Flood Hydrology and Methylmercury Availability in Coa

Environmental Science & amp; Technology 44, 9285-9290 DOI: 10.1021/es102917j

Citation Report

#	Article	IF	CITATIONS
1	Spatial and Seasonal Variability of Dissolved Methylmercury in Two Stream Basins in the Eastern United States. Environmental Science & Technology, 2011, 45, 2048-2055.	10.0	36
2	Spatial patterns of mercury in macroinvertebrates and fishes from streams of two contrasting forested landscapes in the eastern United States. Ecotoxicology, 2011, 20, 1530-1542.	2.4	47
3	Shallow Groundwater Mercury Supply in a Coastal Plain Stream. Environmental Science & Technology, 2012, 46, 7503-7511.	10.0	19
4	Recent status of total mercury and methyl mercury in the coastal waters of the northern Gulf of Mexico using oysters and sediments from NOAA's mussel watch program. Marine Pollution Bulletin, 2012, 64, 2399-2408.	5.0	40
5	Hydrology and Methylmercury Availability in Coastal Plain Streams. , 0, , .		2
6	Characterizing mercury concentrations and fluxes in a Coastal Plain watershed: Insights from dynamic modeling and data. Journal of Geophysical Research, 2012, 117, .	3.3	14
7	Variable Contributions of Mercury from Groundwater to a First-Order Urban Coastal Plain Stream in New Jersey, USA. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	14
8	Intra- and inter-basin mercury comparisons: Importance of basin scale and time-weighted methylmercury estimates. Environmental Pollution, 2013, 172, 42-52.	7.5	14
9	Climate change and watershed mercury export: a multiple projection and model analysis. Environmental Toxicology and Chemistry, 2013, 32, 2165-2174.	4.3	10
10	Mercury and methylmercury stream concentrations in a Coastal Plain watershed: A multi-scale simulation analysis. Environmental Pollution, 2014, 187, 182-192.	7.5	9
11	Waterscape determinants of net mercury methylation in a tropical wetland. Environmental Research, 2016, 150, 438-445.	7.5	15
12	Seasonal and flowâ€driven dynamics of particulate and dissolved mercury and methylmercury in a stream impacted by an industrial mercury source. Environmental Toxicology and Chemistry, 2016, 35, 1386-1400.	4.3	26
13	Impact of flash flood events on the distribution of organic pollutants in surface sediments from a Mediterranean coastal lagoon (Mar Menor, SE Spain). Environmental Science and Pollution Research, 2017, 24, 4284-4300.	5.3	39
14	Extreme flooding mobilized dissolved organic matter from coastal forested wetlands. Biogeochemistry, 2017, 136, 293-309.	3.5	43
15	Concentration and isotopic composition of mercury in a blackwater river affected by extreme flooding events. Limnology and Oceanography, 2020, 65, 2158-2169.	3.1	16
16	A Deep Look into the Dynamics of Saltwater Imbibition in a Calcite Nanochannel: Temperature Impacts Capillarity Regimes. Langmuir, 2020, 36, 9035-9046.	3.5	10
17	Mercury in the Environment. , 2012, , .		19
18	Hydraulic and Biochemical Gradients Limit Wetland Mercury Supply to an Adirondack Stream. International Journal of Marine Biology and Research, 2016, 1, 1-9.	0.1	0

#	Article	IF	CITATIONS
19	Temporal variability in TiO2 engineered particle concentrations in rural Edisto River. Chemosphere, 2022, 297, 134091.	8.2	4
20	Interferences between natural and anthropic hazards in marine-coastal environments: Assessing transport from land to the offshore systems in the Crotone basin (Ionian Sea). Estuarine, Coastal and Shelf Science, 2022, 271, 107854.	2.1	6
21	Assessment and Management of Mercury Leaching from a Riverbank. Toxics, 2023, 11, 179.	3.7	0
22	Mercury transport and methylmercury production in the lower Cedar River (Iowa) floodplain. Frontiers in Environmental Chemistry, 0, 4, .	1.6	1