CITATION REPORT List of articles citing

Theta-burst transcranial magnetic stimulation to the prefrontal cortex impairs metacognitive visual awareness

DOI: 10.1080/17588921003632529 Cognitive Neuroscience, 2010, 1, 165-75.

Source: https://exaly.com/paper-pdf/49695493/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
271	Consciousness of the first order in blindsight. 2010 , 107, 21217-22		34
270	Neuroscience. Should confidence be trusted?. 2010 , 329, 1478-9		9
269	Relating introspective accuracy to individual differences in brain structure. 2010 , 329, 1541-3		542
268	Awareness-related activity in prefrontal and parietal cortices in blindsight reflects more than superior visual performance. 2011 , 58, 605-11		38
267	Relating inter-individual differences in metacognitive performance on different perceptual tasks. <i>Consciousness and Cognition</i> , 2011 , 20, 1787-92	2.6	95
266	Empirical support for higher-order theories of conscious awareness. 2011 , 15, 365-73		399
265	The higher-order view does not require consciously self-directed introspection: response to Malach. 2011 , 15, 508-509		9
264	Experimental and theoretical approaches to conscious processing. 2011 , 70, 200-27		1328
263	What brain plasticity reveals about the nature of consciousness: commentary. 2011, 2, 87		5
262	The neural basis of metacognitive ability. 2012 , 367, 1338-49		360
261	Highlights of the first two volumes and the new challenges ahead. Cognitive Neuroscience, 2012, 3, 77-	79 1.7	
260	Prefrontal contributions to metacognition in perceptual decision making. <i>Journal of Neuroscience</i> , 2012 , 32, 6117-25	6.6	235
259	Neuronal correlates of metacognition in primate frontal cortex. 2012 , 75, 517-30		92
258	Consciousness and the prefrontal parietal network: insights from attention, working memory, and chunking. 2012 , 3, 63		78
257	Relative blindsight arises from a criterion confound in metacontrast masking: implications for theories of consciousness. <i>Consciousness and Cognition</i> , 2012 , 21, 307-14	2.6	22
256	The attentional requirements of consciousness. 2012 , 16, 411-7		201
255	Manipulation of the extrastriate frontal loop can resolve visual disability in blindsight patients. 2012 , 79, 767-9		1

254	Training Visual Imagery: Improvements of Metacognition, but not Imagery Strength. 2012 , 3, 224	36
253	The construction of confidence in a perceptual decision. 2012 , 6, 79	146
252	Higher order thoughts in action: consciousness as an unconscious re-description process. 2012 , 367, 1412-23	56
251	Kinds of access: different methods for report reveal different kinds of metacognitive access. 2012 , 367, 1287-96	76
250	The role of metacognition in human social interactions. 2012 , 367, 2213-23	189
249	Mechanisms of social cognition. 2012 , 63, 287-313	507
248	Distilling the neural correlates of consciousness. 2012 , 36, 737-46	316
247	Measures of Consciousness. 2013 , 8, 285-297	11
246	Impulsivity, self-control, and hypnotic suggestibility. <i>Consciousness and Cognition</i> , 2013 , 22, 637-53	17
245	Understanding hypnosis metacognitively: rTMS applied to left DLPFC increases hypnotic suggestibility. 2013 , 49, 386-92	56
244	Distinct brain mechanisms for conscious versus subliminal error detection. 2013 , 73, 80-94	124
243	Subjective Measures of Consciousness. 2013 , 15-39	
242	Metacognitive confidence: A neuroscience approach. 2013 , 28, 317-332	7
241	Medial and lateral networks in anterior prefrontal cortex support metacognitive ability for memory and perception. <i>Journal of Neuroscience</i> , 2013 , 33, 16657-65	193
240	Distinct patterns of functional brain connectivity correlate with objective performance and subjective beliefs. 2013 , 110, 11577-82	32
239	Measures of metacognition on signal-detection theoretic models. 2013 , 18, 535-52	86
238	Serotonergic modulation of spatial working memory: predictions from a computational network model. 2013 , 7, 71	16
237	General and specific consciousness: a first-order representationalist approach. 2013 , 4, 407	12

236	Iowa Gambling Task (IGT): twenty years after - gambling disorder and IGT. 2013, 4, 665		148
235	Accuracy and confidence of visual short-term memory do not go hand-in-hand: behavioral and neural dissociations. <i>PLoS ONE</i> , 2014 , 9, e90808	3.7	31
234	Using brain stimulation to disentangle neural correlates of conscious vision. 2014 , 5, 1019		18
233	Evidence of weak conscious experiences in the exclusion task. 2014 , 5, 1080		12
232	Confidence measurement in the light of signal detection theory. 2014 , 5, 1455		24
231	Effects of age on metacognitive efficiency. Consciousness and Cognition, 2014, 28, 151-60	2.6	63
230	Domain-specific impairment in metacognitive accuracy following anterior prefrontal lesions. 2014 , 137, 2811-22		178
229	Spatiotemporal dissociation of brain activity underlying subjective awareness, objective performance and confidence. <i>Journal of Neuroscience</i> , 2014 , 34, 4382-95	6.6	44
228	Metacognitive Facilitation of Spontaneous Thought Processes: When Metacognition Helps the Wandering Mind Find Its Way. 2014 , 293-319		24
227	Blind insight: metacognitive discrimination despite chance task performance. 2014 , 25, 2199-208		35
226	Impaired metacognitive capacities in individuals with problem gambling. 2014 , 30, 141-52		69
225	Prefrontal lesion evidence against higher-order theories of consciousness. 2014 , 167, 721-746		14
224	Toward a computational theory of conscious processing. 2014 , 25, 76-84		223
223	Effects of cortical microstimulation on confidence in a perceptual decision. 2014 , 83, 797-804		105
222	Emotion as a boost to metacognition: how worry enhances the quality of confidence. <i>Consciousness and Cognition</i> , 2014 , 29, 189-98	2.6	21
221	Neurobiologic Underpinnings of Social Cognition and Metacognition in Schizophrenia Spectrum Disorders. 2014 , 1-27		2
220	Visual Masking. 2014 , 1-108		12
219	Orbitofrontal cortex is required for optimal waiting based on decision confidence. 2014 , 84, 190-201		113

218	Activity in high-level brain regions reflects visibility of low-level stimuli. 2014 , 102 Pt 2, 688-94		11
217	You'd better think twice: post-decision perceptual confidence. 2014 , 99, 323-31		33
216	How to measure metacognition. 2014 , 8, 443		420
215	Self-Knowledge Dim-Out: Stress Impairs Metacognitive Accuracy. <i>PLoS ONE</i> , 2015 , 10, e0132320	3.7	19
214	Answering questions about consciousness by modeling perception as covert behavior. 2015 , 6, 803		4
213	The Ghost in the Machine. 2015 ,		3
212	Prior expectations facilitate metacognition for perceptual decision. <i>Consciousness and Cognition</i> , 2015 , 35, 53-65	2.6	37
211	Manipulation of working memory contents selectively impairs metacognitive sensitivity in a concurrent visual discrimination task. <i>Neuroscience of Consciousness</i> , 2015 , 2015, niv002	3.3	25
210	Are we ever aware of concepts? A critical question for the Global Neuronal Workspace, Integrated Information, and Attended Intermediate-Level Representation theories of consciousness. <i>Neuroscience of Consciousness</i> , 2015 , 2015, niv006	3.3	10
209	Controlling for performance capacity confounds in neuroimaging studies of conscious awareness. <i>Neuroscience of Consciousness</i> , 2015 , 2015, niv008	3.3	10
208	Making sense: Dopamine activates conscious self-monitoring through medial prefrontal cortex. <i>Human Brain Mapping</i> , 2015 , 36, 1866-77	5.9	25
207	A decisional account of subjective inflation of visual perception at the periphery. 2015 , 77, 258-71		30
206	Inter-individual variability in metacognitive ability for visuomotor performance and underlying brain structures. <i>Consciousness and Cognition</i> , 2015 , 36, 327-37	2.6	17
205	Neural networks underlying the metacognitive uncertainty response. 2015 , 71, 306-22		21
204	Does perceptual confidence facilitate cognitive control?. 2015 , 77, 1295-306		54
203	The neural basis of novelty and appropriateness in processing of creative chunk decomposition. 2015 , 113, 122-32		44
202	There are things that we know that we know, and there are things that we do not know we do not know: Confidence in decision-making. 2015 , 55, 88-97		67
201	Low attention impairs optimal incorporation of prior knowledge in perceptual decisions. 2015 , 77, 2021	-36	16

200	Transcranial direct current stimulation to lateral prefrontal cortex could increase meta-awareness of mind wandering. 2015 , 112, E2414		12
199	Action-specific disruption of perceptual confidence. 2015 , 26, 89-98		87
198	Neural correlates of perceived confidence in a partial report paradigm. 2015 , 27, 1090-103		10
197	The Structural and Functional Organization of Cognition. 2016 , 10, 501		17
196	The Regulation of Task Performance: A Trans-Disciplinary Review. 2015 , 6, 1862		5
195	But I Was So Sure! Metacognitive Judgments Are Less Accurate Given Prospectively than Retrospectively. 2016 , 7, 218		44
194	Visibility Is Not Equivalent to Confidence in a Low Contrast Orientation Discrimination Task. 2016 , 7, 591		24
193	Dissociating Perceptual Confidence from Discrimination Accuracy Reveals No Influence of Metacognitive Awareness on Working Memory. 2016 , 7, 851		44
192	Metacognition about the past and future: quantifying common and distinct influences on prospective and retrospective judgments of self-performance. <i>Neuroscience of Consciousness</i> , 2016 , 2016, niw018	3.3	36
191	Neural correlates of older adults' self-overestimation of stepping-over ability. 2016 , 38, 351-361		4
190	Visual Confidence. 2016 , 2, 459-481		51
189	Multivoxel neurofeedback selectively modulates confidence without changing perceptual performance. <i>Nature Communications</i> , 2016 , 7, 13669	17.4	82
188	Visual masking with frontally applied pre-stimulus TMS and its subject-specific neural correlates. 2016 , 1642, 136-145		4
187	In search of good probability assessors: an experimental comparison of elicitation rules for confidence judgments. 2016 , 80, 363-387		25
186	The Influence of Frontal Lobe Tumors and Surgical Treatment on Advanced Cognitive Functions. 2016 , 91, 340-6		14
185	Causal evidence for frontal cortex organization for perceptual decision making. 2016 , 113, 6059-64		86
184	The signal processing architecture underlying subjective reports of sensory awareness. <i>Neuroscience of Consciousness</i> , 2016 , 2016,	3.3	56
183	Grasping others' movements: Rapid discrimination of object size from observed hand movements. 2016 , 42, 918-29		19

(2017-2016)

182	Perceptual learning effect on decision and confidence thresholds. <i>Consciousness and Cognition</i> , 2016 , 45, 24-36	2.6	1
181	Neural correlates of metacognitive ability and of feeling confident: a large-scale fMRI study. 2016 , 11, 1942-1951		38
180	Heuristic use of perceptual evidence leads to dissociation between performance and metacognitive sensitivity. 2016 , 78, 923-37		53
179	Advances in the Scientific Investigation of Consciousness. 2016 , 13-24		1
178	Who's afraid of response bias?. Neuroscience of Consciousness, 2016, 2016,	3.3	24
177	Enhancement of Working Memory and Task-Related Oscillatory Activity Following Intermittent Theta Burst Stimulation in Healthy Controls. 2016 , 26, 4563-4573		59
176	Associative Recognition Memory Awareness Improved by Theta-Burst Stimulation of Frontopolar Cortex. 2016 , 26, 1200-1210		42
175	Self-evaluation of decision-making: A general Bayesian framework for metacognitive computation. 2017 , 124, 91-114		192
174	Domain-specific and domain-general processes underlying metacognitive judgments. <i>Consciousness and Cognition</i> , 2017 , 49, 264-277	2.6	28
173	Prestimulus alpha-band power biases visual discrimination confidence, but not accuracy. <i>Consciousness and Cognition</i> , 2017 , 54, 47-55	2.6	90
172	A role for the anterior insular cortex in the global neuronal workspace model of consciousness. <i>Consciousness and Cognition</i> , 2017 , 49, 333-346	2.6	15
171	Brain correlates of hypnosis: A systematic review and meta-analytic exploration. 2017 , 81, 75-98		79
170	Decoded fMRI neurofeedback can induce bidirectional confidence changes within single participants. 2017 , 149, 323-337		30
169	Subjective experience of difficulty depends on multiple cues. 2017 , 7, 44222		20
168	Transcranial magnetic stimulation to visual cortex induces suboptimal introspection. 2017 , 93, 119-132		14
167	Avoiding the conflict: Metacognitive awareness drives the selection of low-demand contexts. 2017 , 43, 1397-1410		16
166	Metacognition of attention during tactile discrimination. 2017 , 147, 121-129		13
165	Limited Cognitive Resources Explain a Trade-Off between Perceptual and Metacognitive Vigilance. <i>Journal of Neuroscience</i> , 2017 , 37, 1213-1224	6.6	18

164	Sure I'm Sure: Prefrontal Oscillations Support Metacognitive Monitoring of Decision Making. <i>Journal of Neuroscience</i> , 2017 , 37, 781-789	6.6	34
163	What is consciousness, and could machines have it?. 2017 , 358, 486-492		240
162	Should a Few Null Findings Falsify Prefrontal Theories of Conscious Perception?. <i>Journal of Neuroscience</i> , 2017 , 37, 9593-9602	6.6	106
161	Are the Neural Correlates of Consciousness in the Front or in the Back of the Cerebral Cortex? Clinical and Neuroimaging Evidence. <i>Journal of Neuroscience</i> , 2017 , 37, 9603-9613	6.6	192
160	Top-Down Control of Perceptual Decision Making by the Prefrontal Cortex. 2017, 26, 464-469		12
159	Transcranial magnetic stimulation of right inferior parietal cortex causally influences prefrontal activation for visual detection. 2017 , 46, 2807-2816		6
158	Neural Substrate for Metacognitive Accuracy of Tactile Working Memory. 2017 , 27, 5343-5352		10
157	Metacognitive impairments extend perceptual decision making weaknesses in compulsivity. 2017 , 7, 6614		40
156	Perceptual confidence neglects decision-incongruent evidence in the brain. 2017, 1,		53
155	Synchronization of fronto-parietal beta and theta networks as a signature of visual awareness in neglect. 2017 , 146, 341-354		14
154	Explicit representation of confidence informs future value-based decisions. 2017, 1,		46
153	Conscious and unconscious performance monitoring: Evidence from patients with schizophrenia. 2017 , 144, 153-163		22
152	Measurement, Theory, and Current Issues in Metacognition: An Overview. 2017 , 1-15		0
151	Theta-burst transcranial magnetic stimulation to the prefrontal or parietal cortex does not impair metacognitive visual awareness. <i>PLoS ONE</i> , 2017 , 12, e0171793	3.7	22
150	Crucial Role of the Prefrontal Cortex in Conscious Perception. 2017, 129-141		2
149	Domain-General and Domain-Specific Patterns of Activity Supporting Metacognition in Human Prefrontal Cortex. <i>Journal of Neuroscience</i> , 2018 , 38, 3534-3546	6.6	97
148	Superior colliculus neuronal ensemble activity signals optimal rather than subjective confidence. 2018 , 115, E1588-E1597		48
147	On a 'failed' attempt to manipulate visual metacognition with transcranial magnetic stimulation to prefrontal cortex. <i>Consciousness and Cognition</i> , 2018 , 62, 34-41	2.6	9

146	Distinguishing the Roles of Dorsolateral and Anterior PFC in Visual Metacognition. <i>Journal of Neuroscience</i> , 2018 , 38, 5078-5087	46
145	U-turns in the brain. 2018 , 21, 461-462	1
144	Preserved metacognitive ability despite unilateral or bilateral anterior prefrontal resection. 2018 , 120, 48-57	20
143	Cross-Domain Association in Metacognitive Efficiency Depends on First-Order Task Types. 2018 , 9, 2464	14
142	The Neurobiology of Confidence: From Beliefs to Neurons. 2018 , 83, 9-16	7
141	Comparing Bayesian and non-Bayesian accounts of human confidence reports. 2018 , 14, e1006572	24
140	Human metacognition across domains: insights from individual differences and neuroimaging. 2018 , 1,	49
139	Investigating the Neural Basis of Theta Burst Stimulation to Premotor Cortex on Emotional Vocalization Perception: A Combined TMS-fMRI Study. 2018 , 12, 150	7
138	Superior colliculus signals decisions rather than confidence: analysis of single neurons. 2018 , 120, 2614-2629	10
137	The neural system of metacognition accompanying decision-making in the prefrontal cortex. 2018 , 16, e2004037	35
136	The Experience Elicited by Hallucinogens Presents the Highest Similarity to Dreaming within a Large Database of Psychoactive Substance Reports. 2018 , 12, 7	41
135	Causal Evidence for Mnemonic Metacognition in Human Precuneus. <i>Journal of Neuroscience</i> , 2018 , 38, 6379-6387	47
134	Numerical error monitoring. 2018 , 25, 1549-1555	12
133	Response to Ruby et al: On a 'failed' attempt to manipulate conscious perception with transcranial magnetic stimulation to prefrontal cortex. <i>Consciousness and Cognition</i> , 2018 , 65, 334-341	2
132	Understanding the Higher-Order Approach to Consciousness. 2019 , 23, 754-768	103
131	Individual susceptibility to TMS affirms the precuneal role in meta-memory upon recollection. 2019 , 224, 2407-2419	13
130	Contributions of anterior cingulate cortex and basolateral amygdala to decision confidence and learning under uncertainty. <i>Nature Communications</i> , 2019 , 10, 4704	30
129	The Role of Metacognitive Components in Creative Thinking. 2019 , 10, 2404	21

128	A neural circuit model of decision uncertainty and change-of-mind. <i>Nature Communications</i> , 2019 , 10, 2287	17.4	22
127	Independent Neural Activity Patterns for Sensory- and Confidence-Based Information Maintenance during Category-Selective Visual Processing. 2019 , 6,		6
126	Integrating the global neuronal workspace into the framework of predictive processing: Towards a working hypothesis. <i>Consciousness and Cognition</i> , 2019 , 73, 102763	2.6	14
125	Mnemonic Introspection in Macaques Is Dependent on Superior Dorsolateral Prefrontal Cortex But Not Orbitofrontal Cortex. <i>Journal of Neuroscience</i> , 2019 , 39, 5922-5934	6.6	9
124	Conscious perception in patients with prefrontal damage. 2019 , 129, 284-293		7
123	Revealing subthreshold motor contributions to perceptual confidence. <i>Neuroscience of Consciousness</i> , 2019 , 2019, niz001	3.3	20
122	Connectivity of Frontoparietal Regions Reveals Executive Attention and Consciousness Interactions. 2019 , 29, 4539-4550		3
121	Acting, seeing, and conscious awareness. 2019 , 128, 241-248		5
120	Noninvasive Brain Stimulation Techniques Can Modulate Cognitive Processing. 2019, 22, 116-147		11
119	Evidence for metacognitive bias in perception of voluntary action. 2020, 194, 104041		8
118	Influences on functional outcome and subjective recovery in individuals with and without First Episode Psychosis: A metacognitive model. 2020 , 284, 112643		3
117	Perceptual biases and metacognition and their association with anomalous self experiences in first episode psychosis. <i>Consciousness and Cognition</i> , 2020 , 77, 102847	2.6	9
116	Regression methods for metacognitive sensitivity. 2020 , 94, 102297		6
115	Integrating information in the brain's EM field: the cemi field theory of consciousness. <i>Neuroscience of Consciousness</i> , 2020 , 2020, niaa016	3.3	17
114	Theta burst stimulation in humans: a need for better understanding effects of brain stimulation in health and disease. 2020 , 238, 1707-1714		10
113	Perceptual metacognition of human faces is causally supported by function of the lateral prefrontal cortex. 2020 , 3, 360		4
112	Transcranial Magnetic Stimulation-Induced Motor Cortex Activity Influences Visual Awareness Judgments. 2020 , 14, 580712		1
111	Robust valence-induced biases on motor response and confidence in human reinforcement learning. 2020 , 20, 1184-1199		2

110	Confounding in Studies on Metacognition: A Preliminary Causal Analysis Framework. 2020, 11, 1933	5
109	Overlapping and unique neural circuits are activated during perceptual decision making and confidence. 2020 , 10, 20761	1
108	Mapping Mind-Brain Development: Towards a Comprehensive Theory. 2020, 8,	4
107	Conscious perception of flickering stimuli in binocular rivalry and continuous flash suppression is not affected by tACS-induced SSR modulation. <i>Consciousness and Cognition</i> , 2020 , 82, 102953	
106	Temporal variability of brain networks predicts individual differences in bistable perception. 2020 , 142, 107426	1
105	Frontal scalp potentials foretell perceptual choice confidence. 2020 , 123, 1566-1577	6
104	Atypical spatial frequency dependence of visual metacognition among schizophrenia patients. 2020 , 27, 102296	3
103	Oxytocin alters the effect of payoff but not base rate in emotion perception. 2020 , 114, 104608	О
102	Action information contributes to metacognitive decision-making. 2020 , 10, 3632	12
101	Metacognition of daily self-regulation processes and personality traits in borderline personality disorder. 2020 , 267, 243-250	3
100	Training attenuates the influence of sensory uncertainty on confidence estimation. 2020 , 82, 2630-2640	1
99	Biological Stress Reactivity and Introspective Sensitivity: An Exploratory Study. 2020 , 11, 543	1
98	Can unconscious intentions be more effective than conscious intentions? Test of the role of metacognition in hypnotic response. 2021 , 135, 219-239	3
97	Sources of Metacognitive Inefficiency. 2021 , 25, 12-23	11
96	Beyond the neural correlates of consciousness: using brain stimulation to elucidate causal mechanisms underlying conscious states and contents. 2021 , 51, 143-170	O
95	Transcranial Magnetic Stimulation and the Understanding of Behavior. 2021 , 72, 97-121	14
94	The neural basis of consciousness. 2021 , 51, 550-562	8
93	Falsification and consciousness. <i>Neuroscience of Consciousness</i> , 2021 , 2021, niab001 3.3	2

92	What Is Consciousness, and Could Machines Have It?. 2021 , 43-56		1
91	Metacognitive Computations for Information Search: Confidence in Control.		1
90	Does the Prefrontal Cortex Play an Essential Role in Consciousness? Insights from Intracranial Electrical Stimulation of the Human Brain. <i>Journal of Neuroscience</i> , 2021 , 41, 2076-2087	6.6	12
89	Calibration in Consciousness Science. 1		2
88	Separable neural signatures of confidence during perceptual decisions.		
87	Theoretical Models of Consciousness: A Scoping Review. 2021 , 11,		7
86	Metacognition: ideas and insights from neuro- and educational sciences. 2021 , 6, 13		4
85	Brain connectivity alterations during sleep by closed-loop transcranial neurostimulation predict metamemory sensitivity. 2021 , 5, 734-756		1
84	Underwhelming force: Evaluating the neuropsychological evidence for higher-order theories of consciousness.		0
83	Diffusion property and functional connectivity of superior longitudinal fasciculus underpin human metacognition. 2021 , 156, 107847		4
82	Reproducibility of cortical response modulation induced by intermittent and continuous theta-burst stimulation of the human motor cortex. 2021 , 14, 949-964		7
81	Explaining distortions in metacognition with an attractor network model of decision uncertainty. 2021 , 17, e1009201		1
80	Neural and computational processes of accelerated perceptual awareness and decisions: A 7T fMRI Study.		
79	Variance misperception under skewed empirical noise statistics explains overconfidence in the visual periphery. 2021 , 1		O
78	Performance-optimized neural networks as an explanatory framework for decision confidence.		2
77	Separable neural signatures of confidence during perceptual decisions. <i>ELife</i> , 2021 , 10,	8.9	2
76	The relation between task-relatedness of anxiety and metacognitive performance. <i>Consciousness and Cognition</i> , 2021 , 94, 103191	2.6	О
75	Variance misperception under skewed empirical noise statistics explains overconfidence in the visual periphery.		2

74	The nature of metacognitive inefficiency in perceptual decision making. 2021, 128, 45-70		10
73	The Neural Basis of Metacognitive Ability. 2014 , 245-265		12
7 ²	Signal Detection Theory Analysis of Type 1 and Type 2 Data: Meta-d?, Response-Specific Meta-d?, and the Unequal Variance SDT Model. 2014 , 25-66		55
71	Kinds of Access: Different Methods for Report Reveal Different Kinds of Metacognitive Access. 2014 , 67-85		2
70	Metacognition and Confidence in Value-Based Choice. 2014 , 169-187		1
69	Prefrontal gray matter volume predicts metacognitive accuracy following traumatic brain injury. <i>Neuropsychology</i> , 2018 , 32, 484-494	3.8	3
68	Domain-General and Domain-Specific Patterns of Activity Supporting Metacognition in Human Prefrontal Cortex.		3
67	Dynamic influences on static measures of metacognition.		1
66	Revealing subthreshold motor contributions to perceptual confidence.		4
65	Overlapping and unique neural circuits are activated during perceptual decision making and confidence.		2
64	Dissociable roles for Anterior Cingulate Cortex and Basolateral Amygdala in Decision Confidence and Learning under Uncertainty.		2
63	Action information contributes to metacognitive decision-making.		6
62	History biases reveal novel dissociations between perceptual and metacognitive decision-making.		5
61	Transcranial Magnetic Stimulation-induced motor cortex activity influences visual awareness judgments.		1
60	Choosing in freedom or forced to choose? Introspective blindness to psychological forcing in stage-magic. <i>PLoS ONE</i> , 2013 , 8, e58254	3.7	19
59	Stimulation in the dorsolateral prefrontal cortex changes subjective evaluation of percepts. <i>PLoS ONE</i> , 2014 , 9, e106943	3.7	11
58	Weighting mean and variability during confidence judgments. <i>PLoS ONE</i> , 2015 , 10, e0120870	3.7	33
57	Post-Decision Wagering Affects Metacognitive Awareness of Emotional Stimuli: An Event Related Potential Study. <i>PLoS ONE</i> , 2016 , 11, e0159516	3.7	4

56	Human VMPFC encodes early signatures of confidence in perceptual decisions. <i>ELife</i> , 2018 , 7,	8.9	34
55	Reverse engineering of metacognition.		O
54	Theta-burst transcranial magnetic stimulation to the prefrontal or parietal cortex does not impair metacognitive visual awareness.		0
53	Should a few null findings falsify prefrontal theories of conscious perception?.		O
52	The Neural System of Metacognition Accompanying Decision-Making in The Prefrontal Cortex.		
51	Confiance, mEacognition et perception. LDActualitEtonomique, 2016 , 92, 459-485	0	
50	Superior Colliculus Neuronal Ensemble Activity Signals Optimal Rather Than Subjective Confidence.		2
49	On a failed lattempt to manipulate conscious perception with transcranial magnetic stimulation to prefrontal cortex.		1
48	Focal optogenetic suppression in macaque area MT biases direction discrimination and choice confidence, but only transiently.		
47	Distinguishing the roles of dorsolateral and anterior PFC in visual metacognition.		1
46	Neural Circuit Mechanism of Decision Uncertainty and Change-of-Mind.		
45	Mnemonic introspection in macaques is dependent on dorsolateral prefrontal cortex but not orbitofrontal cortex.		
44	Individual susceptibility to TMS affirms the precuneual role in metamemory upon recollection.		1
43	Novel regression methods for metacognition.		
42	Evidence for metacognitive bias in perception of voluntary action.		1
41	Robust Pavlovian-to-Instrumental and Pavlovian-to-Metacognitive Transfers in human reinforcement learning.		1
40	Perceptual metacognition of human faces is causally supported by function of the lateral prefrontal cortex.		
39	Conscious perception of flickering stimuli in binocular rivalry and continuous flash suppression is not affected by tACS-induced SSR modulation.		

 $_{
m 38}$ Atypical spatial frequency dependence of visual metacognition among schizophrenia patients.

37	Diffusion property and functional connectivity of superior longitudinal fasciculus underpin human metacognition.		O
36	Explaining distortions in metacognition with an attractor network model of decision uncertainty.		
35	The persistent problem of targetless thought. <i>Consciousness and Cognition</i> , 2020 , 82, 102918	2.6	
34	A robust confidence-accuracy dissociation via criterion attraction. <i>Neuroscience of Consciousness</i> , 2021 , 2021, niab039	3.3	1
33	Measuring metacognitive performance: type 1 performance dependence and test-retest reliability. Neuroscience of Consciousness, 2021, 2021, niab040	3.3	1
32	Temporal-sensitive prefrontal involvement in associating confidence with task performance illustrates metacognitive introspection in Old World monkeys (Macaca mulatta).		1
31	Modelling the simultaneous encoding/serial experience theory of the perceptual moment: a blink of meta-experience <i>Neuroscience of Consciousness</i> , 2022 , 2022, niac003	3.3	
30	Decoding rapidly presented visual stimuli from prefrontal ensembles without report nor post-perceptual processing <i>Neuroscience of Consciousness</i> , 2022 , 2022, niac005	3.3	2
29	Partially overlapping neural correlates of metacognitive monitoring and metacognitive control Journal of Neuroscience, 2022,	6.6	O
28	The Perceptual Awareness Scale-recent controversies and debates <i>Neuroscience of Consciousness</i> , 2021 , 2021, niab044	3.3	О
27	Sources of confidence in value-based choice <i>Nature Communications</i> , 2021 , 12, 7337	17.4	O
26	Table_1.DOCX. 2020 ,		
25	Neural and computational processes of accelerated perceptual awareness and decisions: A 7T fMRI study <i>Human Brain Mapping</i> , 2022 ,	5.9	
24	Metacognition and Frontal Lobe Functioning 2021 , 18, 86-90		
23	Probing doors to visual awareness: Choice set, visibility, and confidence. Visual Cognition, 1-32	1.8	
22	Consensus Goals in the Field of Visual Metacognition. Perspectives on Psychological Science, 17456916.	22 1)(8 75	60
21	Dynamic influences on static measures of metacognition. <i>Nature Communications</i> , 2022 , 13,	17.4	О

20	Conscious Perception and the Prefrontal Cortex A Review. 2022 , 29, 115-157	O
19	Time-sensitive prefrontal involvement in associating confidence with task performance illustrates metacognitive introspection in monkeys. 2022 , 5,	O
18	Thinking about thinking about thinking Lamp; feeling: A model for metacognitive and meta-affective processes in task engagement.	0
17	Human perceptual and metacognitive decision-making rely on distinct brain networks. 2022 , 20, e3001750	O
16	Reverse engineering of metacognition. 11,	О
15	On the assumptions behind metacognitive measurements: Implications for theory and practice. 2022 , 22, 18	O
14	Confidence in consciousness research.	0
13	Towards Characterizing the Canonical Computations Generating Phenomenal Experience. 2022 , 104903	O
12	Mood and implicit confidence independently fluctuate at different time scales.	O
11	GGSDT: A unified signal detection framework for confidence data analysis.	O
10	Prefrontal-Parietal-cTBS Effects on Metacognitive Awareness: Real or Illusory?.	0
9	Metacognition. 2022 , 437-476	O
8	Ultrasound modulates neuronal potassium currents via ionotropic glutamate receptors. 2023,	O
7	Metacognitive sensitivity and symptoms of mental disorder: A systematic review and meta-analysis.	O
6	Continuous Theta Burst Stimulation to the left anterior medial prefrontal cortex influences metacognitive efficiency. 2023 , 272, 119991	О
5	Mata-authorita interest and a second	O
	Motor outcomes congruent with intentions may sharpen metacognitive representations. 2023 , 235, 105388	
4	The timing of confidence computations in human prefrontal cortex.	0

A Legion of Lesions: The Neuroscientific Rout of Higher-Order Thought Theory.

Ο

Towards causal mechanisms of consciousness through focused transcranial brain stimulation. **2023**, 2023,

C