Role of van der Waals interaction in forming molecule-molecules on the Au(111) surface

Physical Chemistry Chemical Physics 12, 4759

DOI: 10.1039/b920121a

Citation Report

#	Article	IF	Citations
1	Homochiral Xanthine Quintet Networks Self-Assembled on Au(111) Surfaces. ACS Nano, 2011, 5, 6651-6660.	14.6	18
2	Properties of Benzene Confined between Two Au(111) Surfaces Using a Combined Density Functional Theory and Classical Molecular Dynamics Approach. Journal of Physical Chemistry C, 2011, 115, 14707-14717.	3.1	33
3	Structure of Methyl Pyruvate and \hat{l}_{\pm} -(1-Naphthyl)ethylamine on Pd(111). Journal of Physical Chemistry C, 2011, 115, 8790-8797.	3.1	24
4	Heat-to-Connect: Surface Commensurability Directs Organometallic One-Dimensional Self-Assembly. ACS Nano, 2011, 5, 9093-9103.	14.6	64
5	Overcoming excitonic bottleneck in organic solar cells: electronic structure and spectra of novel semiconducting donor–acceptor block copolymers. Physical Chemistry Chemical Physics, 2011, 13, 7630.	2.8	14
6	Self-Assembled Monolayer of Cr ₇ Ni Molecular Nanomagnets by Sublimation. ACS Nano, 2011, 5, 7090-7099.	14.6	42
7	Organometallic reactivity: the role of metal–ligand bond energies from a computational perspective. Dalton Transactions, 2011, 40, 11184.	3. 3	57
8	Zipping Up: Cooperativity Drives the Synthesis of Graphene Nanoribbons. Journal of the American Chemical Society, 2011, 133, 14884-14887.	13.7	110
9	Doping of graphene by a $Au(111)$ substrate: Calculation strategy within the local density approximation and a semiempirical van der Waals approach. Physical Review B, 2011, 83, .	3.2	90
10	GGA versus van der Waals density functional results for mixed gold/mercury molecules and pure Au and Hg cluster properties. Physical Chemistry Chemical Physics, 2011, 13, 20863.	2.8	31
11	A van der Waals density functional study of adenine on graphene: single-molecular adsorption and overlayer binding. Journal of Physics Condensed Matter, 2011, 23, 135001.	1.8	44
12	Role of Dispersion Forces in the Structure of Graphene Monolayers on Ru Surfaces. Physical Review Letters. 2011. 106. 186102. van der Waals Interactions in the ground state of Mg(BH <mml:math) 0="" 10="" 287<="" 50="" etqq0="" overlock="" rgbt="" td="" tf="" tj=""><td>7.8 Td (xmlns:</td><td>129 mml="http://\</td></mml:math)>	7.8 Td (xmlns:	129 mml="http://\
13	xmlns:mml="http://www.w3.org/1998/Math/MathML"	3.2	47
14	display="inline"> <mml:mrow><mml:msub><mml:mrow></mml:mrow><mml:mrow> /><mml:mrow> //mml:mr> //mm</mml:mrow></mml:mrow></mml:msub></mml:mrow>	3.0	40
15	Electronic structure of the Il-cysteine dimers adsorbed on Au(111): a density functional theory study. Physica Scripta, 2012, 86, 035707.	2.5	13
16	Analyzing the frequency shift of physiadsorbed CO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> in metal organic framework materials. Physical Review B. 2012. 85	3.2	46
17	Adsorption of tris(8-hydroxyquinoline)aluminum molecules on cobalt surfaces. Physical Review B, 2012, 85, .	3.2	19
18	Structure and stability of weakly chemisorbed ethene adsorbed on low-index Cu surfaces: performance of density functionals with van der Waals interactions. Journal of Physics Condensed Matter, 2012, 24, 424217.	1.8	19

#	Article	IF	CITATIONS
19	Molecules on the Au(111) Surface. Springer Theses, 2012, , 91-113.	0.1	1
20	Fabrication of a Complex Two-Dimensional Adenine–Perylene-3,4,9,10-tetracarboxylic Dianhydride Chiral Nanoarchitecture through Molecular Self-Assembly. Journal of Physical Chemistry C, 2012, 116, 2493-2499.	3.1	17
21	Relation between Electron Scattering Resonances of Isolated NTCDA Molecules and Maxima in the Density of Unoccupied States of Condensed NTCDA Layers. Journal of Physical Chemistry A, 2012, 116, 761-766.	2.5	35
22	Modulating Morphology of Thiol-Based Monolayers in Honeycomb Hydrogen-Bonded Nanoporous Templates on the $Au(111)$ Surface: Simulations with the Modified Force Field. Journal of Physical Chemistry C, 2012, 116, 8523-8534.	3.1	20
23	Chiral Conformation at a Molecular Level of a Propeller-Like Open-Shell Molecule on Au(111). Journal of Physical Chemistry Letters, 2012, 3, 1559-1564.	4.6	22
24	A theoretical study of the hydrogen-storage potential of (H2)4CH4in metal organic framework materials and carbon nanotubes. Journal of Physics Condensed Matter, 2012, 24, 424204.	1.8	12
25	Surface interactions of Au(I) cyclo-trimer with Au(111) and Al(111) surfaces: A computational study. Surface Science, 2012, 606, 1100-1107.	1.9	7
26	Measurement of the Binding Energies of the Organic-Metal Perylene-Teracarboxylic-Dianhydride/Au(111) Bonds by Molecular Manipulation Using an Atomic Force Microscope. Physical Review Letters, 2012, 109, 076102.	7.8	72
27	Molecular adsorption on metal surfaces with van der Waals density functionals. Physical Review B, 2012, 85, .	3.2	89
28	Substituted Benzene Derivatives on the Cu(111) Surface. Journal of Physical Chemistry C, 2012, 116, 12636-12643.	3.1	28
29	The role of van der Waals interactions in the adsorption of noble gases on metal surfaces. Journal of Physics Condensed Matter, 2012, 24, 424211.	1.8	42
30	Structural evolution of amino acid crystals under stress from a non-empirical density functional. Journal of Physics Condensed Matter, 2012, 24, 424209.	1.8	65
31	Formation Mechanism for a Hybrid Supramolecular Network Involving Cooperative Interactions. Physical Review Letters, 2012, 108, 176103.	7.8	34
32	Interaction of Nucleic Acid Bases with the Au(111) Surface. Journal of Chemical Theory and Computation, 2013, 9, 4552-4561.	5.3	33
33	Water Cluster Confinement and Methane Adsorption in the Hydrophobic Cavities of a Fluorinated Metal–Organic Framework. Journal of the American Chemical Society, 2013, 135, 12615-12626.	13.7	114
34	Simulations on the possibility of formation of complexes between fluorouracil drug and cucurbit[n]urils: ab initio van der Waals DFT study. Journal of Molecular Modeling, 2013, 19, 4013-4023.	1.8	10
35	Simple benzene derivatives adsorption on defective single-walled carbon nanotubes: a first-principles van der Waals density functional study. Journal of Molecular Modeling, 2013, 19, 1059-1067.	1.8	10
36	Guanine Assemblies on the Au(111) Surface: A Theoretical Study. Journal of Physical Chemistry C, 2013, 117, 5684-5692.	3.1	10

3

#	Article	IF	Citations
37	Critical Importance of van der Waals Stabilization in Strongly Chemically Bonded Surfaces: Cu(110):O. Journal of Chemical Theory and Computation, 2013, 9, 5578-5584.	5.3	10
38	Accounting for van der Waals interactions between adsorbates and surfaces in density functional theory based calculations: selected examples. RSC Advances, 2013, 3, 13085.	3.6	138
39	Effect of van der Waals Interaction on the Geometric and Electronic Properties of DNA Nucleosides Adsorbed on Cu(111) Surface: A DFT Study. Journal of Physical Chemistry A, 2013, 117, 4669-4678.	2.5	12
40	Structure and local reactivity of the Au(111) surface reconstruction. Physical Review B, 2013, 87, .	3.2	125
41	Binding Interactions in Dimers of Phenalenyl and Closed-Shell Analogues. Journal of Physical Chemistry A, 2013, 117, 3642-3649.	2.5	35
42	Defect mediated manipulation of nanoclusters on an insulator. Scientific Reports, 2013, 3, 1270.	3.3	14
43	STM imagery and density functional calculations of C60fullerene adsorption on the 6H-SiC(0001)-3 \tilde{A} -3 surface. Physical Review B, 2013, 87, .	3.2	10
44	Full DFT-D description of a nanoporous supramolecular network on a silicon surface. Journal of Chemical Physics, 2013, 138, 084704.	3.0	11
45	Nonlocal van der Waals density functional made simple and efficient. Physical Review B, 2013, 87, .	3.2	471
46	Spectral properties of a molecular wire in the Kondo regime. Physica Status Solidi (B): Basic Research, 2013, 250, 2386-2393.	1.5	11
47	van der Waals density functionals built upon the electron-gas tradition: Facing the challenge of competing interactions. Journal of Chemical Physics, 2014, 140, 18A539.	3.0	100
48	A model of melamine molecules ordering on metal surfaces. Journal of Chemical Physics, 2014, 141, 054701.	3.0	17
49	Evaluating interaction energies of weakly bonded systems using the Buckingham-Hirshfeld method. Journal of Chemical Physics, 2014, 140, 184105.	3.0	5
50	Adsorption of Large Hydrocarbons on Coinage Metals: A van der Waals Density Functional Study. ChemPhysChem, 2014, 15, 2851-2858.	2.1	45
51	Towards Design Rules for Covalent Nanostructures on Metal Surfaces. Chemistry - A European Journal, 2014, 20, 928-934.	3.3	68
52	Promoting Effect of Carbon Surfaces on H ₂ Dissociation on Al _{<i>n</i>} Clusters by First Principles Calculations. Journal of Physical Chemistry C, 2014, 118, 513-522.	3.1	5
53	Structural and electronic properties of the Pt _n â \in PAH complex (n = 1, 2) from density functional calculations. Physical Chemistry Chemical Physics, 2014, 16, 18586-18595.	2.8	11
54	Thermodynamic study of benzene and hydrogen coadsorption on Pd(111). Physical Chemistry Chemical Physics, 2014, 16, 23754-23768.	2.8	25

#	Article	IF	CITATIONS
55	Characterization of NTCDI supra-molecular networks on $Au(111)$; combining STM, IR and DFT calculations. RSC Advances, 2014, 4, 25698-25708.	3.6	20
56	Understanding and Controlling the 1,4-Phenylene Diisocyanide–Gold Oligomer Formation Pathways. Journal of Physical Chemistry C, 2014, 118, 20899-20907.	3.1	17
57	Periodic DFT Study of Benzene Adsorption on $Pd(100)$ and $Pd(110)$ at Medium and Saturation Coverage. Journal of Physical Chemistry C, 2014, 118, 21483-21499.	3.1	16
58	Building Motifs during Self-Assembly of <i>para</i> -Terphenyl- <i>meta</i> -dicarbonitrile on a Metal Surface: A Gas-Phase Study. Journal of Physical Chemistry C, 2014, 118, 10358-10365.	3.1	6
59	Determination of Adsorbate Structures from 1,4-Phenylene Diisocyanide on Gold. Journal of Physical Chemistry Letters, 2014, 5, 3577-3581.	4.6	17
60	Effect of dispersion on surface interactions of cobalt(<scp>ii</scp>) octaethylporphyrin monolayer on Au(111) and HOPG(0001) substrates: a comparative first principles study. Physical Chemistry Chemical Physics, 2014, 16, 14096-14107.	2.8	58
61	Adsorption of small aromatic molecules on gold: a DFT localized basis set study including van der Waals effects. Theoretical Chemistry Accounts, 2014, 133, 1.	1.4	33
62	Adsorption of metal nanoparticles on carbon substrates and epitaxial graphene: Assessing models for dispersion forces. Physical Review B, 2015, 91, .	3.2	9
63	Structural and electronic properties of supramolecular C60:RU(II)(bipy)3:C60 triad: Ab initio van der Waals calculations. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 69, 384-393.	2.7	3
64	Anchoring and Bending of Pentacene on Aluminum (001). Journal of Physical Chemistry C, 2015, 119, 3624-3633.	3.1	21
65	Adsorption of Benzene on Cu(100) and on Cu(100) Covered with an Ultrathin NaCl Film: Molecule–Substrate Interaction and Decoupling. Journal of Physical Chemistry C, 2015, 119, 4062-4071.	3.1	20
66	The role of isomerization in the kinetics of self-assembly: p-terphenyl-m-dicarbonitrile on the $Ag(111)$ surface. Physical Chemistry Chemical Physics, 2015, 17, 11182-11192.	2.8	9
67	van der Waals forces in density functional theory: a review of the vdW-DF method. Reports on Progress in Physics, 2015, 78, 066501.	20.1	615
68	Electronic Properties of Molecules and Surfaces with a Self-Consistent Interatomic van der Waals Density Functional. Physical Review Letters, 2015, 114, 176802.	7.8	79
69	Hydrazine network on Cu(111) surface: A Density Functional Theory approach. Surface Science, 2015, 637-638, 140-148.	1.9	21
70	Chemical Bonding and Electronic Properties of the Co Adatom and Dimer Interacting with Polyaromatic Hydrocarbons. Journal of Physical Chemistry C, 2015, 119, 24425-24438.	3.1	9
71	Role of Long-Range Interactions for the Structure and Energetics of Olympicene Radical Adsorbed on Au(111) and Pt(111) Surfaces. Journal of Physical Chemistry C, 2015, 119, 25408-25419.	3.1	19
72	Coronene Molecules in Hexagonal Pores of Tricarboxylic Acids: A Monte Carlo Study. Journal of Physical Chemistry C, 2015, 119, 20524-20534.	3.1	22

#	Article	IF	CITATIONS
73	Adsorption of PTCDA and C ₆₀ on KBr(001): electrostatic interaction versus electronic hybridization. Physical Chemistry Chemical Physics, 2016, 18, 11008-11016.	2.8	5
74	The contact of graphene with Ni(111) surface: description by modern dispersive forces approaches. Theoretical Chemistry Accounts, 2016, 135, 1.	1.4	15
75	Surface directed reversible imidazole ligation to nickel(<scp>ii</scp>) octaethylporphyrin at the solution/solid interface: a single molecule level study. Physical Chemistry Chemical Physics, 2016, 18, 20819-20829.	2.8	23
76	Role of van der Waals forces in the diffraction of noble gases from metal surfaces. Physical Review B, 2016, 93, .	3.2	21
77	Monolayer Phases of a Dipolar Perylene Derivative on $Au(111)$ and Surface Potential Build-Up in Multilayers. Langmuir, 2016, 32, 3587-3600.	3.5	11
78	Adsorption thermodynamics of cross-shaped molecules with one attractive arm on random heterogeneous square lattice. Adsorption, 2016, 22, 621-630.	3.0	4
79	Switching orientation of adsorbed molecules: Reverse domino on a metal surface. Surface Science, 2016, 643, 98-107.	1.9	17
80	Interplay between Structural and Electronic Properties in 1,4,5,8-Naphthalenetetracarboxylic Dianhydride Films on Cu(100). Journal of Physical Chemistry C, 2017, 121, 5050-5057.	3.1	8
81	Adsorption and desorption kinetics of NTCDA molecules on $Ag(111)$ and $Au(111)$ surfaces studied by ion scattering. Radiation Effects and Defects in Solids, 2017, 172, 39-47.	1.2	4
82	Cooperativity in the Selfâ€Assembly of the Guanine Nucleobase into Quartet and Ribbon Structures on Surfaces. Chemistry - A European Journal, 2017, 23, 3042-3050.	3.3	26
83	Adsorption and desorption of propane on Pd (111): A van der Waals density functional study. Energy binding sites and geometries. Surface Science, 2017, 664, 82-86.	1.9	2
84	Tuning the work function of stepped metal surfaces by adsorption of organic molecules. Journal of Physics Condensed Matter, 2017, 29, 204001.	1.8	14
85	First-principles investigation of the structural and electronic properties of self-assemblies of functional molecules on graphene. Superlattices and Microstructures, 2017, 105, 139-151.	3.1	9
86	First Principle Study on the Adsorption of Hydrocarbon Chains Involved in Fischer–Tropsch Synthesis over Iron Carbides. Journal of Physical Chemistry C, 2017, 121, 25052-25063.	3.1	16
87	Theoretical aspects of methyl acetate and methanol activation on MgO(100) and (501) catalyst surfaces with application in FAME production. Applied Surface Science, 2017, 392, 920-928.	6.1	9
88	Surface Adsorption., 2017,, 387-416.		4
89	Theoretical Insights into Vinyl Derivatives Adsorption on a Cu(100) Surface. Journal of Physical Chemistry C, 2018, 122, 27301-27313.	3.1	6
90	Solving the Puzzle of the Coexistence of Different Adsorption Geometries of Graphene on Ni(111). Journal of Physical Chemistry C, 2018, 122, 26105-26110.	3.1	9

#	Article	IF	CITATIONS
91	Translation of metal-phthalocyanines adsorbed on Au(111): from van der Waals interaction to strong electronic correlation. Scientific Reports, 2018, 8, 12728.	3.3	10
92	Outstanding Energy Exchange between Organic Molecules and Metal Surfaces: Decomposition Kinetics of Excited Vinyl Derivatives Driven by the Interaction with a Cu(111) Surface. Journal of Physical Chemistry C, 2019, 123, 19625-19636.	3.1	6
93	The effect of translation on the binding energy for transition-metal porphyrines adsorbed on Ag(111) surface. Beilstein Journal of Nanotechnology, 2019, 10, 706-717.	2.8	2
94	Charge transport pathways in metal porphyrin as interplay between long and short range scattering processes. Nanotechnology, 2019, 30, 045204.	2.6	2
95	Properties of NTCDA Thin Films on Ag(110): Scanning Tunneling Microscopy, Photoemission, Near-Edge X-ray Fine Structure, and Density Functional Theory Investigations. Journal of Physical Chemistry C, 2019, 123, 379-386.	3.1	5
96	Weak interactions between tetraphenylporphyrin dimers: A Wannier orbitals study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126717.	2.1	0
97	Degradationâ€triggered release from biodegradable metallic surfaces. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 2184-2198.	3.4	7
98	Electronic charge rearrangement at metal/organic interfaces induced by weak van der Waals interactions. Physical Review Materials, 2017, 1 , .	2.4	16
99	Theoretical Methods. Springer Theses, 2012, , 23-39.	0.1	0
100	Hydrogen-Bonding Templates in the Gas Phase. Springer Theses, 2012, , 41-90.	0.1	0
102	Beneficial effect of Au and Pt doping of the Ag-(100) surface for thiophene and pyridine adsorption from density functional theory calculations. Chemical Physics, 2022, 553, 111391.	1.9	3
103	A pore matching amine-functionalized strategy for efficient CO2 physisorption with low energy penalty. Chemical Engineering Journal, 2022, 432, 134403.	12.7	21
104	Long-range dispersion-inclusive machine learning potentials for structure search and optimization of hybrid organic–inorganic interfaces. , 2022, 1, 463-475.		16
105	Graphene grown on transition metal substrates: Versatile templates for organic molecules with new properties and structures. Surface Science Reports, 2022, , 100575.	7.2	1
106	A density functional theory study of thiophene and pyridine adsorption on Pt/Rh-doped Cu (100) surface. Surface Science, 2023, 729, 122212.	1.9	2
107	Solid (Metal)-Liquid (Ionic Liquids) Interface: Basics and Properties. , 2023, , 37-54.		0
108	Exploring adsorption behavior of sulfur and nitrogen compounds on transition metal-doped Cu(100) surfaces: insights from DFT and MD simulations. Physical Chemistry Chemical Physics, 2023, 25, 27553-27565.	2.8	3
109	A combined experimental and DFT study on the zero valent iron/reduced graphene oxide doped QCM sensor for determination of trace concentrations of As using a Flow-batch system. Sensors and Actuators B: Chemical, 2023, , 135233.	7.8	О