâ€stage haemophilic arthropathy: a study on clinic samples with microâ€ <scp>CT</scp> and histological analyses. Haemophilia, 2015, 21, e472-8.	2.1	5
298	Nur77 prevents excessive osteoclastogenesis by inducing ubiquitin ligase Cbl-b to mediate NFATc1 self-limitation. ELife, 2015, 4, e07217.	6.0	22
299	Hypothesis: Coupling between Resorption and Formation in Cancellous bone Remodeling is a Mechanically Controlled Event. Frontiers in Endocrinology, 2015, 6, 82.	3.5	22
300	Osteocyte-Derived Insulin-Like Growth Factor I Is Not Essential for the Bone Repletion Response in Mice. PLoS ONE, 2015, 10, e0115897.	2.5	12
301	Activation of HIFa Pathway in Mature Osteoblasts Disrupts the Integrity of the Osteocyte/Canalicular Network. PLoS ONE, 2015, 10, e0121266.	2.5	18
302	Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. BioMed Research International, 2015, 2015, 1-17.	1.9	1,134
303	Mechanism and Treatment Strategy of Osteoporosis after Transplantation. International Journal of Endocrinology, 2015, 2015, 1-10.	1.5	23
304	Skeletal Development. , 2015, , 505-530.		1
305	Epoxyeicosanoids suppress osteoclastogenesis and prevent ovariectomyâ€induced bone loss. FASEB Journal, 2015, 29, 1092-1101.	0.5	70
306	Effects of Intermittent Administration of Parathyroid Hormone on Bone Augmentation in Rat Calvarium. Implant Dentistry, 2015, Publish Ahead of Print, 142-8.	1.3	12
307	Estrogens antagonize RUNX2-mediated osteoblast-driven osteoclastogenesis through regulating RANKL membrane association. Bone, 2015, 75, 96-104.	2.9	39
308	Decitabine represses osteoclastogenesis through inhibition of RANK and NF-κB. Cellular Signalling, 2015, 27, 969-977.	3.6	15
309	Parathyroid hormone: anabolic and catabolic actions on the skeleton. Current Opinion in Pharmacology, 2015, 22, 41-50.	3.5	355
311	The androgen receptor has no direct antiresorptive actions in mouse osteoclasts. Molecular and Cellular Endocrinology, 2015, 411, 198-206.	3.2	34
312	RANKL blockade prevents and treats aggressive osteosarcomas. Science Translational Medicine, 2015, 7, 317ra197.	12.4	67
313	The osteocyte: key player in regulating bone turnover. RMD Open, 2015, 1, e000049.	3.8	71
314	Osteocytes and Skeletal Pathophysiology. Current Molecular Biology Reports, 2015, 1, 157-167.	1.6	44

#	Article	IF	CITATIONS
315	RANKL/OPG; Critical role in bone physiology. Reviews in Endocrine and Metabolic Disorders, 2015, 16, 131-139.	5.7	158
316	Intravital bone imaging by two-photon excitation microscopy to identify osteocytic osteolysis in vivo. Bone, 2015, 74, 134-139.	2.9	41
317	Strain energy density gradients in bone marrow predict osteoblast and osteoclast activity: A finite element study. Journal of Biomechanics, 2015, 48, 866-874.	2.1	38
318	Molecular and cellular basis of bone resorption. Wiener Medizinische Wochenschrift, 2015, 165, 48-53.	1.1	21
319	FGFR1 signaling in hypertrophic chondrocytes is attenuated by the Ras-GAP neurofibromin during endochondral bone formation. Human Molecular Genetics, 2015, 24, 2552-2564.	2.9	22
320	Activin A inhibits RANKL-mediated osteoclast formation, movement and function in murine bone marrow macrophage cultures. Journal of Cell Science, 2015, 128, 683-94.	2.0	25
321	Evolutionary Physiology of Bone: Bone Metabolism in Changing Environments. Physiology, 2015, 30, 17-29.	3.1	62
322	Bone cell mechanosensitivity, estrogen deficiency, and osteoporosis. Journal of Biomechanics, 2015, 48, 855-865.	2.1	107
323	Osteocytes as a record of bone formation dynamics: A mathematical model of osteocyte generation in bone matrix. Journal of Theoretical Biology, 2015, 364, 418-427.	1.7	24
324	Suppression of autophagy in osteocytes does not modify the adverse effects of glucocorticoids on cortical bone. Bone, 2015, 75, 18-26.	2.9	46
325	Control of Stemâ€Cell Behavior by Fine Tuning the Supramolecular Assemblies of Lowâ€Molecularâ€Weight Gelators. Angewandte Chemie - International Edition, 2015, 54, 4517-4521.	13.8	96
326	Treatment options for osteogenesis imperfecta. Expert Opinion on Orphan Drugs, 2015, 3, 165-181.	0.8	19
327	Interleukin-1-induced acute bone resorption facilitates the secretion of fibroblast growth factor 23 into the circulation. Journal of Bone and Mineral Metabolism, 2015, 33, 342-354.	2.7	32
328	Fate of growth plate hypertrophic chondrocytes: Death or lineage extension?. Development Growth and Differentiation, 2015, 57, 179-192.	1.5	90
329	Strontium delivery on topographical titanium to enhance bioactivity and osseointegration in osteoporotic rats. Journal of Materials Chemistry B, 2015, 3, 4790-4804.	5.8	31
330	The Multifaceted Role of the Vasculature in Endochondral Fracture Repair. Frontiers in Endocrinology, 2015, 6, 4.	3.5	104
331	Overexpression of Arl6ip5 in osteoblast regulates RANKL subcellualr localization. Biochemical and Biophysical Research Communications, 2015, 464, 1275-1281.	2.1	3
332	Glucocorticoid-Induced Osteoporosis. Advances in Experimental Medicine and Biology, 2015, 872, 179-215.	1.6	135

#	ARTICLE	IF	CITATIONS
333	TLR5, a novel mediator of innate immunityâ€induced osteoclastogenesis and bone loss. FASEB Journal, 2015, 29, 4449-4460.	0.5	39
334	Glucocorticoid Signaling. Advances in Experimental Medicine and Biology, 2015, , .	1.6	15
335	Altered ultrastructure, density and cathepsin K expression in bone of female muscarinic acetylcholine receptor M3 knockout mice. International Immunopharmacology, 2015, 29, 201-207.	3.8	10
336	p47 -Nox2-dependent ROS Signaling Inhibits Early Bone Development in Mice but Protects against Skeletal Aging. Journal of Biological Chemistry, 2015, 290, 14692-14704.	3.4	27
337	The Role of Estrogen Receptor in Bone Cells. Clinical Reviews in Bone and Mineral Metabolism, 2015, 13, 105-112.	0.8	5
338	The Wnt Inhibitor Sclerostin Is Up-regulated by Mechanical Unloading in Osteocytes in Vitro. Journal of Biological Chemistry, 2015, 290, 16744-16758.	3.4	241
339	Bmpr1a Signaling in Cartilage Development and Endochondral Bone Formation. Vitamins and Hormones, 2015, 99, 273-291.	1.7	19
340	Minireview: Nuclear Receptor Regulation of Osteoclast and Bone Remodeling. Molecular Endocrinology, 2015, 29, 172-186.	3.7	31
341	Wnt16 regulates osteoclast differentiation in conjunction with Wnt5a. Biochemical and Biophysical Research Communications, 2015, 463, 1278-1283.	2.1	39
342	Bone Is a Major Target of PTH/PTHrP Receptor Signaling in Regulation of Fetal Blood Calcium Homeostasis. Endocrinology, 2015, 156, 2774-2780.	2.8	11
343	Estrogen preserves Fas ligand levels by inhibiting microRNA-181a in bone marrow-derived mesenchymal stem cells to maintain bone remodeling balance. FASEB Journal, 2015, 29, 3935-3944.	0.5	43
344	Post-Traumatic Arthritis. , 2015, , .		6
345	The regulation of osteoclast differentiation by Wnt signals. BoneKEy Reports, 2015, 4, 713.	2.7	47
346	The DNA Helicase Recql4 Is Required for Normal Osteoblast Expansion and Osteosarcoma Formation. PLoS Genetics, 2015, 11, e1005160.	3.5	34
347	Novel approaches for two and three dimensional multiplexed imaging of osteocytes. Bone, 2015, 76, 129-140.	2.9	85
348	A DNA Segment Spanning the Mouse <i>Tnfsf11</i> Transcription Unit and Its Upstream Regulatory Domain Rescues the Pleiotropic Biologic Phenotype of the RANKL Null Mouse. Journal of Bone and Mineral Research, 2015, 30, 855-868.	2.8	18
349	Tartrate-resistant acid phosphatase (TRAP) co-localizes with receptor activator of NF-KB ligand (RANKL) and osteoprotegerin (OPG) in lysosomal-associated membrane protein 1 (LAMP1)-positive vesicles in rat osteoblasts and osteocytes. Histochemistry and Cell Biology, 2015, 143, 195-207.	1.7	44
350	Smad1/5 and Smad4 Expression Are Important for Osteoclast Differentiation. Journal of Cellular Biochemistry, 2015, 116, 1350-1360.	2.6	24

ARTICLE IF CITATIONS Management of Post-Stroke Complications., 2015,,. 4 351 Involvement of osteocytes in cancer bone niche., 2015,, 65-72. 353 Quantifying the osteocyte network in the human skeleton. Bone, 2015, 75, 144-150. 2.9 226 Osteoblast-induced osteoclast apoptosis by fas ligand/FAS pathway is required for maintenance of 354 11.2 bone mass. Cell Death and Differentiation, 2015, 22, 1654-1664. DCIR Maintains Bone Homeostasis by Regulating IFN-1³ Production in T Cells. Journal of Immunology, 355 0.8 34 2015, 194, 5681-5691. Impaired Bone Homeostasis in Amyotrophic Lateral Sclerosis Mice with Muscle Atrophy. Journal of Biological Chemistry, 2015, 290, 8081-8094. 3.4 Analyses of bone modeling and remodeling using in vitro reconstitution system with two-photon 357 2.9 18 microscopy. Bone, 2015, 76, 5-17. Ablation of $p38\hat{1}\pm$ MAPK Signaling in Osteoblast Lineage Cells Protects Mice From Bone Loss Induced by 2.8 Estrogen Deficiency. Endocrinology, 2015, 156, 4377-4387. Bone remodeling in the context of cellular and systemic regulation: the role of osteocytes and the 359 2.5 56 nervous system. Journal of Molecular Endocrinology, 2015, 55, R23-R36. Muscle-Bone Crosstalk in Amyotrophic Lateral Sclerosis. Current Osteoporosis Reports, 2015, 13, 3.6 274-279. Inhibition of Osteocyte Apoptosis Prevents the Increase in Osteocytic Receptor Activator of Nuclear Factor κB Ligand (RÁNKL) but Does Not Stop Bone Resorption or the Loss of Bone Induced by Unloading. 361 3.4 74 Journal of Biological Chemistry, 2015, 290, 18934-18942. Porphyromonas gingivalis Stimulates Bone Resorption by Enhancing RANKL (Receptor Activator of) Tj ETQq1 1 0.784314 rgBT /Overla 3.4 Chemistry, 2015, 290, 20147-20158. 363 Skeletal Tissue Mechanics., 2015,,. 203 Exercise and Regulation of Bone and Collagen Tissue Biology. Progress in Molecular Biology and 364 1.7 Translational Science, 2015, 135, 259-291 365 Cellular Actions of PTH., 2015, , 127-137. 10 Anabolic and Catabolic Pathways of Parathyroid Hormone on the Skeleton., 2015, , 233-244. Connexin 43 Channels Are Essential for Normal Bone Structure and Osteocyte Viability. Journal of 367 2.8 85 Bone and Mineral Research, 2015, 30, 436-448. The parathyroid hormone-regulated transcriptome in osteocytes: Parallel actions with 368 1,25-dihydroxyvitamin D3 to oppose gene expression changes during differentiation and to promote mature cell function. Bone, 2015, 72, 81-91.

#	Article	IF	CITATIONS
369	Isolation and gene expression of haematopoietic-cell-free preparations of highly purified murine osteocytes. Bone, 2015, 72, 34-42.	2.9	42
370	Alternative pathways of osteoclastogenesis in inflammatory arthritis. Nature Reviews Rheumatology, 2015, 11, 189-194.	8.0	104
371	The role of integrin αVβ3 in osteocyte mechanotransduction. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 42, 67-75.	3.1	58
372	Glucocorticoid-induced osteoporosis: who to treat with what agent?. Nature Reviews Rheumatology, 2015, 11, 98-109.	8.0	129
373	STAT-6 mediates TRAIL induced RANK ligand expression in stromal/preosteoblast cells. Bone, 2015, 71, 137-144.	2.9	14
374	HDAC5 Controls MEF2C-Driven Sclerostin Expression in Osteocytes. Journal of Bone and Mineral Research, 2015, 30, 400-411.	2.8	132
375	The Role of Hormones in the Regulation of Bone Turnover and Eggshell Calcification. , 2015, , 549-575.		12
376	Changes in the spatial distribution of sclerostin in the osteocytic lacuno-canalicular system in alveolar bone due to orthodontic forces, as detected on multimodal confocal fluorescence imaging analyses. Archives of Oral Biology, 2015, 60, 45-54.	1.8	30
377	Establishment of optimized in vitro assay methods for evaluating osteocyte functions. Journal of Bone and Mineral Metabolism, 2015, 33, 73-84.	2.7	13
378	Cytokine measurements in Brazilian postmenopausal osteoporosis patients reveal high levels of IL-8. Scientia Medica, 2016, 26, 23399.	0.3	1
379	Tooth movement and mechanical stress -Role of osteocytes and osteoimmune factor Journal of Japanese Society of Periodontology, 2016, 58, 213-228.	0.1	1
380	Osteoarthritis and the Immune System. , 2016, , 257-269.		1
381	The Variety of Osteocyte Function. , 2016, , 83-102.		1
382	The Role of the Immune System in the Development of Osteoporosis and Fracture Risk. , 2016, , 187-214.		2
383	Unfractionated Heparin Promotes Osteoclast Formation in Vitro by Inhibiting Osteoprotegerin Activity. International Journal of Molecular Sciences, 2016, 17, 613.	4.1	20
384	The Effects of Immune Cell Products (Cytokines and Hematopoietic Cell Growth Factors) on Bone Cells. , 2016, , 143-167.		9
385	Clinical applications of vibration therapy in orthopaedic practice. Muscles, Ligaments and Tendons Journal, 2016, 6, 147-56.	0.3	21
386	Osteocyte isolation and culture methods. BoneKEy Reports, 2016, 5, 838.	2.7	28

#	Article	IF	CITATIONS
387	The Modulatory Effects of Mesenchymal Stem Cells on Osteoclastogenesis. Stem Cells International, 2016, 2016, 1-13.	2.5	35
388	Cell Death in Chondrocytes, Osteoblasts, and Osteocytes. International Journal of Molecular Sciences, 2016, 17, 2045.	4.1	126
389	Scientometric overview regarding the nanobiomaterials in dentistry. , 2016, , 425-453.		6
390	Avenanthramides Prevent Osteoblast and Osteocyte Apoptosis and Induce Osteoclast Apoptosis in Vitro in an Nrf2-Independent Manner. Nutrients, 2016, 8, 423.	4.1	31
391	Integrin-Alpha IIb Identifies Murine Lymph Node Lymphatic Endothelial Cells Responsive to RANKL. PLoS ONE, 2016, 11, e0151848.	2.5	46
392	Toll-Like Receptor 2 Stimulation of Osteoblasts Mediates Staphylococcus Aureus Induced Bone Resorption and Osteoclastogenesis through Enhanced RANKL. PLoS ONE, 2016, 11, e0156708.	2.5	53
393	Cancer Cell Colonisation in the Bone Microenvironment. International Journal of Molecular Sciences, 2016, 17, 1674.	4.1	80
394	Identification of Senescent Cells in the Bone Microenvironment. Journal of Bone and Mineral Research, 2016, 31, 1920-1929.	2.8	352
395	Deletion of the Distal <i>Tnfsf11</i> RL-D2 Enhancer That Contributes to PTH-Mediated RANKL Expression in Osteoblast Lineage Cells Results in a High Bone Mass Phenotype in Mice. Journal of Bone and Mineral Research, 2016, 31, 416-429.	2.8	33
396	Conditioned medium from fresh and demineralized bone enhances osteoclastogenesis in murine bone marrow cultures. Clinical Oral Implants Research, 2016, 27, 226-232.	4.5	9
397	Targeting of Mesenchymal Stromal Cells by <i>Cre</i> -Recombinase Transgenes Commonly Used to Target Osteoblast Lineage Cells. Journal of Bone and Mineral Research, 2016, 31, 2001-2007.	2.8	88
398	Characterisation of matrix vesicles in skeletal and soft tissue mineralisation. Bone, 2016, 87, 147-158.	2.9	133
399	T-Type voltage-sensitive calcium channels mediate mechanically-induced intracellular calcium oscillations in osteocytes by regulating endoplasmic reticulum calcium dynamics. Bone, 2016, 88, 56-63.	2.9	38
400	Osteocytic signalling pathways as therapeutic targets for bone fragility. Nature Reviews Endocrinology, 2016, 12, 593-605.	9.6	145
401	The role of osteoblasts in bone metastasis. Journal of Bone Oncology, 2016, 5, 124-127.	2.4	83
402	Long-duration bed rest as an analog to microgravity. Journal of Applied Physiology, 2016, 120, 891-903.	2.5	234
403	Isolation of osteocytes from human trabecular bone. Bone, 2016, 88, 64-72.	2.9	35
404	Smad4 controls bone homeostasis through regulation of osteoblast/osteocyte viability. Experimental and Molecular Medicine, 2016, 48, e256-e256.	7.7	32

#	Article	IF	CITATIONS
405	RANKL (Receptor Activator of NFκB Ligand) Produced by Osteocytes Is Required for the Increase in B Cells and Bone Loss Caused by Estrogen Deficiency in Mice. Journal of Biological Chemistry, 2016, 291, 24838-24850.	3.4	82
406	Immobilization and long-term recovery results in large changes in bone structure and strength but no corresponding alterations of osteocyte lacunar properties. Bone, 2016, 91, 139-147.	2.9	38
407	Cell-specific paracrine actions of IL-6 family cytokines from bone, marrow and muscle that control bone formation and resorption. International Journal of Biochemistry and Cell Biology, 2016, 79, 14-23.	2.8	96
408	Targeted disruption of BMP signaling through type IA receptor (BMPR1A) in osteocyte suppresses SOST and RANKL, leading to dramatic increase in bone mass, bone mineral density and mechanical strength. Bone, 2016, 91, 53-63.	2.9	43
409	E11/Podoplanin Protein Stabilization Through Inhibition of the Proteasome Promotes Osteocyte Differentiation in Murine in Vitro Models. Journal of Cellular Physiology, 2016, 231, 1392-1404.	4.1	22
410	Cortical bone loss caused by glucocorticoid excess requires RANKL production by osteocytes and is associated with reduced OPG expression in mice. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E587-E593.	3.5	88
411	Quiescent Bone Lining Cells Are a Major Source of Osteoblasts During Adulthood. Stem Cells, 2016, 34, 2930-2942.	3.2	142
412	Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage–bone crosstalk. Nature Reviews Rheumatology, 2016, 12, 632-644.	8.0	581
413	β-catenin activity in late hypertrophic chondrocytes locally orchestrates osteoblastogenesis and osteoclastogenesis. Development (Cambridge), 2016, 143, 3826-3838.	2.5	59
414	Cementocytes Express Receptor Activator ofÂtheÂNuclear Factor Kappa-B Ligand inÂResponse to Endodontic Infection in Mice. Journal of Endodontics, 2016, 42, 1251-1257.	3.1	15
415	PPARG Post-translational Modifications Regulate Bone Formation and Bone Resorption. EBioMedicine, 2016, 10, 174-184.	6.1	64
416	Low bone mass and changes in the osteocyte network in mice lacking autophagy in the osteoblast lineage. Scientific Reports, 2016, 6, 24262.	3.3	83
417	SIKs control osteocyte responses to parathyroid hormone. Nature Communications, 2016, 7, 13176.	12.8	124
418	Activation of mTORC1 in B Lymphocytes Promotes Osteoclast Formation via Regulation of β-Catenin and RANKL/OPG. Journal of Bone and Mineral Research, 2016, 31, 1320-1333.	2.8	36
419	Mitogenâ€inducible geneâ€6 partly mediates the inhibitory effects of prenatal dexamethasone exposure on endochondral ossification in long bones of fetal rats. British Journal of Pharmacology, 2016, 173, 2250-2262.	5.4	29
420	Sclerostin expression in bone tumours and tumourâ€like lesions. Histopathology, 2016, 69, 470-478.	2.9	14
421	The effects of tumour necrosis factorâ€Î± on bone cells involved in periodontal alveolar bone loss; osteoclasts, osteoblasts and osteocytes. Journal of Periodontal Research, 2016, 51, 549-566.	2.7	80
422	Physiological and pathophysiological bone turnover — role of the immune system. Nature Reviews Endocrinology, 2016, 12, 518-532.	9.6	158

#	Article	IF	CITATIONS
423	Unique Distal Enhancers Linked to the Mouse Tnfsf11 Gene Direct Tissue-Specific and Inflammation-Induced Expression of RANKL. Endocrinology, 2016, 157, 482-496.	2.8	26
424	Interferon-β produced by osteocytes may negatively regulate osteoclastogenesis. Journal of Oral Biosciences, 2016, 58, 78-80.	2.2	0
425	Hajdu-Cheney Syndrome, a Disease Associated with NOTCH2 Mutations. Current Osteoporosis Reports, 2016, 14, 126-131.	3.6	30
426	Osteocyte Apoptosis Caused by Hindlimb Unloading is Required to Trigger Osteocyte RANKL Production and Subsequent Resorption of Cortical and Trabecular Bone in Mice Femurs. Journal of Bone and Mineral Research, 2016, 31, 1356-1365.	2.8	135
427	The <i>Dmp1â€SOST</i> Transgene Interacts With and Downregulates the <i>Dmp1â€Cre</i> Transgene and the <i>Rosa^{Notch}</i> Allele. Journal of Cellular Biochemistry, 2016, 117, 1222-1232.	2.6	4
428	Suppressed osteoclast differentiation at the chondro-osseous junction mediates endochondral ossification retardation in long bones of Wistar fetal rats with prenatal ethanol exposure. Toxicology and Applied Pharmacology, 2016, 305, 234-241.	2.8	15
429	Strontium content and collagenâ€l coating of Magnesium–Zirconia–Strontium implants influence osteogenesis and bone resorption. Clinical Oral Implants Research, 2016, 27, e15-24.	4.5	13
430	Dual Effect of Cyanidin on RANKLâ€Induced Differentiation and Fusion of Osteoclasts. Journal of Cellular Physiology, 2016, 231, 558-567.	4.1	46
431	RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation. Annals of the Rheumatic Diseases, 2016, 75, 1187-1195.	0.9	177
432	Canonical Notch activation in osteocytes causes osteopetrosis. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E171-E182.	3.5	41
433	Overcoming physical constraints in bone engineering: â€~the importance of being vascularized'. Journal of Biomaterials Applications, 2016, 30, 940-951.	2.4	31
434	Hajdu Cheney Mouse Mutants Exhibit Osteopenia, Increased Osteoclastogenesis, and Bone Resorption. Journal of Biological Chemistry, 2016, 291, 1538-1551.	3.4	66
435	Osteocytes: The master cells in bone remodelling. Current Opinion in Pharmacology, 2016, 28, 24-30.	3.5	170
436	Elcatonin prevents bone loss caused by skeletal unloading by inhibiting preosteoclast fusion through the unloading-induced high expression of calcitonin receptors in bone marrow cells. Bone, 2016, 85, 70-80.	2.9	13
437	Molecular Actions of Glucocorticoids in Cartilage and Bone During Health, Disease, and Steroid Therapy. Physiological Reviews, 2016, 96, 409-447.	28.8	173
438	Osteoporosis: Pathophysiology and Epidemiology. , 2016, , 1-16.		0
439	The Role of Osteocytes in Age-Related Bone Loss. Current Osteoporosis Reports, 2016, 14, 16-25.	3.6	119
440	Retinoic acid-induced premature osteoblast-to-preosteocyte transitioning has multiple effects on calvarial development. Development (Cambridge), 2016, 143, 1205-16.	2.5	23

#	Article	IF	CITATIONS
441	AAV8-mediated expression of N-acetylglucosamine-1-phosphate transferase attenuates bone loss in a mouse model of mucolipidosis II. Molecular Genetics and Metabolism, 2016, 117, 447-455.	1.1	10
442	Systemic Inflammation Affects Human Osteocyte-Specific Protein and Cytokine Expression. Calcified Tissue International, 2016, 98, 596-608.	3.1	60
443	Experimental studies of bone mechanoadaptation: bridging in vitro and in vivo studies with multiscale systems. Interface Focus, 2016, 6, 20150071.	3.0	19
444	The effects of proteasome inhibitors on bone remodeling in multiple myeloma. Bone, 2016, 86, 131-138.	2.9	39
445	Supramolecular assemblies of histidinylated β-cyclodextrin for enhanced oligopeptide delivery into osteoclast precursors. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 490-504.	3.5	6
446	Study of Osteoclast Adhesion to Cortical Bone Surfaces: A Correlative Microscopy Approach for Concomitant Imaging of Cellular Dynamics and Surface Modifications. ACS Applied Materials & Interfaces, 2016, 8, 14932-14943.	8.0	13
447	Regulation of bone metabolism by Wnt signals. Journal of Biochemistry, 2016, 159, 387-392.	1.7	167
448	Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiological Reviews, 2016, 96, 365-408.	28.8	1,253
449	The role of osteoclast differentiation and function in skeletal homeostasis. Journal of Biochemistry, 2016, 159, 1-8.	1.7	122
450	Effects of Antiseptic Solutions Commonly Used in Dentistry on Bone Viability, Bone Morphology, and Release of Growth Factors. Journal of Oral and Maxillofacial Surgery, 2016, 74, 247-254.	1.2	15
451	The best of both worlds — managing the cancer, saving the bone. Nature Reviews Endocrinology, 2016, 12, 29-42.	9.6	35
452	Osteoclasts are recruited to the subchondral bone in naturally occurring post-traumatic equine carpal osteoarthritis and may contribute to cartilage degradation. Osteoarthritis and Cartilage, 2016, 24, 555-566.	1.3	69
453	Muscle-bone interactions: From experimental models to the clinic? A critical update. Molecular and Cellular Endocrinology, 2016, 432, 14-36.	3.2	115
454	Bone Development and Remodeling. , 2016, , 1038-1062.e8.		6
455	Parathyroid Hormone and the Parathyroid Hormone Receptor Type 1 in the Regulation of Calcium and Phosphate Homeostasis and Bone Metabolism. , 2016, , 969-990.e10.		4
456	Immediate effects of retinoic acid on gene expression in primary murine osteoblasts. Journal of Bone and Mineral Metabolism, 2016, 34, 161-170.	2.7	5
457	Effects of Sex and Notch Signaling on the Osteocyte Cell Pool. Journal of Cellular Physiology, 2017, 232, 363-370.	4.1	11
458	Murine <i>Ranklâ^'/â^'</i> Mesenchymal Stromal Cells Display an Osteogenic Differentiation Defect Improved by a RANKL-Expressing Lentiviral Vector. Stem Cells, 2017, 35, 1365-1377.	3.2	18

#	Article	IF	CITATIONS
459	Circulating Dickkopf-1 and sclerostin in patients with Paget's disease of bone. Clinical Rheumatology, 2017, 36, 925-928.	2.2	10
460	Nuclear factor l reciprocally regulates adipocyte and osteoblast differentiation <i>via</i> control of canonical Wnt signaling. FASEB Journal, 2017, 31, 1939-1952.	0.5	39
461	Mechanisms of bone response to injury. Journal of Veterinary Diagnostic Investigation, 2017, 29, 385-395.	1.1	22
462	Surface microtopography modulates sealing zone development in osteoclasts cultured on bone. Journal of the Royal Society Interface, 2017, 14, 20160958.	3.4	15
463	Inhibition of lipopolysaccharide-induced osteoclast formation and bone resorption in vitro and in vivo by cysteine proteinase inhibitors. Journal of Leukocyte Biology, 2017, 101, 1233-1243.	3.3	28
464	Bone remodeling as a spatial evolutionary game. Journal of Theoretical Biology, 2017, 418, 16-26.	1.7	13
465	SMURF2 regulates bone homeostasis by disrupting SMAD3 interaction with vitamin D receptor in osteoblasts. Nature Communications, 2017, 8, 14570.	12.8	52
466	Lipoxin A4 suppresses osteoclastogenesis in RAW264.7 cells and prevents ovariectomy-induced bone loss. Experimental Cell Research, 2017, 352, 293-303.	2.6	35
467	Loss of menin in osteoblast lineage affects osteocyte–osteoclast crosstalk causing osteoporosis. Cell Death and Differentiation, 2017, 24, 672-682.	11.2	47
468	Osteoblastic Lrp4 promotes osteoclastogenesis by regulating ATP release and adenosine-A2AR signaling. Journal of Cell Biology, 2017, 216, 761-778.	5.2	20
469	Postnatal Calvarial Skeletal Stem Cells Expressing PRX1 Reside Exclusively inÂthe Calvarial Sutures and Are Required for Bone Regeneration. Stem Cell Reports, 2017, 8, 933-946.	4.8	113
470	<scp>DNA</scp> damage and senescence in osteoprogenitors expressing Osx1 may cause their decrease with age. Aging Cell, 2017, 16, 693-703.	6.7	146
471	Targeted Disruption of <i>NF1</i> in Osteocytes Increases FGF23 and Osteoid With Osteomalacia-like Bone Phenotype. Journal of Bone and Mineral Research, 2017, 32, 1716-1726.	2.8	18
472	Deletion of a Distal RANKL Gene Enhancer Delays Progression of Atherosclerotic Plaque Calcification in Hypercholesterolemic Mice. Journal of Cellular Biochemistry, 2017, 118, 4240-4253.	2.6	4
473	Bone Loss in HIV Infection. Current Treatment Options in Infectious Diseases, 2017, 9, 52-67.	1.9	37
474	Three-dimensional system enabling the maintenance and directed differentiation of pluripotent stem cells under defined conditions. Science Advances, 2017, 3, e1602875.	10.3	47
475	Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218: A novel mechanism in muscle-bone communication. Journal of Biological Chemistry, 2017, 292, 11021-11033.	3.4	207
477	Inhibition of the insulin-like growth factor-1 receptor potentiates acute effects of castration in a rat model for prostate cancer growth in bone. Clinical and Experimental Metastasis, 2017, 34, 261-271.	3.3	10

		CITATION REPO	ORT	
#	Article	I	IF	CITATIONS
478	Osteocyte Mechanobiology. Current Osteoporosis Reports, 2017, 15, 318-325.	:	3.6	141
479	Osteocyte Regulation of Receptor Activator of NF-κB Ligand/Osteoprotegerin in a Sheep Model of Osteoporosis. American Journal of Pathology, 2017, 187, 1686-1699.		3.8	14
480	The role of stromal cells in inflammatory bone loss. Clinical and Experimental Immunology, 2017, 1 1-11.	89,	2.6	33
481	Hypomorphic conditional deletion of E11/Podoplanin reveals a role in osteocyte dendrite elongatic Journal of Cellular Physiology, 2017, 232, 3006-3019.	n.	4.1	28
482	Embryonic Skeletogenesis and Craniofacial Development. , 2017, , 39-72.			1
483	Glucocorticoid suppression of osteocyte perilacunar remodeling is associated with subchondral bone degeneration in osteonecrosis. Scientific Reports, 2017, 7, 44618.		3.3	71
484	IL-6 Enhances Osteocyte-Mediated Osteoclastogenesis by Promoting JAK2 and RANKL Activity In V Cellular Physiology and Biochemistry, 2017, 41, 1360-1369.	itro.	1.6	165
485	Osteocytes and Their Messengers as Targets for the Treatment of Multiple Myeloma. Clinical Revie in Bone and Mineral Metabolism, 2017, 15, 49-56.	ws	0.8	4
486	Bone Resorption Is Regulated by Circadian Clock in Osteoblasts. Journal of Bone and Mineral Research, 2017, 32, 872-881.	:	2.8	81
487	Histological evidence that metformin reverses the adverse effects of diabetes on orthodontic tooth movement in rats. Journal of Molecular Histology, 2017, 48, 73-81.	n I	2.2	23
488	The Role of the Osteocyte in Bone and Nonbone Disease. Endocrinology and Metabolism Clinics of North America, 2017, 46, 1-18.		3.2	97
489	Biology and Mechanisms of Action of the Vitamin D Hormone. Endocrinology and Metabolism Clini of North America, 2017, 46, 815-843.	cs	3.2	185
490	Diet and Exercise: a Match Made in Bone. Current Osteoporosis Reports, 2017, 15, 555-563.	:	3.6	37
492	Bone corticalization requires local SOCS3 activity and is promoted by androgen action via interleukin-6. Nature Communications, 2017, 8, 806.		12.8	32
493	SHP2 Regulates the Osteogenic Fate of Growth Plate Hypertrophic Chondrocytes. Scientific Repor 2017, 7, 12699.	ts,	3.3	27
494	Protein kinase N3 promotes bone resorption by osteoclasts in response to Wnt5a-Ror2 signaling. Science Signaling, 2017, 10, .		3.6	60
495	Targeting subchondral bone mesenchymal stem cell activities for intrinsic joint repair in osteoarthritis. Future Science OA, 2017, 3, FSO228.		1.9	21
496	Aging, Osteocytes, and Mechanotransduction. Current Osteoporosis Reports, 2017, 15, 401-411.		3.6	156

#	Article	IF	CITATIONS
497	Osteocyte regulation of orthodontic force-mediated tooth movement via RANKL expression. Scientific Reports, 2017, 7, 8753.	3.3	65
498	Unexpected Bone Formation Produced by RANKL Blockade. Trends in Endocrinology and Metabolism, 2017, 28, 695-704.	7.1	20
499	Bone mechanobiology in mice: toward single-cell in vivo mechanomics. Biomechanics and Modeling in Mechanobiology, 2017, 16, 2017-2034.	2.8	9
500	From the bench to exploration medicine: NASA life sciences translational research for human exploration and habitation missions. Npj Microgravity, 2017, 3, 5.	3.7	23
501	The interfacial pH of acidic degradable polymeric biomaterials and its effects on osteoblast behavior. Scientific Reports, 2017, 7, 6794.	3.3	36
502	Osteoimmunology: The Conceptual Framework Unifying the Immune and Skeletal Systems. Physiological Reviews, 2017, 97, 1295-1349.	28.8	347
503	Estrogen Regulates Bone Turnover by Targeting RANKL Expression in Bone Lining Cells. Scientific Reports, 2017, 7, 6460.	3.3	150
504	The Microdamage and Expression of Sclerostin in Peri-implant Bone under One-time Shock Force Generated by Impact. Scientific Reports, 2017, 7, 6508.	3.3	4
505	Differential responses of mechanosensitive osteocyte proteins in fore- and hindlimbs of hindlimb-unloaded rats. Bone, 2017, 105, 26-34.	2.9	20
506	FAM19A5, a brain-specific chemokine, inhibits RANKL-induced osteoclast formation through formyl peptide receptor 2. Scientific Reports, 2017, 7, 15575.	3.3	34
507	Postmenopausal Osteoporosis. , 2017, , 125-140.		1
508	Parathyroid hormone inhibits Notch signaling in osteoblasts and osteocytes. Bone, 2017, 103, 159-167.	2.9	38
509	The intra-articular injection of RANKL-binding peptides inhibits cartilage degeneration in a murine model of osteoarthritis. Journal of Pharmacological Sciences, 2017, 134, 124-130.	2.5	10
510	Vitamin D regulates osteocyte survival and perilacunar remodeling in human and murine bone. Bone, 2017, 103, 78-87.	2.9	60
511	Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiological Reviews, 2017, 97, 135-187.	28.8	541
512	Control of Bone Anabolism in Response to Mechanical Loading and PTH by Distinct Mechanisms Downstream of the PTH Receptor. Journal of Bone and Mineral Research, 2017, 32, 522-535.	2.8	89
513	Beta-adrenergic signaling affect osteoclastogenesis via osteocytic MLO-Y4 cells' RANKL production. Biochemical and Biophysical Research Communications, 2017, 488, 634-640.	2.1	18
514	Deletion of FoxO1, 3, and 4 in Osteoblast Progenitors Attenuates the Loss of Cancellous Bone Mass in a Mouse Model of Type 1 Diabetes. Journal of Bone and Mineral Research, 2017, 32, 60-69.	2.8	28

#	Article	IF	CITATIONS
515	Cellâ€toâ€cell communication in guided bone regeneration: molecular and cellular mechanisms. Clinical Oral Implants Research, 2017, 28, 1139-1146.	4.5	35
516	Absence of the Vitamin D Receptor Inhibits Atherosclerotic Plaque Calcification in Female Hypercholesterolemic Mice. Journal of Cellular Biochemistry, 2017, 118, 1050-1064.	2.6	7
517	The role of osteocytes during experimental orthodontic tooth movement: A review. Archives of Oral Biology, 2017, 73, 25-33.	1.8	24
518	Maintenance of Bone Homeostasis by DLL1â€Mediated Notch Signaling. Journal of Cellular Physiology, 2017, 232, 2569-2580.	4.1	20
519	Recombinant DNA cloning of the active region of the receptor activator of NF-κB ligand (RANKL) gene and its role in osteoclastogenesis. Biotechnology and Bioprocess Engineering, 2017, 22, 686-692.	2.6	1
521	Bones, Joints, Tendons, and Ligaments. , 2017, , 954-1008.e2.		7
522	Dmp1 Promoter-Driven Diphtheria Toxin Receptor Transgene Expression Directs Unforeseen Effects in Multiple Tissues. International Journal of Molecular Sciences, 2017, 18, 29.	4.1	6
523	Biology, Physiology, and Morphology of Bone. , 2017, , 60-65.		0
524	Excessive dietary intake of vitamin A reduces skull bone thickness in mice. PLoS ONE, 2017, 12, e0176217.	2.5	18
525	A Jak1/2 inhibitor, baricitinib, inhibits osteoclastogenesis by suppressing RANKL expression in osteoblasts in vitro. PLoS ONE, 2017, 12, e0181126.	2.5	68
525 526		2.5 2.6	68 377
	osteoblasts in vitro. PLoS ONE, 2017, 12, e0181126. Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation. Molecules		
526	osteoblasts in vitro. PLoS ONE, 2017, 12, e0181126. Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation. Molecules and Cells, 2017, 40, 706-713.		377
526 527	osteoblasts in vitro. PLoS ONE, 2017, 12, e0181126. Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation. Molecules and Cells, 2017, 40, 706-713. Biology of the Normal Joint. , 2017, , 1-19.e4.	2.6	377 5
526 527 528	osteoblasts in vitro. PLoS ONE, 2017, 12, e0181126. Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation. Molecules and Cells, 2017, 40, 706-713. Biology of the Normal Joint., 2017, , 1-19.e4. Central RANK signalling in NPY neurons alters bone mass in male mice. Neuropeptides, 2018, 68, 75-83.	2.6 2.2	377 5 8
526 527 528 529	osteoblasts in vitro. PLoS ONE, 2017, 12, e0181126. Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation. Molecules and Cells, 2017, 40, 706-713. Biology of the Normal Joint. , 2017, , 1-19.e4. Central RANK signalling in NPY neurons alters bone mass in male mice. Neuropeptides, 2018, 68, 75-83. Host defense against oral microbiota by bone-damaging T cells. Nature Communications, 2018, 9, 701. RANKL deletion in periodontal ligament and bone lining cells blocks orthodontic tooth movement.	2.6 2.2 12.8	377 5 8 215
526 527 528 529 530	osteoblasts in vitro. PLoS ONE, 2017, 12, e0181126. Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation. Molecules and Cells, 2017, 40, 706-713. Biology of the Normal Joint. , 2017, , 1-19.e4. Central RANK signalling in NPY neurons alters bone mass in male mice. Neuropeptides, 2018, 68, 75-83. Host defense against oral microbiota by bone-damaging T cells. Nature Communications, 2018, 9, 701. RANKL deletion in periodontal ligament and bone lining cells blocks orthodontic tooth movement. International Journal of Oral Science, 2018, 10, 3.	2.6 2.2 12.8 8.6	377 5 8 215 61

#	Article	IF	Citations
534	Early bone tissue aging in human auditory ossicles is accompanied by excessive hypermineralization, osteocyte death and micropetrosis. Scientific Reports, 2018, 8, 1920.	3.3	40
535	Recent advances in osteoclast biology. Histochemistry and Cell Biology, 2018, 149, 325-341.	1.7	282
536	The bone remodelling cycle. Annals of Clinical Biochemistry, 2018, 55, 308-327.	1.6	348
537	Transforming growth factor-Î ² in stem cells and tissue homeostasis. Bone Research, 2018, 6, 2.	11.4	262
538	HIF signaling in osteoblast-lineage cells promotes systemic breast cancer growth and metastasis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E992-E1001.	7.1	74
539	Solute Transport in the Bone Lacunar-Canalicular System (LCS). Current Osteoporosis Reports, 2018, 16, 32-41.	3.6	56
540	Autophagy as a target for glucocorticoid-induced osteoporosis therapy. Cellular and Molecular Life Sciences, 2018, 75, 2683-2693.	5.4	57
541	Direct cell–cell contact between mature osteoblasts and osteoclasts dynamically controls their functions in vivo. Nature Communications, 2018, 9, 300.	12.8	128
542	Regulation of Bone Remodeling by Parathyroid Hormone. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031237.	6.2	148
543	Updating osteoimmunology: regulation of bone cells by innate and adaptive immunity. Nature Reviews Rheumatology, 2018, 14, 146-156.	8.0	167
544	Roles of non-canonical Wnt signaling pathways in bone resorption. Journal of Oral Biosciences, 2018, 60, 31-35.	2.2	14
545	Histone demethylase LSD1 regulates bone mass by controlling WNT7B and BMP2 signaling in osteoblasts. Bone Research, 2018, 6, 14.	11.4	40
546	Molecular mechanisms of glucocorticoids on skeleton and bone regeneration after fracture. Journal of Molecular Endocrinology, 2018, 61, R75-R90.	2.5	74
547	Osteomicrobiology: The influence of gut microbiota on bone in health and disease. Bone, 2018, 115, 59-67.	2.9	57
548	Animal models to explore the effects of glucocorticoids on skeletal growth and structure. Journal of Endocrinology, 2018, 236, R69-R91.	2.6	38
549	From Osteoimmunology to Osteomicrobiology: How the Microbiota and the Immune System Regulate Bone. Calcified Tissue International, 2018, 102, 512-521.	3.1	64
550	Carbonic anhydrase III protects osteocytes from oxidative stress. FASEB Journal, 2018, 32, 440-452.	0.5	27
551	Bone Remodeling and the Microbiome. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031203.	6.2	58

#	Article	IF	CITATIONS
552	Mammalian target of rapamycin as a therapeutic target in osteoporosis. Journal of Cellular Physiology, 2018, 233, 3929-3944.	4.1	26
553	A vitronectin-derived peptide reverses ovariectomy-induced bone loss via regulation of osteoblast and osteoclast differentiation. Cell Death and Differentiation, 2018, 25, 268-281.	11.2	49
554	Both ligand and VDR expression levels critically determine the effect of 1α,25-dihydroxyvitamin-D3 on osteoblast differentiation. Journal of Steroid Biochemistry and Molecular Biology, 2018, 177, 83-90.	2.5	13
555	Autocrine and Paracrine Regulation of the Murine Skeleton by Osteocyte-Derived Parathyroid Hormone-Related Protein. Journal of Bone and Mineral Research, 2018, 33, 137-153.	2.8	54
556	Osteocytes play an important role in experimental periodontitis in healthy and diabetic mice through expression of <scp>RANKL</scp> . Journal of Clinical Periodontology, 2018, 45, 285-292.	4.9	57
557	Effects of hypothalamic leptin gene therapy on osteopetrosis in leptin-deficient mice. Journal of Endocrinology, 2018, 236, 57-68.	2.6	18
558	RANKL and RANK: From Mammalian Physiology to Cancer Treatment. Trends in Cell Biology, 2018, 28, 213-223.	7.9	72
559	The Expanding Life and Functions of Osteogenic Cells: From Simple Bone-Making Cells to Multifunctional Cells and Beyond. Journal of Bone and Mineral Research, 2018, 33, 199-210.	2.8	9
560	Hallmarks of Bone Metastasis. Calcified Tissue International, 2018, 102, 141-151.	3.1	38
561	Marine algae extract attenuated osteoporosis in OVX mice, enhanced osteogenesis on human mesenchymal stem cells and promoted OPG expression. Journal of Functional Foods, 2018, 40, 229-237.	3.4	5
562	Understanding the Bone in Cancer Metastasis. Journal of Bone and Mineral Research, 2018, 33, 2099-2113.	2.8	285
563	RANKL signaling in bone marrow mesenchymal stem cells negatively regulates osteoblastic bone formation. Bone Research, 2018, 6, 34.	11.4	104
564	Maternal RANKL Reduces the Osteopetrotic Phenotype of Null Mutant Mouse Pups. Journal of Clinical Medicine, 2018, 7, 426.	2.4	6
565	Propofol attenuates osteoclastogenesis by lowering RANKL/OPG ratio in mouse osteoblasts. International Journal of Medical Sciences, 2018, 15, 723-729.	2.5	15
566	Cortical bone is an extraneuronal site of norepinephrine uptake in adult mice. Bone Reports, 2018, 9, 188-198.	0.4	28
567	Systemic Bone Loss After Fracture. Clinical Reviews in Bone and Mineral Metabolism, 2018, 16, 116-130.	0.8	22
568	Mechanically-Loaded Breast Cancer Cells Modify Osteocyte Mechanosensitivity by Secreting Factors That Increase Osteocyte Dendrite Formation and Downstream Resorption. Frontiers in Endocrinology, 2018, 9, 352.	3.5	22
569	Regulation of Skeletal Homeostasis. Endocrine Reviews, 2018, 39, 701-718.	20.1	59

#	Article	IF	CITATIONS
570	The Intrinsic and Extrinsic Implications of RANKL/RANK Signaling in Osteosarcoma: From Tumor Initiation to Lung Metastases. Cancers, 2018, 10, 398.	3.7	40
572	MicroRNA Based Therapy and Osteoporosis: A Review of a Novel Therapeutic Agent from Diagnosis to Treatment. Journal of Spine, 2018, 07, .	0.2	Ο
574	Parathyroid hormone(1–34) and its analogs differentially modulate osteoblastic Rankl expression via PKA/SIK2/SIK3 and PP1/PP2A–CRTC3 signaling. Journal of Biological Chemistry, 2018, 293, 20200-20213.	3.4	55
575	Coupling of bone resorption and formation by RANKL reverse signalling. Nature, 2018, 561, 195-200.	27.8	376
576	Receptor becomes a ligand to control bone remodelling. Nature, 2018, 561, 180-181.	27.8	10
577	Spins travel far in an antiferromagnet. Nature, 2018, 561, 181-182.	27.8	1
578	The lateral meningocele syndrome mutation causes marked osteopenia in mice. Journal of Biological Chemistry, 2018, 293, 14165-14177.	3.4	33
579	Ubiquitinâ€specific protease <scp>USP</scp> 34 controls osteogenic differentiation and bone formation by regulating <scp>BMP</scp> 2 signaling. EMBO Journal, 2018, 37, .	7.8	61
580	Role of nutritional vitamin D in osteoporosis treatment. Clinica Chimica Acta, 2018, 484, 179-191.	1.1	36
581	Mouse Cre Models for the Study of Bone Diseases. Current Osteoporosis Reports, 2018, 16, 466-477.	3.6	73
582	Biology of Bone and Cartilage. , 2018, , 173-195.		1
583	Osteocyte Biology. , 2018, , 227-240.		0
584	Osteoimmunology. , 2018, , 261-282.		1
585	Osteocytic oxygen sensing controls bone mass through epigenetic regulation of sclerostin. Nature Communications, 2018, 9, 2557.	12.8	92
586	<i>Tsc1</i> Regulates the Balance Between Osteoblast and Adipocyte Differentiation Through Autophagy/Notch1/β-Catenin Cascade. Journal of Bone and Mineral Research, 2018, 33, 2021-2034.	2.8	45
587	BCL3 regulates RANKL-induced osteoclastogenesis by interacting with TRAF6 in bone marrow-derived macrophages. Bone, 2018, 114, 257-267.	2.9	11
588	MMP14 is a novel target of PTH signaling in osteocytes that controls resorption by regulating soluble RANKL production. FASEB Journal, 2018, 32, 2878-2890.	0.5	34
589	Proposal of patient-specific growth plate cartilage xenograft model for FGFR3 chondrodysplasia. Osteoarthritis and Cartilage, 2018, 26, 1551-1561.	1.3	18

ARTICLE IF CITATIONS Soluble RANKL contributes to osteoclast formation in adult mice but not ovariectomy-induced bone 590 12.8 115 loss. Nature Communications, 2018, 9, 2909. Impact of the Autonomic Nervous System on the Skeleton. Physiological Reviews, 2018, 98, 1083-1112. 28.8 592 Vitamin D Regulation of Osteoblast Function., 2018, , 295-308. 3 Thymol inhibits RANKL-induced osteoclastogenesis in RAW264.7 and BMM cells and LPS-induced bone loss in mice. Food and Chemical Toxicology, 2018, 120, 418-429. Osteoblast AMP-activated protein kinase regulates glucose metabolism and bone mass in adult mice. 594 2.1 8 Biochemical and Biophysical Research Communications, 2018, 503, 1955-1961. Evidence for Ongoing Modeling-Based Bone Formation in Human Femoral Head Trabeculae via Forming Minimodeling Structures: A Study in Patients with Fractures and Arthritis. Frontiers in 3.5 Endocrinology, 2018, 9, 88. PGC-11± Controls Skeletal Stem Cell Fate and Bone-Fat Balance in Osteoporosis and Skeletal Aging by 596 11.1 108 Inducing TAZ. Cell Stem Cell, 2018, 23, 193-209.e5. Genome-Wide Perspectives on Vitamin D Receptorâ€"Mediated Control of Gene Expression in Target Cells. , 2018, , 141-174. Mechanisms involved in enhancement of osteoclast formation by activinâ€A. Journal of Cellular 598 2.6 20 Biochemistry, 2018, 119, 6974-6985. Targeting WNT signaling in the treatment of osteoporosis. Current Opinion in Pharmacology, 2018, 40, 599 3.5 134-141 Vitamin D Activities in Osteocytes., 2018, , 319-327. 600 0 A novel anti-osteoporotic agent that protects against postmenopausal bone loss by regulating bone 4.3 formation and bone resorption. Life Sciences, 2018, 209, 409-419. Involvement of Osteocytes in the Action of Pasteurella multocida Toxin. Toxins, 2018, 10, 328. 602 3.4 12 Loss of RANKL in osteocytes dramatically increases cancellous bone mass in the osteogenesis imperfecta mouse (oim). Bone Reports, 2018, 9, 61-73. 0.4 Role of Osteocyte-PDL Crosstalk in Tooth Movement via SOST/Sclerostin. Journal of Dental Research, 604 5.249 2018, 97, 1374-1382. Pathogenesis of Osteoporosis., 2019,, 222-232. 606 Pathology of Bone Metastasis., 2019, , 3-11. 1 Role of pannexin 1 channels in loadâ€induced skeletal response. Annals of the New York Academy of 3.8 Sciences, 2019, 1442, 79-90.

~		~	
		REPO	TDL
\sim	IIAI	IVE FV	

#	Article	IF	CITATIONS
608	Bone mineral density and serum osteocalcin levels in patients with gout. Acta Clinica Belgica, 2019, 74, 252-257.	1.2	4
609	Rapid fabrication of vascularized and innervated cell-laden bone models with biomimetic intrafibrillar collagen mineralization. Nature Communications, 2019, 10, 3520.	12.8	124
610	Regulation of osteoclast function via Rho-Pkn3-c-Src pathways. Journal of Oral Biosciences, 2019, 61, 135-140.	2.2	15
611	Physicochemical Niche Conditions and Mechanosensing by Osteocytes and Myocytes. Current Osteoporosis Reports, 2019, 17, 235-249.	3.6	17
612	The Osteocyte Transcriptome Is Extensively Dysregulated in Mouse Models of Osteogenesis Imperfecta. JBMR Plus, 2019, 3, e10171.	2.7	29
613	Autophagy Regulates Craniofacial Bone Acquisition. Calcified Tissue International, 2019, 105, 518-530.	3.1	13
614	Hop2 Interacts with ATF4 to Promote Osteoblast Differentiation. Journal of Bone and Mineral Research, 2019, 34, 2287-2300.	2.8	12
615	Management of Osteoporosis in Postmenopausal Women. , 2019, , 367-385.		0
616	Effect of TNF- <i>α</i> -Induced Sclerostin on Osteocytes during Orthodontic Tooth Movement. Journal of Immunology Research, 2019, 2019, 1-10.	2.2	19
617	Advances in Orthodontic Tooth Movement: Gene Therapy and Molecular Biology Aspect. , 0, , .		2
618	Conditional deletion of E11/podoplanin in bone protects against load-induced osteoarthritis. BMC Musculoskeletal Disorders, 2019, 20, 344.	1.9	13
619	Osteoimmunology of Oral and Maxillofacial Diseases: Translational Applications Based on Biological Mechanisms. Frontiers in Immunology, 2019, 10, 1664.	4.8	61
620	Parathyroid Hormone-Related Protein (PTHrP) Accelerates Soluble RANKL Signals for Downregulation of Osteogenesis of Bone Mesenchymal Stem Cells. Journal of Clinical Medicine, 2019, 8, 836.	2.4	9
622	Strategic Use of Ultrasonic Frequencies for Targeted Bone Biomodification Following Piezoelectric Bone Surgery in Rats. Part I: Early Phase. International Journal of Periodontics and Restorative Dentistry, 2019, 39, 709-718.	1.0	4
623	Soluble RANKL is physiologically dispensable but accelerates tumour metastasis to bone. Nature Metabolism, 2019, 1, 868-875.	11.9	53
624	Molecular determinants for the polarization of macrophage and osteoclast. Seminars in Immunopathology, 2019, 41, 551-563.	6.1	55
625	The extended chondrocyte lineage: implications for skeletal homeostasis and disorders. Current Opinion in Cell Biology, 2019, 61, 132-140.	5.4	20
626	The Effects of Tocotrienol on Bone Peptides in a Rat Model of Osteoporosis Induced by Metabolic Syndrome: The Possible Communication between Bone Cells. International Journal of Environmental Research and Public Health, 2019, 16, 3313.	2.6	26

#	Article	IF	CITATIONS
627	Bone biology. , 2019, , 15-52.		14
628	Irisin: good or bad for the bone? A new path forward after the reported discovery of irisin receptor?. Metabolism: Clinical and Experimental, 2019, 93, 100-102.	3.4	11
629	Physical Activity and Bone Health: What Is the Role of Immune System? A Narrative Review of the Third Way. Frontiers in Endocrinology, 2019, 10, 60.	3.5	50
630	Osteocytes respond to particles of clinically-relevant conventional and cross-linked polyethylene and metal alloys by up-regulation of resorptive and inflammatory pathways. Acta Biomaterialia, 2019, 87, 296-306.	8.3	41
631	Extracellular vesicles in bone: "dogrobbers―in the "eternal battle field― Cell Communication and Signaling, 2019, 17, 6.	6.5	29
632	Subchondral bone remodelling in osteoarthritis. EFORT Open Reviews, 2019, 4, 221-229.	4.1	89
633	Calcium affects sternal mass by effects on osteoclast differentiation and function in meat ducks fed low nutrient density diets. Poultry Science, 2019, 98, 4313-4326.	3.4	4
634	TGFβ-induced degradation of TRAF3 in mesenchymal progenitor cells causes age-related osteoporosis. Nature Communications, 2019, 10, 2795.	12.8	57
635	Lymph Node Mesenchymal and Endothelial Stromal Cells Cooperate via the RANK-RANKL Cytokine Axis to Shape the Sinusoidal Macrophage Niche. Immunity, 2019, 50, 1467-1481.e6.	14.3	78
636	Osteoimmunology: evolving concepts in bone–immune interactions in health and disease. Nature Reviews Immunology, 2019, 19, 626-642.	22.7	402
638	Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. Journal of Clinical Investigation, 2019, 129, 1076-1093.	8.2	239
639	Deficiency of stressâ€associated gene <i>Nupr1</i> increases bone volume by attenuating differentiation of osteoclasts and enhancing differentiation of osteoblasts. FASEB Journal, 2019, 33, 8836-8852.	0.5	10
640	Multicellularity-interweaved bone regeneration of BMP-2-loaded scaffold with orchestrated kinetics of resorption and osteogenesis. Biomaterials, 2019, 216, 119216.	11.4	46
641	Bone morphogenetic proteins: Their role in regulating osteoclast differentiation. Bone Reports, 2019, 10, 100207.	0.4	31
642	The Role of Osteocytes in Inflammatory Bone Loss. Frontiers in Endocrinology, 2019, 10, 285.	3.5	46
643	Canalicular Junctions in the Osteocyte Lacuno-Canalicular Network of Cortical Bone. ACS Nano, 2019, 13, 6421-6430.	14.6	32
644	Ageing characteristics of bone indicated by transcriptomic and exosomal proteomic analysis of cortical bone cells. Journal of Orthopaedic Surgery and Research, 2019, 14, 129.	2.3	18
645	Osteocyte TSC1 promotes sclerostin secretion to restrain osteogenesis in mice. Open Biology, 2019, 9, 180262.	3.6	15

#	Article	IF	CITATIONS
646	HIFâ€1α facilitates osteocyteâ€mediated osteoclastogenesis by activating JAK2/STAT3 pathway in vitro. Journal of Cellular Physiology, 2019, 234, 21182-21192.	4.1	74
647	The RANKL-RANK Axis: A Bone to Thymus Round Trip. Frontiers in Immunology, 2019, 10, 629.	4.8	50
648	Comparison of the effect of vitamin D on osteoporosis and osteoporotic patients with healthy individuals referred to the Bone Density Measurement Center. Biomolecular Concepts, 2019, 10, 44-50.	2.2	8
649	A Novel Osteogenic Cell Line That Differentiates Into GFP-Tagged Osteocytes and Forms Mineral With a Bone-Like Lacunocanalicular Structure. Journal of Bone and Mineral Research, 2019, 34, 979-995.	2.8	38
650	Osteoclasts in the Inflammatory Arthritis: Implications for Pathologic Osteolysis. Immune Network, 2019, 19, e2.	3.6	46
651	Autophagy plays an essential role in bone homeostasis. Journal of Cellular Physiology, 2019, 234, 12105-12115.	4.1	36
652	<i>DMP1</i> Ablation in the Rabbit Results in Mineralization Defects and Abnormalities in Haversian Canal/Osteon Microarchitecture. Journal of Bone and Mineral Research, 2019, 34, 1115-1128.	2.8	25
653	Zoledronate Enhances Osteocyte-Mediated Osteoclast Differentiation by IL-6/RANKL Axis. International Journal of Molecular Sciences, 2019, 20, 1467.	4.1	29
654	The Osteocyte as a Novel Key Player in Understanding Periodontitis Through its Expression of RANKL and Sclerostin: a Review. Current Osteoporosis Reports, 2019, 17, 116-121.	3.6	16
655	Diallyl disulfide alleviates inflammatory osteolysis by suppressing osteoclastogenesis <i>via</i> NFâ€̂#B–NFATc1 signal pathway. FASEB Journal, 2019, 33, 7261-7273.	0.5	24
656	OCY454 Osteocytes as an in Vitro Cell Model for Bone Remodeling Under Mechanical Loading. Journal of Orthopaedic Research, 2019, 37, 1681-1689.	2.3	19
657	Regulation of Osteoclast Differentiation and Skeletal Maintenance by Histone Deacetylases. Molecules, 2019, 24, 1355.	3.8	22
658	IL-6 exhibits both cis- and trans-signaling in osteocytes and osteoblasts, but only trans-signaling promotes bone formation and osteoclastogenesis. Journal of Biological Chemistry, 2019, 294, 7850-7863.	3.4	54
659	Endothelial proteolytic activity and interaction with non-resorbing osteoclasts mediate bone elongation. Nature Cell Biology, 2019, 21, 430-441.	10.3	124
660	What Are the Peripheral Blood Determinants for Increased Osteoclast Formation in the Various Inflammatory Diseases Associated With Bone Loss?. Frontiers in Immunology, 2019, 10, 505.	4.8	51
661	Isolation, Purification, Generation, and Culture of Osteocytes. Methods in Molecular Biology, 2019, 1914, 39-51.	0.9	3
662	The Emerging Role of Osteocytes in Cancer in Bone. JBMR Plus, 2019, 3, e10186.	2.7	38
663	Changes in the osteocyte lacunocanalicular network with aging. Bone, 2019, 122, 101-113.	2.9	62

#	Article	IF	CITATIONS
664	Elimination of senescent osteoclast progenitors has no effect on the ageâ€associated loss of bone mass in mice. Aging Cell, 2019, 18, e12923.	6.7	57
665	Glycogen synthase kinase-3 inhibitor as a multi-targeting anti-rheumatoid drug. Biochemical Pharmacology, 2019, 165, 207-213.	4.4	12
666	The Cells of Bone and Their Interactions. Handbook of Experimental Pharmacology, 2019, 262, 1-25.	1.8	7
667	Effective CRISPR interference of an endogenous gene via a single transgene in mice. Scientific Reports, 2019, 9, 17312.	3.3	25
668	Elevated glucose acts directly on osteocytes to increase sclerostin expression in diabetes. Scientific Reports, 2019, 9, 17353.	3.3	36
669	Role of NFATc1 in the Bone-Vascular Axis Calcification Paradox. Journal of Cardiovascular Pharmacology, 2020, 75, 200-207.	1.9	16
670	Sensory innervation in porous endplates by Netrin-1 from osteoclasts mediates PGE2-induced spinal hypersensitivity in mice. Nature Communications, 2019, 10, 5643.	12.8	72
671	Mesenchymal Stromal Cell-Seeded Biomimetic Scaffolds as a Factory of Soluble RANKL in Rankl-Deficient Osteopetrosis. Stem Cells Translational Medicine, 2019, 8, 22-34.	3.3	34
672	Endoplasmic reticulum stress is induced in growth plate hypertrophic chondrocytes in G610C mouse model of osteogenesis imperfecta. Biochemical and Biophysical Research Communications, 2019, 509, 235-240.	2.1	33
673	Osteocytes reflect a pro-inflammatory state following spinal cord injury in a rodent model. Bone, 2019, 120, 465-475.	2.9	24
674	Bone adaptation compensates resorption when sciatic neurectomy is followed by low magnitude induced loading. Bone, 2019, 120, 487-494.	2.9	11
675	G proteinâ€coupled receptor 119 is involved in RANKLâ€induced osteoclast differentiation and fusion. Journal of Cellular Physiology, 2019, 234, 11490-11499.	4.1	8
676	The critical interplay between bone resorbing and bone forming cells. Journal of Clinical Periodontology, 2019, 46, 33-51.	4.9	54
677	Osteoimmunology: Inflammatory osteolysis and regeneration of the alveolar bone. Journal of Clinical Periodontology, 2019, 46, 52-69.	4.9	94
678	Autoregulation of Osteocyte Sema3A Orchestrates Estrogen Action and Counteracts Bone Aging. Cell Metabolism, 2019, 29, 627-637.e5.	16.2	112
679	Selective β2â€adrenoreceptor signaling regulates osteoclastogenesis via modulating RANKL production and neuropeptides expression in osteocytic MLO‥4 cells. Journal of Cellular Biochemistry, 2019, 120, 7238-7247.	2.6	8
680	Use it or lose it to age: A review of bone and muscle communication. Bone, 2019, 120, 212-218.	2.9	132
681	Coupling factors involved in preserving bone balance. Cellular and Molecular Life Sciences, 2019, 76, 1243-1253.	5.4	74

		CITATION REPORT	
#	Article	IF	CITATIONS
682	Mesenchymal lineage cells and their importance in B lymphocyte niches. Bone, 2019, 119, 42-	-56. 2.9	13
683	Osteoimmunology. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a031245.	6.2	64
684	Osteocyte regulation of bone and blood. Bone, 2019, 119, 13-18.	2.9	44
685	Do immune cells lead the way in subchondral bone disturbance in osteoarthritis?. Progress in Biophysics and Molecular Biology, 2019, 148, 21-31.	2.9	45
686	Technologies, Tools, and Genetic Models to Study Osteoclasts. , 2020, , 329-339.		0
687	Different Effects of Fluoride Exposure on the Three Major Bone Cell Types. Biological Trace Ele Research, 2020, 193, 226-233.	ment 3.5	15
688	The osteocyte: A multifunctional cell within the bone. Annals of Anatomy, 2020, 227, 151422	. 1.9	99
689	Mesenchymal Progenitor Regulation of Tooth Eruption: A View from PTHrP. Journal of Dental Research, 2020, 99, 133-142.	5.2	32
690	The osteoblast lineage. , 2020, , 89-110.		5
691	Osteoclasts. , 2020, , 111-131.		2
692	Aging and bone. , 2020, , 275-292.		2
693	Local regulators of bone. , 2020, , 1205-1246.		1
694	Bone adaptation: Safety factors and load predictability in shaping skeletal form. Bone, 2020, I	131, 115114. 2.9	31
695	CSFâ€l in Osteocytes Inhibits Nox4â€mediated Oxidative Stress and Promotes Normal Bone JBMR Plus, 2020, 4, e10080.	Homeostasis. 2.7	26
696	Adrenergic Control of Bone Remodeling. , 2020, , 496-502.		0
697	Fibroblast-secreted trophic factors contribute with ECM remodeling stimulus and upmodulate osteocyte gene markers in osteoblasts. Biochimie, 2020, 168, 92-99.	2.6	14
698	Blocking glucocorticoid signaling in osteoblasts and osteocytes prevents mechanical unloading-induced cortical bone loss. Bone, 2020, 130, 115108.	2.9	27
699	Cellular actions of parathyroid hormone on bone. , 2020, , 775-788.		2

ARTICLE IF CITATIONS Parathyroid Hormones., 2020,, 507-529. 700 0 Rapid bone loss occurs as early as 2 days after complete spinal cord transection in young adult rats. 1.9 Spinal Cord, 2020, 58, 309-317. Elevations in Cortical Porosity Occur Prior to Significant Rise in Serum Parathyroid Hormone in 702 3.118 Young Female Mice with Adenine-Induced CKD. Calcified Tissue International, 2020, 106, 392-400. The osteocyte., 2020, , 133-162. Wnt signaling and bone cell activity., 2020, , 177-204. 704 0 Basic and clinical aspects of glucocorticoid action in bone., 2020, , 915-940. The molecular actions of parathyroid hormone/parathyroid hormoneâ€"related protein receptor type 1 706 0 and their implications. , 2020, , 1273-1291. Pharmacological mechanisms of therapeutics., 2020, , 1689-1710. 708 Distant Immune and Microbiome Regulation., 2020, , 599-611. 0 Tissue Engineering and Regenerative Medicine Therapies for Cell Senescence in Bone and Cartilage. 709 4.8 Tissue Engineering - Part B: Reviews, 2020, 26, 64-78. Actin and Actin-Associated Proteins in Extracellular Vesicles Shed by Osteoclasts. International 710 32 4.1 Journal of Molecular Sciences, 2020, 21, 158. Influence of the TGF-Î² Superfamily on Osteoclasts/Osteoblasts Balance in Physiological and 4.1 Pathological Bone Conditions. International Journal of Molecular Sciences, 2020, 21, 7597. Signaling pathways affected by mutations causing osteogenesis imperfecta. Cellular Signalling, 2020, 712 3.6 29 76, 109789. Local Production of Osteoprotegerin by Osteoblasts Suppresses Bone Resorption. Cell Reports, 2020, 6.4 64 32, 108052. Nfil3, a target of the NACA transcriptional coregulator, affects osteoblast and osteocyte gene 714 2.9 6 expression differentially. Bone, 2020, 141, 115624. Hindlimb unloading causes regional loading-dependent changes in osteocyte inflammatory cytokines that are modulated by exogenous irisin treatment. Npj Microgravity, 2020, 6, 28. OPG Production Matters Where It Happened. Cell Reports, 2020, 32, 108124. 716 6.4 56 Iron Overload-Induced Osteocyte Apoptosis Stimulates Osteoclast Differentiation Through Increasing 3.1 24 Osteocytic RANKL Production In Vitro. Calcified Tissue International, 2020, 107, 499-509.

#	Article	IF	Citations
719	Administration of Denosumab Preserves Bone Mineral Density at the Knee in Persons With Subacute Spinal Cord Injury: Findings From a Randomized Clinical Trial. JBMR Plus, 2020, 4, e10375.	2.7	23
720	Current advances in regulation of bone homeostasis. FASEB BioAdvances, 2020, 2, 668-679.	2.4	70
721	Chemerin/ChemR23 regulates cementoblast function and tooth resorption in mice via inflammatory factors. Journal of Periodontology, 2021, 92, 1470-1482.	3.4	9
722	Molecular mechanisms and clinical management of cancer bone metastasis. Bone Research, 2020, 8, 30.	11.4	78
723	Bovine Milk Extracellular Vesicles Are Osteoprotective by Increasing Osteocyte Numbers and Targeting RANKL/OPG System in Experimental Models of Bone Loss. Frontiers in Bioengineering and Biotechnology, 2020, 8, 891.	4.1	18
724	Osteoclast Fusion: Physiological Regulation of Multinucleation through Heterogeneity—Potential Implications for Drug Sensitivity. International Journal of Molecular Sciences, 2020, 21, 7717.	4.1	29
725	Targeting Bone Cells During Sexual Maturation Reveals Sexually Dimorphic Regulation of Endochondral Ossification. JBMR Plus, 2020, 4, e10413.	2.7	2
726	Bone Marrow Microvasculature. , 2020, 10, 1009-1046.		12
727	Anti-c-fms Antibody Prevents Osteoclast Formation and Bone Resorption in Co-Culture of Osteoblasts and Osteoclast Precursors In Vitro and in Ovariectomized Mice. International Journal of Molecular Sciences, 2020, 21, 6120.	4.1	11
728	B cell acute lymphoblastic leukemia cells mediate RANK-RANKL–dependent bone destruction. Science Translational Medicine, 2020, 12, .	12.4	17
729	Osteoblast-Osteoclast Communication and Bone Homeostasis. Cells, 2020, 9, 2073.	4.1	485
730	Effects of BDNF and PEC Nanoparticles on Osteocytes. Molecules, 2020, 25, 4151.	3.8	9
731	miRâ€124â€3p increases in high glucose induced osteocyteâ€derived exosomes and regulates galectinâ€3 expression: A possible mechanism in bone remodeling alteration in diabetic periodontitis. FASEB Journal, 2020, 34, 14234-14249.	0.5	21
732	The roles of osteocytes in alveolar bone destruction in periodontitis. Journal of Translational Medicine, 2020, 18, 479.	4.4	46
733	Scl-Ab reverts pro-osteoclastogenic signalling and resorption in estrogen deficient osteocytes. BMC Molecular and Cell Biology, 2020, 21, 78.	2.0	9
734	Infectious Triggers in Periodontitis and the Gut in Rheumatoid Arthritis (RA): A Complex Story About Association and Causality. Frontiers in Immunology, 2020, 11, 1108.	4.8	34
735	Bone-Muscle Mutual Interactions. Current Osteoporosis Reports, 2020, 18, 408-421.	3.6	40
736	Comparative profiles of <scp>DNA</scp> methylation and differential gene expression in osteocytic areas from aged and young mice. Cell Biochemistry and Function, 2020, 38, 721-732.	2.9	5

#	Article	IF	Citations
737	How Physical Activity across the Lifespan Can Reduce the Impact of Bone Ageing: A Literature Review. International Journal of Environmental Research and Public Health, 2020, 17, 1862.	2.6	54
738	Friend or Foe? Essential Roles of Osteoclast in Maintaining Skeletal Health. BioMed Research International, 2020, 2020, 1-10.	1.9	9
739	Establishment and Maintenance of the Macrophage Niche. Immunity, 2020, 52, 434-451.	14.3	308
740	A Review of the Potential Application of Osteocyte-Related Biomarkers, Fibroblast Growth Factor-23, Sclerostin, and Dickkopf-1 in Predicting Osteoporosis and Fractures. Diagnostics, 2020, 10, 145.	2.6	19
741	The limitations of today's clinical guidance: Atypical femoral fracture and long-term bone-modifying agents in the oncology setting. Journal of Oncology Pharmacy Practice, 2020, 26, 1180-1189.	0.9	3
742	The Osteocyte as the New Discovery of Therapeutic Options in Rare Bone Diseases. Frontiers in Endocrinology, 2020, 11, 405.	3.5	35
743	Distinctive Subpopulations of Stromal Cells Are Present in Human Lymph Nodes Infiltrated with Melanoma. Cancer Immunology Research, 2020, 8, 990-1003.	3.4	10
744	Cellular Communication in Bone Homeostasis and the Related Anti-osteoporotic Drug Development. Current Medicinal Chemistry, 2020, 27, 1151-1169.	2.4	18
745	Pathological Crosstalk between Metastatic Breast Cancer Cells and the Bone Microenvironment. Biomolecules, 2020, 10, 337.	4.0	30
746	The increase in bone resorption in early-stage type I diabetic mice is induced by RANKL secreted by increased bone marrow adipocytes. Biochemical and Biophysical Research Communications, 2020, 525, 433-439.	2.1	14
747	Functional Biomaterials for Bone Regeneration: A Lesson in Complex Biology. Advanced Functional Materials, 2020, 30, 1909874.	14.9	122
748	Mechanical strain-mediated reduction in RANKL expression is associated with RUNX2 and BRD2. Gene: X, 2020, 763, 100027.	2.3	16
749	IL-33/IL-31 Axis in Osteoporosis. International Journal of Molecular Sciences, 2020, 21, 1239.	4.1	41
750	The Osteocyte: New Insights. Annual Review of Physiology, 2020, 82, 485-506.	13.1	286
751	RANKL biology: bone metabolism, the immune system, and beyond. Inflammation and Regeneration, 2020, 40, 2.	3.7	241
752	IgSF11 regulates osteoclast differentiation through association with the scaffold protein PSD-95. Bone Research, 2020, 8, 5.	11.4	16
753	Interaction of Brucella abortus with Osteoclasts: a Step toward Understanding Osteoarticular Brucellosis and Vaccine Safety. Infection and Immunity, 2020, 88, .	2.2	7
754	Osteocyte-Mediated Translation of Mechanical Stimuli to Cellular Signaling and Its Role in Bone and Non-bone-Related Clinical Complications. Current Osteoporosis Reports, 2020, 18, 67-80.	3.6	26

#	Article	IF	CITATIONS
755	Suppression of tooth movementâ€induced sclerostin expression using βâ€adrenergic receptor blockers. Oral Diseases, 2020, 26, 621-629.	3.0	6
756	Cytokines and Bone: Osteoimmunology. Handbook of Experimental Pharmacology, 2020, 262, 177-230.	1.8	16
757	Alterations in osteocyte mediated osteoclastogenesis during estrogen deficiency and under ROCK-II inhibition: An in vitro study using a novel postmenopausal multicellular niche model. Experimental Cell Research, 2020, 392, 112005.	2.6	11
758	Architecture of bone tissue and its adaptation to pathological conditions. , 2020, , 71-90.		13
759	Co–culture systems of osteoblasts and osteoclasts: Simulating in vitro bone remodeling in regenerative approaches. Acta Biomaterialia, 2020, 108, 22-45.	8.3	103
760	CD44 Can Compensate for IgSF11 Deficiency by Associating with the Scaffold Protein PSD-95 during Osteoclast Differentiation. International Journal of Molecular Sciences, 2020, 21, 2646.	4.1	5
761	Osteoimmunology — Bidirectional dialogue and inevitable union of the fields of bone and immunity —. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2020, 96, 159-169.	3.8	7
762	Effect of continuous compressive force on the expression of RANKL, OPC, and VEGF in osteocytes. Biomedical Research, 2020, 41, 91-99.	0.9	4
763	Pathogenesis of Osteoporosis. Handbook of Experimental Pharmacology, 2020, 262, 353-367.	1.8	12
764	Wang-Bi Capsule Alleviates the Joint Inflammation and Bone Destruction in Mice with Collagen-Induced Arthritis. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-7.	1.2	4
765	Brainâ€Derived Acetylcholine Maintains Peak Bone Mass in Adult Female Mice. Journal of Bone and Mineral Research, 2020, 35, 1562-1571.	2.8	5
766	Osteoclast formation at the bone marrow/bone surface interface: Importance of structural elements, matrix, and intercellular communication. Seminars in Cell and Developmental Biology, 2021, 112, 8-15.	5.0	29
767	Cinchonine inhibits osteoclast differentiation by regulating TAK1 and AKT, and promotes osteogenesis. Journal of Cellular Physiology, 2021, 236, 1854-1865.	4.1	18
768	A Neutralizing Antibody Targeting Oxidized Phospholipids Promotes Bone Anabolism in Chow-Fed Young Adult Mice. Journal of Bone and Mineral Research, 2020, 36, 170-185.	2.8	10
769	RANKL as a key figure in bridging between the bone and immune system: Its physiological functions and potential as a pharmacological target. , 2021, 218, 107682.		21
770	miRNAs in osteoclast biology. Bone, 2021, 143, 115757.	2.9	18
771	Making and shaping endochondral and intramembranous bones. Developmental Dynamics, 2021, 250, 414-449.	1.8	79
772	RANKL and osteoimmunology in periodontitis. Journal of Bone and Mineral Metabolism, 2021, 39, 82-90.	2.7	55

#	Article	IF	CITATIONS
773	The regulation of RANKL by mechanical force. Journal of Bone and Mineral Metabolism, 2021, 39, 34-44.	2.7	12
774	Osteoclast biology. , 2021, , 99-110.		0
775	Glucocorticoid-induced osteoporosis and Cushingâ \in ™s syndrome. , 2021, , 1103-1138.		0
776	Principles of Diagnosis and Treatment of Osteoporosis. , 2021, , 77-93.		1
777	Control of Bone Matrix Properties by Osteocytes. Frontiers in Endocrinology, 2020, 11, 578477.	3.5	25
778	Extracellular Vesicle-Mediated Bone Remodeling and Bone Metastasis: Implications in Prostate Cancer. Sub-Cellular Biochemistry, 2021, 97, 297-361.	2.4	4
779	Discovery of the RANKL/RANK/OPG system. Journal of Bone and Mineral Metabolism, 2021, 39, 2-11.	2.7	83
780	Osteocytes. , 2021, , 135-163.		0
781	Osteoporosis in men: what is similar and what is different?. , 2021, , 589-632.		2
782	WNT signaling in skeletal homeostasis and diseases. , 2021, , 257-279.		3
783	Treatment with 50 μ4M Sodium Fluoride Suppresses Aging-Induced Alveolar Bone Resorption in Mice. Journal of Hard Tissue Biology, 2021, 30, 225-230.	0.4	1
784	New Advances in Osteocyte Mechanotransduction. Current Osteoporosis Reports, 2021, 19, 101-106.	3.6	18
785	Trabecular bone organoid model for studying the regulation of localized bone remodeling. Science Advances, 2021, 7, .	10.3	48
786	Osteocytes but not osteoblasts directly build mineralized bone structures. International Journal of Biological Sciences, 2021, 17, 2430-2448.	6.4	16
787	Immobilization osteoporosis. , 2021, , 991-1032.		1
788	The Skeleton of Lateral Meningocele Syndrome. Frontiers in Genetics, 2020, 11, 620334.	2.3	4
789	The Biology of the Sutures of the Skull. , 2021, , 171-199.		1
790	Bone marrow adipogenic lineage precursors promote osteoclastogenesis in bone remodeling and pathologic bone loss. Journal of Clinical Investigation, 2021, 131, .	8.2	101

#	Article	IF	CITATIONS
791	Maternal High-Fat Diet Induces Long-Lasting Defects in Bone Structure in Rat Offspring Through Enhanced Osteoclastogenesis. Calcified Tissue International, 2021, 108, 680-692.	3.1	6
792	RANKL as the master regulator of osteoclast differentiation. Journal of Bone and Mineral Metabolism, 2021, 39, 13-18.	2.7	79
793	The multifunctional role of Notch signaling in multiple myeloma. , 2021, 7, .		6
794	Subchondral Bone Remodeling: A Therapeutic Target for Osteoarthritis. Frontiers in Cell and Developmental Biology, 2020, 8, 607764.	3.7	64
795	Ovariectomy induces bone loss via microbial-dependent trafficking of intestinal TNF+ T cells and Th17 cells. Journal of Clinical Investigation, 2021, 131, .	8.2	54
796	Intranuclear Delivery of Nuclear Factor-Kappa B p65 in a Rat Model of Tooth Replantation. International Journal of Molecular Sciences, 2021, 22, 1987.	4.1	2
797	Maintaining homeostatic control of periodontal bone tissue. Periodontology 2000, 2021, 86, 157-187.	13.4	66
798	Protocatechualdehyde inhibits receptor activator of nuclear factor kappaâ€B ligand â€induced osteoclastogenesis and attenuates lipopolysaccharideâ€induced inflammatory osteolysis. Phytotherapy Research, 2021, 35, 3821-3835.	5.8	4
799	Subchondral bone microenvironment in osteoarthritis and pain. Bone Research, 2021, 9, 20.	11.4	190
801	OPG/RANKL/RANK gene methylation among alcohol-induced femoral head necrosis in northern Chinese men. Journal of Orthopaedic Surgery and Research, 2021, 16, 223.	2.3	6
802	Evaluation of the Receptor Activator of Nuclear Factor Kappa B Ligand (RANKL) Expression in Osteosarcoma and Its Association with the Clinicopathological Data. Asian Pacific Journal of Cancer Prevention, 2021, 22, 741-747.	1.2	2
803	Skeletal Aging and Osteoporosis: Mechanisms and Therapeutics. International Journal of Molecular Sciences, 2021, 22, 3553.	4.1	87
804	Mechanistic Insight into Orthodontic Tooth Movement Based on Animal Studies: A Critical Review. Journal of Clinical Medicine, 2021, 10, 1733.	2.4	25
805	Bone Aging, Cellular Senescence, and Osteoporosis. JBMR Plus, 2021, 5, e10488.	2.7	65
806	Role of Osteocytes in Cancer Progression in the Bone and the Associated Skeletal Disease. Current Osteoporosis Reports, 2021, 19, 247-255.	3.6	3
807	Activation of creER recombinase in the mouse calvaria induces local recombination without effects on distant skeletal segments. Scientific Reports, 2021, 11, 8214.	3.3	1
808	Macrophageâ€fibroblast circuits in the spleen. Immunological Reviews, 2021, 302, 104-125.	6.0	19
809	Deletion of a putative promoter-proximal Tnfsf11 regulatory region in mice does not alter bone mass or Tnfsf11 expression in vivo. PLoS ONE, 2021, 16, e0250974.	2.5	4

#	Article	IF	CITATIONS
810	Regulation of murine B lymphopoiesis by stromal cells. Immunological Reviews, 2021, 302, 47-67.	6.0	2
811	Chronobiology and Chronotherapy of Osteoporosis. JBMR Plus, 2021, 5, e10504.	2.7	17
812	Differential bone remodeling mechanism in hindlimb unloaded rats and hibernating Daurian ground squirrels: a comparison between artificial and natural disuse. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2021, 191, 793-814.	1.5	3
813	Silk Biomaterials for Bone Tissue Engineering. Macromolecular Bioscience, 2021, 21, e2100153.	4.1	28
814	Mechanisms Supporting the Use of Beta-Blockers for the Management of Breast Cancer Bone Metastasis. Cancers, 2021, 13, 2887.	3.7	14
815	RANKL from bone marrow adipose lineage cells promotes osteoclast formation and bone loss. EMBO Reports, 2021, 22, e52481.	4.5	85
816	Osteosarcoma and Metastasis Associated Bone Degradation—A Tale of Osteoclast and Malignant Cell Cooperativity. International Journal of Molecular Sciences, 2021, 22, 6865.	4.1	29
817	Runt-related transcription factor-2 (Runx2) is required for bone matrix protein gene expression in committed osteoblasts in mice. Journal of Bone and Mineral Research, 2020, 36, 2081-2095.	2.8	26
818	Bone and blood: IL-19 to the rescue. Blood, 2021, 137, 3467-3468.	1.4	0
819	Rickets in Children: An Update. Biomedicines, 2021, 9, 738.	3.2	13
820	Potential Role of Perilacunar Remodeling in the Progression of Osteoporosis and Implications on Age-Related Decline in Fracture Resistance of Bone. Current Osteoporosis Reports, 2021, 19, 391-402.	3.6	7
821	The Effects of Receptor Activator of NF-ήB Ligand-Binding Peptides on Bone Resorption and Bone Formation. Frontiers in Cell and Developmental Biology, 2021, 9, 648084.	3.7	4
822	Alcohol consumption induces murine osteoporosis by downregulation of natural killer Tâ€like cell activity. Immunity, Inflammation and Disease, 2021, 9, 1370-1382.	2.7	11
823	Neutralization of oxidized phospholipids attenuates ageâ€associated bone loss in mice. Aging Cell, 2021, 20, e13442.	6.7	17
824	Effect of androgen deprivation therapy on serum levels of sclerostin, Dickkopf-1, and osteoprotegerin: a cross-sectional and longitudinal analysis. Scientific Reports, 2021, 11, 14905.	3.3	1
825	Marrow adipogenic lineage precursor: A new cellular component of marrow adipose tissue. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101518.	4.7	14
826	Sites of Cre-recombinase activity in mouse lines targeting skeletal cells. Journal of Bone and Mineral Research, 2020, 36, 1661-1679.	2.8	24
827	New Insights Into Osteoclast Biology. JBMR Plus, 2021, 5, e10539.	2.7	45

#	Article	IF	CITATIONS
828	Current Understanding of Osteoimmunology in Certain Osteoimmune Diseases. Frontiers in Cell and Developmental Biology, 2021, 9, 698068.	3.7	8
829	The hidden secrets of soluble RANKL in bone biology. Cytokine, 2021, 144, 155559.	3.2	16
830	Endogenous Glucocorticoid Metabolism in Bone: Friend or Foe. Frontiers in Endocrinology, 2021, 12, 733611.	3.5	11
831	The osteocyte as a signaling cell. Physiological Reviews, 2022, 102, 379-410.	28.8	83
832	Autophagy Induces Expression of IL-6 in Human Periodontal Ligament Fibroblasts Under Mechanical Load and Overload and Effects Osteoclastogenesis in vitro. Frontiers in Physiology, 2021, 12, 716441.	2.8	7
833	Diterbutyl phthalate attenuates osteoarthritis in ACLT mice via suppressing ERK/c-fos/NFATc1 pathway, and subsequently inhibiting subchondral osteoclast fusion. Acta Pharmacologica Sinica, 2022, 43, 1299-1310.	6.1	37
834	High-resolution image-based simulation reveals membrane strain concentration on osteocyte processes caused by tethering elements. Biomechanics and Modeling in Mechanobiology, 2021, 20, 2353-2360.	2.8	12
835	The Role of Osteokines in Sarcopenia: Therapeutic Directions and Application Prospects. Frontiers in Cell and Developmental Biology, 2021, 9, 735374.	3.7	16
836	Non-polar lipid from greenshell mussel (Perna canaliculus) inhibits osteoclast differentiation. Bone Reports, 2021, 15, 101132.	0.4	3
837	Role of interleukin-6 in bone destruction and bone repair in rheumatoid arthritis. Autoimmunity Reviews, 2021, 20, 102884.	5.8	57
838	Myeloma–Bone Interaction: A Vicious Cycle via TAK1–PIM2 Signaling. Cancers, 2021, 13, 4441.	3.7	5
839	Gene expression of intracortical bone demonstrates loading-induced increases in Wnt1 and Ngf and inhibition of bone remodeling processes. Bone, 2021, 150, 116019.	2.9	9
840	Effects of Extracellular Osteoanabolic Agents on the Endogenous Response of Osteoblastic Cells. Cells, 2021, 10, 2383.	4.1	6
841	Low bone mass resulting from impaired estrogen signaling in bone increases severity of load-induced osteoarthritis in female mice. Bone, 2021, 152, 116071.	2.9	13
842	Aspects of intercellular communication in bone and implications in therapy. Bone, 2021, 153, 116148.	2.9	2
843	Moderate tibial loading and treadmill running, but not overloading, protect adult murine bone from destruction by metastasized breast cancer. Bone, 2021, 153, 116100.	2.9	18
844	Biologic and pathologic aspects of osteocytes in the setting of medication-related osteonecrosis of the jaw (MRONJ). Bone, 2021, 153, 116168.	2.9	22
845	Technical approaches for studying the communications between osteocytes and cancer cells. , 2022, , 157-168.		1

#	Article	IF	CITATIONS
846	Osteocytes and bone tumor niche. , 2022, , 171-178.		0
847	Targeted Ptpn11 deletion in mice reveals the essential role of SHP2 in osteoblast differentiation and skeletal homeostasis. Bone Research, 2021, 9, 6.	11.4	17
848	Cytokines and the pathogenesis of osteoporosis. , 2021, , 799-831.		1
849	Development of the skeleton. , 2021, , 39-73.		0
850	The molecular etiology and treatment of glucocorticoid-induced osteoporosis. Tzu Chi Medical Journal, 2021, 33, 212.	1.1	16
853	Overview of Skeletal Development. Methods in Molecular Biology, 2021, 2230, 3-16.	0.9	9
854	Overview of Skeletal Development. Methods in Molecular Biology, 2014, 1130, 3-12.	0.9	46
855	Osteosarcopenia as a Lipotoxic Disease. , 2019, , 123-143.		2
856	Bone and the Immune System. Molecular and Integrative Toxicology, 2017, , 363-398.	0.5	7
857	Functional Adaptation of Bone: The Mechanostat and Beyond. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2018, , 1-60.	0.6	13
858	Bone structure and function. , 2015, , 42-55.		3
859	How rare bone diseases have informed our knowledge of complex diseases. BoneKEy Reports, 2016, 5, 839.	2.7	7
860	Focal adhesion protein Kindlin-2 regulates bone homeostasis in mice. Bone Research, 2020, 8, 2.	11.4	50
861	Conditional deletion of E11/Podoplanin in bone protects against ovariectomy-induced increases in osteoclast formation and activity. Bioscience Reports, 2020, 40, .	2.4	6
863	Focal adhesion proteins Pinch1 and Pinch2 regulate bone homeostasis in mice. JCI Insight, 2019, 4, .	5.0	28
864	Osteocyte RANKL is required for cortical bone loss with age and is induced by senescence. JCI Insight, 2020, 5, .	5.0	52
865	Cathepsin K–deficient osteocytes prevent lactation-induced bone loss and parathyroid hormone suppression. Journal of Clinical Investigation, 2019, 129, 3058-3071.	8.2	48
866	Osteocyte necrosis triggers osteoclast-mediated bone loss through macrophage-inducible C-type lectin. Journal of Clinical Investigation, 2020, 130, 4811-4830.	8.2	93

#	Article	IF	CITATIONS
867	Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation. Journal of Clinical Investigation, 2013, 123, 666-81.	8.2	244
868	Estrogen receptor-Î \pm signaling in osteoblast progenitors stimulates cortical bone accrual. Journal of Clinical Investigation, 2013, 123, 394-404.	8.2	194
869	Calcium influx through L-type CaV1.2 Ca2+ channels regulates mandibular development. Journal of Clinical Investigation, 2013, 123, 1638-1646.	8.2	71
870	Sex steroid deficiency–associated bone loss is microbiota dependent and prevented by probiotics. Journal of Clinical Investigation, 2016, 126, 2049-2063.	8.2	416
871	Periostin Deficiency Increases Bone Damage and Impairs Injury Response to Fatigue Loading in Adult Mice. PLoS ONE, 2013, 8, e78347.	2.5	47
872	Parathyroid Hormone Induces Bone Cell Motility and Loss of Mature Osteocyte Phenotype through L-Calcium Channel Dependent and Independent Mechanisms. PLoS ONE, 2015, 10, e0125731.	2.5	26
873	Osteocytes, not Osteoblasts or Lining Cells, are the Main Source of the RANKL Required for Osteoclast Formation in Remodeling Bone. PLoS ONE, 2015, 10, e0138189.	2.5	236
874	P2X7R-Panx1 Complex Impairs Bone Mechanosignaling under High Glucose Levels Associated with Type-1 Diabetes. PLoS ONE, 2016, 11, e0155107.	2.5	51
875	The hypertrophic chondrocyte: To be or not to be. Histology and Histopathology, 2021, , 18355.	0.7	13
876	Three-dimensional culturing models for bone development. Advances in Tissue Engineering & Regenerative Medicine Open Access, 2018, 4, 124-125.	0.1	4
877	Biologics in Cartilage, Bone Repair, and Regeneration. , 2014, , 1-24.		2
878	Degeneration of the osteocyte network in the C57BL/6 mouse model of aging. Aging, 2017, 9, 2190-2208.	3.1	104
879	Bone marrow micro-environment is a crucial player for myelomagenesis and disease progression. Oncotarget, 2017, 8, 20394-20409.	1.8	30
880	Do Epigenetic Marks Govern Bone Mass and Homeostasis?. Current Genomics, 2012, 13, 252-263.	1.6	38
881	Therapeutic and Mechanistic Approaches of Tridax Procumbens Flavonoids for the Treatment of Osteoporosis. Current Drug Targets, 2020, 21, 1687-1702.	2.1	5
882	Mechanical loading and how it affects bone cells: The role of the osteocyte cytoskeleton in maintaining our skeleton. , 2012, 24, 278-291.		256
883	Daily Acute Bouts of Weight-bearing During Hindlimb Unloading Mitigate Disuse-Induced Deficits in Cancellous Bone. Gravitational and Space Research: Publication of the American Society for Gravitational and Space Research, 2018, 6, 2-11.	0.8	3
884	RANKL/RANK System-Based Mechanism for Breast Cancer Bone Metastasis and Related Therapeutic Strategies. Frontiers in Cell and Developmental Biology, 2020, 8, 76.	3.7	59

#	Article	IF	CITATIONS
885	Bone Cell Communication Factors Provide a New Therapeutic Strategy for Osteoporosis. Chonnam Medical Journal, 2020, 56, 94.	0.9	11
886	Spinal Cord Injury and Osteoporosis: Causes, Mechanisms, and Rehabilitation Strategies. International Journal of Physical Medicine & Rehabilitation, 2013, 01, .	0.5	17
887	Molecular mechanisms of triggering, amplifying and targeting RANK signaling in osteoclasts. World Journal of Orthopedics, 2012, 3, 167.	1.8	32
888	Wnt5a Stimulates the Bone Formation in Tension Side during Orthodontic Tooth Movement . International Journal of Oral-Medical Sciences, 2015, 13, 120-127.	0.1	3
889	Flrt2 is involved in fine-tuning of osteoclast multinucleation. BMB Reports, 2019, 52, 514-519.	2.4	7
890	Skeletal metastasis: treatments, mouse models, and the Wnt signaling. Chinese Journal of Cancer, 2013, 32, 380-396.	4.9	30
891	The mammalian lectin galectin-8 induces RANKL expression, osteoclastogenesis, and bone mass reduction in mice. ELife, 2015, 4, e05914.	6.0	37
892	Stimulation of Piezo1 by mechanical signals promotes bone anabolism. ELife, 2019, 8, .	6.0	185
893	Loading history changes the morphology and compressive force-induced expression of receptor activator of nuclear factor kappa B ligand/osteoprotegerin in MLO-Y4 osteocytes. PeerJ, 2020, 8, e10244.	2.0	5
894	Runx2 is required for hypertrophic chondrocyte mediated degradation of cartilage matrix during endochondral ossification. Matrix Biology Plus, 2021, 12, 100088.	3.5	15
895	Osteocytes and chondrocytes embedded in bone matrix control bone remodelling. BoneKEy Reports, 2012, 1, 6.	2.7	0
896	Engineering of Inflammation-Resistant Osteochondral Cells. , 0, , .		Ο
897	Skeleton, Inflammatory Diseases of. , 2014, , .		0
898	Osteoclast Cell Lineage. , 2014, , .		0
899	Interaktion von Tumorzellen und Knochen bei osteolytischen/osteosklerotischen Metastasen, Circulus vitiosus der Knochenmetastasierung. , 2014, , 13-21.		0
900	Osteoclast Cell Lineage: Characteristics and Behavior of Osteoclast Precursors In Vivo. , 2014, , 181-192.		1
901	Desarrollo normal del esqueleto y regulación de la formación y reabsorción óseas. , 2014, , 1-17.		0
903	The Response of the Subchondral Bone to Injury. , 2015, , 135-147.		0

#	Article	IF	CITATIONS
904	Mechanical Adaptability of the Skeleton. , 2015, , 275-354.		4
905	Skeletal Biology. , 2015, , 35-93.		2
906	Fatigue and Fracture Resistance of Bone. , 2015, , 423-482.		2
907	Caldecrin: A pancreas-derived hypocalcemic factor, regulates osteoclast formation and function. World Journal of Biological Chemistry, 2015, 6, 358.	4.3	1
909	Parathyroid Hormone (PTH) and the Relationship Between PTH and Bone Health: Structure, Physiology, Actions, and Ethnicity. Exposure and Health, 2016, , 1-19.	4.9	0
911	Basics of Bone Biology. , 2016, , 1-30.		0
912	Parathyroid Hormone (PTH) and the Relationship Between PTH and Bone Health: Structure, Physiology, Actions, and Ethnicity. Biomarkers in Disease, 2017, , 443-461.	0.1	0
913	The role of active ingredients nanopowder Stichopus hermanii gel to bone resorption in tension area of orthodontic tooth movement. Dental Journal: Majalah Kedokteran Gigi, 2017, 50, 188.	0.2	1
915	Extracellular Ca2+ in Bone Marrow. Advances in Experimental Medicine and Biology, 2020, 1131, 1065-1078.	1.6	1
916	Basic Aspects of Osteoclast Differentiation and Function. Contemporary Endocrinology, 2020, , 17-41.	0.1	1
917	Mechanisms of skeletal fragility in diabetes mellitus. , 2020, , 39-59.		0
918	Posttransplant Bone Loss. , 2020, , 23-32.		0
919	Muscle-derived factors influencing bone metabolism. Seminars in Cell and Developmental Biology, 2022, 123, 57-63.	5.0	13
920	Neuronal Induction of Boneâ€Fat Imbalance through Osteocyte Neuropeptide Y. Advanced Science, 2021, 8, e2100808.	11.2	34
921	Unloading and Disuse Osteopenia. , 2020, , 422-428.		0
922	Inflammation and Bone Destruction: Pathogenesis and Therapeutic Intervention. , 2020, , 122-135.		0
923	Osteocytes: More Than Just Mechanosensory Cells. , 2020, , 188-203.		0
924	Sirtuin function and metabolism: Role in pancreas, liver, and adipose tissue and their crosstalk impacting bone homeostasis. Bone, 2022, 154, 116232.	2.9	12

		CITATION REPORT		
#	Article		IF	CITATIONS
925	Basic Aspects of Osteocyte Function. Contemporary Endocrinology, 2020, , 43-69.		0.1	0
926	Cellular Contributors to Bone Homeostasis. Contemporary Cardiology, 2020, , 333-37	1.	0.1	2
927	Osteoclast Signal Transduction Pathways: The RANKL/RANK System. , 2020, , 200-220.			0
928	Origin and Differentiation of Osteoclasts. , 2020, , 162-180.			0
929	Bone Mechanics in Cancer. , 2020, , 445-457.			1
930	Knochenwachstum. Springer Reference Medizin, 2020, , 1-7.		0.0	0
931	Basic Aspects of Osteoblast Function. Contemporary Endocrinology, 2020, , 1-16.		0.1	2
932	Sclerostin Inhibition in the Treatment of Osteoporosis. Contemporary Endocrinology, 2	2020, , 375-389.	0.1	4
933	Paracrine Modulation of Mechanotransduction. , 2020, , 374-391.			0
934	Mechanobiology of Bone Metastatic Cancer. Current Osteoporosis Reports, 2021, 19,	580-591.	3.6	6
935	The Role of TCF- \hat{I}^2 in Bone Metastases. Biomolecules, 2021, 11, 1643.		4.0	35
936	Peficitinib improves bone fragility by recovering bone turnover imbalance in arthritic m Pharmacological Sciences, 2021, 148, 134-141.	ice. Journal of	2.5	4
938	Spinal Cord Injury and Osteoporosis: Causes, Mechanisms, and Rehabilitation Strategie Journal of Physical Medicine & Rehabilitation, 2013, 1, .	es. International	0.5	15
939	Zoledronic acid prevents disuse osteopenia and augments gene expression of osteocla differentiation markers in mice. Journal of Musculoskeletal Neuronal Interactions, 2018	stic 8, 18, 165-175.	0.1	5
942	Amorphous calcium magnesium phosphate nanocomposites with superior osteogenic regeneration. International Journal of Energy Production and Management, 2021, 8, rb	activity for bone ab068.	3.7	9
943	Osteocytes and Cancer. Current Osteoporosis Reports, 2021, 19, 616-625.		3.6	9
944	Osteocytes and Weightlessness. Current Osteoporosis Reports, 2021, 19, 626-636.		3.6	14
945	Osteocytes and Estrogen Deficiency. Current Osteoporosis Reports, 2021, 19, 592-60	3.	3.6	26

#	Article	IF	CITATIONS
946	Periosteal CD68 ⁺ F4/80 ⁺ Macrophages Are Mechanosensitive for Cortical Bone Formation by Secretion and Activation of TGFâ€ <i>β</i> 1. Advanced Science, 2022, 9, e2103343.	11.2	24
947	The role of mechanobiology in bone and cartilage model systems in characterizing initiation and progression of osteoarthritis. APL Bioengineering, 2022, 6, .	6.2	6
948	Inhibitor of protein kinase N3 suppresses excessive bone resorption in ovariectomized mice. Journal of Bone and Mineral Metabolism, 2022, 40, 251-261.	2.7	1
949	4PBA reduces growth deficiency in osteogenesis imperfecta by enhancing transition of hypertrophic chondrocytes to osteoblasts. JCI Insight, 2022, 7, .	5.0	16
950	CD169 ⁺ macrophages in lymph node and spleen critically depend on dual RANK and LTbetaR signaling. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	11
951	Therapeutic Treatments for Osteoporosis—Which Combination of Pills Is the Best among the Bad?. International Journal of Molecular Sciences, 2022, 23, 1393.	4.1	16
952	Interplay between Inflammation and Pathological Bone Resorption: Insights into Recent Mechanisms and Pathways in Related Diseases for Future Perspectives. International Journal of Molecular Sciences, 2022, 23, 1786.	4.1	31
953	Osteocytic Pericellular Matrix (PCM): Accelerated Degradation under In Vivo Loading and Unloading Conditions Using a Novel Imaging Approach. Genes, 2022, 13, 72.	2.4	2
955	Regulation of sclerostin by the SIRT1 stabilization pathway in osteocytes. Cell Death and Differentiation, 2022, 29, 1625-1638.	11.2	12
956	Stimulation of Osteoclast Formation by Oncostatin M and the Role of WNT16 as a Negative Feedback Regulator. International Journal of Molecular Sciences, 2022, 23, 3287.	4.1	6
957	Bridging the gap: Compressing non-unions for proper cellular signaling. Medical Hypotheses, 2022, 160, 110794.	1.5	0
958	Inflammation and Bone Metabolism in Rheumatoid Arthritis: Molecular Mechanisms of Joint Destruction and Pharmacological Treatments. International Journal of Molecular Sciences, 2022, 23, 2871.	4.1	41
959	Bad to the Bone: The Effects of Therapeutic Glucocorticoids on Osteoblasts and Osteocytes. Frontiers in Endocrinology, 2022, 13, 835720.	3.5	21
960	Crosstalk Between Senescent Bone Cells and the Bone Tissue Microenvironment Influences Bone Fragility During Chronological Age and in Diabetes. Frontiers in Physiology, 2022, 13, 812157.	2.8	8
961	Aged bone matrix-derived extracellular vesicles as a messenger for calcification paradox. Nature Communications, 2022, 13, 1453.	12.8	44
962	Finite Element Models of Osteocytes and Their Load-Induced Activation. Current Osteoporosis Reports, 2022, 20, 127-140.	3.6	7
963	Deletion of the scavenger receptor Scarb1 in osteoblast progenitors does not affect bone mass. PLoS ONE, 2022, 17, e0265893.	2.5	2
964	Pharmacological characterization of AS2690168, a novel small molecule RANKL signal transduction inhibitor. European Journal of Pharmacology, 2022, 924, 174941.	3.5	2

	Сітатіо	n Report	
#	Article	IF	CITATIONS
965	The effects of microgravity on bone structure and function. Npj Microgravity, 2022, 8, 9.	3.7	35
966	Osteoarthritis Pathophysiology. Clinics in Geriatric Medicine, 2022, 38, 193-219.	2.6	17
967	Protocadherin-7 Regulates Osteoclast Differentiation through Intracellular SET-Binding Domain-Mediated RhoA and Rac1 Activation. International Journal of Molecular Sciences, 2021, 22, 13117.	4.1	7
968	Parathyroid hormone signaling in mature osteoblasts/osteocytes protects mice from age-related bone loss. Aging, 2021, 13, 25607-25642.	3.1	7
969	Interactions of B-lymphocytes and bone cells in health and disease. Bone, 2023, 168, 116296.	2.9	6
970	IL-27 Modulates the Cytokine Secretion in the T Cell–Osteoclast Crosstalk During HIV Infection. Frontiers in Immunology, 2022, 13, 818677.	4.8	1
979	Positive and Negative Regulators of Sclerostin Expression. International Journal of Molecular Sciences, 2022, 23, 4895.	4.1	7
980	The origins and roles of osteoclasts in bone development, homeostasis and repair. Development (Cambridge), 2022, 149, .	2.5	27
982	Osteoimmunology in Periodontitis: Local Proteins and Compounds to Alleviate Periodontitis. International Journal of Molecular Sciences, 2022, 23, 5540.	4.1	17
983	Importance of Sclerostin as Bone-Muscle Mediator Crosstalk. Annals of Geriatric Medicine and Research, 2022, 26, 72-82.	1.8	7
984	Ablation of the miRNA cluster 24 in cartilage and osteoblasts impairs bone remodeling. Scientific Reports, 2022, 12, .	3.3	0
985	Deletion of <i>Rheb1</i> in Osteocytes Leads to Osteopenia Characterized by Reduced Bone Formation and Enhanced Bone Resorption. DNA and Cell Biology, 0, , .	1.9	0
986	Mechanisms of joint destruction in rheumatoid arthritis — immune cell–fibroblast–bone interactions. Nature Reviews Rheumatology, 2022, 18, 415-429.	8.0	124
987	Overexpression of Neurogenin 1 Negatively Regulates Osteoclast and Osteoblast Differentiation. International Journal of Molecular Sciences, 2022, 23, 6708.	4.1	1
988	Effects of diabetes on osteocytes. Current Opinion in Endocrinology, Diabetes and Obesity, 2022, 29, 310-317.	2.3	8
989	lncRNA SNHG15 as a ceRNA modulates Osteoclast Differentiation, Proliferation, and Metastasis by Sponging miR-381-3p/NEK2 Axis. Journal of Immunology Research, 2022, 2022, 1-11.	2.2	4
990	Alcohol-induced inhibition of bone formation and neovascularization contributes to the failure of fracture healing via the miR-19a-3p/FOXF2 axis. Bone and Joint Research, 2022, 11, 386-397.	3.6	3
991	Osteoclasts and Macrophages—Their Role in Bone Marrow Cavity Formation During Mouse Embryonic Development. Journal of Bone and Mineral Research, 2020, 37, 1761-1774.	2.8	9

#	Article	IF	CITATIONS
992	Nox4 expression in osteo-progenitors controls bone development in mice during early life. Communications Biology, 2022, 5, .	4.4	9
993	Damaged Mesenchymal Cells Dampen the Inflammatory Response of Macrophages and the Formation of Osteoclasts. Journal of Clinical Medicine, 2022, 11, 4061.	2.4	1
994	Bone remodeling: an operational process ensuring survival and bone mechanical competence. Bone Research, 2022, 10, .	11.4	85
995	Periosteal stem cells control growth plate stem cells during postnatal skeletal growth. Nature Communications, 2022, 13, .	12.8	23
996	Induction of a NOTCH3 Lehman syndrome mutation in osteocytes causes osteopenia in male C57BL/6J mice. Bone, 2022, 162, 116476.	2.9	2
997	Knowledge Domains and Emerging Trends of Osteoblasts-Osteoclasts in Bone Disease From 2002 to 2021: A Bibliometrics Analysis and Visualization Study. Frontiers in Endocrinology, 0, 13, .	3.5	8
998	Olanzapine decreased osteocyte maturation and Wnt/l²-catenin signaling during loading of the alveolar bone in rats. Bosnian Journal of Basic Medical Sciences, 0, , .	1.0	0
999	The role of secreted osteoclastogenic factor of activated T cells in bone remodeling. Japanese Dental Science Review, 2022, 58, 227-232.	5.1	4
1000	The Effect of IFT80 Deficiency in Osteocytes on Orthodontic Loading-Induced and Physiologic Bone Remodeling: In Vivo Study. Life, 2022, 12, 1147.	2.4	2
1001	PTH1R translocation to primary cilia in mechanicallyâ \in stimulated ostecytes prevents osteoclast formation via regulation of CXCL5 and ILâ \in 6 secretion. Journal of Cellular Physiology, 0, , .	4.1	10
1002	Senescent cells: A therapeutic target for osteoporosis. Cell Proliferation, 2022, 55, .	5.3	8
1003	Iron overload induced osteocytes apoptosis and led to bone loss in Hepcidinâ^'/â^' mice through increasing sclerostin and RANKL/OPG. Bone, 2022, 164, 116511.	2.9	12
1004	A novel decellularized matrix of Wnt signaling-activated osteocytes accelerates the repair of critical-sized parietal bone defects with osteoclastogenesis, angiogenesis, and neurogenesis. Bioactive Materials, 2023, 21, 110-128.	15.6	7
1005	The role of hypertrophic chondrocytes in regulation of the cartilage-to-bone transition in fracture healing. Bone Reports, 2022, 17, 101616.	0.4	9
1006	Paracrine and endocrine functions of osteocytes. Clinical Pediatric Endocrinology, 2023, 32, 1-10.	0.8	2
1007	Identification of a binding site on soluble RANKL that can be targeted to inhibit soluble RANK-RANKL interactions and treat osteoporosis. Nature Communications, 2022, 13, .	12.8	11
1008	miR-210-3p protects against osteoarthritis through inhibiting subchondral angiogenesis by targeting the expression of TGFBR1 and ID4. Frontiers in Immunology, 0, 13, .	4.8	5
1009	Biochemical characterization of a disease-causing human osteoprotegerin variant. Scientific Reports, 2022, 12, .	3.3	0

#	Article	IF	CITATIONS
1010	Pathways Controlling Formation and Maintenance of the Osteocyte Dendrite Network. Current Osteoporosis Reports, 2022, 20, 493-504.	3.6	5
1011	Osteocytes and the pathogenesis of hypophosphatemic rickets. Frontiers in Endocrinology, 0, 13, .	3.5	6
1012	Benincasa hispida Extract Promotes Proliferation, Differentiation, and Mineralization of MC3T3-E1 Preosteoblasts and Inhibits the Differentiation of RAW 246.7 Osteoclast Precursors. Applied Sciences (Switzerland), 2022, 12, 8849.	2.5	4
1013	Osteoclast Recycling and the Rebound Phenomenon Following Denosumab Discontinuation. Current Osteoporosis Reports, 2022, 20, 505-515.	3.6	11
1014	Osteoclasts, Master Sculptors of Bone. Annual Review of Pathology: Mechanisms of Disease, 2023, 18, 257-281.	22.4	27
1015	Osteoclast-mediated resorption primes the skeleton for successful integration during axolotl limb regeneration. ELife, 0, 11, .	6.0	6
1017	Calcium‑dependent activation of PHEX, MEPE and DMP1 in osteocytes. Molecular Medicine Reports, 2022, 26, .	2.4	2
1018	Topography-mediated immunomodulation in osseointegration; Ally or Enemy. Biomaterials, 2022, 291, 121903.	11.4	27
1020	Osteocytes directly regulate osteolysis via MYD88 signaling in bacterial bone infection. Nature Communications, 2022, 13, .	12.8	12
1021	Rb1 negatively regulates bone formation and remodeling through inhibiting transcriptional regulation of YAP in Glut1 and OPG expression and glucose metabolism in male mice. Molecular Metabolism, 2022, 66, 101630.	6.5	3
1022	Silk fibroin scaffolds: A promising candidate for bone regeneration. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	4
1023	Release of drugs used in the treatment of osteoporosis from zeolites with divalent ions—Influence of the type of ion and drug on the release profile. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2023, 111, 1005-1014.	3.4	5
1024	RANKL and RANK in Cancer Therapy. Physiology, 2023, 38, 110-124.	3.1	1
1025	Visualizing Cathepsin <scp>Kâ€Cre</scp> Expression at the <scp>Singleâ€Cell</scp> Level with <scp>GFP</scp> Reporters. JBMR Plus, 2023, 7, .	2.7	3
1026	Temporomandibular Joint Osteoarthritis: Pathogenic Mechanisms Involving the Cartilage and Subchondral Bone, and Potential Therapeutic Strategies for Joint Regeneration. International Journal of Molecular Sciences, 2023, 24, 171.	4.1	12
1028	HERC1 deficiency causes osteopenia through transcriptional program dysregulation during bone remodeling. Cell Death and Disease, 2023, 14, .	6.3	1
1029	Endocrine sequelae of hematopoietic stem cell transplantation: Effects on mineral homeostasis and bone metabolism. Frontiers in Endocrinology, 0, 13, .	3.5	1
1030	Bone Metastasis in Bladder Cancer. Journal of Personalized Medicine, 2023, 13, 54.	2.5	2

	CHATION I	LEPUKI	
#	Article	IF	CITATIONS
1031	Vertebral Fractures in Acromegaly: A Systematic Review. Journal of Clinical Medicine, 2023, 12, 164.	2.4	4
1032	Home-based cardiac rehabilitation: A review of bibliometric studies and visual analysis of CiteSpace (2012–2021). Medicine (United States), 2022, 101, e31788.	1.0	2
1033	Bone circuitry and interorgan skeletal crosstalk. ELife, 0, 12, .	6.0	9
1034	Time-dependent unloading effects on muscle and bone and involvement of FNDC5/irisin axis. Npj Microgravity, 2023, 9, .	3.7	5
1035	Nupr1 deficiency downregulates HtrA1, enhances SMAD1 signaling, and suppresses ageâ€related bone loss in male mice. Journal of Cellular Physiology, 0, , .	4.1	1
1037	Pharmaceutical treatment of bone loss: From animal models and drug development to future treatment strategies. , 2023, 244, 108383.		10
1038	Targeting osteocytes vs osteoblasts. Bone, 2023, 170, 116724.	2.9	6
1039	Baicalin Nanocomplexes with an <i>In Situ</i> -Forming Biomimetic Gel Implant for Repair of Calvarial Bone Defects <i>via</i> Localized Sclerostin Inhibition. ACS Applied Materials & Interfaces, 2023, 15, 9044-9057.	8.0	4
1040	Dual Role of Interleukin-20 in Different Stages of Osteoclast Differentiation and Its Osteoimmune Regulation during Alveolar Bone Remodeling. International Journal of Molecular Sciences, 2023, 24, 3810.	4.1	2
1041	New Insights into the Role of Synovial Fibroblasts Leading to Joint Destruction in Rheumatoid Arthritis. International Journal of Molecular Sciences, 2023, 24, 5173.	4.1	8
1042	PECAM1 plays a role in the pathogenesis and treatment of bone metastases. Frontiers in Genetics, 0, 14, .	2.3	0
1043	lgSF11-mediated phosphorylation of pyruvate kinase M2 regulates osteoclast differentiation and prevents pathological bone loss. Bone Research, 2023, 11, .	11.4	4
1044	Generation of bicistronic Dmp1-Cre knock-in mice using a self-cleaving 2A peptide. Journal of Bone and Mineral Metabolism, 0, , .	2.7	1
1045	Connexin 43 hemichannels and prostaglandin E2 release in anabolic function of the skeletal tissue to mechanical stimulation. Frontiers in Cell and Developmental Biology, 0, 11, .	3.7	0
1046	Regulation of the Osteocyte Secretome with Aging and Disease. Calcified Tissue International, 2023, 113, 48-67.	3.1	3
1047	Piezo1 opposes ageâ€associated cortical bone loss. Aging Cell, 2023, 22, .	6.7	2
1048	Assembling the Puzzle Pieces. Insights for in Vitro Bone Remodeling. Stem Cell Reviews and Reports, 0, ,	3.8	2
1049	Role of MOTS-c in the regulation of bone metabolism. Frontiers in Physiology, 0, 14, .	2.8	1

	Сітатіс	CITATION REPORT		
#	Article	IF	CITATIONS	
1050	Osteocytes: New Kids on the Block for Cancer in Bone Therapy. Cancers, 2023, 15, 2645.	3.7	3	
1051	Regulation of Bone Homeostasis and Regeneration by MicroRNAs. , 2023, , 741-770.		0	
1052	Targeting strategies for bone diseases: signaling pathways and clinical studies. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	8	
1053	Significance of mechanical loading in bone fracture healing, bone regeneration, and vascularization. Journal of Tissue Engineering, 2023, 14, 204173142311725.	5.5	10	
1054	Pathophysiology of bone disease in chronic kidney disease: from basics to renal osteodystrophy and osteoporosis. Frontiers in Physiology, 0, 14, .	2.8	2	
1055	The NAD salvage pathway in mesenchymal cells is indispensable for skeletal development in mice. Nature Communications, 2023, 14, .	12.8	0	
1056	Autonomic nervous regulation of cellular processes during subchondral bone remodeling in osteoarthritis. American Journal of Physiology - Cell Physiology, 2023, 325, C365-C384.	4.6	2	
1057	Osteoclast-derived IGF1 induces RANKL production in osteocytes and contributes to pagetic lesion formation. JCI Insight, 2023, 8, .	5.0	1	
1058	Roles for Taraxacum officinale and Vitamins (C, K) on Bone Formation and Resorption Heparin-Induced in Rats. Archives of Pharmacy Practice, 2023, 14, 82-91.	1.3	2	
1059	New Insights into Calorie Restriction Induced Bone Loss. Endocrinology and Metabolism, 2023, 38, 203-213.	3.0	2	
1060	SOST gene suppression stimulates osteocyte Wnt/ \hat{l}^2 -catenin signaling to prevent bone resorption and attenuates particle-induced osteolysis. Journal of Molecular Medicine, 2023, 101, 607-620.	3.9	0	
1061	Role of Mast-Cell-Derived RANKL in Ovariectomy-Induced Bone Loss in Mice. International Journal of Molecular Sciences, 2023, 24, 9135.	4.1	1	
1062	Roles for Taraxacum officinale and Vitamins (C, K) on Bone Formation and Resorption Heparin-Induced in Rats. International Journal of Pharmaceutical Research and Allied Sciences, 2023, 12, 108-119.	0.9	0	
1063	The osteocyte and its osteoclastogenic potential. Frontiers in Endocrinology, 0, 14, .	3.5	6	
1065	miR181a/b-1 controls osteocyte metabolism and mechanical properties independently of bone morphology. Bone, 2023, 175, 116836.	2.9	0	
1066	Hypertrophic chondrocytes at the junction of musculoskeletal structures. Bone Reports, 2023, 19, 101698.	0.4	0	
1067	CRISPR interference provides increased cell type-specificity compared to the Cre-loxP system. IScience, 2023, 26, 107428.	4.1	1	
1068	Osteocyte RANKL Drives Bone Resorption in Mouse Ligature-Induced Periodontitis. Journal of Bone and Mineral Research, 2023, 38, 1521-1540.	2.8	1	

#	Article	IF	CITATIONS
1069	Identification of an intronic enhancer regulating RANKL expression in osteocytic cells. Bone Research, 2023, 11, .	11.4	2
1070	The Past, Present, and Future of Genetically Engineered Mouse Models for Skeletal Biology. Biomolecules, 2023, 13, 1311.	4.0	0
1071	Mechanobiological crosstalk among bone cells and between bone and other organs. , 2024, , 215-247.		0
1072	A Novel Long Noncoding RNA in Osteocytes Regulates Bone Formation through the Wnt/β-Catenin Signaling Pathway. International Journal of Molecular Sciences, 2023, 24, 13633.	4.1	0
1073	Proton and Carbon Ion Irradiation Changes the Process of Endochondral Ossification in an Ex Vivo Femur Organotypic Culture Model. Cells, 2023, 12, 2301.	4.1	1
1074	The effect of osteocyteâ€derived <scp>RANKL</scp> on bone graft remodeling: An in vivo experimental study. Clinical Oral Implants Research, 2023, 34, 1417-1427.	4.5	0
1075	PP2A-Mediated GSK3Î ² Dephosphorylation Is Required for Protocadherin-7-Dependent Regulation of Small GTPase RhoA in Osteoclasts. Cells, 2023, 12, 1967.	4.1	2
1076	Connexin 43 and cell culture substrate differentially regulate OCY454 osteocytic differentiation and signaling to primary bone cells. American Journal of Physiology - Cell Physiology, 2023, 325, C907-C920.	4.6	0
1077	The Critical Role of The Piezo1/βâ€catenin/ATF4 Axis on The Stemness of Gli1 ⁺ BMSCs During Simulated Microgravityâ€Induced Bone Loss. Advanced Science, 2023, 10, .	11.2	2
1079	Musculoskeletal complications of Cushing syndrome. Reumatologia, 2023, 61, 271-282.	1.1	1
1080	Force-Loaded Cementocytes Regulate Osteoclastogenesis via S1P/S1PR1/Rac1 Axis. Journal of Dental Research, 0, , .	5.2	0
1081	Ambient PM2.5 Exposure and Bone Homeostasis: Analysis of UK Biobank Data and Experimental Studies in Mice and <i>in Vitro</i> . Environmental Health Perspectives, 2023, 131, .	6.0	0
1082	Osteoimmunology of Spondyloarthritis. International Journal of Molecular Sciences, 2023, 24, 14924.	4.1	0
1083	Anti-Osteoporotic Potential of Water Extract of Anethum graveolens L. Seeds. Nutrients, 2023, 15, 4302.	4.1	0
1084	Unraveling the Bone Tissue Microenvironment in Chronic Lymphocytic Leukemia. Cancers, 2023, 15, 5058.	3.7	0
1085	Unloadingâ€Induced Skeletal Interoception Alters Hypothalamic Signaling to Promote Bone Loss and Fat Metabolism. Advanced Science, 2023, 10, .	11.2	2
1086	Consequences of Aging on Bone. , 2023, .		1
1087	Osteoblast-lineage calcium/calmodulin-dependent kinase 2 delta and gamma regulates bone mass and quality. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	0

#	Article	IF	CITATIONS
1088	Fluoxetine treatment during the postpartal period may have short-term impacts on murine maternal skeletal physiology. Frontiers in Pharmacology, 0, 14, .	3.5	0
1089	Osteoclastogenesis and vitamin D. , 2024, , 395-408.		0
1091	Osteoclasts at Bone Remodeling: Order from Order. Results and Problems in Cell Differentiation, 2024, , 227-256.	0.7	1
1092	Activation of TAZ by XMU-MP-1 inhibits osteoclastogenesis and attenuates ovariectomy-induced cancellous bone loss. Biochemical and Biophysical Research Communications, 2024, 692, 149323.	2.1	0
1093	Mechanisms of Osteoclastogenesis in Orthodontic Tooth Movement and Orthodontically Induced Tooth Root Resorption. Journal of Bone Metabolism, 2023, 30, 297-310.	1.3	0
1094	Local Effects of Steroid Hormones within the Bone Microenvironment. International Journal of Molecular Sciences, 2023, 24, 17482.	4.1	0
1095	Ethanol Extract of Radix Asteris Suppresses Osteoclast Differentiation and Alleviates Osteoporosis. International Journal of Molecular Sciences, 2023, 24, 16526.	4.1	0
1096	Hematopoietic and stromal DMP1-Cre labeled cells form a unique niche in the bone marrow. Scientific Reports, 2023, 13, .	3.3	0
1098	Medication-related osteonecrosisâ€,of theâ€,jaw (MRONJ): a review of pathogenesis hypothesis and therapy strategies. Archives of Toxicology, 2024, 98, 689-708.	4.2	1
1099	Effects of Aging on Osteosynthesis at Bone–Implant Interfaces. Biomolecules, 2024, 14, 52.	4.0	1
1100	Distinct fibroblast functions associated with fibrotic and immune-mediated inflammatory diseases and their implications for therapeutic development. F1000Research, 0, 13, 54.	1.6	0
1101	Mer tyrosine kinase regulates bone metabolism, and its deficiency partially ameliorates periodontitis- and ovariectomy-induced bone loss in mice. JBMR Plus, 2024, 8, .	2.7	0
1102	Loss of the auxiliary α2δ1 voltage-sensitive calcium channel subunit impairs bone formation and anabolic responses to mechanical loading. JBMR Plus, 2024, 8, .	2.7	0
1103	Runx2 deletion in hypertrophic chondrocytes impairs osteoclast mediated bone resorption. Bone, 2024, 181, 117014.	2.9	0
1104	Inhibition of RANKL improves the skeletal phenotype of adenine-induced chronic kidney disease in mice. JBMR Plus, 2024, 8, .	2.7	0
1105	Ferroptosis in Osteocytes as a Target for Protection Against Postmenopausal Osteoporosis. Advanced Science, 2024, 11, .	11.2	0
1106	Unraveling the intricacies of osteoclast differentiation and maturation: insight into novel therapeutic strategies for bone-destructive diseases. Experimental and Molecular Medicine, 2024, 56, 264-272.	7.7	0
1107	lguratimod suppresses sclerostin and receptor activator of NF-κB ligand production via the extracellular signal–regulated kinase/early growth response protein 1/tumor necrosis factor alpha pathway in osteocytes and ameliorates disuse osteoporosis in mice. Bone, 2024, 181, 117026.	2.9	0

#	Article	IF	CITATIONS
1108	Melittin Treats Periprosthetic Osteolysis in a Rat Model by Inhibiting the NF-kB Pathway and Regulating the Ratio of Receptor Activator of Nuclear Factor Kappa B Ligand/Osteoprotegerin. Journal of Arthroplasty, 2024, , .	3.1	0
1109	Equine Models of Temporomandibular Joint Osteoarthritis: A Review of Feasibility, Biomarkers, and Molecular Signaling. Biomedicines, 2024, 12, 542.	3.2	0
1110	Bridging the Gap in Understanding Bone Metastasis: A Multifaceted Perspective. International Journal of Molecular Sciences, 2024, 25, 2846.	4.1	0
1111	The reciprocity of skeletal muscle and bone: an evolving view from mechanical coupling, secretory crosstalk to stem cell exchange. Frontiers in Physiology, 0, 15, .	2.8	0
1112	Age-related disease: Bones. , 2024, , 53-72.		0
1113	â€^Microgravity's dental dilemma: Navigating oral health challenges in space, from effect on bone to therapeutic frontiers – A review'. Acta Astronautica, 2024, 219, 363-375.	3.2	0
1114	Refining the identity of mesenchymal cell types associated with murine periosteal and endosteal bone. Journal of Biological Chemistry, 2024, 300, 107158.	3.4	0
1115	Effects of dexamethasone and IGF-1 on post-traumatic osteoarthritis-like catabolic changes in a human cartilage-bone-synovium microphysiological system in space and ground control tissues on earth.	1.4	О