CITATION REPORT List of articles citing

Atmospheric CO2: principal control knob governing Earth's temperature

DOI: 10.1126/science.1190653 Science, 2010, 330, 356-9.

Source: https://exaly.com/paper-pdf/49678208/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
376	Regional-scale modelling of acidification associated with road transport and road transport scenarios. 1998 , 20, 335		3
375	Biochemistry. Catalyzing NO to N2O in the nitrogen cycle. <i>Science</i> , 2010 , 330, 1632-3	33.3	23
374	Selective Electrocatalytic Activity of Ligand Stabilized Copper Oxide Nanoparticles. 2011 , 2, 2038-2043		32
373	Enhanced chemistry-climate feedbacks in past greenhouse worlds. 2011 , 108, 9770-5		93
372	100 Million Years of Reef Prosperity and Collapse: Ordovician to Devonian Interval. 2011 , 17, 15-32		10
371	A primer on climate change. 2-25		
370	References. 2011 , 223-228		
369	Regulation of gene expression by carbon dioxide. 2011 , 589, 797-803		31
368	Spectroscopic requirements for ACCURATE, a microwave and infrared-laser occultation satellite mission. 2011 , 112, 2347-2354		25
367	Recent advances and future directions in soils and sediments research. 2011 , 11, 875-888		24
366	Insights on global warming. 2011 , 57, 3259-3284		12
365	State of the Climate in 2010. 2011 , 92, S1-S236		114
364	Convergent Cenozoic CO2 history. 2011 , 4, 418-420		422
363	Techno-Economic Optimization of IGCC Integrated with Utility System for CO2 Emissions Reduction. 2012 , 227-231		2
362	Bibliography. 2012 , 531-621		
361	Conversion of CO2 via Visible Light Promoted Homogeneous Redox Catalysis. 2012 , 2, 544-571		71
360	Peatland geoengineering: an alternative approach to terrestrial carbon sequestration. 2012 , 370, 4404	-21	38

(2013-2012)

359	Assessing the functional relationship between CO2 emissions and economic development using an additive mixed model approach. 2012 , 29, 1328-1337	42
358	Carbon dioxide capture by aminoalkyl imidazolium-based ionic liquid: a computational investigation. 2012 , 14, 4589-96	25
357	The natural greenhouse effect of atmospheric oxygen (O2) and nitrogen (N2). 2012 , 39, n/a-n/a	9
356	Atmospheric Chemistry and Climate in the Anthropocene. 2012 , 41-58	2
355	The Physics of a Crisis. 2012 , 19-52	
354	Long-term field fertilization alters the diversity of autotrophic bacteria based on the ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO) large-subunit genes in paddy soil. 2012 , 95, 1061-71	61
353	Paleoclimate Implications for Human-Made Climate Change. 2012 , 21-47	64
352	Climate Change. 2012,	6
351	A Novel Satellite Mission Concept for Upper Air Water Vapour, Aerosol and Cloud Observations Using Integrated Path Differential Absorption LiDAR Limb Sounding. <i>Remote Sensing</i> , 2012 , 4, 867-910 ⁵	1
350	Applying econometrics to the carbon dioxide "control knob". 2012 , 2012, 761473	
349	Understanding and Measuring Earth Energy Budget: From Fourier, Humboldt, and Tyndall to CERES and Beyond. 2012 , 33, 337-350	6
348	Interactive effects of ocean acidification and temperature on two scleractinian corals from Moorea, French Polynesia. 2012 , 18, 2173-2183	78
347	Soil carbon management and climate change. 2013 , 4, 439-462	76
346	On the effect of decreasing CO2 concentration in the atmosphere. 2013 , 40, 651-662	7
345	Spatial and temporal validation of the MODIS LAI and FPAR products across a boreal forest wildfire chronosequence. 2013 , 133, 71-84	97
344	Copper-Catalyzed Carboxylation of Aryl Iodides with Carbon Dioxide. 2013 , 3,	100
343	Global Cooling by Grassland Soils of the Geological Past and Near Future. 2013, 41, 69-86	35
342	The role of long-lived greenhouse gases as principal LW control knob that governs the global surface temperature for past and future climate change. 2013 , 65, 19734	18

341 Biogeochemistry - Pages 491-664. **2013**, 491-664

340	Tetra-stable bifurcation structure of the climate system of Earth: mechanisms triggering potential transition to the greenhouse steady state. 2013 , 5, 152	10
339	Fast atmosphere-ocean model runs with large changes in CO2. 2013 , 40, 5787-5792	20
338	References. 2014 , 281-285	
337	Progress Toward the Electrocatalytic Production of Liquid Fuels from Carbon Dioxide. 2014 , 299-338	8
336	Generation of electricity from CO2 mineralization: Principle and realization. 2014 , 57, 2335-2343	30
335	The Geologic History of Seawater. 2014 , 569-622	22
334	In situ X-ray ptychography imaging of high-temperature CO2 acceptor particle agglomerates. 2014 , 104, 241909	20
333	Changes in bacterial CO2 fixation with depth in agricultural soils. 2014 , 98, 2309-19	37
332	Wildland fire emissions, carbon, and climate: Science overview and knowledge needs. 2014 , 317, 1-8	61
331	A greenhouse-scale photosynthetic microbial bioreactor for carbon sequestration in magnesium carbonate minerals. 2014 , 48, 9142-51	35
330	RETRACTED: Photocatalytic CO2 transformation into fuel: A review on advances in photocatalyst and photoreactor. 2014 , 39, 765-805	99
329	A review on advances in photocatalysts towards CO2 conversion. 2014 , 4, 20856	123
328	Long-term trends in intrinsic water-use efficiency and growth of subtropical Pinus tabulaeformis Carr. and Pinus taiwanensis Hayata in central China. 2014 , 14, 917-927	17
327	Evaluation of an optimal extraction method for measuring d-ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) in agricultural soils and its association with soil microbial CO2 assimilation. 2014 , 57, 277-284	7
326	How solar energy and electrochemical technologies may help developing countries and the environment. 2014 , 87, 1134-1140	13
325	On the average temperature of airless spherical bodies and the magnitude of Earth's atmospheric thermal effect. 2014 , 3, 723	3
324	Chaos Control: Climate Stabilization by Closing the Global Carbon Cycle. 2014 , 25, 971-990	1

323	Comparison of decadal global water vapor changes derived from independent satellite time series. 2014 , 119, 12,489-12,499	21
322	Global-scale atmosphere monitoring by in-service aircraft Œurrent achievements and future prospects of the European Research Infrastructure IAGOS. 2015 , 67, 28452	75
321	The Rainfall Sensitivity of Tropical Net Primary Production in CMIP5 Twentieth- and Twenty-First-Century Simulations*. 2015 , 28, 9313-9331	1
320	Evolutionary History of Atmospheric CO2 during the Late Cenozoic from Fossilized Metasequoia Needles. 2015 , 10, e0130941	13
319	A new positive relationship between pCO2 and stomatal frequency in Quercus guyavifolia (Fagaceae): a potential proxy for palaeo-CO2 levels. 2015 , 115, 777-88	22
318	Zinc-Catalyzed Transformation of Carbon Dioxide. 2015 , 179-206	
317	Planetary Atmospheres. 2015 , 429-472	10
316	A detailed study of cholinium chloride and levulinic acid deep eutectic solvent system for CO2 capture via experimental and molecular simulation approaches. 2015 , 17, 20941-60	92
315	Interactions of CO2 with various functional molecules. 2015 , 17, 10925-33	81
314	Deep Eutectic Solvents: Physicochemical Properties and Gas Separation Applications. 2015 , 29, 2616-2644	575
313	Physical chemistry of climate metrics. 2015 , 115, 3682-703	23
312	UV-Visible and Plasmonic Nanospectroscopy of the CO2 Adsorption Energetics in a Microporous Polymer. 2015 , 87, 10161-5	12
311	Simultaneous nutrient removal, optimised CO2 mitigation and biofuel feedstock production by Chlorogonium sp. grown in secondary treated non-sterile saline sewage effluent. 2015 , 297, 241-50	13
310	Production of magnesium-rich solutions by acid leaching of chrysotile: A precursor to field-scale deployment of microbially enabled carbonate mineral precipitation. 2015 , 413, 119-131	28
309	Assessment of DFT methods for studying acid gas capture by ionic liquids. 2015 , 17, 26875-91	22
308	Photocatalytic conversion of CO2 into value-added hydrocarbon (methanol) with high selectivity over ZnS nanoparticles driven by 355-nm pulsed laser. 2015 , 41, 739-747	16
307	Beyond carbon sequestration: soil as conduit of solar energy. 2015 , 66, 19-32	50
306	Seasonality and Dependence in Daily Mean USCRN Temperature. SSRN Electronic Journal, 2016 , 1	O

305	Changes in the 13C/12C Ratio of Atmospheric CO2 1977-2014. SSRN Electronic Journal, 2016,	1	O
304	Responsiveness of Atmospheric CO2 to Fossil Fuel Emissions: Part 2. SSRN Electronic Journal, 2016,	1	O
303	Carbon Capture and Storage (CCS) and its Impacts on Climate Change and Global Warming. 2016, 7,		20
302	Generational Fossil Fuel Emissions and Generational Warming: A Note. SSRN Electronic Journal, 2016 ,	1	O
301	Responsiveness of Polar Sea Ice Extent to Air Temperature 1979-2016. SSRN Electronic Journal, 2016 ,	1	
300	Spurious Correlations in Time Series Data: A Note. SSRN Electronic Journal, 2016,	1	O
299	Some Methodological Issues in Climate Science. SSRN Electronic Journal, 2016,	1	0
298	The United Nations: An Unconstrained Bureaucracy. SSRN Electronic Journal, 2016,	1	
297	The GEWEX Water Vapor Assessment: Results from Intercomparison, Trend, and Homogeneity Analysis of Total Column Water Vapor. 2016 , 55, 1633-1649		40
296	Relative sensitivity of five Hawaiian coral species to high temperature under high-pCO2 conditions. 2016 , 35, 729-738		23
295	Direct injection of water vapor into the stratosphere by volcanic eruptions. 2016 , 43, 7694-7700		9
294	The need for accurate long-term measurements of water vapor in the upper troposphere and lower stratosphere with global coverage. 2016 , 4, 25-32		22
293	Enhanced electrochemical reduction of CO2 to CO on Ag electrocatalysts with increased unoccupied density of states. 2016 , 4, 12616-12623		58
292	On the causal structure between CO2 and global temperature. 2016 , 6, 21691		88
291	Upper tropospheric water vapour variability at high latitudes (Part 1: Influence of the annular modes. 2016 , 16, 3265-3278		3
290	Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming could be dangerous. 2016 , 16, 3761-3812		310
289	Recent advances in metal-free catalysts for the synthesis of cyclic carbonates from CO2 and epoxides. 2016 , 37, 826-845		90
288	Metrological challenges for measurements of key climatological observables: Oceanic salinity and pH, and atmospheric humidity. Part 1: Overview. 2016 , 53, R1-R11		26

(2017-2016)

287	Metrological challenges for measurements of key climatological observables, Part 4: Atmospheric relative humidity. 2016 , 53, R40-R59	15
286	Demonstration of uncertainty resulting from MODerate resolution Imaging Spectroradiometer-like geometries: an albedo case study. 2016 , 9, 520-544	
285	Impact of Climate Change Factors on Weeds and Herbicide Efficacy. 2016 , 107-146	71
284	Palladium-catalyzed incorporation of atmospheric CO: efficient synthesis of functionalized oxazolidinones. 2016 , 7, 3914-3918	81
283	Phosphorous-modified bulk graphitic carbon nitride: Facile preparation and application as an acid-base bifunctional and efficient catalyst for CO2 cycloaddition with epoxides. 2016 , 100, 81-89	145
282	Reduced graphene oxideluO nanocomposites for photocatalytic conversion of CO2 into methanol under visible light irradiation. 2016 , 181, 352-362	218
281	A mental picture of the greenhouse effect. 2017 , 128, 679-688	22
280	Seasonal and annual calcification rates of the Hawaiian reef coral, Montipora capitata, under present and future climate change scenarios. 2017 , 74, 1083-1091	10
279	High and Selective Carbon Dioxide Capture in Nitrogen-Containing Aerogels via Synergistic Effects of Electrostatic In-Plane and Dispersive Estacking Interactions. 2017 , 9, 15213-15218	28
278	Green and efficient cycloaddition of CO2 toward epoxides over thiamine derivatives/GO aerogels under mild and solvent-free conditions. 2017 , 60, 990-996	10
277	Preparation of Nanowire like WSe-Graphene Nanocomposite for Photocatalytic Reduction of CO into CHOH with the Presence of Sacrificial Agents. 2017 , 7, 1867	33
276	Carbon plants nutrition and global food security. <i>European Physical Journal Plus</i> , 2017 , 132, 1 3.1	3
275	Enhancement of electricity generation in CO 2 mineralization cell by using sodium sulfate as the reaction medium. 2017 , 195, 991-999	9
274	Mitigation of Climate Change: Introduction. 2017 , 287-325	1
273	High activity of a Pt decorated Ni/C nanocatalyst for hydrogen oxidation. 2017, 38, 396-403	9
272	Future climate forcing potentially without precedent in the last 420 million years. 2017, 8, 14845	290
271	Energy and mass balances related to climate change and remediation. 2017 , 590-591, 416-429	9
270	Beyond equilibrium climate sensitivity. 2017 , 10, 727-736	155

269	Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation. 2017 , 203, 299-315		91
268	Microporous coordination polymer with secondary amine functional groups for CO2 uptake and selectivity. 2017 , 24, 1		4
267	Bibliography. 467-561		
266	A review: Effect of nanostructures on photocatalytic CO 2 conversion over metal oxides and compound semiconductors. <i>Journal of CO2 Utilization</i> , 2017 , 20, 163-177	7.6	62
265	Soil Carbon-Fixation Rates and Associated Bacterial Diversity and Abundance in Three Natural Ecosystems. 2017 , 73, 645-657		42
264	The Atmospheric Chemistry Experiment (ACE). 2017 , 186, 3-16		82
263	Event Attribution and the Precipitation Record for England and Wales. SSRN Electronic Journal, 2017 ,	1	O
262	Young people's burden: requirement of negative CO₂ emissions. 2017 , 8, 577-61	6	127
261	The Relationship between Atmospheric Carbon Dioxide Concentration and Global Temperature for the Last 425 Million Years. <i>Climate</i> , 2017 , 5, 76	3.1	24
260	A Test of the Anthropogenic Sea Level Rise Hypothesis. SSRN Electronic Journal, 2017,	1	Ο
259	Long Term Temperature Trends in Daily Station Data: USHCN. SSRN Electronic Journal, 2017,	1	0
258	Responsiveness of Atmospheric CO2 to Fossil Fuel Emissions: Updated. SSRN Electronic Journal, 2017 ,	1	O
257	Correlation of Regional Warming with Global Emissions. SSRN Electronic Journal, 2017,	1	0
256	Abundance of microbial CO2-fixing genes during the late rice season in a long-term management paddy field amended with straw and straw-derived biochar. 2018 , 98, 306-316		13
255	How to improve learners[mis] understanding of CO2 accumulations through the use of human-facilitated interactive learning environments?. 2018 , 184, 188-197		3
254	Novel and simple process for the photocatalytic reduction of CO2 with ternary Bi2O3graphene@nO nanocomposite. 2018 , 29, 10222-10233		10
253	Moso bamboo invasion into broadleaf forests is associated with greater abundance and activity of soil autotrophic bacteria. 2018 , 428, 163-177		12
252	IAQ Evaluation Using an IoT CO2 Monitoring System for Enhanced Living Environments. 2018 , 1169-117	7	13

Fluorinated Anionic Room Temperature Ionic Liquid-Based CO2 Electrochemical Sensing. 2018, 18, 3517-3523 7 251 Solar carbon fuel via photoelectrochemistry. 2018, 317, 56-75 58 250 Multi-functionalization of GO with multi-cationic ILs as high efficient metal-free catalyst for CO2 60 249 cycloaddition under mild conditions. 2018, 127, 245-254 248 Perspectives on Water Usage for Biofuels Production. 2018, 10 Climatic Changes Impact on Water Availability. 2018, 39-54 247 4 The Charney Sensitivity of Homicides to Atmospheric CO2: A Parody. SSRN Electronic Journal, 2018, 246 Circular Reasoning in Climate Change Research. SSRN Electronic Journal, 2018, 245 1 Does Global Warming Drive Changes in Arctic Sea Ice?. SSRN Electronic Journal, 2018, 244 Climate Change, Tropospheric Warming, and Stratospheric Cooling. SSRN Electronic Journal, 2018, 243 Solar Energy. 2018, 267-272 242 Models for Future Production. 2018, 131-153 241 Climate Sensitivity and the Responsiveness of Temperature to Atmospheric CO2. SSRN Electronic 240 Journal, **2018**, Thermodynamic Properties of Seawater, Ice and Humid Air: TEOS-10, Before and Beyond. 2018, 239 . 2018, 238 Uncertainty in Empirical Climate Sensitivity Estimates 1850-2017. SSRN Electronic Journal, 2018, 237 \circ 236 Development of La Doped Ni/CeO2 for CH4/CO2 Reforming. 2018, 4, 60 On the Statistical Significance of Climatic Trends Estimated From GPS Tropospheric Time Series. 235 15 2018, 123, 10,967-10,990 Multiple Proxy Estimates of Atmospheric CO2 From an Early Paleocene Rainforest. 2018, 33, 1427-1438 234 13

233	Unmasking the negative greenhouse effect over the Antarctic Plateau. 2018, 1, 17		1
232	Thermodynamic properties of seawater, ice and humid air: TEOS-10, before and beyond. 2018 , 14, 471-5	502	24
231	Optical MEMS-based micromirror arrays for active light steering in smart windows. 2018 , 57, 08PA07		15
230	Bibliography. 2018 , 149-170		
229	Formation of Carbon-Based Tribofilm Under Palm Methyl Ester. 2018, 66, 1		7
228	Haloid acid induced carbon nitride semiconductors for enhanced photocatalytic H2 evolution and reduction of CO2 under visible light. 2018 , 138, 465-474		29
227	Investigation of Thermodynamic Properties on CO2Absorbents Blended with Ammonia, Amino Acids, and Corrosion Inhibitors at 313.15, 333.15, and 353.15 K. 2018 , 63, 2856-2867		5
226	New completely renewable biofuels: formulations and engine tests on an unmodified up-to-date diesel engine. <i>Green Chemistry</i> , 2018 , 20, 3308-3317	10	5
225	Low altitude CO2 from the Atmospheric Chemistry Experiment (ACE) satellite. 2019 , 238, 106528		5
224	Leveraging local MP2 to reduce basis set superposition errors: An efficient first-principles based force-field for carbon dioxide. 2019 , 151, 184501		4
223	Design and evaluation of CO₂ observation network to optimize surface CO₂ fluxes in Asia using observation system simulation experiments. 2019 ,		
222	Propagation of Error and the Reliability of Global Air Temperature Projections. 2019 , 7,		3
221	Thermodynamic Analysis of the Efficiency of Photoelectrochemical CO2 Reduction to Ethanol. 2019 , 158, 767-772		5
220	Nickel(II) Cyclen Complexes Bearing Ancillary Amide Appendages for the Electrocatalytic Reduction of CO2. 2019 , 2, 8560-8569		7
219	Indoor Air Quality Monitoring for Enhanced Healthy Buildings. 2019,		5
218	From core-scale experiment to reservoir-scale modeling: A scale-up approach to investigate reaction-induced permeability evolution of CO2 storage reservoir and caprock at a U.S. CO2 storage site. 2019 , 125, 55-68		6
217	Molybdenum Sulfide within a Metal Drganic Framework for Photocatalytic Hydrogen Evolution from Water. <i>Journal of the Electrochemical Society</i> , 2019 , 166, H3154-H3158	3.9	11
216	Insensitivity of alkenone carbon isotopes to atmospheric CO₂ at low to moderate CO₂ levels. 2019 , 15, 539-554		27

(2020-2019)

215	Kinetic Measurements on CO2 Adsorption and Release Using TBABIB8H2O Hydrates as Adsorbents. 2019 , 33, 6727-6733		4
214	The Future of Earth Climate After Paris. 2019, 5-11		1
213	Twenty-six years of chemical fertilization decreased soil RubisCO activity and changed the ecological characteristics of soil cbbL-carrying bacteria in an entisol. 2019 , 141, 1-9		13
212	International Climate Protection. 2019,		2
211	Thermodynamic assessment and optimization of a pressurized fluidized bed oxy-fuel combustion power plant with CO2 capture. 2019 , 175, 445-455		22
210	General Review on the Components and Parameters of Photoelectrochemical System for CO2 Reduction with in Situ Analysis. 2019 , 7, 7431-7455		47
209	Achieving highly efficient CO2 to CO electroreduction exceeding 300 mA cm2 with single-atom nickel electrocatalysts. 2019 , 7, 10651-10661		97
208	Indoor Air Quality Assessment Using a CO Monitoring System Based on Internet of Things. 2019 , 43, 67		55
207	A Proposed Exogenous Cause of the Global Temperature Hiatus. Climate, 2019, 7, 31	3.1	2
206	What We Talk About When We Talk About Climate Change. 2019 , 31-39		
206	What We Talk About When We Talk About Climate Change. 2019, 31-39 Albedos, Equilibrium Temperatures, and Surface Temperatures of Habitable Planets. 2019, 884,		7
		2.9	7
205	Albedos, Equilibrium Temperatures, and Surface Temperatures of Habitable Planets. 2019 , 884, Reconstruction of atmospheric CO2 concentration during the late Changhsingian based on fossil conifers from the Dalong Formation in South China. <i>Palaeogeography, Palaeoclimatology</i> ,	2.9	
205	Albedos, Equilibrium Temperatures, and Surface Temperatures of Habitable Planets. 2019 , 884, Reconstruction of atmospheric CO2 concentration during the late Changhsingian based on fossil conifers from the Dalong Formation in South China. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2019 , 519, 37-48 Conjunctive use of in situ gas sampling and chromatography with geospatial analysis to estimate	2.9	13
205 204 203	Albedos, Equilibrium Temperatures, and Surface Temperatures of Habitable Planets. 2019, 884, Reconstruction of atmospheric CO2 concentration during the late Changhsingian based on fossil conifers from the Dalong Formation in South China. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2019, 519, 37-48 Conjunctive use of in situ gas sampling and chromatography with geospatial analysis to estimate greenhouse gas emissions of a large Amazonian hydroelectric reservoir. 2019, 650, 394-407 Mechanism and structure sensitivity of methanol synthesis from CO2 over SiO2-supported Cu	2.9	13
205 204 203 202	Albedos, Equilibrium Temperatures, and Surface Temperatures of Habitable Planets. 2019, 884, Reconstruction of atmospheric CO2 concentration during the late Changhsingian based on fossil conifers from the Dalong Formation in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 519, 37-48 Conjunctive use of in situ gas sampling and chromatography with geospatial analysis to estimate greenhouse gas emissions of a large Amazonian hydroelectric reservoir. 2019, 650, 394-407 Mechanism and structure sensitivity of methanol synthesis from CO2 over SiO2-supported Cunanoparticles. 2019, 369, 415-426 Preparation and CO2 adsorption properties of porous carbon by hydrothermal carbonization of	2.9	13 6 55
205 204 203 202 201	Albedos, Equilibrium Temperatures, and Surface Temperatures of Habitable Planets. 2019, 884, Reconstruction of atmospheric CO2 concentration during the late Changhsingian based on fossil conifers from the Dalong Formation in South China. <i>Palaeogeography, Palaeoclimatology, Palaeoecology,</i> 2019, 519, 37-48 Conjunctive use of in situ gas sampling and chromatography with geospatial analysis to estimate greenhouse gas emissions of a large Amazonian hydroelectric reservoir. 2019, 650, 394-407 Mechanism and structure sensitivity of methanol synthesis from CO2 over SiO2-supported Cunanoparticles. 2019, 369, 415-426 Preparation and CO2 adsorption properties of porous carbon by hydrothermal carbonization of tree leaves. 2019, 35, 875-884	2.9	13 6 55 31

197	Optimising the biodiesel production process: Implementation of glycerol derivatives into biofuel formulations and their potential to form hydrofuels. 2020 , 264, 116695	17
196	Carbon Management in Tropical and Sub-Tropical Terrestrial Systems. 2020,	3
195	CO2 capture and process reinforcement by hydrolysate of phosphogypsum decomposition products. <i>Journal of CO2 Utilization</i> , 2020 , 36, 253-262	7
194	High-resolution terrestrial climate, bioclimate and vegetation for the last 120,000 years. 2020 , 7, 236	22
193	An ignored key link in greenhouse effect: Soil and soil CO2 slow heat loss. 2020 , 2, 308-316	
192	Antarctic Winds: Pacemaker of Global Warming, Global Cooling, and the Collapse of Civilizations. Climate, 2020 , 8, 130	1
191	Paving way for sustainable earth-abundant metal based catalysts for chemical fixation of CO2 into epoxides for cyclic carbonate formation. 2020 , 1-88	7
190	Origins. 2020 , 17-50	
189	The Global Water Cycle. 2020 , 433-451	1
188	The Global Carbon and Oxygen Cycles. 2020 , 453-481	
188	The Global Carbon and Oxygen Cycles. 2020 , 453-481 The Gases That Cause the Greenhouse Effect. 2020 , 20-46	
		34
187	The Gases That Cause the Greenhouse Effect. 2020 , 20-46 Seabed mineral resources, an alternative for the future of renewable energy: A critical review. 2020	34
187 186	The Gases That Cause the Greenhouse Effect. 2020, 20-46 Seabed mineral resources, an alternative for the future of renewable energy: A critical review. 2020, 126, 103699 Chemoresistive CO Gas Sensors Based On LaOCO: Sensing Mechanism Insights Provided by	
187 186 185	The Gases That Cause the Greenhouse Effect. 2020, 20-46 Seabed mineral resources, an alternative for the future of renewable energy: A critical review. 2020, 126, 103699 Chemoresistive CO Gas Sensors Based On LaOCO: Sensing Mechanism Insights Provided by Operando Characterization. 2020, 5, 2555-2562 Freezing and thawing of lakes on the Nelson and King George Islands, Antarctic, using Sentinel 1A	11
187 186 185	The Gases That Cause the Greenhouse Effect. 2020, 20-46 Seabed mineral resources, an alternative for the future of renewable energy: A critical review. 2020, 126, 103699 Chemoresistive CO Gas Sensors Based On LaOCO: Sensing Mechanism Insights Provided by Operando Characterization. 2020, 5, 2555-2562 Freezing and thawing of lakes on the Nelson and King George Islands, Antarctic, using Sentinel 1A synthetic aperture radar images. 2020, 192, 559	11
187 186 185 184	The Gases That Cause the Greenhouse Effect. 2020, 20-46 Seabed mineral resources, an alternative for the future of renewable energy: A critical review. 2020, 126, 103699 Chemoresistive CO Gas Sensors Based On LaOCO: Sensing Mechanism Insights Provided by Operando Characterization. 2020, 5, 2555-2562 Freezing and thawing of lakes on the Nelson and King George Islands, Antarctic, using Sentinel 1A synthetic aperture radar images. 2020, 192, 559 Properties of flowable fill produced by substituting fly ash with recycled glass powder. 2020, 265, 120330 Direct growth of nanostructural MoS2 over the h-BN nanoplatelets: An efficient heterostructure	11 2

179	Abiotic and biotic processes that drive carboxylation and decarboxylation reactions. 2020, 105, 609-615	7
178	Low-Energy Electrochemical Carbon Dioxide Capture Based on a Biological Redox Proton Carrier. 2020 , 1, 100046	11
177	Assessment of Sampling Effects on Various Satellite-Derived Integrated Water Vapor Datasets Using GPS Measurements in Germany as Reference. <i>Remote Sensing</i> , 2020 , 12, 1170	7
176	The unique interplay between copper and zinc during catalytic carbon dioxide hydrogenation to methanol. 2020 , 11, 2409	52
175	Climate Change TimeLine: An Ontology to Tell the Story so Far. 2020 , 8, 65294-65312	9
174	Direct Synthesis of C5ሺ13iso-Paraffins from Carbon Dioxide over Hybrid Catalyst in a Near-Critical n-Hexane Fluid. 2020 , 59, 11962-11969	
173	Design and evaluation of CO₂ observation network to optimize surface CO₂ fluxes in Asia using observation system simulation experiments. 2020 , 20, 5175-5195	3
172	Anthropogenic Climate Change in Deserts. 2020 , 343-370	1
171	How Much Human-Caused Global Warming Should We Expect with Business-As-Usual (BAU) Climate Policies? A Semi-Empirical Assessment. 2020 , 13, 1365	12
170	Sixteen-year trends in atmospheric trace gases from orbit. 2020 , 253, 107178	13
169	Sixteen-year trends in atmospheric trace gases from orbit. 2020 , 253, 107178 Rational design of metallgands for the conversion of CH4 and CO2 to acetates: role of acids and Lewis acids. 2020 , 8, 14671-14679	13 3
	Rational design of metallgands for the conversion of CH4 and CO2 to acetates: role of acids and	
169	Rational design of metalligands for the conversion of CH4 and CO2 to acetates: role of acids and Lewis acids. 2020 , 8, 14671-14679 Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to	3
169 168	Rational design of metalligands for the conversion of CH4 and CO2 to acetates: role of acids and Lewis acids. 2020 , 8, 14671-14679 Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. 2020 , 40, 107520	3
169 168 167	Rational design of metalligands for the conversion of CH4 and CO2 to acetates: role of acids and Lewis acids. 2020, 8, 14671-14679 Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. 2020, 40, 107520 Metal-Nitrogen-Carbon Electrocatalysts for CO Reduction towards Syngas Generation. 2020, 13, 1688-1698 Abundance, size, and survival of recruits of the reef coral Pocillopora acuta under ocean warming	3 61 21
169 168 167	Rational design of metalligands for the conversion of CH4 and CO2 to acetates: role of acids and Lewis acids. 2020, 8, 14671-14679 Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. 2020, 40, 107520 Metal-Nitrogen-Carbon Electrocatalysts for CO Reduction towards Syngas Generation. 2020, 13, 1688-1698 Abundance, size, and survival of recruits of the reef coral Pocillopora acuta under ocean warming and acidification. 2020, 15, e0228168 Rational design of 1D/2D heterostructured photocatalyst for energy and environmental	3 61 21 18
169 168 167 166	Rational design of metalligands for the conversion of CH4 and CO2 to acetates: role of acids and Lewis acids. 2020, 8, 14671-14679 Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. 2020, 40, 107520 Metal-Nitrogen-Carbon Electrocatalysts for CO Reduction towards Syngas Generation. 2020, 13, 1688-1698 Abundance, size, and survival of recruits of the reef coral Pocillopora acuta under ocean warming and acidification. 2020, 15, e0228168 Rational design of 1D/2D heterostructured photocatalyst for energy and environmental applications. 2020, 395, 125030 Evaluation of Spatio-Temporal Characteristics of Different Zenith Tropospheric Delay Models in	3 61 21 18 75

161	Review on Pore Structure Characterization and Microscopic Flow Mechanism of CO 2 Flooding in Porous Media. 2021 , 9, 2000787		32
160	Methanol synthesis over Cu/CeO2drO2 catalysts: the key role of multiple active components. <i>Catalysis Science and Technology</i> , 2021 , 11, 349-358	5.5	5
159	. 2021 , 14, 3495-3503		4
158	Climate change and society. 2021 , 7, 194-218		1
157	Breeding Targets to Improve Biomass Quality in Miscanthus. 2021 , 26,		4
156	Sulfur-containing amino acid derived ionic liquid as halogen-free catalyst for CO2 mild transformation into cyclic carbonates.		4
155	Role of Soil Microbes and Their Cell Components in Carbon Stabilization. 2021, 169-204		
154	Intensified continuous extraction of switchable hydrophilicity solvents triggered by carbon dioxide. <i>Green Chemistry</i> , 2021 , 23, 2900-2906	10	2
153	Experimental Investigation on Strain Changes during CO2 Adsorption of Raw Coal Sample: Temperature and Effective Stress. 2021 , 14, 717		
152	Seasonal dynamics and impact factors of atmospheric CO concentration over subtropical forest canopies: observation from eddy covariance tower and OCO-2 satellite in Northwest Himalaya, India. 2021 , 193, 106		2
151	Efficient Activation and Electroreduction of Carbon Dioxide on an Electrocatalyst Cadmium Carbonate. 2021 , 4, 2073-2080		4
150	Continuous Flow Solar Desorption of CO2 from Aqueous Amines. 2021 , 9, 2570-2579		4
149	Trends in funding research and international collaboration on greenhouse gas emissions: a bibliometric approach. 2021 , 28, 32330		3
148	Are Amines the Holy Grail for Facilitating CO2 Reduction?. 2021 , 133, 9258-9263		2
147	Retrieval of Daytime Total Column Water Vapour from OLCI Measurements over Land Surfaces. <i>Remote Sensing</i> , 2021 , 13, 932	5	7
146	An overview of optical and thermal methods for the characterization of carbonaceous aerosol. 2021 , 44, 145-192		3
145	Atmospheric CO2 over the Past 66 Million Years from Marine Archives. 2021 , 49,		29
144	Are Amines the Holy Grail for Facilitating CO Reduction?. 2021 , 60, 9174-9179		19

143	A Multidecadal-Scale Tropically Driven Global Teleconnection over the Past Millennium and Its Recent Strengthening. 2021 , 34, 2549-2565		1
142	Light-Driven CO Reduction by Co-Cytochrome. 2021 , 8, 609654		1
141	Impact of climate change and Coronavirus Disease (COVID-19) on inflation in Indonesia. <i>IOP Conference Series: Earth and Environmental Science</i> , 2021 , 724, 012105	0.3	1
140	Investigation of the Techno-Economical Feasibility of the Power-to-Methane Process Based on Molten Carbonate Electrolyzer. <i>Frontiers in Energy Research</i> , 2021 , 9,	3.8	1
139	The 20th century global warming signature on the ocean at global and basin scales as depicted from historical reanalyses.		2
138	Scaling CO2 Capture With Downstream Flow CO2 Conversion to Ethanol. 2021 , 3,		2
137	Plasmonic sensor based on metal-insulator-metal waveguide square ring cavity filled with functional material for the detection of CO gas. 2021 , 29, 16584-16594		13
136	Overview of Biodiesel Combustion in Mitigating the Adverse Impacts of Engine Emissions on the Sustainable Human E nvironment Scenario. 2021 , 13, 5465		13
135	Modeling the dynamic behavior of a droplet evaporation device for the delivery of isotopically calibrated low-humidity water vapor. 2021 , 14, 4657-4667		
134	What defines biomimetic and bioinspired science and engineering?. 2021 ,		2
133	Modeling the emissions of a gasoline engine during high-transient operation using machine learning approaches. 146808742110323		1
132	The Influence of COVID-19 on Global CO2 Emissions and Climate Change: A Perspective from Malaysia. 2021 , 13, 8461		4
131	Nanostructured Gas Sensors: From Air Quality and Environmental Monitoring to Healthcare and Medical Applications. 2021 , 11,		8
130	Feasibility of ERA5 integrated water vapor trends for climate change analysis in continental Europe: An evaluation with GPS (1994\(\bar{\pi} \) 019) by considering statistical significance. 2021 , 260, 112416		8
129	Electrochemical tools to disclose the electrochemical reduction mechanism of CO2 in aprotic solvents and ionic liquids. 2021 , 895, 115411		O
128	Direct Z-scheme FeV2O4/g-C3N4 Binary Catalyst for Highly Selective Reduction of Carbon Dioxide. 2021 , 132051		O
127	The Canadian Federation of Earth Sciences Scientific Statement on Climate Change Ilts Impacts in Canada, and the Critical Role of Earth Scientists in Mitigation and Adaptation. 2021 , 48,		1
126	Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. 2021 ,		59

125	First Peoples in a New World: Populating Ice Age America. 2021 , 197-225	
124	First Peoples in a New World: Populating Ice Age America. 2021 , 448-466	
123	First Peoples in a New World: Populating Ice Age America. 2021 , 1-22	
122	Catalytic valorization of CO2 by hydrogenation: current status and future trends. 1-75	2
121	First Peoples in a New World: Populating Ice Age America. 2021,	10
120	First Peoples in a New World: Populating Ice Age America. 2021 , xvii-xxiv	
119	First Peoples in a New World: Populating Ice Age America. 2021 , 90-130	
118	First Peoples in a New World: Populating Ice Age America. 2021 , 307-333	
117	First Peoples in a New World: Populating Ice Age America. 2021 , 390-447	
116	First Peoples in a New World: Populating Ice Age America. 2021 , 268-306	
115	First Peoples in a New World: Populating Ice Age America. 2021 , 131-173	
114	First Peoples in a New World: Populating Ice Age America. 2021 , xxv-xxviii	
113	Nitrogen Vacancy Induced Coordinative Reconstruction of Single-Atom Ni Catalyst for Efficient Electrochemical CO2 Reduction. 2107072	19
112	Environmental-Biomechanical Reciprocity and the Evolution of Plant Material Properties. 2021,	2
111	First Peoples in a New World: Populating Ice Age America. 2021 , 174-196	
110	First Peoples in a New World: Populating Ice Age America. 2021 , 226-267	
109	First Peoples in a New World: Populating Ice Age America. 2021 , 58-89	
108	Warming-Induced Northwestward Migration of the Asian Summer Monsoon in the Geological Past: Evidence From Climate Simulations and Geological Reconstructions. 2021 , 126, e2021JD035190	2

107	Methodology for energy retrofitting of Modern Architecture. The case study of the Olivetti office building in the UNESCO site of Ivrea. 2021 , 103378	2
106	First Peoples in a New World: Populating Ice Age America. 2021 , 23-57	
105	First Peoples in a New World: Populating Ice Age America. 2021 , 334-389	
104	Global Patterns of Hottest, Coldest, and Extreme Diurnal Variability on Earth. 2021 , 102, E1672-E1681	3
103	Habitable zones with an earth climate history model. 2021 , 206, 105318	1
102	Solar-harvesting lead halide perovskite for artificial photosynthesis. 2021 , 62, 11-26	5
101	Plasmonic metal/semiconductor hybrid nanomaterials for solar to chemical energy conversion. 2021 , 63, 40-53	1
100	Impact of COVID-19 on greenhouse gases emissions: A critical review. 2022 , 806, 150349	19
99	Tropospheric air pollution∃viation industry's case. 2021 , 583-637	1
98	Carbon Economy and Carbon Footprint. 2021 , 3-28	2
97	Artificial Photosynthesis: From Molecular to Hybrid Nanoconstructs. 2015 , 71-98	3
96	Globale Sicht des Klimawandels. 2017 , 7-16	1
95	Role of Microorganisms in Regulating Carbon Cycle in Tropical and Subtropical Soils. 2020, 249-263	1
94	Application of arbitrary polynomial chaos (aPC) expansion for global sensitivity analysis of mineral dissolution and precipitation modeling under geologic carbon storage conditions. 2020 , 24, 1333-1346	4
93	Geological Society of London Scientific Statement: what the geological record tells us about our present and future climate. 2021 , 178, jgs2020-239	4
92	Large-Scale Carbon Dioxide Removal: The Problem of Phasedown. 2020 , 20, 70-92	6
91	A Drought Monitoring Method Based on Precipitable Water Vapor and Precipitation. 2020, 33, 10727-10741	16
90	Carbon dioxide absorption spectroscopy with a mid-infrared silicon photonic waveguide. 2020 , 45, 109	21

89	The Hurst Exponent of Surface Temperature: A Note. SSRN Electronic Journal,	1	5
88	Dilution of Atmospheric Radiocarbon CO2 by Fossil Fuel Emissions. SSRN Electronic Journal,	1	1
87	The OLS Warming Trend at Nuuk, Greenland: A Note. SSRN Electronic Journal,	1	0
86	Trend Profiles of Atmospheric Temperature Time Series. SSRN Electronic Journal,	1	O
85	Effective Sample Size of the Cumulative Values of a Time Series. SSRN Electronic Journal,	1	Ο
84	Long Term Temperature Trends in Daily Station Data: Australia. SSRN Electronic Journal,	1	O
83	Limitations of the TCRE: Transient Climate Response to Cumulative Emissions. <i>SSRN Electronic Journal</i> ,	1	O
82	The Anomalies in Temperature Anomalies. SSRN Electronic Journal,	1	O
81	Temperature trends in Hong Kong from a seasonal perspective. 2012 , 55, 53-63		33
80	Scrutinizing the atmospheric greenhouse effect and its climatic impact. 2011 , 03, 971-998		6
79	Weather extremes from anthropogenic global warming. 2013 , 05, 130-134		4
78	Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 $\rm LC$ global warming is highly dangerous.		45
77	Upper tropospheric water vapour variability at high latitudes Part 1: Influence of the annular modes.		1
76	Ch. 2: Physical Drivers of Climate Change. Climate Science Special Report: Fourth National Climate Assessment, Volume I. 2017 ,		12
75	Comparison of hemocytic carbonic anhydrase activity of bivalves. <i>Korean Journal of Malacology</i> , 2016 , 32, 63-65		1
74	Recent advances in the incorporation of CO2 for CH and C Ω bond functionalization. <i>Green Chemistry</i> ,	10	4
73	Key factors for designing single-atom metal-nitrogen-carbon catalysts for electrochemical CO2 reduction. <i>Current Opinion in Electrochemistry</i> , 2021 , 100854	7.2	2
72	Latitudinal landBea distributions and global surface albedo since the Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022 , 585, 110718	2.9	2

(2021-2021)

71	Reversible CO2 absorption and release by fatty acid salt aqueous solutions: From industrial capture to agricultural applications. <i>Journal of CO2 Utilization</i> , 2021 , 54, 101746	7.6	
70	References. 585-653		
69	References. 453-500		
68	Understanding and Measuring Earth Energy Budget: From Fourier, Humboldt, and Tyndall to CERES and Beyond. <i>Space Sciences Series of ISSI</i> , 2012 , 5-18	0.1	1
67	Global Warming and Ecological Degradation. 2012 , 1-54		
66	Responses of Insect Pests to Climate Change: Effects and Interactions of Temperature, CO2, and Soil Quality. 2013 , 115-130		
65	References. 2014 , 265-290		
64	Chaos Control: Climate Stabilization by Closing the Global Carbon Cycle. <i>Studies in Economic Theory</i> , 2016 , 367-388		
63	Preparation and Characterization of CuO-ZnO-Al2O3 Catalysts. <i>Hans Journal of Chemical Engineering and Technology</i> , 2017 , 07, 286-292	0	
62	Climate Change Solutions. <i>Advances in Environmental Engineering and Green Technologies Book Series</i> , 2018 , 236-268	0.4	
61	Validity and Reliability of the Charney Climate Sensitivity Function. SSRN Electronic Journal,	1	
60	Empirical Climate Sensitivity in the Mauna Loa Era: 1959-2017. SSRN Electronic Journal,	1	O
59	Testing the CMIP6 GCM Simulations versus Surface Temperature Records from 1980¶990 to 2011¶021: High ECS Is Not Supported. <i>Climate</i> , 2021 , 9, 161	3.1	2
58	References. 2020 , 531-734		
57	Effect of Seawater Acidity on the Initial Development of Kumamoto Oyster Larvae Crassostrea sikamea (Amemiya, 1928). <i>Journal of Shellfish Research</i> , 2020 , 39, 21	1	0
56	Assessment of the impact of climate risks on agriculture in the context of global warming. <i>IOP Conference Series: Earth and Environmental Science</i> , 2021 , 845, 012145	0.3	
55	Ecology of Marine Mussels. 2021 , 56-140		
54	Water Vapour Assessment Using GNSS and Radiosondes over Polar Regions and Estimation of Climatological Trends from Long-Term Time Series Analysis. <i>Remote Sensing</i> , 2021 , 13, 4871	5	Ο

53	Atmospheric Chemistry and Climate in the Anthropocene (2012). <i>The Anthropocene: Politik - Economics - Society - Science</i> , 2021 , 175-191	0.3	
52	Hydrogenation of CO2 into aromatics over ZnZrOIIn/HZSM-5 composite catalysts derived from ZIF-8. <i>Catalysis Science and Technology</i> ,	5.5	O
51	Algal Biorefinery: A Paradigm to Sustainable Circular Bioeconomy. <i>Energy, Environment, and Sustainability</i> , 2022 , 295-323	0.8	О
50	The Impacts of FDI Inflows on Carbon Emissions: Economic Development and Regulatory Quality as Moderators. <i>Frontiers in Energy Research</i> , 2022 , 9,	3.8	2
49	Synthesis and Characterization of Cu-Ni Bimetallic Catalysts Support on GO, rGO, and NGO. <i>Minerals, Metals and Materials Series</i> , 2022 , 773-782	0.3	
48	Wired to Doubt: Why People Fear Vaccines and Climate Change and Mistrust Science <i>Frontiers in Medicine</i> , 2021 , 8, 809395	4.9	3
47	A critical assessment of extreme events trends in times of global warming. <i>European Physical Journal Plus</i> , 2022 , 137, 1	3.1	7
46	A layered perovskite La1IbSr0IbNiO4HEmolten carbonate dual-phase membrane for CO2 capture from simulated flue gas. <i>Journal of Membrane Science</i> , 2022 , 647, 120278	9.6	1
45	Controllable assembly of Fe3O4He3C@MC by in situ doping of Mn for CO2 selective hydrogenation to light olefins. <i>Catalysis Science and Technology</i> , 2022 , 12, 2360-2368	5.5	О
44	Earth® Energy Balance. 2022 , 25-33		
43	CF Capture and Separation of CF-SF and CF-N Fluid Mixtures Using Selected Carbon Nanoporous Materials and Metal-Organic Frameworks: A Computational Study <i>ACS Omega</i> , 2022 , 7, 6691-6699	3.9	0
43		3.9	0
	Materials and Metal-Organic Frameworks: A Computational Study <i>ACS Omega</i> , 2022 , 7, 6691-6699 Submarine mineral resources: A potential solution to political conflicts and global warming.		o 2 3
42	Materials and Metal-Organic Frameworks: A Computational Study <i>ACS Omega</i> , 2022 , 7, 6691-6699 Submarine mineral resources: A potential solution to political conflicts and global warming. <i>Minerals Engineering</i> , 2022 , 179, 107441 Mitigation of Carbon Crossover in CO2 Electrolysis by Use of Bipolar Membranes. <i>Journal of the</i>	4·9 3·9	2
42 41	Materials and Metal-Organic Frameworks: A Computational Study <i>ACS Omega</i> , 2022 , 7, 6691-6699 Submarine mineral resources: A potential solution to political conflicts and global warming. <i>Minerals Engineering</i> , 2022 , 179, 107441 Mitigation of Carbon Crossover in CO2 Electrolysis by Use of Bipolar Membranes. <i>Journal of the Electrochemical Society</i> , 2022 , 169, 034508 Detection of Carbon Dioxide Using Cucurbit[6]uril-Eunctionalized Gold Nanorod Gas Sensor Based	4·9 3·9	2
42 41 40	Materials and Metal-Organic Frameworks: A Computational Study <i>ACS Omega</i> , 2022 , 7, 6691-6699 Submarine mineral resources: A potential solution to political conflicts and global warming. <i>Minerals Engineering</i> , 2022 , 179, 107441 Mitigation of Carbon Crossover in CO2 Electrolysis by Use of Bipolar Membranes. <i>Journal of the Electrochemical Society</i> , 2022 , 169, 034508 Detection of Carbon Dioxide Using Cucurbit[6]uril-Functionalized Gold Nanorod Gas Sensor Based on Localized Surface Plasmon Resonance. <i>Applied Science and Convergence Technology</i> , 2021 , 30, 186-1 A Method for Correcting the Interference of Overlapping Absorption Lines Using Second Harmonic	4.9 3.9 98.8	2
42 41 40 39	Materials and Metal-Organic Frameworks: A Computational Study <i>ACS Omega</i> , 2022 , 7, 6691-6699 Submarine mineral resources: A potential solution to political conflicts and global warming. <i>Minerals Engineering</i> , 2022 , 179, 107441 Mitigation of Carbon Crossover in CO2 Electrolysis by Use of Bipolar Membranes. <i>Journal of the Electrochemical Society</i> , 2022 , 169, 034508 Detection of Carbon Dioxide Using Cucurbit[6]uril-Functionalized Gold Nanorod Gas Sensor Based on Localized Surface Plasmon Resonance. <i>Applied Science and Convergence Technology</i> , 2021 , 30, 186-1 A Method for Correcting the Interference of Overlapping Absorption Lines Using Second Harmonic Spectral Reconstruction. <i>Applied Sciences (Switzerland)</i> , 2022 , 12, 73	4.9 3.9 98.8 2.6	2

35	System analysis of the fast global coronavirus disease 2019 (COVID-19) spread. Can we avoid future pandemics under global climate change?. <i>Communicative and Integrative Biology</i> , 2022 , 15, 150-157	1.7	О
34	Effects of Nitrogen Addition on Soil Carbon-Fixing Microbial Diversity on Different Slopes in a Degraded Alpine Meadow. <i>Frontiers in Plant Science</i> , 13,	6.2	
33	Engineering Noble-Metal-Free Metal Drganic Framework Composite Catalyst for Efficient Co2 Conversion Under Ambient Conditions. SSRN Electronic Journal,	1	
32	Green Vehicle-Routing Problem of Fresh Agricultural Products Considering Carbon Emission. International Journal of Environmental Research and Public Health, 2022, 19, 8675	4.6	1
31	The porosity engineering for single-atom metal-nitrogen-carbon catalysts for electroreduction of CO2. <i>Current Opinion in Green and Sustainable Chemistry</i> , 2022 , 100651	7.9	
30	Super-resolution reconstruction of GOSAT CO2 products using bicubic interpolation. <i>Geocarto International</i> , 1-25	2.7	
29	Environmental and enviroeconomic impacts of COVID-19 pandemic on commercial flights. <i>Aircraft Engineering and Aerospace Technology</i> ,	1.2	0
28	On the Method of Design Drift-Ice Concentration and Floe Area for New-Energy Structures in Ice-Infested Nearshore Areas of the Bohai Sea, China. <i>Frontiers in Energy Research</i> , 10,	3.8	О
27	Carbonic Anhydrase Membranes For Carbon Capture and Storage. 2022, 100031		
26	Engineering noble-metal-free metal B rganic framework composite catalyst for efficient CO2 conversion under ambient conditions. 2022 , 138764		
25	Progress in thermoplasmonics for solar energy applications. 2022 , 981, 1-50		4
24	Theoretical principles and application to measure the flux of carbon dioxide in the air of urban zones. 2022 , 288, 119302		1
23	Modeling the Carbon Cycle Dynamics and the Greenhouse Effect. 2022 , 55, 424-428		О
22	Soil Autotrophic Bacterial Community Structure and Carbon Utilization Are Regulated by Soil DisturbanceThe Case of a 19-Year Field Study. 2022 , 12, 1415		O
21	Environmental and safety issues associated with geological carbon storage: a review. 2022 , 7, 445-461		О
20	Investigating global surface temperature from the perspectives of environmental, demographic, and economic indicators: current status and future temperature trend.		O
19	ECONOMIC GROWTH DETERMINANTS IN NEW AND OLD EU COUNTRIES WITH FOCUS ON CONSTRUCTION. 2022 , 1-27		1
18	Estimating the CO2 emissions of Chinese cities from 2011 to 2020 based on SPNN-GNNWR. 2023 , 218, 115060		O

17	Effects of emergent plants on soil carbon-fixation and denitrification processes in freshwater and brackish wetlands in a watershed in northern China. 2023 , 430, 116311	0
16	Low-concentration CO2 conversion on AgxNa1\textsqTaO3-AgCl heterojunction photocatalyst. 2023 , 324, 122253	O
15	Contrasting ecosystem constraints on seasonal terrestrial CO2 and mean surface air temperature causality projections by the end of the 21st century. 2022 , 17, 124019	O
14	Design and Simulation of a Resonance-Based Plasmonic Sensor for Mass Density Sensing of Methane and Carbon Dioxide Gases.	1
13	Cenozoic Proxy Constraints on Earth System Sensitivity to Greenhouse Gases. 2022, 37,	O
12	Greenhouse Gas Detection Based on Infrared Nanophotonic Devices. 2023 , 4, 10-22	O
11	A rocky exoplanet classification method and its application to calculating surface pressure and surface temperature.	0
10	Causes and course of climate change and its hydrological consequences in the Greater Poland region in 1951-2020. 2022 , 41, 183-206	1
9	Global Temperature and Carbon Dioxide Nexus: Evidence from a Maximum Entropy Approach. 2023 , 16, 277	1
8	Comparison of physicochemical properties of choline chloride-based deep eutectic solvents for CO2 capture: Progress and outlook. 2023 , 376, 121436	O
7	Study of vibrational kinetics of CO2 and CO in CO2D2 plasmas under non-equilibrium conditions. 2023 , 32, 024001	1
6	Water Cycle Changes in a Warming World: The Scientific Background. 2023 , 15-50	O
5	????????: ????????? 2023 , 53, 444-460	O
4	Spatiotemporal distributions of air-sea CO2 flux modulated by windseas in the Southern Indian Ocean. 10,	O
3	Dynamic modeling of tectonic carbon processes: State of the art and conceptual workflow. 2023 , 66, 456-471	O
2	Modulation of oxygen-etching for generating nickel single atoms for efficient electroreduction of CO2 to syngas (CO/H2). 2023 , 421, 332-341	O
1	Gleaning insights from German energy transition and large-scale underground energy storage for Chinall carbon neutrality. 2023 ,	0