Suppression of Antitumor Immunity by Stromal Cells E Protein–α

Science

330, 827-830

DOI: 10.1126/science.1195300

Citation Report

#	Article	IF	CITATIONS
1	Awakening Immunity. Science, 2010, 330, 761-762.	12.6	23
2	Cancer Vaccines. Primary Care - Clinics in Office Practice, 2011, 38, 703-715.	1.6	2
3	Intrinsic modulation of lymphocyte function by stromal cell network: advance in therapeutic targeting of cancer. Immunotherapy, 2011, 3, 1253-1264.	2.0	12
4	Interventions that induce modifications in the tumor microenvironment. Cancer Radiotherapie: Journal De La Societe Francaise De Radiotherapie Oncologique, 2011, 15, 376-382.	1.4	10
5	The Suppressive Tumor Microenvironment: A Challenge in Cancer Immunotherapy. Molecular Pharmaceutics, 2011, 8, 635-641.	4.6	155
6	Cleavage-site specificity of prolyl endopeptidase FAP investigated with a full-length protein substrate. Journal of Biochemistry, 2011, 149, 685-692.	1.7	22
7	Recruitment and Activation of Pancreatic Stellate Cells from the Bone Marrow in Pancreatic Cancer: A Model of Tumor-Host Interaction. PLoS ONE, 2011, 6, e26088.	2.5	55
8	Advances in pancreatic cancer. Current Opinion in Gastroenterology, 2011, 27, 460-466.	2.3	29
10	Neuropeptideâ€fY, Bâ€type natriuretic peptide, substanceâ€fP and peptideâ€fYY are novel substrates of fibrobactivation proteinâ€Î±. FEBS Journal, 2011, 278, 1316-1332.	olast 4.7	108
11	Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nature Medicine, 2011, 17, 320-329.	30.7	1,296
12	Fibrocytes: emerging effector cells in chronic inflammation. Nature Reviews Immunology, 2011, 11, 427-435.	22.7	377
13	Genetically engineered murine models $\hat{a}\in$ Contribution to our understanding of the genetics, molecular pathology and therapeutic targeting of neuroblastoma. Seminars in Cancer Biology, 2011, 21, 245-255.	9.6	48
14	Ten years of progress in vaccination against cancer: the need to counteract cancer evasion by dual targeting in future therapies. Cancer Immunology, Immunotherapy, 2011, 60, 1127-1135.	4.2	26
15	The immunomodulatory properties of mesenchymal stem cells. Seminars in Immunopathology, 2011, 33, 593-602.	6.1	158
16	Cancer Vaccines. Any Future?. Archivum Immunologiae Et Therapiae Experimentalis, 2011, 59, 249-259.	2.3	16
17	Enhancing cell therapies from the outside in: Cell surface engineering using synthetic nanomaterials. Nano Today, 2011, 6, 309-325.	11.9	215
18	Research Highlights. Immunotherapy, 2011, 3, 713-717.	2.0	1
19	The tumor microenvironment: part 1. Immunotherapy, 2011, 3, 1367-1384.	2.0	25

#	Article	IF	CITATIONS
20	Enhancement of Cancer Vaccine Therapy by Systemic Delivery of a Tumor-Targeting <i>Salmonella-</i> Based STAT3 shRNA Suppresses the Growth of Established Melanoma Tumors. Cancer Research, 2011, 71, 4183-4191.	0.9	79
21	Novel targeted treatment strategies for refractory chronic lymphocytic leukaemia. Therapeutic Advances in Hematology, 2011, 2, 249-265.	2.5	3
22	The Role of Tumour Stroma in Colorectal Cancer Invasion and Metastasis. Cancers, 2011, 3, 2160-2168.	3.7	50
23	Heat Shock Proteins, Autoimmunity, and Cancer Treatment. Autoimmune Diseases, 2012, 2012, 1-10.	0.6	69
24	Modulation of Tumor Tolerance in Primary Central Nervous System Malignancies. Clinical and Developmental Immunology, 2012, 2012, 1-14.	3.3	15
25	Remodeling of Tumor Stroma and Response to Therapy. Cancers, 2012, 4, 340-353.	3.7	14
26	Release of TGFβig-h3 by gastric myofibroblasts slows tumor growth and is decreased with cancer progression. Carcinogenesis, 2012, 33, 1553-1562.	2.8	33
27	Human Correlates of Provocative Questions in Pancreatic Pathology. Advances in Anatomic Pathology, 2012, 19, 351-362.	4.3	29
28	Oncogenic BRAF(V600E) Promotes Stromal Cell-Mediated Immunosuppression Via Induction of Interleukin-1 in Melanoma. Clinical Cancer Research, 2012, 18, 5329-5340.	7.0	266
29	The Pancreas Cancer Microenvironment. Clinical Cancer Research, 2012, 18, 4266-4276.	7.0	1,087
30	Rationale Behind Targeting Fibroblast Activation Protein–Expressing Carcinoma-Associated Fibroblasts as a Novel Chemotherapeutic Strategy. Molecular Cancer Therapeutics, 2012, 11, 257-266.	4.1	204
31	The Impact of the Activated Stroma on Pancreatic Ductal Adenocarcinoma Biology and Therapy Resistance. Current Molecular Medicine, 2012, 12, 288-303.	1.3	71
32	Arousal of cancer-associated stromal fibroblasts. Cell Adhesion and Migration, 2012, 6, 488-494.	2.7	32
33	The early antitumor immune response is necessary for tumor growth. Oncolmmunology, 2012, 1, 930-934.	4.6	6
34	Guest Editorial. Immunological Investigations, 2012, 41, 555-561.	2.0	0
35	Inhibition of TGFâ€Î²/Smad Signaling by BAMBI Blocks Differentiation of Human Mesenchymal Stem Cells to Carcinomaâ€Associated Fibroblasts and Abolishes their Protumor Effects. Stem Cells, 2012, 30, 2810-2819.	3.2	127
36	Modulating the tumor immune microenvironment as an ovarian cancer treatment strategy. Expert Review of Obstetrics and Gynecology, 2012, 7, 413-419.	0.4	16
37	Stromal Cell Induction of Regulatory Dendritic Cells. Frontiers in Immunology, 2012, 3, 262.	4.8	11

#	ARTICLE	IF	CITATIONS
38	Positive and negative regulation of T cell responses by fibroblastic reticular cells within paracortical regions of lymph nodes. Frontiers in Immunology, 2012, 3, 285.	4.8	44
39	Profiling the Immune Stromal Interface in Breast Cancer and Its Potential for Clinical Impact. Breast Care, 2012, 7, 273-280.	1.4	7
40	Nuclear Receptors as Modulators of the Tumor Microenvironment. Cancer Prevention Research, 2012, 5, 3-10.	1.5	28
41	Revisiting the role of T cells in tumor regression. Oncolmmunology, 2012, 1, 346-350.	4.6	13
42	Early Diagnosis of Pancreatic Adenocarcinoma. Pancreas, 2012, 41, 663-670.	1.1	9
43	Fibroblast activation protein regulates tumor-associated fibroblasts and epithelial ovarian cancer cells. International Journal of Oncology, 2012, 41, 541-550.	3.3	67
44	Systemic Delivery of <i>Salmonella typhimurium </i> Transformed with IDO shRNA Enhances Intratumoral Vector Colonization and Suppresses Tumor Growth. Cancer Research, 2012, 72, 6447-6456.	0.9	84
45	Radioimmunotherapy of Fibroblast Activation Protein Positive Tumors by Rapidly Internalizing Antibodies. Clinical Cancer Research, 2012, 18, 6208-6218.	7.0	74
46	Mesenchymal stromal cells: a key player in †innate tolerance'?. Immunology, 2012, 137, 206-213.	4.4	71
47	The mesenchyme in malignancy: A partner in the initiation, progression and dissemination of cancer., 2012, 136, 131-141.		18
48	Loss of Fibroblast HIF-1α Accelerates Tumorigenesis. Cancer Research, 2012, 72, 3187-3195.	0.9	55
49	Gene expression changes in human lung cells exposed to arsenic, chromium, nickel or vanadium indicate the first steps in cancer. Metallomics, 2012, 4, 784.	2.4	79
50	Upregulation of CD26 expression in epithelial cells and stromal cells during wound-induced skin tumour formation. Oncogene, 2012, 31, 992-1000.	5.9	35
51	The White Adipose Tissue Used in Lipotransfer Procedures Is a Rich Reservoir of CD34+ Progenitors Able to Promote Cancer Progression. Cancer Research, 2012, 72, 325-334.	0.9	138
52	Targeting Carcinoma-Associated Fibroblasts Within the Tumor Stroma With a Fibroblast Activation Protein-Activated Prodrug. Journal of the National Cancer Institute, 2012, 104, 1320-1334.	6.3	155
53	Improving drug delivery to pancreatic cancer: breaching the stromal fortress by targeting hyaluronic acid. Gut, 2012, 61, 1377-1379.	12.1	45
54	The secret ally: immunostimulation by anticancer drugs. Nature Reviews Drug Discovery, 2012, 11, 215-233.	46.4	591
55	Applying next-generation sequencing to pancreatic cancer treatment. Nature Reviews Gastroenterology and Hepatology, 2012, 9, 477-486.	17.8	41

#	ARTICLE	IF	CITATIONS
56	Host Indoleamine 2,3-Dioxygenase: Contribution to Systemic Acquired Tumor Tolerance. Immunological Investigations, 2012, 41, 765-797.	2.0	86
57	Comparative analysis of the substrate preferences of two postâ€proline cleaving endopeptidases, prolyl oligopeptidase and fibroblast activation protein α. FEBS Letters, 2012, 586, 2507-2512.	2.8	16
58	The right time, the right place: will targeting human cancer-associated mutations to the mouse provide the perfect preclinical model?. Current Opinion in Genetics and Development, 2012, 22, 28-35.	3.3	5
59	Activatable Near-Infrared Fluorescent Probe for <i>In Vivo</i> Imaging of Fibroblast Activation Protein-alpha. Bioconjugate Chemistry, 2012, 23, 1704-1711.	3.6	75
60	Expression profiling of dipeptidyl peptidase 8 and 9 in breast and ovarian carcinoma cell lines. International Journal of Oncology, 2012, 41, 919-932.	3.3	27
61	The tumor microenvironment at a glance. Journal of Cell Science, 2012, 125, 5591-5596.	2.0	1,422
62	The pharmacological landscape and therapeutic potential of serine hydrolases. Nature Reviews Drug Discovery, 2012, 11, 52-68.	46.4	241
63	Fibrocytes: emerging effector cells in chronic inflammation. Current Opinion in Pharmacology, 2012, 12, 491-496.	3.5	62
64	Fibroblast activation protein. Cancer Biology and Therapy, 2012, 13, 123-129.	3.4	134
65	The role of stroma in pancreatic cancer: diagnostic and therapeutic implications. Nature Reviews Gastroenterology and Hepatology, 2012, 9, 454-467.	17.8	535
66	Targeting the Tumor Stroma as a Novel Treatment Strategy for Breast Cancer. Advances in Pharmacology, 2012, 65, 45-61.	2.0	53
67	Multifaceted Tumor Stromal Fibroblasts. Cancer Microenvironment, 2012, 5, 187-193.	3.1	12
68	Cancer-associated fibroblasts as targets for immunotherapy. Immunotherapy, 2012, 4, 1129-1138.	2.0	88
69	Fibroblast Activation Protein-α. International Review of Cell and Molecular Biology, 2012, 297, 83-116.	3.2	93
70	Stem Cells and Cancer Stem Cells, Volume 4. , 2012, , .		2
71	Plasma Seprase and DPP4 Levels as Markers of Disease and Prognosis in Cancer. Disease Markers, 2012, 32, 309-320.	1.3	41
72	Heat Shock Proteins: Conditional Mediators of Inflammation in Tumor Immunity. Frontiers in Immunology, 2012, 3, 75.	4.8	40
73	Cellular Constituents of Immune Escape within the Tumor Microenvironment. Cancer Research, 2012, 72, 3125-3130.	0.9	308

#	ARTICLE	lF	CITATIONS
74	Adoptive immunotherapy for cancer: harnessing the T cell response. Nature Reviews Immunology, 2012, 12, 269-281.	22.7	1,412
75	Acylated Gly-(2-cyano)pyrrolidines as inhibitors of fibroblast activation protein (FAP) and the issue of FAP/prolyl oligopeptidase (PREP)-selectivity. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3412-3417.	2.2	39
76	Cancer-related inflammation: Common themes and therapeutic opportunities. Seminars in Cancer Biology, 2012, 22, 33-40.	9.6	567
77	Targeting stroma to treat cancers. Seminars in Cancer Biology, 2012, 22, 41-49.	9.6	66
78	A Starring Role for Stellate Cells in the Pancreatic Cancer Microenvironment. Gastroenterology, 2013, 144, 1210-1219.	1.3	372
80	Mesenchymal stromal cells: radioâ€resistant members of the bone marrow. Immunology and Cell Biology, 2013, 91, 5-11.	2.3	59
81	Role of Immune Cells and Immune-Based Therapies in Pancreatitis and Pancreatic Ductal Adenocarcinoma. Gastroenterology, 2013, 144, 1230-1240.	1.3	253
82	Bone marrow cells as precursors of the tumor stroma. Experimental Cell Research, 2013, 319, 1650-1656.	2.6	25
83	The speed of change: towards a discontinuity theory of immunity?. Nature Reviews Immunology, 2013, 13, 764-769.	22.7	136
84	Clinical implications of fibroblast activation protein- \hat{l}_{\pm} in non-small cell lung cancer after curative resection: a new predictor for prognosis. Journal of Cancer Research and Clinical Oncology, 2013, 139, 1523-1528.	2.5	78
86	CD40 immunotherapy for pancreatic cancer. Cancer Immunology, Immunotherapy, 2013, 62, 949-954.	4.2	95
87	Major Histocompatibility Complex Genomics and Human Disease. Annual Review of Genomics and Human Genetics, 2013, 14, 301-323.	6.2	580
88	Adipose Tissue and Cancer. , 2013, , .		2
89	Effects of the fibroblast activation protein on the invasion and migration of gastric cancer. Experimental and Molecular Pathology, 2013, 95, 350-356.	2.1	60
90	Genetically engineered mouse models of pancreatic adenocarcinoma. Molecular Oncology, 2013, 7, 232-247.	4.6	140
91	Targeting Inhibition of Fibroblast Activation Protein-α and Prolyl Oligopeptidase Activities on Cells Common to Metastatic Tumor Microenvironments. Neoplasia, 2013, 15, 348-358.	5.3	39
92	Inflammatory networks and immune surveillance of pancreatic carcinoma. Current Opinion in Immunology, 2013, 25, 200-205.	5.5	173
93	Multiple Facets of the DNA Damage Response Contribute to the Radioresistance of Mouse Mesenchymal Stromal Cell Lines. Stem Cells, 2013, 31, 137-145.	3.2	65

#	Article	IF	CITATIONS
94	Activated Pancreatic Stellate Cells Sequester CD8+ T Cells to Reduce Their Infiltration of the Juxtatumoral Compartment of Pancreatic Ductal Adenocarcinoma. Gastroenterology, 2013, 145, 1121-1132.	1.3	439
95	Vaccination With ENO1 DNA Prolongs Survival of Genetically Engineered Mice With Pancreatic Cancer. Gastroenterology, 2013, 144, 1098-1106.	1.3	104
96	Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti–PD-L1 immunotherapy in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20212-20217.	7.1	1,482
97	Tumors as Organs: Biologically Augmenting Radiation Therapy by Inhibiting Transforming Growth Factor Î ² Activity in Carcinomas. Seminars in Radiation Oncology, 2013, 23, 242-251.	2.2	36
98	The Possible Diagnostic and Prognostic Use of Systemic Chemokine Profiles in Clinical Medicine—The Experience in Acute Myeloid Leukemia from Disease Development and Diagnosis via Conventional Chemotherapy to Allogeneic Stem Cell Transplantation. Toxins, 2013, 5, 336-362.	3.4	29
99	The Analysis of Metallothionein Immunoreactivity in Stromal Fibroblasts and Macrophages in Cases of Uterine Cervical Carcinoma With Respect to Both the Local and Distant Spread of the Disease. American Journal of Reproductive Immunology, 2013, 70, 253-261.	1.2	11
100	Treatment of malignant pleural mesothelioma by fibroblast activation protein-specific re-directed T cells. Journal of Translational Medicine, $2013, 11, 187$.	4.4	147
101	Innate and adaptive immune cells in the tumor microenvironment. Nature Immunology, 2013, 14, 1014-1022.	14.5	3,109
102	Fibroblast activation protein expression by stromal cells and tumor-associated macrophages in human breast cancer. Human Pathology, 2013, 44, 2549-2557.	2.0	75
103	Fibroblast Activation Protein α., 2013, , 3395-3401.		7
103	Fibroblast Activation Protein α., 2013, , 3395-3401. What can rheumatologists learn from translational cancer therapy?. Arthritis Research and Therapy, 2013, 15, 114.	3.5	8
	What can rheumatologists learn from translational cancer therapy?. Arthritis Research and Therapy,	3.5	
104	What can rheumatologists learn from translational cancer therapy?. Arthritis Research and Therapy, 2013, 15, 114. Fibrocytes represent a novel MDSC subset circulating in patients with metastatic cancer. Blood, 2013,		8
104	What can rheumatologists learn from translational cancer therapy?. Arthritis Research and Therapy, 2013, 15, 114. Fibrocytes represent a novel MDSC subset circulating in patients with metastatic cancer. Blood, 2013, 122, 1105-1113. The Receptor for Advanced Glycation End Products Promotes Pancreatic Carcinogenesis and	1.4	8
104 105 106	What can rheumatologists learn from translational cancer therapy?. Arthritis Research and Therapy, 2013, 15, 114. Fibrocytes represent a novel MDSC subset circulating in patients with metastatic cancer. Blood, 2013, 122, 1105-1113. The Receptor for Advanced Glycation End Products Promotes Pancreatic Carcinogenesis and Accumulation of Myeloid-Derived Suppressor Cells. Journal of Immunology, 2013, 190, 1372-1379. Identification of inhibitory scFv antibodies targeting fibroblast activation protein utilizing phage	0.8	8 144 47
104 105 106	What can rheumatologists learn from translational cancer therapy?. Arthritis Research and Therapy, 2013, 15, 114. Fibrocytes represent a novel MDSC subset circulating in patients with metastatic cancer. Blood, 2013, 122, 1105-1113. The Receptor for Advanced Glycation End Products Promotes Pancreatic Carcinogenesis and Accumulation of Myeloid-Derived Suppressor Cells. Journal of Immunology, 2013, 190, 1372-1379. Identification of inhibitory scFv antibodies targeting fibroblast activation protein utilizing phage display functional screens. FASEB Journal, 2013, 27, 581-589.	0.8	8 144 47 17
104 105 106 107	What can rheumatologists learn from translational cancer therapy?. Arthritis Research and Therapy, 2013, 15, 114. Fibrocytes represent a novel MDSC subset circulating in patients with metastatic cancer. Blood, 2013, 122, 1105-1113. The Receptor for Advanced Glycation End Products Promotes Pancreatic Carcinogenesis and Accumulation of Myeloid-Derived Suppressor Cells. Journal of Immunology, 2013, 190, 1372-1379. Identification of inhibitory scFv antibodies targeting fibroblast activation protein utilizing phage display functional screens. FASEB Journal, 2013, 27, 581-589. Fibroblasts as architects of cancer pathogenesis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1070-1078.	0.8 0.5	8 144 47 17 218

#	Article	IF	CITATIONS
112	Tumor stroma as targets for cancer therapy. , 2013, 137, 200-215.		153
113	The role of stromal cells in the persistence of chronic inflammation. Clinical and Experimental Immunology, 2012, 171, 30-35.	2.6	67
114	Tumor dormancy and the neuroendocrine system: an undisclosed connection?. Cancer and Metastasis Reviews, 2013, 32, 189-200.	5.9	22
115	Carcinomaâ€associated fibroblasts: Nonâ€neoplastic tumourâ€promoting mesenchymal cells. Journal of Cellular Physiology, 2013, 228, 1651-1657.	4.1	178
116	Collapse of the Tumor Stroma is Triggered by IL-12 Induction of Fas. Molecular Therapy, 2013, 21, 1369-1377.	8.2	62
117	Lung Cancer in China. Chest, 2013, 143, 1117-1126.	0.8	283
118	Identification of Selective and Potent Inhibitors of Fibroblast Activation Protein and Prolyl Oligopeptidase. Journal of Medicinal Chemistry, 2013, 56, 3467-3477.	6.4	84
119	Positive and negative influence of the matrix architecture on antitumor immune surveillance. Cellular and Molecular Life Sciences, 2013, 70, 4431-4448.	5.4	83
120	Antitumor Effects of Chimeric Receptor Engineered Human T Cells Directed to Tumor Stroma. Molecular Therapy, 2013, 21, 1611-1620.	8.2	266
121	â€ ⁻ Cancer associated fibroblasts' – more than meets the eye. Trends in Molecular Medicine, 2013, 19, 447-453.	6.7	297
122	Immunologic Aspects of Prostate Cancer. , 2013, , 65-72.		0
123	Mesenchymal Cells Hold the Key to Immune Cell Recruitment to and Migration within Melanoma. Journal of Investigative Dermatology, 2013, 133, 2138-2140.	0.7	0
124	Depletion of stromal cells expressing fibroblast activation protein-α from skeletal muscle and bone marrow results in cachexia and anemia. Journal of Experimental Medicine, 2013, 210, 1137-1151.	8.5	304
125	The role of non-hematopoietic stromal cells in the persistence of inflammation. Frontiers in Immunology, 2012, 3, 416.	4.8	23
126	Contribution of bone marrow derived cells to the pancreatic tumor microenvironment. Frontiers in Physiology, 2013, 4, 56.	2.8	20
127	Carcinoma-Associated Fibroblasts Are a Promising Therapeutic Target. Cancers, 2013, 5, 149-169.	3.7	137
128	A Pan-Inhibitor of DASH Family Enzymes Induces Immune-mediated Regression of Murine Sarcoma and Is a Potent Adjuvant to Dendritic Cell Vaccination and Adoptive T-cell Therapy. Journal of Immunotherapy, 2013, 36, 400-411.	2.4	12
129	Enhancing immunotherapy using chemotherapy and radiation to modify the tumor microenvironment. Oncolmmunology, 2013, 2, e25962.	4.6	80

#	ARTICLE	IF	CITATIONS
131	Fibroblast-Specific Protein 1/S100A4–Positive Cells Prevent Carcinoma through Collagen Production and Encapsulation of Carcinogens. Cancer Research, 2013, 73, 2770-2781.	0.9	59
132	Reading the Tea Leaves of Tumor-Mediated Immunosuppression. Clinical Cancer Research, 2013, 19, 955-957.	7.0	10
133	Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. Journal of Experimental Medicine, 2013, 210, 1125-1135.	8.5	321
134	Antagonism of adenosine A2A receptor expressed by lung adenocarcinoma tumor cells and cancer associated fibroblasts inhibits their growth. Cancer Biology and Therapy, 2013, 14, 860-868.	3.4	83
135	Cancer makes new friends with old tricks. Blood, 2013, 122, 1093-1094.	1.4	5
136	Targeting immunosuppression for cancer therapy. Journal of Clinical Investigation, 2013, 123, 2355-2357.	8.2	53
137	Val-BoroPro Accelerates T Cell Priming via Modulation of Dendritic Cell Trafficking Resulting in Complete Regression of Established Murine Tumors. PLoS ONE, 2013, 8, e58860.	2.5	44
138	17 Mesenchymal stem cells and the tumor microenvironment. , 2013, , 331-352.		0
139	Dipeptidyl Peptidase-IV and Related Proteases in Brain Tumors. , 2013, , .		4
140	The impact of hypoxia in pancreatic cancer invasion and metastasis. Hypoxia (Auckland, N Z), 2014, 2, 91.	1.9	58
141	Fibroblast Activation Protein (FAP) Is Essential for the Migration of Bone Marrow Mesenchymal Stem Cells through RhoA Activation. PLoS ONE, 2014, 9, e88772.	2.5	59
142	Chondroitin Sulfate Proteoglycan CSPG4 as a Novel Hypoxia-Sensitive Marker in Pancreatic Tumors. PLoS ONE, 2014, 9, e100178.	2.5	19
143	Pancreatic Cancer Fostered Immunosuppression Privileges Tumor Growth and Progression. Journal of Clinical & Cellular Immunology, 2014, 05, .	1.5	3
144	IP-10/CXCL10 induction in human pancreatic cancer stroma influences lymphocytes recruitment and correlates with poor survival. Oncotarget, 2014, 5, 11064-11080.	1.8	103
145	A Signature Predicting Poor Prognosis in Gastric and Ovarian Cancer Represents a Coordinated Macrophage and Stromal Response. Clinical Cancer Research, 2014, 20, 2761-2772.	7.0	60
146	Deficiency of Kruppel-like factor KLF4 in myeloid-derived suppressor cells inhibits tumor pulmonary metastasis in mice accompanied by decreased fibrocytes. Oncogenesis, 2014, 3, e129-e129.	4.9	32
147	Utilizing past and present mouse systems to engineer more relevant pancreatic cancer models. Frontiers in Physiology, 2014, 5, 464.	2.8	20
148	WNT16B from Ovarian Fibroblasts Induces Differentiation of Regulatory T Cells through \hat{l}^2 -Catenin Signal in Dendritic Cells. International Journal of Molecular Sciences, 2014, 15, 12928-12939.	4.1	15

#	Article	IF	CITATIONS
149	Impact of fibroblast activation protein on osteosarcoma cell lines in vitro. Oncology Letters, 2014, 7, 699-704.	1.8	15
150	Roles of nonmyogenic mesenchymal progenitors in pathogenesis and regeneration of skeletal muscle. Frontiers in Physiology, 2014, 5, 68.	2.8	114
151	Stars and stripes in pancreatic cancer: role of stellate cells and stroma in cancer progression. Frontiers in Physiology, 2014, 5, 52.	2.8	71
152	Apoptosis and Anergy of T Cell Induced by Pancreatic Stellate Cells Derived Galectin-1 in Pancreatic Cancer. Annals of Oncology, 2014, 25, ii22.	1.2	0
153	Tumoral Immune Suppression by Macrophages Expressing Fibroblast Activation Protein- $\hat{l}\pm$ and Heme Oxygenase-1. Cancer Immunology Research, 2014, 2, 121-126.	3.4	127
154	Intravital imaging reveals distinct responses of depleting dynamic tumor-associated macrophage and dendritic cell subpopulations. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5086-95.	7.1	94
155	Hypoxia Enhances the Radioresistance of Mouse Mesenchymal Stromal Cells. Stem Cells, 2014, 32, 2188-2200.	3.2	61
156	Pharmacokinetics and toxicology of a fibroblast activation protein (FAP)â€activated prodrug in murine xenograft models of human cancer. Prostate, 2014, 74, 1308-1319.	2.3	24
157	Stroma: Fertile soil for inflammation. Best Practice and Research in Clinical Rheumatology, 2014, 28, 565-576.	3.3	34
158	Understanding fibroblast activation protein (FAP): Substrates, activities, expression and targeting for cancer therapy. Proteomics - Clinical Applications, 2014, 8, 454-463.	1.6	311
159	Increased KIT Inhibition Enhances Therapeutic Efficacy in Gastrointestinal Stromal Tumor. Clinical Cancer Research, 2014, 20, 2350-2362.	7.0	44
160	Fibroblast activation protein protects bortezomib-induced apoptosis in multiple myeloma cells through \hat{l}^2 -catenin signaling pathway. Cancer Biology and Therapy, 2014, 15, 1413-1422.	3.4	22
161	Mesenchymal Stem Cell-Like Properties in Fibroblasts. Cellular Physiology and Biochemistry, 2014, 34, 703-714.	1.6	64
162	Investigation of the phototoxic effect of ZnO nanorods on fibroblasts and melanoma human cells. Laser Physics Letters, 2014, 11, 115606.	1.4	7
163	Invading one step at a time: the role of invadopodia in tumor metastasis. Oncogene, 2014, 33, 4193-4202.	5.9	168
164	Estrogen-mediated activation of fibroblasts and its effects on the fibroid cell proliferation. Translational Research, 2014, 163, 232-241.	5.0	47
165	Fibroblast activation protein, a potential diagnostic and therapeutic target for cancerâ€"reply. Human Pathology, 2014, 45, 1553-1554.	2.0	4
166	The stromal compartments in pancreatic cancer: Are there any therapeutic targets?. Cancer Letters, 2014, 343, 147-155.	7.2	155

#	Article	IF	CITATIONS
167	Mechanisms of tumor escape from immune system: Role of mesenchymal stromal cells. Immunology Letters, 2014, 159, 55-72.	2.5	120
168	Insidious Changes in Stromal Matrix Fuel Cancer Progression. Molecular Cancer Research, 2014, 12, 297-312.	3.4	81
169	Regulation of the anti-tumour immune response by cancer-associated fibroblasts. Seminars in Cancer Biology, 2014, 25, 69-77.	9.6	214
170	Lung tumours reprogram pulmonary dendritic cell immunogenicity at the microRNA level. International Journal of Cancer, 2014, 135, 2868-2877.	5.1	27
171	Mesenchymal stem cells in progression and treatment of cancers. Frontiers in Biology, 2014, 9, 186-194.	0.7	1
172	Targeting Fibroblast Activation Protein in Tumor Stroma with Chimeric Antigen Receptor T Cells Can Inhibit Tumor Growth and Augment Host Immunity without Severe Toxicity. Cancer Immunology Research, 2014, 2, 154-166.	3.4	448
173	Immunotherapy of tumor with vaccine based on basic fibroblast growth factor-activated fibroblasts. Journal of Cancer Research and Clinical Oncology, 2014, 140, 271-280.	2.5	20
174	Photodynamic effects of zinc oxide nanowires in skin cancer and fibroblast. Lasers in Medical Science, 2014, 29, 1189-1194.	2.1	12
175	License for destruction: Tumor-specific cytokine targeting. Trends in Molecular Medicine, 2014, 20, 16-24.	6.7	25
176	The role of reactive oxygen species and metabolism on cancer cells and their microenvironment. Seminars in Cancer Biology, 2014, 25, 23-32.	9.6	243
177	Fibroblastic reticular cells of the lymph node are required for retention of resting but not activated CD8 ⁺ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12139-12144.	7.1	115
178	Tissue injury and hypoxia promote malignant progression of prostate cancer by inducing CXCL13 expression in tumor myofibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14776-14781.	7.1	165
179	The Carcinoma-Associated Fibroblast Expressing Fibroblast Activation Protein and Escape from Immune Surveillance. Cancer Immunology Research, 2014, 2, 187-193.	3.4	223
180	Intratumorally implanted mesenchymal stromal cells potentiate peripheral immunotherapy against malignant rat gliomas. Journal of Neuroimmunology, 2014, 274, 240-243.	2.3	8
181	Dissecting the Tumor Myeloid Compartment Reveals Rare Activating Antigen-Presenting Cells Critical for T Cell Immunity. Cancer Cell, 2014, 26, 638-652.	16.8	911
182	Modulation of TNF-Induced Macrophage Polarization by Synovial Fibroblasts. Journal of Immunology, 2014, 193, 2373-2383.	0.8	94
183	Clinical cancer research: the past, present and the future. Nature Reviews Clinical Oncology, 2014, 11, 663-669.	27.6	29
184	The influence of hypoxia on the differentiation capacities and immunosuppressive properties of clonal mouse mesenchymal stromal cell lines. Immunology and Cell Biology, 2014, 92, 612-623.	2.3	24

#	Article	IF	CITATIONS
185	Fibroblast heterogeneity in the cancer wound. Journal of Experimental Medicine, 2014, 211, 1503-1523.	8.5	683
186	Complex metastatic niches: already a target for therapy?. Current Opinion in Cell Biology, 2014, 31, 29-38.	5.4	23
187	Immune-based therapies in pancreatic and colorectal cancers and biomarkers of responsiveness. Expert Review of Anticancer Therapy, 2014, 14, 1219-1228.	2.4	1
188	Molecular insights into the development of T cell-based immunotherapy for prostate cancer. Expert Review of Clinical Immunology, 2014, 10, 1547-1557.	3.0	7
189	Stromal reengineering to treat pancreas cancer. Carcinogenesis, 2014, 35, 1451-1460.	2.8	108
190	Molecular Pathways: Myeloid Complicity in Cancer. Clinical Cancer Research, 2014, 20, 5157-5170.	7.0	44
191	FAP- \hat{l}_{\pm} (Fibroblast activation protein- \hat{l}_{\pm}) is involved in the control of human breast cancer cell line growth and motility via the FAK pathway. BMC Cell Biology, 2014, 15, 16.	3.0	57
192	Stromal Fibroblasts and the Immune Microenvironment: Partners in Mammary Gland Biology and Pathology?. Journal of Mammary Gland Biology and Neoplasia, 2014, 19, 169-182.	2.7	31
193	Functional subsets of mesenchymal cell types in the tumor microenvironment. Seminars in Cancer Biology, 2014, 25, 3-9.	9.6	96
194	TGF-beta in CAF-mediated tumor growth and metastasis. Seminars in Cancer Biology, 2014, 25, 15-22.	9.6	268
196	Tumor-associated mesothelial cells are negative prognostic factors in gastric cancer and promote peritoneal dissemination of adherent gastric cancer cells by chemotaxis. Tumor Biology, 2014, 35, 6105-6111.	1.8	13
197	FRETâ€based and other fluorescent proteinase probes. Biotechnology Journal, 2014, 9, 266-281.	3.5	46
198	Fibroblast-activation protein: valuable marker of cutaneous epithelial malignancy. Archives of Dermatological Research, 2014, 306, 359-365.	1.9	10
199	Animal Models and the Tumor Microenvironment: Studies of Tumor–Host Symbiosis. Seminars in Oncology, 2014, 41, 146-155.	2.2	16
200	A rare variant in human fibroblast activation protein associated with ER stress, loss of enzymatic function and loss of cell surface localisation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1248-1259.	2.3	18
201	Role of the immune system in pancreatic cancer progression and immune modulating treatment strategies. Cancer Treatment Reviews, 2014, 40, 513-522.	7.7	141
202	Cancer-Associated Fibroblasts as Another Polarized Cell Type of the Tumor Microenvironment. Frontiers in Oncology, 2014, 4, 62.	2.8	363
203	Pancreatic cancer stroma: Understanding biology leads to new therapeutic strategies. World Journal of Gastroenterology, 2014, 20, 2237.	3.3	105

#	Article	IF	Citations
205	Fibroblast activation protein and its prognostic significance in correlation with vascular endothelial growth factor in pancreatic adenocarcinoma. Molecular Medicine Reports, 2015, 11, 4585-4590.	2.4	26
206	A whole-cell tumor vaccine modified to express fibroblast activation protein induces antitumor immunity against both tumor cells and cancer-associated fibroblasts. Scientific Reports, 2015, 5, 14421.	3.3	52
207	Fibroblast activation protein- \hat{l}_{\pm} -expressing fibroblasts promote the progression of pancreatic ductal adenocarcinoma. BMC Gastroenterology, 2015, 15, 109.	2.0	75
208	Expression of cancer-associated fibroblast related proteins in metastatic breast cancer: an immunohistochemical analysis. Journal of Translational Medicine, 2015, 13, 222.	4.4	43
209	A Systemic Review of Clinical Trials on Dendritic-Cells Based Vaccine Against Malignant Glioma. Journal of Carcinogenesis & Mutagenesis, 2015, 06, .	0.3	1
210	Cancer-associated Fibroblasts and Modulation of the Antitumor Immune Response. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2015, 09, .	0.1	0
211	Cancer-Associated Fibroblasts: Their Characteristics and Their Roles in Tumor Growth. Cancers, 2015, 7, 2443-2458.	3.7	616
212	Comparative study of various subpopulations of cytotoxic cells in blood and ascites from patients with ovarian carcinoma. Wspolczesna Onkologia, 2015, 4, 290-299.	1.4	21
213	Immunity, inflammation, and cancer: an eternal fight between good and evil. Journal of Clinical Investigation, 2015, 125, 3347-3355.	8.2	572
214	Critical Role of Tumor Microenvironment in Shaping NK Cell Functions: Implication of Hypoxic Stress. Frontiers in Immunology, 2015, 6, 482.	4.8	103
215	Cancer-Associated Fibroblasts from Lung Tumors Maintain Their Immunosuppressive Abilities after High-Dose Irradiation. Frontiers in Oncology, 2015, 5, 87.	2.8	45
216	Notch1 Pathway Activity Determines the Regulatory Role of Cancer-Associated Fibroblasts in Melanoma Growth and Invasion. PLoS ONE, 2015, 10, e0142815.	2.5	12
217	Monoclonal Antibodies for the Treatment of Cancer. , 2015, , 683-694.e3.		0
218	Curcumin combined with FAPÎ \pm c vaccine elicits effective antitumor response by targeting indolamine-2,3-dioxygenase and inhibiting EMT induced by TNF-Î \pm in melanoma. Oncotarget, 2015, 6, 25932-25942.	1.8	39
219	T cell exclusion, immune privilege, and the tumor microenvironment. Science, 2015, 348, 74-80.	12.6	1,735
220	Tumor-Promoting Desmoplasia Is Disrupted by Depleting FAP-Expressing Stromal Cells. Cancer Research, 2015, 75, 2800-2810.	0.9	375
221	Tumor stroma and chemokines control T-cell migration into melanoma following Temozolomide treatment. Oncolmmunology, 2015, 4, e978709.	4.6	33
222	Pancreatic Stellate Cells. , 2015, , 271-306.		4

#	Article	IF	CITATIONS
223	Lung Stem Cells in the Epithelium and Vasculature. Pancreatic Islet Biology, 2015, , .	0.3	1
224	Bone marrow-derived mesenchymal stem cells co-expressing interleukin-18 and interferon-β exhibit potent antitumor effect against intracranial glioma in rats. Oncology Reports, 2015, 34, 1915-1922.	2.6	31
225	Fibroblast activation protein \hat{l}_{\pm} in tumor microenvironment: Recent progression and implications (Review). Molecular Medicine Reports, 2015, 11, 3203-3211.	2.4	92
226	Suppression of Tumor Growth in Mice by Rationally Designed Pseudopeptide Inhibitors of Fibroblast Activation Protein and Prolyl Oligopeptidase. Neoplasia, 2015, 17, 43-54.	5.3	27
227	Differential expression of cancer-associated fibroblast-related proteins according to molecular subtype and stromal histology in breast cancer. Breast Cancer Research and Treatment, 2015, 149, 727-741.	2.5	62
228	An Immunocompetent, Orthotopic Mouse Model of Epithelial Ovarian Cancer Utilizing Tissue Engineered Tumor Cell Sheets. Tissue Engineering - Part C: Methods, 2015, 21, 23-34.	2.1	12
229	Understanding the complexity and malleability of Tâ€cell recognition. Immunology and Cell Biology, 2015, 93, 433-441.	2.3	44
230	Myeloid-derived suppressor cell impact on endogenous and adoptively transferred T cells. Current Opinion in Immunology, 2015, 33, 120-125.	5.5	50
231	Apoptosis and anergy of T cell induced by pancreatic stellate cells-derived galectin-1 in pancreatic cancer. Tumor Biology, 2015, 36, 5617-5626.	1.8	51
232	Crosstalk between cancer cells and blood endothelial and lymphatic endothelial cells in tumour and organ microenvironment. Expert Reviews in Molecular Medicine, 2015, 17, e3.	3.9	65
233	The stromal cell-surface protease fibroblast activation protein-α localizes to lipid rafts and is recruited to invadopodia. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2515-2525.	4.1	20
234	Specific inhibition of fibroblast activation protein (FAP)-alpha prevents tumor progression in vitro. Advances in Medical Sciences, 2015, 60, 264-272.	2.1	67
235	Targeting roles of inflammatory microenvironment in lung cancer and metastasis. Cancer and Metastasis Reviews, 2015, 34, 319-331.	5.9	49
236	Expression of cancer-associated fibroblast-related proteins in adipose stroma of breast cancer. Tumor Biology, 2015, 36, 8685-8695.	1.8	33
237	The New Era of Cancer Immunotherapy. Advances in Cancer Research, 2015, 128, 1-68.	5.0	41
238	Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science, 2015, 348, aaa2151.	12.6	520
239	Ezrin-expressing lung adenocarcinoma cells and podoplanin-positive fibroblasts form a malignant microenvironment. Journal of Cancer Research and Clinical Oncology, 2015, 141, 475-484.	2.5	12
240	Prognostic stromal gene signatures in breast cancer. Breast Cancer Research, 2015, 17, 23.	5.0	67

#	Article	IF	CITATIONS
241	Strategies to relieve immunosuppression in pancreatic cancer. Immunotherapy, 2015, 7, 363-376.	2.0	30
242	Management of metastatic pancreatic cancer: Current treatment options and potential new therapeutic targets. Critical Reviews in Oncology/Hematology, 2015, 95, 318-336.	4.4	18
243	Generation of Potent T-cell Immunotherapy for Cancer Using DAP12-Based, Multichain, Chimeric Immunoreceptors. Cancer Immunology Research, 2015, 3, 815-826.	3.4	87
244	The STING pathway and the T cell-inflamed tumor microenvironment. Trends in Immunology, 2015, 36, 250-256.	6.8	190
245	Cancer and the microbiota. Science, 2015, 348, 80-86.	12.6	942
246	Stromal Cells in Chronic Inflammation and Tertiary Lymphoid Organ Formation. Annual Review of Immunology, 2015, 33, 715-745.	21.8	205
247	Pancreatic cancer: The microenvironment needs attention too!. Pancreatology, 2015, 15, S32-S38.	1.1	69
248	Cancer associated fibroblasts have phenotypic and functional characteristics similar to the fibrocytes that represent a novel MDSC subset. Oncolmmunology, 2015, 4, e1034918.	4.6	47
249	Flow Cytometric Identification of Fibrocytes in the Human Circulation. Methods in Molecular Biology, 2015, 1343, 19-33.	0.9	11
250	Pancreatic Cancer Metabolism: Breaking It Down to Build It Back Up. Cancer Discovery, 2015, 5, 1247-1261.	9.4	178
251	Mesenchymal stromal cells inhibit murine syngeneic anti-tumor immune responses by attenuating inflammation and reorganizing the tumor microenvironment. Cancer Immunology, Immunotherapy, 2015, 64, 1449-1460.	4.2	6
252	The prognostic value of stroma in pancreatic cancer in patients receiving adjuvant therapy. Hpb, 2015, 17, 292-298.	0.3	63
253	Concise Review: Stem Cells in Pancreatic Cancer: From Concept to Translation. Stem Cells, 2015, 33, 2893-2902.	3.2	31
254	Downstream mediators of the intratumoral interferon response suppress antitumor immunity, induce gemcitabine resistance and associate with poor survival in human pancreatic cancer. Cancer Immunology, Immunotherapy, 2015, 64, 1553-1563.	4.2	25
255	Immunological hallmarks of stromal cells in the tumour microenvironment. Nature Reviews Immunology, 2015, 15, 669-682.	22.7	850
256	Cancer-associated fibroblasts in pancreatic adenocarcinoma. Future Oncology, 2015, 11, 2603-2610.	2.4	39
257	Fibroblast activation protein alpha expression identifies activated fibroblasts after myocardial infarction. Journal of Molecular and Cellular Cardiology, 2015, 87, 194-203.	1.9	160
258	CAR Tâ€cell immunotherapy: The path from the byâ€road toÂthe freeway?. Molecular Oncology, 2015, 9, 1994-2018.	4.6	43

#	Article	IF	CITATIONS
259	A Vaccinia Virus Armed with Interleukin-10 Is a Promising Therapeutic Agent for Treatment of Murine Pancreatic Cancer. Clinical Cancer Research, 2015, 21, 405-416.	7.0	52
260	Pancreatic ductal adenocarcinoma: From genetics to biology to radiobiology to oncoimmunology and all the way back to the clinic. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1855, 61-82.	7.4	46
261	Genetic Mouse Models of Cancer., 2015, , 145-154.e2.		5
262	Tailored chemokine receptor modification improves homing of adoptive therapy T cells in a spontaneous tumor model. Oncotarget, 2016, 7, 43010-43026.	1.8	29
263	Immunotherapy: Beyond Anti–PD-1 and Anti–PD-L1 Therapies. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2016, 35, e450-e458.	3.8	35
264	Targeting stromal microenvironment in pancreatic ductal adenocarcinoma: controversies and promises. Journal of Gastrointestinal Oncology, 2016, 7, 487-494.	1.4	40
265	Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget, 2016, 7, 82889-82901.	1.8	155
266	Expression of CAF-Related Proteins Is Associated with Histologic Grade of Breast Phyllodes Tumor. Disease Markers, 2016, 2016, 1-10.	1.3	12
267	New Strategies for the Treatment of Solid Tumors with CAR-T Cells. International Journal of Biological Sciences, 2016, 12, 718-729.	6.4	67
268	Cancer-Associated Myeloid Regulatory Cells. Frontiers in Immunology, 2016, 7, 113.	4.8	63
269	Characterization of Breast Cancer Preclinical Models Reveals a Specific Pattern of Macrophage Polarization. PLoS ONE, 2016, 11, e0157670.	2.5	8
270	Depletion of FAP+ cells reduces immunosuppressive cells and improves metabolism and functions CD8+T cells within tumors. Oncotarget, 2016, 7, 23282-23299.	1.8	81
271	Fibroblasts, an inconspicuous but essential player in colon cancer development and progression. World Journal of Gastroenterology, 2016, 22, 5301.	3.3	39
272	Low Stromal Area and High Stromal Microvessel Density Predict Poor Prognosis in Pancreatic Cancer. Pancreas, 2016, 45, 593-600.	1.1	18
273	Tumor-induced stromal reprogramming drives lymph node transformation. Nature Immunology, 2016, 17, 1118-1127.	14.5	126
274	A potent immunotoxin targeting fibroblast activation protein for treatment of breast cancer in mice. International Journal of Cancer, 2016, 138, 1013-1023.	5.1	91
275	Inflammatory fibroblasts in cancer. Archives of Pharmacal Research, 2016, 39, 1021-1031.	6.3	30
276	Explaining the Paucity of Intratumoral T Cells: A Construction Out of Known Entities. Cold Spring Harbor Symposia on Quantitative Biology, 2016, 81, 219-226.	1.1	6

#	Article	IF	CITATIONS
278	Enhanced anti-tumor immunity against breast cancer induced by whole tumor cell vaccines genetically modified expressing α-Gal epitopes. Oncology Reports, 2016, 36, 2843-2851.	2.6	7
279	Roles of Stromal Cells in the Immune System. , 2016, , 616-623.		0
280	Targeting the Microenvironment in Advanced Colorectal Cancer. Trends in Cancer, 2016, 2, 495-504.	7.4	80
281	Fibroblast activation protein (FAP) as a possible target of an antitumor strategy. Molecular Genetics, Microbiology and Virology, 2016, 31, 125-134.	0.3	7
282	Role of immune cells in pancreatic cancer from bench to clinical application. Medicine (United States), 2016, 95, e5541.	1.0	118
283	Anti-tumor effects of DNA vaccine targeting human fibroblast activation protein \hat{l}_{\pm} by producing specific immune responses and altering tumor microenvironment in the 4T1 murine breast cancer model. Cancer Immunology, Immunotherapy, 2016, 65, 613-624.	4.2	40
284	Can Targeting Stroma Pave the Way to Enhanced Antitumor Immunity and Immunotherapy of Solid Tumors?. Cancer Immunology Research, 2016, 4, 269-278.	3.4	83
285	FAP Promotes Immunosuppression by Cancer-Associated Fibroblasts in the Tumor Microenvironment via STAT3–CCL2 Signaling. Cancer Research, 2016, 76, 4124-4135.	0.9	470
286	Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure). Annals of Oncology, 2016, 27, 1492-1504.	1.2	460
287	The Biology of Melanoma. , 2016, , 3-29.		O
288	Infiltration of lymphocyte subpopulations into cancer microtissues as a tool for the exploration of immunomodulatory agents and biomarkers. Immunobiology, 2016, 221, 604-617.	1.9	7
289	Oncogenic KRAS Regulates Tumor Cell Signaling via Stromal Reciprocation. Cell, 2016, 165, 910-920.	28.9	267
290	Effector T Cells Abrogate Stroma-Mediated Chemoresistance in Ovarian Cancer. Cell, 2016, 165, 1092-1105.	28.9	340
291	Expression of two WFDC1/ps20 isoforms in prostate stromal cells induces paracrine apoptosis through regulation of PTGS2/COX-2. British Journal of Cancer, 2016, 114, 1235-1242.	6.4	7
292	Fibroblast activation protein alpha is expressed by transformed and stromal cells and is associated with mesenchymal features in glioblastoma. Tumor Biology, 2016, 37, 13961-13971.	1.8	68
293	Reengineering the Tumor Microenvironment to Alleviate Hypoxia and Overcome Cancer Heterogeneity. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a027094.	6.2	119
294	Multidimensional complexity of cancer. Simple solutions are needed. Biochemistry (Moscow), 2016, 81, 731-738.	1.5	11
	155.55		

#	Article	IF	CITATIONS
296	Defects in T Cell Trafficking and Resistance to Cancer Immunotherapy. Resistance To Targeted Anti-cancer Therapeutics, 2016 , , .	0.1	2
297	Chemokines and T Cell Trafficking into Tumors: Strategies to Enhance Recruitment of T Cells into Tumors. Resistance To Targeted Anti-cancer Therapeutics, 2016, , 163-177.	0.1	4
298	Improvement of anti-tumor immunity of fibroblast activation protein \hat{l}_{\pm} based vaccines by combination with cyclophosphamide in a murine model of breast cancer. Cellular Immunology, 2016, 310, 89-98.	3.0	20
299	The biology and function of fibroblasts in cancer. Nature Reviews Cancer, 2016, 16, 582-598.	28.4	2,886
300	Expression of cancer-associated fibroblast-related proteins differs between invasive lobular carcinoma and invasive ductal carcinoma. Breast Cancer Research and Treatment, 2016, 159, 55-69.	2.5	49
301	Enhancement of fibroblast activation protein α-based vaccines and adenovirus boost immunity by cyclophosphamide through inhibiting IL-10 expression in 4T1 tumor bearing mice. Vaccine, 2016, 34, 4526-4535.	3.8	18
302	A multi-antigen vaccine in combination with an immunotoxin targeting tumor-associated fibroblast for treating murine melanoma. Molecular Therapy - Oncolytics, 2016, 3, 16007.	4.4	34
303	Disruption of Anti-tumor T Cell Responses by Cancer-Associated Fibroblasts. Resistance To Targeted Anti-cancer Therapeutics, 2016, , 77-98.	0.1	1
304	A COL11A1-correlated pan-cancer gene signature of activated fibroblasts for the prioritization of therapeutic targets. Cancer Letters, 2016, 382, 203-214.	7.2	99
305	Emerging biomarkers as predictors to anti-PD1/PD-L1 therapies in advanced melanoma. Immunotherapy, 2016, 8, 775-784.	2.0	24
306	A real-time fluorometric method for the simultaneous detection of cell death type and rate. Nature Protocols, 2016, 11, 1444-1454.	12.0	50
307	Management of Metastatic Pancreatic Adenocarcinoma. Surgical Clinics of North America, 2016, 96, 1391-1414.	1.5	10
308	Significance of cancer-associated fibroblasts in head and neck squamous cell carcinoma. Journal of Japan Society of Immunology & Allergology in Otolaryngology, 2016, 34, 211-219.	0.0	0
309	A3.11â€Selective deletion of cells expressing fibroblast activation protein attenuates synovial inflammation. Annals of the Rheumatic Diseases, 2016, 75, A36.2-A37.	0.9	0
310	A4.01â€T cells are critical regulators of soft callus mineralization and normal deposition of collagen I during bone repair. Annals of the Rheumatic Diseases, 2016, 75, A37.1-A37.	0.9	1
311	The Bone Microenvironment: a Fertile Soil for Tumor Growth. Current Osteoporosis Reports, 2016, 14, 151-158.	3.6	52
312	Tumor-associated fibroblasts predominantly come from local and not circulating precursors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7551-7556.	7.1	139
313	Apparent Diffusion Coefficient and Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Pancreatic Cancer. Journal of Computer Assisted Tomography, 2016, 40, 709-716.	0.9	33

#	Article	IF	CITATIONS
314	Inhibition of Ovarian Tumor Growth by Targeting the HU177 Cryptic Collagen Epitope. American Journal of Pathology, 2016, 186, 1649-1661.	3.8	11
315	Microenvironmental InterFereNce of metabolism regulates chemosensitivity. Cell Research, 2016, 26, 867-868.	12.0	8
316	Expression of cancer-associated fibroblast-related proteins in thyroid papillary carcinoma. Tumor Biology, 2016, 37, 8197-8207.	1.8	29
317	Targeting tumor-associated immune suppression with selective protein kinase A type I (PKAI) inhibitors may enhance cancer immunotherapy. Medical Hypotheses, 2016, 86, 56-59.	1.5	5
318	Neuropeptide Y is a physiological substrate of fibroblast activation protein: Enzyme kinetics in blood plasma and expression of Y2R and Y5R in human liver cirrhosis and hepatocellular carcinoma. Peptides, 2016, 75, 80-95.	2.4	32
319	Pancreatic cancer: Update on immunotherapies and algenpantucel-L. Human Vaccines and Immunotherapeutics, 2016, 12, 563-575.	3.3	30
320	Chemotherapy-Induced Inflammatory Gene Signature and Protumorigenic Phenotype in Pancreatic CAFs via Stress-Associated MAPK. Molecular Cancer Research, 2016, 14, 437-447.	3.4	52
321	TCR-engineered T cells to treat tumors: Seeing but not touching?. Seminars in Immunology, 2016, 28, 10-21.	5.6	62
322	Immune Contexture, Immunoscore, and Malignant Cell Molecular Subgroups for Prognostic and Theranostic Classifications of Cancers. Advances in Immunology, 2016, 130, 95-190.	2.2	160
323	Myofibroblasts are distinguished from activated skin fibroblasts by the expression of AOC3 and other associated markers. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2162-71.	7.1	7 3
324	Immunization of stromal cell targeting fibroblast activation protein providing immunotherapy to breast cancer mouse model. Tumor Biology, 2016, 37, 10317-10327.	1.8	22
325	Have lessons from past failures brought us closer to the success of immunotherapy in metastatic pancreatic cancer?. Oncolmmunology, 2016, 5, e1112942.	4.6	19
326	The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nature Reviews Clinical Oncology, 2016, 13, 273-290.	27.6	909
327	DPPIV/CD26: a tumor suppressor or a marker of malignancy?. Tumor Biology, 2016, 37, 7059-7073.	1.8	46
328	Therapeutic Potential of T Cell Chimeric Antigen Receptors (CARs) in Cancer Treatment: Counteracting Off-Tumor Toxicities for Safe CAR T Cell Therapy. Annual Review of Pharmacology and Toxicology, 2016, 56, 59-83.	9.4	120
329	Key role of pancreatic stellate cells in pancreatic cancer. Cancer Letters, 2016, 381, 194-200.	7.2	103
330	Role of estrogen receptor alpha in human cervical cancer-associated fibroblasts: a transcriptomic study. Tumor Biology, 2016, 37, 4409-4420.	1.8	23
331	Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Advanced Drug Delivery Reviews, 2016, 99, 186-196.	13.7	340

#	ARTICLE	IF	CITATIONS
332	Fibroblast activation proteinâ€Î±, a stromal cell surface protease, shapes key features of cancer associated fibroblasts through proteome and degradome alterations. Molecular Oncology, 2016, 10, 40-58.	4.6	90
333	More than a scaffold: Stromal modulation of tumor immunity. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1865, 3-13.	7.4	32
334	Biomarkers in Tumor Microenvironment? Upregulation of Fibroblast Activation Protein-α Correlates with Gastric Cancer Progression and Poor Prognosis. OMICS A Journal of Integrative Biology, 2017, 21, 38-44.	2.0	26
335	Simultaneous enhancement of cellular and humoral immunity by the high salt formulation of Al(OH)3 adjuvant. Cell Research, 2017, 27, 586-589.	12.0	14
336	Pancreatic cancer: Stroma and its current and emerging targeted therapies. Cancer Letters, 2017, 391, 38-49.	7.2	136
337	Determinants of metastatic competency in colorectal cancer. Molecular Oncology, 2017, 11, 97-119.	4.6	180
338	Targeting stroma in pancreatic cancer: Promises and failures of targeted therapies. Journal of Cellular Physiology, 2017, 232, 2931-2937.	4.1	40
339	Transfer of Allogeneic CD4+ T Cells Rescues CD8+ T Cells in Anti-PD-L1–Resistant Tumors Leading to Tumor Eradication. Cancer Immunology Research, 2017, 5, 127-136.	3.4	17
340	Autocrine Loop Involving IL-6 Family Member LIF, LIF Receptor, and STAT4 Drives Sustained Fibroblast Production of Inflammatory Mediators. Immunity, 2017, 46, 220-232.	14.3	117
341	Nanomedicine as a potent strategy in melanoma tumor microenvironment. Pharmacological Research, 2017, 126, 31-53.	7.1	25
342	Early detection of sporadic pancreatic cancer: time for change. European Journal of Gastroenterology and Hepatology, 2017, 29, 885-891.	1.6	13
344	Tumor-associated fibrosis as a regulator of tumor immunity and response to immunotherapy. Cancer Immunology, Immunotherapy, 2017, 66, 1037-1048.	4.2	164
345	Overcoming immunosuppression in bone metastases. Critical Reviews in Oncology/Hematology, 2017, 114-127.	4.4	31
346	Stroma-regulated HMGA2 is an independent prognostic marker in PDAC and AAC. British Journal of Cancer, 2017, 117, 65-77.	6.4	30
347	New insights into the role of <scp>EMT</scp> in tumor immune escape. Molecular Oncology, 2017, 11, 824-846.	4.6	332
348	T-lymphocyte homing: an underappreciated yet critical hurdle for successful cancer immunotherapy. Laboratory Investigation, 2017, 97, 669-697.	3.7	167
349	Connecting the Metabolic and Immune Responses to Cancer. Trends in Molecular Medicine, 2017, 23, 451-464.	6.7	55
350	Cancer Immunotherapy: Whence and Whither. Molecular Cancer Research, 2017, 15, 635-650.	3.4	30

#	Article	IF	CITATIONS
351	Protein Nanocage Mediated Fibroblast-Activation Protein Targeted Photoimmunotherapy To Enhance Cytotoxic T Cell Infiltration and Tumor Control. Nano Letters, 2017, 17, 862-869.	9.1	167
352	Tissue Force Programs Cell Fate and Tumor Aggression. Cancer Discovery, 2017, 7, 1224-1237.	9.4	181
353	A polysaccharide from <i>Dictyophora indusiata</i> inhibits the immunosuppressive function of cancerâ€associated fibroblasts. Cell Biochemistry and Function, 2017, 35, 414-419.	2.9	19
354	Fibroblast activation protein- \hat{l}_{\pm} in fibrogenic disorders and cancer: more than a prolyl-specific peptidase?. Expert Opinion on Therapeutic Targets, 2017, 21, 977-991.	3.4	42
355	Nanomaterials for cancer immunotherapy. Biomaterials, 2017, 148, 16-30.	11.4	226
356	Tailoring Natural Killer cell immunotherapy to the tumour microenvironment. Seminars in Immunology, 2017, 31, 30-36.	5. 6	30
357	Discrete microfluidics for the isolation of circulating tumor cell subpopulations targeting fibroblast activation protein alpha and epithelial cell adhesion molecule. Npj Precision Oncology, 2017, 1, .	5.4	29
358	Traumatic muscle fibrosis. Journal of Trauma and Acute Care Surgery, 2017, 82, 174-184.	2.1	32
359	Transient and Local Expression of Chemokine and Immune Checkpoint Traps To Treat Pancreatic Cancer. ACS Nano, 2017, 11, 8690-8706.	14.6	108
360	Immunotherapy of cancers comes of age. Expert Review of Clinical Immunology, 2017, 13, 1001-1015.	3.0	84
361	The Pancreatic Cancer Microenvironment. Cancer Journal (Sudbury, Mass), 2017, 23, 321-325.	2.0	132
362	Fibroblast activation protein-î± promotes the growth and migration of lung cancer cells via the PI3K and sonic hedgehog pathways. International Journal of Molecular Medicine, 2017, 41, 275-283.	4.0	30
363	Cancer-Associated Fibroblasts Share Characteristics and Protumorigenic Activity with Mesenchymal Stromal Cells. Cancer Research, 2017, 77, 5142-5157.	0.9	130
364	Improving homing in T cell therapy. Cytokine and Growth Factor Reviews, 2017, 36, 107-116.	7.2	42
365	Immune-Suppressing Cellular Elements of the Tumor Microenvironment. Annual Review of Cancer Biology, 2017, 1, 241-255.	4.5	25
366	CAFs and TAMs: maestros of the tumour microenvironment. Journal of Pathology, 2017, 241, 313-315.	4.5	159
367	Understanding the epigenetic regulation of tumours and their microenvironments: opportunities and problems for epigenetic therapy. Journal of Pathology, 2017, 241, 10-24.	4.5	55
368	Molecular mechanisms involved in dendritic cell dysfunction in cancer. Cellular and Molecular Life Sciences, 2017, 74, 761-776.	5.4	77

#	Article	IF	Citations
369	Cancer Immunotherapy Targets Based on Understanding the T Cell-Inflamed Versus Non-T Cell-Inflamed Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2017, 1036, 19-31.	1.6	212
370	HO-1 Induction in Cancer Progression: A Matter of Cell Adaptation. Antioxidants, 2017, 6, 29.	5.1	148
371	Circulating fibroblast activation protein activity and antigen levels correlate strongly when measured in liver disease and coronary heart disease. PLoS ONE, 2017, 12, e0178987.	2.5	16
372	The expression of proline-specific enzymes in the human lung. Annals of Translational Medicine, 2017, 5, 130-130.	1.7	17
373	Pancreatic stellate cell: Pandora's box for pancreatic disease biology. World Journal of Gastroenterology, 2017, 23, 382.	3.3	144
374	MM-BMSCs induce na \tilde{A} -ve CD4+ T lymphocytes dysfunction through fibroblast activation protein $\hat{I}\pm$. Oncotarget, 2017, 8, 52614-52628.	1.8	12
375	Melanoma-associated fibroblasts decrease tumor cell susceptibility to NK cell-mediated killing through matrix-metalloproteinases secretion. Oncotarget, 2017, 8, 19780-19794.	1.8	92
376	Mesenchymal stromal cell plasticity and the tumor microenvironment. Emerging Topics in Life Sciences, 2017, 1, 487-492.	2.6	2
377	Development of Quinoline-Based Theranostic Ligands for the Targeting of Fibroblast Activation Protein. Journal of Nuclear Medicine, 2018, 59, 1415-1422.	5.0	522
378	The Immune Revolution: A Case for Priming, Not Checkpoint. Cancer Cell, 2018, 33, 563-569.	16.8	240
379	Targeting the tumour stroma to improve cancer therapy. Nature Reviews Clinical Oncology, 2018, 15, 366-381.	27.6	719
380	Bone marrow-derived fibrocytes promote stem cell-like properties of lung cancer cells. Cancer Letters, 2018, 421, 17-27.	7.2	17
381	CCL19-producing fibroblastic stromal cells restrain lung carcinoma growth by promoting local antitumor T-cell responses. Journal of Allergy and Clinical Immunology, 2018, 142, 1257-1271.e4.	2.9	60
382	Fibroblast Heterogeneity and Immunosuppressive Environment in Human Breast Cancer. Cancer Cell, 2018, 33, 463-479.e10.	16.8	1,074
383	Repurposing Tin Mesoporphyrin as an Immune Checkpoint Inhibitor Shows Therapeutic Efficacy in Preclinical Models of Cancer. Clinical Cancer Research, 2018, 24, 1617-1628.	7.0	44
384	Pro-metastatic collagen lysyl hydroxylase dimer assemblies stabilized by Fe2+-binding. Nature Communications, 2018, 9, 512.	12.8	34
385	Fibroblast activation proteins-α suppress tumor immunity by regulating T cells and tumor-associated macrophages. Experimental and Molecular Pathology, 2018, 104, 29-37.	2.1	9
386	Extracellular matrix directs phenotypic heterogeneity of activated fibroblasts. Matrix Biology, 2018, 67, 90-106.	3.6	146

#	Article	IF	CITATIONS
387	Alteration of the Tumor Stroma Using a Consensus DNA Vaccine Targeting Fibroblast Activation Protein (FAP) Synergizes with Antitumor Vaccine Therapy in Mice. Clinical Cancer Research, 2018, 24, 1190-1201.	7.0	101
388	Reshaping the Tumor Stroma for Treatment of Pancreatic Cancer. Gastroenterology, 2018, 154, 820-838.	1.3	173
389	Targeting the Myofibroblastic Cancer-Associated Fibroblast Phenotype Through Inhibition of NOX4. Journal of the National Cancer Institute, 2018, 110, 109-120.	6.3	134
390	Pro-tumorigenic roles of fibroblast activation protein in cancer: back to the basics. Oncogene, 2018, 37, 4343-4357.	5.9	228
391	Mesenchymal Cell Plasticity and Perfidy in Epithelial Malignancy. Trends in Cancer, 2018, 4, 273-277.	7.4	9
392	miR200-regulated CXCL12 \hat{l}^2 promotes fibroblast heterogeneity and immunosuppression in ovarian cancers. Nature Communications, 2018, 9, 1056.	12.8	188
393	The ratio of cancer cells to stroma within the invasive area is a histologic prognostic parameter of lung adenocarcinoma. Lung Cancer, 2018, 118, 30-35.	2.0	20
394	Cellular Constituents of the Prostate Stroma: Key Contributors to Prostate Cancer Progression and Therapy Resistance. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a030510.	6.2	57
395	Prognostic Significance of Stromal Versus Intratumoral Infiltrating Lymphocytes in Different Subtypes of Breast Cancer Treated With Cytotoxic Neoadjuvant Chemotherapy. Applied Immunohistochemistry and Molecular Morphology, 2018, 26, 523-532.	1.2	47
396	Revisiting ovarian cancer microenvironment: a friend or a foe?. Protein and Cell, 2018, 9, 674-692.	11.0	37
397	Solid Tumor Immunotherapy with T Cell Engagerâ€Armed Oncolytic Viruses. Macromolecular Bioscience, 2018, 18, 1700187.	4.1	56
398	The impact of stromal Hic-5 on the tumorigenesis of colorectal cancer through lysyl oxidase induction and stromal remodeling. Oncogene, 2018, 37, 1205-1219.	5.9	27
399	Involvement of local reninâ€angiotensin system in immunosuppression of tumor microenvironment. Cancer Science, 2018, 109, 54-64.	3.9	60
400	Immune modulation by a cellular network of mesenchymal stem cells and breast cancer cell subsets: Implication for cancer therapy. Cellular Immunology, 2018, 326, 33-41.	3.0	9
401	Tumor stroma–targeted antibody-drug conjugate triggers localized anticancer drug release. Journal of Clinical Investigation, 2018, 128, 2927-2943.	8.2	86
402	A multiâ€'center retrospective analysis of the effect of DPP4 inhibitors on progressionâ€'free survival in advanced airway and colorectal cancers. Molecular and Clinical Oncology, 2018, 10, 118-124.	1.0	26
403	CAR T Cell Therapy for Neuroblastoma. Frontiers in Immunology, 2018, 9, 2380.	4.8	107
404	Cancer-associated fibroblasts as key regulators of the breast cancer tumor microenvironment. Cancer and Metastasis Reviews, 2018, 37, 577-597.	5.9	150

#	Article	IF	Citations
405	Link between tumor-promoting fibrous microenvironment and an immunosuppressive microenvironment in stage I lung adenocarcinoma. Lung Cancer, 2018, 126, 64-71.	2.0	39
406	Polyclonal Rabbit Anti-Cancer-Associated Fibroblasts Globulins Induce Cancer Cells Apoptosis and Inhibit Tumor Growth. International Journal of Biological Sciences, 2018, 14, 1621-1629.	6.4	5
407	Dissecting Effects of Anti-cancer Drugs and Cancer-Associated Fibroblasts by On-Chip Reconstitution of Immunocompetent Tumor Microenvironments. Cell Reports, 2018, 25, 3884-3893.e3.	6.4	118
408	The Expression of FAP in Hepatocellular Carcinoma Cells is Induced by Hypoxia and Correlates with Poor Clinical Outcomes. Journal of Cancer, 2018, 9, 3278-3286.	2.5	42
409	FAP Delineates Heterogeneous and Functionally Divergent Stromal Cells in Immune-Excluded Breast Tumors. Cancer Immunology Research, 2018, 6, 1472-1485.	3.4	131
410	Comprehensive analysis of the tumor immune micro-environment in non-small cell lung cancer for efficacy of checkpoint inhibitor. Scientific Reports, 2018, 8, 14576.	3.3	55
411	Ovarian stromal cells as a source of cancer-associated fibroblasts in human epithelial ovarian cancer: A histopathological study. PLoS ONE, 2018, 13, e0205494.	2.5	16
412	A Paradoxical Correlation of Cancer-Associated Fibroblasts With Survival Outcomes in B-Cell Lymphomas and Carcinomas. Frontiers in Cell and Developmental Biology, 2018, 6, 98.	3.7	21
413	Differential Expression of Cancer-Associated Fibroblast-Related Proteins in Ductal Carcinoma in situ According to Molecular Subtype and Stromal Histology. Pathobiology, 2018, 85, 311-321.	3.8	5
414	Stromal Fibroblasts Mediate Anti–PD-1 Resistance via MMP-9 and Dictate TGFβ Inhibitor Sequencing in Melanoma. Cancer Immunology Research, 2018, 6, 1459-1471.	3.4	81
415	Regulation of Ovarian Cancer Prognosis by Immune Cells in the Tumor Microenvironment. Cancers, 2018, 10, 302.	3.7	94
416	Activated Tumor-infiltrating Fibroblasts Predict Worse Prognosis in Breast Cancer Patients. Journal of Cancer, 2018, 9, 3736-3742.	2.5	22
417	Stromal Cells in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2018, 1060, 99-114.	1.6	208
418	Antigenic targets of CAR T Cell Therapy. A retrospective view on clinical trials. Experimental Cell Research, 2018, 369, 1-10.	2.6	30
419	Immunotherapy for pancreatic cancer: Barriers and breakthroughs. Annals of Gastroenterological Surgery, 2018, 2, 274-281.	2.4	119
420	Immune oncology, immune responsiveness and the theory of everything. , 2018, 6, 50.		58
421	The Transcription Factor Hif-1 Enhances the Radio-Resistance of Mouse MSCs. Frontiers in Physiology, 2018, 9, 439.	2.8	20
422	Macrophages are exploited from an innate wound healing response to facilitate cancer metastasis. Nature Communications, 2018, 9, 2951.	12.8	81

#	ARTICLE	IF	CITATIONS
423	Alteration of the Antitumor Immune Response by Cancer-Associated Fibroblasts. Frontiers in Immunology, 2018, 9, 414.	4.8	272
424	Fibroblasts in the Tumor Microenvironment: Shield or Spear?. International Journal of Molecular Sciences, 2018, 19, 1532.	4.1	180
425	Underlying Causes and Therapeutic Targeting of the Inflammatory Tumor Microenvironment. Frontiers in Cell and Developmental Biology, 2018, 6, 56.	3.7	54
426	Targeting the Microenvironment in High Grade Serous Ovarian Cancer. Cancers, 2018, 10, 266.	3.7	30
427	Present and future of cancer immunotherapy: A tumor microenvironmental perspective (Review). Oncology Letters, 2018, 16, 4105-4113.	1.8	58
428	Tissue analyses reveal a potential immune-adjuvant function of FAP-1 positive fibroblasts in non-small cell lung cancer. PLoS ONE, 2018, 13, e0192157.	2.5	35
429	Strategies of targeting pathological stroma for enhanced antitumor therapies. Pharmacological Research, 2019, 148, 104401.	7.1	13
430	Vaccine against gastrin, a polyclonal antibody stimulator, decreases pancreatic cancer metastases. American Journal of Physiology - Renal Physiology, 2019, 317, G682-G693.	3.4	9
431	The Dark Side of Fibroblasts: Cancer-Associated Fibroblasts as Mediators of Immunosuppression in the Tumor Microenvironment. Frontiers in Immunology, 2019, 10, 1835.	4.8	440
432	Targeting of activated fibroblasts for imaging and therapy. EJNMMI Radiopharmacy and Chemistry, 2019, 4, 16.	3.9	134
433	Embryonic FAP+ lymphoid tissue organizer cells generate the reticular network of adult lymph nodes. Journal of Experimental Medicine, 2019, 216, 2242-2252.	8.5	44
434	Cytotoxic Chemotherapy as an Immune Stimulus: A Molecular Perspective on Turning Up the Immunological Heat on Cancer. Frontiers in Immunology, 2019, 10, 1654.	4.8	101
435	Cancer-associated fibroblastsâ€"heroes or villains?. British Journal of Cancer, 2019, 121, 293-302.	6.4	155
436	Fibroblasts in cancer: Defining target structures for therapeutic intervention. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1872, 111-121.	7.4	14
437	WNT/ \hat{l}^2 -Catenin Signaling Pathway Regulating T Cell-Inflammation in the Tumor Microenvironment. Frontiers in Immunology, 2019, 10, 2293.	4.8	165
438	Fibroblasts Fuel Immune Escape in the Tumor Microenvironment. Trends in Cancer, 2019, 5, 704-723.	7.4	107
439	Quantitative Phosphoproteomics Reveals System-Wide Phosphorylation Network Altered by Spry in Mouse Mammary Stromal Fibroblasts. International Journal of Molecular Sciences, 2019, 20, 5400.	4.1	6
440	Single-cell sequencing and its applications in head and neck cancer. Oral Oncology, 2019, 99, 104441.	1.5	65

#	Article	IF	CITATIONS
441	Metastatic Breast Carcinoma–Associated Fibroblasts Have Enhanced Protumorigenic Properties Related to Increased IGF2 Expression. Clinical Cancer Research, 2019, 25, 7229-7242.	7.0	26
442	Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy. Journal of Hematology and Oncology, 2019, 12, 86.	17.0	555
443	Cancer Biomarkers in Body Fluids. , 2019, , .		5
444	Sequential therapy for pancreatic cancer by losartan- and gemcitabine-loaded magnetic mesoporous spheres. RSC Advances, 2019, 9, 19690-19698.	3.6	4
445	The Relationship Between Tumor-Stroma Ratio, the Immune Microenvironment, and Survival in Patients With Spinal Chordoma. Neurosurgery, 2019, 85, E1095-E1110.	1.1	29
446	Strategies in Developing Immunotherapy for Pancreatic Cancer: Recognizing and Correcting Multiple Immune "Defects―in the Tumor Microenvironment. Journal of Clinical Medicine, 2019, 8, 1472.	2.4	56
447	Stromal Markers of Breast Cancer Progression: A Review of Recent Findings. Current Surgery Reports, 2019, 7, 1.	0.9	2
448	Vimentin Expression in Tumor Microenvironment Predicts Survival in Pancreatic Ductal Adenocarcinoma: Heterogeneity in Fibroblast Population. Annals of Surgical Oncology, 2019, 26, 4791-4804.	1.5	16
449	Current perspectives of cancer-associated fibroblast in therapeutic resistance: potential mechanism and future strategy. Cell Biology and Toxicology, 2019, 35, 407-421.	5.3	43
450	A DNA vaccine expressing an optimized secreted FAPα induces enhanced anti-tumor activity by altering the tumor microenvironment in a murine model of breast cancer. Vaccine, 2019, 37, 4382-4391.	3.8	21
451	Immunofibroblasts are pivotal drivers of tertiary lymphoid structure formation and local pathology. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13490-13497.	7.1	115
452	Recent perspective on CAR and $Fc\hat{l}^3$ -CR T cell immunotherapy for cancers: Preclinical evidence versus clinical outcomes. Biochemical Pharmacology, 2019, 166, 335-346.	4.4	20
453	Pancreatic cancer microenvironment: a current dilemma. Clinical and Translational Medicine, 2019, 8, 2.	4.0	72
454	Dissecting the Stromal Signaling and Regulation of Myeloid Cells and Memory Effector T Cells in Pancreatic Cancer. Clinical Cancer Research, 2019, 25, 5351-5363.	7.0	57
455	Photoimmunotherapy for cancer-associated fibroblasts targeting fibroblast activation protein in human esophageal squamous cell carcinoma. Cancer Biology and Therapy, 2019, 20, 1234-1248.	3.4	48
456	Gene Expression Indicates Altered Immune Modulation and Signaling Pathway Activation in Ovarian Cancer Patients Resistant to Topotecan. International Journal of Molecular Sciences, 2019, 20, 2750.	4.1	14
457	Tumor mechanisms of resistance to immune attack. Progress in Molecular Biology and Translational Science, 2019, 164, 61-100.	1.7	9
458	MPSSS impairs the immunosuppressive function of cancer-associated fibroblasts via the TLR4-NF- \hat{l}^{μ} B pathway. Bioscience Reports, 2019, 39, .	2.4	12

#	Article	IF	CITATIONS
459	Reprogramming the microenvironment with tumor-selective angiotensin blockers enhances cancer immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10674-10680.	7.1	150
460	Therapeutic challenges and current immunomodulatory strategies in targeting the immunosuppressive pancreatic tumor microenvironment. Journal of Experimental and Clinical Cancer Research, 2019, 38, 162.	8.6	116
461	Heterogeneity of the Head and Neck Squamous Cell Carcinoma Immune Landscape and Its Impact on Immunotherapy. Frontiers in Cell and Developmental Biology, 2019, 7, 52.	3.7	222
462	Mesenchymal stem cells inhibit T-cell function through conserved induction of cellular stress. PLoS ONE, 2019, 14, e0213170.	2.5	43
463	Cancer-associated fibroblasts: how do they contribute to metastasis?. Clinical and Experimental Metastasis, 2019, 36, 71-86.	3.3	93
464	The tumour microenvironment and immune milieu of cholangiocarcinoma. Liver International, 2019, 39, 63-78.	3.9	109
465	The double edge sword of fibrosis in cancer. Translational Research, 2019, 209, 55-67.	5.0	127
466	Nano-Strategies to Target Breast Cancer-Associated Fibroblasts: Rearranging the Tumor Microenvironment to Achieve Antitumor Efficacy. International Journal of Molecular Sciences, 2019, 20, 1263.	4.1	71
467	Immunotherapy of pancreatic cancer. Progress in Molecular Biology and Translational Science, 2019, 164, 189-216.	1.7	41
468	Development of a Cross-Reactive Monoclonal Antibody for Detecting the Tumor Stroma. Bioconjugate Chemistry, 2019, 30, 1466-1476.	3.6	12
469	Increased expression of cancer-associated fibroblast markers at the invasive front and its association with tumor-stroma ratio in colorectal cancer. BMC Cancer, 2019, 19, 284.	2.6	95
470	Broadening the Impact of Immunotherapy to Pancreatic Cancer: Challenges and Opportunities. Gastroenterology, 2019, 156, 2056-2072.	1.3	300
471	Fibroblasts in Pancreatic Ductal Adenocarcinoma: Biological Mechanisms and Therapeutic Targets. Gastroenterology, 2019, 156, 2085-2096.	1.3	93
472	Neddylation: a novel modulator of the tumor microenvironment. Molecular Cancer, 2019, 18, 77.	19.2	147
473	Blockade of fibroblast activation protein in combination with radiation treatment in murine models of pancreatic adenocarcinoma. PLoS ONE, 2019, 14, e0211117.	2.5	53
474	Overcoming Resistance to Combination Radiation-Immunotherapy: A Focus on Contributing Pathways Within the Tumor Microenvironment. Frontiers in Immunology, 2018, 9, 3154.	4.8	99
475	Biological heterogeneity and versatility of cancer-associated fibroblasts in the tumor microenvironment. Oncogene, 2019, 38, 4887-4901.	5.9	205
476	Cancer-associated fibroblasts in gastrointestinal cancer. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 282-295.	17.8	371

#	Article	IF	CITATIONS
477	Immunotherapy for skin cancer. International Immunology, 2019, 31, 465-475.	4.0	47
478	Cellular crosstalk mediating immune evasion in pancreatic cancer microenvironment. Annals of Pancreatic Cancer, 0, 2, 13-13.	1.2	0
479	Targeting of the Cancer-Associated Fibroblast—T-Cell Axis in Solid Malignancies. Journal of Clinical Medicine, 2019, 8, 1989.	2.4	42
480	Immunotherapy in Pediatric Solid Tumorsâ€"A Systematic Review. Cancers, 2019, 11, 2022.	3.7	13
481	Fibroblastic FAP promotes intrahepatic cholangiocarcinoma growth via MDSCs recruitment. Neoplasia, 2019, 21, 1133-1142.	5.3	44
482	FAP-a and GOLPH3 Are Hallmarks of DCIS Progression to Invasive Breast Cancer. Frontiers in Oncology, 2019, 9, 1424.	2.8	10
483	The reciprocal regulation between host tissue and immune cells in pancreatic ductal adenocarcinoma: new insights and therapeutic implications. Molecular Cancer, 2019, 18, 184.	19.2	54
484	Cancer-associated fibroblasts modify lung cancer metabolism involving ROS and TGF- \hat{l}^2 signaling. Free Radical Biology and Medicine, 2019, 130, 163-173.	2.9	91
485	Epithelial-Stromal Interactions in Pancreatic Cancer. Annual Review of Physiology, 2019, 81, 211-233.	13.1	33
486	Turning foes to friends: targeting cancer-associated fibroblasts. Nature Reviews Drug Discovery, 2019, 18, 99-115.	46.4	1,040
487	Enhancing tumor T cell infiltration to enable cancer immunotherapy. Immunotherapy, 2019, 11, 201-213.	2.0	108
488	Cancerâ€associated fibroblasts (CAFs) promote the lymph node metastasis of esophageal squamous cell carcinoma. International Journal of Cancer, 2019, 144, 828-840.	5.1	78
489	Tumorâ€infiltrating mesenchymal stem cells: Drivers of the immunosuppressive tumor microenvironment in prostate cancer?. Prostate, 2019, 79, 320-330.	2.3	58
490	Dysregulation of key microRNAs in pancreatic cancer development. Biomedicine and Pharmacotherapy, 2019, 109, 1008-1015.	5.6	48
491	Ovarian Cancers: Their Varied Origins and Pathologically Implicated Microenvironment. , 2019, , 511-528.		1
492	Cancer-associated fibroblasts in tumor microenvironment – Accomplices in tumor malignancy. Cellular Immunology, 2019, 343, 103729.	3.0	221
493	In search of definitions: Cancerâ€associated fibroblasts and their markers. International Journal of Cancer, 2020, 146, 895-905.	5.1	388
494	Crosstalk between cancerâ€associated fibroblasts and immune cells in cancer. Journal of Cellular and Molecular Medicine, 2020, 24, 13-24.	3.6	66

#	Article	IF	CITATIONS
495	Strategies for Targeting Cancer Immunotherapy Through Modulation of the Tumor Microenvironment. Regenerative Engineering and Translational Medicine, 2020, 6, 29-49.	2.9	16
496	Liver Tropism in Cancer: The Hepatic Metastatic Niche. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a037259.	6.2	35
497	Single-Cell RNA Sequencing Reveals Stromal Evolution into LRRC15+ Myofibroblasts as a Determinant of Patient Response to Cancer Immunotherapy. Cancer Discovery, 2020, 10, 232-253.	9.4	466
498	Tumor Microenvironment. Medicina (Lithuania), 2020, 56, 15.	2.0	677
499	Pancreatic stellate cells: Aiding and abetting pancreatic cancer progression. Pancreatology, 2020, 20, 409-418.	1.1	53
500	Advances in research on the interaction between inflammation and cancer. Journal of International Medical Research, 2020, 48, 030006051989534.	1.0	16
501	High COXâ€⊋ expression in cancerâ€associated fibiroblasts contributes to poor survival and promotes migration and invasiveness in nasopharyngeal carcinoma. Molecular Carcinogenesis, 2020, 59, 265-280.	2.7	39
502	Emerging nanomedicines for anti-stromal therapy against desmoplastic tumors. Biomaterials, 2020, 232, 119745.	11.4	46
503	CXCR4/TGF-Î ² 1 mediated self-differentiation of human mesenchymal stem cells to carcinoma-associated fibroblasts and promoted colorectal carcinoma development. Cancer Biology and Therapy, 2020, 21, 248-257.	3.4	31
504	Ligustilide promotes apoptosis of cancer-associated fibroblasts via the TLR4 pathways. Food and Chemical Toxicology, 2020, 135, 110991.	3.6	13
505	Immune Remodeling of the Extracellular Matrix Drives Loss of Cancer Stem Cells and Tumor Rejection. Cancer Immunology Research, 2020, 8, 1520-1531.	3.4	16
506	The Immune Microenvironment in Pancreatic Cancer. International Journal of Molecular Sciences, 2020, 21, 7307.	4.1	133
507	Challenges and Opportunities for Pancreatic Cancer Immunotherapy. Cancer Cell, 2020, 38, 788-802.	16.8	273
508	Tumor Microenvironment as a Regulator of Radiation Therapy: New Insights into Stromal-Mediated Radioresistance. Cancers, 2020, 12, 2916.	3.7	63
509	Fibroblast heterogeneity in tumor micro-environment: Role in immunosuppression and new therapies. Seminars in Immunology, 2020, 48, 101417.	5.6	132
510	Cancer-associated fibroblasts in therapeutic resistance of pancreatic cancer: Present situation, predicaments, and perspectives. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188444.	7.4	16
511	Unmasking carcinoma-associated fibroblasts: Key transformation player within the tumor microenvironment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188443.	7.4	13
512	Identification of Fibroblast Activation Protein as an Osteogenic Suppressor and Anti-osteoporosis Drug Target. Cell Reports, 2020, 33, 108252.	6.4	30

#	ARTICLE	IF	Citations
513	Cancer associated fibroblast mediated chemoresistance: A paradigm shift in understanding the mechanism of tumor progression. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188416.	7.4	46
514	Nano-therapeutics for modulating the tumour microenvironment: Design, development, and clinical translation. Journal of Controlled Release, 2020, 327, 512-532.	9.9	40
515	Binary blended co-delivery nanoparticles with the characteristics of precise pH-responsive acting on tumor microenvironment. Materials Science and Engineering C, 2020, 117, 111370.	7.3	6
516	Maternal Priming of Offspring Immune System in Drosophila. G3: Genes, Genomes, Genetics, 2020, 10, 165-175.	1.8	17
517	Pancreatic Fibroblast Heterogeneity: From Development to Cancer. Cells, 2020, 9, 2464.	4.1	31
518	Interaction between Fibroblasts and Immune Cells Following DNA Damage Induced by Ionizing Radiation. International Journal of Molecular Sciences, 2020, 21, 8635.	4.1	28
519	Cancer-Associated Fibroblast Density, Prognostic Characteristics, and Recurrence in Head and Neck Squamous Cell Carcinoma: A Meta-Analysis. Frontiers in Oncology, 2020, 10, 565306.	2.8	47
520	Biomarkers for cancer-associated fibroblasts. Biomarker Research, 2020, 8, 64.	6.8	142
521	Identifying cancer-associated fibroblasts as emerging targets for hepatocellular carcinoma. Cell and Bioscience, 2020, 10, 127.	4.8	51
522	Liquid Metal Microparticles Phase Change Medicated Mechanical Destruction for Enhanced Tumor Cryoablation and Dualâ€Mode Imaging. Advanced Functional Materials, 2020, 30, 2003359.	14.9	69
523	Biotechnological approach to induce human fibroblast apoptosis using superparamagnetic iron oxide nanoparticles. Journal of Inorganic Biochemistry, 2020, 206, 111017.	3.5	10
524	Microenvironmental modulation of the developing tumour: an immuneâ€stromal dialogue. Molecular Oncology, 2021, 15, 2600-2633.	4.6	8
525	Signaling within the epithelial ovarian cancer tumor microenvironment: the challenge of tumor heterogeneity. Annals of Translational Medicine, 2020, 8, 905-905.	1.7	15
526	<p>Toll-Like Receptor 9 Agonists in Cancer</p> . OncoTargets and Therapy, 2020, Volume 13, 10039-10061.	2.0	74
527	Distinct fibroblast functional states drive clinical outcomes in ovarian cancer and are regulated by TCF21. Journal of Experimental Medicine, 2020, 217, .	8.5	51
528	CXCR4 inhibition in human pancreatic and colorectal cancers induces an integrated immune response. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28960-28970.	7.1	150
529	Tumor-Resident Stromal Cells Promote Breast Cancer Invasion through Regulation of the Basal Phenotype. Molecular Cancer Research, 2020, 18, 1615-1622.	3.4	29
530	Nidogen 1â€Enriched Extracellular Vesicles Facilitate Extrahepatic Metastasis of Liver Cancer by Activating Pulmonary Fibroblasts to Secrete Tumor Necrosis Factor Receptor 1. Advanced Science, 2020, 7, 2002157.	11.2	50

#	Article	IF	CITATIONS
531	Cancer-Associated Fibroblast Mediated Inhibition of CD8+ Cytotoxic T Cell Accumulation in Tumours: Mechanisms and Therapeutic Opportunities. Cancers, 2020, 12, 2687.	3.7	48
532	Monitoring of tumor growth and vascularization with repetitive ultrasonography in the chicken chorioallantoic-membrane-assay. Scientific Reports, 2020, 10, 18585.	3.3	40
533	Extracellular Vesicles Are Key Regulators of Tumor Neovasculature. Frontiers in Cell and Developmental Biology, 2020, 8, 611039.	3.7	37
534	Characterization and oncolytic virus targeting of FAP-expressing tumor-associated pericytes in glioblastoma. Acta Neuropathologica Communications, 2020, 8, 221.	5.2	26
535	$TGF\hat{l}^2$ -blockade uncovers stromal plasticity in tumors by revealing the existence of a subset of interferon-licensed fibroblasts. Nature Communications, 2020, 11, 6315.	12.8	106
536	Moderne Aspekte der Immuntherapie mit Checkpoint-Inhibitoren bei Melanom. Karger Kompass Dermatologie, 2020, 8, 92-101.	0.0	0
537	Design, synthesis, molecular simulation, and biological activities of novel quinazolinone-pyrimidine hybrid derivatives as dipeptidyl peptidase-4 inhibitors and anticancer agents. New Journal of Chemistry, 2020, 44, 19515-19531.	2.8	24
538	Prognostic Interactions between FAP+ Fibroblasts and CD8a+ T Cells in Colon Cancer. Cancers, 2020, 12, 3238.	3.7	13
539	Effects of Radiation on the Tumor Microenvironment. Seminars in Radiation Oncology, 2020, 30, 145-157.	2.2	33
540	Efficacy of adjuvant cytokine-induced killer cell immunotherapy in patients with colorectal cancer after radical resection. Oncolmmunology, 2020, 9, 1752563.	4.6	15
541	Doxorubicin pretreatment enhances FAPÎ \pm /survivin co-targeting DNA vaccine anti-tumor activity primarily through decreasing peripheral MDSCs in the 4T1 murine breast cancer model. Oncolmmunology, 2020, 9, 1747350.	4.6	22
542	Relevance of immune cell and tumor microenvironment imaging in the new era of immunotherapy. Journal of Experimental and Clinical Cancer Research, 2020, 39, 89.	8.6	157
543	Opportunities for Conventional and In Situ Cancer Vaccine Strategies and Combination with Immunotherapy for Gastrointestinal Cancers, A Review. Cancers, 2020, 12, 1121.	3.7	31
544	Reduction of Liver Metastasis Stiffness Improves Response to Bevacizumab in Metastatic Colorectal Cancer. Cancer Cell, 2020, 37, 800-817.e7.	16.8	179
545	Cancer-associated fibroblasts: key determinants of tumor immunity and immunotherapy. Current Opinion in Immunology, 2020, 64, 80-87.	5.5	70
546	CAR-T Cells Hit the Tumor Microenvironment: Strategies to Overcome Tumor Escape. Frontiers in Immunology, 2020, 11, 1109.	4.8	165
547	Activation of p38 \hat{i} ± stress-activated protein kinase drives the formation of the pre-metastatic niche in the lungs. Nature Cancer, 2020, 1, 603-619.	13.2	33
548	Desmoplasia and Biophysics in Pancreatic Ductal Adenocarcinoma. Pancreas, 2020, 49, 313-325.	1.1	18

#	Article	IF	CITATIONS
549	Killing the "BAD― Challenges for immunotherapy in pancreatic cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188384.	7.4	14
550	Architecture of Cancer-Associated Fibroblasts in Tumor Microenvironment: Mapping Their Origins, Heterogeneity, and Role in Cancer Therapy Resistance. OMICS A Journal of Integrative Biology, 2020, 24, 314-339.	2.0	35
551	CTL Attenuation Regulated by PS1 in Cancer-Associated Fibroblast. Frontiers in Immunology, 2020, 11, 999.	4.8	13
552	A Novel Stromal Fibroblast-Modulated 3D Tumor Spheroid Model for Studying Tumor-Stroma Interaction and Drug Discovery. Journal of Visualized Experiments, 2020, , .	0.3	16
553	Carcinogenesis of Pancreatic Ductal Adenocarcinoma. Gastroenterology, 2020, 158, 2072-2081.	1.3	89
554	Fibroblast Heterogeneity in the Pancreatic Tumor Microenvironment. Cancer Discovery, 2020, 10, 648-656.	9.4	199
555	Understanding the immune landscape and tumor microenvironment of pancreatic cancer to improve immunotherapy. Molecular Carcinogenesis, 2020, 59, 775-782.	2.7	36
556	OMTX705, a Novel FAP-Targeting ADC Demonstrates Activity in Chemotherapy and Pembrolizumab-Resistant Solid Tumor Models. Clinical Cancer Research, 2020, 26, 3420-3430.	7. O	47
557	NOX4 Inhibition Potentiates Immunotherapy by Overcoming Cancer-Associated Fibroblast-Mediated CD8 T-cell Exclusion from Tumors. Cancer Research, 2020, 80, 1846-1860.	0.9	189
558	Local and systemic immunosuppression in pancreatic cancer: Targeting the stalwarts in tumor's arsenal. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188387.	7.4	19
559	The role of fibroblast activation protein in health and malignancy. Cancer and Metastasis Reviews, 2020, 39, 783-803.	5.9	177
560	Pirfenidone reduces immune-suppressive capacity of cancer-associated fibroblasts through targeting CCL17 and TNF-beta. Integrative Biology (United Kingdom), 2020, 12, 188-197.	1.3	25
561	Fibroblast Activation Protein Regulates Lesion Burden and the Fibroinflammatory Response in Apoe-Deficient Mice in a Sexually Dimorphic Manner. American Journal of Pathology, 2020, 190, 1118-1136.	3.8	8
562	Bone Marrow Stromal Cells-Induced Drug Resistance in Multiple Myeloma. International Journal of Molecular Sciences, 2020, 21, 613.	4.1	35
563	A framework for advancing our understanding of cancer-associated fibroblasts. Nature Reviews Cancer, 2020, 20, 174-186.	28.4	2,012
564	Fibroblasts in urothelial bladder cancer define stroma phenotypes that are associated with clinical outcome. Scientific Reports, 2020, 10, 281.	3.3	42
565	Beyond the concept of cold and hot tumors for the development of novel predictive biomarkers and the rational design of immunotherapy combination. International Journal of Cancer, 2020, 147, 1509-1518.	5.1	44
566	Molecular recognition of fibroblast activation protein for diagnostic and therapeutic applications. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140409.	2.3	39

#	Article	IF	CITATIONS
567	Senescence-Induced Vascular Remodeling Creates Therapeutic Vulnerabilities in Pancreas Cancer. Cell, 2020, 181, 424-441.e21.	28.9	216
568	Immunotherapy for pancreatic cancer: A 2020 update. Cancer Treatment Reviews, 2020, 86, 102016.	7.7	276
569	Lifting the innate immune barriers to antitumor immunity. , 2020, 8, e000695.		50
570	Microenvironmental Determinants of Pancreatic Cancer. Physiological Reviews, 2020, 100, 1707-1751.	28.8	156
571	SnapShot: Cancer-Associated Fibroblasts. Cell, 2020, 181, 486-486.e1.	28.9	85
572	Tumor microenvironment complexity and therapeutic implications at a glance. Cell Communication and Signaling, 2020, 18, 59.	6.5	909
573	Revisiting Cancer Stem Cells as the Origin of Cancer-Associated Cells in the Tumor Microenvironment: A Hypothetical View from the Potential of iPSCs. Cancers, 2020, 12, 879.	3.7	44
574	Modern Aspects of Immunotherapy with Checkpoint Inhibitors in Melanoma. International Journal of Molecular Sciences, 2020, 21, 2367.	4.1	34
575	Melanoma-associated fibroblasts impair CD8+ T cell function and modify expression of immune checkpoint regulators via increased arginase activity. Cellular and Molecular Life Sciences, 2021, 78, 661-673.	5.4	37
576	Diversity and Biology of Cancer-Associated Fibroblasts. Physiological Reviews, 2021, 101, 147-176.	28.8	521
577	Targeting stromal cell Syndecanâ€2 reduces breast tumour growth, metastasis and limits immune evasion. International Journal of Cancer, 2021, 148, 1245-1259.	5.1	12
578	Overcoming stromal barriers to immuno-oncological responses via fibroblast activation protein-targeted therapy. Immunotherapy, 2021, 13, 155-175.	2.0	12
579	FAPâ€Targeted Photodynamic Therapy Mediated by Ferritin Nanoparticles Elicits an Immune Response against Cancer Cells and Cancer Associated Fibroblasts. Advanced Functional Materials, 2021, 31, 2007017.	14.9	37
580	Three Distinct Stroma Types in Human Pancreatic Cancer Identified by Image Analysis of Fibroblast Subpopulations and Collagen. Clinical Cancer Research, 2021, 27, 107-119.	7.0	61
581	FAPI PET/CT: Will It End the Hegemony of ¹⁸ F-FDG in Oncology?. Journal of Nuclear Medicine, 2021, 62, 296-302.	5.0	82
583	A balance score between immune stimulatory and suppressive microenvironments identifies mediators of tumour immunity and predicts pan-cancer survival. British Journal of Cancer, 2021, 124, 760-769.	6.4	13
584	Determinants and Functions of CAFs Secretome During Cancer Progression and Therapy. Frontiers in Cell and Developmental Biology, 2020, 8, 621070.	3.7	46
585	Cancer Immunology. , 2021, , .		O

#	Article	IF	CITATIONS
587	T cells drive negative feedback mechanisms in cancer associated fibroblasts, promoting expression of co-inhibitory ligands, CD73 and IL-27 in non-small cell lung cancer. Oncolmmunology, 2021, 10, 1940675.	4.6	23
588	Cancer-Associated Fibroblasts and T Cells: From Mechanisms to Outcomes. Journal of Immunology, 2021, 206, 310-320.	0.8	35
589	Overcoming Challenges for CD3-Bispecific Antibody Therapy in Solid Tumors. Cancers, 2021, 13, 287.	3.7	61
590	A High-Dimensional Window into the Micro-Environment of Triple Negative Breast Cancer. Cancers, 2021, 13, 316.	3.7	16
591	Stromal Cells Present in the Melanoma Niche Affect Tumor Invasiveness and Its Resistance to Therapy. International Journal of Molecular Sciences, 2021, 22, 529.	4.1	24
592	A distinct repertoire of <scp>cancerâ€associated</scp> fibroblasts is enriched in cribriform prostate cancer. Journal of Pathology: Clinical Research, 2021, 7, 271-286.	3.0	9
593	Antitumor Effect and Immune Response of Nanosecond Pulsed Electric Fields in Pancreatic Cancer. Frontiers in Oncology, 2020, 10, 621092.	2.8	15
594	Ratio of the interferon- \hat{l}^3 signature to the immunosuppression signature predicts anti-PD-1 therapy response in melanoma. Npj Genomic Medicine, 2021, 6, 7.	3.8	41
596	The Tumor Microenvironment in Liver Metastases from Colorectal Carcinoma in the Context of the Histologic Growth Patterns. International Journal of Molecular Sciences, 2021, 22, 1544.	4.1	13
597	Selective Targeting of Cancer-Associated Fibroblasts by Engineered H-Ferritin Nanocages Loaded with Navitoclax. Cells, 2021, 10, 328.	4.1	22
598	Targeting and Reprograming Cancer-Associated Fibroblasts and the Tumor Microenvironment in Pancreatic Cancer. Cancers, 2021, 13, 697.	3.7	25
599	Characterising cancer-associated fibroblast heterogeneity in non-small cell lung cancer: a systematic review and meta-analysis. Scientific Reports, 2021, 11, 3727.	3.3	27
600	CCL5 production by fibroblasts through a local renin–angiotensin system in malignant melanoma affects tumor immune responses. Journal of Cancer Research and Clinical Oncology, 2021, 147, 1993-2001.	2.5	9
601	Prognostic and predictive impact of stroma cells defined by PDGFRb expression in early breast cancer: results from the randomized SweBCG91RT trial. Breast Cancer Research and Treatment, 2021, 187, 45-55.	2.5	8
602	The Diverse Roles of Heme Oxygenase-1 in Tumor Progression. Frontiers in Immunology, 2021, 12, 658315.	4.8	72
603	Converting melanoma-associated fibroblasts into a tumor-suppressive phenotype by increasing intracellular Notch1 pathway activity. PLoS ONE, 2021, 16, e0248260.	2.5	9
604	Fibroblast Activation Protein α-Targeted CD40 Agonism Abrogates Systemic Toxicity and Enables Administration of High Doses to Induce Effective Antitumor Immunity. Clinical Cancer Research, 2021, 27, 4036-4053.	7.0	31
605	Cancer-Associated Fibroblasts as Players in Cancer Development and Progression and Their Role in Targeted Radionuclide Imaging and Therapy. Cancers, 2021, 13, 1100.	3.7	35

#	Article	IF	CITATIONS
606	Targeting cancer-associated fibroblast-secreted WNT2 restores dendritic cell-mediated antitumour immunity. Gut, 2022, 71, 333-344.	12.1	73
607	A Trifunctional Theranostic Ligand Targeting Fibroblast Activation Protein-α (FAPα). Molecular Imaging and Biology, 2021, 23, 686-696.	2.6	15
608	mRNA in cancer immunotherapy: beyond a source of antigen. Molecular Cancer, 2021, 20, 48.	19.2	46
609	Radiotherapy: An immune response modifier for immuno-oncology. Seminars in Immunology, 2021, 52, 101474.	5.6	29
610	Gene silencing delivery systems for the treatment of pancreatic cancer: Where and what to target next?. Journal of Controlled Release, 2021, 331, 246-259.	9.9	18
611	A reconfigurable microscale assay enables insights into cancer-associated fibroblast modulation of immune cell recruitment. Integrative Biology (United Kingdom), 2021, 13, 87-97.	1.3	6
612	Immune Checkpoint Inhibitors: A Promising Treatment Option for Metastatic Castration-Resistant Prostate Cancer?. International Journal of Molecular Sciences, 2021, 22, 4712.	4.1	14
613	Research progress in tumor targeted immunotherapy. Expert Opinion on Drug Delivery, 2021, 18, 1067-1090.	5.0	11
614	Emerging antibody therapies for pancreatic adenocarcinoma: a review of recent phase 2 trials. Expert Opinion on Emerging Drugs, 2021, 26, 103-129.	2.4	2
615	A Novel Chemiluminescence Probe for Sensitive Detection of Fibroblast Activation Protein-Alpha In Vitro and in Living Systems. Analytical Chemistry, 2021, 93, 6501-6507.	6.5	16
616	Hypoxia-sensing CAR TÂcells provide safety and efficacy in treating solid tumors. Cell Reports Medicine, 2021, 2, 100227.	6.5	65
617	Contextual cues from cancer cells govern cancer-associated fibroblast heterogeneity. Cell Reports, 2021, 35, 109009.	6.4	18
619	Cancer-Associated Fibroblasts and Tumor-Associated Macrophages in Cancer and Cancer Immunotherapy. Frontiers in Oncology, 2021, 11, 668731.	2.8	55
620	Oncogenesis, Microenvironment Modulation and Clinical Potentiality of FAP in Glioblastoma: Lessons Learned from Other Solid Tumors. Cells, 2021, 10, 1142.	4.1	12
621	Colorectal cancer cell intrinsic fibroblast activation protein alpha binds to Enolase1 and activates NF-κB pathway to promote metastasis. Cell Death and Disease, 2021, 12, 543.	6.3	20
622	Role of cancerâ€associated fibroblast subpopulations in immune infiltration, as a new means of treatment in cancer. Immunological Reviews, 2021, 302, 259-272.	6.0	113
623	Influence of Tumor Microenvironment and Fibroblast Population Plasticity on Melanoma Growth, Therapy Resistance and Immunoescape. International Journal of Molecular Sciences, 2021, 22, 5283.	4.1	27
624	High PDGFRb Expression Predicts Resistance to Radiotherapy in DCIS within the SweDCIS Randomized Trial. Clinical Cancer Research, 2021, 27, 3469-3477.	7.0	8

#	Article	IF	Citations
625	Singleâ€cell advances in stromalâ€leukocyte interactions in cancer. Immunological Reviews, 2021, 302, 286-298.	6.0	10
626	Fibroblasts Influence the Efficacy, Resistance, and Future Use of Vaccines and Immunotherapy in Cancer Treatment. Vaccines, 2021, 9, 634.	4.4	8
627	A bird's eye view of fibroblast heterogeneity: A panâ€disease, panâ€cancer perspective. Immunological Reviews, 2021, 302, 299-320.	6.0	23
628	Risk Signature of Cancer-Associated Fibroblast–Secreted Cytokines Associates With Clinical Outcomes of Breast Cancer. Frontiers in Oncology, 2021, 11, 628677.	2.8	9
629	Heterotypic clustering of circulating tumor cells and circulating cancer-associated fibroblasts facilitates breast cancer metastasis. Breast Cancer Research and Treatment, 2021, 189, 63-80.	2.5	25
630	Cancer-Associated Fibroblasts in Oral Cancer: A Current Perspective on Function and Potential for Therapeutic Targeting. Frontiers in Oral Health, 2021, 2, 686337.	3.0	27
631	A comprehensive analysis of immune infiltration in the tumor microenvironment of osteosarcoma. Cancer Medicine, 2021, 10, 5696-5711.	2.8	20
632	Characterizing dedifferentiation of thyroid cancer by integrated analysis. Science Advances, 2021, 7, .	10.3	76
633	Overexpression of TGF- \hat{l}^21 and SDF-1 in cervical cancer-associated fibroblasts promotes cell growth, invasion and migration. Archives of Gynecology and Obstetrics, 2022, 305, 179-192.	1.7	14
634	Tumor-Associated Fibroblast-Targeting Nanoparticles for Enhancing Solid Tumor Therapy: Progress and Challenges. Molecular Pharmaceutics, 2021, 18, 2889-2905.	4.6	19
635	Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduction and Targeted Therapy, 2021, 6, 263.	17.1	739
636	Apoptosis in the Pancreatic Cancer Tumor Microenvironmentâ€"The Double-Edged Sword of Cancer-Associated Fibroblasts. Cells, 2021, 10, 1653.	4.1	10
637	Motixafortide and Pembrolizumab Combined to Nanoliposomal Irinotecan, Fluorouracil, and Folinic Acid in Metastatic Pancreatic Cancer: The COMBAT/KEYNOTE-202 Trial. Clinical Cancer Research, 2021, 27, 5020-5027.	7.0	37
638	Immune mechanisms orchestrate tertiary lymphoid structures in tumors via cancer-associated fibroblasts. Cell Reports, 2021, 36, 109422.	6.4	89
639	New Insights From Single-Cell Sequencing Data: Synovial Fibroblasts and Synovial Macrophages in Rheumatoid Arthritis. Frontiers in Immunology, 2021, 12, 709178.	4.8	32
640	Extracellular Matrices and Cancer-Associated Fibroblasts: Targets for Cancer Diagnosis and Therapy?. Cancers, 2021, 13, 3466.	3.7	55
641	Translating complexity and heterogeneity of pancreatic tumor: 3D in vitro to in vivo models. Advanced Drug Delivery Reviews, 2021, 174, 265-293.	13.7	53
642	Targeting cancer associated fibroblasts to enhance immunotherapy: emerging strategies and future perspectives. Oncotarget, 2021, 12, 1427-1433.	1.8	19

#	Article	IF	CITATIONS
643	Fibroblast Activation Protein Expressing Mesenchymal Cells Promote Glioblastoma Angiogenesis. Cancers, 2021, 13, 3304.	3.7	18
644	Rational Design, Pharmacomodulation, and Synthesis of [⁶⁸ Ga]Ga-Alb-FAPtp-01, a Selective Tumor-Associated Fibroblast Activation Protein Tracer for PET Imaging of Glioma. ACS Sensors, 2021, 6, 3424-3435.	7.8	15
645	Fibroblast Activation Protein- $\hat{l}\pm$ as a Target in the Bench-to-Bedside Diagnosis and Treatment of Tumors: A Narrative Review. Frontiers in Oncology, 2021, 11, 648187.	2.8	69
646	Fibroblast Activation Protein (FAP)-Targeted CAR-T Cells: Launching an Attack on Tumor Stroma. ImmunoTargets and Therapy, 2021, Volume 10, 313-323.	5.8	59
647	Viral vector-mediated reprogramming of the fibroblastic tumor stroma sustains curative melanoma treatment. Nature Communications, 2021, 12, 4734.	12.8	11
648	Hot or cold: Bioengineering immune contextures into in vitro patient-derived tumor models. Advanced Drug Delivery Reviews, 2021, 175, 113791.	13.7	16
649	Initial clinical experience with ⁹⁰ Y-FAPI-46 radioligand therapy for advanced stage solid tumors: a case series of nine patients. Journal of Nuclear Medicine, 2021, , jnumed.121.262468.	5.0	64
650	Current Challenges in Targeting Tumor Desmoplasia to Improve the Efficacy of Immunotherapy. Current Cancer Drug Targets, 2021, 21, 919-931.	1.6	0
651	In situ functional cell phenotyping reveals microdomain networks in colorectal cancer recurrence. Cell Reports Methods, 2021, 1, 100072.	2.9	3
652	The Stromal and Immune Landscape of Nasopharyngeal Carcinoma and Its Implications for Precision Medicine Targeting the Tumor Microenvironment. Frontiers in Oncology, 2021, 11, 744889.	2.8	19
653	NSCLC Biomarkers to Predict Response to Immunotherapy with Checkpoint Inhibitors (ICI): From the Cells to In Vivo Images. Cancers, 2021, 13, 4543.	3.7	14
654	Clinical and therapeutic relevance of cancer-associated fibroblasts. Nature Reviews Clinical Oncology, 2021, 18, 792-804.	27.6	428
655	Fascin as a useful marker for cancer-associated fibroblasts in invasive lung adenocarcinoma. Medicine (United States), 2021, 100, e27162.	1.0	2
656	PD-1/PD-L1 expression in pancreatic cancer and its implication in novel therapies. Medicine and Pharmacy Reports, 0 , , .	0.4	10
657	Cholecystokinin Receptor Antagonist Improves Efficacy of Chemotherapy in Murine Models of Pancreatic Cancer by Altering the Tumor Microenvironment. Cancers, 2021, 13, 4949.	3.7	7
658	The functional cross talk between cancer cells and cancer associated fibroblasts from a cancer mechanics perspective. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119103.	4.1	17
659	Recent advances in active targeting of nanomaterials for anticancer drug delivery. Advances in Colloid and Interface Science, 2021, 296, 102509.	14.7	84
660	The transformation of cancer-associated fibroblasts: Current perspectives on the role of TGF-β in CAF mediated tumor progression and therapeutic resistance. Cancer Letters, 2021, 520, 222-232.	7.2	35

#	Article	IF	CITATIONS
661	Stromal modulation strategies to improve immunotherapy response in cancer., 2022, , 241-291.		0
662	Intrinsic and acquired cancer immunotherapy resistance. , 2022, , 463-497.		0
663	The Role of Stellate Cells in Pancreatic Ductal Adenocarcinoma: Targeting Perspectives. Frontiers in Oncology, 2020, 10, 621937.	2.8	35
664	Identification of a novel therapeutic candidate, NRK, in primary cancer-associated fibroblasts of lung adenocarcinoma microenvironment. Journal of Cancer Research and Clinical Oncology, 2021, 147, 1049-1064.	2.5	6
665	Hierarchically Releasing Bio-Responsive Nanoparticles for Complete Tumor Microenvironment Modulation via TGF-Î ² Pathway Inhibition and TAF Reduction. ACS Applied Materials & Diterfaces, 2021, 13, 2256-2268.	8.0	11
666	Flow Cytometric Identification of Fibrocytes in Scleroderma Lung Disease. Methods in Molecular Biology, 2012, 900, 327-346.	0.9	5
667	In Vitro and Ex Vivo Models– The Tumor Microenvironment in a Flask. Advances in Experimental Medicine and Biology, 2020, 1219, 431-443.	1.6	9
668	Mouse Models of Pancreatic Cancer. , 2013, , 57-91.		1
669	Recent Advances in Experimental Models of Breast Cancer Exosome Secretion, Characterization and Function. Journal of Mammary Gland Biology and Neoplasia, 2020, 25, 305-317.	2.7	11
670	A cell-based fluorescent assay for FAP inhibitor discovery. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127253.	2.2	5
671	Targeting Dipeptidyl Peptidase-4 (DPP-4) and Fibroblast Activation Protein (FAP) for Diabetes and Cancer Therapy. RSC Drug Discovery Series, 2011, , 118-144.	0.3	5
672	Cancer immune resistance: can theories converge?. Emerging Topics in Life Sciences, 2017, 1, 411-419.	2.6	13
676	Cancer-Associated Fibroblasts Affect Intratumoral CD8+ and FoxP3+ T Cells Via IL6 in the Tumor Microenvironment. Clinical Cancer Research, 2018, 24, 4820-4833.	7.0	225
677	Phosphoinositide 3-kinase $\hat{\Gamma}$ inhibition promotes antitumor responses but antagonizes checkpoint inhibitors. JCI Insight, 2018, 3, .	5.0	38
678	Fibroblast activation protein augments progression and metastasis of pancreatic ductal adenocarcinoma. JCI Insight, 2017, 2, .	5.0	102
679	Virus-induced hepatocellular carcinomas cause antigen-specific local tolerance. Journal of Clinical Investigation, 2013, 123, 1032-1043.	8.2	42
680	EMD Millipore. Materials and Methods, 0, 3, .	0.0	3
681	A Vaccine That Co-Targets Tumor Cells and Cancer Associated Fibroblasts Results in Enhanced Antitumor Activity by Inducing Antigen Spreading. PLoS ONE, 2013, 8, e82658.	2.5	43

#	Article	IF	CITATIONS
682	Chronic Hyperglycemia Induces Trans-Differentiation of Human Pancreatic Stellate Cells and Enhances the Malignant Molecular Communication with Human Pancreatic Cancer Cells. PLoS ONE, 2015, 10, e0128059.	2.5	24
683	Increased Soluble CD155 in the Serum of Cancer Patients. PLoS ONE, 2016, 11, e0152982.	2.5	83
684	Fibroblast activation protein is dispensable in the anti-influenza immune response in mice. PLoS ONE, 2017, 12, e0171194.	2.5	11
685	The actin modulator <scp>hMENA</scp> regulates <scp>GAS</scp> 6― <scp>AXL</scp> axis and proâ€tumor cancer/stromal cell cooperation. EMBO Reports, 2020, 21, e50078.	4.5	20
686	Cancer Metabolic and Immune Reprogramming: The Intimate Interaction Between Cancer Cells and Microenvironment. Journal of Cancer Prevention & Current Research, 2014, 1 , .	0.1	3
687	Cancer stem cells-driven tumor growth and immune escape: the Janus face of neurotrophins. Aging, 2019, 11, 11770-11792.	3.1	25
688	Mesenchymal stromal cells (MSCs) and colorectal cancer: a troublesome twosome for the anti-tumour immune response?. Oncotarget, 2016, 7, 60752-60774.	1.8	56
689	Notch1—WISP-1 axis determines the regulatory role of mesenchymal stem cell-derived stromal fibroblasts in melanoma metastasis. Oncotarget, 2016, 7, 79262-79273.	1.8	19
690	The miR-25-93-106b cluster regulates tumor metastasis and immune evasion via modulation of CXCL12 and PD-L1. Oncotarget, 2017, 8, 21609-21625.	1.8	72
691	Evaluation of the circulating level of fibroblast activation protein \hat{l}_{\pm} for diagnosis of esophageal squamous cell carcinoma. Oncotarget, 2017, 8, 30050-30062.	1.8	21
692	Fiber-modified hexon-chimeric oncolytic adenovirus targeting cancer associated fibroblasts inhibits tumor growth in gastric carcinoma. Oncotarget, 2017, 8, 76468-76478.	1.8	7
693	Semaphorin 4D in human head and neck cancer tissue and peripheral blood: A dense fibrotic peri-tumoral stromal phenotype. Oncotarget, 2018, 9, 11126-11144.	1.8	11
694	Markers of fibroblast-rich tumor stroma and perivascular cells in serous ovarian cancer: Inter- and intra-patient heterogeneity and impact on survival. Oncotarget, 2016, 7, 18573-18584.	1.8	40
695	The application of the fibroblast activation protein \hat{l}_{\pm} -targeted immunotherapy strategy. Oncotarget, 2016, 7, 33472-33482.	1.8	60
696	Fibroblast activation protein (FAP) as a possible target of the antitumor strategy. Molekuliarnaia Genetika, Mikrobiologiia I Virusologiia, 2016, 34, 90.	0.4	10
697	Fibroblast activation protein \hat{l} ±-positive pancreatic stellate cells promote the migration and invasion of pancreatic cancer by CXCL1-mediated Akt phosphorylation. Annals of Translational Medicine, 2019, 7, 532-532.	1.7	37
698	Immune Mechanisms Orchestrate Tertiary Lymphoid Structures in Tumors Via Cancer-Associated Fibroblasts. SSRN Electronic Journal, 0, , .	0.4	4
699	Plasma seprase and DPP4 levels as markers of disease and prognosis in cancer. Disease Markers, 2012, 32, 309-20.	1.3	37

#	Article	IF	CITATIONS
700	Direct Interaction between Carcinoma Cells and Cancer Associated Fibroblasts for the Regulation of Cancer Invasion. Cancers, 2015, 7, 2054-2062.	3.7	98
701	Expression of fibroblast activation protein in human pancreatic adenocarcinoma and its clinicopathological significance. World Journal of Gastroenterology, 2012, 18, 840.	3.3	124
702	Pancreatic cancer and its stroma: A conspiracy theory. World Journal of Gastroenterology, 2014, 20, 11216.	3.3	111
703	Cancer immunotherapy for pancreatic cancer utilizing \hat{l}_{\pm} -gal epitope/natural anti-Gal antibody reaction. World Journal of Gastroenterology, 2015, 21, 11396.	3.3	13
704	Antitumor immunity targeting fibroblast activation proteinâ€Î± in a mouse Lewis lung carcinoma model. Oncology Letters, 2020, 20, 868-876.	1.8	7
705	Glycoprotein as a novel player in tumour microenvironment and cancer progression. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2016, 160, 467-473.	0.6	15
706	Novel Insights Into the Role of Inflammation in Promoting Breast Cancer Development. , 0, , .		1
707	Preclinical murine tumor models: A structural and functional perspective. ELife, 2020, 9, .	6.0	81
708	Cancer-associated fibroblasts and their influence on tumor immunity and immunotherapy. ELife, 2020, 9, .	6.0	166
709	Weighted Gene Co-expression Network Analysis Identifies a Cancer-Associated Fibroblast Signature for Predicting Prognosis and Therapeutic Responses in Gastric Cancer. Frontiers in Molecular Biosciences, 2021, 8, 744677.	3.5	37
710	Immunobiology of cancer-associated fibroblasts in the context of radiotherapy. Journal of Translational Medicine, 2021, 19, 437.	4.4	15
711	Cancer-associated fibroblast senescence and its relation with tumour-infiltrating lymphocytes and PD-L1 expressions in intrahepatic cholangiocarcinoma. British Journal of Cancer, 2022, 126, 219-227.	6.4	14
712	Organ Specificity and Heterogeneity of Cancer-Associated Fibroblasts in Colorectal Cancer. International Journal of Molecular Sciences, 2021, 22, 10973.	4.1	12
713	Pancreatic Cancer Microenvironment and Cellular Composition: Current Understandings and Therapeutic Approaches. Cancers, 2021, 13, 5028.	3.7	27
714	Integrated single-cell and bulk RNA sequencing analysis identifies a cancer associated fibroblast-related signature for predicting prognosis and therapeutic responses in colorectal cancer. Cancer Cell International, 2021, 21, 552.	4.1	50
715	Fibroblast pathology in inflammatory diseases. Journal of Clinical Investigation, 2021, 131, .	8.2	65
716	Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Molecular Cancer, 2021, 20, 131.	19.2	702
717	Therapeutical Cues from the Tumor Microenvironment. , 0, , .		0

#	Article	IF	CITATIONS
718	Enhanced Growth and Metastasis of Colon Cancer: Role of Mesenchymal Stem Cells. , 2012, , 259-266.		0
719	Miscellaneous Approaches and Considerations: TLR Agonists and Other Inflammatory Agents, Anti-Chemokine Agents, Infectious Agents, Tumor Stroma Targeting, Age and Sex Effects, and Miscellaneous Small Molecules., 2013,, 399-424.		0
720	EMD Millipore Antibodies. Materials and Methods, 0, 2, .	0.0	0
721	Trafficking of Cells from Adipose Tissue to Tumor Microenvironment. , 2013, , 147-163.		0
722	Molecular Targeted Therapies in Pancreatic Cancer. , 2013, , 117-144.		0
723	Fibrocytes and Pulmonary Vascular Remodeling: The Good, the Bad, and the Progenitors. Pancreatic Islet Biology, 2015, , 257-276.	0.3	O
724	Carcinoma Associated Fibroblast: a Paradoxical Role in Pancreatic Cancer Microenvironment and a Promising Target for Therapy. Journal of Carcinogenesis & Mutagenesis, 2016, 7, .	0.3	1
725	Targeting the Tumor Microenvironment. , 2018, , 235-256.		O
726	Dissecting Effects of Anti-cancer Drugs and of Cancer-associated Fibroblasts by On-chip Reconstitution of Immunocompetent Tumor Microenvironments. SSRN Electronic Journal, 0, , .	0.4	0
727	3D Tissue Model of Cancers. Biomaterials Science Series, 2019, , 294-311.	0.2	O
729	Ovarian Cancer Biomarkers in Proximal Fluids. , 2019, , 191-209.		0
730	Pancreatic Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1296, 243-257.	1.6	8
731	Targeting Fibroblasts in Fibrosis and Cancer. RSC Drug Discovery Series, 2020, , 307-339.	0.3	0
732	CHAPTER 10. Intratumoral Fibrosis: Emerging Concepts and Therapeutic Opportunities. RSC Drug Discovery Series, 2020, , 259-306.	0.3	1
733	Multiplex Quantitative Analysis of Tumor-Infiltrating Lymphocytes, Cancer-Associated Fibroblasts, and CD200 in Pancreatic Cancer. Cancers, 2021, 13, 5501.	3.7	10
734	Macrophages orchestrate the expansion of a proangiogenic perivascular niche during cancer progression. Science Advances, 2021, 7, eabg9518.	10.3	32
735	Correlation of ⁶⁸ Ga-FAPi-46 PET Biodistribution with FAP Expression by Immunohistochemistry in Patients with Solid Cancers: Interim Analysis of a Prospective Translational Exploratory Study. Journal of Nuclear Medicine, 2022, 63, 1021-1026.	5.0	77
740	Advance in Pancreatic Cancer Diagnosis and Therapy. , 0, , .		0

#	Article	IF	CITATIONS
741	Changes in ovarian tumor cell number, tumor vasculature, and T cell function monitored in vivo using a novel xenograft model. Cancer Immunity, 2013, 13, 11.	3.2	18
742	Visceral metastases and prostate cancer treatment: 'die hard,' 'tough neighborhoods,' or 'evil humors'?. Oncology, 2014, 28, 974-80.	0.5	13
743	Therapeutic targeting of the crosstalk between cancer-associated fibroblasts and cancer stem cells. American Journal of Cancer Research, 2019, 9, 1889-1904.	1.4	25
744	Smad3 Promotes Cancerâ€Associated Fibroblasts Generation via Macrophage–Myofibroblast Transition. Advanced Science, 2022, 9, e2101235.	11.2	51
745	Cancer metabolism and tumor microenvironment: fostering each other?. Science China Life Sciences, 2022, 65, 236-279.	4.9	68
747	Immune checkpoint inhibition for pancreatic ductal adenocarcinoma: limitations and prospects: a systematic review. Cell Communication and Signaling, 2021, 19, 117.	6.5	25
749	The Interaction Between Long Non-Coding RNAs and Cancer-Associated Fibroblasts in Lung Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 714125.	3.7	9
750	Elevated CXCL12 in the plasma membrane of locally advanced rectal cancer after neoadjuvant chemoradiotherapy: a potential prognostic marker. Journal of Cancer, 2022, 13, 162-173.	2.5	4
751	Expression of Potential Biomarker Targets by Immunohistochemistry in Cervical Carcinomas. International Journal of Gynecological Pathology, 2022, Publish Ahead of Print, .	1.4	3
753	Immune function and dysfunction are determined by lymphoid tissue efficacy. DMM Disease Models and Mechanisms, 2022, 15 , .	2.4	5
754	A purine metabolic checkpoint that prevents autoimmunity and autoinflammation. Cell Metabolism, 2022, 34, 106-124.e10.	16.2	23
755	Cancer-associated fibroblasts and the tumor microenvironment in non-small cell lung cancer. Expert Review of Anticancer Therapy, 2022, 22, 169-182.	2.4	7
756	A high tumour-stroma ratio (TSR) in colon tumours and its metastatic lymph nodes predicts poor cancer-free survival and chemo resistance. Clinical and Translational Oncology, 2022, 24, 1047-1058.	2.4	5
757	Fibroblast activation protein alpha: Comprehensive detection methods for drug target and tumor marker. Chemico-Biological Interactions, 2022, 354, 109830.	4.0	7
758	Targeting hedgehog signaling in pancreatic ductal adenocarcinoma., 2022, 236, 108107.		22
7 59	Stromal architecture directs early dissemination in pancreatic ductal adenocarcinoma. JCI Insight, 2022, 7, .	5.0	22
760	Role of Serine Proteases at the Tumor-Stroma Interface. Frontiers in Immunology, 2022, 13, 832418.	4.8	18
762	Stromal Characteristics and Impact on New Therapies for Metastatic Triple-Negative Breast Cancer. Cancers, 2022, 14, 1238.	3.7	7

#	Article	IF	Citations
763	Highlights of Strategies Targeting Fibroblasts for Novel Therapies for Rheumatoid Arthritis. Frontiers in Medicine, 2022, 9, 846300.	2.6	9
764	Bête Noire of Chemotherapy and Targeted Therapy: CAF-Mediated Resistance. Cancers, 2022, 14, 1519.	3.7	12
765	Targeting STAT3 Signaling in COL1+ Fibroblasts Controls Colitis-Associated Cancer in Mice. Cancers, 2022, 14, 1472.	3.7	6
766	Fibroblast Activation Protein Specific Optical Imaging in Non-Small Cell Lung Cancer. Frontiers in Oncology, 2022, 12, 834350.	2.8	0
767	A Multifunctional Composite Hydrogel That Rescues the ROS Microenvironment and Guides the Immune Response for Repair of Osteoporotic Bone Defects. Advanced Functional Materials, 2022, 32, .	14.9	41
768	Identification of Breast Cancer Subtypes Based on Gene Expression Profiles in Breast Cancer Stroma. Clinical Breast Cancer, 2022, 22, 521-537.	2.4	4
769	Cardio-oncology imaging tools at the translational interface. Journal of Molecular and Cellular Cardiology, 2022, 168, 24-32.	1.9	1
770	Biophysics involved in the process of tumor immune escape. IScience, 2022, 25, 104124.	4.1	5
771	Single-cell and spatial analysis reveal interaction of FAP+ fibroblasts and SPP1+ macrophages in colorectal cancer. Nature Communications, 2022, 13, 1742.	12.8	213
772	Integrative analysis of non-small cell lung cancer patient-derived xenografts identifies distinct proteotypes associated with patient outcomes. Nature Communications, 2022, 13, 1811.	12.8	21
773	A triple enhanced permeable gold nanoraspberry designed for positive feedback interventional therapy. Journal of Controlled Release, 2022, 345, 120-137.	9.9	6
774	Cancerâ€associated stroma reveals prognostic biomarkers and novel insights into the tumour microenvironment of colorectal cancer and colorectal liver metastases. Cancer Medicine, 2022, 11, 492-506.	2.8	5
775	CXCL12 in Pancreatic Cancer: Its Function and Potential as a Therapeutic Drug Target. Cancers, 2022, 14, 86.	3.7	14
776	Cancer-Associated Fibroblasts in Pancreatic Ductal Adenocarcinoma: An Update on Heterogeneity and Therapeutic Targeting. International Journal of Molecular Sciences, 2021, 22, 13408.	4.1	42
777	Identification of Functional Heterogeneity of Carcinoma-Associated Fibroblasts with Distinct IL6-Mediated Therapy Resistance in Pancreatic Cancer. Cancer Discovery, 2022, 12, 1580-1597.	9.4	100
793	Cancerâ€associated fibroblasts in breast cancer: Challenges and opportunities. Cancer Communications, 2022, 42, 401-434.	9.2	56
794	Cancer-associated fibroblasts and resistance to anticancer therapies: status, mechanisms, and countermeasures. Cancer Cell International, 2022, 22, 166.	4.1	50
795	Targeting the tumor biophysical microenvironment to reduce resistance to immunotherapy. Advanced Drug Delivery Reviews, 2022, 186, 114319.	13.7	35

#	Article	IF	Citations
796	Cancerâ€associated fibroblasts in pancreatic cancer: new subtypes, new markers, new targets. Journal of Pathology, 2022, 257, 526-544.	4.5	27
798	Detection of PD-L1–Expressing Myeloid Cell Clusters in the Hyaluronan-Enriched Stroma in Tumor Tissue and Tumor-Draining Lymph Nodes. Journal of Immunology, 2022, 208, 2829-2836.	0.8	9
799	Preclinical evaluation of FAP-2286 for fibroblast activation protein targeted radionuclide imaging and therapy. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 3651-3667.	6.4	57
800	The Role of Cancer-Associated Fibroblasts in Ovarian Cancer. Cancers, 2022, 14, 2637.	3.7	23
801	Targeting Tumour-Associated Fibroblasts in Cancers. Frontiers in Oncology, 0, 12, .	2.8	9
802	Targeting cancer-associated fibroblasts: Challenges, opportunities and future directions. , 2022, 240, 108231.		18
803	LYVE-1 ⁺ Macrophages Form a Collaborative CCR5-Dependent Perivascular Niche That Influences Chemotherapy Responses in Cancer. SSRN Electronic Journal, 0, , .	0.4	0
804	Facts and Hopes in Immunotherapy of Pancreatic Cancer. Clinical Cancer Research, 2022, 28, 4606-4617.	7.0	23
805	Cancer-Associated Fibroblasts in the Hypoxic Tumor Microenvironment. Cancers, 2022, 14, 3321.	3.7	23
806	Tumor microenvironment in pancreatic ductal adenocarcinoma: Implications in immunotherapy. World Journal of Gastroenterology, 2022, 28, 3297-3313.	3.3	8
807	The Desmoplastic Stroma of Pancreatic Cancer: Multilayered Levels of Heterogeneity, Clinical Significance, and Therapeutic Opportunities. Cancers, 2022, 14, 3293.	3.7	18
808	Clinical implications and mechanism of histopathological growth pattern in colorectal cancer liver metastases. World Journal of Gastroenterology, 2022, 28, 3101-3115.	3.3	3
809	Combinatorial Gli activity directs immune infiltration and tumor growth in pancreatic cancer. PLoS Genetics, 2022, 18, e1010315.	3.5	15
810	Fight the Cancer, Hit the CAF!. Cancers, 2022, 14, 3570.	3.7	11
811	Cancer-associated fibroblasts: Vital suppressors of the immune response in the tumor microenvironment. Cytokine and Growth Factor Reviews, 2022, 67, 35-48.	7.2	28
812	Metabolic reprogramming and crosstalk of cancer-related fibroblasts and immune cells in the tumor microenvironment. Frontiers in Endocrinology, 0, 13 , .	3.5	27
813	Spatially restricted drivers and transitional cell populations cooperate with the microenvironment in untreated and chemo-resistant pancreatic cancer. Nature Genetics, 2022, 54, 1390-1405.	21.4	68
814	Immune-based combination therapy to convert immunologically cold tumors into hotÂtumors: an update and new insights. Acta Pharmacologica Sinica, 2023, 44, 288-307.	6.1	14

#	Article	IF	CITATIONS
815	Radiation-induced FAP $+$ fibroblasts are involved in keloid recurrence after radiotherapy. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	2
816	The application of FAPI-targeted theranostics in pancreatic cancer: a narrative review. Journal of Pancreatology, 0, Publish Ahead of Print, .	0.9	0
817	TDO2+ myofibroblasts mediate immune suppression in malignant transformation of squamous cell carcinoma. Journal of Clinical Investigation, 2022, 132, .	8.2	17
818	Fibroblast activation protein in the tumor microenvironment predicts outcomes of PD-1 blockade therapy in advanced non-small cell lung cancer. Journal of Cancer Research and Clinical Oncology, 2023, 149, 3469-3483.	2.5	9
819	Cancer-Associated Fibroblasts: Tumorigenicity and Targeting for Cancer Therapy. Cancers, 2022, 14, 3906.	3.7	52
820	Mesenchymal stem cells derived from adipose tissue accelerate the progression of colon cancer by inducing a MTCAF phenotype via ICAM1/STAT3/AKT axis. Frontiers in Oncology, $0,12,.$	2.8	6
821	Recent nanotechnology advancements to treat multidrug-resistance pancreatic cancer: Pre-clinical and clinical overview. Frontiers in Pharmacology, $0,13,.$	3.5	4
822	Spatial Positioning and Matrix Programs of Cancer-Associated Fibroblasts Promote T-cell Exclusion in Human Lung Tumors. Cancer Discovery, 2022, 12, 2606-2625.	9.4	69
823	Cancer-associated fibroblasts: Origin, function, imaging, and therapeutic targeting. Advanced Drug Delivery Reviews, 2022, 189, 114504.	13.7	36
824	CAFs/tumor cells co-targeting DNA vaccine in combination with low-dose gemcitabine for the treatment of Panc02 murine pancreatic cancer. Molecular Therapy - Oncolytics, 2022, 26, 304-313.	4.4	6
825	Bioluminescence imaging of fibroblast activation protein-alpha in vivo and human plasma with highly sensitive probe. Analytical Biochemistry, 2022, 655, 114859.	2.4	2
826	The immunosuppressive tumor microenvironment in hepatocellular carcinoma-current situation and outlook. Molecular Immunology, 2022, 151, 218-230.	2.2	7
827	Role of cancer-associated fibroblasts in tumor microenvironment. , 2022, , 59-86.		6
828	Enhancing anti-tumour innate immunity by targeting the DNA damage response and pattern recognition receptors in combination with radiotherapy. Frontiers in Oncology, $0,12,.$	2.8	15
829	Clinical Strategies Targeting the Tumor Microenvironment of Pancreatic Ductal Adenocarcinoma. Cancers, 2022, 14, 4209.	3.7	9
830	Role of the Tumor Microenvironment in Regulating Pancreatic Cancer Therapy Resistance. Cells, 2022, 11, 2952.	4.1	15
832	Deregulated hyaluronan metabolism in the tumor microenvironment drives cancer inflammation and tumor-associated immune suppression. Frontiers in Immunology, 0, 13 , .	4.8	19
833	Evaluating nearâ€infrared photoimmunotherapy for targeting fibroblast activation proteinâ€Î± expressing cells in vitro and in vivo. Cancer Science, 2023, 114, 236-246.	3.9	7

#	Article	IF	CITATIONS
834	Combination immunotherapy for pancreatic cancer: challenges and future considerations. Expert Review of Clinical Immunology, 2022, 18, 1173-1186.	3.0	4
835	LRRC15+ myofibroblasts dictate the stromal setpoint to suppress tumour immunity. Nature, 2022, 611, 148-154.	27.8	93
836	Characterization of the evolution trajectory and immune profiling of new histologic patterns in lung adenocarcinoma. Journal of Gene Medicine, 0 , , .	2.8	0
837	Fibroblast activation protein-based theranostics in pancreatic cancer. Frontiers in Oncology, 0, 12, .	2.8	5
838	Imaging-guided targeted radionuclide tumor therapy: From concept to clinical translation. Advanced Drug Delivery Reviews, 2022, 190, 114538.	13.7	13
839	Exploring the Biology of Cancer-Associated Fibroblasts in Pancreatic Cancer. Cancers, 2022, 14, 5302.	3.7	6
840	Single cell analysis of cribriform prostate cancer reveals cell intrinsic and tumor microenvironmental pathways of aggressive disease. Nature Communications, 2022, 13, .	12.8	28
841	Fibrocytes boost tumor-supportive phenotypic switches in the lung cancer niche via the endothelin system. Nature Communications, 2022, 13 , .	12.8	6
842	A Theranostic Approach for CAR-T Cell Therapy. Clinical Cancer Research, 2022, 28, 5241-5243.	7.0	3
843	Modulation of the antitumor immune response by cancer-associated fibroblasts: mechanisms and targeting strategies to hamper their immunosuppressive functions. Exploration of Targeted Anti-tumor Therapy, 0, , 598-629.	0.8	3
844	Targeting the tumor stroma for cancer therapy. Molecular Cancer, 2022, 21, .	19.2	71
845	NK cells and solid tumors: therapeutic potential and persisting obstacles. Molecular Cancer, 2022, 21, .	19.2	42
846	Tumor-promoting aftermath post-chemotherapy: A focus on breast cancer. Life Sciences, 2022, 310, 121125.	4.3	15
847	Immunosuppression, immune escape, and immunotherapy in pancreatic cancer: focused on the tumor microenvironment. Cellular Oncology (Dordrecht), 2023, 46, 17-48.	4.4	28
848	Pan-cancer single-cell analysis reveals the heterogeneity and plasticity of cancer-associated fibroblasts in the tumor microenvironment. Nature Communications, 2022, 13, .	12.8	120
849	Cancer-Associated Fibroblasts in Inflammation and Antitumor Immunity. Clinical Cancer Research, 2023, 29, 1009-1016.	7.0	22
850	Roles of Stromal Cells in the Immune System. , 2016, , 484-492.		0
851	Epithelial and stromal co-evolution and complicity in pancreatic cancer. Nature Reviews Cancer, 2023, 23, 57-77.	28.4	27

#	Article	IF	CITATIONS
852	Enhancing CAR T-cell therapies against solid tumors: Mechanisms and reversion of resistance. Frontiers in Immunology, 0, 13, .	4.8	6
853	Dual Role of Fibroblasts Educated by Tumour in Cancer Behavior and Therapeutic Perspectives. International Journal of Molecular Sciences, 2022, 23, 15576.	4.1	9
854	A Novel Molecular Signature of Cancer-Associated Fibroblasts Predicts Prognosis and Immunotherapy Response in Pancreatic Cancer. International Journal of Molecular Sciences, 2023, 24, 156.	4.1	4
855	Anti-Programmed Cell Death-1 Antibody and Dasatinib Combination Therapy Exhibits Efficacy in Metastatic Colorectal Cancer Mouse Models. Cancers, 2022, 14, 6146.	3.7	3
856	Radiotherapy induced immunogenic cell death by remodeling tumor immune microenvironment. Frontiers in Immunology, 0, 13, .	4.8	8
858	Cancer-Associated Fibroblasts: Lessons from Pancreatic Cancer. Annual Review of Cancer Biology, 2023, 7, 43-55.	4.5	5
859	Therapeutic Targeting of Cancer-Associated Fibroblasts in the Non-Small Cell Lung Cancer Tumor Microenvironment. Cancers, 2023, 15, 335.	3.7	4
860	Targeting the secreted RGDKGE collagen fragment reduces PD‑L1 by a proteasome‑dependent mechanism and inhibits tumor growth. Oncology Reports, 2023, 49, .	2.6	0
861	An Overview of Epithelial-to-Mesenchymal Transition and Mesenchymal-to-Epithelial Transition in Canine Tumors: How Far Have We Come?. Veterinary Sciences, 2023, 10, 19.	1.7	4
862	Cancer-associated fibroblasts: The chief architect in the tumor microenvironment. Frontiers in Cell and Developmental Biology, $0,11,.$	3.7	21
863	Synthesis and Preclinical Evaluation of Three Novel 68Ga-Labeled Bispecific PSMA/FAP-Targeting Tracers for Prostate Cancer Imaging. Molecules, 2023, 28, 1088.	3.8	10
864	Recent Advances in Well-Designed Therapeutic Nanosystems for the Pancreatic Ductal Adenocarcinoma Treatment Dilemma. Molecules, 2023, 28, 1506.	3.8	2
865	Selection and Identification of an ssDNA Aptamer for Fibroblast Activation Protein. Molecules, 2023, 28, 1682.	3.8	2
866	Cold atmospheric plasma: Novel opportunities for tumor microenvironment targeting. Cancer Medicine, 2023, 12, 7189-7206.	2.8	6
867	Editorial: Plasticity of immune cells in tumor microenvironment. Frontiers in Oncology, 0, 13, .	2.8	0
868	Modulating the tumor microenvironment improves antitumor effect of anti-PD-L1 mAb in breast cancer. BioImpacts, 0, , .	1.5	0
869	Targeting fibroblast activation protein (FAP): advances in CAR-T cell, antibody, and vaccine in cancer immunotherapy. Drug Delivery and Translational Research, 2023, 13, 2041-2056.	5.8	9
870	Synergistic therapeutic combination with a CAF inhibitor enhances CAR-NK-mediated cytotoxicity via reduction of CAF-released IL-6., 2023, 11, e006130.		5

#	Article	IF	Citations
871	è†μ癌çμ"ç¹"ã,¤f¡ãf¼ã,¸ãf³ã,°ã«ã,ˆã,‹ç·šç¶èнç°èfžã,μãf−ã,¿ã,¤f−ã®åŒå®šï¼Œè†μ癌é−"質åਝæ§~æ€	€§ã ®ç‰ ¹å	³⁄4 ′å Œ−. Suiz
872	Identification and verification of eight cancer-associated fibroblasts related genes as a prognostic signature for head and neck squamous cell carcinoma. Heliyon, 2023, 9, e14003.	3.2	4
874	Cancerâ€associated fibroblasts: Is it a key to an intricate lock of tumorigenesis?. Cell Biology International, 2023, 47, 859-893.	3.0	3
875	The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell, 2023, 41, 374-403.	16.8	298
876	Activated fibroblasts in cancer: Perspectives and challenges. Cancer Cell, 2023, 41, 434-449.	16.8	38
877	Role and mechanism of fibroblast-activated protein- $\hat{l}\pm$ expression on the surface of fibroblast-like synoviocytes in rheumatoid arthritis. Frontiers in Immunology, 0, 14, .	4.8	2
878	Cancer-associated fibroblasts: challenges and opportunities. Oncotarget, 2023, 14, 211-214.	1.8	0
879	Mechanisms of obesity- and diabetes mellitus-related pancreatic carcinogenesis: a comprehensive and systematic review. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	12
880	Fibroblasts as Turned Agents in Cancer Progression. Cancers, 2023, 15, 2014.	3.7	13
881	Targeting the IL1 \hat{l}^2 Pathway for Cancer Immunotherapy Remodels the Tumor Microenvironment and Enhances Antitumor Immune Responses. Cancer Immunology Research, 2023, 11, 777-791.	3.4	4
882	Immune checkpoint therapyâ€"current perspectives and future directions. Cell, 2023, 186, 1652-1669.	28.9	114
883	Heterogeneity of cancer-associated fibroblasts in head and neck squamous cell carcinoma: opportunities and challenges. Cell Death Discovery, 2023, 9, .	4.7	8
884	A Quick Guide to CAF Subtypes in Pancreatic Cancer. Cancers, 2023, 15, 2614.	3.7	3
885	Cutaneous Lupus Erythematosus: An Update on Pathogenesis and Future Therapeutic Directions. American Journal of Clinical Dermatology, 2023, 24, 521-540.	6.7	9
886	What is new in cancer-associated fibroblast biomarkers?. Cell Communication and Signaling, 2023, 21, .	6.5	13
887	Pancreatic cancerâ€derived small extracellular vesical ezrin activates fibroblasts to exacerbate cancer metastasis through <scp>STAT3</scp> and <scp>YAP</scp> â€l signaling pathways. Molecular Oncology, 2023, 17, 1628-1647.	4.6	2
888	Fibroblast Activation Protein Expression in Sarcomas. Sarcoma, 2023, 2023, 1-11.	1.3	1
889	The role of tumor microenvironment on cancer stem cell fate in solid tumors. Cell Communication and Signaling, 2023, 21, .	6.5	10

#	Article	IF	CITATIONS
890	Cancer-associated fibroblasts refine the classifications of gastric cancer with distinct prognosis and tumor microenvironment characteristics. Frontiers in Oncology, 0, 13, .	2.8	1
891	Comparative Analysis of Cell Mixtures Deconvolution and Gene Signatures Generated for Blood, Immune and Cancer Cells. International Journal of Molecular Sciences, 2023, 24, 10765.	4.1	1
892	Stromal depletion by TALEN-edited universal hypoimmunogenic FAP-CAR T cells enables infiltration and anti-tumor cytotoxicity of tumor antigen-targeted CAR-T immunotherapy. Frontiers in Immunology, 0, 14 , .	4.8	5
893	Nanovaccine Displaying Immunodominant T Cell Epitopes of Fibroblast Activation Protein Is Effective Against Desmoplastic Tumors. ACS Nano, 2023, 17, 10337-10352.	14.6	4
894	The Tango between Cancer-Associated Fibroblasts (CAFs) and Immune Cells in Affecting Immunotherapy Efficacy in Pancreatic Cancer. International Journal of Molecular Sciences, 2023, 24, 8707.	4.1	3
895	Fibroblast Activation Protein-Targeting Minibody-IRDye700DX for Ablation of the Cancer-Associated Fibroblast with Photodynamic Therapy. Cells, 2023, 12, 1420.	4.1	2
897	Cancerâ€associated fibroblasts contribute to the immunosuppressive landscape and influence the efficacy ofÂthe combination therapy of PDâ€i inhibitors and antiangiogenic agents in hepatocellular carcinoma. Cancer, 2023, 129, 3405-3416.	4.1	2
898	Measuring and modelling tumour heterogeneity across scales. , 2023, 1, 712-730.		2
899	Cancer-associated fibroblasts: Just on the opposite side of antitumour immunity?. International Immunopharmacology, 2023, 122, 110601.	3.8	3
900	Morphological Transformation of Selfâ€Assembled Peptide Nanostructures for Bioimaging Applications. Analysis & Sensing, 2024, 4, .	2.0	1
901	LYVE-1+ macrophages form a collaborative CCR5-dependent perivascular niche that influences chemotherapy responses in murine breast cancer. Developmental Cell, 2023, 58, 1548-1561.e10.	7.0	8
903	Cancer-associated fibroblast classification in single-cell and spatial proteomics data. Nature Communications, 2023, 14 , .	12.8	16
904	Stromal inflammation, fibrosis and cancer: An old intuition with promising potential. World Journal of Clinical Oncology, 0, 14, 230-246.	2.3	0
905	Fibroblast Activation Protein-Targeted Photodynamic Therapy of Cancer-Associated Fibroblasts in Murine Models for Pancreatic Ductal Adenocarcinoma. Molecular Pharmaceutics, 0, , .	4.6	0
906	Medical Biology of Cancer-Associated Fibroblasts in Pancreatic Cancer. Biology, 2023, 12, 1044.	2.8	4
907	Comparison of Baseline sup 68 / sup Ga-FAPI and sup 18 / sup F-FDG PET/CT for Prediction of Response and Clinical Outcome in Patients with Unresectable Hepatocellular Carcinoma Treated with PD-1 Inhibitor and Lenvatinib. Journal of Nuclear Medicine, 2023, 64, 1532-1539.	5.0	4
908	FAPI Compared with FDG PET/CT for Diagnosis of Primary and Metastatic Lung Cancer. Radiology, 2023, 308, .	7.3	4
909	Transcutaneous carbon dioxide application suppresses the expression of cancer-associated fibroblasts markers in oral squamous cell carcinoma xenograft mouse model. PLoS ONE, 2023, 18, e0290357.	2.5	O

#	Article	IF	Citations
910	Smart and bioinspired systems for overcoming biological barriers and enhancing disease theranostics. Progress in Materials Science, 2023, 140, 101170.	32.8	17
911	MOFsâ€Based Nanoagents Enable Sequential Damage to Cancerâ€Associated Fibroblast and Tumor Cells for Phototriggered Tumor Microenvironment Regulation. Small, 2024, 20, .	10.0	0
912	Fibroblast diversity and plasticity in the tumor microenvironment: roles in immunity and relevant therapies. Cell Communication and Signaling, 2023, 21, .	6.5	4
913	Depletion of slow-cycling PDGFRÎ \pm +ADAM12+ mesenchymal cells promotes antitumor immunity by restricting macrophage efferocytosis. Nature Immunology, 0, , .	14.5	0
914	Define cancer-associated fibroblasts (CAFs) in the tumor microenvironment: new opportunities in cancer immunotherapy and advances in clinical trials. Molecular Cancer, 2023, 22, .	19.2	17
915	Exploring the dynamic interplay between cancer stem cells and the tumor microenvironment: implications for novel therapeutic strategies. Journal of Translational Medicine, 2023, 21, .	4.4	6
916	Modulation of cancer-associated fibroblasts by nanodelivery system to enhanceÂefficacy of tumor therapy. Nanomedicine, 2023, 18, 1025-1039.	3.3	1
917	Stereotactic ablative radiotherapy and FAPα-based cancer vaccine suppresses metastatic tumor growth in 4T1 mouse breast cancer. Radiotherapy and Oncology, 2023, 189, 109946.	0.6	0
918	Cancer cell-intrinsic mechanisms driving acquired immune tolerance. Immunity, 2023, 56, 2270-2295.	14.3	4
919	The cancer-immunity cycle: Indication, genotype, and immunotype. Immunity, 2023, 56, 2188-2205.	14.3	35
920	Metabolic signatures in pancreatic ductal adenocarcinoma: diagnostic and therapeutic implications. Journal of Pancreatology, 2023, 6, 185-195.	0.9	1
921	CNS tumor stroma transcriptomics identify perivascular fibroblasts as predictors of immunotherapy resistance in glioblastoma patients. Npj Genomic Medicine, 2023, 8, .	3.8	1
922	Molecular targets and therapeutic strategies for triple-negative breast cancer. Molecular Biology Reports, 2023, 50, 10535-10577.	2.3	0
923	Lobular Carcinoma of the Breast: A Comprehensive Review with Translational Insights. Cancers, 2023, 15, 5491.	3.7	1
924	The Influence of Obesity on Outcomes with Immune Checkpoint Blockade: Clinical Evidence and Potential Biological Mechanisms. Cells, 2023, 12, 2551.	4.1	0
925	Cancer-associated mesenchymal stem/stromal cells: role in progression and potential targets for the rapeutic approaches. Frontiers in Immunology, $0,14,.$	4.8	0
926	Development and Characterization of Novel FAP-Targeted Theranostic Pairs: A Bench-to-Bedside Study. Research, 2023, 6, .	5.7	0
927	Natural killer cells for pancreatic cancer immunotherapy: Role of nanoparticles. Cancer Letters, 2023, 579, 216462.	7.2	1

#	Article	IF	CITATIONS
928	Nanobody-based trispecific T cell engager (Nb-TriTE) enhances therapeutic efficacy by overcoming tumor-mediated immunosuppression. Journal of Hematology and Oncology, 2023, 16, .	17.0	0
929	Targeting integrin $\hat{l}\pm 5$ in fibroblasts potentiates colorectal cancer response to PD-L1 blockade by affecting extracellular-matrix deposition. , 2023, 11, e007447.		0
930	Cancer-associated fibroblasts in neoadjuvant setting for solid cancers. Critical Reviews in Oncology/Hematology, 2024, 193, 104226.	4.4	0
931	Functional Contribution and Clinical Implication of Cancer-Associated Fibroblasts in Glioblastoma. Clinical Cancer Research, 2024, 30, 865-876.	7. O	0
932	Establishment and Thorough Characterization of Xenograft (PDX) Models Derived from Patients with Pancreatic Cancer for Molecular Analyses and Chemosensitivity Testing. Cancers, 2023, 15, 5753.	3.7	0
933	Exploration of cancer associated fibroblasts phenotypes in the tumor microenvironment of classical and pleomorphic Invasive Lobular Carcinoma. Frontiers in Oncology, 0, 13, .	2.8	1
934	Engineered Adoptive T-Cell Therapies for Breast Cancer: Current Progress, Challenges, and Potential. Cancers, 2024, 16, 124.	3.7	0
935	Understanding organotropism in cancer metastasis using microphysiological systems. Lab on A Chip, 2024, 24, 1542-1556.	6.0	0
936	Differential induction of T-cell tolerance by tumour fibroblast subsets. Current Opinion in Immunology, 2024, 86, 102410.	5 . 5	0
937	Cancer-Associated Fibroblast Heterogeneity in Malignancy with Focus on Oral Squamous Cell Carcinoma. International Journal of Molecular Sciences, 2024, 25, 1300.	4.1	0
938	Tumor Suppression by Anti-Fibroblast Activation Protein Near-Infrared Photoimmunotherapy Targeting Cancer-Associated Fibroblasts. Cancers, 2024, 16, 449.	3.7	0
939	Polymers showing cluster triggered emission as potential materials in biophotonic applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2024, 58, 100653.	11.6	0
940	Cancer-associated fibroblasts contributed to hepatocellular carcinoma recurrence and metastasis via CD36-mediated fatty-acid metabolic reprogramming. Experimental Cell Research, 2024, 435, 113947.	2.6	0
941	High ANO1 expression is a prognostic factor and correlated with an immunosuppressive tumor microenvironment in pancreatic cancer. Frontiers in Immunology, 0, 15 , .	4.8	0
942	An Analysis Regarding the Association Between DAZ Interacting Zinc Finger Protein 1 (DZIP1) and Colorectal Cancer (CRC). Molecular Biotechnology, 0, , .	2.4	0
943	68Ga-FAPI PET imaging monitors response to combined TGF- \hat{l}^2R inhibition and immunotherapy in metastatic colorectal cancer. Journal of Clinical Investigation, 2024, 134, .	8.2	0
944	The trends and hotspots of immunotherapy for metastatic colorectal cancer from 2013 to 2022: A bibliometric and visual analysis. Human Vaccines and Immunotherapeutics, 2024, 20, .	3.3	0
945	CAFs vs. TECs: when blood feuds fuel cancer progression, dissemination and therapeutic resistance. Cellular Oncology (Dordrecht), 0, , .	4.4	0

#	ARTICLE	IF	CITATIONS
946	circNOX4 activates an inflammatory fibroblast niche to promote tumor growth and metastasis in NSCLC via FAP/IL-6 axis. Molecular Cancer, 2024, 23, .	19.2	0
947	Comprehensive analysis of fibroblast activation protein expression across 23 tumor indications: insights for biomarker development in cancer immunotherapies. Frontiers in Immunology, 0, 15, .	4.8	0
948	Prostate fibroblasts and prostate cancer associated fibroblasts exhibit different metabolic, matrix degradation and PD-L1 expression responses to hypoxia. Frontiers in Molecular Biosciences, $0,11,1$	3.5	0
949	The role of the microenvironment in tumor growth and spreading. Obstetrics, Gynecology and Reproduction, 2024, 18, 96-111.	0.5	0
950	Tumor microenvironment reprogramming by nanomedicine to enhance the effect of tumor immunotherapy. Asian Journal of Pharmaceutical Sciences, 2024, 19, 100902.	9.1	0
951	Magnetic natural lipid nanoparticles for oral treatment of colorectal cancer through potentiated antitumor immunity and microbiota metabolite regulation. Biomaterials, 2024, 307, 122530.	11.4	0
952	Deciphering Glioblastoma: Fundamental and Novel Insights into the Biology and Therapeutic Strategies of Gliomas. Current Issues in Molecular Biology, 2024, 46, 2402-2443.	2.4	0