Diviner Lunar Radiometer Observations of Cold Traps i

Science 330, 479-482 DOI: 10.1126/science.1187726

Citation Report

#	Article	IF	CITATIONS
1	Lunar Water: A Brief Review. Earth, Moon and Planets, 2010, 107, 65-73.	0.3	70
2	LRO-LAMP Observations of the LCROSS Impact Plume. Science, 2010, 330, 472-476.	6.0	141
3	The LCROSS Cratering Experiment. Science, 2010, 330, 468-472.	6.0	167
4	Detection of Water in the LCROSS Ejecta Plume. Science, 2010, 330, 463-468.	6.0	707
5	Diviner Lunar Radiometer Observations of the LCROSS Impact. Science, 2010, 330, 477-479.	6.0	68
6	Hydrogen Mapping of the Lunar South Pole Using the LRO Neutron Detector Experiment LEND. Science, 2010, 330, 483-486.	6.0	265
7	Effects of orbital evolution on lunar ice stability. Journal of Geophysical Research, 2011, 116, .	3.3	63
8	Modeling of the vapor release from the LCROSS impact: Parametric dependencies. Journal of Geophysical Research, 2011, 116, .	3.3	12
9	Exploration Space Suit Architecture and destination environmental-based technology development. , 2011, , .		4
10	Predictions of MESSENCER Neutron Spectrometer measurements for Mercury's north polar region. Planetary and Space Science, 2011, 59, 1665-1669.	0.9	6
11	Water on the Moon. Nature Geoscience, 2011, 4, 586-588.	5.4	6
12	Wireless Sensor Networks – A potential tool to probe for water on Moon. Advances in Space Research, 2011, 48, 601-612.	1.2	28
13	Illumination conditions of the lunar polar regions using LOLA topography. Icarus, 2011, 211, 1066-1081.	1.1	218
14	A ground-based observation of the LCROSS impact events using the Subaru Telescope. Icarus, 2011, 214, 21-29.	1.1	3
15	Using the resources of the Moon to create a permanent, cislunar space fairing system. , 2011, , .		19
16	The Role of Synthetic Biology for <i>In Situ</i> Resource Utilization (ISRU). Astrobiology, 2012, 12, 1135-1142.	1.5	48
17	Lunar Drilling, Excavation and Mining in Support of Science, Exploration, Construction, and In Situ Resource Utilization (ISRU). , 2012, , 235-265.		15
18	Nuclear Planetology: Especially Concerning the Moon and Mars. Research in Astronomy and Astrophysics, 2012, 12, 1313-1380.	0.7	5

ATION REDO

#	ARTICLE	IF	Citations
20	Back to the Moon: The scientific rationale for resuming lunar surface exploration. Planetary and Space Science, 2012, 74, 3-14.	0.9	119
21	Scientific preparations for lunar exploration with the European Lunar Lander. Planetary and Space Science, 2012, 74, 208-223.	0.9	34
22	Origin and stability of lunar polar volatiles. Advances in Space Research, 2012, 50, 1638-1646.	1.2	21
23	The production of oxygen and metal from lunar regolith. Planetary and Space Science, 2012, 74, 49-56.	0.9	103
24	A brief review of chemical and mineralogical resources on the Moon and likely initial in situ resource utilization (ISRU) applications. Planetary and Space Science, 2012, 74, 42-48.	0.9	200
25	L-VRAP—A lunar volatile resources analysis package for lunar exploration. Planetary and Space Science, 2012, 74, 254-263.	0.9	8
26	Geology, geochemistry, and geophysics of the Moon: Status of current understanding. Planetary and Space Science, 2012, 74, 15-41.	0.9	104
27	Planetary Science in Higher Education: Ideas and Experiences. Journal of Geography in Higher Education, 2012, 36, 499-525.	1.4	3
28	Modeling of the vapor release from the LCROSS impact: 2. Observations from LAMP. Journal of Geophysical Research, 2012, 117, .	3.3	23
29	Thermal infrared emissivity measurements under a simulated lunar environment: Application to the Diviner Lunar Radiometer Experiment. Journal of Geophysical Research, 2012, 117, .	3.3	50
30	Farâ€ultraviolet reflectance properties of the Moon's permanently shadowed regions. Journal of Geophysical Research, 2012, 117, .	3.3	115
31	Testing polar spots of waterâ€rich permafrost on the Moon: LEND observations onboard LRO. Journal of Geophysical Research, 2012, 117, .	3.3	60
32	Lunar equatorial surface temperatures and regolith properties from the Diviner Lunar Radiometer Experiment. Journal of Geophysical Research, 2012, 117, .	3.3	229
33	Microwave brightness temperature of cratered lunar surface and inversions of the physical temperature profile and thickness of regolith layer. Radio Science, 2012, 47, .	0.8	2
34	Twoâ€dimensional distribution of volatiles in the lunar regolith from space weathering simulations. Geophysical Research Letters, 2012, 39, .	1.5	61
35	Plasma wake simulations and object charging in a shadowed lunar crater during a solar storm. Journal of Geophysical Research, 2012, 117, .	3.3	37
36	Enhanced hydrogen at the lunar poles: New insights from the detection of epithermal and fast neutron signatures. Journal of Geophysical Research, 2012, 117, .	3.3	16
37	Lunar Net—a proposal in response to an ESA M3 call in 2010 for a medium sized mission. Experimental Astronomy, 2012, 33, 587-644.	1.6	15

#	Article	IF	CITATIONS
38	The Lunar Crater Observation and Sensing Satellite (LCROSS) Payload Development and Performance inÂFlight. Space Science Reviews, 2012, 167, 23-69.	3.7	26
39	LCROSS (Lunar Crater Observation and Sensing Satellite) Observation Campaign: Strategies, Implementation, and Lessons Learned. Space Science Reviews, 2012, 167, 93-140.	3.7	19
40	Illumination conditions at the Asteroid 4 Vesta: Implications for the presence of water ice. Icarus, 2012, 217, 272-276.	1.1	14
41	Scouring the surface: Ejecta dynamics and the LCROSS impact event. Icarus, 2012, 218, 654-665.	1.1	28
42	The formation of molecular hydrogen from water ice in the lunar regolith by energetic charged particles. Journal of Geophysical Research E: Planets, 2013, 118, 1257-1264.	1.5	20
43	New results and questions of lunar exploration from SELENE, Chang'E-1, Chandrayaan-1 and LRO/LCROSS. Advances in Space Research, 2013, 52, 285-305.	1.2	92
44	Evidence for water ice on the Moon: Results for anomalous polar craters from the LRO Miniâ€RF imaging radar. Journal of Geophysical Research E: Planets, 2013, 118, 2016-2029.	1.5	152
45	Mapping and characterization of non-polar permanent shadows on the lunar surface. Icarus, 2013, 223, 566-581.	1.1	47
46	Thermal Stability of Volatiles in the North Polar Region of Mercury. Science, 2013, 339, 300-303.	6.0	119
47	Craters hosting radarâ€bright deposits in Mercury's north polar region: Areas of persistent shadow determined from MESSENGER images. Journal of Geophysical Research E: Planets, 2013, 118, 26-36.	1.5	36
48	A Wet and Volatile Mercury. Science, 2013, 339, 282-283.	6.0	3
49	Proton flux and radiation dose from galactic cosmic rays in the lunar regolith and implications for organic synthesis at the poles of the Moon and Mercury. Icarus, 2013, 226, 1192-1200.	1.1	26
50	Persistently illuminated regions at the lunar poles: Ideal sites for future exploration. Icarus, 2013, 222, 122-136.	1.1	67
51	Recursive plasma wake formation on the Moon and its effect on polar volatiles. Icarus, 2013, 226, 992-998.	1.1	21
52	Functional Comparison of Lunar Regoliths and Their Simulants. Journal of Aerospace Engineering, 2013, 26, 176-182.	0.8	14
53	Highly sensitive tunable diode laser spectrometers for in situ planetary exploration. , 2013, , .		1
54	On the Extraction of Volatiles from Lunar Regolith Using Solar Power. , 2013, , .		1
55	Orbital eccentricity driven temperature variation at Mercury's poles. Journal of Geophysical Research E: Planets, 2013, 118, 930-937.	1.5	17

#	Article	IF	CITATIONS
56	Circular polarization ratio characteristics of impact craters from Miniâ€RF observations and implications for ice detection at the polar regions of the Moon. Journal of Geophysical Research E: Planets, 2013, 118, 1582-1608.	1.5	61
59	Extraction of Volatiles from Lunar Regolith Using Solar Power. Journal of Thermophysics and Heat Transfer, 2014, 28, 343-346.	0.9	4
60	The global albedo of the Moon at 1064 nm from LOLA. Journal of Geophysical Research E: Planets, 2014, 119, 1665-1679.	1.5	96
61	10. Spectroscopy from Space. , 2014, , 399-446.		1
62	Understanding the origin and evolution of water in the Moon through lunar sample studies. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130254.	1.6	35
63	Double-sided Tl2Ba2Ca2Cu3O10 thin films based high temperature superconducting filter operating above 100 K. Applied Physics Letters, 2014, 105, .	1.5	4
64	Review of possible mineral materials and production techniques for a building material on the moon. Structural Concrete, 2014, 15, 419-428.	1.5	51
65	Characterizing transient thermal interactions between lunar regolith and surface spacecraft. Planetary and Space Science, 2014, 92, 101-116.	0.9	6
66	Chlorine distribution and its isotopic composition in "rusty rock―66095. Implications for volatile element enrichments of "rusty rock―and lunar soils, origin of "rusty―alteration, and volatile element behavior on the Moon. Geochimica Et Cosmochimica Acta, 2014, 139, 411-433.	1.6	52
67	Spectroscopy from Space. Reviews in Mineralogy and Geochemistry, 2014, 78, 399-446.	2.2	17
68	High frequency thermal emission from the lunar surface and near surface temperature of the Moon from Chang'E-2 microwave radiometer. Icarus, 2014, 232, 34-53.	1.1	54
69	Migration calculations for water in the exosphere of the Moon: Duskâ€dawn asymmetry, heterogeneous trapping, and D/H fractionation. Geophysical Research Letters, 2014, 41, 4888-4893.	1.5	29
70	THE LUNAR THERMAL ICE PUMP. Astrophysical Journal, 2014, 788, 169.	1.6	44
71	The Miniature Radio Frequency instrument's (Mini-RF) global observations of Earth's Moon. Icarus, 2014, 243, 173-190.	1.1	51
72	High-priority lunar landing sites for in situ and sample return studies of polar volatiles. Planetary and Space Science, 2014, 101, 149-161.	0.9	36
73	Lunar heat flow: Regional prospective of the Apollo landing sites. Journal of Geophysical Research E: Planets, 2014, 119, 47-63.	1.5	51
74	Estimation of lunar surface temperatures and thermophysical properties: test of a thermal model in preparation of the MERTIS experiment onboard BepiColombo. Planetary and Space Science, 2014, 101, 27-36.	0.9	15
75	Images of surface volatiles in Mercury's polar craters acquired by the MESSENGER spacecraft. Geology, 2014, 42, 1051-1054.	2.0	67

ARTICLE IF CITATIONS # Impact chemistry of methanol: Implications for volatile evolution on icy satellites and dwarf planets, 76 1.1 6 and cometary delivery to the Moon. Icarus, 2014, 243, 39-47. Deep dielectric charging of regolith within the Moon's permanently shadowed regions. Journal of 1.5 Geophysical Research E: Planets, 2014, 119, 1806-1821. Lunar polar craters – lcy, rough or just sloping?. Icarus, 2014, 241, 66-78. 78 1.1 34 Simulations of lunar equatorial regolith temperature profile based on measurements of Diviner on Lunar Reconnaissance Orbiter. Science China Earth Sciences, 2014, 57, 2232-2241. Global assessment of pure crystalline plagioclase across the Moon and implications for the 80 1.5 86 evolution of the primary crust. Journal of Geophysical Research E: Planets, 2014, 119, 1516-1545. Identification of surface hydrogen enhancements within the Moon's Shackleton crater. Icarus, 2014, 1.1 233, 229-232. Testing Mars Exploration Rover-inspired operational strategies for semi-autonomous rovers on the 82 1.7 10 moon II: The GeoHeuristic operational Strategies Test in Alaska. Acta Astronautica, 2014, 99, 24-36. Planetary laser spectrometer for sensitive in situ detection of water at 1881nm. Planetary and Space Science, 2014, 92, 127-135. Alpha Particle X-Ray Spectrometer (APXS) on-board Chandrayaan-2 rover. Advances in Space Research, 84 1.2 22 2014, 54, 1974-1984. Influence of lunar topography on simulated surface temperature. Advances in Space Research, 2014, 54, 1.2 2131-2139. On the average temperature of airless spherical bodies and the magnitude of Earth's atmospheric 1.2 9 86 thermal effect. SpringerPlus, 2014, 3, 723. RESEARCH FOCUS: MESSENGER Into Darkness. Geology, 2014, 42, 1111-1112. 87 Thermal stability of ice on Ceres with rough topography. Journal of Geophysical Research E: Planets, 88 1.5 93 2015, 120, 1567-1584. Spillage of lunar polar crater volatiles onto adjacent terrains: The case for dynamic processes. 1.5 Geophysical Research Letters, 2015, 42, 3160-3165. Deep dielectric charging and breakdown of lunar polar regolith. Journal of Physics: Conference 90 0.3 0 Series, 2015, 646, 012010. Dielectric breakdown weathering of the Moon's polar regolith. Journal of Geophysical Research E: Planets, 2015, 120, 210-225. Room-temperature remote sensing: Far-infrared imaging based on thermopile technology., 2015, , . 92 0 Transient thermal envelope for rovers and sample collecting devices on the Moon. Advances in Space 1.2 Research, 2015, 55, 1477-1494.

#	Article	IF	CITATIONS
94	Design of a Lunar Surface Structure. I: Design Configuration and Thermal Analysis. Journal of Aerospace Engineering, 2015, 28, .	0.8	14
95	Lunar resources. Progress in Physical Geography, 2015, 39, 137-167.	1.4	183
96	Evolution of lunar polar ice stability. Icarus, 2015, 255, 78-87.	1.1	72
97	Temperature programmed desorption studies of water interactions with Apollo lunar samples 12001 and 72501. Icarus, 2015, 255, 24-29.	1.1	53
98	Transport of water in a transient impact-generated lunar atmosphere. Icarus, 2015, 255, 148-158.	1.1	55
99	Lunar exospheric argon modeling. Icarus, 2015, 255, 135-147.	1.1	28
100	An analytic function of lunar surface temperature for exospheric modeling. Icarus, 2015, 255, 159-163.	1.1	40
101	High-resolution mapping of lunar polar hydrogen with a low-resource orbital mission. Acta Astronautica, 2015, 115, 452-462.	1.7	9
102	Evidence for the sequestration of hydrogen-bearing volatiles towards the Moon's southern pole-facing slopes. Icarus, 2015, 255, 88-99.	1.1	14
103	Real-time science operations to support a lunar polar volatiles rover mission. Advances in Space Research, 2015, 55, 2427-2437.	1.2	16
104	Simulated real-time lunar volatiles prospecting with a rover-borne neutron spectrometer. Advances in Space Research, 2015, 55, 2438-2450.	1.2	9
105	Evolution of the dust and water ice plume components as observed by the LCROSS visible camera and UV–visible spectrometer. Icarus, 2015, 254, 262-275.	1.1	14
106	Improved Views of the Moon in the Early Twenty First Century: A Review. Earth, Moon and Planets, 2015, 114, 101-135.	0.3	8
107	Evidence for exposed water ice in the Moon's south polar regions from Lunar Reconnaissance Orbiter ultraviolet albedo and temperature measurements. Icarus, 2015, 255, 58-69.	1.1	188
108	Accessing, Drilling and Operating at the Lunar South Pole: Status of European Plans and Activities. , 2015, , .		5
109	Lunar surface roughness derived from LRO Diviner Radiometer observations. Icarus, 2015, 248, 357-372.	1.1	92
110	Detecting Loose Regolith in Lunar Craters Using Thermal Imaging. , 2016, , .		1
111	Modeling of ice pinnacle formation on Callisto. Journal of Geophysical Research E: Planets, 2016, 121, 21-45.	1.5	23

#	Article	IF	CITATIONS
112	Far-infrared room-temperature focal plane modules for radiation budget instrument. , 2016, , .		1
113	Mid and thermal infrared remote sensing at the Jet Propulsion Laboratory. Proceedings of SPIE, 2016, , .	0.8	2
114	LRO-LAMP detection of geologically young craters within lunar permanently shaded regions. Icarus, 2016, 273, 114-120.	1.1	15
115	Thermal properties of Rhea's poles: Evidence for a meter-deep unconsolidated subsurface layer. Icarus, 2016, 272, 140-148.	1.1	16
116	Inversions of subsurface temperature and thermal diffusivity on the Moon based on high frequency of Chang'E-1 microwave radiometer data. Icarus, 2016, 275, 97-106.	1.1	12
117	What can space resources do for astronomy and planetary science?. Space Policy, 2016, 37, 65-76.	0.8	9
118	Scientific return of a lunar elevator. Space Policy, 2016, 37, 97-102.	0.8	5
119	Establishing lunar resource viability. Space Policy, 2016, 37, 52-57.	0.8	38
120	Lunar water migration in the interval between large impacts: Heterogeneous delivery to Permanently Shadowed Regions, fractionation, and diffusive barriers. Journal of Geophysical Research E: Planets, 2016, 121, 46-60.	1.5	24
121	An empirical thermal correction model for Moon Mineralogy Mapper data constrained by laboratory spectra and Diviner temperatures. Journal of Geophysical Research E: Planets, 2016, 121, 2081-2107.	1.5	47
122	Problems of moving ultrasound penetrative devices in a dispersion medium during drilling of the Moon's regolith. Acoustical Physics, 2016, 62, 633-641.	0.2	4
123	The temperatures of Giordano Bruno crater observed by the Diviner Lunar Radiometer Experiment: Application of an effective field of view model for a point-based data set. Icarus, 2016, 273, 205-213.	1.1	23
124	Dione and Rhea seasonal exospheres revealed by Cassini CAPS and INMS. Icarus, 2016, 272, 277-289.	1.1	37
125	Optimized traverse planning for future polar prospectors based on lunar topography. Icarus, 2016, 273, 337-345.	1.1	22
126	Lunar polar rover science operations: Lessons learned and mission architecture implications derived from the Mojave Volatiles Prospector (MVP) terrestrial field campaign. Advances in Space Research, 2016, 58, 545-559.	1.2	6
127	Observation of Neon at mid and high latitudes in the sunlit lunar exosphere: Results from CHACE aboard MIP/Chandrayaan-1. Icarus, 2016, 272, 206-211.	1.1	8
128	Site selection and traverse planning to support a lunar polar rover mission: A case study at Haworth Crater. Acta Astronautica, 2016, 127, 308-320.	1.7	23
129	Lunar true polar wander inferred from polar hydrogen. Nature, 2016, 531, 480-484.	13.7	90

#	Article	IF	CITATIONS
130	Thermal behavior of regolith at cold traps on the moon׳s south pole: Revealed by Chang׳E-2 microwave radiometer data. Planetary and Space Science, 2016, 122, 101-109.	0.9	10
131	The Lunar Reconnaissance Orbiter Mission – Six years of science and exploration at the Moon. Icarus, 2016, 273, 2-24.	1.1	38
132	Lunar Surface Temperature of Global Moon: Preparation of Database With Topographic and Albedo Effects. IEEE Geoscience and Remote Sensing Letters, 2016, 13, 110-114.	1.4	18
133	Accessing, Drill and Operating at the Lunar South Pole: Status of European Plans and Activities. , 2016, , \cdot		1
134	Bistatic radar observations of the Moon using Mini-RF on LRO and the Arecibo Observatory. Icarus, 2017, 283, 2-19.	1.1	59
135	Evidence for surface water ice in the lunar polar regions using reflectance measurements from the Lunar Orbiter Laser Altimeter and temperature measurements from the Diviner Lunar Radiometer Experiment. Icarus, 2017, 292, 74-85.	1.1	119
136	Laboratory experiments to investigate sublimation rates of water ice in nighttime lunar regolith. Icarus, 2017, 293, 180-184.	1.1	8
137	Searches for extraterrestrial life in the solar system: Status and perspectives. Astronomy Reports, 2017, 61, 324-331.	0.2	1
138	Stability of ice on the Moon with rough topography. Icarus, 2017, 296, 99-109.	1.1	24
139	Ceres's obliquity history and its implications for the permanently shadowed regions. Geophysical Research Letters, 2017, 44, 2652-2661.	1.5	29
140	Temperature regime and water/hydroxyl behavior in the crater Boguslawsky on the Moon. Icarus, 2017, 285, 118-136.	1.1	27
141	A tale of two poles: Toward understanding the presence, distribution, and origin of volatiles at the polar regions of the Moon and Mercury. Journal of Geophysical Research E: Planets, 2017, 122, 21-52.	1.5	69
142	Global Regolith Thermophysical Properties of the Moon From the Diviner Lunar Radiometer Experiment. Journal of Geophysical Research E: Planets, 2017, 122, 2371-2400.	1.5	193
143	Ices on Mercury: Chemistry of volatiles in permanently cold areas of Mercury's north polar region. Icarus, 2017, 281, 19-31.	1.1	26
144	The rate of dielectric breakdown weathering of lunar regolith in permanently shadowed regions. Icarus, 2017, 283, 352-358.	1.1	22
145	Effects of varying environmental conditions on emissivity spectra of bulk lunar soils: Application to Diviner thermal infrared observations of the Moon. Icarus, 2017, 283, 326-342.	1.1	47
146	The global surface temperatures of the Moon as measured by the Diviner Lunar Radiometer Experiment. Icarus, 2017, 283, 300-325.	1.1	245
147	Hydrogen distribution in the lunar polar regions. Icarus, 2017, 283, 20-30.	1.1	75

#	Article	IF	CITATIONS
148	The Oxford space environment goniometer: A new experimental setup for making directional emissivity measurements under a simulated space environment. Review of Scientific Instruments, 2017, 88, 124502.	0.6	10
149	Accelerating energy-aware spatiotemporal path planning for the lunar poles. , 2017, , .		8
150	The proposed Caroline ESA M3 mission to a Main Belt Comet. Advances in Space Research, 2018, 62, 1921-1946.	1.2	9
151	Spectroscopic observations of the Moon at the lunar surface. Earth and Planetary Science Letters, 2018, 484, 145-153.	1.8	30
152	Using complementary remote sensing techniques to assess the presence of volatiles at the lunar north pole. Planetary and Space Science, 2018, 162, 133-147.	0.9	15
153	Simulations of lunar exospheric water events from meteoroid impacts. Planetary and Space Science, 2018, 162, 148-156.	0.9	9
154	Potential impact-induced water-solid reactions on the Moon. Planetary and Space Science, 2018, 162, 157-169.	0.9	14
155	Analysis of a Moon outpost for Mars enabling technologies through a Virtual Reality environment. Acta Astronautica, 2018, 143, 353-361.	1.7	13
156	Strategic Autonomy for Reducing Risk of Sun-Synchronous Lunar Polar Exploration. Springer Proceedings in Advanced Robotics, 2018, , 465-479.	0.9	0
157	The influence of surface roughness on volatile transport on the Moon. Icarus, 2018, 299, 31-45.	1.1	19
158	Illumination conditions at the lunar poles: Implications for future exploration. Planetary and Space Science, 2018, 162, 170-178.	0.9	53
159	The New Moon: Major Advances in Lunar Science Enabled by Compositional Remote Sensing from Recent Missions. Geosciences (Switzerland), 2018, 8, 498.	1.0	11
160	Mercury's Polar Deposits. , 2018, , 346-370.		9
161	Unravelling the Mystery of Lunar Anomalous Craters Using Radar and Infrared Observations. Journal of Geophysical Research E: Planets, 2018, 123, 2119-2137.	1.5	37
162	Advanced illumination modeling for data analysis and calibration. Application to the Moon. Advances in Space Research, 2018, 62, 3214-3228.	1.2	19
163	A new experimental capability for the study of regolith surface physical properties to support science, space exploration, and <i>in situ</i> resource utilization (ISRU). Review of Scientific Instruments, 2018, 89, 064502.	0.6	16
164	Luna-5 (1965): Some Results of a Failed Mission to the Moon. Cosmic Research, 2018, 56, 276-282.	0.2	0
165	The mixing of lunar regolith: Vital updates to a canonical model. Icarus, 2018, 314, 327-344.	1.1	74

#	Article	IF	Citations
166	The Temperature Regime of the Proposed Landing Sites for the Luna-Glob Mission in the South Polar Region of the Moon. Earth, Moon and Planets, 2018, 122, 1-13.	0.3	1
167	On the Possibility of the Existence of Volatile Compounds in the Region of the Scott Crater on the Moon. Cosmic Research, 2018, 56, 169-179.	0.2	1
168	ALCIDES: A novel lunar mission concept study for the demonstration of enabling technologies in deep-space exploration and human-robots interaction. Acta Astronautica, 2018, 151, 270-283.	1.7	8
169	Seasonal Polar Temperatures on the Moon. Journal of Geophysical Research E: Planets, 2019, 124, 2505-2521.	1.5	80
170	Modeling near-surface temperatures of airless bodies with application to the Moon. Astronomy and Astrophysics, 2019, 627, A129.	2.1	13
171	Introduction to the Special Issue: Ice on Ceres. Journal of Geophysical Research E: Planets, 2019, 124, 1639-1649.	1.5	1
172	Thick ice deposits in shallow simple craters on the Moon and Mercury. Nature Geoscience, 2019, 12, 597-601.	5.4	78
173	The Temporal and Geographic Extent of Seasonal Cold Trapping on the Moon. Journal of Geophysical Research E: Planets, 2019, 124, 1935-1944.	1.5	21
174	Technical evaluation of Off-Earth ice mining scenarios through an opportunity cost approach. Acta Astronautica, 2019, 162, 388-404.	1.7	17
175	The Young Age of the LAMPâ€observed Frost in Lunar Polar Cold Traps. Geophysical Research Letters, 2019, 46, 8680-8688.	1.5	41
176	Potential Lunar Base on Mons Malapert: Topographic, Geologic and Trafficability Considerations. Solar System Research, 2019, 53, 383-398.	0.3	19
177	Future science goals of in situ Lunar explorations. , 2019, , .		0
178	Particle Size Effects on Midâ€Infrared Spectra of Lunar Analog Minerals in a Simulated Lunar Environment. Journal of Geophysical Research E: Planets, 2019, 124, 970-988.	1.5	36
179	Evidence for ultra-cold traps and surface water ice in the lunar south polar crater Amundsen. Icarus, 2019, 332, 1-13.	1.1	19
180	A Model for the Thermophysical Properties of Lunar Regolith at Low Temperatures. Journal of Geophysical Research E: Planets, 2019, 124, 1989-2011.	1.5	39
181	Study of Chang'E-2 Microwave Radiometer Data in the Lunar Polar Region. Advances in Astronomy, 2019, 2019, 1-10.	0.5	10
182	A New Method for Simulation of Lunar Microwave Brightness Temperatures and Evaluation of Chang'Eâ€2 MRM Data Using Thermal Constraints From Diviner. Journal of Geophysical Research E: Planets, 2019, 124, 1433-1450.	1.5	7
183	Analyses of Lunar Orbiter Laser Altimeter 1,064â€nm Albedo in Permanently Shadowed Regions of Polar Crater Flat Floors: Implications for Surface Water Ice Occurrence and Future In Situ Exploration. Earth and Space Science, 2019, 6, 467-488.	1.1	24

#	Article	IF	CITATIONS
184	Diurnally Migrating Lunar Water: Evidence From Ultraviolet Data. Geophysical Research Letters, 2019, 46, 2417-2424.	1.5	49
185	Design and Characterization of the Multi-Band SWIR Receiver for the Lunar Flashlight CubeSat Mission. Remote Sensing, 2019, 11, 440.	1.8	5
186	Coupled DSMC-Monte Carlo radiative transfer modeling of gas dynamics in a transient impact-generated lunar atmosphere. Icarus, 2019, 326, 88-104.	1.1	12
187	Modeling the Angular Dependence of Emissivity of Randomly Rough Surfaces. Journal of Geophysical Research E: Planets, 2019, 124, 585-601.	1.5	15
188	Volatile distributions in and on the Moon revealed by Cu and Fe isotopes in the â€~Rusty Rock' 66095. Geochimica Et Cosmochimica Acta, 2019, 266, 131-143.	1.6	15
189	1D geothermal inversion of the lunar deep interior temperature and heat production in the equatorial area. Physics of the Earth and Planetary Interiors, 2019, 289, 106-114.	0.7	2
190	Constraining the Evolutionary History of the Moon and the Inner Solar System: A Case for New Returned Lunar Samples. Space Science Reviews, 2019, 215, 1.	3.7	41
191	Far-Infrared Room-Temperature Focal Plane Modules for Polar Radiant Energy in the Far InfraRed Experiment. , 2019, , .		1
192	Untangling the Origin of Molecular Hydrogen in the Lunar Exosphere. Astrophysical Journal, 2019, 887, 27.	1.6	9
193	Traverses for the ISECG-GER design reference mission for humans on the lunar surface. Advances in Space Research, 2019, 63, 692-727.	1.2	14
194	Earthshine as an illumination source at the Moon. Icarus, 2019, 321, 841-856.	1.1	9
195	Analyzing the ages of south polar craters on the Moon: Implications for the sources and evolution of surface water ice Icarus, 2020, 336, 113455.	1.1	53
196	The bidirectional and directional hemispheric reflectance of Apollo 11 and 16 soils: Laboratory and Diviner measurements. Icarus, 2020, 336, 113456.	1.1	6
197	Lunar polar water resource exploration – Examination of the lunar cold trap reservoir system model and introduction of play-based exploration (PBE) techniques. Planetary and Space Science, 2020, 180, 104742.	0.9	16
198	New Constraints on Thermal and Dielectric Properties of Lunar Regolith from LRO Diviner and CEâ€2 Microwave Radiometer. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006130.	1.5	29
199	Searching for potential ice-rich mining sites on the Moon with the Lunar Volatiles Scout. Planetary and Space Science, 2020, 181, 104826.	0.9	14
200	The Oxford 3D thermophysical model with application to PROSPECT/Luna 27 study landing sites. Planetary and Space Science, 2020, 182, 104790.	0.9	16
201	Regions of interest (ROI) for future exploration missions to the lunar South Pole. Planetary and Space Science, 2020, 180, 104750.	0.9	44

# 202	ARTICLE Impact Melt Facies in the Moon's Crisium Basin: Identifying, Characterizing, and Future Radiogenic Dating, Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006024.	IF 1.5	CITATIONS
203	Advection diffusion model for gas transport within a packed bed of JSC-1A regolith simulant. Acta Astronautica, 2020, 169, 32-39.	1.7	8
204	A Real-Time Model of the Seasonal Temperature of Lunar Polar Region and Data Validation. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 1892-1903.	2.7	11
205	Characterizing the hydroxyl observation of the LCROSS UV-visible spectrometer: Modeling of the impact plume. Icarus, 2020, 343, 113626.	1.1	3
206	Lunar Titanium and Frequencyâ€Dependent Microwave Loss Tangent as Constrained by the Chang'Eâ€2 MRM and LRO Diviner Lunar Radiometers. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006405.	1.5	27
207	Laboratory investigations of Lunar ice imaging in permanently shadowed regions using reflected starlight. Acta Astronautica, 2020, 177, 604-610.	1.7	2
208	Temperatureâ€Đependent Changes in the Normal Albedo of the Lunar Surface at 1,064Ânm. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006338.	1.5	4
209	MARAUDERS: A mission concept to probe volatile distribution and properties at the lunar poles with miniature impactors. Planetary and Space Science, 2020, 189, 104969.	0.9	5
210	Geologic context and potential EVA targets at the lunar south pole. Advances in Space Research, 2020, 66, 1247-1264.	1.2	22
211	Development of a chamber to simulate lunar surface environment. Planetary and Space Science, 2020, 191, 105038.	0.9	2
212	Lunar Regolith Temperature Variation in the Rümker Region Based on the Real-Time Illumination. Remote Sensing, 2020, 12, 731.	1.8	7
213	Using Boulder Tracks as a Tool to Understand the Bearing Capacity of Permanently Shadowed Regions of the Moon. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006157.	1.5	24
214	Lunar Flashlight: Illuminating the Lunar South Pole. IEEE Aerospace and Electronic Systems Magazine, 2020, 35, 46-52.	2.3	16
215	A geologic model for lunar ice deposits at mining scales. Icarus, 2020, 347, 113778.	1.1	52
216	Water within a permanently shadowed lunar crater: Further LCROSS modeling and analysis. Icarus, 2021, 354, 114089.	1.1	17
217	Concentrated lunar resources: imminent implications for governance and justice. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190563.	1.6	13
218	The spectral radiance of indirectly illuminated surfaces in regions of permanent shadow on the Moon. Acta Astronautica, 2021, 180, 25-34.	1.7	7
219	Geomorphic Evidence for the Presence of Ice Deposits in the Permanently Shadowed Regions of Scottâ€E Crater on the Moon. Geophysical Research Letters, 2021, 48, e2020GL090780.	1.5	14

#	Article	IF	Citations
220	Illumination conditions within permanently shadowed regions at the lunar poles: Implications for in-situ passive remote sensing. Acta Astronautica, 2021, 178, 432-451.	1.7	8
221	Development of a micro-ice production apparatus and NIR spectral measurements of frosted minerals for future lunar ice exploration missions. Icarus, 2021, 357, 114273.	1.1	8
222	Lunar Surface Temperature and Emissivity Retrieval From Diviner Lunar Radiometer Experiment Sensor. Earth and Space Science, 2021, 8, e2020EA001436.	1.1	3
223	Micro cold traps on the Moon. Nature Astronomy, 2021, 5, 169-175.	4.2	63
224	Simulation and Data Analysis of the Temperature Distribution and Variation in the Permanent Shaded Region of the Moon. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 2962-2972.	2.7	6
225	A New Method to Evaluate and Modify Chang'E-2 Microwave Radiometer Low-Frequency Data Constrained From Diviner Thermal Measurements. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-13.	2.7	2
226	Small Penetrator Instrument Concept for the Advancement of Lunar Surface Science. Planetary Science Journal, 2021, 2, 38.	1.5	5
227	Molecular Dynamics Simulations of Dielectric Breakdown of Lunar Regolith: Implications for Water Ice Formation on Lunar Surface. Geophysical Research Letters, 2021, 48, e2020GL091681.	1.5	7
228	Lunar Gravitational-wave Antenna. Astrophysical Journal, 2021, 910, 1.	1.6	41
229	Providing Wired Power and Data in Lunar Permanently Shadowed Regions with a Rover-Deployed Superconducting Tether. , 2021, , .		1
230	LUVMI-X: A Versatile Platform for Resource Prospecting on the Moon. , 2021, , .		3
231	Framework for Coordinated Efforts in the Exploration of Volatiles in the South Polar Region of the Moon. Planetary Science Journal, 2021, 2, 103.	1.5	22
232	Croll, feedback mechanisms, climate change and the future. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2021, 112, 287-304.	0.3	3
233	Regolith Properties in the Chang'Eâ€5 Landing Region of the Moon: Results From Multiâ€Source Remote Sensing Observations. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006934.	1.5	20
234	Temperatures Near the Lunar Poles and Their Correlation With Hydrogen Predicted by LEND. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006598.	1.5	11
235	Molecular Dynamics Simulations of Water Formation and Retention by Micrometeoroid Impact on Lunar Surface. Geophysical Research Letters, 2021, 48, e2021GL093509.	1.5	2
237	Water Group Exospheres and Surface Interactions on the Moon, Mercury, and Ceres. Space Science Reviews, 2021, 217, 1.	3.7	21
238	A drill-integrated miniaturized device for detecting ice in lunar regolith: the PROSPECT permittivity sensor. Measurement Science and Technology, 2021, 32, 125117.	1.4	1

#	Article	IF	CITATIONS
239	Reconciling the Infrared and Microwave Observations of the Lunar South Pole: A Study on Subsurface Temperature and Regolith Density. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006623.	1.5	6
240	Wide-range routing method for lunar exploration rovers using multi-objective optimization. Advanced Robotics, 2021, 35, 1317-1331.	1.1	1
241	Prominent volcanic source of volatiles in the south polar region of the Moon. Advances in Space Research, 2021, 68, 4691-4701.	1.2	8
242	A Global Thermal Conductivity Model for Lunar Regolith at Low Temperatures. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006829.	1.5	10
243	Peering into lunar permanently shadowed regions with deep learning. Nature Communications, 2021, 12, 5607.	5.8	13
244	Oxygen from Lunar Regolith. , 2012, , 165-187.		4
245	Thermal infrared emissivity of felsic-rich to mafic-rich analogues of hot planetary regoliths. Earth and Planetary Science Letters, 2020, 534, 116089.	1.8	10
246	Mapping of Ice Storage Processes on the Moon with Time-dependent Temperatures. Planetary Science Journal, 2020, 1, 54.	1.5	23
247	THE â€ [¬] MOON MAPPING' PROJECT TO PROMOTE COOPERATION BETWEEN STUDENTS OF ITALY AND CHINA. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLI-B6, 71-78.	0.2	6
248	Carbon Dioxide Cold Traps on the Moon. Geophysical Research Letters, 2021, 48, .	1.5	20
249	Analyzing Surface Ruggedness Inside and Outside of Ice Stability Zones at the Lunar Poles. Planetary Science Journal, 2021, 2, 213.	1.5	12
250	Astronomers comb through Moon smash haul. Nature, 0, , .	13.7	0
251	A Survey of Geologic Resources. , 2012, , 1-21.		1
252	Turbulent Chaos and Self-Organization in Cosmic Natural Media. Astrophysics and Space Science Library, 2013, , 1-144.	1.0	0
253	Surface and Near-Surface Thermal Environment of the Moon. , 2014, , 1-11.		0
254	- Lunar Geodesy and Sensing: Methods and Results from Recent Lunar Exploration Missions. , 2014, , 16-33.		0
256	Lunar Atmosphere, Transport and Storage of Volatiles. , 2017, , 1-4.		2
258	Design and characterization of a low cost CubeSat multi-band optical receiver to map water ice on the lunar surface for the Lunar Flashlight mission. , 2017, , .		0

#	Article	IF	CITATIONS
259	Detection of Water. , 2018, , 1-9.		0
260	Volatiles on the Lunar Surface and Subsurface. , 2018, , 1-6.		1
261	Optical and mechanical designs of the multi-band SWIR receiver for the Lunar Flashlight CubeSat mission. , 2018, , .		0
262	The Lunar Flashlight CubeSat instrument: A compact SWIR laser reflectometer to quantify and map water ice on the surface of the Moon. , 2018, , .		1
263	Lunar Permanently Shaded Areas. , 2020, , 1-4.		1
264	Lunar and off Earth resource drivers, estimations and the development conundrum. Advances in Space Research, 2020, 66, 359-377.	1.2	2
265	Thermophysical Behavior of the Lunar Surface. , 2020, , 1-17.		1
267	Proving lunar resources are actually reserves. , 2020, , .		0
268	Lunar Surface and Buried Rock Abundance Retrieved from Chang'E-2 Microwave and Diviner Data. Planetary Science Journal, 2020, 1, 56.	1.5	15
269	The lunar surface as a recorder of astrophysical processes. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190562.	1.6	11
270	Kuwait Lunar Simulation & Analogue Lab. , 2020, , .		0
271	Resource potential of lunar permanently shadowed regions. Icarus, 2022, 377, 114874.	1.1	25
272	A lingering local exosphere created by a gas plume of a lunar lander. Icarus, 2022, 376, 114857.	1.1	1
273	Depth to Diameter Analysis on Small Simple Craters at the Lunar South Pole—Possible Implications for Ice Harboring. Remote Sensing, 2022, 14, 450.	1.8	3
274	Space solar power satellite for the Moon and Mars mission. Journal of Space Safety Engineering, 2022, 9, 96-105.	0.5	14
275	Sub-field of view surface thermal modeling of Cassini CIRS observations of Rhea during south polar winter. Icarus, 2022, 377, 114910.	1.1	1
276	Challenges of operating a drilling instrument on a small rover at the lunar poles - LVS-PIE phase A study results. Planetary and Space Science, 2022, 212, 105426.	0.9	3
277	Temperatures of the Lacus Mortis Region of the Moon. Earth and Space Science, 2022, 9, .	1.1	2

#	Article	IF	CITATIONS
278	Exogenic origin for the volatiles sampled by the Lunar CRater Observation and Sensing Satellite impact. Nature Communications, 2022, 13, 642.	5.8	13
279	Size–frequency measurements of meter-sized craters and boulders in the lunar polar regions for landing-site selections of future lunar polar missions. Icarus, 2022, 378, 114938.	1.1	4
280	Explanations for Unusual Seasonal Variations in Chang'E-2 Microwave Radiometer Datasets of Lunar Double-Shaded Permanently Shadowed Regions. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-14.	2.7	1
281	Spatial Distribution and Thermal Diversity of Surface Volatile Cold Traps at the Lunar Poles. Planetary Science Journal, 2022, 3, 39.	1.5	16
282	Analysis and prediction of uniaxial compressive strength of icy lunar regolith under extreme temperature. Advances in Space Research, 2022, 69, 4391-4407.	1.2	9
283	Lunar shelter construction issues: The state-of-the-art towards 3D printing technologies. Acta Astronautica, 2022, 195, 318-343.	1.7	16
284	Volatile interactions with the lunar surface. Chemie Der Erde, 2022, 82, 125858.	0.8	26
285	View Factor-Based Computation of Secondary Illumination Within Lunar Permanently Shadowed Regions. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-4.	1.4	4
286	The Effects of Terrain Properties Upon the Small Crater Population Distribution at Giordano Bruno: Implications for Lunar Chronology. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	5
287	在æœ^çƒå¼€å±•å≋äįjä½į宿−‡å¦çš"ç"ç©¶èį›å±•. Scientia Sinica: Physica, Mechanica Et Astronomica, 2022,	,0.2	1
288	Dielectric characterization and polarimetric analysis of lunar north polar crater Hermite-A using Chandrayaan-1 Mini-SAR, Lunar Reconnaissance Orbiter (LRO) Mini-RF, and Chandrayaan-2 DFSAR data. Advances in Space Research, 2022, 70, 4030-4055.	1.2	7
289	Polar Ice Accumulation from Volcanically Induced Transient Atmospheres on the Moon. Planetary Science Journal, 2022, 3, 99.	1.5	13
290	Temperature programmed desorption comparison of lunar regolith to lunar regolith simulants LMS-1 and LHS-1. Earth and Planetary Science Letters, 2022, 592, 117632.	1.8	3
291	Polar Ice on the Moon. , 2022, , 1-9.		2
292	Aspects of thermal modeling using digital terrain models. Astronomy and Astrophysics, 2022, 664, A152.	2.1	2
294	Thermal and Illumination Environments of Lunar Pits and Caves: Models and Observations From the Diviner Lunar Radiometer Experiment. Geophysical Research Letters, 2022, 49, .	1.5	16
296	Cryogeomorphic Characterization of Shadowed Regions in the Artemis Exploration Zone. Geophysical Research Letters, 2022, 49, .	1.5	12
297	Artemis Accords: Are Safety Zones Practical for Long Term Commercial Lunar Resource Utilisation?. Space Policy, 2022, 62, 101504.	0.8	4

#	Article	IF	CITATIONS
298	Survival of Ancient Lunar Water Affected by Topographic Degradation of Old, Large Complex Craters. Geophysical Research Letters, 2022, 49, .	1.5	1
299	New Constraints on the Volatile Deposit in Mercury's North Polar Crater, Prokofiev. Planetary Science Journal, 2022, 3, 188.	1.5	5
300	Characteristics of de Gerlache crater, site of girlands and slope exposed ice in a lunar polar depression. Icarus, 2022, 388, 115231.	1.1	5
301	Directed Operational Research. , 2022, , 1-18.		0
302	On the Solar Climate of the Moon and the Resulting Surface Temperature Distribution. Natural Science, 2022, 14, 386-420.	0.2	0
303	The Specific Heat of Astro-materials: Review of Theoretical Concepts, Materials, and Techniques. International Journal of Thermophysics, 2022, 43, .	1.0	9
304	Topographic Correction of the SELENE MI Images with the LOLA DEM around Shackleton Crater. Remote Sensing, 2022, 14, 4739.	1.8	0
305	Selection of Lunar South Pole Landing Site Based on Constructing and Analyzing Fuzzy Cognitive Maps. Remote Sensing, 2022, 14, 4863.	1.8	6
306	Surface Conditions and Resource Accessibility at Potential Artemis Landing Sites 007 and 011. Planetary Science Journal, 2022, 3, 224.	1.5	5
307	Seasons of Ice: Water Ice Migration and Seasonal Transient Shadow at the Lunar Poles. Journal of Geophysical Research E: Planets, O, , .	1.5	1
308	Insolation and Temperature on the Moon. , 2022, , 1-12.		0
309	Assessing the Distribution of Water Ice and Other Volatiles at the Lunar South Pole with LUVMI-X: A Mission Concept. Planetary Science Journal, 2022, 3, 229.	1.5	4
310	Sublimated Water Vapor Collection on an Engineered Cold Plate from Icy Lunar Regolith. , 2022, , .		3
311	Lunar landing necessary building blocks and good practices for a sustainable development of human lunar activities. Acta Astronautica, 2022, , .	1.7	2
312	LRO‣AMP Survey of Lunar South Pole Cold Traps: Implication for the Presence of Condensed H ₂ O. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	4
313	Dynamic thermal interactions between spacesuits and lunar regolith in permanently shaded regions on the moon. Acta Astronautica, 2023, 203, 351-369.	1.7	2
314	Overview of the dielectric permittivity of lunar surface materials and implications for Chang'E-5 samplemeasurements. Scientia Sinica: Physica, Mechanica Et Astronomica, 2023, 53, 239602.	0.2	0
315	A Comprehensive 3D Thermophysical Model of the Lunar Surface. Earth and Space Science, 2022, 9, .	1.1	1

#	Article	IF	CITATIONS
316	The Distribution and Accessibility of Geologic Targets near the Lunar South Pole and Candidate Artemis Landing Sites. Planetary Science Journal, 2022, 3, 275.	1.5	6
317	Planning and analysis of safety-optimal lunar sun-synchronous spatiotemporal routes. Acta Astronautica, 2023, 204, 253-262.	1.7	2
318	Possible sites for a Chinese international lunar research station in the lunar south polar region. Planetary and Space Science, 2022, , 105623.	0.9	2
319	Lunar explorations—Discovering water, minerals, and underground caves andÂtunnel complexes. , 2023, , 399-452.		0
320	Surface Exospheric Interactions. Space Science Reviews, 2023, 219, .	3.7	2
321	Characterising water in Lunar and Martian regolith materials using nuclear magnetic resonance. Icarus, 2023, 399, 115544.	1.1	3
322	Highâ€Resolution Nighttime Temperature and Rock Abundance Mapping of the Moon Using the Diviner Lunar Radiometer Experiment With a Model for Topographic Removal. Journal of Geophysical Research E: Planets, 2023, 128, .	1.5	5
323	Highly Resolved Topography and Illumination at Mercury's South Pole from MESSENGER MDIS NAC. Planetary Science Journal, 2023, 4, 21.	1.5	2
324	Estimation of the Influence of Contamination by Rocket Fuel Combustion Products on the Chemical and Isotopic Composition of the Lunar Regolith in the Polar Regions. , 2023, , 411-423.		0
325	The Mechanism for the Barrier of Lunar Regolith on the Migration of Water Molecules. Journal of Geophysical Research E: Planets, 2023, 128, .	1.5	1
326	The Distribution of Molecular Water in the Lunar South Polar Region Based upon 6 μm Spectroscopic Imaging. Planetary Science Journal, 2023, 4, 45.	1.5	3
327	Research of Lunar Water-Ice and Exploration for China's Future Lunar Water-Ice Exploration. Space: Science & Technology, 2023, 3, .	1.0	1
328	Illumination conditions near the Moon's south pole: Implication for a concept design of China's Chang'Eâ^'7 lunar polar exploration. Acta Astronautica, 2023, 208, 74-81.	1.7	9
329	Morphological Characterization of Decimeter―to Hectometer cale Impact Craters at the Chang'Eâ€3/4/5 Landing Sites. Journal of Geophysical Research E: Planets, 2023, 128, .	1.5	3
330	An advanced thermal roughness model for airless planetary bodies. Implications for global variations of lunar hydration and mineralogical mapping of Mercury with the MERTIS spectrometer. Astronomy and Astrophysics, 0, , .	2.1	1
331	Buried Ice Deposits in Lunar Polar Cold Traps Were Disrupted by Ballistic Sedimentation. Journal of Geophysical Research E: Planets, 2023, 128, .	1.5	2
332	Polar Ice on the Moon. , 2023, , 971-980.		1
333	Surface and Near-Surface Thermal Environment of the Moon. , 2023, , 1140-1148.		0

#	Article	IF	CITATIONS
334	Lunar Atmosphere, Transport and Storage of Volatiles. , 2023, , 470-473.		0
335	Volatiles on the Lunar Surface and Subsurface. , 2023, , 1244-1249.		0
337	Insolation and Temperature on the Moon. , 2023, , 350-361.		0
338	Lunar Permanently Shaded Areas. , 2023, , 751-754.		0
339	Detection of Water. , 2023, , 197-204.		0
340	Thermophysical Behavior of the Lunar Surface. , 2023, , 1209-1226.		0
341	LCROSS, Lunar Diviner Instrument. , 2023, , 412-415.		0
351	Lunar Neutrals Telescope Onboard the First Turkish Lunar Mission. , 2023, , .		0
356	L- to X-Band Passive Microwave Remote Sensing of the Lunar Regolith. , 2023, , .		0
357	First Look, First Results - Comparing Secondary Illumination at Lunar Permanently Shadowed Regions From the First Shadowcam Image and Topography Based Simulation. , 2023, , .		0
374	Ultra-Compact and Room-Temperature Focal Plane Assemblies for Lunar Advanced Filter Observing Radiometer for Geologic Exploration. , 2023, , .		0
379	Cold-trapped ices at the poles of Mercury and the Moon. , 2024, , 1-29.		0