A Novel<i>Listeria monocytogenes</i>-Based DNA Deli

Human Gene Therapy 21, 405-416 DOI: 10.1089/hum.2009.022

Citation Report

#	Article	IF	CITATIONS
1	Gene Therapy for Prostate Cancer. Postgraduate Medicine, 2010, 122, 166-180.	2.0	13
2	The use ofListeria monocytogenesas a DNA delivery vector for cancer gene therapy. Bioengineered Bugs, 2010, 1, 286-289.	1.7	18
3	Orally Administered Bifidobacteria as Vehicles for Delivery of Agents to Systemic Tumors. Molecular Therapy, 2010, 18, 1397-1407.	8.2	101
4	Bacteria as vectors for gene therapy of cancer. Bioengineered Bugs, 2010, 1, 385-394.	1.7	139
5	Induction of Effective Antitumor Response After Mucosal Bacterial Vector Mediated DNA Vaccination With Endogenous Prostate Cancer Specific Antigen. Journal of Urology, 2011, 186, 687-693.	0.4	38
6	Building Mosaics of Therapeutic Plasmid Gene Vectors. Current Gene Therapy, 2011, 11, 466-478.	2.0	18
7	Specific antibody-receptor interactions trigger InIAB-independent uptake of listeria monocytogenes into tumor cell lines. BMC Microbiology, 2011, 11, 163.	3.3	5
8	Preclinical evaluation of gene delivery methods for the treatment of loco-regional disease in breast cancer. Experimental Biology and Medicine, 2011, 236, 423-434.	2.4	10
9	Cancer immunotherapy using recombinant <i>Listeria monocytogenes</i> : Transition from bench to clinic. Hum Vaccin, 2011, 7, 497-505.	2.4	29
10	Computer simulation of Salmonella typhimurium accumulation within tumors. , 2011, , .		0
11	In Vivo Optical Imaging in Gene & Cell Therapy. Current Gene Therapy, 2012, 12, 2-11.	2.0	22
12	Emerging biotechnological strategies for non-viral antiangiogenic gene therapy. Angiogenesis, 2012, 15, 521-542.	7.2	6
13	Bacterial vectors for imaging and cancer gene therapy: a review. Cancer Gene Therapy, 2012, 19, 731-740.	4.6	50
14	High Resolution In Vivo Bioluminescent Imaging for the Study of Bacterial Tumour Targeting. PLoS ONE, 2012, 7, e30940.	2.5	116
15	Targeted gene delivery by free-tissue transfer in oncoplastic reconstruction. Lancet Oncology, The, 2012, 13, e392-e402.	10.7	8
16	Bioluminescent Bacterial Imaging In Vivo . Journal of Visualized Experiments, 2012, , e4318.	0.3	8
17	Bacteria and tumours: causative agents or opportunistic inhabitants?. Infectious Agents and Cancer, 2013, 8, 11.	2.6	129
18	Escherichia coli bactofection using Lipofectamine. Analytical Biochemistry, 2013, 439, 142-144.	2.4	11

TION RED

#	Article	IF	Citations
19	Adenovirus-Mediated Transcriptional Targeting of Colorectal Cancer and Effects on Treatment-Resistant Hypoxic Cells. Clinical Colorectal Cancer, 2013, 12, 152-162.e1.	2.3	8
20	Bacterial-directed enzyme prodrug therapy. Journal of Controlled Release, 2013, 170, 120-131.	9.9	61
21	Modular Design of a Synthetic Payload Delivery Device. ACS Synthetic Biology, 2013, 2, 418-424.	3.8	16
22	Drug Delivery System. Methods in Molecular Biology, 2014, , .	0.9	13
23	Biomaterials at the interface of nano- and micro-scale vector–cellular interactions in genetic vaccine design. Journal of Materials Chemistry B, 2014, 2, 8053-8068.	5.8	8
24	Bacterial-Mediated Knockdown of Tumor Resistance to an Oncolytic Virus Enhances Therapy. Molecular Therapy, 2014, 22, 1188-1197.	8.2	37
25	<i>De Novo</i> Guanine Biosynthesis but Not the Riboswitch-Regulated Purine Salvage Pathway Is Required for Staphylococcus aureus Infection <i>In Vivo</i> . Journal of Bacteriology, 2016, 198, 2001-2015.	2.2	38
26	Listeria monocytogenes and the Inflammasome: From Cytosolic Bacteriolysis to Tumor Immunotherapy. Current Topics in Microbiology and Immunology, 2016, 397, 133-160.	1.1	22
27	Inflammasome Signaling and Bacterial Infections. Current Topics in Microbiology and Immunology, 2016, , .	1.1	6
28	Bioengineered and biohybrid bacteria-based systems for drug delivery. Advanced Drug Delivery Reviews, 2016, 106, 27-44.	13.7	262
30	<i>Listeria monocytogenes</i> mutants defective in gallbladder replication represent safety-enhanced vaccine delivery platforms. Human Vaccines and Immunotherapeutics, 2016, 12, 2059-2063.	3.3	10
31	Bioadhesive Bacterial Microswimmers for Targeted Drug Delivery in the Urinary and Gastrointestinal Tracts. Advanced Science, 2017, 4, 1700058.	11.2	82
32	Advances in bacterial cancer therapies using synthetic biology. Current Opinion in Systems Biology, 2017, 5, 1-8.	2.6	68
33	Prospects and progress ofListeria-based cancer vaccines. Expert Opinion on Biological Therapy, 2017, 17, 1-12.	3.1	14
34	Designer bacteria as intratumoural enzyme biofactories. Advanced Drug Delivery Reviews, 2017, 118, 8-23.	13.7	18
35	Rapid preparation of adherent mammalian cells for basic scanning electron microscopy (SEM) analysis. Analytical Biochemistry, 2017, 534, 46-48.	2.4	14
36	Development of a Click Beetle Luciferase Reporter System for Enhanced Bioluminescence Imaging of Listeria monocytogenes: Analysis in Cell Culture and Murine Infection Models. Frontiers in Microbiology, 2017, 8, 1797.	3.5	16
37	Intratumoural production of TNFÎ \pm by bacteria mediates cancer therapy. PLoS ONE, 2017, 12, e0180034.	2.5	32

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
38	In situ biomolecule production by bacteria; a synthetic biology approach to medicine. Journal of Controlled Release, 2018, 275, 217-228.	9.9	30
39	Dual functionality nanobioconjugates: a new tool for intracellular bacterial targeting in cancer cells?. Therapeutic Delivery, 2018, 9, 317-320.	2.2	0
40	Increasing the bactofection capacity of a mammalian expression vector by removal of the f1 ori. Cancer Gene Therapy, 2019, 26, 183-194.	4.6	11
42	Nontyphoidal <i>Salmonella</i> : a potential anticancer agent. Journal of Applied Microbiology, 2020, 128, 2-14.	3.1	11
43	Oral delivery of bacteria: Basic principles and biomedical applications. Journal of Controlled Release, 2020, 327, 801-833.	9.9	55
44	Sequence-Based Characterization of Intratumoral Bacteria—A Guide to Best Practice. Frontiers in Oncology, 2020, 10, 179.	2.8	37
45	Bioengineered smart bacterial carriers for combinational targeted therapy of solid tumours. Journal of Drug Targeting, 2020, 28, 700-713.	4.4	24
46	Recent trends in cancer therapy: A review on the current state of gene delivery. Life Sciences, 2021, 269, 119087.	4.3	108
47	Inhibition of lysosomal vacuolar proton pump down-regulates cellular acidification and enhances E. coli bactofection efficiency. Analytical Biochemistry, 2021, 616, 114088.	2.4	0
48	Clinical Experience and Recent Advances in the Development of Listeria-Based Tumor Immunotherapies. Frontiers in Immunology, 2021, 12, 642316.	4.8	32
50	Engineered microbes for cancer immunotherapy. , 2022, , 33-62.		0
51	Bacterial Systems for Gene Delivery to Systemic Tumors. Methods in Molecular Biology, 2014, 1141, 201-209.	0.9	4
52	In Vivo Bioluminescence Imaging of Intratumoral Bacteria. Methods in Molecular Biology, 2016, 1409, 69-77.	0.9	18
53	A suicidal strain of Listeria monocytogenes is effective as a DNA vaccine delivery system for oral administration. Vaccine, 2017, 35, 5115-5122.	3.8	13
54	Secreting-lux/pT-ClyA engineered bacteria suppresses tumor growth via interleukin-1β in two pathways. AMB Express, 2019, 9, 189.	3.0	7
55	RFP-based method for real-time tracking of invasive bacteria in a heterogeneous population of cells. Analytical Biochemistry, 2021, 634, 114432.	2.4	1
56	Lactococcus lactis: LAB model organism for bacteria-mediated therapeutic strategies. Asia-Pacific Journal of Molecular Biology and Biotechnology, 0, , 1-10.	0.1	1
57	Using Bacterial Vectors for Probable Vaccines: From Molecular Mechanism to Cancer Therapy. World Journal of Vaccines, 2020, 10, 33-42.	0.8	0

CITATION REPORT

#	Article	IF	CITATIONS
58	A programmable encapsulation system improves delivery of therapeutic bacteria in mice. Nature Biotechnology, 2022, 40, 1259-1269.	17.5	89
59	Bacterial-Based Cancer Therapy (BBCT): Recent Advances, Current Challenges, and Future Prospects for Cancer Immunotherapy. Vaccines, 2021, 9, 1497.	4.4	38
60	Microbiota in Tumors: From Understanding to Application. Advanced Science, 2022, 9, .	11.2	26
61	Barriers to genetic manipulation of Enterococci: Current Approaches and Future Directions. FEMS Microbiology Reviews, 2022, 46, .	8.6	1
62	Modes of therapeutic delivery in synthetic microbiology. Trends in Microbiology, 2023, 31, 197-211.	7.7	3
63	Intratumoral microbiota: roles in cancer initiation, development and therapeutic efficacy. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	51
64	Bacterial Therapy of Cancer: A Way to the Dustbin of History or to the Medicine of the Future?. International Journal of Molecular Sciences, 2023, 24, 9726.	4.1	0
65	Bacterial therapies at the interface of synthetic biology and nanomedicine. , 2024, 2, 120-135.		6
66	The potential use of bacteria and bacterial derivatives as drug delivery systems for viral infection. Virology Journal, 2023, 20, .	3.4	5
68	Delivery of a Hepatitis C Virus Vaccine Encoding NS3 Linked to the MHC Class II Chaperone Protein Invariant Chain Using Bacterial Ghosts. Biomedicines, 2024, 12, 525.	3.2	0
69	Challenges and Opportunities of Gene Therapy in Cancer. OBM Genetics, 2024, 08, 1-501.	0.4	0