Genetic Engineering of Algae for Enhanced Biofuel Prod

Eukaryotic Cell 9, 486-501 DOI: 10.1128/ec.00364-09

Citation Report

#	Δρτιςι ε	IF	CITATIONS
"			CHATONS
1	International journal of the environment. Ceramurgia International, 1977, 3, 171-172.	0.3	2
2	System integration for producing microalgae as biofuel feedstock. Biofuels, 2010, 1, 889-910.	1.4	8
3	Increased Lipid Accumulation in the Chlamydomonas reinhardtii <i>sta7-10</i> Starchless Isoamylase Mutant and Increased Carbohydrate Synthesis in Complemented Strains. Eukaryotic Cell, 2010, 9, 1251-1261.	3.4	317
4	Optimizing Antenna Size to Maximize Photosynthetic Efficiency. Plant Physiology, 2011, 155, 79-85.	2.3	266
5	Combinatorial Life Cycle Assessment to Inform Process Design of Industrial Production of Algal Biodiesel. Environmental Science & Technology, 2011, 45, 7060-7067.	4.6	318
6	High-efficiency homologous recombination in the oil-producing alga <i>Nannochloropsis</i> sp Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21265-21269.	3.3	394
7	Diatoms: Self assembled silicananostructures, and templates for bio/chemical sensors and biomimetic membranes. Analyst, The, 2011, 136, 42-53.	1.7	114
8	Improving biofuel production in phototrophic microorganisms with systems biology. Biofuels, 2011, 2, 125-144.	1.4	20
9	Algae Polar Lipids Characterized by Online Liquid Chromatography Coupled with Hybrid Linear Quadrupole Ion Trap/Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Fuels, 2011, 25, 4770-4775.	2.5	45
10	The production of the sesquiterpene β-caryophyllene in a transgenic strain of the cyanobacterium Synechocystis. Journal of Plant Physiology, 2011, 168, 848-852.	1.6	89
11	Microalgae as Feedstocks for Biodiesel Production. , 0, , .		19
12	Biosynthesis of Triacylglycerols (TAGs) in Plants and algae. International Journal of Plant Biology, 2011, 2, e10.	1.1	81
13	Advantages and Challenges of Microalgae as a Source of Oil for Biodiesel. , 0, , .		7
14	Evanescent Cultivation of Cyanobacteria for Bioenergy. , 2011, , .		0
15	Decoding algal genomes: tracing back the history of photosynthetic life on Earth. Plant Journal, 2011, 66, 45-57.	2.8	125
16	Multiple facets of anoxic metabolism and hydrogen production in the unicellular green alga <i>Chlamydomonas reinhardtii</i> . New Phytologist, 2011, 190, 279-288.	3.5	94
17	A revised mineral nutrient supplement increases biomass and growth rate in <i>Chlamydomonas reinhardtii</i> . Plant Journal, 2011, 66, 770-780.	2.8	282
18	Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnology Advances, 2011, 29, 686-702.	6.0	1,112

ITATION REDO

#	Article	IF	CITATIONS
19	Structural Correlates of Cytoplasmic and Chloroplast Lipid Body Synthesis in Chlamydomonas reinhardtii and Stimulation of Lipid Body Production with Acetate Boost. Eukaryotic Cell, 2011, 10, 1592-1606.	3.4	225
20	Biodiesel production with microalgae as feedstock: from strains to biodiesel. Biotechnology Letters, 2011, 33, 1269-1284.	1.1	164
21	Evolutionary significance of an algal gene encoding an [FeFe]-hydrogenase with F-domain homology and hydrogenase activity in Chlorella variabilis NC64A. Planta, 2011, 234, 829-843.	1.6	50
22	The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp Applied Microbiology and Biotechnology, 2011, 90, 1429-1441.	1.7	460
23	Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering. Applied Microbiology and Biotechnology, 2011, 91, 471-490.	1.7	273
24	LC-PUFA from photosynthetic microalgae: occurrence, biosynthesis, and prospects in biotechnology. Applied Microbiology and Biotechnology, 2011, 91, 905-915.	1.7	169
25	The scientometric evaluation of the research on the algae and bio-energy. Applied Energy, 2011, 88, 3532-3540.	5.1	112
26	Mychonastes aferHSO-3-1 as a potential new source of biodiesel. Biotechnology for Biofuels, 2011, 4, 47.	6.2	53
27	Algal Functional Annotation Tool: a web-based analysis suite to functionally interpret large gene lists using integrated annotation and expression data. BMC Bioinformatics, 2011, 12, 282.	1.2	84
28	Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: Pathway description and gene discovery for production of next-generation biofuels. BMC Genomics, 2011, 12, 148.	1.2	258
29	Characterization of a novel thioesterase (PtTE) from <i>Phaeodactylum tricornutum</i> . Journal of Basic Microbiology, 2011, 51, 666-672.	1.8	68
30	Industrial fermentation of renewable diesel fuels. Current Opinion in Biotechnology, 2011, 22, 344-350.	3.3	56
31	Mechanism of lipid extraction from Botryococcus braunii FACHB 357 in a biphasic bioreactor. Journal of Biotechnology, 2011, 154, 281-284.	1.9	14
32	Biodiesel production from genetically engineered microalgae: Future of bioenergy in Iran. Renewable and Sustainable Energy Reviews, 2011, 15, 1918-1927.	8.2	129
33	Microalgae bioengineering: From CO2 fixation to biofuel production. Renewable and Sustainable Energy Reviews, 2011, 15, 3252-3260.	8.2	222
34	Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum. Metabolic Engineering, 2011, 13, 89-95.	3.6	233
35	RNA-Mediated Silencing in Algae: Biological Roles and Tools for Analysis of Gene Function. Eukaryotic Cell, 2011, 10, 1164-1172.	3.4	122
36	Microbial paths to renewable hydrogen production. Biofuels, 2011, 2, 285-302.	1.4	77

#	Article	IF	CITATIONS
37	Sun-driven microbial synthesis of chemicals in space. International Journal of Astrobiology, 2011, 10, 359-364.	0.9	19
38	Comprehensive Evaluation of Algal Biofuel Production: Experimental and Target Results. Energies, 2012, 5, 1943-1981.	1.6	45
39	<i>In Silico</i> Structural Determination of GPAT Enzyme from <i>Ostreococcus Lucimarinus</i> for Biotechnological Application of Microalgal Biofuel Production. Biotechnology and Biotechnological Equipment, 2012, 26, 2794-2800.	0.5	2
40	Phylogenomic Study of Lipid Genes Involved in Microalgal Biofuel Production—Candidate Gene Mining and Metabolic Pathway Analyses. Evolutionary Bioinformatics, 2012, 8, EBO.S10159.	0.6	26
41	A molecular method for the delivery of small molecules and proteins across the cell wall of algae using molecular transporters. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13225-13230.	3.3	52
42	Experimental Evolution of a Facultative Thermophile from a Mesophilic Ancestor. Applied and Environmental Microbiology, 2012, 78, 144-155.	1.4	65
43	Metabolic Engineering of Cyanobacteria for Direct Conversion of CO2 to Hydrocarbon Biofuels. Progress in Botany Fortschritte Der Botanik, 2012, , 81-93.	0.1	15
44	Algal Oils: Biosynthesis and Uses. Cellular Origin and Life in Extreme Habitats, 2012, , 193-214.	0.3	5
45	Engineering Escherichia coli for Biotransformation of Biomass into Fatty Acid Derived Fuels. Current Chemical Biology, 2012, 6, 7-13.	0.2	0
46	Application of synthetic biology in cyanobacteria and algae. Frontiers in Microbiology, 2012, 3, 344.	1.5	149
47	Lipid Droplets of Bacteria, Algae and Fungi and a Relationship between their Contents and Genome Sizes as Revealed by BODIPY and DAPI Staining. Cytologia, 2012, 77, 289-299.	0.2	11
48	13 Finding the bottleneck: A research strategy for improved biomass production. , 0, , .		0
50	Review on possible algal-biofuel production processes. Biofuels, 2012, 3, 333-349.	1.4	75
51	HILIC- and SCX-Based Quantitative Proteomics of Chlamydomonas reinhardtii during Nitrogen Starvation Induced Lipid and Carbohydrate Accumulation. Journal of Proteome Research, 2012, 11, 5959-5971.	1.8	67
52	Potential of microalgae as a source of bioenergy. Catalysis in Industry, 2012, 4, 202-208.	0.3	15
53	Improving photosynthesis and metabolic networks for the competitive production of phototroph-derived biofuels. Current Opinion in Biotechnology, 2012, 23, 290-297.	3.3	78
54	Establishment of a bioenergy-focused microalgal culture collection. Algal Research, 2012, 1, 102-113.	2.4	40
55	Experimental analysis and novel modeling of semi-batch photobioreactors operated with Chlorella vulgaris and fed with 100% (v/v) CO2. Chemical Engineering Journal, 2012, 213, 203-213.	6.6	77

		CITATION REPORT		
#	Article		IF	CITATIONS
56	A look at diacylglycerol acyltransferases (DGATs) in algae. Journal of Biotechnology, 20	12, 162, 28-39.	1.9	109
57	Designing and creating a modularized synthetic pathway in cyanobacterium Synechocy production of acetone from carbon dioxide. Metabolic Engineering, 2012, 14, 394-400	rstis enables	3.6	127
58	Accumulation of lipid production in Chlorella minutissima by triacylglycerol biosynthesi genes cloned from Saccharomyces cerevisiae and Yarrowia lipolytica. Journal of Microbi 50, 526-534.	s-related ology, 2012,	1.3	84
59	A Modified Cre- <i>lox</i> Genetic Switch To Dynamically Control Metabolic Flow in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2012, 1, 172-180.		1.9	26
60	Draft genome sequence and genetic transformation of the oleaginous alga Nannochlor gaditana. Nature Communications, 2012, 3, 686.	opsis	5.8	438
61	Ask the Experts: The food versus fuel debate. Biofuels, 2012, 3, 635-648.		1.4	12
62	Perspectives on metabolic engineering for increased lipid contents in microalgae. Biofu 71-86.	els, 2012, 3,	1.4	57
63	DIRECTED EVOLUTION: SELECTION OF THE HOST ORGANISM. Computational and Stru Biotechnology Journal, 2012, 2, e201209012.	ctural	1.9	49
64	Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae. Plant Science, 9-22.	2012, 185-186,	1.7	179
65	Genetic Transformation of the Model Green Alga Chlamydomonas reinhardtii. Methods Biology, 2012, 847, 35-47.	in Molecular	0.4	38
66	Evaluation of putative internal reference genes for gene expression normalization in Nannochloropsis sp. by quantitative real-time RT-PCR. Biochemical and Biophysical Rese Communications, 2012, 424, 118-123.	earch	1.0	35
67	Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals n insights into triacylglyceride accumulation. Biotechnology for Biofuels, 2012, 5, 74.	netabolic	6.2	178
68	Microalgae, Functional Genomics and Biotechnology. Advances in Botanical Research, 2	2012, 64, 285-341.	0.5	57
69	Algae Oil. , 2012, , 231-259.			4
70	Microalgae Isolation and Selection for Prospective Biodiesel Production. Energies, 2012	2, 5, 1835-1849.	1.6	135
72	Exploiting diversity and synthetic biology for the production of algal biofuels. Nature, 2 329-335.	012, 488,	13.7	636
73	Comparative analysis of diatom genomes reveals substantial differences in the organiza partitioning pathways. Algal Research, 2012, 1, 2-16.	ation of carbon	2.4	104
74	Linking microalgae and cyanobacteria culture conditions and key-enzymes for carbohyd accumulation. Biotechnology Advances, 2012, 30, 1655-1661.	lrate	6.0	159

		CITATION REF	PORT	
#	Article		IF	CITATIONS
75	Bioactives from microalgal dinoflagellates. Biotechnology Advances, 2012, 30, 1673-16	84.	6.0	88
76	Escherichia coli for biofuel production: bridging the gap from promise to practice. Trend Biotechnology, 2012, 30, 538-545.	s in	4.9	86
77	How to Breed Diatoms: Examination of Two Species with Contrasting Reproductive Biol Origin and Life in Extreme Habitats, 2012, , 323-340.	ogy. Cellular	0.3	8
78	Microbial Technologies in Advanced Biofuels Production. , 2012, , .			20
79	Dynamics of Lipid Biosynthesis and Redistribution in the Marine Diatom Phaeodactylum Under Nitrate Deprivation. Bioenergy Research, 2012, 5, 876-885.	tricornutum	2.2	31
80	Biochemical modulation of growth, lipid quality and productivity in mixotrophic cultures Chlorella sorokiniana. SpringerPlus, 2012, 1, 33.	of	1.2	51
81	The Science of Algal Fuels. Cellular Origin and Life in Extreme Habitats, 2012, , .		0.3	19
82	Rerouting Carbon Flux To Enhance Photosynthetic Productivity. Applied and Environmer Microbiology, 2012, 78, 2660-2668.	ntal	1.4	298
83	Evidence for Only Oxygenative Cleavage of Aldehydes to Alk(a/e)nes and Formate by Cy Aldehyde Decarbonylases. Biochemistry, 2012, 51, 7908-7916.	anobacterial	1.2	130
84	De Novo Transcriptomic Analysis of an Oleaginous Microalga: Pathway Description and Discovery for Production of Next-Generation Biofuels. PLoS ONE, 2012, 7, e35142.	Gene	1.1	19
86	Engineering Escherichia coli for Biotransformation of Biomass into Fatty Acid Derived Fu Chemical Biology, 2012, 6, 7-13.	iels. Current	0.2	1
87	Biochemistry and Evolution of Anaerobic Energy Metabolism in Eukaryotes. Microbiolog Molecular Biology Reviews, 2012, 76, 444-495.	y and	2.9	656
88	Engineering yeasts for raw starch conversion. Applied Microbiology and Biotechnology, 1377-1388.	2012, 95,	1.7	90
89	Microalgae in the postgenomic era: a blooming reservoir for new natural products. FEM: Microbiology Reviews, 2012, 36, 761-785.	5	3.9	131
90	Integrated green algal technology for bioremediation and biofuel. Bioresource Technolo 1-9.	gy, 2012, 107,	4.8	129
91	Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechn Advances, 2012, 30, 673-690.	blogy	6.0	797
92	Metabolic and gene expression changes triggered by nitrogen deprivation in the photoa grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemist 50-59.	utotrophically ry, 2012, 75,	1.4	344
93	Expression of fatty acid synthesis genes and fatty acid accumulation in haematococcus under different stressors. Biotechnology for Biofuels, 2012, 5, 18.	pluvialis	6.2	167

#	Article	IF	Citations
94	Impact of microalgae characteristics on their conversion to biofuel. Part I: Focus on cultivation and biofuel production. Biofuels, Bioproducts and Biorefining, 2012, 6, 105-113.	1.9	29
95	Sustainable biofuels from algae. Mitigation and Adaptation Strategies for Global Change, 2013, 18, 13-25.	1.0	294
96	Genetic manipulation, a feasible tool to enhance unique characteristic of Chlorella vulgaris as a feedstock for biodiesel production. Molecular Biology Reports, 2013, 40, 4421-4428.	1.0	39
97	Biofuels as a sustainable energy source: An update of the applications of proteomics in bioenergy crops and algae. Journal of Proteomics, 2013, 93, 234-244.	1.2	66
98	Global assessment of research and development for algae biofuel production and its potential role for sustainable development in developing countries. Energy Policy, 2013, 61, 182-195.	4.2	109
99	Insights into Molecular Assembly of ACCase Heteromeric Complex in Chlorella variabilis—A Homology Modelling, Docking and Molecular Dynamic Simulation Study. Applied Biochemistry and Biotechnology, 2013, 170, 1437-1457.	1.4	6
100	Expanding the microalgal industry – continuing controversy or compelling case?. Current Opinion in Chemical Biology, 2013, 17, 444-452.	2.8	45
101	Fluorescent measurement of lipid content in the model organism Chlamydomonas reinhardtii. Journal of Applied Phycology, 2013, 25, 1633-1641.	1.5	23
102	Borrowing genes from Chlamydomonas reinhardtii for free fatty acid production in engineered cyanobacteria. Journal of Applied Phycology, 2013, 25, 1495-1507.	1.5	37
103	Constraints to commercialization of algal fuels. Journal of Biotechnology, 2013, 167, 201-214.	1.9	603
104	Engineering challenges in biodiesel production from microalgae. Critical Reviews in Biotechnology, 2013, 33, 293-308.	5.1	40
105	Food commodities from microalgae. Current Opinion in Biotechnology, 2013, 24, 169-177.	3.3	333
106	Protein-based biorefining: metabolic engineering for production of chemicals and fuel with regeneration of nitrogen fertilizers. Applied Microbiology and Biotechnology, 2013, 97, 1397-1406.	1.7	31
107	Genetic engineering of algal chloroplasts: Progress and prospects. Russian Journal of Plant Physiology, 2013, 60, 491-499.	0.5	65
108	Highly efficient molecular delivery into Chlamydomonas reinhardtii by electroporation. Korean Journal of Chemical Engineering, 2013, 30, 1626-1630.	1.2	28
109	Initial risk assessment of genetically modified (GM) microalgae for commodity-scale biofuel cultivation. Algal Research, 2013, 2, 66-77.	2.4	105
110	Establishment of a Genetic Transformation System for the Marine Pennate Diatom Fistulifera sp. Strain JPCC DA0580—A High Triglyceride Producer. Marine Biotechnology, 2013, 15, 48-55.	1.1	71
112	An engineered plant peroxisome and its application in biotechnology. Plant Science, 2013, 210, 232-240.	1.7	25

#	Article	IF	CITATIONS
113	Triacylglycerol mobilization is suppressed by brefeldin A in Chlamydomonas reinhardtii. Plant and Cell Physiology, 2013, 54, 1585-1599.	1.5	22
114	Organisms for Biofuel Production: Natural Bioresources and Methodologies for Improving Their Biosynthetic Potentials. Advances in Biochemical Engineering/Biotechnology, 2013, 147, 185-224.	0.6	5
116	Comparative energetics and kinetics of autotrophic lipid and starch metabolism in chlorophytic microalgae: implications for biomass and biofuel production. Biotechnology for Biofuels, 2013, 6, 150.	6.2	110
117	The effect of microdosimetric 12C6+ heavy ion irradiation and Mg2+ on canthaxanthin production in a novel strain of Dietzia natronolimnaea. BMC Microbiology, 2013, 13, 213.	1.3	8
118	De novo transcriptomic analysis of hydrogen production in the green alga Chlamydomonas moewusii through RNA-Seq. Biotechnology for Biofuels, 2013, 6, 118.	6.2	39
119	Development of a forward genetic screen to isolate oil mutants in the green microalga Chlamydomonas reinhardtii. Biotechnology for Biofuels, 2013, 6, 178.	6.2	49
120	Biodiesel from microalgae: Ways for increasing the effectiveness of lipid accumulation by genetic engineering methods. Cytology and Genetics, 2013, 47, 349-358.	0.2	5
121	Accumulated lipids rather than the rigid cell walls impede the extraction of genetic materials for effective colony PCRs in Chlorella vulgaris. Microbial Cell Factories, 2013, 12, 106.	1.9	14
122	Agrigenomics for Microalgal Biofuel Production: An Overview of Various Bioinformatics Resources and Recent Studies to Link OMICS to Bioenergy and Bioeconomy. OMICS A Journal of Integrative Biology, 2013, 17, 537-549.	1.0	41
123	A simple bacterial transformation method using magnesium- and calcium-aminoclays. Journal of Microbiological Methods, 2013, 95, 97-101.	0.7	15
124	Engineering strategies for enhancing the production of eicosapentaenoic acid (EPA) from an isolated microalga Nannochloropsis oceanica CY2. Bioresource Technology, 2013, 147, 160-167.	4.8	75
125	Algae biodiesel life cycle assessment using current commercial data. Journal of Environmental Management, 2013, 129, 103-111.	3.8	169
126	Establishment of an efficient genetic transformation system in Scenedesmus obliquus. Journal of Biotechnology, 2013, 163, 61-68.	1.9	85
127	Progression of lipid profile and cell structure in a research-scale production pathway for algal biocrude. Renewable Energy, 2013, 50, 86-93.	4.3	9
128	Innovating via emergent technology and distributed organization: A case of biofuel production in India. Technological Forecasting and Social Change, 2013, 80, 253-266.	6.2	10
129	Monster potential meets potential monster: pros and cons of deploying genetically modified microalgae for biofuels production. Interface Focus, 2013, 3, 20120037.	1.5	37
130	Efficiency of different heterologous promoters in the unicellular microalga <i>Chlamydomonas reinhardtii</i> . Biotechnology Progress, 2013, 29, 319-328.	1.3	40
131	Quantitative proteomic profiling reveals photosynthesis responsible for inoculum size dependent variation in <i>Chlorella sorokiniana</i> . Biotechnology and Bioengineering, 2013, 110, 773-784.	1.7	28

# 132	ARTICLE Biochemical activities in Chlorella sp. and Nannochloropsis salina during lipid and sugar synthesis in a lab-scale open pond simulating reactor. Journal of Biotechnology, 2013, 164, 318-329.	IF 1.9	CITATIONS
133	Transcriptome analysis of Chlamydomonas reinhardtii during the process of lipid accumulation. Genomics, 2013, 101, 229-237.	1.3	102
134	Comparative proteomics using lipid over-producing or less-producing mutants unravels lipid metabolisms in Chlamydomonas reinhardtii. Bioresource Technology, 2013, 145, 108-115.	4.8	26
135	Cloning and stress-responding expression analysis of malonyl CoA-acyl carrier protein transacylase gene of Nannochloropsis gaditana. Gene, 2013, 530, 33-38.	1.0	11
136	Homology modeling and docking studies of FabH (β-ketoacyl-ACP synthase III) enzyme involved in type II fatty acid biosynthesis ofChlorella variabilis: a potential algal feedstock for biofuel production. Journal of Biomolecular Structure and Dynamics, 2013, 31, 241-257.	2.0	11
137	Synthetic Biology and Metabolic Engineering Approaches To Produce Biofuels. Chemical Reviews, 2013, 113, 4611-4632.	23.0	155
138	Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal, 2013, 78, 1-10.	1.8	563
139	Strategies for metabolic pathway engineering with multiple transgenes. Plant Molecular Biology, 2013, 83, 21-31.	2.0	84
140	Energy from Microalgae: A Short History. , 2013, , 1-15.		41
141	Evaluation of intracellular lipid bodies in Chlamydomonas reinhardtii strains by flow cytometry. Bioresource Technology, 2013, 138, 30-37.	4.8	56
142	Expanding the spectral palette of fluorescent proteins for the green microalga <i><scp>C</scp>hlamydomonas reinhardtii</i> . Plant Journal, 2013, 74, 545-556.	2.8	120
145	Biorefinery of microalgae for food and fuel. Bioresource Technology, 2013, 135, 142-149.	4.8	402
147	In Search of Actionable Targets for Agrigenomics and Microalgal Biofuel Production: Sequence-Structural Diversity Studies on Algal and Higher Plants with a Focus on GPAT Protein. OMICS A Journal of Integrative Biology, 2013, 17, 173-186.	1.0	20
148	Photobioreactors for Microalgal Biofuel Production. , 2013, , 115-131.		32
149	Environmental manipulation of select algae strains for maximal oil production. Bios, 2013, 84, 21-29.	0.0	3
150	Photosynthetic approaches to chemical biotechnology. Current Opinion in Biotechnology, 2013, 24, 1031-1036.	3.3	42
151	Technoeconomic analysis of renewable aviation fuel from microalgae, <i>Pongamia pinnata</i> , and sugarcane. Biofuels, Bioproducts and Biorefining, 2013, 7, 416-428.	1.9	112
152	Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Current Opinion in Biotechnology, 2013, 24, 405-413.	3.3	341

#	Article	IF	Citations
153	Fifteen Years of Cell-Penetrating, Guanidinium-Rich Molecular Transporters: Basic Science, Research	7.6	270
154	Lipid droplet synthesis is limited by acetate availability in starchless mutant of <i>Chlamydomonas reinhardtii</i> . FEBS Letters, 2013, 587, 370-377.	1.3	93
155	Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel. Current Opinion in Chemical Biology, 2013, 17, 496-505.	2.8	117
156	Fatty acids profiling: A selective criterion for screening microalgae strains for biodiesel production. Algal Research, 2013, 2, 258-267.	2.4	315
157	Application of memberane dispersion for enhanced lipid milking from Botryococcus braunii FACHB 357. Journal of Biotechnology, 2013, 165, 22-29.	1.9	29
158	Enhanced Lipid Productivity and Photosynthesis Efficiency in a Desmodesmus sp. Mutant Induced by Heavy Carbon Ions. PLoS ONE, 2013, 8, e60700.	1.1	43
159	Anaerobic energy metabolism in unicellular photosynthetic eukaryotes. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 210-223.	0.5	97
160	Evaluation of FT-IR and Nile Red methods for microalgal lipid characterization and biomass composition determination. Bioresource Technology, 2013, 128, 107-112.	4.8	64
161	An integrated microfluidic device for the high-throughput screening of microalgal cell culture conditions that induce high growth rate and lipid content. Analytical and Bioanalytical Chemistry, 2013, 405, 9365-9374.	1.9	32
162	Biocommodities from photosynthetic microorganisms. Environmental Progress and Sustainable Energy, 2013, 32, 989-1001.	1.3	20
163	Transporter-mediated biofuel secretion. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7642-7647.	3.3	119
164	Gene Regulation of Carbon Fixation, Storage, and Utilization in the Diatom <i>Phaeodactylum tricornutum</i> Acclimated to Light/Dark Cycles Â. Plant Physiology, 2013, 161, 1034-1048.	2.3	138
165	Metabolic Engineering of Hydrocarbon Biosynthesis for Biofuel Production. , 0, , .		3
166	Biofuels from Green Microalgae. , 2013, , 95-112.		1
167	Photobiological H2 Production: Theoretical Maximum Light Conversion Efficiency and Strategies to Achieve It. ECS Transactions, 2013, 50, 47-50.	0.3	2
168	Biosynthesis of Lipids and Hydrocarbons in Algae. , 2013, , .		10
169	Environmental sustainability of emerging algal biofuels: A comparative life cycle evaluation of algal biodiesel and renewable diesel. Environmental Progress and Sustainable Energy, 2013, 32, 926-936.	1.3	49
170	The Green Microalga Chlamydomonas reinhardtii Has a Single Â-3 Fatty Acid Desaturase That Localizes to the Chloroplast and Impacts Both Plastidic and Extraplastidic Membrane Lipids. Plant Physiology, 2013, 163, 914-928.	2.3	83

#	Article	IF	Citations
171	Addressing the challenges for sustainable production of algal biofuels: I. Algal strains and nutrient supply. Environmental Technology (United Kingdom), 2013, 34, 1783-1805.	1.2	58
172	Genetic engineering of microorganisms for biodiesel production. Bioengineered, 2013, 4, 292-304.	1.4	41
173	Ciliary contact interactions dominate surface scattering of swimming eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1187-1192.	3.3	247
174	Genomic insights from the oleaginous model alga Nannochloropsis gaditana. Bioengineered, 2013, 4, 37-43.	1.4	84
175	Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19748-19753.	3.3	377
176	Heavy Metal Niches: Microbes and Their Metabolic Potentials. , 2013, , 352-376.		2
177	Cyanobacteria as a Platform for Biofuel Production. Frontiers in Bioengineering and Biotechnology, 2013, 1, 7.	2.0	172
178	Pathways of Lipid Metabolism in Marine Algae, Co-Expression Network, Bottlenecks and Candidate Genes for Enhanced Production of EPA and DHA in Species of Chromista. Marine Drugs, 2013, 11, 4662-4697.	2.2	181
179	Improvement of Neutral Lipid and Polyunsaturated Fatty Acid Biosynthesis by Overexpressing a Type 2 Diacylglycerol Acyltransferase in Marine Diatom Phaeodactylum tricornutum. Marine Drugs, 2013, 11, 4558-4569.	2.2	229
180	Microalgal Biotechnology. , 2013, , 201-228.		1
181	Sustainable Multipurpose Biorefineries for Third-Generation Biofuels and Value-Added Co-Products. , 0, , .		4
182	Design and development of synthetic microbial platform cells for bioenergy. Frontiers in Microbiology, 2013, 4, 92.	1.5	37
184	First Report of Pseudobodo sp, a New Pathogen for a Potential Energy-Producing Algae: Chlorella vulgaris Cultures. PLoS ONE, 2014, 9, e89571.	1.1	21
185	Enhanced Genetic Tools for Engineering Multigene Traits into Green Algae. PLoS ONE, 2014, 9, e94028.	1.1	107
186	Light in a Photobioreactor. , 2014, , .		0
187	Engineering pathways to biofuels in photoautotrophic microorganisms. Biofuels, 2014, 5, 67-78.	1.4	5
188	Phycoremediation Coupled with Generation of Value-Added Products. , 2014, , 341-387.		3
189	Comparison of Laminar Flame Speeds, Extinction Stretch Rates and Vapor Pressures of Jet A-1/HRJ Biojet Fuel Blends. , 2014, , .		3

#	Article	IF	CITATIONS
190	Highâ€ŧhroughput fluorescenceâ€activated cell sorting for lipid hyperaccumulating <i><scp>C</scp>hlamydomonas reinhardtii</i> mutants. Plant Biotechnology Journal, 2014, 12, 872-882.	4.1	42
191	Biotechnological production of value-added carotenoids from microalgae. Bioengineered, 2014, 5, 204-208.	1.4	57
192	Life cycle costs for the optimized production of hydrogen and biogas from microalgae. Energy, 2014, 78, 84-93.	4.5	34
193	Moving Toward Energy Security and Sustainability in 2050 by Reconfiguring Biofuel Production. Biotechnology in Agriculture and Forestry, 2014, , 15-29.	0.2	3
194	Multispectral sorter for rapid, nondestructive optical bioprospecting for algae biofuels. , 2014, , .		3
195	Microalgal Biomass as a Source of Renewable Energy. , 2014, , 119-143.		1
196	The first evidence for genotypic stability in a cryopreserved transgenic diatom. Journal of Applied Phycology, 2014, 26, 65-71.	1.5	12
197	Transcriptome and Gene Expression Analysis of an Oleaginous Diatom Under Different Salinity Conditions. Bioenergy Research, 2014, 7, 192-205.	2.2	55
198	Starch metabolism in green algae. Starch/Staerke, 2014, 66, 28-40.	1.1	73
199	A natural plant growth promoter, calliterpenone, enhances growth and biomass, carbohydrate, and lipid production in cyanobacterium Synechocystis PCC 6803. Journal of Applied Phycology, 2014, 26, 279-286.	1.5	23
200	Metabolic Engineering of Biosynthetic Pathway for Production of Renewable Biofuels. Applied Biochemistry and Biotechnology, 2014, 172, 1158-1171.	1.4	19
201	Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosaunder three nutrition stressors. Biotechnology for Biofuels, 2014, 7, 17.	6.2	264
202	A Simple, Low-Cost Method for Chloroplast Transformation of the Green Alga Chlamydomonas reinhardtii. Methods in Molecular Biology, 2014, 1132, 401-411.	0.4	59
203	Fatty acids and global metabolites profiling of Dunaliella tertiolecta by shifting culture conditions to nitrate deficiency and high light at different growth phases. Process Biochemistry, 2014, 49, 996-1004.	1.8	39
204	Biofuels in Brazil. , 2014, , .		14
205	Chloroplast Biotechnology. Methods in Molecular Biology, 2014, , .	0.4	7
207	Enhanced activity of ADP glucose pyrophosphorylase and formation of starch induced by Azospirillum brasilense in Chlorella vulgaris. Journal of Biotechnology, 2014, 177, 22-34.	1.9	46
208	Evolution retrospective for alternative fuels: First to fourth generation. Renewable Energy, 2014, 69, 114-122.	4.3	285

#	Article	IF	CITATIONS
209	Overview of the potential of microalgae for CO2 sequestration. International Journal of Environmental Science and Technology, 2014, 11, 2103-2118.	1.8	168
210	Growing green electricity: Progress and strategies for use of Photosystem I for sustainable photovoltaic energy conversion. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1553-1566.	0.5	119
211	Identification and biochemical characterization of five long-chain acyl-coenzyme A synthetases from the diatom Phaeodactylum tricornutum. Plant Physiology and Biochemistry, 2014, 74, 33-41.	2.8	31
212	Biomass and Bioenergy. , 2014, , .		20
213	The impact of elevated CO ₂ concentration on the quality of algal starch as a potential biofuel feedstock. Biotechnology and Bioengineering, 2014, 111, 1323-1331.	1.7	55
214	Capture and culturing of single microalgae cells, and retrieval of colonies using a perforated hemispherical microwell structure. RSC Advances, 2014, 4, 61298-61304.	1.7	8
215	A droplet-based screen for wavelength-dependent lipid production in algae. Energy and Environmental Science, 2014, 7, 2366.	15.6	48
216	Assessing the critical role of ecological goods and services in microalgal biofuel life cycles. RSC Advances, 2014, 4, 44980-44990.	1.7	11
217	Assessment of Berberine as a Multi-target Antimicrobial: A Multi-omics Study for Drug Discovery and Repositioning. OMICS A Journal of Integrative Biology, 2014, 18, 42-53.	1.0	46
218	Bioreactor design for algal growth as a sustainable energy source. , 2014, , 27-60.		15
219	Carbon dioxide bio-fixation and wastewater treatment via algae photochemical synthesis for biofuels production. RSC Advances, 2014, 4, 49672-49722.	1.7	76
220	Heterogeneous catalysis for sustainable biodiesel production <i>via</i> esterification and transesterification. Chemical Society Reviews, 2014, 43, 7887-7916.	18.7	614
221	Edible oils from microalgae: insights in TAG accumulation. Trends in Biotechnology, 2014, 32, 521-528.	4.9	191
222	Accumulation fatty acids of in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoA carboxylase, temperature, and co-immobilization with Azospirillum brasilense. Die Naturwissenschaften, 2014, 101, 819-830.	0.6	43
223	The potential of transgenic green microalgae; a robust photobioreactor to produce recombinant therapeutic proteins. World Journal of Microbiology and Biotechnology, 2014, 30, 2783-2796.	1.7	15
224	Microalgal lipids biochemistry and biotechnological perspectives. Biotechnology Advances, 2014, 32, 1476-1493.	6.0	317
225	Optimizing biodiesel production in marine Chlamydomonassp. JSC4 through metabolic profiling and an innovative salinity-gradient strategy. Biotechnology for Biofuels, 2014, 7, 97.	6.2	101
226	Ultrastructure and Composition of the Nannochloropsis gaditana Cell Wall. Eukaryotic Cell, 2014, 13, 1450-1464.	3.4	322

#	Article	IF	CITATIONS
227	Assessment of the effects of nutrients on biomass and lipid accumulation in Dunaliella tertiolecta using a response surface methodology. RSC Advances, 2014, 4, 42202-42210.	1.7	20
228	Metabolite Profiling and Integrative Modeling Reveal Metabolic Constraints for Carbon Partitioning under Nitrogen Starvation in the Green Algae Haematococcus pluvialis. Journal of Biological Chemistry, 2014, 289, 30387-30403.	1.6	103
229	Relationship between Medium-Chain Fatty Acid Contents and Organoleptic Properties of Japanese Sake. Journal of Agricultural and Food Chemistry, 2014, 62, 8478-8485.	2.4	16
230	Method for assembling and expressing multiple genes in the nucleus of microalgae. Biotechnology Letters, 2014, 36, 561-566.	1.1	12
231	Study of cellular development and intracellular lipid bodies accumulation in the thraustochytrid Aurantiochytrium sp. KRS101. Bioresource Technology, 2014, 161, 149-154.	4.8	18
232	Microalgal Feedstock for Bioenergy: Opportunities and Challenges. , 2014, , 367-392.		4
233	Accumulation of High-Value Lipids in Single-Cell Microorganisms: A Mechanistic Approach and Future Perspectives. Journal of Agricultural and Food Chemistry, 2014, 62, 2709-2727.	2.4	127
234	Enhancement of lipid productivity by ethyl methane sulfonate-mediated random mutagenesis and proteomic analysis in Chlamydomonas reinhardtii. Korean Journal of Chemical Engineering, 2014, 31, 1036-1042.	1.2	43
235	Potential of Bioenergy Production from Microalgae. Current Sustainable/Renewable Energy Reports, 2014, 1, 94-103.	1.2	32
236	Transgenic expression of delta-6 and delta-15 fatty acid desaturases enhances omega-3 polyunsaturated fatty acid accumulation in Synechocystis sp. PCC6803. Biotechnology for Biofuels, 2014, 7, 32.	6.2	43
237	Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (I) mutant generation and characterization. Biotechnology for Biofuels, 2014, 7, 69.	6.2	126
238	Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (II) evaluation of TAG yield and productivity in controlled photobioreactors. Biotechnology for Biofuels, 2014, 7, 70.	6.2	84
239	Perspectives of microalgal biofuels as a renewable source of energy. Energy Conversion and Management, 2014, 88, 1228-1244.	4.4	144
240	Effects of different salinities and pH on the growth and proximate composition of Nannochloropsis sp. and Tetraselmis sp. isolated from South China Sea cultured under control and natural condition. International Biodeterioration and Biodegradation, 2014, 95, 11-18.	1.9	89
241	Perspectives on engineering strategies for improving biofuel production from microalgae — A critical review. Biotechnology Advances, 2014, 32, 1448-1459.	6.0	258
242	Gene expression and metabolic pathways related to cell growth and lipid synthesis in diatom Nitzschia ZJU2 after two rounds of mutagenesis by γ-rays. RSC Advances, 2014, 4, 28463-28470.	1.7	8
243	Trait diversity enhances yield in algal biofuel assemblages. Journal of Applied Ecology, 2014, 51, 603-611.	1.9	48
244	System and method for research-scale outdoor production of microalgae and cyanobacteria. Bioresource Technology, 2014, 166, 273-281.	4.8	57

#	Article	IF	CITATIONS
245	Culturing Neochloris oleoabundans microalga in a nitrogen-limited, heterotrophic fed-batch system to enhance lipid and carbohydrate accumulation. Algal Research, 2014, 5, 61-69.	2.4	35
246	Assessment of Environmental Stresses for Enhanced Microalgal Biofuel Production ââ,¬â€œ An Overview. Frontiers in Energy Research, 2014, 2, .	1.2	70
247	Genetic engineering, a hope for sustainable biofuel production: review. Journal of Chitwan Medical College, 2014, 3, 311-323.	0.1	9
249	- PRODUCTION AND BIOTECHNOLOGICAL APPLICATIONS OF RECOMBINANT PROTEINS BY METHYLOTROPHIC YEAST: PAST, PRESENT AND FUTURE PERSPECTIVES. , 2014, , 222-253.		0
250	Microalgal Production of Hydrogen and Biodiesel. , 2015, , 390-411.		0
251	Current State of Research on Algal Biodiesel. , 2015, , 506-533.		5
252	Lineage-specific chromatin signatures reveal a regulator of lipid metabolism in microalgae. Nature Plants, 2015, 1, 15107.	4.7	89
253	An Overview of Reactor Designs for Biodesel Production. , 2015, , 239-258.		0
254	Lipid production in association of filamentous fungi with genetically modified cyanobacterial cells. Biotechnology for Biofuels, 2015, 8, 179.	6.2	41
255	Improved and versatile viral 2 <scp>A</scp> platforms for dependable and inducible highâ€level expression of dicistronic nuclear genes in <i><scp>C</scp>hlamydomonas reinhardtii</i> . Plant Journal, 2015, 82, 717-729.	2.8	39
256	RNA-Seq transcriptomic analysis with Bag2D software identifies key pathways enhancing lipid yield in a high lipid-producing mutant of the non-model green alga Dunaliella tertiolecta. Biotechnology for Biofuels, 2015, 8, 191.	6.2	20
257	Effects of overexpression of a bHLH transcription factor on biomass and lipid production in Nannochloropsis salina. Biotechnology for Biofuels, 2015, 8, 200.	6.2	112
258	Improving polyglucan production in cyanobacteria and microalgae via cultivation design and metabolic engineering. Biotechnology Journal, 2015, 10, 886-898.	1.8	38
259	Multi-Wavelength Based Optical Density Sensor for Autonomous Monitoring of Microalgae. Sensors, 2015, 15, 22234-22248.	2.1	39
260	Factors affecting Agrobacterium mediated transformation of indigenous Chlorella vulgaris Bayerinck. Bangladesh Journal of Botany, 2015, 44, 323-326.	0.2	0
261	Lauric Acid Production in a Glycogen-Less Strain of Synechococcus sp. PCC 7002. Frontiers in Bioengineering and Biotechnology, 2015, 3, 48.	2.0	25
262	Cell Surface and Membrane Engineering: Emerging Technologies and Applications. Journal of Functional Biomaterials, 2015, 6, 454-485.	1.8	26
263	Diatom Milking: A Review and New Approaches. Marine Drugs, 2015, 13, 2629-2665.	2.2	106

ARTICLE IF CITATIONS Microalgae as a Feedstock for Biofuel Precursors and Value-Added Products: Green Fuels and Golden 0.5 20 264 Opportunities. BioResources, 2015, 11, . Lichen Symbiosis: Nature's High Yielding Machines for Induced Hydrogen Production. PLoS ONE, 2015, 1.1 10, e0121325. Genome Sequence and Transcriptome Analyses of Chrysochromulina tobin: Metabolic Tools for 266 Enhanced Algal Fitness in the Prominent Order Prymnesiales (Haptophyceae). PLoS Genetics, 2015, 11, 1.558 e1005469. Trade-Off between Growth and Carbohydrate Accumulation in Nutrient-Limited Arthrospira sp. PCC 1.1 8005 Studied by Integrating Transcriptomic and Proteomic Approaches. PLoS ONE, 2015, 10, e0132461. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production. BioMed Research 268 0.9 205 International, 2015, 2015, 1-13. An Introduction to Microalgae., 2015, , 11-24. 271 Genetic Engineering of Marine Microalgae to Optimize Bioenergy Production., 2015,, 371-381. 4 Genetic Engineering of Microalgae forÂProduction of Value-added Ingredients., 2015, , 405-414. The effect of nitrogen limitation on the physiology and metabolism of chlorella vulgaris var L3. Algal 273 2.4 88 Research, 2015, 10, 134-144. From the Ancient Tribes to Modern Societies, Microalgae Evolution from a Simple Food to an 274 Alternative Fuel Source., 2015, , 127-144. Alkaline treatment for detoxification of acetic acid-rich pyrolytic bio-oil for microalgae fermentation: Effects of alkaline species and the detoxification mechanisms. Biomass and Bioenergy, 275 2.9 26 2015, 80, 203-212. Altered lipid accumulation in Nannochloropsis salina CCAP849/3 following EMS and UV induced 59 mutagenesis. Biotechnology Reports (Amsterdam, Netherlands), 2015, 7, 87-94. Algal Biorefineries., 2015, , 35-90. 277 15 Exploiting the Molecular Genetics of Microalgae., 2015, , 331-352. 278 280 Bioremediation with Microalgae., 2015, , 471-481. 3 Colony sheath formation is accompanied by shell formation and release in the green alga 2.4 Botryócoccus braunii (race B). Algal Research, 2015, 8, 214-223. Enhancement of photosynthetic capacity in Euglena gracilis by expression of cyanobacterial 282 fructose-1,6-/sedoheptulose-1,7-bisphosphatase leads to increases in biomass and wax ester production. 6.2 87 Biotechnology for Biofuels, 2015, 8, 80. The Algae World. Cellular Origin and Life in Extreme Habitats, 2015, , . 28

# 284	ARTICLE Polyunsaturated Fatty Acids from Algae. Cellular Origin and Life in Extreme Habitats, 2015, , 467-481.	IF 0.3	CITATIONS 3
285	Algae and Environmental Sustainability. , 2015, , .		20
286	Genetic Engineering Tools for Enhancing Lipid Production in Microalgae. , 2015, , 119-127.		0
287	Ecology-based selective environments as solution to contamination in microalgal cultivation. Current Opinion in Biotechnology, 2015, 33, 46-51.	3.3	51
288	Comparative Lipidomic Profiling of Two <i>Dunaliella tertiolecta</i> Strains with Different Growth Temperatures under Nitrate-Deficient Conditions. Journal of Agricultural and Food Chemistry, 2015, 63, 880-887.	2.4	9
289	Metabolic engineering strategies for microbial synthesis of oleochemicals. Metabolic Engineering, 2015, 29, 1-11.	3.6	152
290	Efficient Delivery of Long-Chain Fatty Aldehydes from the <i>Nostoc punctiforme</i> Acyl–Acyl Carrier Protein Reductase to Its Cognate Aldehyde-Deformylating Oxygenase. Biochemistry, 2015, 54, 1006-1015.	1.2	35
291	Algal biofuels in Canada: Status and potential. Renewable and Sustainable Energy Reviews, 2015, 44, 620-642.	8.2	48
292	Regulation of starch and lipid accumulation in a microalga Chlorella sorokiniana. Bioresource Technology, 2015, 180, 250-257.	4.8	110
293	Metabolic and photosynthetic consequences of blocking starch biosynthesis in the green alga <i><scp>C</scp>hlamydomonas reinhardtii sta6</i> mutant. Plant Journal, 2015, 81, 947-960.	2.8	49
294	Transgenic Technology in Marine Organisms. , 2015, , 387-412.		7
295	An evolutionary perspective on selecting high-lipid-content diatoms (Bacillariophyta). Journal of Applied Phycology, 2015, 27, 2209-2220.	1.5	19
296	A rapid, modular and marker-free chloroplast expression system for the green alga Chlamydomonas reinhardtii. Journal of Biotechnology, 2015, 195, 60-66.	1.9	33
297	Wavelength-selective plasmonics for enhanced cultivation of microalgae. Applied Physics Letters, 2015, 106, .	1.5	23
298	Homologous sense and antisense expression of a gene in Dunaliella tertiolecta. Planta, 2015, 242, 1051-1058.	1.6	4
299	Theoretical lessons for increasing algal biofuel: Evolution of oil accumulation to avert carbon starvation in microalgae. Journal of Theoretical Biology, 2015, 380, 183-191.	0.8	3
300	Elucidation of the growth delimitation of Dunaliella tertiolecta under nitrogen stress by integrating transcriptome and peptidome analysis. Bioresource Technology, 2015, 194, 57-66.	4.8	51
301	Bioengineering strategies on catalysis for the effective production of renewable and sustainable energy. Renewable and Sustainable Energy Reviews, 2015, 51, 533-547.	8.2	24

#	Article	IF	CITATIONS
302	Graphene oxide embedded sol–gel (GOSG) film as a SALDI MS substrate for robust metabolite fingerprinting. RSC Advances, 2015, 5, 56455-56459.	1.7	15
303	Genetic Engineering Strategies for Enhanced Biodiesel Production. Molecular Biotechnology, 2015, 57, 606-624.	1.3	41
304	Improving the sunlight-to-biomass conversion efficiency in microalgal biofactories. Journal of Biotechnology, 2015, 201, 28-42.	1.9	39
305	Characterization of Amphora sp., a newly isolated diatom wild strain, potentially usable for biodiesel production. Bioprocess and Biosystems Engineering, 2015, 38, 1381-1392.	1.7	39
306	Now you see it, now you don't: differences in hydrocarbon production in the diatom Phaeodactylum tricornutum due to growth temperature. Journal of Applied Phycology, 2015, 27, 1463-1472.	1.5	6
307	Potential of lipid metabolism in marine diatoms for biofuel production. Biotechnology for Biofuels, 2015, 8, 28.	6.2	107
308	Dynamic metabolic profiling of the marine microalga Chlamydomonas sp. JSC4 and enhancing its oil production by optimizing light intensity. Biotechnology for Biofuels, 2015, 8, 48.	6.2	61
309	An overview on biofuel and biochemical production by photosynthetic microorganisms with understanding of the metabolism and by metabolic engineering together with efficient cultivation and downstream processing. Bioresources and Bioprocessing, 2015, 2, .	2.0	41
310	Genetic Optimization of Microalgae for Biohydrogen Production. , 2015, , 383-404.		8
311	An Expressed Sequence Tag Database Analysis of Fatty Acid Genes in Stichococcus bacillaris Strain Siva2011. , 2015, , 429-438.		2
312	Bioethanol Production from Microalgae. , 2015, , 197-208.		15
313	N6-Methyldeoxyadenosine Marks Active Transcription Start Sites in Chlamydomonas. Cell, 2015, 161, 879-892.	13.5	477
314	Microalgae for economic applications: advantages and perspectives for bioethanol. Journal of Experimental Botany, 2015, 66, 4097-4108.	2.4	76
315	Characterization of fatty acids and hydrocarbons of chlorophycean microalgae towards their use as biofuel source. Biomass and Bioenergy, 2015, 77, 75-91.	2.9	57
316	Identification of a putative patatin-like phospholipase domain-containing protein 3 (PNPLA3) ortholog involved in lipid metabolism in microalga Phaeodactylum tricornutum. Algal Research, 2015, 12, 274-279.	2.4	38
317	Design of Closed Photobioreactors for Algal Cultivation. , 2015, , 133-186.		10
318	Algal Biorefineries. , 2015, , .		22
319	Combustion Pathways of Biofuel Model Compounds. Advances in Physical Organic Chemistry, 2015, 49, 103-187.	0.5	10

# 320	ARTICLE Improvement in Oil Production by Increasing Malonyl-CoA and Glycerol-3-Phosphate Pools in Scenedesmus quadricauda. Indian Journal of Microbiology, 2015, 55, 447-455.	IF 1.5	Citations
321	Fatty-Acid Compositions of Three Strains of Blue-Green Algae Biomass, a Potential Feedstock for Producing Biodiesel Fuel. Chemistry of Natural Compounds, 2015, 51, 756-757.	0.2	5
322	Enzymatic cell disruption of microalgae biomass in biorefinery processes. Biotechnology and Bioengineering, 2015, 112, 1955-1966.	1.7	142
323	Pathways to Obtain Regulatory Approvals for the Use of Genetically Modified Algae in Biofuel or Biobased Chemical Production. Industrial Biotechnology, 2015, 11, 71-83.	0.5	15
324	Algicidal microorganisms and secreted algicides: New tools to induce microalgal cell disruption. Biotechnology Advances, 2015, 33, 1615-1625.	6.0	119
325	Expression of Cyanobacterial Acyl-ACP Reductase Elevates the Triacylglycerol Level in the Red Alga <i>Cyanidioschyzon merolae</i> . Plant and Cell Physiology, 2015, 56, 1962-1980.	1.5	41
326	Marine Algae: a Source of Biomass for Biotechnological Applications. Methods in Molecular Biology, 2015, 1308, 1-37.	0.4	43
328	Building a better Mousetrap I: Using Design of Experiments with unconfounded ions to discover superior media for growth and lipid production by Chlorella sp. EN1234. Bioresource Technology, 2015, 184, 82-89.	4.8	3
329	Gene silencing in microalgae: Mechanisms and biological roles. Bioresource Technology, 2015, 184, 23-32.	4.8	51
330	Altered lipid composition and enhanced lipid production in green microalga by introduction of brassica diacylglycerol acyltransferase 2. Plant Biotechnology Journal, 2015, 13, 540-550.	4.1	105
332	Algal omics: unlocking bioproduct diversity in algae cell factories. Photosynthesis Research, 2015, 123, 255-263.	1.6	79
333	Screening and characterization of oleaginous Chlorella strains and exploration of photoautotrophic Chlorella protothecoides for oil production. Bioresource Technology, 2015, 184, 53-62.	4.8	42
334	Microalgae: Fast-Growth Sustainable Green Factories. Critical Reviews in Environmental Science and Technology, 2015, 45, 1705-1755.	6.6	58
335	Investigation of combined effect of nitrogen, phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus KJ671624 using response surface methodology. Biochemical Engineering Journal, 2015, 94, 22-29.	1.8	169
336	Rapid detection of neutral lipid in green microalgae by flow cytometry in combination with Nile red staining—an improved technique. Annals of Microbiology, 2015, 65, 937-949.	1.1	35
337	Heterotrophic growth of microalgae: metabolic aspects. World Journal of Microbiology and Biotechnology, 2015, 31, 1-9.	1.7	119
338	Inactivation of <i><scp>P</scp>haeodactylum tricornutum</i> urease gene using transcription activatorâ€like effector nucleaseâ€based targeted mutagenesis. Plant Biotechnology Journal, 2015, 13, 460-470.	4.1	128
339	Exploiting Microalgae and Macroalgae for Production of Biofuels and Biosequestration of Carbon Dioxide—A Review. International Journal of Green Energy, 2015, 12, 1122-1143.	2.1	14

#	Article	IF	CITATIONS
340	Biofuel production from microalgae as feedstock: current status and potential. Critical Reviews in Biotechnology, 2015, 35, 255-268.	5.1	66
341	The place of algae in agriculture: policies for algal biomass production. Photosynthesis Research, 2015, 123, 305-315.	1.6	72
342	Activity of acetyl-CoA carboxylase is not directly linked to accumulation of lipids when Chlorella vulgaris is co-immobilised with Azospirillum brasilense in alginate under autotrophic and heterotrophic conditions. Annals of Microbiology, 2015, 65, 339-349.	1.1	29
343	Regulation of lipid metabolism in the green microalga Chlorella protothecoides by heterotrophy–photoinduction cultivation regime. Bioresource Technology, 2015, 192, 781-791.	4.8	41
344	Opportunities, recent trends and challenges of integrated biorefinery: Part II. Renewable and Sustainable Energy Reviews, 2015, 43, 1446-1466.	8.2	134
345	Tools for microalgal biotechnology: development of an optimized transformation method for an industrially promising microalga—Tetraselmis chuii. Journal of Applied Phycology, 2015, 27, 223-232.	1.5	15
346	Metabolic Engineering for Fatty Acid and Biodiesel Production. , 2016, , 73-95.		1
347	Strain Engineering for Improved Bio-Fuel Production. Current Metabolomics, 2016, 4, 38-48.	0.5	5
348	Unravelling the functional genetics of dinoflagellates: a review of approaches and opportunities. Perspectives in Phycology, 2016, 3, 37-52.	1.9	42
349	The Enzymatic Conversion of Major Algal and Cyanobacterial Carbohydrates to Bioethanol. Frontiers in Energy Research, 2016, 4, .	1.2	70
350	A Review on the Assessment of Stress Conditions for Simultaneous Production of Microalgal Lipids and Carotenoids. Frontiers in Microbiology, 2016, 7, 546.	1.5	319
351	Progress and Challenges in Microalgal Biodiesel Production. Frontiers in Microbiology, 2016, 7, 1019.	1.5	104
352	dEMBF: A Comprehensive Database of Enzymes of Microalgal Biofuel Feedstock. PLoS ONE, 2016, 11, e0146158.	1.1	12
353	Astaxanthin-Producing Green Microalga Haematococcus pluvialis: From Single Cell to High Value Commercial Products. Frontiers in Plant Science, 2016, 7, 531.	1.7	569
354	Modulation of Medium-Chain Fatty Acid Synthesis in Synechococcus sp. PCC 7002 by Replacing FabH with a Chaetoceros Ketoacyl-ACP Synthase. Frontiers in Plant Science, 2016, 7, 690.	1.7	11
355	Photosynthetic Platform Strain Selection. , 2016, , 385-406.		1
356	Review of Water Consumption and Water Conservation Technologies in the Algal Biofuel Process. Water Environment Research, 2016, 88, 21-28.	1.3	11
357	Inactivation of nitrate reductase alters metabolic branching of carbohydrate fermentation in the cyanobacterium Synechococcus sp. strain PCC 7002. Biotechnology and Bioengineering, 2016, 113, 979-988.	1.7	13

#	Article	IF	CITATIONS
358	Solar biofuels production with microalgae. Applied Energy, 2016, 179, 136-145.	5.1	91
359	Atomic Layer Deposited Corrosion Protection: A Path to Stable and Efficient Photoelectrochemical Cells. Journal of Physical Chemistry Letters, 2016, 7, 2867-2878.	2.1	67
360	Expression of type 2 diacylglycerol acyltransferse gene <i>DGTT1</i> from <i>Chlamydomonas reinhardtii</i> enhances lipid production in <i>Scenedesmus obliquus</i> . Biotechnology Journal, 2016, 11, 336-344.	1.8	57
361	Transcript level coordination of carbon pathways during silicon starvationâ€induced lipid accumulation in the diatom <i><scp>T</scp>halassiosira pseudonana</i> . New Phytologist, 2016, 210, 890-904.	3.5	82
362	The dilemma for lipid productivity in green microalgae: importance of substrate provision in improving oil yield without sacrificing growth. Biotechnology for Biofuels, 2016, 9, 255.	6.2	116
363	Solid Acid–Mediated Hydrolysis of Biomass for Producing Biofuels. , 2016, , 157-180.		0
364	Proteomic analyses bring new insights into the effect of a dark stress on lipid biosynthesis in Phaeodactylum tricornutum. Scientific Reports, 2016, 6, 25494.	1.6	47
365	Production of Fatty Acids and Derivatives by Metabolic Engineering of Bacteria. , 2016, , 1-24.		2
366	Ultrasound-mediated intracellular delivery of fluorescent dyes and DNA into microalgal cells. Algal Research, 2016, 15, 210-216.	2.4	8
367	Promising solutions to solve the bottlenecks in the large-scale cultivation of microalgae for biomass/bioenergy production. Renewable and Sustainable Energy Reviews, 2016, 60, 1602-1614.	8.2	84
368	High biomass producers and promising candidates for biodiesel production from microalgae collection IBASU-A(Ukraine). Oceanological and Hydrobiological Studies, 2016, 45, 79-85.	0.3	11
369	Synergistic dynamics of nitrogen and phosphorous influences lipid productivity in Chlorella minutissima for biodiesel production. Bioresource Technology, 2016, 213, 79-87.	4.8	102
370	Identification of aquatically available carbon from algae through solution-state NMR of whole 13C-labelled cells. Analytical and Bioanalytical Chemistry, 2016, 408, 4357-4370.	1.9	40
371	A comparison of lipid content metrics using six species from the genus Halamphora (Bacillariophyta). Biofuels, 2016, 7, 521-528.	1.4	4
372	Electron partitioning in soluble organic products by wild-type and modified Synechocystis sp. PCC 6803. Biomass and Bioenergy, 2016, 90, 237-242.	2.9	11
373	Simultaneous production of triacylglycerol and high-value carotenoids by the astaxanthin-producing oleaginous green microalga Chlorella zofingiensis. Bioresource Technology, 2016, 214, 319-327.	4.8	114
374	Comprehensive Evaluation of Algal Biofuel Production: Experimental and Target Results. , 2016, , 149-182.		0
375	Microalgae Isolation and Selection for Prospective Biodiesel Production. , 2016, , 285-304.		1

#	Article	IF	Citations
376	Sustainable Fuel from Algae: Challenges and New Directions. , 2016, , 49-98.		1
377	The Evolution and Versatility of Microalgal Biotechnology: A Review. Comprehensive Reviews in Food Science and Food Safety, 2016, 15, 1104-1123.	5.9	172
378	Bioflocculation as an innovative harvesting strategy for microalgae. Reviews in Environmental Science and Biotechnology, 2016, 15, 573-583.	3.9	132
380	Recent developments on biofuels production from microalgae and macroalgae. Renewable and Sustainable Energy Reviews, 2016, 65, 235-249.	8.2	85
381	Biodiesel and Bioethanol from Microalgae. Green Energy and Technology, 2016, , 359-386.	0.4	4
382	Introducing <i>Dunaliella LIP</i> promoter containing lightâ€inducible motifs improves transgenic expression in <i>Chlamydomonas reinhardtii</i> . Biotechnology Journal, 2016, 11, 384-392.	1.8	26
383	<i>Chlorella</i> species as hosts for genetic engineering and expression of heterologous proteins: Progress, challenge and perspective. Biotechnology Journal, 2016, 11, 1244-1261.	1.8	77
384	High carbon (CO2) supply leads to elevated intracellular acetyl CoA levels and increased lipid accumulation in Chlorella vulgaris. Algal Research, 2016, 19, 307-315.	2.4	14
385	Biobutanol—"A Renewable Green Alternative of Liquid Fuel―from Algae. Green Energy and Technology, 2016, , 445-465.	0.4	7
386	Toward an understanding of lipid and starch accumulation in microalgae: A proteomic study of Neochloris oleoabundans cultivated under N-limited heterotrophic conditions. Algal Research, 2016, 20, 22-34.	2.4	23
387	Enhanced lipid selective extraction from Chlorella vulgaris without cell sacrifice. Algal Research, 2016, 20, 7-15.	2.4	11
388	Efficiency and biotechnological aspects of biogas production from microalgal substrates. Journal of Biotechnology, 2016, 234, 7-26.	1.9	69
389	The boosted lipid accumulation in microalga Chlorella vulgaris by a heterotrophy and nutrition-limitation transition cultivation regime. World Journal of Microbiology and Biotechnology, 2016, 32, 202.	1.7	8
390	Microfluidic high-throughput selection of microalgal strains with superior photosynthetic productivity using competitive phototaxis. Scientific Reports, 2016, 6, 21155.	1.6	57
391	Nitrogen-induced metabolic changes and molecular determinants of carbon allocation in Dunaliella tertiolecta. Scientific Reports, 2016, 6, 37235.	1.6	61
392	Cisgenesis and intragenesis in microalgae: promising advancements towards sustainable metabolites production. Applied Microbiology and Biotechnology, 2016, 100, 10225-10235.	1.7	7
393	Quantification of chrysolaminarin from the model diatom Phaeodactylum tricornutum. Algal Research, 2016, 20, 180-188.	2.4	49
394	Whole Genome Re-Sequencing Identifies a Quantitative Trait Locus Repressing Carbon Reserve Accumulation during Optimal Growth in Chlamydomonas reinhardtii. Scientific Reports, 2016, 6, 25209.	1.6	12

#	Apticle	IF	CITATIONS
 395	Molecular characterization of a glycerol-3-phosphate acyltransferase reveals key features essential for triacylglycerol production in Phaeodactylum tricornutum. Biotechnology for Biofuels, 2016, 9, 60.	6.2	101
396	Optimization of microalgal photobioreactor system using model predictive control with experimental validation. Bioprocess and Biosystems Engineering, 2016, 39, 1235-1246.	1.7	16
397	Highly efficient lipid production in the green alga Parachlorella kessleri: draft genome and transcriptome endorsed by whole-cell 3D ultrastructure. Biotechnology for Biofuels, 2016, 9, 13.	6.2	56
398	Light Remodels Lipid Biosynthesis in <i>Nannochloropsis gaditana</i> by Modulating Carbon Partitioning between Organelles. Plant Physiology, 2016, 171, 2468-2482.	2.3	106
399	Way forward to achieve sustainable and cost-effective biofuel production from microalgae: a review. International Journal of Environmental Science and Technology, 2016, 13, 2735-2756.	1.8	29
400	AMP deaminase suppression increases biomass, cold tolerance and oil content in green algae. Algal Research, 2016, 16, 473-480.	2.4	23
401	Current advances in molecular, biochemical, and computational modeling analysis of microalgal triacylglycerol biosynthesis. Biotechnology Advances, 2016, 34, 1046-1063.	6.0	79
402	Photosynthetic physiology and biomass partitioning in the model diatom Phaeodactylum tricornutum grown in a sinusoidal light regime. Algal Research, 2016, 18, 51-60.	2.4	36
403	Single-Cell Characterization of Microalgal Lipid Contents with Confocal Raman Microscopy. Series in Bioengineering, 2016, , 363-382.	0.3	3
404	Unique mitochondrial genome structure of the green algal strain YC001 (Sphaeropleales,) Tj ETQq1 1 0.784314	rgBT /Ovei 0.6	logk 10 Tf 50
405	Essentials of Single-Cell Analysis. Series in Bioengineering, 2016, , .	0.3	29
406	Overexpression of Calvin cycle enzyme fructose 1,6-bisphosphatase in Chlamydomonas reinhardtii has a detrimental effect on growth. Algal Research, 2016, 14, 116-126.	2.4	19
407	Concepts and studies on lipid and pigments of microalgae: A review. Renewable and Sustainable Energy Reviews, 2016, 58, 832-841.	8.2	204
408	Lipid Metabolism in Microalgae. , 2016, , 413-484.		26
409	Knockdown of phosphoenolpyruvate carboxykinase increases carbon flux to lipid synthesis in Phaeodactylum tricornutum. Algal Research, 2016, 15, 50-58.	2.4	63
410	Stress-induced neutral lipid biosynthesis in microalgae — Molecular, cellular and physiological insights. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1269-1281.	1.2	146
411	Progress toward isolation of strains and genetically engineered strains of microalgae for production of biofuel and other value added chemicals: A review. Energy Conversion and Management, 2016, 113, 104-118.	4.4	140
412	Recent advances and challenges of the use of cyanobacteria towards the production of biofuels. Renewable and Sustainable Energy Reviews, 2016, 60, 1-10.	8.2	38

#	Article	IF	CITATIONS
413	Influence of tryptophan and indole-3-acetic acid on starch accumulation in the synthetic mutualistic Chlorella sorokiniana–Azospirillum brasilense system under heterotrophic conditions. Research in Microbiology, 2016, 167, 367-379.	1.0	33
414	Rapid budding EMS mutants of Synechocystis PCC 6803 producing carbohydrate or lipid enriched biomass. Algal Research, 2016, 16, 36-45.	2.4	26
415	Feasibility of triacylglycerol production for biodiesel, utilizing Rhodococcus opacus as a biocatalyst and fishery waste as feedstock. Renewable and Sustainable Energy Reviews, 2016, 56, 922-928.	8.2	23
416	Multi-Level Light Capture Control in Plants and Green Algae. Trends in Plant Science, 2016, 21, 55-68.	4.3	103
417	Biosynthesis of platform chemical 3-hydroxypropionic acid (3-HP) directly from CO2 in cyanobacterium Synechocystis sp. PCC 6803. Metabolic Engineering, 2016, 34, 60-70.	3.6	121
418	Trends and novel strategies for enhancing lipid accumulation and quality in microalgae. Renewable and Sustainable Energy Reviews, 2016, 55, 1-16.	8.2	227
419	Production of crocetin in transgenic Chlorella vulgaris expressing genes crtRB and ZCD1. Journal of Applied Phycology, 2016, 28, 1657-1665.	1.5	14
420	De-novo assembly and characterization of Chlorella minutissima UTEX2341 transcriptome by paired-end sequencing and the identification of genes related to the biosynthesis of lipids for biodiesel. Marine Genomics, 2016, 25, 69-74.	0.4	11
421	A new approach to express transgenes in microalgae and its use to increase the flocculation ability of Chlamydomonas reinhardtii. Journal of Applied Phycology, 2016, 28, 1611-1621.	1.5	33
422	Stable nuclear transformation of the oleaginous microalga Neochloris oleoabundans by electroporation. Journal of Applied Phycology, 2016, 28, 191-199.	1.5	22
423	A method for genetic transformation of Botryococcus braunii using a cellulase pretreatment. Journal of Applied Phycology, 2016, 28, 201-208.	1.5	20
424	Occurrence, metabolism, transport and function of seven-carbon sugars. Phytochemistry Reviews, 2017, 16, 137-157.	3.1	13
425	Effects of cell motility and morphology on the rheology of algae suspensions. Journal of Applied Phycology, 2017, 29, 1145-1157.	1.5	14
426	Analysis of metabolic responses of Dunaliella salina to phosphorus deprivation. Journal of Applied Phycology, 2017, 29, 1251-1260.	1.5	18
427	Thicker three-dimensional tissue from a "symbiotic recycling system―combining mammalian cells and algae. Scientific Reports, 2017, 7, 41594.	1.6	47
428	Advances in culture and genetic modification approaches to lipid biosynthesis for biofuel production and <i>in silico</i> analysis of enzymatic dominions in proteins related to lipid biosynthesis in algae. Phycological Research, 2017, 65, 14-28.	0.8	16
429	Efficient solvothermal wet in situ transesterification of Nannochloropsis gaditana for biodiesel production. Bioprocess and Biosystems Engineering, 2017, 40, 723-730.	1.7	17
430	Microalgae-based advanced municipal wastewater treatment for reuse in water bodies. Applied Microbiology and Biotechnology, 2017, 101, 2659-2675.	1.7	134

#	Article	IF	CITATIONS
431	Molecular challenges in microalgae towards cost-effective production of quality biodiesel. Renewable and Sustainable Energy Reviews, 2017, 74, 139-144.	8.2	50
432	A multidomain enzyme, with glycerolâ€3â€phosphate dehydrogenase and phosphatase activities, is involved in a chloroplastic pathway for glycerol synthesis in <i>Chlamydomonas reinhardtii</i> . Plant Journal, 2017, 90, 1079-1092.	2.8	35
433	Expression of the heterologous Dunaliella tertiolecta fatty acyl-ACP thioesterase leads to increased lipid production in Chlamydomonas reinhardtii. Journal of Biotechnology, 2017, 247, 60-67.	1.9	55
434	Recent Advances and Future Prospects of Microalgal Lipid Biotechnology. , 2017, , 1-37.		5
435	Challenges and Opportunities in Commercialization of Algal Biofuels. , 2017, , 421-450.		2
436	Algal Cell Response to Pulsed Waved Stimulation and Its Application to Increase Algal Lipid Production. Scientific Reports, 2017, 7, 42003.	1.6	21
437	Microfluidic perfusion bioreactor for optimization of microalgal lipid productivity. Bioresource Technology, 2017, 233, 433-437.	4.8	14
438	Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4. Scientific Reports, 2017, 7, 45471.	1.6	121
439	Functional photosystem I maintains proper energy balance during nitrogen depletion in Chlamydomonas reinhardtii, promoting triacylglycerol accumulation. Biotechnology for Biofuels, 2017, 10, 89.	6.2	19
440	Artificial miRNA inhibition of phosphoenolpyruvate carboxylase increases fatty acid production in a green microalga Chlamydomonas reinhardtii. Biotechnology for Biofuels, 2017, 10, 91.	6.2	48
441	Microalgae as a Source of Bioplastics. , 2017, , 121-138.		49
442	Rubisco mutants of Chlamydomonas reinhardtii display divergent photosynthetic parameters and lipid allocation. Applied Microbiology and Biotechnology, 2017, 101, 5569-5580.	1.7	14
443	Effect of salicylic acid on fatty acid accumulation in Phaeodactylum tricornutum during stationary growth phase. Journal of Applied Phycology, 2017, 29, 2801-2810.	1.5	17
444	Hydrogen from algal biomass: A review of production process. Biotechnology Reports (Amsterdam,) Tj ETQq1 1 (0.784314 2.1	rgBT/Overloc
445	Proteome profiling reveals insights into secondary metabolism in Maytenus ilicifolia (Celastraceae) cell cultures producing quinonemethide triterpenes. Plant Cell, Tissue and Organ Culture, 2017, 130, 405-416.	1.2	14
446	Trends and strategies to enhance triacylglycerols and high-value compounds in microalgae. Algal Research, 2017, 25, 263-273.	2.4	75
447	Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renewable and Sustainable Energy Reviews, 2017, 79, 1189-1211.	8.2	367
448	Global optimization of microalgae-to-biodiesel chains with integrated cogasification combined cycle systems based on greenhouse gas emissions reductions. Applied Energy, 2017, 197, 63-82.	5.1	32

#	Article	IF	CITATIONS
449	Effects of iron sources on the growth and lipid/carbohydrate production of marine microalga Dunaliella tertiolecta. Biotechnology and Bioprocess Engineering, 2017, 22, 68-75.	1.4	49
450	From Current Algae Products to Future Biorefinery Practices: A Review. Advances in Biochemical Engineering/Biotechnology, 2017, 166, 99-123.	0.6	37
451	Utilization of diatom frustules for thermal management applications. Journal of Applied Phycology, 2017, 29, 1907-1911.	1.5	6
452	Comparison of batch cultivation strategies for cost-effective biomass production of Micractinium inermum NLP-F014 using a blended wastewater medium. Bioresource Technology, 2017, 234, 432-438.	4.8	15
453	Flux balance analysis of photoautotrophic metabolism: Uncovering new biological details of subsystems involved in cyanobacterial photosynthesis. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 276-287.	0.5	35
454	Microalgal green refinery concept for biosequestration of carbon-dioxide vis-Ã-vis wastewater remediation and bioenergy production: Recent technological advances in climate research. Journal of CO2 Utilization, 2017, 17, 188-206.	3.3	81
455	Scaling up microalgal cultures to commercial scale. European Journal of Phycology, 2017, 52, 407-418.	0.9	168
456	Strategies to enhance production of microalgal biomass and lipids for biofuel feedstock. European Journal of Phycology, 2017, 52, 419-437.	0.9	91
457	Perspectives for the use of biotechnology in green chemistry applied to biopolymers, fuels and organic synthesis: from concepts to a critical point of view. Sustainable Chemistry and Pharmacy, 2017, 6, 82-89.	1.6	20
458	Random mutagenesis and precise gene editing technologies: applications in algal crop improvement and functional genomics. European Journal of Phycology, 2017, 52, 466-481.	0.9	12
459	Evolutionary Lessons from Species with Unique Kinetochores. Progress in Molecular and Subcellular Biology, 2017, 56, 111-138.	0.9	43
460	Pulsed Electric Fields and Electroporation Technologies in Marine Macroalgae Biorefineries. , 2017, , 2923-2938.		0
461	Laminarinase from Flavobacterium sp. reveals the structural basis of thermostability and substrate specificity. Scientific Reports, 2017, 7, 11425.	1.6	22
462	Enrichment of Long-Chain Polyunsaturated Fatty Acids by Coordinated Expression of Multiple Metabolic Nodes in the Oleaginous Microalga <i>Phaeodactylum tricornutum</i> . Journal of Agricultural and Food Chemistry, 2017, 65, 7713-7720.	2.4	39
463	Genetic and metabolic engineering in diatoms. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160411.	1.8	75
464	Microalgal hydrogen production $\hat{a} \in A$ review. Bioresource Technology, 2017, 243, 1194-1206.	4.8	275
465	Microalgae culture enhancement through key microbial approaches. Renewable and Sustainable Energy Reviews, 2017, 80, 1089-1099.	8.2	65
466	Nitrate Reductase Knockout Uncouples Nitrate Transport from Nitrate Assimilation and Drives Repartitioning of Carbon Flux in a Model Pennate Diatom. Plant Cell, 2017, 29, 2047-2070.	3.1	102

#	Article	IF	CITATIONS
467	Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation. Journal of Environmental Management, 2017, 203, 299-315.	3.8	132
468	Photocatalysis: Basic Principles, Diverse Forms of Implementations and Emerging Scientific Opportunities. Advanced Energy Materials, 2017, 7, 1700841.	10.2	484
469	Environmental building policy by the use of microalgae and decreasing of risks for Canadian oil sand sector development. Environmental Science and Pollution Research, 2017, 24, 20241-20253.	2.7	39
470	Light intensity as major factor to maximize biomass and lipid productivity of Ettlia sp. in CO2-controlled photoautotrophic chemostat. Bioresource Technology, 2017, 244, 621-628.	4.8	39
471	Recent Developments on Genetic Engineering of Microalgae for Biofuels and Bioâ€Based Chemicals. Biotechnology Journal, 2017, 12, 1600644.	1.8	162
472	Microfluidic chip for automated screening of carbon dioxide conditions for microalgal cell growth. Biomicrofluidics, 2017, 11, 064104.	1.2	10
473	Exploring the metabolic and physiological diversity of native microalgal strains (Chlorophyta) isolated from tropical freshwater reservoirs. Algal Research, 2017, 28, 139-150.	2.4	33
474	Cultivation in industrially relevant conditions has a strong influence on biological properties and performances of Nannochloropsis gaditana genetically modified strains. Algal Research, 2017, 28, 88-99.	2.4	21
475	Lyophilization pretreatment facilitates extraction of soluble proteins and active enzymes from the oil-accumulating microalga Chlorella vulgaris. Algal Research, 2017, 25, 439-444.	2.4	17
476	Accelerated triacylglycerol production and altered fatty acid composition in oleaginous microalga Neochloris oleoabundans by overexpression of diacylglycerol acyltransferase 2. Microbial Cell Factories, 2017, 16, 61.	1.9	46
477	Lipid production and molecular dynamics simulation for regulation of accD gene in cyanobacteria under different N and P regimes. Biotechnology for Biofuels, 2017, 10, 94.	6.2	35
478	Microalgal cultivation with waste streams and metabolic constraints to triacylglycerides accumulation for biofuel production. Biofuels, Bioproducts and Biorefining, 2017, 11, 325-343.	1.9	40
479	Elevated acetyl oA by amino acid recycling fuels microalgal neutral lipid accumulation in exponential growth phase for biofuel production. Plant Biotechnology Journal, 2017, 15, 497-509.	4.1	36
480	Tools for biotechnological studies of the freshwater alga Nannochloropsis limnetica: antibiotic resistance and protoplast production. Journal of Applied Phycology, 2017, 29, 853-863.	1.5	16
481	Heterotrophic cultivation of microalgae: production of metabolites of commercial interest. Journal of Chemical Technology and Biotechnology, 2017, 92, 925-936.	1.6	112
482	Morphological and ultrastructural characterization of the acidophilic and lipid-producer strain Chlamydomonas acidophila LAFIC-004 (Chlorophyta) under different culture conditions. Protoplasma, 2017, 254, 1385-1398.	1.0	21
483	Biodiesel from Microalgae. , 2017, , 55-74.		0
484	Chemicals and Fuels from Microalgae. , 2017, , 33-53.		2

#	Article	IF	CITATIONS
485	Biodiesel Production From Algae to Overcome the Energy Crisis. HAYATI Journal of Biosciences, 2017, 24, 163-167.	0.1	99
486	Isolation, phenotypic characterization and genome wide analysis of a Chlamydomonas reinhardtii strain naturally modified under laboratory conditions: towards enhanced microalgal biomass and lipid production for biofuels. Biotechnology for Biofuels, 2017, 10, 308.	6.2	23
487	Fatty Acids from Microalgae: Targeting the Accumulation of Triacylglycerides. , 0, , .		8
488	Development of a Double Nuclear Gene-Targeting Method by Two-Step Transformation Based on a Newly Established Chloramphenicol-Selection System in the Red Alga Cyanidioschyzon merolae. Frontiers in Plant Science, 2017, 8, 343.	1.7	19
489	Breakthroughs in bioalcohol production from microalgae. , 2017, , 183-207.		7
490	Biotechnological and Pharmacological Applications of Biotoxins and Other Bioactive Molecules from Dinoflagellates. Marine Drugs, 2017, 15, 393.	2.2	63
491	Functional Expression of the Arachis hypogaea L. Acyl-ACP Thioesterases AhFatA and AhFatB Enhances Fatty Acid Production in Synechocystis sp. PCC6803. Energies, 2017, 10, 2093.	1.6	9
492	Applications of genome-scale metabolic models of microalgae and cyanobacteria in biotechnology. , 2017, , 93-111.		9
493	Defense related decadienal elicits membrane lipid remodeling in the diatom Phaeodactylum tricornutum. PLoS ONE, 2017, 12, e0178761.	1.1	7
494	Time-resolved transcriptome analysis and lipid pathway reconstruction of the oleaginous green microalga Monoraphidium neglectum reveal a model for triacylglycerol and lipid hyperaccumulation. Biotechnology for Biofuels, 2017, 10, 197.	6.2	35
495	Metabolic responses to ethanol and butanol in Chlamydomonas reinhardtii. Biotechnology for Biofuels, 2017, 10, 239.	6.2	9
496	Increased lipid production by heterologous expression of AtWRI1 transcription factor in Nannochloropsis salina. Biotechnology for Biofuels, 2017, 10, 231.	6.2	85
497	Energy from Microalgae. Green Energy and Technology, 2018, , .	0.4	6
498	Biofuels from Microalgae: Biohydrogen. Green Energy and Technology, 2018, , 201-228.	0.4	17
499	Biofuels: Greenhouse Gas Mitigation and Global Warming. , 2018, , .		22
500	Overexpression of acetyl-CoA synthetase (ACS) enhances the biosynthesis of neutral lipids and starch in the green microalga Chlamydomonas reinhardtii. Algal Research, 2018, 31, 183-193.	2.4	89
501	Leveraging algal omics to reveal potential targets for augmenting TAG accumulation. Biotechnology Advances, 2018, 36, 1274-1292.	6.0	65
502	Polar and non-polar intracellular compounds from microalgae: Methods of simultaneous extraction, gas chromatography determination and comparative analysis. Food Research International, 2018, 109, 204-212.	2.9	32

#	Article	IF	CITATIONS
503	The influence of exogenous organic carbon assimilation and photoperiod on the carbon and lipid metabolism of Chlamydomonas reinhardtii. Algal Research, 2018, 31, 122-137.	2.4	36
504	Green Algae Biomass Cultivation, Harvesting and Genetic Modifications for Enhanced Cellular Lipids. , 2018, , 119-140.		3
505	A Review on First- and Second-Generation Biofuel Productions. , 2018, , 141-154.		23
506	Effective role of medium supplementation in microalgal lipid accumulation. Biotechnology and Bioengineering, 2018, 115, 1152-1160.	1.7	19
507	Novel Molecular Tools for Metabolic Engineering to Improve Microalgae-Based Biofuel Production. , 2018, , 407-420.		1
508	Glycogen Production in Marine Cyanobacterial Strain Synechococcus sp. NKBG 15041c. Marine Biotechnology, 2018, 20, 109-117.	1.1	18
510	Effect of ammonium and high light intensity on the accumulation of lipids in Nannochloropsis oceanica (CCAP 849/10) and Phaeodactylum tricornutum (CCAP 1055/1). Biotechnology for Biofuels, 2018, 11, 60.	6.2	28
511	Bio-based liquid fuels as a source of renewable energy: A review. Renewable and Sustainable Energy Reviews, 2018, 88, 82-98.	8.2	76
512	Microalgae for biobutanol production – Technology evaluation and value proposition. Algal Research, 2018, 31, 367-376.	2.4	57
513	Iterative screening of an evolutionary engineered Desmodesmus generates robust field strains with pesticide tolerance. Algal Research, 2018, 31, 443-453.	2.4	15
514	Emerging microalgae technology: a review. Sustainable Energy and Fuels, 2018, 2, 13-38.	2.5	74
515	Metabolic fingerprinting of Dunaliella salina cultured under sulfur deprivation conditions. Journal of Applied Phycology, 2018, 30, 355-365.	1.5	11
516	Production of chemicals from microalgae lipids – status and perspectives. European Journal of Lipid Science and Technology, 2018, 120, 1700152.	1.0	52
517	Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnology Advances, 2018, 36, 54-67.	6.0	282
518	Microalgae to biofuels: â€~Promising' alternative and renewable energy, review. Renewable and Sustainable Energy Reviews, 2018, 81, 743-755.	8.2	447
519	3D reconstruction of endoplasmic reticulum in a hydrocarbon-secreting green alga, Botryococcus braunii (Race B). Planta, 2018, 247, 663-677.	1.6	5
520	Marine microalgae for production of biofuels and chemicals. Current Opinion in Biotechnology, 2018, 50, 111-120.	3.3	131
521	Characterization of <i>Chlamydomonas reinhardtii</i> Core Histones by Top-Down Mass Spectrometry Reveals Unique Algae-Specific Variants and Post-Translational Modifications. Journal of Proteome Research, 2018, 17, 23-32.	1.8	20

#	Article	IF	CITATIONS
522	Minireview: algal natural compounds and extracts as antifoulants. Journal of Applied Phycology, 2018, 30, 1859-1874.	1.5	57
523	Algal Green Energy – R&D and technological perspectives for biodiesel production. Renewable and Sustainable Energy Reviews, 2018, 82, 2946-2969.	8.2	121
524	Lipids from yeasts and fungi: physiology, production and analytical considerations. Journal of Applied Microbiology, 2018, 124, 336-367.	1.4	137
525	Metabolic engineering of microorganisms for biofuel production. Renewable and Sustainable Energy Reviews, 2018, 82, 3863-3885.	8.2	124
526	Advanced biotechnology in biorefinery: a new insight into municipal waste management to the production of high-value products. International Journal of Environmental Science and Technology, 2018, 15, 675-686.	1.8	9
527	PROPERTIES OF MICROALGAE OIL FROM THE SPECIES Chlorella protothecoides AND ITS ETHYLIC BIODIESEL. Brazilian Journal of Chemical Engineering, 2018, 35, 1383-1394.	0.7	21
528	The Role of Microalgae in Renewable Energy Production: Challenges and Opportunities. , 0, , .		12
529	Tailoring Microalgae for Efficient Biofuel Production. Frontiers in Marine Science, 2018, 5, .	1.2	78
530	Enhanced triacylglycerol production in the diatom Phaeodactylum tricornutum by inactivation of a Hotdog-fold thioesterase gene using TALEN-based targeted mutagenesis. Biotechnology for Biofuels, 2018, 11, 312.	6.2	39
531	Targeted genome editing in algae using CRISPR/Cas9. Indian Journal of Plant Physiology, 2018, 23, 653-669.	0.8	21
532	Daily changes in phytoplankton lipidomes reveal mechanisms of energy storage in the open ocean. Nature Communications, 2018, 9, 5179.	5.8	63
533	A Gelatin Microdroplet Platform for Highâ€Throughput Sorting of Hyperproducing Single ellâ€Đerived Microalgal Clones. Small, 2018, 14, e1803315.	5.2	52
534	Efforts toward optimization of aerobic biohydrogen reveal details of secondary regulation of biological nitrogen fixation by nitrogenous compounds in Azotobacter vinelandii. Applied Microbiology and Biotechnology, 2018, 102, 10315-10325.	1.7	9
535	High-light selection produces a fast-growing Picochlorum celeri. Algal Research, 2018, 36, 17-28.	2.4	36
536	Multiple Routes to Smart Nanostructured Materials from Diatom Microalgae: A Chemical Perspective. Advanced Materials, 2018, 30, e1704289.	11.1	78
537	Development of endogenous promoters that drive high-level expression of introduced genes in the model diatom Phaeodactylum tricornutum. Marine Genomics, 2018, 42, 41-48.	0.4	12
538	Electrotechnologies applied to microalgal biotechnology – Applications, techniques and future trends. Renewable and Sustainable Energy Reviews, 2018, 94, 656-668.	8.2	80
539	High throughput screening of β-glucuronidase (GUS) reporter in transgenic microalgae transformed by Agrobacterium tumefaciens. Algal Research, 2018, 33, 328-336.	2.4	4

#	Article	IF	CITATIONS
540	Biostimulant activity of humic-like substances from agro-industrial waste on <i>Chlorella vulgaris</i> and <i>Scenedesmus quadricauda</i> . European Journal of Phycology, 2018, 53, 433-442.	0.9	38
541	Improvement of the Uranium Sequestration Ability of a Chlamydomonas sp. (ChISP Strain) Isolated From Extreme Uranium Mine Tailings Through Selection for Potential Bioremediation Application. Frontiers in Microbiology, 2018, 9, 523.	1.5	13
542	Cellular and Molecular Responses of Dunaliella tertiolecta by Expression of a Plant Medium Chain Length Fatty Acid Specific Acyl-ACP Thioesterase. Frontiers in Microbiology, 2018, 9, 619.	1.5	15
543	The Biodiesel of Microalgae as a Solution for Diesel Demand in Iran. Energies, 2018, 11, 950.	1.6	19
544	Lipids From Microalgae. , 2018, , 109-131.		20
545	Photocatalytic Production of Bisabolene from Green Microalgae Mutant: Process Analysis and Kinetic Modeling. Industrial & Engineering Chemistry Research, 2018, 57, 10336-10344.	1.8	14
546	Economic Aspects of Algae Biomass Harvesting for Industrial Purposes. The Life-Cycle Assessment of the Product. , 2018, , 131-143.		0
547	Algae Biomass: Characteristics and Applications. , 2018, , .		13
548	In silico Analyses of Transcriptomes of the Marine Green Microalga Dunaliella tertiolecta: Identification of Sequences Encoding P-type ATPases. Molecular Biology, 2018, 52, 520-531.	0.4	8
549	Identification and Functional Analysis of the psaD Promoter of Chlorella vulgaris Using Heterologous Model Strains. International Journal of Molecular Sciences, 2018, 19, 1969.	1.8	12
550	Evaluation of transcription profile of acetyl-CoA carboxylase (ACCase) and acyl-ACP synthetase (AAS) to reveal their roles in induced lipid accumulation of Synechococcus sp. HS01. Renewable Energy, 2018, 129, 347-356.	4.3	8
551	Approaches for the sustainable production of fucoxanthin, a xanthophyll with potential health benefits. Journal of Applied Phycology, 2019, 31, 281-299.	1.5	62
552	Central composite design (CCD) optimization of phytohormones supplementation for enhanced cyanobacterial biodiesel production. Renewable Energy, 2019, 130, 749-761.	4.3	19
553	Bioprocess engineering principles of microalgal cultivation for sustainable biofuel production. Bioresource Technology Reports, 2019, 5, 297-316.	1.5	61
554	Improving lipid production by strain development in microalgae: Strategies, challenges and perspectives. Bioresource Technology, 2019, 292, 121953.	4.8	79
555	Biolistic Transformation of Haematococcus pluvialis With Constructs Based on the Flanking Sequences of Its Endogenous Alpha Tubulin Gene. Frontiers in Microbiology, 2019, 10, 1749.	1.5	12
556	Microalgae Biodiesel as a Valuable Alternative to Fossil Fuels. Bioenergy Research, 2019, 12, 958-965.	2.2	33
557	The past, present and future of algal continuous cultures in basic research and commercial applications. Algal Research, 2019, 43, 101636.	2.4	18

#	Article	IF	CITATIONS
558	Opportunities and Challenges for Catalysis in Carbon Dioxide Utilization. ACS Catalysis, 2019, 9, 7937-7956.	5.5	271
559	Investigations in ultrasonic enhancement of β-carotene production by isolated microalgal strain Tetradesmus obliquus SGM19. Ultrasonics Sonochemistry, 2019, 58, 104697.	3.8	13
560	Impairment of starch biosynthesis results in elevated oxidative stress and autophagy activity in Chlamydomonas reinhardtii. Scientific Reports, 2019, 9, 9856.	1.6	26
561	Progress in biofuel generation and its application in fuel cell. , 2019, , 371-403.		5
562	Molecular profiling of an oleaginous trebouxiophycean alga Parachlorella kessleri subjected to nutrient deprivation for enhanced biofuel production. Biotechnology for Biofuels, 2019, 12, 182.	6.2	42
563	Response surface methodology as a statistical tool for optimization of physio-biochemical cellular components of microalgae Chlorella pyrenoidosa for biodiesel production. Applied Water Science, 2019, 9, 1.	2.8	25
564	Modification and improvement of microalgae strains for strengthening CO2 fixation from coal-fired flue gas in power plants. Bioresource Technology, 2019, 291, 121850.	4.8	102
566	Demonstration of the potential of Picochlorum soloecismus as a microalgal platform for the production of renewable fuels. Algal Research, 2019, 43, 101658.	2.4	31
567	Electroporation for microalgal biofuels: a review. Sustainable Energy and Fuels, 2019, 3, 2954-2967.	2.5	17
568	Development of Tactile Imaging for Underwater Structural Damage Detection. Sensors, 2019, 19, 3925.	2.1	9
569	Recent trends and challenges of algal biofuel conversion technologies. , 2019, , 167-179.		13
570	Microalgae cultivation and harvesting: Growth performance and use of flocculants - A review. Renewable and Sustainable Energy Reviews, 2019, 115, 109364.	8.2	101
571	The lipid biochemistry of eukaryotic algae. Progress in Lipid Research, 2019, 74, 31-68.	5.3	258
572	Metabolic Engineering of Microalgae for Biofuel Production. Methods in Molecular Biology, 2019, 1980, 153-172.	0.4	16
573	Genome-wide identification and characterization of CKIN/SnRK gene family in Chlamydomonas reinhardtii. Scientific Reports, 2019, 9, 350.	1.6	31
574	Influence of nutrient formulations on growth, lipid yield, carbon partitioning and biodiesel quality potential of Botryococcus sp. and Chlorella sp Environmental Science and Pollution Research, 2019, 26, 7589-7600.	2.7	20
575	Visualizing wax ester fermentation in single Euglena gracilis cells by Raman microspectroscopy and multivariate curve resolution analysis. Biotechnology for Biofuels, 2019, 12, 128.	6.2	10
576	Algal Biofuels: Current Status and Key Challenges. Energies, 2019, 12, 1920.	1.6	141

#	Article	IF	CITATIONS
578	High-efficiency nuclear transformation of the microalgae Nannochloropsis oceanica using Tn5 Transposome for the generation of altered lipid accumulation phenotypes. Biotechnology for Biofuels, 2019, 12, 134.	6.2	36
579	Microbial Lipid Alternatives to Plant Lipids. Methods in Molecular Biology, 2019, 1995, 1-32.	0.4	20
580	Phycoremediation of Petroleum Hydrocarbon-Polluted Sites: Application, Challenges, and Future Prospects. , 2019, , 145-162.		6
581	Towards the Genetic Manipulation of Microalgae to Improve the Carbon Dioxide Fixation and the Production of Biofuels: Present Status and Future Prospect. , 2019, , 135-146.		3
582	Overproduction of single cell oil from xylose rich sugarcane bagasse hydrolysate by an engineered oleaginous yeast Rhodotorula mucilaginosa IIPL32. Fuel, 2019, 254, 115653.	3.4	17
583	Overexpression of malic enzyme isoform 2 in Chlamydomonas reinhardtii PTS42 increases lipid production. Bioresource Technology Reports, 2019, 7, 100239.	1.5	19
584	Advanced Gene Technology and Synthetic Biology Approaches to Custom Design Microalgae for Biodiesel Production. , 2019, , 147-175.		2
585	Can Omics Approaches Improve Microalgal Biofuels under Abiotic Stress?. Trends in Plant Science, 2019, 24, 611-624.	4.3	38
586	Cell Wall Disruption: A Critical Upstream Process for Biofuel Production. , 2019, , 21-35.		12
587	Food processing wastewater purification by microalgae cultivation associated with high value-added compounds production — A review. Chinese Journal of Chemical Engineering, 2019, 27, 2845-2856.	1.7	63
588	Biodiesel, Bioethanol, and Biobutanol Production from Microalgae. , 2019, , 293-321.		17
589	<i>In situ</i> transesterification and prediction of fuel quality parameters of biodiesel produced from <i>Botryococcus</i> sp. MCC31. Biofuels, 2021, 12, 1131-1140.	1.4	11
590	Understanding the functions of endogenous DOF transcript factor in Chlamydomonas reinhardtii. Biotechnology for Biofuels, 2019, 12, 67.	6.2	23
591	Metabolic Engineering and Genetic Manipulation of Novel Biomass Species for Biofuel Production. , 2019, , 13-34.		3
592	Approaches to Improve the Quality of Microalgae Biodiesel: Challenges and Future Prospects. , 2019, , 89-103.		1
593	Fatty Acid Biosynthesis: Chainâ€Length Regulation and Control. ChemBioChem, 2019, 20, 2298-2321.	1.3	79
594	Application of the CRISPR/Cas system for genome editing in microalgae. Applied Microbiology and Biotechnology, 2019, 103, 3239-3248.	1.7	37
595	Effect of Fermentation on Enhancing the Nutraceutical Properties of Arthrospira platensis (Spirulina). Fermentation, 2019, 5, 28.	1.4	37

#	Article	IF	CITATIONS
596	Transcriptomic and lipidomic analysis of an EPA-containing Nannochloropsis sp. PJ12 in response to nitrogen deprivation. Scientific Reports, 2019, 9, 4540.	1.6	25
597	The fourth generation of biofuel. , 2019, , 557-597.		24
598	Increased triacylglycerol production in oleaginous microalga Neochloris oleoabundans by overexpression of plastidial lysophosphatidic acid acyltransferase. Microbial Cell Factories, 2019, 18, 53.	1.9	25
599	Overexpression of a glycogenin, CmGLG2, enhances floridean starch accumulation in the red alga <i>Cyanidioschyzon merolae</i> . Plant Signaling and Behavior, 2019, 14, 1596718.	1.2	11
601	Prospects of Renewable Bioprocessing in Future Energy Systems. Biofuel and Biorefinery Technologies, 2019, , .	0.1	39
602	Establishing synthesis pathwayâ€host compatibility via enzyme solubility. Biotechnology and Bioengineering, 2019, 116, 1405-1416.	1.7	6
603	Introduction to algal fuels. , 2019, , 1-31.		9
604	Nitrogen modulation under chemostat cultivation mode induces biomass and lipid production by Chlorella vulgaris and reduces antenna pigment accumulation. Bioresource Technology, 2019, 281, 118-125.	4.8	21
605	Jet biofuels from algae. , 2019, , 359-395.		6
606	Fourth generation biofuel: A review on risks and mitigation strategies. Renewable and Sustainable Energy Reviews, 2019, 107, 37-50.	8.2	323
607	The potential of biotechnology for mitigation of greenhouse gasses effects: solutions, challenges, and future perspectives. Arabian Journal of Geosciences, 2019, 12, 1.	0.6	7
608	Genetic/Metabolic Engineering and Synthetic Biology Applications to Improve Single Cell Oil Accumulation. , 2019, , 421-452.		0
610	Investigation of lipid, carbohydrate and protein production from <i>Chlorella vulgaris</i> in controlled environment minkery wastewater. International Journal of Global Warming, 2019, 19, 158.	0.2	0
611	Nitrogen-dependent coordination of cell cycle, quiescence and TAG accumulation in Chlamydomonas. Biotechnology for Biofuels, 2019, 12, 292.	6.2	37
612	Upregulated Lipid Biosynthesis at the Expense of Starch Production in Potato (Solanum tuberosum) Vegetative Tissues via Simultaneous Downregulation of ADP-Glucose Pyrophosphorylase and Sugar Dependent1 Expressions. Frontiers in Plant Science, 2019, 10, 1444.	1.7	19
613	Conversion of Crude Glycerol to Lipid and Biodiesel. , 2019, , 305-339.		1
614	Effect of Single and Combined Expression of Lysophosphatidic Acid Acyltransferase, Glycerol-3-Phosphate Acyltransferase, and Diacylglycerol Acyltransferase on Lipid Accumulation and Composition in Neochloris oleoabundans. Frontiers in Plant Science, 2019, 10, 1573.	1.7	31
615	Ethanol From Biomass. , 2019, , 25-59.		18

ARTICLE IF CITATIONS Role of Genetic Engineering inÂBioethanol Production FromÂAlgae. , 2019, , 361-381. 616 11 Microalgae in modern cancer therapy: Current knowledge. Biomedicine and Pharmacotherapy, 2019, 111, 2.5 123 42-50. Microalgae starch-based bioplastics: Screening of ten strains and plasticization of unfractionated 618 5.1127 microalgae by extrusion. Carbohydrate Polymers, 2019, 208, 142-151. Metabolic Engineering Prospects for Enhanced Green Fuel Production by Microalgae., 2019, , 211-220. 619 Valorisation of the microalgae Nannochloropsis gaditana biomass by proteomic approach in the 620 1.2 26 context of circular economy. Journal of Proteomics, 2019, 193, 239-242. Enhanced lipid content in Chlorella sp. FC2 IITG via high energy irradiation mutagenesis. Korean Journal of Chemical Engineering, 2019, 36, 63-70. 1.2 A model-based optimization of microalgal cultivation strategies for lipid production under 622 2.0 28 photoautotrophic condition. Computers and Chemical Engineering, 2019, 121, 57-66. The Role of Microalgae in Wastewater Treatment., 2019,,. Optimization of the droplet electroporation method for wild type Chlamydomonas reinhardtii 624 2.4 13 transformation. Bioelectrochemistry, 2019, 126, 29-37. Black Diatom Colloids toward Efficient Photothermal Converters for Solar-to-Steam Generation. ACS Applied Materials & amp; Interfaces, 2019, 11, 4531-4540. Evaluation of strategies for improving the transgene expression in an oleaginous microalga 626 1.7 23 Scenedesmus acutus. BMC Biotechnology, 2019, 19, 4. Exploring an isolate of the oleaginous alga Micractinium inermum for lipid production: molecular characterization and physiochemical analysis under multiple growth conditions. Journal of Applied 1.5 Phycology, 2019, 31, 1035-1046. Growth and secretome analysis of possible synergistic interaction between greenÂalgae and 628 1.1 27 cyanobacteria. Journal of Bioscience and Bioengineering, 2019, 127, 213-221. Increased biomass and lipid production by continuous cultivation of <i>Nannochloropsis salina</i> transformant overexpressing a bHLH transcription factor. Biotechnology and Bioengineering, 2019, 629 1.7 23 116, 555-568. Enhancing algal biomass and lipid production by phycospheric bacterial volatiles and possible growth 630 2.4 25 enhancing factor. Algal Research, 2019, 37, 186-194. Gibberellin Promotes Cell Growth and Induces Changes in Fatty Acid Biosynthesis and Upregulates Fatty Acid Biosynthetic Genes in Chlorella vulgaris UMT-M1. Applied Biochemistry and Biotechnology, 1.4 24 2019, 188, 450-459 The effects of 5â€azacytidine and cadmium on global 5â€methylcytosine content and secondary 632 metabolites in the freshwater microalgae <i>Chlamydomonas reinhardtii</i> and <i>Scenedesmus 1.0 12 quadricauda</i>. Journal of Phycology, 2019, 55, 329-342. Targeted knockout of phospholipase A2 to increase lipid productivity in Chlamydomonas reinhardtii 4.8 for biodiesel production. Bioresource Technology, 2019, 271, 368-374.

#	Article	IF	CITATIONS
634	CO2 Sequestration Using Algal Biomass and its Application as Bio Energy. , 2020, , 372-384.		5
635	Hydrogen derived from algae and cyanobacteria as a decentralized fueling option for hydrogen powered cars: Size, space, and cost characteristics of potential bioreactors. International Journal of Sustainable Transportation, 2020, 14, 325-334.	2.1	4
636	Biofuel production from microalgae: a review. Environmental Chemistry Letters, 2020, 18, 285-297.	8.3	121
637	Photo-bioreactors: Harnessing Solar Energy in Biological Way. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2020, 90, 723-732.	0.4	0
638	Biomass Conversion. , 2020, , 37-61.		3
639	Highest accumulated microalgal lipids (polar and non-polar) for biodiesel production with advanced wastewater treatment: Role of lipidomics. Bioresource Technology, 2020, 298, 122299.	4.8	44
640	Biofuels from Algae. Methods in Molecular Biology, 2020, , .	0.4	1
641	Individual and combined supplementation of carbon sources for growth augmentation and enrichment of lipids in the green microalga Tetradesmus obliquus. Journal of Applied Phycology, 2020, 32, 205-219.	1.5	11
642	New strategies enhancing feasibility of microalgal cultivations. Studies in Surface Science and Catalysis, 2020, 179, 287-316.	1.5	10
643	Early Light-Inducible Protein (ELIP) Can Enhance Resistance to Cold-Induced Photooxidative Stress in Chlamydomonas reinhardtii. Frontiers in Physiology, 2020, 11, 1083.	1.3	19
644	CRISPR based targeted genome editing of Chlamydomonas reinhardtii using programmed Cas9-gRNA ribonucleoprotein. Molecular Biology Reports, 2020, 47, 8747-8755.	1.0	24
645	Impact of glyphosate herbicide stress on metabolic growth and lipid inducement in Chlorella sorokiniana UUIND6 for biodiesel production. Algal Research, 2020, 51, 102071.	2.4	25
646	Lignocellulosic Ethanol Production from a Biorefinery Perspective. , 2020, , .		4
647	Designing with Genes in Early Childhood: An exploratory user study of the tangible CRISPEE technology. International Journal of Child-Computer Interaction, 2020, 26, 100212.	2.5	6
648	The Influence of Artificial Lighting Systems on the Cultivation of Algae: The Example of Chlorella vulgaris. Energies, 2020, 13, 5994.	1.6	7
649	An Insight into the Algal Evolution and Genomics. Biomolecules, 2020, 10, 1524.	1.8	7
650	Maneuvering the genetic and metabolic pathway for improving biofuel production in algae: Present status and future prospective. Renewable and Sustainable Energy Reviews, 2020, 133, 110155.	8.2	44
651	Microalgae as enzymes biofactories. , 2020, , 687-706.		4

#	Article	IF	CITATIONS
652	Biodiesel from microalgae. , 2020, , 329-371.		2
653	Bioethanol production from microalgae. , 2020, , 373-389.		7
654	The effect of light on growth and lipid content of microalgae consortium of Glagah isolate and Arthrospira maxima (Setchell et Gardner). AIP Conference Proceedings, 2020, , .	0.3	0
655	Bioengineering of Microalgae: Recent Advances, Perspectives, and Regulatory Challenges for Industrial Application. Frontiers in Bioengineering and Biotechnology, 2020, 8, 914.	2.0	143
657	Bioprocess Engineering for Bioremediation. Handbook of Environmental Chemistry, 2020, , .	0.2	1
658	Microalgae with artificial intelligence: A digitalized perspective on genetics, systems and products. Biotechnology Advances, 2020, 44, 107631.	6.0	55
659	Alteration in the Expression of Genes Encoding Primary Metabolism Enzymes and Plastid Transporters during the Culture Growth of Chlamydomonas reinhardtii. Molecular Biology, 2020, 54, 503-519.	0.4	3
660	Algal Biomass for Biofuels and Bioproducts. Handbook of Environmental Chemistry, 2020, , 139-160.	0.2	1
661	Insights about sustainable biodiesel production from microalgae biomass: A review. International Journal of Energy Research, 2021, 45, 17028-17056.	2.2	26
662	Hybrid genome assembly and functional annotation reveals insights on lipid biosynthesis of oleaginous native isolate Parachlorella kessleri, a potential industrial strain for production of biofuel precursors. Algal Research, 2020, 52, 102118.	2.4	8
663	Fatty Acid Methyl Esters of the Aerophytic Cave Alga Coccomyxa subglobosa as a Source for Biodiesel Production. Energies, 2020, 13, 6494.	1.6	6
664	Temperature-Dependent Lipid Accumulation in the Polar Marine Microalga Chlamydomonas malina RCC2488. Frontiers in Plant Science, 2020, 11, 619064.	1.7	19
665	An epigenetic gene silencing pathway selectively acting on transgenic DNA in the green alga Chlamydomonas. Nature Communications, 2020, 11, 6269.	5.8	58
666	Cell-based and cell-free biocatalysis for the production of d-glucaric acid. Biotechnology for Biofuels, 2020, 13, 203.	6.2	13
667	A method for the preparation of electrocompetent cells to transform unicellular green algae, Coccomyxa (Trebouxiophyceae, Chlorophyta) strains Obi and KJ. Algal Research, 2020, 48, 101904.	2.4	10
668	Na+/K+-ATPase a Primary Membrane Transporter: An Overview and Recent Advances with Special Reference to Algae. Journal of Membrane Biology, 2020, 253, 191-204.	1.0	27
669	Acyl-lipid desaturases and Vipp1 cooperate in cyanobacteria to produce novel omega-3 PUFA-containing glycolipids. Biotechnology for Biofuels, 2020, 13, 83.	6.2	10
670	High-added value products from microalgae and prospects of aquaculture wastewaters as microalgae growth media. FEMS Microbiology Letters, 2020, 367, .	0.7	28

	CITATION	Report	
#	Article	IF	Citations
671	Biotechnology for Biofuels: A Sustainable Green Energy Solution. , 2020, , .		4
672	Utilization of lipid-extracted biomass (LEB) to improve the economic feasibility of biodiesel production from green microalgae. Environmental Reviews, 2020, 28, 325-338.	2.1	11
673	Mitochondrial fatty acid βâ€oxidation is required for storageâ€lipid catabolism in a marine diatom. New Phytologist, 2020, 228, 946-958.	3.5	25
674	Integration of proteome and transcriptome refines key molecular processes underlying oil production in Nannochloropsis oceanica. Biotechnology for Biofuels, 2020, 13, 109.	6.2	22
675	Acceptability of genetically engineered algae biofuels in Europe: opinions of experts and stakeholders. Biotechnology for Biofuels, 2020, 13, 92.	6.2	36
676	Microalgae as a future food source. Biotechnology Advances, 2020, 41, 107536.	6.0	264
677	Involvement of green technology in microalgal biodiesel production. Reviews on Environmental Health, 2020, 35, 173-188.	1.1	14
678	Genetic Transformation of Tribonema minus, a Eukaryotic Filamentous Oleaginous Yellow-Green Alga. International Journal of Molecular Sciences, 2020, 21, 2106.	1.8	4
679	Cyanobacteria: potential source of biofertilizer and synthesizer of metallic nanoparticles. , 2020, , 351-367.		0
680	Oleochemistry Products. , 2020, , 201-268.		4
681	Enhancing lipid productivity by modulating lipid catabolism using the CRISPR-Cas9 system in Chlamydomonas. Journal of Applied Phycology, 2020, 32, 2829-2840.	1.5	35
683	Responses of triacylglycerol synthesis in <i>Skeletonema marinoi</i> to nitrogen and phosphate starvations. Journal of Phycology, 2020, 56, 1505-1520.	1.0	1
684	The refinery concept: addressing the challenges of microalgal biodiesel production. , 2020, , 195-223.		0
685	The contribution of stress-tolerant endosymbiotic dinoflagellate Durusdinium to Pocillopora acuta survival in a highly urbanized reef system. Coral Reefs, 2020, 39, 745-755.	0.9	27
686	Systems biology approach identifies functional modules and regulatory hubs related to secondary metabolites accumulation after transition from autotrophic to heterotrophic growth condition in microalgae. PLoS ONE, 2020, 15, e0225677.	1.1	14
687	Transcriptome-based Analysis of Euglena gracilis Lipid Metabolic Pathways Under Light Stress. Turkish Journal of Fisheries and Aquatic Sciences, 2020, 20, .	0.4	1
688	Solar activation of fungus coated in photothermal cloth. Journal of Materials Chemistry B, 2020, 8, 2466-2470.	2.9	10
689	Microalgae: A potential sustainable commercial source of sterols. Algal Research, 2020, 46, 101772.	2.4	79

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
690	Substrate Analysis for Effective Biofuels Production. Clean Energy Production Technologies, 2020, , .	0.3	3
691	Hydrogen Sulfide Improves Lipid Accumulation in <i>Nannochloropsis oceanica</i> through Metabolic Regulation of Carbon Allocation and Energy Supply. ACS Sustainable Chemistry and Engineering, 2020, 8, 2481-2489.	3.2	11
692	Facile biphasic catalytic process for conversion of monoterpenoids to tricyclic hydrocarbon biofuels. Journal of Energy Chemistry, 2020, 49, 42-50.	7.1	8
693	Energy conservation in photosynthetic microorganisms. Journal of General and Applied Microbiology, 2020, 66, 59-65.	0.4	10
694	A novel method for the release of viable single cells from Botryococcus braunii (Race B) colony using iodine treatment. Algal Research, 2020, 48, 101924.	2.4	0
695	Growth, lipid content, and fatty acid profile of freshwater cyanobacteria Dolichospermum affine (Lemmermann) Wacklin, Hoffmann, & Komárek by using modified nutrient media. Aquaculture International, 2020, 28, 1371-1388.	1.1	12
696	Improved lipid productivity of Chlamydomonas globosa and Oscillatoria pseudogeminata as a biodiesel feedstock in artificial media and wastewater. Biocatalysis and Agricultural Biotechnology, 2020, 25, 101588.	1.5	7
697	A novel fed-batch strategy enhances lipid and astaxanthin productivity without compromising biomass of Chromochloris zofingiensis. Bioresource Technology, 2020, 308, 123306.	4.8	34
698	Bio-methanol as a renewable fuel from waste biomass: Current trends and future perspective. Fuel, 2020, 273, 117783.	3.4	120
699	The effects of indole-3-acetic acid and hydrogen peroxide on Chlorella zofingiensis CCALA 944 for bio-butanol production. Fuel, 2020, 273, 117795.	3.4	21
700	Functional elucidation of hypothetical proteins associated with lipid accumulation: Prioritizing genetic engineering targets for improved algal biofuel production. Algal Research, 2020, 47, 101887.	2.4	17
701	Microalgae-based biomass production for control of air pollutants. , 2020, , 345-372.		2
702	Transformation of coccolithophorid Emiliania huxleyi harboring a marine virus (Coccolithoviruses) serine palmitoyltransferase (SPT) gene by electroporation. Journal of Oceanology and Limnology, 2021, 39, 693-704.	0.6	3
703	Phycoremediation of industrial wastewater: challenges and prospects. , 2021, , 99-123.		5
704	Recent developments and strategies in genome engineering and integrated fermentation approaches for biobutanol production from microalgae. Fuel, 2021, 285, 119052.	3.4	49
705	Biofuels and their connections with the sustainable development goals: a bibliometric and systematic review. Environment, Development and Sustainability, 2021, 23, 11139-11156.	2.7	48
706	Adaptive Laboratory Evolution for algal strain improvement: methodologies and applications. Algal Research, 2021, 53, 102122.	2.4	27
707	A New Species of Freshwater Algae <i>Nephrochlamys yushanlensis</i> sp. nov. (Selenastraceae,) Tj ETQq1 1 Phycology, 2021, 57, 606-618.	0.784314 rg 1.0	BT /Overlock 20

#	Article	IF	CITATIONS
708	Recent advances on bio-based isobutanol separation. Energy Conversion and Management: X, 2021, 10, 100059.	0.9	14
709	Enhanced triacylglycerol production in oleaginous microalga Neochloris oleoabundans by co-overexpression of lipogenic genes: Plastidial LPAAT1 and ER-located DGAT2. Journal of Bioscience and Bioengineering, 2021, 131, 124-130.	1.1	24
710	Sustainable Cultivation of GM Crops in the Age of Climate Change: A Global Perspective. , 2021, , 237-271.		0
711	Saccharification of lignocellulosic biomass from phoma exigua and ethanol production from saccharomyces cerevisiae using cost effective fabricated Lab scale fermenter. International Journal of Pharma and Bio Sciences, 2021, 8, .	0.1	0
712	Genomic Designing for Biotic Stress Resistant Rice. , 2021, , 1-58.		0
713	Sustainable Production of Hydrogen by Algae: Current Status and Future Perspectives. Clean Energy Production Technologies, 2021, , 183-223.	0.3	0
714	Evolution of Plant Na+-P-Type ATPases: From Saline Environments to Land Colonization. Plants, 2021, 10, 221.	1.6	6
715	The Place of Biofuel in Sustainable Living; Prospects and Challenges. , 2022, , 226-258.		6
716	<i>Bacillus subtilis</i> spore surface display of photodecarboxylase for the transformation of lipids to hydrocarbons. Sustainable Energy and Fuels, 2021, 5, 1727-1733.	2.5	13
717	Astaxanthin production from Haematococcus pluvialis by using illuminated photobioreactor. , 2021, , 209-224.		5
718	Diatoms Biotechnology: Various Industrial Applications for a Greener Tomorrow. Frontiers in Marine Science, 2021, 8, .	1.2	30
720	Isolation of Industrial Important Bioactive Compounds from Microalgae. Molecules, 2021, 26, 943.	1.7	64
721	Efficient Agrobacterium tumefaciens-mediated stable genetic transformation of green microalgae, Chlorella sorokiniana. 3 Biotech, 2021, 11, 196.	1.1	10
722	A strategy for lipid production in Scenedesmus sp. by multiple stresses induction. Biomass Conversion and Biorefinery, 0, , 1.	2.9	5
723	Advances in the biological fixation of carbon dioxide by microalgae. Journal of Chemical Technology and Biotechnology, 2021, 96, 1475-1495.	1.6	44
724	The next frontier of oncotherapy: accomplishing clinical translation of oncolytic bacteria through genetic engineering. Future Microbiology, 2021, 16, 341-368.	1.0	5
725	Lignocellulose, algal biomass, biofuels and biohydrogen: a review. Environmental Chemistry Letters, 2021, 19, 2809-2824.	8.3	29
726	Applications of artificial intelligenceâ€based modeling for bioenergy systems: A review. GCB Bioenergy, 2021, 13, 774-802.	2.5	62

#	Article	IF	CITATIONS
727	Biomolecule composition and draft genome of a novel, high-lipid producing Scenedesmaceae microalga. Algal Research, 2021, 54, 102181.	2.4	4
728	Functional Diversity Facilitates Stability Under Environmental Changes in an Outdoor Microalgal Cultivation System. Frontiers in Bioengineering and Biotechnology, 2021, 9, 651895.	2.0	11
729	Simultaneous knockout of multiple <i>LHCF</i> genes using single sgRNAs and engineering of a highâ€fidelity Cas9 for precise genome editing in marine algae. Plant Biotechnology Journal, 2021, 19, 1658-1669.	4.1	19
730	Enhancement of lipid production in Nannochloropsis salina by overexpression of endogenous NADP-dependent malic enzyme. Algal Research, 2021, 54, 102218.	2.4	27
731	Review on carbon dioxide fixation coupled with nutrients removal from wastewater by microalgae. Journal of Cleaner Production, 2021, 292, 125975.	4.6	69
732	Cyanobacteria—From the Oceans to the Potential Biotechnological and Biomedical Applications. Marine Drugs, 2021, 19, 241.	2.2	66
733	Current perspectives on integrated approaches to enhance lipid accumulation in microalgae. 3 Biotech, 2021, 11, 303.	1.1	19
734	Introduction of macroalgae as a source of biodiesel in Iran: analysis of total lipid content, fatty acid and biodiesel indices. Journal of the Marine Biological Association of the United Kingdom, 2021, 101, 527-534.	0.4	6
735	Phycoremediation of effluents containing dyes and its prospects for value-added products: A review of opportunities. Journal of Water Process Engineering, 2021, 41, 102080.	2.6	16
736	Potential of cyanobacteria in the conversion of wastewater to biofuels. World Journal of Microbiology and Biotechnology, 2021, 37, 140.	1.7	18
737	Cultivation processes to select microorganisms with high accumulation ability. Biotechnology Advances, 2021, 49, 107740.	6.0	9
738	Biochemical and genetic changes revealing the enhanced lipid accumulation in Desmodesmus sp. mutated by atmospheric and room temperature plasma. Renewable Energy, 2021, 172, 368-381.	4.3	11
739	Microalgal lipids: A review of lipids potential and quantification for 95 phytoplankton species. Biomass and Bioenergy, 2021, 150, 106108.	2.9	97
740	Isolation and characterization of a heavy metal- and antibiotic-tolerant novel bacterial strain from a contaminated culture plate of Chlamydomonas reinhardtii, a green micro-alga F1000Research, 2021, 10, 533.	0.8	0
741	Performance and optimization studies of oil extraction from Nannochloropsis spp. and Scenedesmus obliquus. Journal of Cleaner Production, 2021, 311, 127295.	4.6	7
743	The biosynthesis of phospholipids is linked to the cell cycle in a model eukaryote. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158965.	1.2	4
744	Enhancement of Lipid Production by <i>Euglena gracilis</i> Using Vanillin as a Growth Stimulant. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2021, 100, 127-134.	0.2	1
745	Microalgal Production of Biofuels Integrated with Wastewater Treatment. Sustainability, 2021, 13, 8797.	1.6	14

#	Article	IF	CITATIONS
747	Biotechnology for carbon capture and fixation: Critical review and future directions. Journal of Environmental Management, 2021, 293, 112830.	3.8	45
748	Isolation and characterization of a heavy metal- and antibiotic-tolerant novel bacterial strain from a contaminated culture plate of Chlamydomonas reinhardtii, a green micro-alga F1000Research, 2021, 10, 533.	0.8	2
749	Microalgae: Sustainable resource of carbohydrates in third-generation biofuel production. Renewable and Sustainable Energy Reviews, 2021, 150, 111464.	8.2	72
750	Microalgae for high-value products: A way towards green nutraceutical and pharmaceutical compounds. Chemosphere, 2021, 280, 130553.	4.2	144
751	Genetic engineering of microalgae for enhanced lipid production. Biotechnology Advances, 2021, 52, 107836.	6.0	52
752	Ectopic expression of bacterial 1-aminocyclopropane 1-carboxylate deaminase in Chlamydomonas reinhardtii enhances algal biomass and lipid content under nitrogen deficit condition. Bioresource Technology, 2021, 341, 125830.	4.8	4
753	Generation of hydrocarbons using microorganisms: Recent advances. , 2022, , 229-252.		0
754	Two promoters of biodiesel and biomass production induced by different concentrations of myo-inositol in Chlorella vulgaris. Biomass Conversion and Biorefinery, 2023, 13, 2045-2053.	2.9	3
755	Biofuel production from microalgae and process enhancement by metabolic engineering and ultrasound. , 2021, , 209-230.		6
756	Algal-Based Wastewater Treatment and Biorefinery. , 2021, , 413-432.		3
757	Comparative Treatment Efficiency and Fatty Acid Synthesis of Chlorella vulgaris: Immobilization Versus Co-cultivation. Waste and Biomass Valorization, 2021, 12, 4399-4405.	1.8	1
760	Microalgal Systems Biology for Biofuel Production. , 2015, , 3-21.		2
761	Utilization Alternatives of Algal Wastes for Solid Algal Products. , 2015, , 393-418.		11
762	Government Regulation of the Uses of Genetically Modified Algae and Other Microorganisms in Biofuel and Bio-based Chemical Production. , 2015, , 23-60.		4
763	Synthetic Biology for Space Exploration: Promises and Societal Implications. Wissenschaftsethik Und Technikfolgenbeurteilung, 2016, , 73-100.	0.8	12
764	Pulsed Electric Fields and Electroporation Technologies in Marine Macroalgae Biorefineries. , 2016, , 1-16.		4
765	Biodiesel from Microalgae. , 2016, , 1-20.		2
766	Starch Biomass for Biofuels, Biomaterials, and Chemicals. , 2018, , 69-94.		8

#	Article	IF	CITATIONS
767	Insights into Algal Fermentation. Plant Cell Monographs, 2014, , 135-163.	0.4	2
768	Microalgae as a Vaccine Delivery System to Aquatic Organisms. , 2020, , 353-372.		4
769	Microbial Biofuels: An Economic and Eco-Friendly Approach. , 2020, , 165-196.		2
770	Genetic Engineering for Enhancement of Biofuel Production in Microalgae. Clean Energy Production Technologies, 2020, , 539-559.	0.3	17
771	Algal Butanol Production. Clean Energy Production Technologies, 2020, , 33-50.	0.3	1
772	Biobutanol Production From Renewable Resources. Advances in Bioenergy, 2016, 1, 1-68.	0.5	8
773	Bioconvection due to gyrotactic microbes in a nanofluid flow through a porous medium. Heliyon, 2020, 6, e05832.	1.4	41
774	Algae: an essential link between our past and future. Microbiology Australia, 2012, 33, 125.	0.1	1
776	PSR1 Is a Global Transcriptional Regulator of Phosphorus Deficiency Responses and Carbon Storage Metabolism in <i>Chlamydomonas reinhardtii</i> Â Â. Plant Physiology, 2016, 170, 1216-1234.	2.3	91
777	In Situ Transesterification of Spirulina Microalgae to Produce Biodiesel Using Microwave Irradiation. Journal of Energy, 2020, 2020, 1-10.	1.4	11
778	Genetic Engineering of Microalgae for Enhanced Biodiesel Production Suitable Fuel Replacement of Fossil Fuel as a Novel Energy Source. American Journal of Life Sciences, 2015, 3, 32.	0.3	7
779	Nannochloris eucaryotum growth: Kinetic analysis and use of 100% CO ₂ . Advances in Environmental Research, 2013, 2, 19-33.	0.3	9
780	Examination of Triacylglycerol Biosynthetic Pathways via De Novo Transcriptomic and Proteomic Analyses in an Unsequenced Microalga. PLoS ONE, 2011, 6, e25851.	1.1	198
781	Simple, Rapid and Cost-Effective Method for High Quality Nucleic Acids Extraction from Different Strains of Botryococcus braunii. PLoS ONE, 2012, 7, e37770.	1.1	32
782	Robust Expression and Secretion of Xylanase1 in Chlamydomonas reinhardtii by Fusion to a Selection Gene and Processing with the FMDV 2A Peptide. PLoS ONE, 2012, 7, e43349.	1.1	211
783	Genomic, Proteomic, and Biochemical Analyses of Oleaginous Mucor circinelloides: Evaluating Its Capability in Utilizing Cellulolytic Substrates for Lipid Production. PLoS ONE, 2013, 8, e71068.	1.1	26
784	A Simple and Non-Invasive Method for Nuclear Transformation of Intact-walled Chlamydomonas reinhardtii. PLoS ONE, 2014, 9, e101018.	1.1	30
785	Acidophilic Green Alga Pseudochlorella sp. YKT1 Accumulates High Amount of Lipid Droplets under a Nitrogen-Depleted Condition at a Low-pH. PLoS ONE, 2014, 9, e107702.	1.1	29

#	Article	IF	CITATIONS
786	The Involvement of hybrid cluster protein 4, HCP4, in Anaerobic Metabolism in Chlamydomonas reinhardtii. PLoS ONE, 2016, 11, e0149816.	1.1	8
787	Sustainable Development of Algal Biofuels in the United States. , 2012, , .		14
789	Genetic Improvement and Challenges for Cultivation of Microalgae for Biodiesel: A Review. Mini-Reviews in Organic Chemistry, 2019, 16, 277-289.	0.6	5
790	β-carotene Production of UV-C Induced Dunaliella salina Under Salt Stress. Journal of Pure and Applied Microbiology, 2019, 13, 193-200.	0.3	7
792	Nutrition by design: a review of biotechnology in functional food. Functional Foods in Health and Disease, 2016, 6, 110.	0.3	5
793	Biotechnological Applications of Microalgal Oleaginous Compounds: Current Trends on Microalgal Bioprocessing of Products. Frontiers in Energy Research, 2020, 8, .	1.2	72
794	Bacterial Carbon Storage to Value Added Products. Journal of Microbial & Biochemical Technology, 0, s3, .	0.2	33
795	Theory of Global Sustainable Development Based on Microalgae in Bio and Industrial Cycles, Management-Changing Decisions in Areas of Climate Change and Waste Management. Journal of Sustainable Bioenergy Systems, 2013, 03, 287-297.	0.2	21
796	The unicellular green alga Dunaliella salina Teod. as a model for abiotic stress tolerance: genetic advances and future perspectives. Algae, 2011, 26, 3-20.	0.9	92
797	Optimization of Spirogyra Flocculation Using Polyaluminium Chloride. KSBB Journal, 2014, 29, 220-224.	0.1	1
798	Influence of irradiance on the growth and biochemical composition of Nitzschia aff. pellucida. Journal of Applied Phycology, 2022, 34, 19-30.	1.5	5
799	A comprehensive review on enhanced production of microbial lipids for high-value applications. Biomass Conversion and Biorefinery, 2023, 13, 15357-15380.	2.9	5
800	<i>Monodopsis</i> and <i>Vischeria</i> Genomes Shed New Light on the Biology of Eustigmatophyte Algae. Genome Biology and Evolution, 2021, 13, .	1.1	8
801	Biomass for Energy: Energetic and Environmental Challenges of Biofuels. Issues in Agroecology, 2013, , 179-203.	0.1	0
802	Increasing Microbial Biofuel Production by In-silico Comparative Genomic Studies. International Journal of Bioscience, Biochemistry, Bioinformatics (IJBBB), 2014, 4, 386-390.	0.2	0
803	An Approach to Microalgal Production Systems for Commodities. Oceanography Open Access, 2014, 02,	0.1	0
805	Chemicals and Fuels from Microalgae. , 2016, , 1-21.		3
806	Omics Advances of Biosynthetic Pathways of Isoprenoid Production in Microalgae. , 2016, , 35-58.		0

#	Article	IF	CITATIONS
808	Multi agentes y autómatas celulares como base para el análisis eficaz y realista de la macroeconomÃa. Maskana, 2016, 7, 77-111.	0.5	0
809	Production of Fatty Acids and Derivatives by Metabolic Engineering of Bacteria. , 2017, , 1-24.		ο
810	Chemicals and Fuels from Microalgae. , 2017, , 1-22.		0
811	Production of Fatty Acids and Derivatives by Metabolic Engineering of Bacteria. , 2017, , 435-458.		0
812	31 Lipid Biotechnology and Biochemistry. , 2017, , 779-824.		1
813	MİKROALGLERDEN YENİLENEBİLİR BİYOYAKIT ÜRETİMİ. Journal of the Faculty of Engineering and Aro of Gazi University, 2017, 32, .	chitecture	5
815	Métodos de extração de bio-óleo a partir da microalga Nannochloropsis oculata: uma análise bibliométrica. Research, Society and Development, 2018, 7, e976190.	0.0	1
817	Production of Biofuel from Microalgae. SpringerBriefs in Energy, 2019, , 45-66.	0.2	0
818	Microalgae, a Biological Resource for the Future. , 2019, , 197-227.		0
822	In-Silico Construction of Hybrid ORF Protein to Enhance Algal Oil Content for Biofuel. Lecture Notes in Bioengineering, 2021, , 67-89.	0.3	1
823	Characterization of S-Acyltransferase Gene Fragment from an Isolate of Tropical Marine Microalgae Chlorella vulgaris CBI. IOP Conference Series: Earth and Environmental Science, 2020, 618, 012036.	0.2	0
824	Carbon dioxide capture for biofuel production. , 2022, , 605-619.		5
825	Algal biorefinery: Challenges and opportunities. , 2022, , 41-79.		1
826	Transgenicism in algae: Challenges in compatibility, global scenario and future prospects for next generation biofuel production. Renewable and Sustainable Energy Reviews, 2022, 154, 111829.	8.2	14
828	Omics Tools: Approaches for Microbiomes Analysis to Enhance Bioenergy Production. , 2020, , 207-234.		2
829	The scientometric analysis of the research on the algal genomics. , 2020, , 105-125.		0
830	Photobioreactors for Bioenergy Systems and Lipid Extraction Methods from Microalgae. Green Energy and Technology, 2020, , 131-157.	0.4	0
831	Integrating Omics and Microbial Biotechnology for the Production of Biofuel. , 2020, , 221-239.		1

			2
#	ARTICLE	IF.	CITATIONS
832	Recent Progress in Emerging Microalgae Technology for Biofuel Production. Clean Energy Production Technologies, 2020, , 79-122.	0.3	1
833	Microalgae: Omics Approaches for Biofuel Production and Biomedical Research. , 2020, , 261-284.		1
834	Wax Ester and Triacylglycerol Inclusions. Microbiology Monographs, 2020, , 211-242.	0.3	2
835	Microbial and Plant Genetic Engineering for Efficient Conversions. , 2020, , 159-176.		0
837	Microalgae-based carbohydrates: A green innovative source of bioenergy. Bioresource Technology, 2022, 344, 126304.	4.8	76
838	Significance of Carbohydrate Pathway in the Maximization of Biofuel Production in Botryococcus sp: A Brief Review. CLSU International Journal of Science and Technology, 2020, 4, 18-29.	0.3	1
839	High-Throughput In Vitro Screening of Changed Algal Community Structure Using the PhotoBiobox. Journal of Microbiology and Biotechnology, 2020, 30, 1785-1791.	0.9	0
840	UV-B Coupled Lipid Induction: A Strategy Towards Economical Biofuel Production Through Algae. , 2021, , 281-293.		0
841	An Insight into the Potential Application of Microalgae in Pharmaceutical and Nutraceutical Production. , 2021, , 135-179.		6
842	CrABCA2 Facilitates Triacylglycerol Accumulation in under Nitrogen Starvation. Molecules and Cells, 2020, 43, 48-57.	1.0	5
843	Advancements in Diatom Algae Based Biofuels. Clean Energy Production Technologies, 2021, , 127-148.	0.3	0
844	Microalgae—the ideal source of biofuel. , 2022, , 389-405.		1
845	Superstructure optimization of microalgal biorefinery producing biodiesel. , 2022, , 713-738.		1
846	The allelopathy and underlying mechanism of Skeletonema costatum on Karenia mikimotoi integrating transcriptomics profiling. Aquatic Toxicology, 2022, 242, 106042.	1.9	8
847	Current trends in algal biotechnology for the generation of sustainable biobased products. , 2022, , 213-239.		1
848	Complete Chloroplast Genome Sequence of Erigeron breviscapus and Characterization of Chloroplast Regulatory Elements. Frontiers in Plant Science, 2021, 12, 758290.	1.7	2
849	Sustainable valorization of algae biomass via thermochemical processing route: An overview. Bioresource Technology, 2022, 344, 126399.	4.8	38
850	Microalgae as a Source of Mycosporine-like Amino Acids (MAAs); Advances and Future Prospects. International Journal of Environmental Research and Public Health, 2021, 18, 12402.	1.2	18

#	Article	IF	CITATIONS
851	Energy from biomass and plastics recycling: a review. Cogent Engineering, 2021, 8, .	1.1	8
852	Microalgal metabolic engineering strategies for the production of fuels and chemicals. Bioresource Technology, 2022, 345, 126529.	4.8	22
853	A Novel Bifunctional Wax Ester Synthase Involved in Early Triacylglycerol Accumulation in Unicellular Green Microalga Haematococcus pluvialis Under High Light Stress. Frontiers in Bioengineering and Biotechnology, 2021, 9, 794714.	2.0	1
854	Bioâ€engineering of microalgae: Challenges and future prospects toward industrial and environmental applications. Journal of Basic Microbiology, 2022, 62, 310-329.	1.8	9
855	High-throughput selection of cells based on accumulated growth and division using PicoShell particles. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	12
857	Recent breakthroughs in integrated biomolecular and biotechnological approaches for enhanced lipid and carotenoid production from microalgae. Phytochemistry Reviews, 2023, 22, 993-1013.	3.1	6
858	Application of Pulsed Electric Fields and High-Pressure Homogenization in Biorefinery Cascade of C. vulgaris Microalgae. Foods, 2022, 11, 471.	1.9	13
859	Latest trends and developments in microalgae as potential source for biofuels: The case of diatoms. Fuel, 2022, 314, 122738.	3.4	28
860	Solid-State NMR Investigations of Extracellular Matrixes and Cell Walls of Algae, Bacteria, Fungi, and Plants. Chemical Reviews, 2022, 122, 10036-10086.	23.0	60
862	Increasing lipid accumulation in microalgae through environmental manipulation, metabolic and genetic engineering: a review in the energy NEXUS framework. Energy Nexus, 2022, 5, 100054.	3.3	22
864	Microalgae-bacterial granular consortium: Striding towards sustainable production of biohydrogen coupled with wastewater treatment. Bioresource Technology, 2022, 354, 127203.	4.8	24
865	Microalgae Technology. RSC Green Chemistry, 2014, , 79-92.	0.0	0
876	Emerging Trends in Genetic Engineering of Microalgae for Commercial Applications. Marine Drugs, 2022, 20, 285.	2.2	30
877	Algal bioenergy production and utilization: Technologies, challenges, and prospects. Journal of Environmental Chemical Engineering, 2022, 10, 107863.	3.3	17
878	The choice of algae strain for the biofuel production: Native, genetically modified, and microbial consortia. , 2022, , 3-32.		0
881	Cost–benefit analysis of third-generation biofuels. , 2022, , 785-811.		0
884	Metabolism of microalgae and metabolic engineering for biomaterial applications. , 2022, , 1-20.		0
885	Biorefineries and circular economy in the production of lipids. , 2022, , 309-330.		0

#	ARTICLE	IF	CITATIONS
886	Microbial lipids production by oleaginous yeasts. , 2022, , 161-189.		0
887	Edible Oil From Algal Sources: Characteristics and Properties as Novel Food Ingredient. , 2023, , .		0
888	Biodiesel from microalgae: Recent progress and key challenges. Progress in Energy and Combustion Science, 2022, 93, 101020.	15.8	43
889	The chloroplast genome of Salix floderusii and characterization of chloroplast regulatory elements. Frontiers in Plant Science, 0, 13, .	1.7	2
890	Chlamydomonas reinhardtii Alternates Peroxisomal Contents in Response to Trophic Conditions. Cells, 2022, 11, 2724.	1.8	1
891	The Promising Future of Microalgae as Biofuels and Valuable Bioproducts. Clean Energy Production Technologies, 2022, , 29-52.	0.3	0
892	Algal cultivation in the pursuit of emerging technology for sustainable development. , 2023, , 357-366.		0
893	Lab-scale to commercial-scale cultivation of microalgae. , 2023, , 43-51.		0
894	Aquatic microalgal biofuel production. , 2023, , 333-356.		0
895	Recent advances in the bio-application of microalgae-derived biochemical metabolites and development trends of photobioreactor-based culture systems. 3 Biotech, 2022, 12, .	1.1	13
896	Fluorescent Imaging and Sorting of High-Lipid-Content Strains of Green Algae by Using an Aggregation-Induced Emission Luminogen. ACS Nano, 2022, 16, 14973-14981.	7.3	4
897	Novel Feedstocks for Biofuels: Current Scenario and Recent Advancements. Clean Energy Production Technologies, 2022, , 17-37.	0.3	0
898	Feedstocks and Pre-Treatment Techniques for Third-Generation Bioethanol Production. Biofuel and Biorefinery Technologies, 2022, , 281-300.	0.1	0
899	Challenges and opportunities for third-generation ethanol production: A critical review. Engineering Microbiology, 2023, 3, 100056.	2.2	8
900	Review on waste biomass valorization and power management systems for microbial fuel cell application. Journal of Cleaner Production, 2022, 380, 134994.	4.6	19
901	Exploring the Anti-cancer Potential of Microalgae. , 0, , .		1
902	Role of regulatory pathways and multi-omics approaches for carbon capture and mitigation in cyanobacteria. Bioresource Technology, 2022, 366, 128104.	4.8	5
903	Recent advances in photobioreactor systems for sustainable and enhanced microalgal biofuel production. Sustainable Energy and Fuels, 2022, 6, 5459-5473.	2.5	2

909Microalegies Electronic as Feederation for Electrolics: Sustainable Electronic gystrategies.1.68909Emerging Technologies for Enhancing Microalegies Electrical Production: Recent: Progress, Bartiers, and1.46906Cenetic engineering and fifth generation biofuels., 2023, 237-251.2907Beta Clucianisc: Diverse Bacterial Sources and Its Applications., 2022, 3449.0908Biotechnological Approaches to Enhance Algae Biofuel Production. Clean Energy Production0.30909Combined effect of ntrogen and phosphorus on growth and blackation copies of Fourth Ceneration Biofuels.0.30911Combined effect of ntrogen and phosphorus on growth and blackation copies, 2023, 727-152.0.51912Combined effect of ntrogen and phosphorus on growth and blackation copies, 2023, 727-152.0.51913Cenetic engineering to enhance microalign/Assed production down Metabolic, 2022, 9, 235-537.0.51914Combined effect of ntrogen and phosphorus on growth and Blackenhology, 0.10.2.04915Colorign the Electronic growth of Fourth Ceneration Homo the Econodical Hetapland, Halan telenology Recener, 2023, 12, 18-35.1.82915Colorign the Eposphorus colorign Metrosalgae Control Metrosalgae Fourth Ceneration Homo microalgae.1.033916Renewable Elocluels from microalgae: technical advances, limitations and economics. Environmental technology Reviews, 2023, 12, 18-35.1.333916Construct engineering of algae, 2023, 14-104.01.733 <td< th=""><th>#</th><th>Article</th><th>IF</th><th>CITATIONS</th></td<>	#	Article	IF	CITATIONS
900Immitting: Fermionitation, 2022, 3, 649.1.469010Cenetic engineering and filth-generation bioluels, 2023, 237-251.29017Beta Clucanies: Diverse Bacterial Sources and its Applications., 2022, 133-49.09018Bota Clucanies: Diverse Bacterial Sources and its Applications., 2022, 133-49.0.39019Cacheric engineering and filth-generation bioluels, 2023, 127-132.0.39019Cacheric Connectics to Enhance Algae Biofuel Production. Clean Energy Production0.309019Cacheric Connectics Approaches To Enhance Algae Biofuel Production. Clean Energy Production0.309019Combined effect of nitrogen and phosphorus on growth and biochemical composition of Tetradesmus0.309010Construct Connectics and Disconference and phosphorus on growth and biochemical composition of Tetradesmus0.309011Construct Connectics and Disconference and phosphorus on growth and biochemical growther treatment with emphasis on Construct Structure. International Journal of Secondary Metabolite, 2022, 9, 525-537.0.519019Conditione the Edward Disconference and phosphorus on growth and biochemical growther treatment with emphasis on Constructure. International Journal of Secondary Metabolite, 2022, 9, 525-537.0.519012Conditione the Edward Disconference and Photosultotrophic Constructure. The Algorite and Indoor Locations in Response to UV-5. International Journal of Molecular Sciences, 2023,1.829013Centeric engineering of algae., 2023, 1, 149-179.119014Renewoble biofueld from microalgae: technical	904	Microalgae Biomass and Lipids as Feedstock for Biofuels: Sustainable Biotechnology Strategies. Sustainability, 2022, 14, 15070.	1.6	8
900 Cenetic engineering and fifth generation biofuels., 2023,, 237-251. 2 901 Beta Glucanaer: Diverse Bacterial Sources and its Applications., 2022,, 33-49. 0 902 Biotechnological Approaches to Enhance Agae Biofuel Production. Clean Energy Production 0.3 0 903 Combined effect of nitrogen and phosphorus on growth and biochemical composition of Tetradesmus 0.4 0 904 Combined effect of nitrogen and phosphorus on growth and biochemical composition of Tetradesmus 0.6 1 905 Combined effect on nitrogen and phosphorus on growth and biochemical composition of Tetradesmus 0.6 4 901 Combined effect on nitrogen and phosphorus on growth and biochemical composition of Tetradesmus 0.6 4 901 Combined effect on nitrogen and phosphorus on growth and biochemical composition of Tetradesmus 0.6 4 901 Combined effect on nitrogen and phosphorus on growth and biochemical composition of Tetradesmus 0.6 4 902 Combined effect on nitrogen and phosphorus on growth and biochemical composition of Tetradesmus 0.6 4 903 Encendengineering to anthree engineering to anthree on the Coale biochemical composition of Tetradesmus 1.6 5 904 Encendengineering to anthree on the Coale bi	905	Emerging Technologies for Enhancing Microalgae Biofuel Production: Recent Progress, Barriers, and Limitations. Fermentation, 2022, 8, 649.	1.4	6
007Beta-Glucanase: Diverse Bacterial Sources and its Applications., 2022,, 33-49.0008Biotechnologies, 2023, 1-41.0.30009Advanced Cenetic Approaches to Enhance Algae Biofuel Production. Clean Energy Production0.30000Advanced Cenetic Approaches Toward Custom Design Microalgae for Fourth-Generation Biofuels.0.30010Collean Energy Production Technologies, 2023, 173-192.0.51011Combined effect of nitrogen and phosphorus on growth and biochenical composition of Tetradesmus0.51011Construct engineering to enhance microalgal based produced water treatment with emphasis on growth of Euglena gracils. Science of the Total Environment, 2023, 665, 161629.3.95011Exploring the Physiological Multiplicity of Native Microalgae for Microalgae for Microalgae, Science, 2023, 12, 18-36.13012Exploring the Physiological Multiplicity of Native Microalgae for Microalgae Foremental 24, 1346.1.82013Exploring the Physiological Multiplicity of Native Microalgae for Microalgae Foremental 24, 1346.1.82014Renewable bioful and theor Locatoms in Response to UV-B. International Journal of Sciences, 2023, 1.233015Country Microalgae Growth by the Optical Detection of Glucose in the NIR Waveband. Molecules, 2023, 2.8, 1318.1.73015Quantifying Microalgae Growth by the Optical Detection of Glucose in the NIR Waveband. Molecules, 2023, 1.47-164.0014Microalgae Indentifies, 2023, 1.42.10015Synthesis and applications of bio	906	Genetic engineering and fifth-generation biofuels. , 2023, , 237-251.		2
0001Biotechnologies, 2023, 141.0.30.30.31002Advanced Cenetic Approaches to Enhance Algae Biofuel Production. Clean Energy Production0.30.31003Combined effect of nitrogen and phosphorus on growth and biochemical composition of Tetradesmus obliquus (turpin) MJ, Wynne. International Journal of Secondary Metabolite, 2023, 9, 525-537.0.511013Cenetic engineering to enhance microalgal-based produced water treatment with emphasis on DEUSSPR(Cas9: A review. Frontiers in Bioengineering and Biotechnology, 0, 10.2.0041014CO2 gradient domestication improved high-concentration CO2 tolerance and photoautotrophic Evolution of Euclean granuli. Science of the total Environment, 2023, 868, 161629.3.9951015Coloring the Physiological Multiplicity of Native Microalgae from the Ecuadorian Highland, Italian Ecundogy Reviews, 2023, 12, 18-36.1.862.001016Exploring the Physiological Multiplicity of Native Microalgae from the Ecuadorian Highland, Italian Ecundogy Reviews, 2023, 12, 18-36.1.863.901015Exploring the Physiological Multiplicity of Native Microalgae from the Ecuadorian Highland, Italian Ecundogy Reviews, 2023, 12, 18-36.1.863.001016Quantifying Microalgae Growth by the Optical Detection of Glucose in the NIR Waveband. Molecules, 2023, 28, 1318.1.763.001017Microalgal Italian and their prospective application for wastewater treatment and blofuel production, 2023, 3, 147-164.01018Synthesis and applications of biomass-derived carbonaceous materials, 2023, 559-578.01029An Introduction of algae nateria	907	Beta-Glucanase: Diverse Bacterial Sources and its Applications. , 2022, , 33-49.		0
900Advanced Cenetic Approaches Toward Custom Design Microalgae for Fourth-Ceneration Biofuels.0.30910Combined effect of nitrogen and phosphorus on growth and biochemical composition of Tetradesmus obliquus (Turpin) MJ. Wynne. International Journal of Secondary Metabolite, 2022, 9, 525 537.0.51911Cenetic engineering to enhance microalgal-based produced water treatment with emphasis on CRISPRICas9: A review. Frontiers in Bioengineering and Biotechnology, 0, 10,2.04912CO2 gradient domestication improved high-concentration CO2 tolerance and photoautotrophic growth of Euglena gracilis. Science of the Total Environment, 2023, 668, 161629.3.95913Ecoloring the Physiological Multiplicity of Native Microalgae from the Ecuadorian Highland, Italian technology Reviews, 2023, 12, 18-36.1.82914Renewable biofuels from microalgae: technical advances, limitations and economics. Environmental 2.12.13915Genetic engineering of algae., 2023, 149-179.1916Quantifying Microalgae Growth by the Optical Detection of Glucose in the NIR Waveband. Molecules, 2023, 28, 1318.0919Microalgal biofuelis from materials , 2023, 147-164.0919Synthesis and applications of biomass derived carbonaceous materials, 2023, 559-578.0919Enhanced microalgae Inpid production for biofuel using different strategies including genetic modification of microalgae: A review. Progress in Energy and Combustion Science, 2023, 96, 101071.15.8917Enhanced microalgae Inpid production for biofuel using different strategies including genetic modification of microalgae: A review. P	908	Biotechnological Approaches to Enhance Algae Biofuel Production. Clean Energy Production Technologies, 2023, , 1-41.	0.3	0
111Combined effect of nitrogen and phosphorus on growth and blochemical composition of Tetradeemus0.61121Genetic engineering to enhance microalgal-based produced water treatment with emphasis on CRISPRICess: A review. Frontiers in Bioengineering and Biotechnology, 0, 10,2.04121CO2 gradient domestication improved high-concentration CO2 tolerance and photoautotrophic growth of Euglena gradilis. Science of the Total Environment, 2023, 868, 161629.3.95121Exploring the Physiological Multiplicity of Native Microalgae from the Ecuadorian Highland, Italian toval and indoor Locations in Response to UV-B. International Journal of Molecular Science, 2023, 	909	Advanced Genetic Approaches Toward Custom Design Microalgae for Fourth-Generation Biofuels. Clean Energy Production Technologies, 2023, , 173-192.	0.3	0
911Cenetric engineering to enhance microalgal-based produced water treatment with emphasis on CRISPR/Cas9: A review. Frontiers in Bioengineering and Biotechnology, 0, 10,2.04912CO2 gradient domestication improved high-concentration CO2 tolerance and photoautotrophic growth of Euglena gracilis. Science of the Total Environment, 2023, 868, 161629.3.95913Exploring the Physiological Multiplicity of Native Microalgae from the Ecuadorian Highland, Italian towland and Indoor Locations in Response to UV-B. International Journal of Molecular Sciences, 2023, 	910	Combined effect of nitrogen and phosphorus on growth and biochemical composition of Tetradesmus obliquus (Turpin) M.J. Wynne. International Journal of Secondary Metabolite, 2022, 9, 525-537.	0.5	1
912CO2 gradient domestication improved high-concentration CO2 tolerance and photoautorophic3.95913Exploring the Physiological Multiplicity of Native Microalgae from the Ecuadorian Highland, Italian bowland and indoor locations in Response to UVB. International Journal of Molecular Sciences, 2023, 24, 1346.1.82914Renewable biofuels from microalgae: technical advances, limitations and economics. Environmental Technology Reviews, 2023, 12, 18-36.13915Genetic engineering of algae., 2023, 149-179.11916Quantifying Microalgae Growth by the Optical Detection of Glucose in the NIR Waveband. Molecules, 2023, 28, 1318.1,73917Microalgal biofilm and their prospective application for wastewater treatment and biofuel production., 2023, 147-164.0918Synthesis and applications of biomass-derived carbonaceous materials., 2023, 559-578.0919An Introduction to algae materials., 2023, 1-28.0910Enhanced microalgal lipid production for biofuel using different strategies including genetic modification of microalgae. A review. Progress in Energy and Combustion Science, 2023, 96, 101071.15.899912Algal Biohydrogen Production: Opportunities and Challenges. Clean Energy Production Technologies.0.31	911	Genetic engineering to enhance microalgal-based produced water treatment with emphasis on CRISPR/Cas9: A review. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	4
131Exploring the Physiological Multiplicity of Native Microalgae from the Ecuadorian Highland, Italian Lowland and Indoor Locations in Response to UV-B. International Journal of Molecular Sciences, 2023, 24, 1346.1.821914Renewable biofuels from microalgae: technical advances, limitations and economics. Environmental Technology Reviews, 2023, 12, 18-36.1.13915Cenetic engineering of algae., 2023, 149-179.1916Quantifying Microalgae Growth by the Optical Detection of Glucose in the NIR Waveband. Molecules, production., 2023, 18.1.73917Microalgal biofilm and their prospective application for wastewater treatment and biofuel production., 2023, 147-164.0918Synthesis and applications of biomass-derived carbonaceous materials., 2023, 559-578.0919An Introduction to algae materials., 2023, 1-28.0920Enhanced microalgal lipid production for biofuel using different strategies including genetic modification of microalgae. A review. Progress in Energy and Combustion Science, 2023, 96, 101071.15.859922Algal Biohydrogen Production: Opportunities and Challenges. Clean Energy Production Technologies, 2023, 77-103.0.31	912	CO2 gradient domestication improved high-concentration CO2 tolerance and photoautotrophic growth of Euglena gracilis. Science of the Total Environment, 2023, 868, 161629.	3.9	5
914Renewable biofuels from microalgae: technical advances, limitations and economics. Environmental2.13915Genetic engineering of algae., 2023, 149-179.1916Quantifying Microalgae Growth by the Optical Detection of Glucose in the NIR Waveband. Molecules, 2023, 28, 1318.1.73917Microalgal biofilm and their prospective application for wastewater treatment and biofuel production., 2023, 147-164.00918Synthesis and applications of biomass-derived carbonaceous materials., 2023, 559-578.00919An introduction to algae materials., 2023, 1-28.00920Enhanced microalgal lipid production for biofuel using different strategies including genetic modification of microalgae: A review. Progress in Energy and Combustion Science, 2023, 96, 101071.16.892922Algal Biohydrogen Production: Opportunities and Challenges. Clean Energy Production Technologies, O23, 77-103.0.31	913	Exploring the Physiological Multiplicity of Native Microalgae from the Ecuadorian Highland, Italian Lowland and Indoor Locations in Response to UV-B. International Journal of Molecular Sciences, 2023, 24, 1346.	1.8	2
915Genetic engineering of algae., 2023,, 149-179.1916Quantifying Microalgae Growth by the Optical Detection of Glucose in the NIR Waveband. Molecules, 2023, 28, 1318.1.73917Microalgal biofilm and their prospective application for wastewater treatment and biofuel production., 2023,, 147-164.0918Synthesis and applications of biomass-derived carbonaceous materials., 2023,, 559-578.0919An introduction to algae materials., 2023,, 1-28.0920Enhanced microalgal lipid production for biofuel using different strategies including genetic modification of microalgae: A review. Progress in Energy and Combustion Science, 2023, 96, 101071.15.859922Algal Biohydrogen Production: Opportunities and Challenges. Clean Energy Production Technologies, 2023, 77-103.0.31	914	Renewable biofuels from microalgae: technical advances, limitations and economics. Environmental Technology Reviews, 2023, 12, 18-36.	2.1	3
916Quantifying Microalgae Growth by the Optical Detection of Glucose in the NIR Waveband. Molecules, 2023, 28, 1318.1.73917Microalgal biofilm and their prospective application for wastewater treatment and biofuel production, 2023, 147-164.0918Synthesis and applications of biomass-derived carbonaceous materials., 2023, 559-578.0919An introduction to algae materials., 2023, 1-28.0920Enhanced microalgal lipid production for biofuel using different strategies including genetic modification of microalgae. A review. Progress in Energy and Combustion Science, 2023, 96, 101071.15.859922Algal Biohydrogen Production: Opportunities and Challenges. Clean Energy Production Technologies, 	915	Genetic engineering of algae. , 2023, , 149-179.		1
917Microalgal biofilm and their prospective application for wastewater treatment and biofuelo918Synthesis and applications of biomass-derived carbonaceous materials., 2023,, 559-578.o919An introduction to algae materials., 2023,, 1-28.o920Enhanced microalgal lipid production for biofuel using different strategies including genetic modification of microalgae: A review. Progress in Energy and Combustion Science, 2023, 96, 101071.15.859922Algal Biohydrogen Production: Opportunities and Challenges. Clean Energy Production Technologies, 2023, 77-103.0.31	916	Quantifying Microalgae Growth by the Optical Detection of Glucose in the NIR Waveband. Molecules, 2023, 28, 1318.	1.7	3
918Synthesis and applications of biomass-derived carbonaceous materials., 2023,, 559-578.o919An introduction to algae materials., 2023,, 1-28.o920Enhanced microalgal lipid production for biofuel using different strategies including genetic modification of microalgae: A review. Progress in Energy and Combustion Science, 2023, 96, 101071.15.859922Algal Biohydrogen Production: Opportunities and Challenges. Clean Energy Production Technologies, 2023,, 77-103.0.31	917	Microalgal biofilm and their prospective application for wastewater treatment and biofuel production. , 2023, , 147-164.		0
919An introduction to algae materials. , 2023, , 1-28.o920Enhanced microalgal lipid production for biofuel using different strategies including genetic modification of microalgae: A review. Progress in Energy and Combustion Science, 2023, 96, 101071.15.859922Algal Biohydrogen Production: Opportunities and Challenges. Clean Energy Production Technologies, 2023, , 77-103.0.31	918	Synthesis and applications of biomass-derived carbonaceous materials. , 2023, , 559-578.		0
920Enhanced microalgal lipid production for biofuel using different strategies including genetic modification of microalgae: A review. Progress in Energy and Combustion Science, 2023, 96, 101071.15.859922Algal Biohydrogen Production: Opportunities and Challenges. Clean Energy Production Technologies, 2023, , 77-103.0.31	919	An introduction to algae materials. , 2023, , 1-28.		0
Algal Biohydrogen Production: Opportunities and Challenges. Clean Energy Production Technologies, 0.3 1 2023, , 77-103.	920	Enhanced microalgal lipid production for biofuel using different strategies including genetic modification of microalgae: A review. Progress in Energy and Combustion Science, 2023, 96, 101071.	15.8	59
	922	Algal Biohydrogen Production: Opportunities and Challenges. Clean Energy Production Technologies, 2023, , 77-103.	0.3	1

# 923	ARTICLE Cyanobacteria as cell factories for the photosynthetic production of sucrose. Frontiers in Microbiology, 0, 14, .	IF 1.5	CITATIONS
924	Use microfluidics to create microdroplets for culturing and investigating algal cells in a high-throughput manner. Microfluidics and Nanofluidics, 2023, 27, .	1.0	0
927	Biofuel production from algal biomass. , 2023, , 45-58.		0
930	Microalgae as biofuel: current perspectives and technological progress. , 2023, , 121-160.		0
932	Why algae?. , 2023, , 29-65.		0
933	Algae as a source of renewable energy: opportunities, challenges, and recent developments. Sustainable Energy and Fuels, 2023, 7, 2515-2544.	2.5	3
934	State-of-art engineering approaches for ameliorated production of microbial lipid. Systems Microbiology and Biomanufacturing, 0, , .	1.5	0
935	Short Perspective on Membrane Integration in Microalgae Bioreactor for CO2 Capture. , 2023, , 335-350.		1
941	Microalgal farming for biofuel production: Extraction, conversion, and characterization. , 2024, , 43-80.		0
943	Genetic engineering of microalgae for production of biofuels: Recent progress and practical limitations. , 2024, , 395-434.		0
944	Sugar fermentation: C4 platforms. , 2024, , 125-156.		0
945	Microalgal biofuels: From biomass to bioenergy. , 2024, , 3-22.		0
947	Future bioenergy source by microalgae–bacteria consortia: a circular economy approach. Green Chemistry, 0, , .	4.6	0
953	Overview of Bioprocess Engineering. , 2024, , 123-155.		Ο
954	A critical review on phycoremediation of pollutants from wastewater—a novel algae-based secondary treatment with the opportunities of production of value-added products. Environmental Science and Pollution Research, 2023, 30, 114844-114872.	2.7	2
955	Omics Approaches for Algal Applications. , 2024, , 357-401.		0
956	Recent progress in biotechnological approaches for diverse applications of algae: an overview. International Journal of Environmental Science and Technology, 0, , .	1.8	0
960	Insights into renewable biohydrogen production from algal biomass: technical hurdles and economic analysis. Biomass Conversion and Biorefinery, 0, , .	2.9	0

IF

Biotechnology for renewable fuel and chemicals. , 2024, , 325-345.

CITATIONS