OPTIM trial: a Phase III trial of an oncolytic herpes viru stage III or IV melanoma

Future Oncology 6, 941-949 DOI: 10.2217/fon.10.66

Citation Report

#	Article	IF	CITATIONS
1	Oncolytic viruses: a step into cancer immunotherapy. Virus Adaptation and Treatment, 0, , 1.	1.5	4
2	The impact of hypoxia on oncolytic virotherapy. Virus Adaptation and Treatment, 0, , 71.	1.5	6
3	High Therapeutic Potential for Systemic Delivery of a Liposomeconjugated Herpes Simplex Virus. Current Cancer Drug Targets, 2011, 11, 111-122.	0.8	21
5	Virus-Tumor Interactome Screen Reveals ER Stress Response Can Reprogram Resistant Cancers for Oncolytic Virus-Triggered Caspase-2 Cell Death. Cancer Cell, 2011, 20, 443-456.	7.7	87
6	Rethinking herpes simplex virus: the way to oncolytic agents. Reviews in Medical Virology, 2011, 21, 213-226.	3.9	63
7	Cancer Vaccines: Personalizing Health Interventions. Current Pharmacogenomics and Personalized Medicine, 2011, 9, 208-228.	0.2	1
8	Effect of a caspase inhibitor, zVADfmk, on the inhibition of breast cancer cells by herpes simplex virus type 1. Cancer Gene Therapy, 2011, 18, 685-694.	2.2	9
9	Immune Recruitment and Therapeutic Synergy: Keys to Optimizing Oncolytic Viral Therapy?. Clinical Cancer Research, 2011, 17, 4214-4224.	3.2	35
10	Emerging Cancer Vaccines: The Promise of Genetic Vectors. Cancers, 2011, 3, 3687-3713.	1.7	16
12	ORFV: A Novel Oncolytic and Immune Stimulating Parapoxvirus Therapeutic. Molecular Therapy, 2012, 20, 1148-1157.	3.7	59
13	Phase II Trial of Intravenous Administration of Reolysin® (Reovirus Serotype-3-dearing Strain) in Patients with Metastatic Melanoma. Molecular Therapy, 2012, 20, 1998-2003.	3.7	135
14	Combination of a fusogenic glycoprotein, pro-drug activation and oncolytic HSV as an intravesical therapy for superficial bladder cancer. British Journal of Cancer, 2012, 106, 496-507.	2.9	28
15	Effect of γ34.5 Deletions on Oncolytic Herpes Simplex Virus Activity in Brain Tumors. Journal of Virology, 2012, 86, 4420-4431.	1.5	85
16	Oncolytic Viruses in the Treatment of Bladder Cancer. Advances in Urology, 2012, 2012, 1-11.	0.6	19
17	Gene Therapy. Journal of Craniofacial Surgery, 2012, 23, 333-337.	0.3	21
18	Cell Carriage, Delivery, and Selective Replication of an Oncolytic Virus in Tumor in Patients. Science Translational Medicine, 2012, 4, 138ra77.	5.8	142
19	Optimization and preclinical design of genetically engineered viruses for human oncolytic therapy. Expert Opinion on Biological Therapy, 2012, 12, 1427-1447.	1.4	2
20	Suicide gene therapy in cancer: Where do we stand now?. Cancer Letters, 2012, 324, 160-170.	3.2	179

TATION REDO

#	Article	IF	CITATIONS
21	Oncolytic virotherapy with modified adenoviruses and novel therapeutic targets. Expert Opinion on Therapeutic Targets, 2012, 16, 945-958.	1.5	28
22	Efficacy of HER2 retargeted herpes simplex virus as therapy for high-grade glioma in immunocompetent mice. Cancer Gene Therapy, 2012, 19, 788-795.	2.2	28
23	TAL effector RVD specificities and efficiencies. Nature Biotechnology, 2012, 30, 593-595.	9.4	285
24	Cancer and viruses: A doubleâ€edged sword. Proteomics, 2012, 12, 2127-2138.	1.3	13
25	Genetic cancer vaccines: current status and perspectives. Expert Opinion on Biological Therapy, 2012, 12, 1043-1058.	1.4	62
26	Complete eradication of hepatomas using an oncolytic adenovirus containing AFP promoter controlling E1A and an E1B deletion to drive IL-24 expression. Cancer Gene Therapy, 2012, 19, 619-629.	2.2	22
27	Gene therapy matures in the clinic. Nature Biotechnology, 2012, 30, 588-593.	9.4	57
28	Vaccines for Melanoma and Renal Cell Carcinoma. Seminars in Oncology, 2012, 39, 263-275.	0.8	29
29	Replicating viral vectors for cancer therapy: strategies to synergize with host immune responses. Microbial Biotechnology, 2012, 5, 251-259.	2.0	14
30	Virus-mediated gene delivery for human gene therapy. Journal of Controlled Release, 2012, 161, 377-388.	4.8	248
31	Optimizing patient derived mesenchymal stem cells as virus carriers for a Phase I clinical trial in ovarian cancer. Journal of Translational Medicine, 2013, 11, 20.	1.8	106
32	Therapeutic Cancer Vaccines. Advances in Cancer Research, 2013, 119, 421-475.	1.9	450
33	Current Treatment of Locoregional Recurrence of Melanoma. Current Oncology Reports, 2013, 15, 465-472.	1.8	25
34	Advance in herpes simplex viruses for cancer therapy. Science China Life Sciences, 2013, 56, 298-305.	2.3	15
35	HSV-NIS, an oncolytic herpes simplex virus type 1 encoding human sodium iodide symporter for preclinical prostate cancer radiovirotherapy. Cancer Gene Therapy, 2013, 20, 478-485.	2.2	32
36	Cytokines in the Treatment of Cancer. , 2013, , 173-210.		1
37	Oncolytic viruses as therapeutic cancer vaccines. Molecular Cancer, 2013, 12, 103.	7.9	252
38	The Society for Immunotherapy of Cancer consensus statement on tumour immunotherapy for the treatment of cutaneous melanoma. Nature Reviews Clinical Oncology, 2013, 10, 588-598.	12.5	177

#	Article	IF	CITATIONS
39	Oncolytic virus therapy for cancer: the first wave ofÂtranslational clinical trials. Translational Research, 2013, 161, 355-364.	2.2	87
40	Immune-Dependent and Independent Antitumor Activity of GM-CSF Aberrantly Expressed by Mouse and Human Colorectal Tumors. Cancer Research, 2013, 73, 395-405.	0.4	69
41	Evolution of oncolytic viruses: novel strategies for cancer treatment. Immunotherapy, 2013, 5, 1191-1206.	1.0	49
42	Concurrent chemotherapy inhibits herpes simplex virus-1 replication and oncolysis. Cancer Gene Therapy, 2013, 20, 133-140.	2.2	19
43	Viral therapy for pancreatic cancer: Tackle the bad guys with poison. Cancer Letters, 2013, 333, 1-8.	3.2	11
44	Pharmacotherapy of metastatic melanoma: Emerging trends and opportunities for a cure. , 2013, 139, 405-411.		12
45	Oncolytic vaccines. Expert Review of Vaccines, 2013, 12, 1155-1172.	2.0	38
46	Measles Virus Vaccine–Infected Tumor Cells Induce Tumor Antigen Cross-Presentation by Human Plasmacytoid Dendritic Cells. Clinical Cancer Research, 2013, 19, 1147-1158.	3.2	100
47	Antiglioma oncolytic virotherapy: unattainable goal or a success story in the making?. Future Virology, 2013, 8, 675-693.	0.9	6
48	Cancer vaccines. Oncolmmunology, 2013, 2, e23403.	2.1	62
49	Immunotherapy in the management of melanoma: current status. ImmunoTargets and Therapy, 2013, 2, 1.	2.7	3
50	Cancer immunotherapy turns viral. Oncolmmunology, 2013, 2, e24802.	2.1	11
51	Artificial microbes to fight cancer. Nanomedicine, 2013, 8, 5-7.	1.7	1
53	Oncolytic herpes viruses, chemotherapeutics, and other cancer drugs. Oncolytic Virotherapy, 2013, 2, 57.	6.0	6
54	Specific Targeted Therapy: A New Tool for the Destruction of Cancer. Current Drug Therapy, 2013, 8, 15-23.	0.2	0
55	Gene Therapy for Melanoma: Progress and Perspectives. , 0, , .		1
56	Systemic CD8+ T Cell-Mediated Tumoricidal Effects by Intratumoral Treatment of Oncolytic Herpes Simplex Virus with the Agonistic Monoclonal Antibody for Murine Glucocorticoid-Induced Tumor Necrosis Factor Receptor. PLoS ONE, 2014, 9, e104669.	1.1	12
57	The potential application of a transcriptionally regulated oncolytic herpes simplex virus for human cancer therapy. British Journal of Cancer, 2014, 110, 94-106.	2.9	12

#	Article	IF	CITATIONS
58	Cytokine Conditioning Enhances Systemic Delivery and Therapy of an Oncolytic Virus. Molecular Therapy, 2014, 22, 1851-1863.	3.7	60
59	Oncolytic Viruses as Anticancer Vaccines. Frontiers in Oncology, 2014, 4, 188.	1.3	65
60	Oncolytic Immunotherapy: Dying the Right Way is a Key to Eliciting Potent Antitumor Immunity. Frontiers in Oncology, 2014, 4, 74.	1.3	216
61	Chemotherapy and Oncolytic Virotherapy: Advanced Tactics in the War against Cancer. Frontiers in Oncology, 2014, 4, 145.	1.3	54
62	Dilazep analogues for the study of equilibrative nucleoside transporters 1 and 2 (ENT1 and ENT2). Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5801-5804.	1.0	16
63	Armed Therapeutic Viruses – A Disruptive Therapy on the Horizon of Cancer Immunotherapy. Frontiers in Immunology, 2014, 5, 74.	2.2	39
64	Oncolytic Virotherapy as Emerging Immunotherapeutic Modality: Potential of Parvovirus H-1. Frontiers in Oncology, 2014, 4, 92.	1.3	22
65	Critical analysis of an oncolytic herpesvirus encoding granulocyte-macrophage colony stimulating factor for the treatment of malignant melanoma. Oncolytic Virotherapy, 2014, 3, 11.	6.0	19
68	Going viral with cancer immunotherapy. Nature Reviews Cancer, 2014, 14, 559-567.	12.8	500
69	Melanoma Vaccines. Surgical Clinics of North America, 2014, 94, 1017-1030.	0.5	36
69 70	Melanoma Vaccines. Surgical Clinics of North America, 2014, 94, 1017-1030. Results of a Randomized Phase I Gene Therapy Clinical Trial of Nononcolytic Fowlpox Viruses Encoding T Cell Costimulatory Molecules. Human Gene Therapy, 2014, 25, 452-460.	0.5	36 14
69 70 71	Melanoma Vaccines. Surgical Clinics of North America, 2014, 94, 1017-1030. Results of a Randomized Phase I Gene Therapy Clinical Trial of Nononcolytic Fowlpox Viruses Encoding T Cell Costimulatory Molecules. Human Gene Therapy, 2014, 25, 452-460. Role of MAPK in oncolytic herpes viral therapy in triple-negative breast cancer. Cancer Gene Therapy, 2014, 21, 283-289.	0.5 1.4 2.2	36 14 37
69 70 71 73	Melanoma Vaccines. Surgical Clinics of North America, 2014, 94, 1017-1030. Results of a Randomized Phase I Gene Therapy Clinical Trial of Nononcolytic Fowlpox Viruses Encoding T Cell Costimulatory Molecules. Human Gene Therapy, 2014, 25, 452-460. Role of MAPK in oncolytic herpes viral therapy in triple-negative breast cancer. Cancer Gene Therapy, 2014, 21, 283-289. New clinical advances in immunotherapy for the treatment of solid tumours. Immunology, 2015, 145, 182-201.	0.5 1.4 2.2 2.0	36 14 37 35
 69 70 71 73 74 	Melanoma Vaccines. Surgical Clinics of North America, 2014, 94, 1017-1030. Results of a Randomized Phase I Gene Therapy Clinical Trial of Nononcolytic Fowlpox Viruses Encoding T Cell Costimulatory Molecules. Human Gene Therapy, 2014, 25, 452-460. Role of MAPK in oncolytic herpes viral therapy in triple-negative breast cancer. Cancer Gene Therapy, 2014, 21, 283-289. New clinical advances in immunotherapy for the treatment of solid tumours. Immunology, 2015, 145, 182-201. Spanish Multidisciplinary Melanoma Group (GEM) guidelines for the management of patients with advanced melanoma. European Journal of Dermatology, 2015, 25, 392-403.	0.5 1.4 2.2 2.0 0.3	36 14 37 35
 69 70 71 73 74 75 	Melanoma Vaccines. Surgical Clinics of North America, 2014, 94, 1017-1030. Results of a Randomized Phase I Gene Therapy Clinical Trial of Nononcolytic Fowlpox Viruses Encoding T Cell Costimulatory Molecules. Human Gene Therapy, 2014, 25, 452-460. Role of MAPK in oncolytic herpes viral therapy in triple-negative breast cancer. Cancer Gene Therapy, 2014, 21, 283-289. New clinical advances in immunotherapy for the treatment of solid tumours. Immunology, 2015, 145, 182-201. Spanish Multidisciplinary Melanoma Group (CEM) guidelines for the management of patients with advanced melanoma. European Journal of Dermatology, 2015, 25, 392-403. Enhanced therapeutic effect using sequential administration of antigenically distinct oncolytic viruses expressing oncostatin M in a Syrian hamster orthotopic pancreatic cancer model. Molecular Cancer, 2015, 14, 210.	0.5 1.4 2.2 2.0 0.3 7.9	 36 14 37 35 12 14
 69 70 71 73 74 75 76 	Melanoma Vaccines. Surgical Clinics of North America, 2014, 94, 1017-1030. Results of a Randomized Phase I Gene Therapy Clinical Trial of Nononcolytic Fowlpox Viruses Encoding T Cell Costimulatory Molecules. Human Gene Therapy, 2014, 25, 452-460. Role of MAPK in oncolytic herpes viral therapy in triple-negative breast cancer. Cancer Gene Therapy, 2014, 21, 283-289. New clinical advances in immunotherapy for the treatment of solid tumours. Immunology, 2015, 145, 182-201. Spanish Multidisciplinary Melanoma Group (GEM) guidelines for the management of patients with advanced melanoma. European Journal of Dermatology, 2015, 25, 392-403. Enhanced therapeutic effect using sequential administration of antigenically distinct oncolytic viruses expressing oncostatin M in a Syrian hamster orthotopic pancreatic cancer model. Molecular Cancer, 2015, 14, 210. Cancer Gene Therapy., 2015,	0.5 1.4 2.2 2.0 0.3 7.9	 36 14 37 35 12 14 33
 69 70 71 73 74 75 76 77 	Melanoma Vaccines. Surgical Clinics of North America, 2014, 94, 1017-1030. Results of a Randomized Phase I Gene Therapy Clinical Trial of Nononcolytic Fowlpox Viruses Encoding T Cell Costimulatory Molecules. Human Gene Therapy, 2014, 25, 452-460. Role of MAPK in oncolytic herpes viral therapy in triple-negative breast cancer. Cancer Gene Therapy, 2014, 21, 283-289. New clinical advances in immunotherapy for the treatment of solid tumours. Immunology, 2015, 145, 182-201. Spanish Multidisciplinary Melanoma Group (GEM) guidelines for the management of patients with advanced melanoma. European Journal of Dermatology, 2015, 25, 392-403. Enhanced therapeutic effect using sequential administration of antigenically distinct oncolytic viruses expressing oncostatin M in a Syrian hamster orthotopic pancreatic cancer model. Molecular Cancer, 2015, 14, 210. Cancer Gene Therapy., 2015, Oncolytic Adenovirus: Strategies and Insights for Vector Design and Immuno-Oncolytic Applications. Viruses, 2015, 7, 6009-6042.	0.5 1.4 2.2 2.0 0.3 7.9	 36 14 37 35 12 14 3 67

		CITATION R	EPORT	
#	Article		IF	Citations
79	Oncolytic viruses: perspectives on clinical development. Current Opinion in Virology, 201	5, 13, 55-60.	2.6	19
80	Vaccines, Adjuvants, and Dendritic Cell Activators—Current Status and Future Challeng in Oncology, 2015, 42, 549-561.	es. Seminars	0.8	37
81	Overcoming tumor immune evasion with an unique arbovirus. Journal of Translational Me 13, 3.	dicine, 2015,	1.8	3
82	Genetic Engineering of Oncolytic Viruses for Cancer Therapy. , 2015, , 261-279.			3
83	PolySia-Specific Retargeting of Oncolytic Viruses Triggers Tumor-Specific Immune Respon Facilitates Therapy of Disseminated Lung Cancer. Cancer Immunology Research, 2015, 3,	ses and 751-763.	1.6	20
84	CCR 20th Anniversary Commentary: Chimeric Antigen Receptors—From Model T to the Cancer Research, 2015, 21, 3099-3101.	Tesla. Clinical	3.2	1
85	Metastatic Melanoma – A Review of Current and Future Treatment Options. Acta Dermato-Venereologica, 2015, 95, 516-524.		0.6	186
86	Cancer vaccines. BMJ, The, 2015, 350, h988-h988.		3.0	199
87	Oncolytic Virus Immunotherapy for Melanoma. Current Treatment Options in Oncology, 2	2015, 16, 326.	1.3	40
88	The Impact of Macrophage- and Microglia-Secreted TNFα on Oncolytic HSV-1 Therapy in Tumor Microenvironment. Clinical Cancer Research, 2015, 21, 3274-3285.	the Glioblastoma	3.2	71
89	Oncolytic viruses: a new class of immunotherapy drugs. Nature Reviews Drug Discovery, 2 642-662.	2015, 14,	21.5	1,055
90	Clinical development of talimogene laherparepvec (T-VEC): a modified herpes simplex viru type-1–derived oncolytic immunotherapy. Expert Review of Anticancer Therapy, 2015,	s 15, 1389-1403.	1.1	102
91	What Lies Ahead?. , 2016, , 313-337.			0
92	Overcoming Barriers in Oncolytic Virotherapy with HDAC Inhibitors and Immune Checkpc Viruses, 2016, 8, 9.	int Blockade.	1.5	79
93	The safety of talimogene laherparepvec for the treatment of advanced melanoma. Expert Drug Safety, 2016, 16, 1-5.	Opinion on	1.0	19
94	Interleukin-12-expressing oncolytic virus: A promising strategy for cancer immunotherapy Taibah University Medical Sciences, 2016, 11, 187-193.	. Journal of	0.5	8
95	Cancer immunotherapy: the beginning of the end of cancer?. BMC Medicine, 2016, 14, 73	3.	2.3	908
96	Viral Oncolysis of Glioblastoma. , 2016, , 481-517.			0

#	Article	IF	CITATIONS
97	Computational modeling approaches to the dynamics of oncolytic viruses. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2016, 8, 242-252.	6.6	27
98	Progress in Cancer Immunotherapy. Advances in Experimental Medicine and Biology, 2016, , .	0.8	6
99	Oncolytic Immunotherapy for Treatment of Cancer. Advances in Experimental Medicine and Biology, 2016, 909, 241-283.	0.8	17
100	Influence of carrier cells on the clinical outcome of children with neuroblastoma treated with high dose of oncolytic adenovirus delivered in mesenchymal stem cells. Cancer Letters, 2016, 371, 161-170.	3.2	61
101	Immunogenic cell death by oncolytic herpes simplex virus type 1 in squamous cell carcinoma cells. Cancer Gene Therapy, 2016, 23, 107-113.	2.2	52
102	Genetic Modification of Oncolytic Newcastle Disease Virus for Cancer Therapy. Journal of Virology, 2016, 90, 5343-5352.	1.5	46
103	Coinhibitory Pathways in Immunotherapy for Cancer. Annual Review of Immunology, 2016, 34, 539-573.	9.5	718
104	First oncolytic virus approved for melanoma immunotherapy. Oncolmmunology, 2016, 5, e1115641.	2.1	247
105	Talimogene Laherparepvec: First Global Approval. Drugs, 2016, 76, 147-154.	4.9	105
107	Employing RNA viruses to fight cancer: novel insights into oncolytic virotherapy. Biological Chemistry, 2017, 398, 891-909.	1.2	21
108	An Oncolytic Adenovirus Encoding Decorin and Granulocyte Macrophage Colony Stimulating Factor Inhibits Tumor Growth in a Colorectal Tumor Model by Targeting Pro-Tumorigenic Signals and via Immune Activation. Human Gene Therapy, 2017, 28, 667-680.	1.4	33
109	Novel treatment opportunities for sulfur mustard-related cancers: genetic and epigenetic perspectives. Archives of Toxicology, 2017, 91, 3717-3735.	1.9	11
110	Oncolytic measles virus enhances antitumour responses of adoptive CD8+NKG2D+ cells in hepatocellular carcinoma treatment. Scientific Reports, 2017, 7, 5170.	1.6	33
111	Advancing Cancer Therapy with Present and Emerging Immuno-Oncology Approaches. Frontiers in Oncology, 2017, 7, 64.	1.3	43
112	Oncolytic Viruses—Natural and Genetically Engineered Cancer Immunotherapies. Frontiers in Oncology, 2017, 7, 202.	1.3	107
113	Monitoring the Efficacy of Oncolytic Viruses via Gene Expression. Frontiers in Oncology, 2017, 7, 264.	1.3	4
114	Antitumor effects of oncolytic herpes simplex virus type 2 against colorectal cancer in vitro and in vivo. Therapeutics and Clinical Risk Management, 2017, Volume 13, 117-130.	0.9	12
115	Oncolytic virotherapy including Rigvir and standard therapies in malignant melanoma. Oncolytic Virotherapy, 2017, Volume 6, 11-18.	6.0	32

	CHAID	N KEPORT	
#	Article	IF	CITATIONS
116	Targeting the microenvironment in solid tumors. Cancer Treatment Reviews, 2018, 65, 22-32.	3.4	342
117	Systemic treatments for metastatic cutaneous melanoma. The Cochrane Library, 2020, 2020, CD011123.	1.5	136
118	The Basics of Cancer Immunotherapy. , 2018, , .		5
119	Therapeutic Targets of FDA-Approved Immunotherapies in Oncology. , 2018, , 21-37.		3
120	Pharmacokinetic drug evaluation of talimogene laherparepvec for the treatment of advanced melanoma. Expert Opinion on Drug Metabolism and Toxicology, 2018, 14, 469-473.	1.5	9
121	Positron emission tomography/computed tomography evaluation of oncolytic virus therapy efficacy in melanoma. European Journal of Cancer, 2018, 90, 149-152.	1.3	4
122	GENE THERAPY TREATMENTS FOR CANCER. Frontiers in Nanobiomedical Research, 2018, , 25-87.	0.1	0
123	Stem Cell Research for the Treatment of Malignant Glioma. , 0, , .		0
124	Engineered oncolytic viruses to treat melanoma: where are we now and what comes next?. Expert Opinion on Biological Therapy, 2018, 18, 1199-1207.	1.4	16
125	The Current Status and Future Prospects of Oncolytic Viruses in Clinical Trials against Melanoma, Glioma, Pancreatic, and Breast Cancers. Cancers, 2018, 10, 356.	1.7	123
126	HSV as A Platform for the Generation of Retargeted, Armed, and Reporter-Expressing Oncolytic Viruses. Viruses, 2018, 10, 352.	1.5	32
127	A fully-virulent retargeted oncolytic HSV armed with IL-12 elicits local immunity and vaccine therapy towards distant tumors. PLoS Pathogens, 2018, 14, e1007209.	2.1	51
128	An Update on Immunotherapy for Solid Tumors: A Review. Annals of Surgical Oncology, 2018, 25, 3404-3412.	0.7	66
129	Current Strategies to Enhance Anti-Tumour Immunity. Biomedicines, 2018, 6, 37.	1.4	11
130	Management of Melanoma Locoregional Recurrence. , 2018, , 351-359.		1
132	Oncolytic Adenovirus rAd.DCN Inhibits Breast Tumor Growth and Lung Metastasis in an Immune-Competent Orthotopic Xenograft Model. Human Gene Therapy, 2019, 30, 197-210.	1.4	20
133	Neoadjuvant therapy of locally/regionally advanced melanoma. Therapeutic Advances in Medical Oncology, 2019, 11, 175883591986695.	1.4	21
134	Surgery for Metastatic Melanoma: an Evolving Concept. Current Oncology Reports, 2019, 21, 98.	1.8	11

#	Article	IF	CITATIONS
135	High response rates for Tâ€VEC in early metastatic melanoma (stage IIIB/Câ€IVM1a). International Journal of Cancer, 2019, 145, 974-978.	2.3	67
136	Potentiating Oncolytic Virus-Induced Immune-Mediated Tumor Cell Killing Using Histone Deacetylase Inhibition. Molecular Therapy, 2019, 27, 1139-1152.	3.7	41
137	Current and emerging systemic therapies for cutaneous metastatic melanoma. Expert Opinion on Pharmacotherapy, 2019, 20, 1135-1152.	0.9	33
138	Suppression of HMGB1 Released in the Glioblastoma Tumor Microenvironment Reduces Tumoral Edema. Molecular Therapy - Oncolytics, 2019, 12, 93-102.	2.0	38
139	Viral oncolytic immunotherapy in the war on cancer: Infection control considerations. Infection Control and Hospital Epidemiology, 2019, 40, 350-354.	1.0	10
140	The Current Landscape of Systemic Therapies for Advanced Hepatocellular Carcinoma. Current Hepatology Reports, 2019, 18, 371-382.	0.4	0
141	Melanoma vaccines: clinical status and immune endpoints. Melanoma Research, 2019, 29, 109-118.	0.6	19
142	The emergence of neoadjuvant therapy in advanced melanoma. Melanoma Management, 2019, 6, MMT27.	0.1	12
143	An oncolytic herpesvirus expressing E-cadherin improves survival in mouse models of glioblastoma. Nature Biotechnology, 2019, 37, 45-54.	9.4	56
144	Inhibition of constructed SEC3-ES lentiviral vector to proliferation, migration of Hela cells. Pathology Research and Practice, 2019, 215, 315-321.	1.0	2
145	Oncolytic Viruses. Methods in Molecular Biology, 2020, , .	0.4	4
146	Quantitative Proteome Responses to Oncolytic Reovirus in GM-CSF- and M-CSF-Differentiated Bone Marrow-Derived Cells. Journal of Proteome Research, 2020, 19, 708-718.	1.8	4
147	Retargeted and Multi-cytokine-Armed Herpes Virus Is a Potent Cancer Endovaccine for Local and Systemic Anti-tumor Treatment. Molecular Therapy - Oncolytics, 2020, 19, 253-264.	2.0	21
148	SITC cancer immunotherapy resource document: a compass in the land of biomarker discovery. , 2020, 8, e000705.		20
149	Cancer Vaccines: Toward the Next Breakthrough in Cancer Immunotherapy. Journal of Immunology Research, 2020, 2020, 1-13.	0.9	76
150	Immune gene therapy of cancer. Turkish Journal of Medical Sciences, 2020, 50, 1679-1690.	0.4	9
151	Herpes Simplex Virus Oncolytic Immunovirotherapy: The Blossoming Branch of Multimodal Therapy. International Journal of Molecular Sciences, 2020, 21, 8310.	1.8	26
152	Neoadjuvant Therapy for Melanoma. Surgical Oncology Clinics of North America, 2020, 29, 445-453.	0.6	2

#	Article	IF	CITATIONS
153	Development of oncolytic virotherapy: from genetic modification to combination therapy. Frontiers of Medicine, 2020, 14, 160-184.	1.5	40
154	Tumor Microenvironment. Cancer Treatment and Research, 2020, , .	0.2	12
155	T-VEC for stage IIIB-IVM1a melanoma achieves high rates of complete and durable responses and is associated with tumor load: a clinical prediction model. Cancer Immunology, Immunotherapy, 2021, 70, 2291-2300.	2.0	16
156	Immunologic aspects of viral therapy for glioblastoma and implications for interactions with immunotherapies. Journal of Neuro-Oncology, 2021, 152, 1-13.	1.4	7
157	Tumour Hypoxia-Mediated Immunosuppression: Mechanisms and Therapeutic Approaches to Improve Cancer Immunotherapy. Cells, 2021, 10, 1006.	1.8	45
158	Fibroblasts Influence the Efficacy, Resistance, and Future Use of Vaccines and Immunotherapy in Cancer Treatment. Vaccines, 2021, 9, 634.	2.1	8
159	Oncolytic virus therapy in cancer: A current review. World Journal of Virology, 2021, 10, 229-255.	1.3	65
160	Non-Operative Options for Loco-regional Melanoma. Clinics in Plastic Surgery, 2021, 48, 631-642.	0.7	1
161	Considerations for Clinical Translation of MG1 Maraba Virus. Methods in Molecular Biology, 2020, 2058, 285-293.	0.4	8
162	CAR T Cell Therapy Progress and Challenges for Solid Tumors. Cancer Treatment and Research, 2020, 180, 297-326.	0.2	23
163	Intralesional Immunotherapy for Metastatic Melanoma: The Oldest and Newest Treatment in Oncology. Critical Reviews in Oncogenesis, 2016, 21, 65-73.	0.2	8
164	Pseudotyped αvβ6 integrin-targeted adenovirus vectors for ovarian cancer therapies. Oncotarget, 2016, 7, 27926-27937.	0.8	31
165	Cytokines in Cancer Immunotherapy. Cancers, 2011, 3, 3856-3893.	1.7	549
166	Quantitative impact of immunomodulation versus oncolysis with cytokine-expressing virus therapeutics. Mathematical Biosciences and Engineering, 2015, 12, 841-858.	1.0	39
167	Novel biomarkers and therapeutic targets for optimizing the therapeutic management of melanomas. World Journal of Clinical Oncology, 2012, 3, 32.	0.9	35
168	Talimogene Laherparepvec (T-VEC) for the Treatment of Advanced Locoregional Melanoma After Failure of Immunotherapy: An International Multi-Institutional Experience. Annals of Surgical Oncology, 2022, 29, 791-801.	0.7	18
169	Immunotherapy of Melanoma: A New Era. , 2011, , 359-372.		0
170_	Update on Current Phase III Clinical Trials in Melanoma. , 0, , .		1

#	Article	IF	CITATIONS
171	Immunomodulation. , 0, , .		0
172	Direction of Gene Therapy and Virotherapy. Journal of Cancer Science & Therapy, 2013, 05, .	1.7	0
173	Immunotherapy of Malignant Melanoma. , 2014, , 139-154.		0
174	Oncolytic Viruses. , 2014, , 239-244.		0
175	The Use of Oncolytic Herpesvirus for the Treatment of Cancer. , 2014, , 329-345.		0
176	Evaluation of antitumor activity in strains of a new rotavirus group in Reoviridae family on a model of transplantable murine melanoma. Voprosy Onkologii, 2020, 66, 712-717.	0.1	0
177	Second European post-chicago melanoma meeting 2012. P and T, 2012, 37, 526-9.	1.0	0
178	Ipilimumab (yervoy) prolongs survival in advanced melanoma: serious side effects and a hefty price tag may limit its use. P and T, 2012, 37, 503-30.	1.0	76
179	Life after death: targeting high mobility group box 1 in emergent cancer therapies. American Journal of Cancer Research, 2013, 3, 1-20.	1.4	50
180	External Validation of a Dutch Predictive Nomogram for Complete Response to T-VEC in an Independent American Patient Cohort. Annals of Surgical Oncology, 2022, 29, 1637-1644.	0.7	5
181	(Im)maturity in Tumor Ecosystem. Frontiers in Oncology, 2021, 11, 813897.	1.3	22
182	Clinical Trials of Oncolytic Viruses in Breast Cancer. Frontiers in Oncology, 2021, 11, 803050.	1.3	13
183	Re-introduction of T-VEC Monotherapy in Recurrent Melanoma is Effective. Journal of Immunotherapy, 2022, Publish Ahead of Print, .	1.2	1
185	Role of HMGB1 in Cutaneous Melanoma: State of the Art. International Journal of Molecular Sciences, 2022, 23, 9327.	1.8	15
186	Tumor Microenvironment Immunosuppression: A Roadblock to CAR T-Cell Advancement in Solid Tumors. Cells, 2022, 11, 3626.	1.8	5
187	Talimogene laherparepvec monotherapy for head and neck melanoma patients. Melanoma Research, 2023, 33, 66-70.	0.6	3
188	The Coming of Age of Topical Gene Therapy for Dystrophic Epidermolysis Bullosa. New England Journal of Medicine, 2022, 387, 2279-2280.	13.9	2
189	Regulatory Landscapes in Approval of Cancer Vaccines. , 2022, , 325-347.		0

#	Article	IF	CITATIONS
190	Progress of Cancer Nano Medicine, Clinical Hurdles, and Opportunities. , 2022, , 49-69.		0
191	Oncolytic Efficacy of a Recombinant Vaccinia Virus Strain Expressing Bacterial Flagellin in Solid Tumor Models. Viruses, 2023, 15, 828.	1.5	4
192	Immunotherapy and Cancer Stem Cells. , 2023, , 165-235.		0