CD24: from A to Z

Cellular and Molecular Immunology 7, 100-103

DOI: 10.1038/cmi.2009.119

Citation Report

#	Article	IF	CITATIONS
1	Binding of pro-prion to filamin A: by design or an unfortunate blunder. Oncogene, 2010, 29, 5329-5345.	2.6	14
2	NFAT5 Regulates T Lymphocyte Homeostasis and CD24-Dependent T Cell Expansion under Pathologic Hypernatremia. Journal of Immunology, 2010, 185, 6624-6635.	0.4	47
3	Direct Measurements on CD24-Mediated Rolling of Human Breast Cancer MCF-7 Cells on E-Selectin. Analytical Chemistry, 2011, 83, 1078-1083.	3.2	53
4	Body fluid derived exosomes as a novel template for clinical diagnostics. Journal of Translational Medicine, 2011, 9, 86.	1.8	612
5	Sorting mouse jejunal epithelial cells with CD24 yields a population with characteristics of intestinal stem cells. American Journal of Physiology - Renal Physiology, 2011, 300, G409-G417.	1.6	86
6	Significance of CD44 and CD24 as Cancer Stem Cell Markers: An Enduring Ambiguity. Clinical and Developmental Immunology, 2012, 2012, 1-11.	3.3	385
7	Clinical Value of CD24 Expression in Retinoblastoma. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-6.	3.0	8
8	Modeling sepsis using neural nets and biomarkers of organ dysfunction in patients, with links to animal models. Critical Care, $2012, 16, .$	2.5	O
9	Extracellular matrix turnover, angiogenesis and endothelial function in acute lung injury: relationship to pulmonary dysfunction and outcome. Critical Care, 2012, 16, .	2.5	1
10	Thalidomide modulates macrophage-mediated inflammatory innate immune response during Klebsiella pneumoniae B5055 infection in BALB/c mice. Critical Care, 2012, 16, .	2.5	О
11	Immunoglobulin therapy of abdominal sepsis in emergency surgery. Critical Care, 2012, 16, .	2.5	0
12	Procalcitonin level as a marker of severe sepsis and septic shock patients who required polymyxin-B immobilized fiber with direct hemoperfusion. Critical Care, 2012, 16, .	2.5	1
13	Diagnostic accuracy of procalcitonin in proven and clinically suspected systemic infection. Critical Care, 2012, 16, .	2.5	1
14	Evaluation of a soluble CD14 subtype in patients with surgical sepsis. Critical Care, 2012, 16, .	2.5	O
15	Advance directives and end-of-life decision-making in the ICU: results from an observational study. Critical Care, 2012, 16, .	2.5	0
16	Protective effects of FCGR2A polymorphism in invasive pneumococcal diseases. Critical Care, 2012, 16, .	2.5	O
17	Examination of blood filtration membrane removal ability of HMGB1. Critical Care, 2012, 16, .	2.5	1
18	Decreased expression of HLA-DR antigen-associated invariant chain mRNA predicts mortality after septic shock. Critical Care, 2012, 16, .	2.5	O

#	Article	IF	Citations
19	Kaiser Permanente Northern California sepsis mortality reduction initiative. Critical Care, 2012, 16, .	2.5	5
20	Dynamics of lymphocyte subpopulations during Legionnaires' disease. Critical Care, 2012, 16, .	2.5	1
21	Receptor for advanced glycation endproducts controls deleterious lung inflammation in severe Pseudomonas aeruginosa pneumonia in immunosuppressed mice. Critical Care, 2012, 16, .	2.5	0
22	Low-tidal volume ventilation as compared with conventional tidal volume ventilation in patients of sepsis: a randomized controlled trial. Critical Care, 2012, 16, .	2.5	0
23	Impact of daily auditing and weekly feedback on process of care and patient outcome in resuscitation of severe sepsis and septic shock. Critical Care, $2012, 16, .$	2.5	0
24	Candida score: a predictor of mortality in patients with candidemia. Critical Care, 2012, 16, .	2.5	0
25	Incidence and prognostic implications of acute kidney injury based on the RIFLE criteria at the time of admission to an Indian ICU. Critical Care, 2012, 16, .	2.5	0
26	Candiduria in ICUs: incidence, course and outcome. Critical Care, 2012, 16, .	2.5	1
27	Erythropoietin enhances the effects of transplanted mesenchymal stem cells in an experimental model of endotoxemia. Critical Care, 2012, 16, .	2.5	0
30	Development and validation of a bedside prediction score for nosocomial sepsis in the pediatric ICU: a prospective observational cohort study. Critical Care, 2012, 16, .	2.5	0
31	Effects of statins on mitochondrial respiration and outcome during experimental sepsis. Critical Care, 2012, 16, .	2.5	0
33	Effect of phenolic acids originating from microbes on mitochondria and neutrophils. Critical Care, 2012, 16, .	2.5	3
34	Immunological modulation of estrogen during sepsis. Critical Care, 2012, 16, .	2.5	0
35	Use of Centre for Disease Control criteria to classify infections in critically ill patients: results from an interobserver agreement study. Critical Care, 2012, 16, .	2.5	1
36	Patients with sepsis exhibit mitochondrial biogenesis in peripheral blood immune cells. Critical Care, 2012, 16, .	2.5	0
37	AMP-activated protein kinase preserves endothelial tight junctions in the coronary microcirculation during sepsis. Critical Care, 2012, 16 , .	2.5	2
38	Weibel-Palade body exocytosis as a therapeutic target to improve hemodynamics in Gram-positive sepsis. Critical Care, 2012, 16, .	2.5	0
39	Effectiveness of nebulized amphotericin B to eradicate Candida colonization from the lower respiratory tracts of ICU patients. Critical Care, 2012, 16 , .	2.5	0

#	Article	IF	Citations
40	Clinical and diagnostic significance of apoptosis in the development of neutropenia and bacterial complications in newborns with respiratory distress syndrome. Critical Care, 2012, 16, .	2.5	O
41	Haemodynamic and renal effects of clonidine in an ovine model of severe sepsis and septic acute kidney injury. Critical Care, 2012, 16, .	2.5	0
42	Regional perfusion and oxygenation of the kidney in an ovine model of severe sepsis with hypotension and kidney injury. Critical Care, 2012, 16, .	2.5	0
44	Simplified selective decontamination of the digestive tract reduces Gram-negative bloodstream infection and respiratory tract colonization in intensive care. Critical Care, 2012, 16, .	2.5	0
45	Decreased incidence of SIRS and sepsis by acupuncture in severe multiple traumatic patients via facilitation of vagal activity. Critical Care, 2012, 16, .	2.5	3
46	A study of Candida biofilms in intensive care patients. Critical Care, 2012, 16, .	2.5	0
47	A limited set of molecular biomarkers may provide superior diagnostic outcomes to procalcitonin in sepsis. Critical Care, 2012, 16, .	2.5	1
48	Monocytic and neutrophilic CD11b and CD64 in severe sepsis. Critical Care, 2012, 16, .	2.5	2
49	Clinical evaluation of the Magicplex Sepsis Real-time Test (Seegene) to detect Candida DNA in pediatric patients. Critical Care, 2012, 16, .	2.5	7
50	Procalcitonin, IL-10 and sCD25 as diagnostic and prognostic markers in critically ill patients. Critical Care, 2012, 16, .	2.5	0
51	Ninjurin 1 contributes to TLR-induced inflammation in endothelial cells. Critical Care, $2012,16,.$	2.5	1
52	Effect of Calotropis procera latex extracts on the hypothalamic TNF $\hat{l}\pm$ and PGE2 levels in the rat model of yeast-induced pyrexia. Critical Care, 2012, 16, .	2.5	0
53	Regulation of sepsis-induced IFN \hat{I}^3 upon natural killer cell or natural killer T cell depletion in vivo. Critical Care, 2012, 16, .	2.5	0
54	Pattern recognition receptors as key players in adrenal gland dysfunction during sepsis. Critical Care, 2012, 16, .	2.5	0
55	Effects of a TREM-like transcript-1 derived peptide during septic shock in pigs. Critical Care, 2012, 16, .	2.5	0
56	Role of TREM-1 in endothelial dysfunction during experimental sepsis. Critical Care, 2012, 16, .	2.5	1
57	LPS-induced Pellino3 degradation is mediated by p62-dependent autophagy. Critical Care, 2012, 16, .	2.5	1
58	Attenuated NOX2 expression impairs ROS production during the hypoinflammatory phase of sepsis. Critical Care, $2012, 16, .$	2.5	0

#	ARTICLE	IF	CITATIONS
59	Kinetic characterization of selective peroxisome-proliferator-activated receptor gamma modulators in vitro. Critical Care, $2012, 16, \ldots$	2.5	0
60	IL-6 and IFN \hat{I}^3 play a role in fatal cases of 5N1 influenza in children. Critical Care, 2012, 16, .	2.5	0
62	Involvement of thrombopoietin in the development of organ injury in a mouse model of cecal ligation and puncture-induced sepsis. Critical Care, 2012, 16, .	2.5	0
63	Cholecystokinin protects rats against Staphylococcus aureus-induced sepsis. Critical Care, 2012, 16, .	2.5	0
64	Polymyxin B-direct hemoperfusion therapy contributes to oxygen delivery in septic patients. Critical Care, 2012, 16, .	2.5	1
65	Sepsis in neonates: experience in a tertiary-care hospital. Critical Care, 2012, 16, .	2.5	1
66	Is urinary kidney injury molecule-1 a good marker for acute kidney injury in septic shock?. Critical Care, 2012, 16, .	2.5	0
67	Necrotizing fasciitis: modern clinical view. Critical Care, 2012, 16, .	2.5	2
68	Erysipelas: complement system and SIRS. Critical Care, 2012, 16, .	2.5	0
69	Pancreatic stone protein: a new predictor of outcome in patients with peritonitis. Critical Care, 2012, 16, .	2.5	0
70	Audit on patient outcome based on APACHE II scoring in the respiratory ICU of a south Indian university teaching hospital. Critical Care, 2012, 16, .	2.5	0
71	Internal jugular vein catheterization: a comparative study of apical and paracarotid approaches. Critical Care, 2012, 16, .	2.5	0
72	Citrate anticoagulation protocol to treat septic shock patients with liver dysfunction in CPFA extracorporeal therapy. Critical Care, 2012, 16, .	2.5	0
73	Manipulation of nitric oxide levels with a modified hydroxyethyl starch molecule. Critical Care, 2012, 16, .	2.5	0
74	Molecular diagnosis of severe bacterial sepsis in children. Critical Care, 2012, 16, .	2.5	0
75	Insulin exerts anti-inflammatory effects through reduction of IKK/IκB/NF-κB pathway activation in septic rats. Critical Care, 2012, 16, .	2.5	0
76	Severe sepsis with multiple organ dysfunctions caused by Pseudomonas aeruginosa in an immunocompetent child. Critical Care, 2012, 16, .	2.5	3
77	Effects of sesamol against acute kidney injury in cecal-ligation-and-puncture-treated rats. Critical Care, 2012, 16, .	2.5	1

#	ARTICLE	IF	Citations
78	Noradrenergic neurons regulate the egress and trafficking of splenic monocytes and influence mortality during Gram-negative infection in mice. Critical Care, 2012, 16, .	2.5	0
79	Mannose-binding lectin deficiency and NOD2 mutations do not predispose to Staphylococcus aureus bloodstream infections but may influence outcome. Critical Care, 2012, 16, .	2.5	0
80	Homogeneity versus diversity: inhibition of plasma PAI-1 in murine sepsis proved lethal in homogeneous cohorts but not in all-inclusive populations. Critical Care, 2012, 16, .	2.5	0
81	Effect of heparin during extracorporeal detoxification in the severity of thrombocytopenia in patients with severe sepsis. Critical Care, 2012, 16, .	2.5	0
82	Estimation of efficacy early selective LPS sorption in patients with septic shock. Critical Care, 2012, 16,	2.5	2
83	Audit of the ward-based management of severe sepsis in a large teaching hospital. Critical Care, 2012, 16, .	2.5	1
84	Neutrophil CD64 as a diagnostic marker of sepsis in neonates: impact on clinical care. Critical Care, 2012, 16, .	2.5	0
85	Pancreatic stone protein as a novel marker for neonatal sepsis. Critical Care, 2012, 16, .	2.5	1
86	A standardized protocol for the multiplex PCR technique Septifast $\hat{A}^{\text{@}}$ Roche for neonatal samples with suspected sepsis. Critical Care, 2012, 16, .	2.5	0
87	Toll-like receptor 4 in phagocytosis of Escherichia coli by endotoxin-activated human neutrophils in whole blood. Critical Care, 2012, 16, .	2.5	5
88	CD24-mediated neutrophil death in inflammation: ex vivo study suggesting a potential role in sepsis. Critical Care, 2012, 16, .	2.5	2
89	Resistant Escherichia coli strains circulating in a tertiary-care hospital in New Delhi, India. Critical Care, 2012, 16, .	2.5	0
90	5-Lipoxygenase contributes to PPAR \hat{I}^3 activation in macrophages in response to apoptotic cells. Critical Care, 2012, 16, .	2.5	0
91	Natural killer cell status and tolerance in mouse and human bacterial sepsis. Critical Care, 2012, 16 , .	2.5	0
92	Raman spectroscopic investigation of the interaction of Enterococcus faecalis and vancomycin: towards a culture-independent antibiotic susceptibility test. Critical Care, 2012, 16, .	2.5	2
93	Transthoracic echocardiographic assessment of IVC diameter variability to determine fluid responsiveness in children with septic shock: a pilot study. Critical Care, 2012, 16, .	2.5	0
94	Do we still accept central venous pressure measurements to assess preload responsiveness in children with septic shock? A single-center experience. Critical Care, 2012, 16, .	2.5	0
95	Emergence of carbapenem resistance in Gram-negative nosocomial bloodstream infections among critically ill children? A single-center experience. Critical Care, 2012, 16, .	2.5	0

#	Article	IF	Citations
96	Development of a point-of-care-testing system for procalcitonin. Critical Care, 2012, 16, .	2.5	0
97	Management of sepsis in Indian ICUs: Indian data from the MOSAICS study. Critical Care, 2012, 16, .	2.5	0
98	Impact of interventions to reduce device-related infections in Indian cancer centre ICUs. Critical Care, 2012, 16, .	2.5	0
99	Early fluid therapy with splanchnic sympathetic blockage prevented microcirculation damage, gut bacterial overgrowth, bacterial translocation and mortality in sepsis. Critical Care, 2012, 16, .	2.5	0
100	Abdominal organs' microcirculation dysfunction sequence in severe sepsis by SDF microscopy and histology. Critical Care, 2012, 16, .	2.5	0
101	Role of the clarithromycin immune modulator activity on abdominal microhemodynamics and mortality in severe sepsis. Critical Care, 2012, 16, .	2.5	1
102	Preliminary results for the use of proteinase K to achieve release of LPS from the Alteco LPS Adsorber \hat{A}^{\otimes} after perfusion with LPS containing blood. Critical Care, 2012, 16, .	2.5	0
103	PSP/reg and NT-proCNP to predict the occurrence of ICU-acquired sepsis in severe trauma patients: results of a pilot study. Critical Care, 2012, 16, .	2.5	0
104	From positive blood culture to microbiological diagnosis in 4 hours by MALDI-TOF mass spectrometry bacterial identification and rapid antibiogram. Critical Care, 2012, 16, .	2.5	2
105	Relationship between plasma NGAL and serum creatinine is influenced by leucocytosis and neutrophilia in the critically ill. Critical Care, 2012, 16 , .	2.5	0
106	Corticosteroid resistance in sepsis is influenced by microRNA-124-induced downregulation of glucocorticoid receptor- \hat{l}_{\pm} . Critical Care, 2012, 16, .	2.5	0
107	Glucocorticoids control systemic inflammatory response by regulation of energy metabolism and cytokine expression. Critical Care, 2012, 16, .	2.5	0
108	Assessment of clinical deterioration and progressive organ failure in moderate-severity emergency department sepsis patients. Critical Care, 2012, 16, .	2.5	0
109	Increased endotoxin activity is associated with clinical deterioration in moderate-severity emergency department sepsis patients: a pilot study. Critical Care, 2012, 16, .	2.5	3
110	Defining the impact of delayed antibiotic administration using a comprehensive electronic health record screen to identify sepsis. Critical Care, 2012, 16, .	2.5	1
111	Effects on outcome of patients with severe sepsis and septic shock admitted to the ICU after implementation cooperative sepsis management protocol. Critical Care, 2012, 16, .	2.5	0
112	Saving 500 Lives Campaign: another way to improve the mortality rate of patients with severe sepsis and septic shock. Critical Care, 2012, 16, .	2.5	4
113	Clinical utility of using C-reactive protein and procalcitonin as biomarkers for a novel neonatal sepsis diagnostic platform (ASCMicroPlat). Critical Care, 2012, 16, .	2.5	0

#	Article	IF	Citations
114	GAPDH: is it a reliable housekeeper gene to use in sepsis research?. Critical Care, 2012, 16, .	2.5	0
115	Cytokine gene expression profiling identifies distinct patterns in severe sepsis. Critical Care, 2012, 16, .	2.5	0
116	Quantified temporal changes of heart rate variability when developing SIRS. Critical Care, $2012, 16, .$	2.5	0
117	Endothelial cell specific molecule 1 is today a relevant marker of respiratory failure in sepsis and polytrauma patients. Critical Care, 2012, 16 , .	2.5	O
118	A microbiome approach to sepsis: development and case-study application of novel methods for detection and isolation of microbes from whole blood. Critical Care, $2012, 16, .$	2.5	2
119	Antibacterial therapy in treatment of newborns with perinatal sepsis. Critical Care, 2012, 16, .	2.5	O
120	Use of intravenous and intramuscular immunoglobulin in the practice of treatment for purulent and septic deaths in newborns. Critical Care, 2012 , 16 , .	2.5	1
121	An overview of the sepsis situation in the Department of Infection Diseases, University Hospital Center, Tirana. Critical Care, 2012, 16, .	2.5	O
122	Is visceral leishmaniasis a sepsis or not?. Critical Care, 2012, 16, .	2.5	3
123	Evaluation of procalcitonin in patients with sepsis in Albanian adults. Critical Care, 2012, 16, .	2.5	0
124	Role of the membrane receptor ALXR in polymicrobial sepsis. Critical Care, 2012, 16, .	2.5	0
125	MondoA is highly overexpressed in acute lymphoblastic leukemia cells and modulates their metabolism, differentiation and survival. Leukemia Research, 2012, 36, 1185-1192.	0.4	20
126	CD24 controls Src/STAT3 activity in human tumors. Cellular and Molecular Life Sciences, 2012, 69, 3863-3879.	2.4	69
127	A Critical Re-Evaluation of CD24-Positivity of Human Embryonic Stem Cells Differentiated into Pancreatic Progenitors. Stem Cell Reviews and Reports, 2012, 8, 779-791.	5.6	24
128	CD24 Ala57Val polymorphism predicts pathologic complete response to sequential anthracycline- and taxane-based neoadjuvant chemotherapy for primary breast cancer. Breast Cancer Research and Treatment, 2012, 132, 819-831.	1.1	21
129	CD24 promotes tumor cell invasion by suppressing tissue factor pathway inhibitor-2 (TFPI-2) in a c-Src-dependent fashion. Clinical and Experimental Metastasis, 2012, 29, 27-38.	1.7	50
130	Differential marker expression by cultures rich in mesenchymal stem cells. BMC Cell Biology, 2013, 14, 54.	3.0	32
131	Antibody targeting of CD24 efficiently retards growth and influences cytokine milieu in experimental carcinomas. British Journal of Cancer, 2013, 108, 1449-1459.	2.9	57

#	ARTICLE	IF	CITATIONS
132	Differences and similarities in the transcriptional profile of peripheral whole blood in early and late-onset preeclampsia: insights into the molecular basis of the phenotype of preeclampsia ^a . Journal of Perinatal Medicine, 2013, 41, 485-504.	0.6	40
133	The CD24hi smooth muscle subpopulation is the predominant fraction in uterine fibroids. Molecular Human Reproduction, 2014, 20, 664-676.	1.3	8
134	CD24-Triggered Caspase-Dependent Apoptosis via Mitochondrial Membrane Depolarization and Reactive Oxygen Species Production of Human Neutrophils Is Impaired in Sepsis. Journal of Immunology, 2014, 192, 2449-2459.	0.4	51
135	Involvement of Plateletââ,¬â€œTumor Cell Interaction in Immune Evasion. Potential Role of Podocalyxin-Like Protein 1. Frontiers in Oncology, 2014, 4, 245.	1.3	48
136	HMGB1 in health and disease. Molecular Aspects of Medicine, 2014, 40, 1-116.	2.7	763
137	CD24 Polymorphisms Cannot Predict Pathologic Complete Response to Anthracycline- and Taxane-Based Neoadjuvant Chemotherapy in Breast Cancer. Clinical Breast Cancer, 2014, 14, e33-e40.	1.1	6
138	CD24 and Nanog identify stem cells signature of ovarian epithelium and cysts that may develop to ovarian cancer. Acta Histochemica, 2014, 116, 399-406.	0.9	14
139	Adipocyte progenitor cells initiate monocyte chemoattractant protein-1-mediated macrophage accumulation in visceral adipose tissue. Molecular Metabolism, 2015, 4, 779-794.	3.0	52
140	Polymorphisms of the CD24 Gene Are Associated with Risk of Multiple Sclerosis: A Meta-Analysis. International Journal of Molecular Sciences, 2015, 16, 12368-12381.	1.8	6
141	Repression of CD24 surface protein expression by oncogenic Ras is relieved by inhibition of Raf but not MEK or PI3K. Frontiers in Cell and Developmental Biology, 2015, 3, 47.	1.8	9
142	CD24 Overexpression Is Associated with Poor Prognosis in Luminal A and Triple-Negative Breast Cancer. PLoS ONE, 2015, 10, e0139112.	1.1	78
143	Loss of CD24 in Mice Leads to Metabolic Dysfunctions and a Reduction in White Adipocyte Tissue. PLoS ONE, 2015, 10, e0141966.	1.1	19
144	Breast Cancer-Derived Extracellular Vesicles: Characterization and Contribution to the Metastatic Phenotype. BioMed Research International, 2015, 2015, 1-13.	0.9	65
145	Dynamic upregulation of CD24 in pre-adipocytes promotes adipogenesis. Adipocyte, 2015, 4, 89-100.	1.3	21
146	CD24 tracks divergent pluripotent states in mouse and human cells. Nature Communications, 2015, 6, 7329.	5.8	76
147	Molecular and Morphological Characterization of Inflammatory Infiltrate in Rosacea Reveals Activation of Th1/Th17 Pathways. Journal of Investigative Dermatology, 2015, 135, 2198-2208.	0.3	193
148	<scp>CD</scp> 24 Ala57Val polymorphism is associated with spontaneous viral clearance in the <scp>HCV</scp> â€infected Chinese population. Liver International, 2015, 35, 786-794.	1.9	6
149	Intracellular CD24 disrupts the ARF–NPM interaction and enables mutational and viral oncogene-mediated p53 inactivation. Nature Communications, 2015, 6, 5909.	5.8	54

#	Article	IF	Citations
150	Expression of CD24 in Human Bone Marrow-Derived Mesenchymal Stromal Cells Is Regulated by TGFÎ ² 3 and Induces a Myofibroblast-Like Genotype. Stem Cells International, 2016, 2016, 1-13.	1.2	17
151	CD24: A Rheostat That Modulates Cell Surface Receptor Signaling of Diverse Receptors. Frontiers in Cell and Developmental Biology, 2016, 4, 146.	1.8	27
152	Comparison of stem cell behaviors between indigenous high and low-CD24 percentage expressing cells of stem cells from apical papilla (SCAPs). Tissue and Cell, 2016, 48, 397-406.	1.0	17
153	Extended B cell phenotype in patients with myalgic encephalomyelitis/chronic fatigue syndrome: a cross-sectional study. Clinical and Experimental Immunology, 2016, 184, 237-247.	1.1	29
154	Lectin adhesion proteins (P-, L- and E-selectins) as biomarkers in colorectal cancer. Biomarkers, 2016, 22, 1-6.	0.9	12
155	CD24 blunts oral squamous cancer development and dampens the functional expansion of myeloid-derived suppressor cells. Oncolmmunology, 2016, 5, e1226719.	2.1	11
156	Nuclear Phosphatidylinositol Signaling: Focus on Phosphatidylinositol Phosphate Kinases and Phospholipases C. Journal of Cellular Physiology, 2016, 231, 1645-1655.	2.0	48
157	Analysis of the structure, evolution, and expression of CD24, an important regulator of cell fate. Gene, 2016, 590, 324-337.	1.0	21
158	Breast Cancer Stem Cell Isolation. Methods in Molecular Biology, 2016, 1406, 121-135.	0.4	22
159	Silencing of <i>CD24</i> Enhances the PRIMA-1–Induced Restoration of Mutant p53 in Prostate Cancer Cells. Clinical Cancer Research, 2016, 22, 2545-2554.	3.2	27
160	CD24 promotes HCC progression via triggering Notch-related EMT and modulation of tumor microenvironment. Tumor Biology, 2016, 37, 6073-6084.	0.8	27
161	The GRHL2/ZEB Feedback Loop-A Key Axis in the Regulation of EMT in Breast Cancer. Journal of Cellular Biochemistry, 2017, 118, 2559-2570.	1.2	90
162	The CD24 surface antigen in neural development and disease. Neurobiology of Disease, 2017, 99, 133-144.	2.1	40
163	Expression of CD24 and Siglec-10 in first trimester placenta: implications for immune tolerance at the fetal–maternal interface. Histochemistry and Cell Biology, 2017, 147, 565-574.	0.8	42
164	Cyclic AMP-Responsive Element-Binding Protein (CREB) is Critical in Autoimmunity by Promoting Th17 but Inhibiting Treg Cell Differentiation. EBioMedicine, 2017, 25, 165-174.	2.7	31
165	CD24 induces changes to the surface receptors of B cell microvesicles with variable effects on their RNA and protein cargo. Scientific Reports, 2017, 7, 8642.	1.6	29
166	Identification of a novel single chain fragment variable antibody targeting CD24-expressing cancer cells. Immunology Letters, 2017, 190, 240-246.	1.1	15
167	DNA biosensors based on gold nanoparticles-modified graphene oxide for the detection of breast cancer biomarkers for early diagnosis. Bioelectrochemistry, 2017, 118, 91-99.	2.4	128

#	Article	IF	Citations
168	Inhibitor of vasculogenic mimicry restores sensitivity of resistant melanoma cells to DNA-damaging agents. Melanoma Research, 2017, 27, 8-16.	0.6	14
169	<i>CD24</i> is a genetic modifier for risk and progression of prostate cancer. Molecular Carcinogenesis, 2017, 56, 641-650.	1.3	14
170	Autocrine Prolactin Stimulates Endometrial Carcinoma Growth and Metastasis and Reduces Sensitivity to Chemotherapy. Endocrinology, 2017, 158, 1595-1611.	1.4	23
171	Targeting Stemness: Implications for Precision Medicine in Breast Cancer. Advances in Experimental Medicine and Biology, 2017, 1026, 147-169.	0.8	6
172	Expression and Clinical Significance of Cancer Stem Cell Markers CD24, CD44, and CD133 in Pancreatic Ductal Adenocarcinoma and Chronic Pancreatitis. Disease Markers, 2017, 2017, 1-7.	0.6	31
173	CD24 expression does not affect dopamine neuronal survival in a mouse model of Parkinson's disease. PLoS ONE, 2017, 12, e0171748.	1.1	6
174	CD24–p53 axis suppresses diethylnitrosamine-induced hepatocellular carcinogenesis by sustaining intrahepatic macrophages. Cell Discovery, 2018, 4, 6.	3.1	14
175	Biomarker discovery for renal cancer stem cells. Journal of Pathology: Clinical Research, 2018, 4, 3-18.	1.3	67
176	Effect of curcumin on the cell surface markers CD44 and CD24 in breast cancer. Oncology Reports, 2018, 39, 2741-2748.	1.2	10
177	UM-Chor1: establishment and characterization of the first validated clival chordoma cell line. Journal of Neurosurgery, 2018, 128, 701-709.	0.9	17
178	Elucidating the Preadipocyte and Its Role in Adipocyte Formation: a Comprehensive Review. Stem Cell Reviews and Reports, 2018, 14, 27-42.	5.6	58
179	Multiple sclerosis genetics: Results from meta-analyses of candidate-gene association studies. Cytokine, 2018, 106, 154-164.	1.4	9
180	The CD24-Siglec G axis protects mice against cuprizone-induced oligodendrocyte loss: targeting danger signal for neuroprotection. Cellular and Molecular Immunology, 2018, 15, 79-81.	4.8	6
181	CD24 expression and stem-associated features define tumor cell heterogeneity and tumorigenic capacities in a model of carcinogenesis. Cancer Management and Research, 2018, Volume 10, 5767-5784.	0.9	22
182	A Myogenic Double-Reporter Human Pluripotent Stem Cell Line Allows Prospective Isolation of Skeletal Muscle Progenitors. Cell Reports, 2018, 25, 1966-1981.e4.	2.9	61
183	Surface Molecular Markers of Cancer Stem Cells: Computation Analysis of Full-Text Scientific Articles. Bulletin of Experimental Biology and Medicine, 2018, 166, 135-140.	0.3	9
184	Zika virus as an oncolytic treatment of human neuroblastoma cells requires CD24. PLoS ONE, 2018, 13, e0200358.	1.1	28
185	Glycosylation of Cancer Stem Cells: Function in Stemness, Tumorigenesis, and Metastasis. Neoplasia, 2018, 20, 813-825.	2.3	72

#	Article	IF	CITATIONS
186	Impaired bone healing at tooth extraction sites in CD24-deficient mice: A pilot study. PLoS ONE, 2018, 13, e0191665.	1.1	5
187	Roles of Extracellular Vesicles in Metastatic Breast Cancer. Breast Cancer: Basic and Clinical Research, 2018, 12, 117822341876766.	0.6	25
188	Amplification of the CD24 Gene Is an Independent Predictor for Poor Prognosis of Breast Cancer. Frontiers in Genetics, 2019, 10, 560.	1.1	19
189	Naturally Killing the Silent Killer: NK Cell-Based Immunotherapy for Ovarian Cancer. Frontiers in Immunology, 2019, 10, 1782.	2.2	45
190	CD24+ Cell Depletion Permits Effective Enrichment of Thymic iNKT Cells While Preserving Their Subset Composition. Immune Network, 2019, 19, e14.	1.6	7
191	Heparanase promotes glioma progression via enhancing CD24 expression. International Journal of Cancer, 2019, 145, 1596-1608.	2.3	33
192	Graphene-Based Electrochemical Sensors for Biomedical Applications. , 2019, , 249-282.		5
193	Expression of CD24 in plasma, exosome and ovarian tissue samples of serous ovarian cancer patients. Journal of Biotechnology, 2019, 298, 16-20.	1.9	20
194	Characterization of a Novel Third-Generation Anti-CD24-CAR against Ovarian Cancer. International Journal of Molecular Sciences, 2019, 20, 660.	1.8	70
195	Coding Cell Identity of Human Skeletal Muscle Progenitor Cells Using Cell Surface Markers: Current Status and Remaining Challenges for Characterization and Isolation. Frontiers in Cell and Developmental Biology, 2019, 7, 284.	1.8	22
196	Overview of CD24 as a new molecular marker in ovarian cancer. Journal of Cellular Physiology, 2019, 234, 2134-2142.	2.0	84
197	CD24 as a Novel Predictive Biomarker in Patients with Hepatocellular Carcinoma: Friend or Foe?. Journal of Investigative Surgery, 2020, 33, 542-543.	0.6	1
198	Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cellular and Molecular Immunology, 2020, 17, 1-12.	4.8	273
199	Identification and Characterization of Tumor-Initiating Cells in Multiple Myeloma. Journal of the National Cancer Institute, 2020, 112, 507-515.	3.0	33
200	Peritoneal dialysis induces alterations in the transcriptome of peritoneal cells before detectible peritoneal functional changes. American Journal of Physiology - Renal Physiology, 2020, 318, F229-F237.	1.3	13
201	The Emerging Role of CD24 in Cancer Theranosticsâ€"A Novel Target for Fluorescence Image-Guided Surgery in Ovarian Cancer and Beyond. Journal of Personalized Medicine, 2020, 10, 255.	1.1	11
202	Spatial transcriptomics inferred from pathology whole-slide images links tumor heterogeneity to survival in breast and lung cancer. Scientific Reports, 2020, 10, 18802.	1.6	78
203	Epithelial Ovarian Cancer and the Immune System: Biology, Interactions, Challenges and Potential Advances for Immunotherapy. Journal of Clinical Medicine, 2020, 9, 2967.	1.0	23

#	Article	IF	Citations
204	New Screening Test Improves Detection of Prostate Cancer Using Circulating Tumor Cells and Prostate-Specific Markers. Frontiers in Oncology, 2020, 10, 582.	1.3	38
205	CD24 blunts the sensitivity of retinoblastoma to vincristine by modulating autophagy. Molecular Oncology, 2020, 14, 1740-1759.	2.1	16
206	CD24Fc protects against viral pneumonia in simian immunodeficiency virus-infected Chinese rhesus monkeys. Cellular and Molecular Immunology, 2020, 17, 887-888.	4.8	33
207	Differences in immune-related gene expressions and tumor-infiltrating lymphocytes according to chemotherapeutic response in ovarian high-grade serous carcinoma. Journal of Ovarian Research, 2020, 13, 65.	1.3	11
208	Laboratory studies for paroxysmal nocturnal hemoglobinuria, with emphasis on flow cytometry. Practical Laboratory Medicine, 2020, 20, e00158.	0.6	10
209	Matrix Effect in the Isolation of Breast Cancer-Derived Nanovesicles by Immunomagnetic Separation and Electrochemical Immunosensing—A Comparative Study. Sensors, 2020, 20, 965.	2.1	22
210	Differentiation of câ€Kit + CD24 + natural killer cells into myeloid cells in a GATAâ€2â€dependent manner. FASEB Journal, 2020, 34, 4462-4481.	0.2	4
211	Regeneration of pulpo-dentinal–like complex by a group of unique multipotent CD24a ⁺ stem cells. Science Advances, 2020, 6, eaay1514.	4.7	54
212	Novel insights into the function of <scp>CD24</scp> : A driving force in cancer. International Journal of Cancer, 2021, 148, 546-559.	2.3	100
213	Quiescence, Stemness and Adipogenic Differentiation Capacity in Human DLK1â^'/CD34+/CD24+ Adipose Stem/Progenitor Cells. Cells, 2021, 10, 214.	1.8	11
214	Glycosylation of Stem Cells. , 2021, , 107-127.		0
215	Behavioral Characterizing of CD24 Knockout Mouse—Cognitive and Emotional Alternations. Journal of Personalized Medicine, 2021, 11, 105.	1.1	2
216	CD52 Is Elevated on B cells of SLE Patients and Regulates B Cell Function. Frontiers in Immunology, 2020, 11, 626820.	2.2	15
217	Exosomes and exosomal RNAs in breast cancer: A status update. European Journal of Cancer, 2021, 144, 252-268.	1.3	73
218	Detection and Investigation of Extracellular Vesicles in Serum and Urine Supernatant of Prostate Cancer Patients. Diagnostics, 2021, 11, 466.	1.3	12
219	Exploiting Phagocytic Checkpoints in Nanomedicine: Applications in Imaging and Combination Therapies. Frontiers in Chemistry, 2021, 9, 642530.	1.8	3
220	CD24 for Cardiovascular Researchers: A Key Molecule in Cardiac Immunology, Marker of Stem Cells and Target for Drug Development. Journal of Personalized Medicine, 2021, 11, 260.	1.1	4
221	A pilot study on biological characteristics of human CD24(+) stem cells from the apical papilla. Journal of Dental Sciences, 2022, 17, 264-275.	1.2	2

#	Article	IF	CITATIONS
222	The Molecular Basis of Different Approaches for the Study of Cancer Stem Cells and the Advantages and Disadvantages of a Three-Dimensional Culture. Molecules, 2021, 26, 2615.	1.7	8
223	The hallmarks of ovarian cancer stem cells and niches: Exploring their harmonious interplay in therapy resistance. Seminars in Cancer Biology, 2021, 77, 182-193.	4.3	38
224	The sputum transcriptome better predicts COPD exacerbations after the withdrawal of inhaled corticosteroids than sputum eosinophils. ERJ Open Research, 2021, 7, 00097-2021.	1.1	7
225	An overview of some potential immunotherapeutic options against COVID-19. International Immunopharmacology, 2021, 95, 107516.	1.7	7
226	Simple Cancer Stem Cell Markers Predict Neoadjuvant Chemotherapy Resistance of Esophageal Squamous Cell Carcinoma. Anticancer Research, 2021, 41, 4117-4126.	0.5	1
227	Induction of the CD24 Surface Antigen in Primary Undifferentiated Human Adipose Progenitor Cells by the Hedgehog Signaling Pathway. Biologics, 2021, 1, 129-153.	2.3	0
228	Camouflage strategies for therapeutic exosomes evasion from phagocytosis. Journal of Advanced Research, 2021, 31, 61-74.	4.4	81
229	Exosome-Based Vaccines: History, Current State, and Clinical Trials. Frontiers in Immunology, 2021, 12, 711565.	2.2	103
230	Glycosylation Modulates Plasma Membrane Trafficking of CD24 in Breast Cancer Cells. International Journal of Molecular Sciences, 2021, 22, 8165.	1.8	5
231	Reduced Placental CD24 in Preterm Preeclampsia Is an Indicator for a Failure of Immune Tolerance. International Journal of Molecular Sciences, 2021, 22, 8045.	1.8	7
232	Prospects of antibodies targeting CD47 or CD24 in the treatment of glioblastoma. CNS Neuroscience and Therapeutics, 2021, 27, 1105-1117.	1.9	27
233	Translocation of intracellular CD24 constitutes a triggering event for drug resistance in breast cancer. Scientific Reports, 2021, 11, 17077.	1.6	5
234	The signal transducer CD24 suppresses the germ cell program and promotes an ectodermal rather than mesodermal cell fate in embryonal carcinomas. Molecular Oncology, 2022, 16, 982-1008.	2.1	10
235	Gene expression profiling after LINC00472 overexpression in an NSCLC cell line1. Cancer Biomarkers, 2021, 32, 175-188.	0.8	6
236	Cytotoxic T lymphocyte antigen-4 regulates development of xenogenic graft versus host disease in mice via modulation of host immune responses induced by changes in human T cell engraftment and gene expression. Clinical and Experimental Immunology, 2021, 206, 422-438.	1.1	5
237	Predictors of the CD24/CD11b Biomarker among Healthy Subjects. Journal of Personalized Medicine, 2021, 11, 939.	1.1	3
238	The Role of B Cells in Adult and Paediatric Liver Injury. Frontiers in Immunology, 2021, 12, 729143.	2.2	17
239	PRIMUS: Comprehensive proteomics of mouse intervertebral discs that inform novel biology and relevance to human disease modelling. Matrix Biology Plus, 2021, 12, 100082.	1.9	13

#	ARTICLE	IF	CITATIONS
240	Mutant-IDH1-dependent chromatin state reprogramming, reversibility, and persistence. Nature Genetics, 2018, 50, 62-72.	9.4	137
242	Macrophage targeting in cancer. Annals of the New York Academy of Sciences, 2021, 1499, 18-41.	1.8	134
243	Siglec-G represses DAMP-mediated effects on T cells. JCI Insight, 2017, 2, .	2.3	37
244	CD44 and CD24 coordinate the reprogramming of nasopharyngeal carcinoma cells towards a cancer stem cell phenotype through STAT3 activation. Oncotarget, 2016, 7, 58351-58366.	0.8	26
245	The role of CD24 in multiple myeloma tumorigenicity and effects of the microenvironment on its expression. Oncotarget, 2019, 10, 5480-5491.	0.8	11
246	CD24, A Review of its Role in Tumor Diagnosis, Progression and Therapy. Current Gene Therapy, 2020, 20, 109-126.	0.9	23
247	Fucosylation is a common glycosylation type in pancreatic cancer stem cell-like phenotypes. World Journal of Gastroenterology, 2015, 21, 3876.	1.4	44
248	Vimentin Is at the Heart of Epithelial Mesenchymal Transition (EMT) Mediated Metastasis. Cancers, 2021, 13, 4985.	1.7	145
249	Structural analyses of putative porcine cluster of differentiation (CD) 24 gene. Journal of Biomedical Translational Research, 2018, 19, 1-9.	0.1	0
250	Dimensional Analysis of CD44High CD24Low and Ki67 in Triple Negative Breast Cancer. Open Access Macedonian Journal of Medical Sciences, 2019, 7, 526-528.	0.1	1
251	Identification of liverâ€specific CD24 + invariant NK T cells with low granzyme B production and high proliferative capacity. Journal of Leukocyte Biology, 2021, , .	1.5	0
252	Perspective – Escape from destruction: how cancer-derived EVs are protected from phagocytosis. Trillium Extracellular Vesicles, 2020, 2, 60-64.	0.1	2
253	A hypermorphic SP1-binding CD24 variant associates with risk and progression of multiple sclerosis. American Journal of Translational Research (discontinued), 2012, 4, 347-56.	0.0	15
254	Androgen receptor (AR) promotes male bladder cancer cell proliferation and migration via regulating CD24 and VEGF. American Journal of Translational Research (discontinued), 2016, 8, 578-87.	0.0	15
255	The use of natural products to target cancer stem cells. American Journal of Cancer Research, 2017, 7, 1588-1605.	1.4	27
256	Association of CD44 and CD24 phenotype with lymph node metastasis and survival in triple-negative breast cancer. International Journal of Clinical and Experimental Pathology, 2020, 13, 1008-1016.	0.5	5
257	Elevated hippocampal CD24 in astrocytes participates in neural regeneration possibly via activating SHP2/ERK pathway after experimental traumatic brain injury in mice. American Journal of Translational Research (discontinued), 2020, 12, 6395-6408.	0.0	0
258	CD24 and IgM Stimulation of B Cells Triggers Transfer of Functional B Cell Receptor to B Cell Recipients Via Extracellular Vesicles. Journal of Immunology, 2021, 207, 3004-3015.	0.4	8

#	ARTICLE	IF	CITATIONS
259	CD24 GENE POLYMORPHISMS IN EGYPTIAN PATIENTS WITH COLORECTAL CANCER. International Journal of Research -GRANTHAALAYAH, 2021, 9, 337-348.	0.1	0
260	Targeting macrophage-mediated tumor cell phagocytosis: An overview of phagocytosis checkpoints blockade, nanomedicine intervention, and engineered CAR-macrophage therapy. International Immunopharmacology, 2022, 103, 108499.	1.7	12
261	Treatment with soluble CD24 attenuates COVID-19-associated systemic immunopathology. Journal of Hematology and Oncology, 2022, 15, 5.	6.9	30
262	Human Retinal Organoids Provide a Suitable Tool for Toxicological Investigations: A Comprehensive Validation Using Drugs and Compounds Affecting the Retina. Stem Cells Translational Medicine, 2022, 11, 159-177.	1.6	18
263	CD24+ MDSC-DCs Induced by CCL5-Deficiency Showed Improved Antitumor Activity as Tumor Vaccines. Global Medical Genetics, 0, , .	0.4	0
264	Impaired surface marker expression in stimulated Epstein-Barr virus transformed lymphoblasts from Barth Syndrome patients. Scientific Reports, 2022, 12, 6195.	1.6	2
266	Statins Lower Lipid Synthesis But Promote Secretion of Cholesterol-Enriched Extracellular Vesicles and Particles. Frontiers in Oncology, 2022, 12, .	1.3	0
267	Role of Stiffness and Physico-Chemical Properties of Tumour Microenvironment on Breast Cancer Cell Stemness. SSRN Electronic Journal, 0, , .	0.4	1
268	Precise O-Glycosylation Site Localization of CD24Fc by LC-MS Workflows. Analytical Chemistry, 2022, 94, 8416-8425.	3.2	6
269	CD24 Is a Potential Immunotherapeutic Target for Mantle Cell Lymphoma. Biomedicines, 2022, 10, 1175.	1.4	16
270	CD24Fc ameliorates immune-related adverse events while preserving anti-tumor therapeutic effect. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	7
271	The Big Potential of Small Particles: Lipid-Based Nanoparticles and Exosomes in Vaccination. Vaccines, 2022, 10, 1119.	2.1	4
272	CD24: A Novel Target for Cancer Immunotherapy. Journal of Personalized Medicine, 2022, 12, 1235.	1.1	24
273	CD24-Siglec axis is an innate immune checkpoint against metaflammation and metabolic disorder. Cell Metabolism, 2022, 34, 1088-1103.e6.	7.2	23
274	CD24 Expression Dampens the Basal Antiviral State in Human Neuroblastoma Cells and Enhances Permissivity to Zika Virus Infection. Viruses, 2022, 14, 1735.	1.5	6
276	Emerging strategies in targeting tumor-resident myeloid cells for cancer immunotherapy. Journal of Hematology and Oncology, 2022, 15, .	6.9	42
277	A bifurcation concept for B-lymphoid/plasmacytoid dendritic cells with largely fluctuating transcriptome dynamics. Cell Reports, 2022, 40, 111260.	2.9	4
278	Role of stiffness and physico-chemical properties of tumour microenvironment on breast cancer cell stemness. Acta Biomaterialia, 2022, 152, 273-289.	4.1	9

#	ARTICLE	IF	CITATIONS
279	<scp>CD24</scp> blockade promotes antiâ€tumor immunity in oral squamous cell carcinoma. Oral Diseases, 0, , .	1.5	7
280	Insights into CD24 and Exosome Physiology and Potential Role in View of Recent Advances in COVID-19 Therapeutics: A Narrative Review. Life, 2022, 12, 1472.	1.1	6
281	Dipeptidyl peptidase-4 cell surface expression marks an abundant adipose stem/progenitor cell population with high stemness in human white adipose tissue. Adipocyte, 2022, 11, 601-615.	1.3	4
282	Loss of CD24 promotes radiation‑ and chemo‑resistance by inducing stemness properties associated with a hybrid E/M state in breast cancer cells. Oncology Reports, 2022, 49, .	1.2	2
283	Genetic heterogeneity of liver cancer stem cells. Anatomy and Cell Biology, 2022, , .	0.5	1
284	CD24 as a Potential Therapeutic Target in Patients with B-Cell Leukemia and Lymphoma: Current Insights. OncoTargets and Therapy, 0, Volume 15, 1391-1402.	1.0	6
286	Advances in exosome analysis. Advances in Clinical Chemistry, 2023, , 69-117.	1.8	9
288	<scp>EGFR</scp> inhibition in <scp>EGFR</scp> â€mutant lung cancer cells perturbs innate immune signaling pathways in the tumor microenvironment. Cancer Science, 2023, 114, 1270-1283.	1.7	5
290	Spleen tyrosine kinase mediates the $\hat{I}^3\hat{I}$ TCR signaling required for $\hat{I}^3\hat{I}$ T cell commitment and $\hat{I}^3\hat{I}$ T17 differentiation. Frontiers in Immunology, 0, 13, .	2.2	1
291	Differential expression analysis in epithelial ovarian cancer using functional genomics and integrated bioinformatics approaches. Informatics in Medicine Unlocked, 2023, 37, 101172.	1.9	0
292	Synchronous Breast and Cervical Carcinoma: A Genetic Point of View. Biomedicines, 2023, 11, 525.	1.4	1
293	Phenotypic and functional characterization of aqueous humor derived extracellular vesicles. Experimental Eye Research, 2023, 228, 109393.	1.2	2
294	Characterization of immature ovarian teratomas through single-cell transcriptome. Frontiers in Immunology, 0, 14 , .	2.2	2
295	Capsule-epithelium-fibre unit ultrastructure in the human lens. International Journal of Medical Sciences, 2023, 20, 542-550.	1.1	1
321	Targeting CD24/Siglec-10 signal pathway for cancer immunotherapy: recent advances and future directions. Cancer Immunology, Immunotherapy, 2024, 73, .	2.0	1
324	Editorial: CD24 in the regulation of cellular development and disease. Frontiers in Immunology, 0, 15, .	2.2	0