agriGO: a GO analysis toolkit for the agricultural comm

Nucleic Acids Research 38, W64-W70 DOI: 10.1093/nar/gkq310

Citation Report

#	Article	IF	CITATIONS
2	Effect of purified somatomedins on thymidine incorporation into lectin-activated human lymphocytes. European Journal of Endocrinology, 1983, 102, 21-26.	1.9	40
3	ProFITS of maize: a database of protein families involved in the transduction of signalling in the maize genome. BMC Genomics, 2010, 11, 580.	1.2	8
4	Comparative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes. BMC Genomics, 2010, 11, 630.	1.2	179
5	Habituation to thaxtomin A in hybrid poplar cell suspensions provides enhanced and durable resistance to inhibitors of cellulose synthesis. BMC Plant Biology, 2010, 10, 272.	1.6	16
6	Meiosis-specific gene discovery in plants: RNA-Seq applied to isolated Arabidopsis male meiocytes. BMC Plant Biology, 2010, 10, 280.	1.6	133
7	Differential expression of the microRNAs in superior and inferior spikelets in rice (Oryza sativa). Journal of Experimental Botany, 2011, 62, 4943-4954.	2.4	95
8	Barley Leaf Transcriptome and Metabolite Analysis Reveals New Aspects of Compatibility and <i>Piriformospora indica</i> –Mediated Systemic Induced Resistance to Powdery Mildew. Molecular Plant-Microbe Interactions, 2011, 24, 1427-1439.	1.4	125
9	Implementation of a de novo genome-wide computational approach for updating Brachypodium miRNAs. Genomics, 2011, 97, 282-293.	1.3	17
10	Identification of candidate genes in Arabidopsis and Populus cell wall biosynthesis using text-mining, co-expression network analysis and comparative genomics. Plant Science, 2011, 181, 675-687.	1.7	44
11	The bZIP Transcription Factor PERIANTHIA: A Multifunctional Hub for Meristem Control. Frontiers in Plant Science, 2011, 2, 79.	1.7	41
12	Comparison of Four ChIP-Seq Analytical Algorithms Using Rice Endosperm H3K27 Trimethylation Profiling Data. PLoS ONE, 2011, 6, e25260.	1.1	54
13	Identification and Characterization of microRNAs from Peanut (Arachis hypogaea L.) by High-Throughput Sequencing. PLoS ONE, 2011, 6, e27530.	1.1	131
14	Transcriptome Phase Distribution Analysis Reveals Diurnal Regulated Biological Processes and Key Pathways in Rice Flag Leaves and Seedling Leaves. PLoS ONE, 2011, 6, e17613.	1.1	37
15	Ancestral polyploidy in seed plants and angiosperms. Nature, 2011, 473, 97-100.	13.7	1,862
16	Transcriptional responses to flooding stress in roots including hypocotyl of soybean seedlings. Plant Molecular Biology, 2011, 77, 129-144.	2.0	103
17	TaNF-YB3 is involved in the regulation of photosynthesis genes in Triticum aestivum. Functional and Integrative Genomics, 2011, 11, 327-340.	1.4	74
18	Comparative analysis of root transcriptome profiles of two pairs of drought-tolerant and susceptible rice near-isogenic lines under different drought stress. BMC Plant Biology, 2011, 11, 174.	1.6	134
19	Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing. BMC Plant Biology, 2011, 11, 5.	1.6	287

#	Article	IF	CITATIONS
20	A label-free quantitative shotgun proteomics analysis of rice grain development. Proteome Science, 2011, 9, 61.	0.7	42
21	Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genomics, 2011, 12, 307.	1.2	313
22	Comparative analysis of neural transcriptomes and functional implication of unannotated intronic expression. BMC Genomics, 2011, 12, 494.	1.2	3
23	Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid. BMC Genomics, 2011, 12, 514.	1.2	197
24	Whole genome resequencing of black Angus and Holstein cattle for SNP and CNV discovery. BMC Genomics, 2011, 12, 559.	1.2	153
25	Genetic architecture of gene expression in ovine skeletal muscle. BMC Genomics, 2011, 12, 607.	1.2	18
26	Next generation functional proteomics in non-model plants: A survey on techniques and applications for the analysis of protein complexes and post-translational modifications. Phytochemistry, 2011, 72, 1192-1218.	1.4	28
27	REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms. PLoS ONE, 2011, 6, e21800.	1.1	5,347
28	NOA: a novel Network Ontology Analysis method. Nucleic Acids Research, 2011, 39, e87-e87.	6.5	101
29	Digital Gene Expression Profiling of the <i>Phytophthora sojae</i> Transcriptome. Molecular Plant-Microbe Interactions, 2011, 24, 1530-1539.	1.4	119
30	AgBase: supporting functional modeling in agricultural organisms. Nucleic Acids Research, 2011, 39, D497-D506.	6.5	56
31	Transcriptome analysis of rice mature root tissue and root tips in early development by massive parallel sequencing. Journal of Experimental Botany, 2012, 63, 2141-2157.	2.4	41
32	Uncovering Arabidopsis Membrane Protein Interactome Enriched in Transporters Using Mating-Based Split Ubiquitin Assays and Classification Models. Frontiers in Plant Science, 2012, 3, 124.	1.7	42
33	Transcript and metabolite signature of maize source leaves suggests a link between transitory starch to sucrose balance and the autonomous floral transition. Journal of Experimental Botany, 2012, 63, 5079-5092.	2.4	34
34	Ten Years of Pathway Analysis: Current Approaches and Outstanding Challenges. PLoS Computational Biology, 2012, 8, e1002375.	1.5	1,267
35	Tissue-Specific Functional Networks for Prioritizing Phenotype and Disease Genes. PLoS Computational Biology, 2012, 8, e1002694.	1.5	137
36	The SET-Domain Protein SUVR5 Mediates H3K9me2 Deposition and Silencing at Stimulus Response Genes in a DNA Methylation–Independent Manner. PLoS Genetics, 2012, 8, e1002995.	1.5	54
37	Analysis of <i>Arabidopsis</i> genome-wide variations before and after meiosis and meiotic recombination by resequencing Landsberg <i>erecta</i> and all four products of a single meiosis. Genome Research, 2012, 22, 508-518.	2.4	125

#	Article	IF	CITATIONS
38	<i>In silico</i> analyses of pericycle cell populations reinforce their relation with associated vasculature in <i>Arabidopsis</i> . Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1479-1488.	1.8	27
39	Promotion of Hepatocarcinogenesis by Perfluoroalkyl Acids in Rainbow Trout. Toxicological Sciences, 2012, 125, 69-78.	1.4	34
40	Drastic expression change of transposon-derived piRNA-like RNAs and microRNAs in early stages of chicken embryos implies a role in gastrulation. RNA Biology, 2012, 9, 212-227.	1.5	39
41	Maize Source Leaf Adaptation to Nitrogen Deficiency Affects Not Only Nitrogen and Carbon Metabolism But Also Control of Phosphate Homeostasis Â. Plant Physiology, 2012, 160, 1384-1406.	2.3	170
42	A comparative transcriptomic study of an allotetraploid and its diploid progenitors illustrates the unique advantages and challenges of RNAâ€seq in plant species. American Journal of Botany, 2012, 99, 383-396.	0.8	80
43	Assessing the Biosynthetic Capabilities of Secretory Glands in <i>Citrus</i> Peel Â. Plant Physiology, 2012, 159, 81-94.	2.3	82
44	Transcriptional profiling analysis in Populus yunnanensis provides insights into molecular mechanisms of sexual differences in salinity tolerance. Journal of Experimental Botany, 2012, 63, 3709-3726.	2.4	43
45	Transcriptional profiling reveals sexual differences of the leaf transcriptomes in response to drought stress in Populus yunnanensis. Tree Physiology, 2012, 32, 1541-1555.	1.4	44
46	Transcriptome Analysis of Age-Related Gain of Callus-Forming Capacity in Arabidopsis Hypocotyls. Plant and Cell Physiology, 2012, 53, 1457-1469.	1.5	16
47	Characterization of a Viral Synergism in the Monocot <i>Brachypodium</i> Â <i>distachyon</i> Reveals Distinctly Altered Host Molecular Processes Associated with Disease Â. Plant Physiology, 2012, 160, 1432-1452.	2.3	60
48	Inducible Maize Defense Mechanisms Against the Corn Borer <i>Sesamia nonagrioides</i> : A Transcriptome and Biochemical Approach. Molecular Plant-Microbe Interactions, 2012, 25, 61-68.	1.4	22
49	Taking the Next Step: Building an Arabidopsis Information Portal. Plant Cell, 2012, 24, 2248-2256.	3.1	38
50	Global Analysis of Tomato Gene Expression During <i>Potato spindle tuber viroid</i> Infection Reveals a Complex Array of Changes Affecting Hormone Signaling. Molecular Plant-Microbe Interactions, 2012, 25, 582-598.	1.4	97
51	A Systems Approach for Identifying Resistance Factors to Rice stripe virus. Molecular Plant-Microbe Interactions, 2012, 25, 534-545.	1.4	8
52	Regulation of the Arabidopsis anther transcriptome by DYT1 for pollen development. Plant Journal, 2012, 72, 612-624.	2.8	138
53	Transcriptional reprogramming by root knot and migratory nematode infection in rice. New Phytologist, 2012, 196, 887-900.	3.5	157
54	Comprehensive mapping of the bull sperm surface proteome. Proteomics, 2012, 12, 3559-3579.	1.3	81
55	SKIP Is a Component of the Spliceosome Linking Alternative Splicing and the Circadian Clock in	3.1	198

가

#	Article	IF	CITATIONS
56	Identification of Cis-Acting Promoter Elements in Cold- and Dehydration-Induced Transcriptional Pathways in Arabidopsis, Rice, and Soybean. DNA Research, 2012, 19, 37-49.	1.5	241
57	Transcriptome analysis of fruit development of a citrus late-ripening mutant by microarray. Scientia Horticulturae, 2012, 134, 32-39.	1.7	10
58	Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice. Plant Science, 2012, 193-194, 8-17.	1.7	98
59	Somatic small RNA pathways promote the mitotic events of megagametogenesis during female reproductive development in <i>Arabidopsis</i> . Development (Cambridge), 2012, 139, 1399-1404.	1.2	145
60	Mutations in an <i>Arabidopsis</i> Mitochondrial Transcription Termination Factor–Related Protein Enhance Thermotolerance in the Absence of the Major Molecular Chaperone HSP101. Plant Cell, 2012, 24, 3349-3365.	3.1	94
61	Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (<i>Oryza sativa</i>). New Phytologist, 2012, 195, 97-112.	3.5	193
62	OLSVis: an animated, interactive visual browser for bio-ontologies. BMC Bioinformatics, 2012, 13, 116.	1.2	20
63	Target mimics: an embedded layer of microRNA-involved gene regulatory networks in plants. BMC Genomics, 2012, 13, 197.	1.2	76
64	Use of mRNA-seq to discriminate contributions to the transcriptome from the constituent genomes of the polyploid crop species Brassica napus. BMC Genomics, 2012, 13, 247.	1.2	91
65	Computational identification and analysis of novel sugarcane microRNAs. BMC Genomics, 2012, 13, 290.	1.2	63
66	Identification of genes specifically or preferentially expressed in maize silk reveals similarity and diversity in transcript abundance of different dry stigmas. BMC Genomics, 2012, 13, 294.	1.2	33
67	Identification of soybean seed developmental stage-specific and tissue-specific miRNA targets by degradome sequencing. BMC Genomics, 2012, 13, 310.	1.2	115
68	Chips and tags suggest plant-environment interactions differ for two alpine Pachycladon species. BMC Genomics, 2012, 13, 322.	1.2	5
69	Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression. BMC Genomics, 2012, 13, 691.	1.2	125
70	Transcriptome analysis of rice root responses to potassium deficiency. BMC Plant Biology, 2012, 12, 161.	1.6	176
71	Identification of wild soybean miRNAs and their target genes responsive to aluminum stress. BMC Plant Biology, 2012, 12, 182.	1.6	137
72	Transcriptome analysis of intraspecific competition in Arabidopsis thalianareveals organ-specific signatures related to nutrient acquisition and general stress response pathways. BMC Plant Biology, 2012, 12, 227.	1.6	33
73	Comparative analysis of microarray data in Arabidopsis transcriptome during compatible interactions with plant viruses. Virology Journal, 2012, 9, 101.	1.4	51

#	Article	IF	CITATIONS
74	Characterizing genomic variation of <i>Arabidopsis thaliana</i> : the roles of geography and climate. Molecular Ecology, 2012, 21, 5512-5529.	2.0	215
75	Transcriptomic Analysis of the Highly Heterotic Maize Hybrid Zhengdan 958 and Its Parents During Spikelet and Floscule Differentiation. Journal of Integrative Agriculture, 2012, 11, 1783-1793.	1.7	3
76	Transcriptome Comparison of Susceptible and Resistant Wheat in Response to Powdery Mildew Infection. Genomics, Proteomics and Bioinformatics, 2012, 10, 94-106.	3.0	90
77	Differential accumulation of host mRNAs on polyribosomes during obligate pathogen-plant interactions. Molecular BioSystems, 2012, 8, 2153.	2.9	31
78	Genome-wide identification and analysis of early heat stress responsive genes in rice. Journal of Plant Biology, 2012, 55, 458-468.	0.9	44
79	PICARA, an Analytical Pipeline Providing Probabilistic Inference about A Priori Candidates Genes Underlying Genome-Wide Association QTL in Plants. PLoS ONE, 2012, 7, e46596.	1.1	23
80	Different Transcriptional Response to Xanthomonas citri subsp. citri between Kumquat and Sweet Orange with Contrasting Canker Tolerance. PLoS ONE, 2012, 7, e41790.	1.1	36
81	Verticillium longisporum Infection Affects the Leaf Apoplastic Proteome, Metabolome, and Cell Wall Properties in Arabidopsis thaliana. PLoS ONE, 2012, 7, e31435.	1.1	112
82	Identification of Gene Modules Associated with Drought Response in Rice by Network-Based Analysis. PLoS ONE, 2012, 7, e33748.	1.1	61
83	A Gene-Phenotype Network Based on Genetic Variability for Drought Responses Reveals Key Physiological Processes in Controlled and Natural Environments. PLoS ONE, 2012, 7, e45249.	1.1	58
84	Colinearity and Similar Expression Pattern of Rice DREB1s Reveal Their Functional Conservation in the Cold-Responsive Pathway. PLoS ONE, 2012, 7, e47275.	1.1	90
85	The Rice R2R3-MYB Transcription Factor OsMYB55 Is Involved in the Tolerance to High Temperature and Modulates Amino Acid Metabolism. PLoS ONE, 2012, 7, e52030.	1.1	163
86	Dissecting Phaseolus vulgaris Innate Immune System against Colletotrichum lindemuthianum Infection. PLoS ONE, 2012, 7, e43161.	1.1	36
87	PloGO: Plotting gene ontology annotation and abundance in multiâ€condition proteomics experiments. Proteomics, 2012, 12, 406-410.	1.3	30
88	Experimental sink removal induces stress responses, including shifts in amino acid and phenylpropanoid metabolism, in soybean leaves. Planta, 2012, 235, 939-954.	1.6	12
89	Root herbivory: molecular analysis of the maize transcriptome upon infestation by Southern corn rootworm, <i>Diabrotica undecimpunctata howardi</i> . Physiologia Plantarum, 2012, 144, 303-319.	2.6	21
90	Characterization of the early response of the orchid, <i>Phalaenopsis amabilis</i> , to <i>Erwinia chrysanthemi</i> infection using expression profiling. Physiologia Plantarum, 2012, 145, 406-425.	2.6	11
91	Genomeâ€wide transcriptome dissection of the rice root system: implications for developmental and physiological functions. Plant Journal, 2012, 69, 126-140.	2.8	106

#	Article	IF	CITATIONS
92	Global changes in gene expression of grapefruit peel tissue in response to the yeast biocontrol agent <i>Metschnikowia fructicola</i> . Molecular Plant Pathology, 2012, 13, 338-349.	2.0	78
93	A genomeâ€wide survey of copy number variation regions in various chicken breeds by array comparative genomic hybridization method. Animal Genetics, 2012, 43, 282-289.	0.6	37
94	Genomeâ€wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis. Plant Journal, 2012, 70, 549-561.	2.8	161
95	Fructokinase is required for carbon partitioning to cellulose in aspen wood. Plant Journal, 2012, 70, 967-977.	2.8	64
96	Transcriptional programs regulating seed dormancy and its release by afterâ€ r ipening in common wheat (<i>Triticum aestivum</i> L.). Plant Biotechnology Journal, 2012, 10, 465-476.	4.1	56
97	Genomic survey, expression profile and co-expression network analysis of OsWD40 family in rice. BMC Genomics, 2012, 13, 100.	1.2	78
98	The role of the Arabidopsis FUSCA3transcription factor during inhibition of seed germination at high temperature. BMC Plant Biology, 2012, 12, 15.	1.6	70
99	Global transgenerational gene expression dynamics in two newly synthesized allohexaploid wheat (Triticum aestivum) lines. BMC Biology, 2012, 10, 3.	1.7	75
100	Comparative transcriptome analysis of AP2/EREBP gene family under normal and hormone treatments, and under two drought stresses in NILs setup by Aday Selection and IR64. Molecular Genetics and Genomics, 2012, 287, 1-19.	1.0	30
101	Nuclear proteome response to cell wall removal in rice (Oryza sativa). Proteome Science, 2013, 11, 26.	0.7	19
102	Distribution, functional impact, and origin mechanisms of copy number variation in the barley genome. Genome Biology, 2013, 14, R58.	3.8	125
103	Conservation and divergence of transcriptomic and epigenomic variation in maize hybrids. Genome Biology, 2013, 14, R57.	3.8	117
104	Phytophthora capsici-tomato interaction features dramatic shifts in gene expression associated with a hemi-biotrophic lifestyle. Genome Biology, 2013, 14, R63.	3.8	113
105	Highâ€ŧhroughput genomics in sorghum: from wholeâ€genome resequencing to a <scp>SNP</scp> screening array. Plant Biotechnology Journal, 2013, 11, 1112-1125.	4.1	63
106	Comparative transcriptome analysis of tobacco (Nicotiana tabacum) leaves to identify aroma compound-related genes expressed in different cultivated regions. Molecular Biology Reports, 2013, 40, 345-357.	1.0	6
107	Linking the potato genome to the conserved ortholog set (COS) markers. BMC Genetics, 2013, 14, 51.	2.7	6
108	Transcriptional profiling of sweetpotato (Ipomoea batatas) roots indicates down-regulation of lignin biosynthesis and up-regulation of starch biosynthesis at an early stage of storage root formation. BMC Genomics, 2013, 14, 460.	1.2	154
109	Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance. BMC Genomics, 2013, 14, 442.	1.2	100

#	Article	IF	CITATIONS
110	Transcript profiling by microarray and marker analysis of the short cotton (Gossypium hirsutum L.) fiber mutant Ligon lintless-1 (Li 1). BMC Genomics, 2013, 14, 403.	1.2	43
111	Transcription profile of soybean-root-knot nematode interaction reveals a key role of phythormones in the resistance reaction. BMC Genomics, 2013, 14, 322.	1.2	56
112	Identification of molecular processes needed for vascular formation through transcriptome analysis of different vascular systems. BMC Genomics, 2013, 14, 217.	1.2	21
113	Genome-wide identification of soybean microRNAs and their targets reveals their organ-specificity and responses to phosphate starvation. BMC Genomics, 2013, 14, 66.	1.2	125
114	Transcriptional profiling of the Arabidopsis abscission mutant hae hsl2by RNA-Seq. BMC Genomics, 2013, 14, 37.	1.2	78
115	Transcriptome comparison and gene coexpression network analysis provide a systems view of citrus response to â€~Candidatus Liberibacter asiaticus' infection. BMC Genomics, 2013, 14, 27.	1.2	61
116	The integrative expression and co-expression analysis of the AGO gene family in rice. Gene, 2013, 528, 221-235.	1.0	24
117	Candidate loci for phenology and fruitfulness contributing to the phenotypic variability observed in grapevine. Theoretical and Applied Genetics, 2013, 126, 2763-2776.	1.8	26
118	Genome-wide copy number variation in Hanwoo, Black Angus, and Holstein cattle. Mammalian Genome, 2013, 24, 151-163.	1.0	66
119	Application of an Improved Proteomics Method for Abundant Protein Cleanup: Molecular and Genomic Mechanisms Study in Plant Defense. Molecular and Cellular Proteomics, 2013, 12, 3431-3442.	2.5	24
120	A 34K <scp>SNP</scp> genotyping array for <i>Populus trichocarpa</i> : Design, application to the study of natural populations and transferability to other <i>Populus</i> species. Molecular Ecology Resources, 2013, 13, 306-323.	2.2	92
121	Molecular characterization of two small heat shock protein genes in rice: their expression patterns, localizations, networks, and heterogeneous overexpressions. Molecular Biology Reports, 2013, 40, 6709-6720.	1.0	26
122	Flower Development under Drought Stress: Morphological and Transcriptomic Analyses Reveal Acute Responses and Long-Term Acclimation in <i>Arabidopsis</i> . Plant Cell, 2013, 25, 3785-3807.	3.1	176
123	<i>Arabidopsis</i> KINETOCHORE NULL2 Is an Upstream Component for Centromeric Histone H3 Variant cenH3 Deposition at Centromeres. Plant Cell, 2013, 25, 3389-3404.	3.1	80
124	Asexual genome evolution in the apomictic <i><scp>R</scp>anunculus auricomus</i> complex: examining the effects of hybridization and mutation accumulation. Molecular Ecology, 2013, 22, 5908-5921.	2.0	118
125	Grafting with rootstocks induces extensive transcriptional re-programming in the shoot apical meristem of grapevine. BMC Plant Biology, 2013, 13, 147.	1.6	82
126	Transcriptome analysis of heat stress response in switchgrass (Panicum virgatumL.). BMC Plant Biology, 2013, 13, 153.	1.6	91
127	Circles within circles: crosstalk between protein Ser/Thr/Tyr-phosphorylation and Met oxidation. BMC Bioinformatics, 2013, 14, S14.	1.2	13

#	Article	IF	CITATIONS
128	A global profiling of uncapped mRNAs under cold stress reveals specific decay patterns and endonucleolytic cleavages in Brachypodium distachyon. Genome Biology, 2013, 14, R92.	13.9	22
129	Transcriptomic analysis highlights epigenetic and transcriptional regulation during zygotic embryo development of Pinus pinaster. BMC Plant Biology, 2013, 13, 123.	1.6	37
130	GOParGenPy: a high throughput method to generate Gene Ontology data matrices. BMC Bioinformatics, 2013, 14, 242.	1.2	5
131	Transcriptional profiling of Zea mays roots reveals roles for jasmonic acid and terpenoids in resistance against Phytophthora cinnamomi. Functional and Integrative Genomics, 2013, 13, 217-228.	1.4	56
132	Ups and downs of a transcriptional landscape shape iron deficiency associated chlorosis of the maize inbreds B73 and Mo17. BMC Plant Biology, 2013, 13, 213.	1.6	11
133	A detailed gene expression study of the Miscanthusgenus reveals changes in the transcriptome associated with the rejuvenation of spring rhizomes. BMC Genomics, 2013, 14, 864.	1.2	27
134	Comprehensive transcriptomic study on horse gram (Macrotyloma uniflorum): De novo assembly, functional characterization and comparative analysis in relation to drought stress. BMC Genomics, 2013, 14, 647.	1.2	71
135	Incipient stem cell niche conversion in tissue culture: using a systems approach to probe early events in <i><scp>WUSCHEL</scp></i> â€dependent conversion of lateral root primordia into shoot meristems. Plant Journal, 2013, 73, 798-813.	2.8	80
136	Whole genome sequencing of Gir cattle for identifying polymorphisms and loci under selection. Genome, 2013, 56, 592-598.	0.9	63
137	Early Transcriptomic Adaptation to Na ₂ <scp>CO</scp> ₃ Stress Altered the Expression of a Quarter of the Total Genes in the Maize Genome and Exhibited Shared and Distinctive Profiles with Na <scp>C</scp> and High p <scp>H</scp> Stresses. Journal of Integrative Plant Biology, 2013. 55. 1147-1165.	4.1	22
138	Transcriptome sequencing of the Antarctic vascular plant Deschampsia antarctica Desv. under abiotic stress. Planta, 2013, 237, 823-836.	1.6	44
139	<scp>TALE</scp> 1 from <i><scp>X</scp>anthomonas axonopodis</i> pv. <i>manihotis</i> acts as a transcriptional activator in plant cells and is important for pathogenicity in cassava plants. Molecular Plant Pathology, 2013, 14, 84-95.	2.0	37
140	Cell Type-Specific Transcriptome Analysis of the Soybean Leaf Paraveinal Mesophyll Layer. Plant Molecular Biology Reporter, 2013, 31, 210-221.	1.0	4
141	Transcriptome analysis of Chlamydomonas reinhardtii during the process of lipid accumulation. Genomics, 2013, 101, 229-237.	1.3	102
142	Identification of Immunity-related Genes in Arabidopsis and Cassava Using Genomic Data. Genomics, Proteomics and Bioinformatics, 2013, 11, 345-353.	3.0	8
143	Transcriptional Regulatory Network of Arabidopsis Starch Metabolism under Extensive Light Condition: A Potential Model of Transcription-modulated Starch Metabolism in Roots of Starchy Crops. Procedia Computer Science, 2013, 23, 113-121.	1.2	3
144	The <scp>A</scp> rabidopsis oligopeptidases <scp>TOP</scp> 1 and <scp>TOP</scp> 2 are salicylic acid targets that modulate <scp>SA</scp> â€mediated signaling and the immune response. Plant Journal, 2013, 76, 603-614.	2.8	41
145	Molecular programme of senescence in dry and fleshy fruits. Journal of Experimental Botany, 2013, 65, 4515-4526.	2.4	47

#	Article	IF	CITATIONS
146	Deciphering the possible mechanism of exogenous NO alleviating alkali stress on cucumber leaves by transcriptomic analysis. Scientia Horticulturae, 2013, 150, 377-386.	1.7	11
147	Genome-Wide Analysis of Gene Expression in Response to Drought Stress in Populus simonii. Plant Molecular Biology Reporter, 2013, 31, 946-962.	1.0	46

148 Genome-wide identification and characterization of microRNA genes and their targets in flax (Linum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

149	Analysis of the barley leaf transcriptome under salinity stress using mRNA-Seq. Acta Physiologiae Plantarum, 2013, 35, 1915-1924.	1.0	32
150	Guard Cell Purification and RNA Isolation Suitable for High-Throughput Transcriptional Analysis of Cell-Type Responses to Biotic Stresses. Molecular Plant-Microbe Interactions, 2013, 26, 844-849.	1.4	40
151	Comparative analysis of cation/proton antiporter superfamily in plants. Gene, 2013, 521, 245-251.	1.0	34
152	Functional Annotation of Plant Genomes. , 2013, , 155-176.		0
153	Transcriptome analysis of phytohormone, transporters and signaling pathways in response to vanadium stress in rice roots. Plant Physiology and Biochemistry, 2013, 66, 98-104.	2.8	35
154	Enlarging Cells Initiating Apomixis in <i>Hieracium praealtum</i> Transition to an Embryo Sac Program prior to Entering Mitosis Â. Plant Physiology, 2013, 163, 216-231.	2.3	78
155	Genome sequence of the date palm Phoenix dactylifera L. Nature Communications, 2013, 4, 2274.	5.8	248
156	Coverage and Consistency: Bioinformatics Aspects of the Analysis of Multirun iTRAQ Experiments with Wheat Leaves. Journal of Proteome Research, 2013, 12, 4870-4881.	1.8	14
157	The barley UNICULM2 gene resides in a centromeric region and may be associated with signaling and stress responses. Functional and Integrative Genomics, 2013, 13, 33-41.	1.4	11
158	A Transcriptomic Network Underlies Microstructural and Physiological Responses to Cadmium in <i>Populus</i> × <i>canescens</i> Â. Plant Physiology, 2013, 162, 424-439.	2.3	187
159	From data to function: Functional modeling of poultry genomics data. Poultry Science, 2013, 92, 2519-2529.	1.5	1
160	Transcriptional analysis through RNA sequencing of giant cells induced by Meloidogyne graminicola in rice roots. Journal of Experimental Botany, 2013, 64, 3885-3898.	2.4	128
161	RNA sequencing reveals the complex regulatory network in the maize kernel. Nature Communications, 2013, 4, 2832.	5.8	252
162	Profiling spatial enrichment of chromatin marks suggests an additional epigenomic dimension in gene regulation. Frontiers in Life Science: Frontiers of Interdisciplinary Research in the Life Sciences, 2013, 7, 80-87.	1,1	9
163	A Regulatory Network-Based Approach Dissects Late Maturation Processes Related to the Acquisition of Desiccation Tolerance and Longevity of Medicago truncatula Seeds. Plant Physiology, 2013, 163, 757-774.	2.3	155

#	Article	IF	CITATIONS
164	Characterization of the Early Events Leading to Totipotency in an <i>Arabidopsis</i> Protoplast Liquid Culture by Temporal Transcript Profiling Â. Plant Cell, 2013, 25, 2444-2463.	3.1	92
165	Expression Quantitative Trait Locus Mapping across Water Availability Environments Reveals Contrasting Associations with Genomic Features in <i>Arabidopsis</i> Â Â Â. Plant Cell, 2013, 25, 3266-3279.	3.1	73
166	A contribution to the study of plant development evolution based on gene co-expression networks. Frontiers in Plant Science, 2013, 4, 291.	1.7	22
167	Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). Journal of Experimental Botany, 2013, 64, 3201-3212.	2.4	297
168	Use of Heat Stress Responsive Gene Expression Levels for Early Selection of Heat Tolerant Cabbage (Brassica oleracea L.). International Journal of Molecular Sciences, 2013, 14, 11871-11894.	1.8	39
169	Proteomic comparison of basal endosperm in maize miniature1 mutant and its wild-type Mn1. Frontiers in Plant Science, 2013, 4, 211.	1.7	16
170	Mendelian and Non-Mendelian Regulation of Gene Expression in Maize. PLoS Genetics, 2013, 9, e1003202.	1.5	84
171	The Differential Transcription Network between Embryo and Endosperm in the Early Developing Maize Seed Â. Plant Physiology, 2013, 162, 440-455.	2.3	76
172	Gene Expression During Early Folliculogenesis in Goats Using Microarray Analysis1. Biology of Reproduction, 2013, 89, 19.	1.2	27
173	Graft union formation in grapevine induces transcriptional changes related to cell wall modification, wounding, hormone signalling, and secondary metabolism. Journal of Experimental Botany, 2013, 64, 2997-3008.	2.4	133
174	Tobacco LSU-like protein couples sulphur-deficiency response with ethylene signalling pathway. Journal of Experimental Botany, 2013, 64, 5173-5182.	2.4	31
175	Trichoderma-Plant Root Colonization: Escaping Early Plant Defense Responses and Activation of the Antioxidant Machinery for Saline Stress Tolerance. PLoS Pathogens, 2013, 9, e1003221.	2.1	299
176	Constitutively Elevated Salicylic Acid Levels Alter Photosynthesis and Oxidative State but Not Growth in Transgenic Populus. Plant Cell, 2013, 25, 2714-2730.	3.1	70
177	An emerging picture of the seed desiccome: confirmed regulators and newcomers identified using transcriptome comparison. Frontiers in Plant Science, 2013, 4, 497.	1.7	33
178	PlantGSEA: a gene set enrichment analysis toolkit for plant community. Nucleic Acids Research, 2013, 41, W98-W103.	6.5	267
179	Annotated genes and nonannotated genomes: crossâ€species use of Gene Ontology in ecology and evolution research. Molecular Ecology, 2013, 22, 3216-3241.	2.0	77
180	Pollen-Specific, but Not Sperm-Specific, Genes Show Stronger Purifying Selection and Higher Rates of Positive Selection Than Sporophytic Genes in Capsella grandiflora. Molecular Biology and Evolution, 2013, 30, 2475-2486.	3.5	90
181	Identification of Cassava MicroRNAs under Abiotic Stress. International Journal of Genomics, 2013, 2013, 1-10.	0.8	57

#	Article	IF	CITATIONS
182	Analysis of the Alfalfa Root Transcriptome in Response to Salinity Stress. Plant and Cell Physiology, 2013, 54, 1041-1055.	1.5	133
183	Evolutionary analyses of nonâ€family genes in plants. Plant Journal, 2013, 73, 788-797.	2.8	7
184	Physiological, biochemical and molecular responses to a combination of drought and ozone in <i>Medicago truncatula</i> . Plant, Cell and Environment, 2013, 36, 706-720.	2.8	88
185	Transcriptomeâ€ <scp>w</scp> ide Analysis Of Vernalization Reveals Conserved and Speciesâ€ <scp>s</scp> pecific Mechanisms in <i>Brachypodium</i> . Journal of Integrative Plant Biology, 2013, 55, 696-709.	4.1	18
186	Defenseâ€related transcription factors <scp>WRKY</scp> 70 and <scp>WRKY</scp> 54 modulate osmotic stress tolerance by regulating stomatal aperture in <i><scp>A</scp>rabidopsis</i> . New Phytologist, 2013, 200, 457-472.	3.5	223
187	BREEDING AND GENETICS SYMPOSIUM: Networks and pathways to guide genomic selection1–3. Journal of Animal Science, 2013, 91, 537-552.	0.2	57
188	Functional analyses of cotton (Gossypium hirsutum L.) immature fiber (im) mutant infer that fiber cell wall development is associated with stress responses. BMC Genomics, 2013, 14, 889.	1.2	43
189	Comparative expression profiling of miRNA during anther development in genetic male sterile and wild type cotton. BMC Plant Biology, 2013, 13, 66.	1.6	65
190	Autotoxicity mechanism of Oryza sativa: transcriptome response in rice roots exposed to ferulic acid. BMC Genomics, 2013, 14, 351.	1.2	60
191	Gene Expression Profiles Deciphering Leaf Senescence Variation between Early- and Late-Senescence Cotton Lines. PLoS ONE, 2013, 8, e69847.	1.1	44
192	Comparative and joint analyses of gene expression profiles under drought and rewatering in Arabidopsis. Genetics and Molecular Research, 2013, 12, 3622-3629.	0.3	2
193	Transcript Profile Analyses of Maize Silks Reveal Effective Activation of Genes Involved in Microtubule-Based Movement, Ubiquitin-Dependent Protein Degradation, and Transport in the Pollination Process. PLoS ONE, 2013, 8, e53545.	1.1	16
194	mRNA-seq Analysis of the Gossypium arboreum transcriptome Reveals Tissue Selective Signaling in Response to Water Stress during Seedling Stage. PLoS ONE, 2013, 8, e54762.	1.1	45
195	Comparative Transcriptional Profiling Provides Insights into the Evolution and Development of the Zygomorphic Flower of Vicia sativa (Papilionoideae). PLoS ONE, 2013, 8, e57338.	1.1	29
196	Tissue-Specific Transcriptomic Profiling of Sorghum propinquum using a Rice Genome Array. PLoS ONE, 2013, 8, e60202.	1.1	6
197	A Computational Systems Biology Study for Understanding Salt Tolerance Mechanism in Rice. PLoS ONE, 2013, 8, e64929.	1.1	27
198	An Improved Method for TAL Effectors DNA-Binding Sites Prediction Reveals Functional Convergence in TAL Repertoires of Xanthomonas oryzae Strains. PLoS ONE, 2013, 8, e68464.	1.1	102
199	High-Throughput RNA Sequencing of Pseudomonas-Infected Arabidopsis Reveals Hidden Transcriptome Complexity and Novel Splice Variants. PLoS ONE, 2013, 8, e74183.	1.1	82

#	Article	IF	CITATIONS
200	Insight into the Genetic Components of Community Genetics: QTL Mapping of Insect Association in a Fast-Growing Forest Tree. PLoS ONE, 2013, 8, e79925.	1.1	18
201	Identification and Comparative Analysis of Cadmium Tolerance-Associated miRNAs and Their Targets in Two Soybean Genotypes. PLoS ONE, 2013, 8, e81471.	1.1	82
202	Transcriptome Analysis of Nodes and Buds from High and Low Tillering Switchgrass Inbred Lines. PLoS ONE, 2013, 8, e83772.	1.1	9
203	Gibberellin Biosynthetic Deficiency Is Responsible for Maize Dominant Dwarf11 (D11) Mutant Phenotype: Physiological and Transcriptomic Evidence. PLoS ONE, 2013, 8, e66466.	1.1	19
204	Microarray and Degradome Sequencing Reveal MicroRNA Differential Expression Profiles and Their Targets in Pinellia pedatisecta. PLoS ONE, 2013, 8, e75978.	1.1	8
205	Regulation of Wheat Seed Dormancy by After-Ripening Is Mediated by Specific Transcriptional Switches That Induce Changes in Seed Hormone Metabolism and Signaling. PLoS ONE, 2013, 8, e56570.	1.1	85
206	Identification and Expression Analysis of microRNAs at the Grain Filling Stage in Rice(Oryza sativa) Tj ETQq0 0 0	rgBT /Over 1.1	rlock 10 Tf 50
207	The Dynamics of Soybean Leaf and Shoot Apical Meristem Transcriptome Undergoing Floral Initiation Process. PLoS ONE, 2013, 8, e65319.	1.1	40
208	Genes and Co-Expression Modules Common to Drought and Bacterial Stress Responses in Arabidopsis and Rice. PLoS ONE, 2013, 8, e77261.	1.1	103
209	Root-specific induction of early auxin-responsive genes in Arabidopsis thaliana by cis-cinnamic acid. Plant Biotechnology, 2013, 30, 465-471.	0.5	13
210	Transcriptomic evaluation of the enhanced plant growth-inhibitory activity caused by derivatization of <i>cis</i> -cinnamic acid. Journal of Pesticide Sciences, 2014, 39, 85-90.	0.8	5
211	The Sulfated Laminarin Triggers a Stress Transcriptome before Priming the SA- and ROS-Dependent Defenses during Grapevine's Induced Resistance against Plasmopara viticola. PLoS ONE, 2014, 9, e88145.	1.1	106
212	Deep Sequencing–Based Transcriptome Profiling Reveals Comprehensive Insights into the Responses of Nicotiana benthamiana to Beet necrotic yellow vein virus Infections Containing or Lacking RNA4. PLoS ONE, 2014, 9, e85284.	1.1	26
213	Response of Medicago truncatula Seedlings to Colonization by Salmonella enterica and Escherichia coli O157:H7. PLoS ONE, 2014, 9, e87970.	1.1	22
214	Transcriptome Analysis Reveals Common and Distinct Mechanisms for Sheepgrass (Leymus chinensis) Responses to Defoliation Compared to Mechanical Wounding. PLoS ONE, 2014, 9, e89495.	1.1	29
215	Transcriptome Profiling and Physiological Studies Reveal a Major Role for Aromatic Amino Acids in Mercury Stress Tolerance in Rice Seedlings. PLoS ONE, 2014, 9, e95163.	1.1	53
216	Comparative Transcriptome Analysis of Short Fiber Mutants Ligon-Lintless 1 And 2 Reveals Common Mechanisms Pertinent to Fiber Elongation in Cotton (Gossypium hirsutum L.). PLoS ONE, 2014, 9, e95554.	1.1	33
217	De Novo Transcriptome Assembly and Analyses of Gene Expression during Photomorphogenesis in Diploid Wheat Triticum monococcum. PLoS ONE, 2014, 9, e96855.	1.1	55

#	Article	IF	CITATIONS
218	Transcriptome Analysis of Shade-Induced Inhibition on Leaf Size in Relay Intercropped Soybean. PLoS ONE, 2014, 9, e98465.	1.1	44
219	The Use of Massive Sequencing to Detect Differences between Immature Embryos of MON810 and a Comparable Non-GM Maize Variety. PLoS ONE, 2014, 9, e100895.	1.1	8
220	De Novo Transcriptome Assembly and Comparative Analysis of Differentially Expressed Genes in Prunus dulcis Mill. in Response to Freezing Stress. PLoS ONE, 2014, 9, e104541.	1.1	55
221	Systemic Suppression of the Shoot Metabolism upon Rice Root Nematode Infection. PLoS ONE, 2014, 9, e106858.	1.1	13
222	Genome Re-Sequencing of Semi-Wild Soybean Reveals a Complex Soja Population Structure and Deep Introgression. PLoS ONE, 2014, 9, e108479.	1.1	26
223	Transcriptional Consequence and Impaired Gametogenesis with High-Grade Aneuploidy in Arabidopsis thaliana. PLoS ONE, 2014, 9, e114617.	1.1	6
224	Transcriptome Analysis of Self- and Cross-pollinated Pistils of Japanese Apricot (Prunus mume Sieb. et) Tj ETQq0 C	0 rgBT /O	verlock 10 T 14
225	Comparative Genomic Analysis of Transgenic Poplar Dwarf Mutant Reveals Numerous Differentially Expressed Genes Involved in Energy Flow. International Journal of Molecular Sciences, 2014, 15, 15603-15621.	1.8	2
226	Custom Microarray Analysis for Transcript Profiling of Dormant Vegetative Buds of Japanese Apricot during Prolonged Chilling Exposure. Japanese Society for Horticultural Science, 2014, 83, 1-16.	0.8	16
227	Gene expression characteristics of growth-inhibited rice seedlings induced by low-energy N+-beam implantation. Genetics and Molecular Research, 2014, 13, 6259-6271.	0.3	7
228	An organ boundaryâ€enriched gene regulatory network uncovers regulatory hierarchies underlying axillary meristem initiation. Molecular Systems Biology, 2014, 10, 755.	3.2	98
229	The genome sequence of the Antarctic bullhead notothen reveals evolutionary adaptations to a cold environment. Genome Biology, 2014, 15, 468.	3.8	86
230	Metabolic and co-expression network-based analyses associated with nitrate response in rice. BMC Genomics, 2014, 15, 1056.	1.2	40
231	iTRAQ-based quantitative proteome and phosphoprotein characterization reveals the central metabolism changes involved in wheat grain development. BMC Genomics, 2014, 15, 1029.	1.2	84
232	Transcriptomic dissection of the rice – Burkholderia glumae interaction. BMC Genomics, 2014, 15, 755.	1.2	21
233	Integrated analysis of miRNA and mRNA expression profiles in response to Cd exposure in rice seedlings. BMC Genomics, 2014, 15, 835.	1.2	75
234	RNA-Seq reveals a xenobiotic stress response in the soybean aphid, Aphis glycines, when fed aphid-resistant soybean. BMC Genomics, 2014, 15, 972.	1.2	75

235	Comprehensive analysis of small RNA-seq data reveals that combination of miRNA with its isomiRs increase the accuracy of target prediction in <i>Arabidopsis thaliana</i> . RNA Biology, 2014, 11, 1414-1429.	1.5	46
-----	---	-----	----

#	Article	IF	CITATIONS
236	DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis. Genome Biology, 2014, 15, 458.	3.8	243
237	Discovery of novel transcripts and gametophytic functions via RNA-seq analysis of maize gametophytic transcriptomes. Genome Biology, 2014, 15, 414.	3.8	74
238	Transcriptome analysis during berry development provides insights into co-regulated and altered gene expression between a seeded wine grape variety and its seedless somatic variant. BMC Genomics, 2014, 15, 1030.	1.2	31
239	Conservation and functional influence of alternative splicing in wood formation of Populus and Eucalyptus. BMC Genomics, 2014, 15, 780.	1.2	41
240	Transcriptomic complexity in young maize primary roots in response to low water potentials. BMC Genomics, 2014, 15, 741.	1.2	69
241	Comparative transcriptome sequencing of tolerant rice introgression line and its parents in response to drought stress. BMC Genomics, 2014, 15, 1026.	1.2	115
242	Genome-wide expression analysis in a dwarf soybean mutant. Plant Genetic Resources: Characterisation and Utilisation, 2014, 12, S70-S73.	0.4	4
243	Bioinformatic Tools in Arabidopsis Research. Methods in Molecular Biology, 2014, 1062, 97-136.	0.4	6
244	Singlet Oxygen Signatures Are Detected Independent of Light or Chloroplasts in Response to Multiple Stresses Â. Plant Physiology, 2014, 165, 249-261.	2.3	71
245	Machine Learning Approaches Distinguish Multiple Stress Conditions using Stress-Responsive Genes and Identify Candidate Genes for Broad Resistance in Rice. Plant Physiology, 2014, 164, 481-495.	2.3	129
246	Thermospermine modulates expression of auxin-related genes in Arabidopsis. Frontiers in Plant Science, 2014, 5, 94.	1.7	32
247	Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Frontiers in Plant Science, 2014, 5, 655.	1.7	138
248	Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Frontiers in Microbiology, 2014, 5, 479.	1.5	135
249	Transcriptome Analysis of Salt Tolerant Common Bean (Phaseolus vulgaris L.) under Saline Conditions. PLoS ONE, 2014, 9, e92598.	1.1	107
250	A chromatin modifying enzyme, SDG8, is involved in morphological, gene expression, and epigenetic responses to mechanical stimulation. Frontiers in Plant Science, 2014, 5, 533.	1.7	44
251	Comparative Evolutionary and Developmental Dynamics of the Cotton (Gossypium hirsutum) Fiber Transcriptome. PLoS Genetics, 2014, 10, e1004073.	1.5	149
252	Association Mapping across Numerous Traits Reveals Patterns of Functional Variation in Maize. PLoS Genetics, 2014, 10, e1004845.	1.5	171
253	Code-Assisted Discovery of TAL Effector Targets in Bacterial Leaf Streak of Rice Reveals Contrast with Bacterial Blight and a Novel Susceptibility Gene. PLoS Pathogens, 2014, 10, e1003972.	2.1	137

#	Article	IF	CITATIONS
254	Learning Dysregulated Pathways in Cancers from Differential Variability Analysis. Cancer Informatics, 2014, 13s5, CIN.S14066.	0.9	37
255	Aspergillus flavus infection induces transcriptional and physical changes in developing maize kernels. Frontiers in Microbiology, 2014, 5, 384.	1.5	63
256	The effect of NGATHA altered activity on auxin signaling pathways within the Arabidopsis gynoecium. Frontiers in Plant Science, 2014, 5, 210.	1.7	38
257	SEEDSTICK is a Master Regulator of Development and Metabolism in the Arabidopsis Seed Coat. PLoS Genetics, 2014, 10, e1004856.	1.5	86
258	Recurrent Loss of Specific Introns during Angiosperm Evolution. PLoS Genetics, 2014, 10, e1004843.	1.5	26
259	Regulatory interplay between soybean root and soybean cyst nematode during a resistant and susceptible reaction. BMC Plant Biology, 2014, 14, 300.	1.6	30
260	Genome-wide identification of vegetative phase transition-associated microRNAs and target predictions using degradome sequencing in Malus hupehensis. BMC Genomics, 2014, 15, 1125.	1.2	60
261	Transcriptome-wide N ⁶ -methyladenosine profiling of rice callus and leaf reveals the presence of tissue-specific competitors involved in selective mRNA modification. RNA Biology, 2014, 11, 1180-1188.	1.5	126
262	Proteome and Phosphoproteome Characterization Reveals New Response and Defense Mechanisms of Brachypodium distachyon Leaves under Salt Stress. Molecular and Cellular Proteomics, 2014, 13, 632-652.	2.5	121
263	Global Dissection of Alternative Splicing in Paleopolyploid Soybean. Plant Cell, 2014, 26, 996-1008.	3.1	273
264	Comparative cytological and transcriptomic analysis of pollen development in autotetraploid and diploid rice. Plant Reproduction, 2014, 27, 181-196.	1.3	57
265	Proteomic and phosphoproteomic analyses of chromatinâ€associated proteins from <i>Arabidopsis thaliana</i> . Proteomics, 2014, 14, 2141-2155.	1.3	18
266	A plantâ€specific <i><scp>HUA</scp>2â€<scp>LIKE</scp></i> (<i>HULK</i>) gene family in <i><scp>A</scp>rabidopsis thaliana</i> is essential for development. Plant Journal, 2014, 80, 242-254.	2.8	12
267	Quantitative Peptidomics Study Reveals That a Wound-Induced Peptide from PR-1 Regulates Immune Signaling in Tomato. Plant Cell, 2014, 26, 4135-4148.	3.1	155
268	Phosphoproteome analysis of <i>Lotus japonicus</i> seeds. Proteomics, 2014, 14, 116-120.	1.3	10
269	Ethylene plays an essential role in the recovery of <scp>A</scp> rabidopsis during postâ€anaerobiosis reoxygenation. Plant, Cell and Environment, 2014, 37, 2391-2405.	2.8	56
270	Transcriptome resources for the perennial sunflower <i>Helianthus maximiliani</i> obtained from ecologically divergent populations. Molecular Ecology Resources, 2014, 14, 812-819.	2.2	18
271	Comparative Analysis of Gene Expression Profiling Between Resistant and Susceptible Varieties Infected With Soybean Cyst Nematode Race 4 in Glycine max. Journal of Integrative Agriculture, 2014, 13, 2594-2607.	1.7	7

#	Article	IF	CITATIONS
272	The lowâ€recombining pericentromeric region of barley restricts gene diversity and evolution but not gene expression. Plant Journal, 2014, 79, 981-992.	2.8	30
273	Genome re-sequencing suggested a weedy rice origin from domesticated indica-japonica hybridization: a case study from southern China. Planta, 2014, 240, 1353-1363.	1.6	47
274	Transcriptomic Analysis Reveals That Reactive Oxygen Species and Genes Encoding Lipid Transfer Protein Are Associated with Tobacco Hairy Root Growth and Branch Development. Molecular Plant-Microbe Interactions, 2014, 27, 678-687.	1.4	10
275	Evolution of the BBAA Component of Bread Wheat during Its History at the Allohexaploid Level. Plant Cell, 2014, 26, 2761-2776.	3.1	77
276	Genotypic variation of gene expression during the soybean innate immunity response. Plant Genetic Resources: Characterisation and Utilisation, 2014, 12, S27-S30.	0.4	11
277	Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in Arabidopsis. Journal of Experimental Botany, 2014, 65, 4119-4131.	2.4	117
278	Genome-wide identification of microRNA and siRNA responsive to endophytic beneficial diazotrophic bacteria in maize. BMC Genomics, 2014, 15, 766.	1.2	56
279	Shoot chloride exclusion and salt tolerance in grapevine is associated with differential ion transporter expression in roots. BMC Plant Biology, 2014, 14, 273.	1.6	78
280	Proteomic Analysis of the Pulvinus, a Heliotropic Tissue, in Glycine max. International Journal of Plant Biology, 2014, 5, 4887.	1.1	4
281	RNA-Seq Analysis and De Novo Transcriptome Assembly of Jerusalem Artichoke (Helianthus tuberosus) Tj ETQq1	1 0.78431 1.1	.4 ggBT /Over
281 282	RNA-Seq Analysis and De Novo Transcriptome Assembly of Jerusalem Artichoke (Helianthus tuberosus) Tj ETQq1 Temporal patterns of gene expression in developing maize endosperm identified through transcriptome sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7582-7587.	1 0.78431 1.1	.4 rgBT /Over 146
281 282 283	RNA-Seq Analysis and De Novo Transcriptome Assembly of Jerusalem Artichoke (Helianthus tuberosus) Tj ETQq1 Temporal patterns of gene expression in developing maize endosperm identified through transcriptome sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7582-7587. Associative Transcriptomics Study Dissects the Genetic Architecture of Seed Glucosinolate Content in Brassica napus. DNA Research, 2014, 21, 613-625.	1 0.78431 3.3 1.5	.4 rgBT /Over 146 94
281 282 283 283	RNA-Seq Analysis and De Novo Transcriptome Assembly of Jerusalem Artichoke (Helianthus tuberosus) Tj ETQq1 Temporal patterns of gene expression in developing maize endosperm identified through transcriptome sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7582-7587. Associative Transcriptomics Study Dissects the Genetic Architecture of Seed Glucosinolate Content in Brassica napus. DNA Research, 2014, 21, 613-625. Identification of rice genes associated with cosmic-ray response via co-expression gene network analysis. Gene, 2014, 541, 82-91.	1 0.78431 3.3 1.5 1.0	.4 rgBT /Over 146 94 9
281 282 283 283 284	RNA-Seq Analysis and De Novo Transcriptome Assembly of Jerusalem Artichoke (Helianthus tuberosus) Tj ETQq1 Temporal patterns of gene expression in developing maize endosperm identified through transcriptome sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7582-7587. Associative Transcriptomics Study Dissects the Genetic Architecture of Seed Glucosinolate Content in Brassica napus. DNA Research, 2014, 21, 613-625. Identification of rice genes associated with cosmic-ray response via co-expression gene network analysis. Gene, 2014, 541, 82-91. Unravelling the genetic complexity of sorghum seedling development under lowâ€temperature conditions. Plant, Cell and Environment, 2014, 37, 707-723.	1 0.78431 3.3 1.5 1.0 2.8	.4 rgBT /Over 146 94 9 56
281 282 283 284 285 285	RNA-Seq Analysis and De Novo Transcriptome Assembly of Jerusalem Artichoke (Helianthus tuberosus) Tj ETQq1 Temporal patterns of gene expression in developing maize endosperm identified through transcriptome sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7582-7587. Associative Transcriptomics Study Dissects the Genetic Architecture of Seed Glucosinolate Content in Brassica napus. DNA Research, 2014, 21, 613-625. Identification of rice genes associated with cosmic-ray response via co-expression gene network analysis. Gene, 2014, 541, 82-91. Unravelling the genetic complexity of sorghum seedling development under lowâ€temperature conditions. Plant, Cell and Environment, 2014, 37, 707-723. Chromium stress response effect on signal transduction and expression of signaling genes in rice. Physiologia Plantarum, 2014, 150, 205-224.	1 0.78431 3.3 1.5 1.0 2.8 2.6	4 ggBT /Over 146 94 9 56 100
281 282 283 284 285 285 286	RNA-Seq Analysis and De Novo Transcriptome Assembly of Jerusalem Artichoke (Helianthus tuberosus) Tj ETQq1 Temporal patterns of gene expression in developing maize endosperm identified through transcriptome sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7582-7587. Associative Transcriptomics Study Dissects the Cenetic Architecture of Seed Clucosinolate Content in Brassica napus. DNA Research, 2014, 21, 613-625. Identification of rice genes associated with cosmic-ray response via co-expression gene network analysis. Gene, 2014, 541, 82-91. Unravelling the genetic complexity of sorghum seedling development under lowâ€temperature conditions. Plant, Cell and Environment, 2014, 37, 707-723. Chromium stress response effect on signal transduction and expression of signaling genes in rice. Physiologia Plantarum, 2014, 150, 205-224. Deep transcriptome sequencing of rhizome and aerial-shoot in Sorghum propinquum. Plant Molecular Biology, 2014, 84, 315-327.	1 0.78431 3.3 1.5 1.0 2.8 2.6 2.0	4 ggBT /Over 146 94 9 56 100 26
281 282 283 284 285 285 286 287	RNA-Seq Analysis and De Novo Transcriptome Assembly of Jerusalem Artichoke (Helianthus tuberosus) TJ ETQq1 Temporal patterns of gene expression in developing maize endosperm identified through transcriptome sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7582-7587. Associative Transcriptomics Study Dissects the Cenetic Architecture of Seed Glucosinolate Content in Brassica napus. DNA Research, 2014, 21, 613-625. Identification of rice genes associated with cosmic-ray response via co-expression gene network analysis. Gene, 2014, 541, 82-91. Unravelling the genetic complexity of sorghum seedling development under lowâ€temperature conditions. Plant, Cell and Environment, 2014, 37, 707-723. Chromium stress response effect on signal transduction and expression of signaling genes in rice. Physiologia Plantarum, 2014, 150, 205-224. Deep transcriptome sequencing of rhizome and aerial-shoot in Sorghum propinquum. Plant Molecular Biology, 2014, 84, 315-327. Comparative transcriptome profiles of the WRKY gene family under control, hormone-treated, and drought conditions in near-isogenic rice lines reveal differential, tissue specific gene activation. Journal of Plant Physiology, 2014, 171, 2-13.	1 0.78431 3.3 1.5 1.0 2.8 2.6 2.0 1.6	4 gBT /Over 146 94 9 56 100 26 18

			0
#		IF	CITATIONS
290	Heritability and identification of QTLs and underlying candidate genes associated with the architecture of the grapevine cluster (Vitis vinifera L.). Theoretical and Applied Genetics, 2014, 127,	1.8	55
	1145-1162.		
291	ComPlEx: conservation and divergence of co-expression networks in A. thaliana, Populus and O. sativa. BMC Genomics, 2014, 15, 106.	1.2	69
292	A Sorghum bicolorexpression atlas reveals dynamic genotype-specific expression profiles for vegetative tissues of grain, sweet and bioenergy sorghums. BMC Plant Biology, 2014, 14, 35.	1.6	77
293	High throughput RNA sequencing of a hybrid maize and its parents shows different mechanisms responsive to nitrogen limitation. BMC Genomics, 2014, 15, 77.	1.2	33
294	revealed by comparative transcriptomics. BMC Genomics, 2014, 15, 18.	1.2	67
	acceter on integrated web platform for areas analise gaps act analysis BMC Bisinformatics 2014, 15		
295	13.	1.2	7
	High Throughput Transprintome Applysic of the Leefy Flower Transition of Cotherenthus resource		
296	Induced by Peanut Witches'-Broom Phytoplasma Infection. Plant and Cell Physiology, 2014, 55, 942-957.	1.5	55
	Identification of candidate genes for fusarium vellows resistance in Chinese cabbage by differential		
297	expression analysis. Plant Molecular Biology, 2014, 85, 247-257.	2.0	57
	Comparative Transcriptomics of Farly Meiosis in Arabidopsis and Maize, Journal of Genetics and		
298	Genomics, 2014, 41, 139-152.	1.7	54
000	Debut diveteent of common tor abundance Division and 2014, 20, 601,605	1.0	
299	Robust adjustment of sequence tag abundance. Bioinformatics, 2014, 30, 601-605.	1.8	8
300	Magnesium availability regulates the development of root hairs in <scp><i>A</i></scp> <i>rabidopsis</i>	2.6	64
300	thaliana (<scp>L</scp> .) <scp>H</scp> eynh. Plant, Cell and Environment, 2014, 37, 2795-2813.	2.0	04
301	Salt stress and senescence: identification of cross-talk regulatory components. Journal of	24	113
001	Experimental Botany, 2014, 65, 3993-4008.		110
302	miRNAting control of DNA methylation, Journal of Biosciences, 2014, 39, 365-380.	0.5	18
002		0.0	10
303	New Insights into Aluminum Tolerance in Rice: The ASR5 Protein Binds the STAR1 Promoter and Other	3.9	117
	Aluminum-Responsive Genes. Molecular Plant, 2014, 7, 709-721.		
304	Evidence for Selection on Gene Expression in Cultivated Rice (Oryza sativa). Molecular Biology and	3.5	29
	Evolution, 2014, 31, 1314-1323.		
305	Nitrate induction triggers different transcriptional changes in a high and a low nitrogen use	4.1	57
306	Transcriptomic Profiling of Apple in Response to Inoculation with a Pathogen (Penicillium expansum) and a Non-pathogen (Penicillium digitatum). Plant Molecular Biology Reporter, 2014, 32, 566-583.	1.0	41
307	Comparative transcriptome profiling of potassium starvation responsiveness in two contrasting watermelon genotypes. Planta, 2014, 239, 397-410.	1.6	62

ARTICLE IF CITATIONS The gene family of dehydration responsive element-binding transcription factors in grape (Vitis) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 74 308 1.0 72 stress resistance. Molecular Biology Reports, 2014, 41, 1577-1590. The Arabidopsis thaliana RNA Editing Factor SLO2, which Affects the Mitochondrial Electron 309 Transport Chain, Participates in Multiple Stress and Hormone Responses. Molecular Plant, 2014, 7, 99 290-310. Genomeâ€<scp>w</scp>ide patterns of largeâ€<scp>s</scp>ize presence/<scp>a</scp>bsence variants in 310 4.1 22 sorghum. Journal of Integrative Plant Biology, 2014, 56, 24-37. Identification of microRNAs and their targets in tomato infected with Cucumber mosaic virus based on deep sequencing. Planta, 2014, 240, 1335-1352. Transcriptome dynamics during fibre development in contrasting genotypes of 312 4.1 31 <i><scp>G</scp>ossypium hirsutum</i> L. Plant Biotechnology Journal, 2014, 12, 204-218. Stitching together the Multiple Dimensions of Autophagy Using Metabolomics and Transcriptomics Reveals Impacts on Metabolism, Development, and Plant Responses to the Environment in<i>Arabidopsis</i>ÂÂ. Plant Cell, 2014, 26, 1857-1877. 3.1 134 Proteomic Analysis of Insect Molting Fluid with a Focus on Enzymes Involved in Chitin Degradation. 314 1.8 72 Journal of Proteome Research, 2014, 13, 2931-2940. Extensive Translational Regulation of Gene Expression in an Allopolyploid (<i>Glycine) Tj ETQq1 1 0.784314 rgBT /Qverlock 10, Tf 50 Proteomics profiling of fiber development and domestication in upland cotton (Gossypium hirsutum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 316 Alterations in the Transcriptome of Soybean in Response to Enhanced Somatic Embryogenesis 2.3 Promoted by Orthologs of AGAMOUS-Like15 and AGAMOUS-Like18. Plant Physiology, 2014, 164, 1365-1377. DNA Topoisomerase I Affects Polycomb Group Protein-Mediated Epigenetic Regulation and Plant 318 3.138 Development by Altering Nucleosome Distribution in <i>Arabidopsis </i>. Plant Cell, 2014, 26, 2803-2817. Age-Triggered and Dark-Induced Leaf Senescence Require the bHLH Transcription Factors PIF3, 4, and 5. 319 201 Molecular Plant, 2014, 7, 1776-1787. The Most Deeply Conserved Noncoding Sequences in Plants Serve Similar Functions to Those in 320 3.1 38 Vertebrates Despite Large Differences in Evolutionary Rates. Plant Cell, 2014, 26, 946-961.

321	The polycomb group gene <i><scp>EMF</scp>2B</i> is essential for maintenance of floral meristem determinacy in rice. Plant Journal, 2014, 80, 883-894.	2.8	53
322	Deficient sucrose synthase activity in developing wood does not specifically affect cellulose biosynthesis, but causes an overall decrease in cell wall polymers. New Phytologist, 2014, 203, 1220-1230.	3.5	64
323	Direct roles of SPEECHLESS in the specification of stomatal self-renewing cells. Science, 2014, 345, 1605-1609.	6.0	190
324	Overexpression of the OsCh11 gene, encoding a putative laccase precursor, increases tolerance to drought and salinity stress in transgenic Arabidopsis. Gene, 2014, 552, 98-105.	1.0	48
325	Identification of small secreted peptides (SSPs) in maize and expression analysis of partial SSP genes in reproductive tissues. Planta, 2014, 240, 713-728	1.6	24

#	Article	IF	CITATIONS
326	Priming of protein expression in the defence response of <i><scp>Z</scp>antedeschia aethiopica</i> to <i><scp>P</scp>ectobacterium carotovorum</i> . Molecular Plant Pathology, 2014, 15, 364-378.	2.0	13
327	RNAseq analysis of cassava reveals similar plant responses upon infection with pathogenic and non-pathogenic strains of Xanthomonas axonopodis pv. manihotis. Plant Cell Reports, 2014, 33, 1901-1912.	2.8	46
328	Characterization of stressâ€responsive lnc <scp>RNA</scp> s in <i><scp>A</scp>rabidopsis thaliana</i> by integrating expression, epigenetic and structural features. Plant Journal, 2014, 80, 848-861.	2.8	264
329	Genomic profiling of rice roots with short- and long-term chromium stress. Plant Molecular Biology, 2014, 86, 157-170.	2.0	49
330	Genome-wide survey of Alternative Splicing in Sorghum Bicolor. Physiology and Molecular Biology of Plants, 2014, 20, 323-329.	1.4	35
331	Large-scale phosphoproteome analysis in seedling leaves of Brachypodium distachyon L BMC Genomics, 2014, 15, 375.	1.2	37
332	Analysis of peptide PSY1 responding transcripts in the two Arabidopsis plant lines: wild type and psy1r receptor mutant. BMC Genomics, 2014, 15, 441.	1.2	17
333	An integrated genomic and metabolomic framework for cell wall biology in rice. BMC Genomics, 2014, 15, 596.	1.2	26
334	BAC and RNA sequencing reveal the brown planthopper resistance gene BPH15 in a recombination cold spot that mediates a unique defense mechanism. BMC Genomics, 2014, 15, 674.	1.2	86
335	Nitrogen limitation and high density responses in rice suggest a role for ethylene under high density stress. BMC Genomics, 2014, 15, 681.	1.2	14
336	OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength in rice (Oryza sativaL.). BMC Plant Biology, 2014, 14, 158.	1.6	92
337	Moderate drought causes dramatic floral transcriptomic reprogramming to ensure successful reproductive development in Arabidopsis. BMC Plant Biology, 2014, 14, 164.	1.6	38
338	RNA-seq analyses of multiple meristems of soybean: novel and alternative transcripts, evolutionary and functional implications. BMC Plant Biology, 2014, 14, 169.	1.6	229
339	Differentially expressed microRNA cohorts in seed development may contribute to poor grain filling of inferior spikelets in rice. BMC Plant Biology, 2014, 14, 196.	1.6	64
340	Integrative Network Analysis of the Signaling Cascades in Seedling Leaves of Bread Wheat by Large-Scale Phosphoproteomic Profiling. Journal of Proteome Research, 2014, 13, 2381-2395.	1.8	42
341	Antibiotics modulate intestinal immunity and prevent necrotizing enterocolitis in preterm neonatal piglets. American Journal of Physiology - Renal Physiology, 2014, 306, G59-G71.	1.6	68
342	The Polyadenylation Factor Subunit CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR30: A Key Factor of Programmed Cell Death and a Regulator of Immunity in Arabidopsis Â. Plant Physiology, 2014, 165, 732-746.	2.3	54
343	Timing for success: expression phenotype and local adaptation related to latitude in the boreal forest tree, Populus balsamifera. Tree Genetics and Genomes, 2014, 10, 911-922.	0.6	7

#	Article	IF	CITATIONS
344	High-throughput sequencing analysis of common fig (Ficus carica L.) transcriptome during fruit ripening. Tree Genetics and Genomes, 2014, 10, 923-935.	0.6	21
345	Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response. BMC Genomics, 2014, 15, 157.	1.2	57
346	SFGD: a comprehensive platform for mining functional information from soybean transcriptome data and its use in identifying acyl-lipid metabolism pathways. BMC Genomics, 2014, 15, 271.	1.2	43
347	Transcriptome differences between two sister desert poplar species under salt stress. BMC Genomics, 2014, 15, 337.	1.2	50
348	Genome-wide identification of heat shock proteins (Hsps) and Hsp interactors in rice: Hsp70s as a case study. BMC Genomics, 2014, 15, 344.	1.2	59
349	The large-scale investigation of gene expression in Leymus chinensis stigmas provides a valuable resource for understanding the mechanisms of poaceae self-incompatibility. BMC Genomics, 2014, 15, 399.	1.2	22
350	Differential proteomic analysis of grapevine leaves by iTRAQ reveals responses to heat stress and subsequent recovery. BMC Plant Biology, 2014, 14, 110.	1.6	111
351	The transcriptome landscape of early maize meiosis. BMC Plant Biology, 2014, 14, 118.	1.6	66
352	Identification of candidate genes for drought tolerance by whole-genome resequencing in maize. BMC Plant Biology, 2014, 14, 83.	1.6	98
353	Transcriptome profiling of genes and pathways associated with arsenic toxicity and tolerance in Arabidopsis. BMC Plant Biology, 2014, 14, 94.	1.6	79
354	Heterografting with nonself rootstocks induces genes involved in stress responses at the graft interface when compared with autografted controls. Journal of Experimental Botany, 2014, 65, 2473-2481.	2.4	86
355	A comparative study of ripening among berries of the grape cluster reveals an altered transcriptional programme and enhanced ripening rate in delayed berries. Journal of Experimental Botany, 2014, 65, 5889-5902.	2.4	59
356	Gene expression profile analysis of Ligon lintless-1 (Li1) mutant reveals important genes and pathways in cotton leaf and fiber development. Gene, 2014, 535, 273-285.	1.0	30
357	Whole genome transcriptome analysis of rice seedling reveals alterations in Ca2+ ion signaling and homeostasis in response to Ca2+ deficiency. Cell Calcium, 2014, 55, 155-165.	1.1	21
358	Gene coexpression patterns during early development of the native Arabidopsis reproductive meristem: novel candidate developmental regulators and patterns of functional redundancy. Plant Journal, 2014, 79, 861-877.	2.8	29
359	Nitric oxide is required for determining root architecture and lignin composition in sunflower. Supporting evidence from microarray analyses. Nitric Oxide - Biology and Chemistry, 2014, 39, 20-28.	1.2	43
360	Bioinformatic identification and experimental validation of miRNAs from foxtail millet (Setaria) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 102

361	Computational analysis of auxin responsive elements in the Arabidopsis thaliana L. genome. BMC Genomics, 2014, 15, S4.	1.2	54
-----	--	-----	----

#	Article	IF	CITATIONS
362	Transcriptome of Erysiphe necator-infected Vitis pseudoreticulata leaves provides insight into grapevine resistance to powdery mildew. Horticulture Research, 2014, 1, 14049.	2.9	64
363	Transcriptional dynamics of the developing sweet cherry (Prunus avium L.) fruit: sequencing, annotation and expression profiling of exocarp-associated genes. Horticulture Research, 2014, 1, 11.	2.9	82
364	Single-base-resolution methylomes of populus trichocarpa reveal the association between DNA methylation and drought stress. BMC Genetics, 2014, 15, S9.	2.7	123
365	Early changes in shoot transcriptome of rice in response to Rhodotorula mucilaginosa JGTA-S1. Genomics Data, 2015, 6, 237-240.	1.3	7
366	Identification and characterization of differentially expressed microRNAs in response to Rhizoctonia solani in maize. Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	6
367	Functional and expression analyses of transcripts based on full-length cDNAs of <i>Sorghum bicolor</i> . DNA Research, 2015, 22, 485-493.	1.5	3
368	Alterations in the NF2/LATS1/LATS2/YAP Pathway in Schwannomas. Journal of Neuropathology and Experimental Neurology, 2015, 74, 952-959.	0.9	52
369	Ribosome profiling reveals dynamic translational landscape in maize seedlings under drought stress. Plant Journal, 2015, 84, 1206-1218.	2.8	162
370	Comparative miRNAs analysis of Two contrasting broccoli inbred lines with divergent head-forming capacity under temperature stress. BMC Genomics, 2015, 16, 1026.	1.2	22
371	Extracting phylogenetic signal and accounting for bias in whole-genome data sets supports the Ctenophora as sister to remaining Metazoa. BMC Genomics, 2015, 16, 987.	1.2	134
372	Analysis of the Molecular Dialogue Between Gray Mold (<i>Botrytis cinerea</i>) and Grapevine (<i>Vitis vinifera</i>) Reveals a Clear Shift in Defense Mechanisms During Berry Ripening. Molecular Plant-Microbe Interactions, 2015, 28, 1167-1180.	1.4	73
373	Transcriptome analysis of hormone-induced gene expression in Brachypodium distachyon. Scientific Reports, 2015, 5, 14476.	1.6	39
374	CHANGES IN TOMATO GENE EXPRESSION DURING POTATO SPINDLE TUBER VIROID INFECTION REVEAL A COMPLEX ARRAY OF CHANGES AFFECTING BRASSINOSTEROID SYNTHESIS AND SIGNALING. Acta Horticulturae, 2015, , 79-90.	0.1	0
375	Diversity in global gene expression and morphology across a watercress (Nasturtium officinale R. Br.) germplasm collection: first steps to breeding. Horticulture Research, 2015, 2, 15029.	2.9	14
376	A signaling pathway analysis model based on Kullback-Leibler divergence. , 2015, , .		1
377	De novo assembly and comparative analysis of root transcriptomes from different varieties of Panax ginseng C. A. Meyer grown in different environments. Science China Life Sciences, 2015, 58, 1099-1110.	2.3	12
378	The transcriptional landscape of insect galls: psyllid (Hemiptera) gall formation in Hawaiian Metrosideros polymorpha (Myrtaceae). BMC Genomics, 2015, 16, 943.	1.2	23
379	Genome-wide transcriptome analyses of developing seeds from low and normal phytic acid soybean lines. BMC Genomics, 2015, 16, 1074.	1.2	18

		CITATION REPORT		
#	ARTICLE		IF	Citations
380	Widespread noncoding circular <scp>RNA</scp> s in plants. New Phytologist, 2015, 208	88-95.	3.5	374
381	Nuclearâ€localized At <scp>HSPR</scp> links abscisic acidâ€dependent salt tolerance an defense in Arabidopsis. Plant Journal, 2015, 84, 1274-1294.	d antioxidant	2.8	51
382	Development of Genome-Wide Insertion and Deletion Polymorphism Markers from Next- Sequencing Data in Rice. Rice, 2015, 8, 63.	Generation	1.7	31
383	Genome-wide identification and functional analysis of lincRNAs acting as miRNA targets maize. BMC Genomics, 2015, 16, 793.	or decoys in	1.2	94
384	Identification of Nicotiana benthamiana microRNAs and their targets using high through sequencing and degradome analysis. BMC Genomics, 2015, 16, 1025.	out	1.2	37
385	Transcriptional profiling of the leaves of near-isogenic rice lines with contrasting drought tolerance at the reproductive stage in response to water deficit. BMC Genomics, 2015, 1	6, 1110.	1.2	36
386	Succinate dehydrogenase (mitochondrial complex <scp>II</scp>) is a source of reactive in plants and regulates development and stress responses. New Phytologist, 2015, 208,	xygen species 776-789.	3.5	129
387	Histone acetyltransferase <scp>GCN</scp> 5 is essential for heat stressâ€responsive gen thermotolerance in Arabidopsis. Plant Journal, 2015, 84, 1178-1191.	e activation and	2.8	126
388	GraP: platform for functional genomics analysis of Gossypium raimondii. Database: the Jo Biological Databases and Curation, 2015, 2015, bav047.	urnal of	1.4	14
389	<scp>CARMO</scp> : a comprehensive annotation platform for functional exploration of multiâ€omics data. Plant Journal, 2015, 83, 359-374.	rice	2.8	50
390	Gene network analysis of <i>Arabidopsis thaliana</i> flower development through dynan perturbations. Plant Journal, 2015, 83, 344-358.	iic gene	2.8	30
391	The overexpression of the pine transcription factor <scp>PpDof</scp> 5 in <i>Arabidopsi increased lignin content and affects carbon and nitrogen metabolism. Physiologia Planta 155, 369-383.</i>	leads to rum, 2015,	2.6	18
392	The Arabidopsis thaliana Class III Peroxidase AtPRX71 Negatively Regulates Growth unde Conditions and in Response to Cell Wall Damage Plant Physiology, 2015, 169, pp.0146	[.] Physiological 4.2015.	2.3	56
393	Genomic limitations to <scp>RNA</scp> sequencing expression profiling. Plant Journal, 2 491-503.	015, 84,	2.8	34
394	Novel Polymorphic Expressed‣equence Tag–Simple‣equence Repeat Markers in < nutans for Genetic Diversity Analyses. Crop Science, 2015, 55, 2712-2718.	i>Campeiostachys	0.8	11
395	Transcriptomic Evaluation of Plant Growth Inhibitory Activity of Goniothalamin from the Medicinal Plant <i>Soniothalamus andersonii</i> . Natural Product Communications, 201 1934578X1501000.	Malaysian 5, 10,	0.2	2
396	Interacting Transcriptomes Revealing Molecular Mechanisms Underlying Xa39 Mediated Spectrum Resistance of Rice to Bacterial Blight. Plant Genome, 2015, 8, eplantgenome20	Broad)14.12.0094.	1.6	7
397	A Transcriptome Profile for Developing Seed of Polyploid Cotton. Plant Genome, 2015, 8 eplantgenome2014.08.0041.		1.6	30

#	Article	IF	CITATIONS
398	Transcriptome Profiling of Rust Resistance in Switchgrass Using RNAâ€Seq Analysis. Plant Genome, 2015, 8, eplantgenome2014.10.0075.	1.6	20
399	Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress. International Journal of Molecular Sciences, 2015, 16, 18752-18777.	1.8	48
400	Functional characterization of drought-responsive modules and genes in Oryza sativa: a network-based approach. Frontiers in Genetics, 2015, 6, 256.	1.1	46
401	Transcriptome analysis of Arabidopsis seedlings responses to high concentrations of glucose. Genetics and Molecular Research, 2015, 14, 4784-4801.	0.3	9
402	Transcriptome Analysis of Resistant and Susceptible Alfalfa Cultivars Infected With Root-Knot Nematode Meloidogyne incognita. PLoS ONE, 2015, 10, e0118269.	1.1	67
403	Fusarium oxysporum Triggers Tissue-Specific Transcriptional Reprogramming in Arabidopsis thaliana. PLoS ONE, 2015, 10, e0121902.	1.1	93
404	Grafting Triggers Differential Responses between Scion and Rootstock. PLoS ONE, 2015, 10, e0124438.	1.1	29
405	Phytohormonal Networks Promote Differentiation of Fiber Initials on Pre-Anthesis Cotton Ovules Grown In Vitro and In Planta. PLoS ONE, 2015, 10, e0125046.	1.1	24
406	Transcriptional Analyses of Mandarins Seriously Infected by â€~Candidatus Liberibacter asiaticus'. PLoS ONE, 2015, 10, e0133652.	1.1	36
407	Spt-Ada-Gcn5-Acetyltransferase (SAGA) Complex in Plants: Genome Wide Identification, Evolutionary Conservation and Functional Determination. PLoS ONE, 2015, 10, e0134709.	1.1	32
408	Large-Scale Transcriptome Analysis in Faba Bean (Vicia faba L.) under Ascochyta fabae Infection. PLoS ONE, 2015, 10, e0135143.	1.1	43
409	Dynamic Analysis of Gene Expression in Rice Superior and Inferior Grains by RNA-Seq. PLoS ONE, 2015, 10, e0137168.	1.1	26
410	Small RNAs and Gene Network in a Durable Disease Resistance Gene—Mediated Defense Responses in Rice. PLoS ONE, 2015, 10, e0137360.	1.1	20
411	Genome-Wide Transcriptome Analysis of Cotton (Gossypium hirsutum L.) Identifies Candidate Gene Signatures in Response to Aflatoxin Producing Fungus Aspergillus flavus. PLoS ONE, 2015, 10, e0138025.	1.1	30
412	Comparisons of the Effects of Elevated Vapor Pressure Deficit on Gene Expression in Leaves among Two Fast-Wilting and a Slow-Wilting Soybean. PLoS ONE, 2015, 10, e0139134.	1.1	18
413	Identification of Novel and Conserved miRNAs from Extreme Halophyte, Oryza coarctata, a Wild Relative of Rice. PLoS ONE, 2015, 10, e0140675.	1.1	42
414	Comparative Transcriptome Analysis of Recessive Male Sterility (RGMS) in Sterile and Fertile Brassica napus Lines. PLoS ONE, 2015, 10, e0144118.	1.1	41
415_	Gene Expression Analysis of Plum pox virus (Sharka) Susceptibility/Resistance in Apricot (Prunus) Tj ETQq1 1	0.784314 rgBT	lQverlock

#	Article	IF	CITATIONS
416	Transcriptional profiles of Arabidopsis stomataless mutants reveal developmental and physiological features of life in the absence of stomata. Frontiers in Plant Science, 2015, 6, 456.	1.7	11
417	Identification of novel drought-responsive microRNAs and trans-acting siRNAs from Sorghum bicolor (L.) Moench by high-throughput sequencing analysis. Frontiers in Plant Science, 2015, 6, 506.	1.7	76
418	Identification of cold-inducible microRNAs in grapevine. Frontiers in Plant Science, 2015, 6, 595.	1.7	80
419	The miRNAs and their regulatory networks responsible for pollen abortion in Ogura-CMS Chinese cabbage revealed by high-throughput sequencing of miRNAs, degradomes, and transcriptomes. Frontiers in Plant Science, 2015, 6, 894.	1.7	32
420	Transcriptome Analysis of Interspecific Hybrid between <i>Brassica napus</i> and <i>B. rapa</i> Reveals Heterosis for Oil Rape Improvement. International Journal of Genomics, 2015, 2015, 1-11.	0.8	20
421	Quantitative Shotgun Proteomics Analysis of Rice Anther Proteins after Exposure to High Temperature. International Journal of Genomics, 2015, 2015, 1-9.	0.8	25
422	Suppression of ASKβ (AtSK32), a Clade III Arabidopsis GSK3, Leads to the Pollen Defect during Late Pollen Development. Molecules and Cells, 2015, 38, 506-517.	1.0	11
423	The Arabidopsis RNA-Binding Protein AtRGGA Regulates Tolerance to Salt and Drought Stress Â. Plant Physiology, 2015, 168, 292-306.	2.3	63
424	Enrichment of Triticum aestivum gene annotations using ortholog cliques and gene ontologies in other plants. BMC Genomics, 2015, 16, 299.	1.2	7
425	Comparative transcriptomics uncovers alternative splicing changes and signatures of selection from maize improvement. BMC Genomics, 2015, 16, 363.	1.2	33
426	Gene-Expression Novelty in Allopolyploid Cotton: A Proteomic Perspective. Genetics, 2015, 200, 91-104.	1.2	37
427	Computational analysis of miRNA-target community network reveals cross talk among different metabolisms. Genomics Data, 2015, 5, 292-296.	1.3	7
428	Misexpression of the Niemann-Pick disease type C1 (NPC1)-like protein in Arabidopsis causes sphingolipid accumulation and reproductive defects. Planta, 2015, 242, 921-933.	1.6	19
429	Transcriptome analysis reveals that distinct metabolic pathways operate in salt-tolerant and salt-sensitive upland cotton varieties subjected to salinity stress. Plant Science, 2015, 238, 33-45.	1.7	73
430	Removal of redundant contigs from de novo RNA-Seq assemblies via homology search improves accurate detection of differentially expressed genes. BMC Genomics, 2015, 16, 1031.	1.2	30
431	Roles of Defense Hormones in the Regulation of Ozone-Induced Changes in Gene Expression and Cell Death. Molecular Plant, 2015, 8, 1776-1794.	3.9	55
432	Understanding developmental and adaptive cues in pine through metabolite profiling and co-expression network analysis. Journal of Experimental Botany, 2015, 66, 3113-3127.	2.4	34
433	Two <i>Theobroma cacao</i> genotypes with contrasting pathogen tolerance show aberrant transcriptional and ROS responses after salicylic acid treatment. Journal of Experimental Botany, 2015, 66, 6245-6258.	2.4	29

#	Article	IF	CITATIONS
434	High-resolution mapping of H4K16 and H3K23 acetylation reveals conserved and unique distribution patterns in <i>Arabidopsis</i> and rice. Epigenetics, 2015, 10, 1044-1053.	1.3	48
435	A specialized histone H1 variant is required for adaptive responses to complex abiotic stress and related DNA methylation in Arabidopsis. Plant Physiology, 2015, 169, pp.00493.2015.	2.3	101
436	A Comparison of transgenic and wild type soybean seeds: analysis of transcriptome profiles using RNA-Seq. BMC Biotechnology, 2015, 15, 89.	1.7	29
437	De novo transcriptome sequencing and comparative analysis of differentially expressed genes in kiwifruit under waterlogging stress. Molecular Breeding, 2015, 35, 1.	1.0	36
438	Rice MEL2, the RNA recognition motif (RRM) protein, binds in vitro to meiosis-expressed genes containing U-rich RNA consensus sequences in the 3′-UTR. Plant Molecular Biology, 2015, 89, 293-307.	2.0	10
439	The histone methyltransferase SDG8 mediates the epigenetic modification of light and carbon responsive genes in plants. Genome Biology, 2015, 16, 79.	3.8	91
440	Next-Generation Sequencing (NGS) Tools and Impact in Plant Breeding. , 2015, , 563-612.		8
441	Global Analysis of the RNA-Protein Interaction and RNA Secondary Structure Landscapes of the Arabidopsis Nucleus. Molecular Cell, 2015, 57, 376-388.	4.5	105
442	RNA-seq-mediated transcriptome analysis of actively growing and winter dormant shoots identifies non-deciduous habit of evergreen tree tea during winters. Scientific Reports, 2014, 4, 5932.	1.6	52
443	Deeply Diverged Alleles in the Arabidopsis AREB1 Transcription Factor Drive Genome-Wide Differences in Transcriptional Response to the Environment. Molecular Biology and Evolution, 2015, 32, 956-969.	3.5	10
444	Comparative investigation of seed coats of brown―versus yellowâ€colored soybean seeds using an integrated proteomics and metabolomics approach. Proteomics, 2015, 15, 1706-1716.	1.3	32
445	Genomeâ€Wide Identification of Micro <scp>RNA</scp> s Responsive to High Temperature in Rice (<i><scp>O</scp>ryza sativa</i>) by Highâ€Throughput Deep Sequencing. Journal of Agronomy and Crop Science, 2015, 201, 379-388.	1.7	28
446	Microarray analysis of Arabidopsis under gold exposure to identify putative genes involved in the synthesis of gold nanoparticles (AuNPs). Genomics Data, 2015, 3, 100-102.	1.3	5
447	Application of an Integrated Omics Approach for Identifying Host Proteins That Interact With <i>Odontoglossum ringspot virus</i> Capsid Protein. Molecular Plant-Microbe Interactions, 2015, 28, 711-726.	1.4	14
448	Environmental Stresses Modulate Abundance andÂTiming of Alternatively Spliced Circadian Transcripts in Arabidopsis. Molecular Plant, 2015, 8, 207-227.	3.9	142
449	Network-assisted crop systems genetics: network inference and integrative analysis. Current Opinion in Plant Biology, 2015, 24, 61-70.	3.5	40
450	Proteomics of Nitrogen Remobilization in Poplar Bark. Journal of Proteome Research, 2015, 14, 1112-1126.	1.8	16
451	Genomic, Transcriptomic, and Phenomic Variation Reveals the Complex Adaptation of Modern Maize Breeding. Molecular Plant, 2015, 8, 871-884.	3.9	72

#	Article	IF	CITATIONS
452	Genome-Wide Analysis of Alternative Splicing Landscapes Modulated during Plant-Virus Interactions in <i>Brachypodium distachyon</i> . Plant Cell, 2015, 27, 71-85.	3.1	145
453	Bias in microRNA functional enrichment analysis. Bioinformatics, 2015, 31, 1592-1598.	1.8	100
454	Transcriptome sequencing of Prunus sp. rootstocks roots to identify candidate genes involved in the response to root hypoxia. Tree Genetics and Genomes, 2015, 11, 1.	0.6	34
455	An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis. Plant, Cell and Environment, 2015, 38, 1591-1612.	2.8	53
456	The development dynamics of the maize root transcriptome responsive to heavy metal Pb pollution. Biochemical and Biophysical Research Communications, 2015, 458, 287-293.	1.0	21
457	Transcriptional response of <i>Arabidopsis</i> seedlings during spaceflight reveals peroxidase and cell wall remodeling genes associated with root hair development. American Journal of Botany, 2015, 102, 21-35.	0.8	106
458	Comprehensive Gene Expression Analysis of Rice Aleurone Cells: Probing the Existence of an Alternative Gibberellin Receptor. Plant Physiology, 2015, 167, 531-544.	2.3	27
459	Molecular characterization of the cold- and heat-induced Arabidopsis PXL1 gene and its potential role in transduction pathways under temperature fluctuations. Journal of Plant Physiology, 2015, 176, 138-146.	1.6	36
460	AtNIGT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tip. Nature Communications, 2015, 6, 6274.	5.8	195
461	MicroRNA expression profiles in conventional and micropropagated Dendrobium officinale. Genes and Genomics, 2015, 37, 315-325.	0.5	6
462	Site-Specific Nitrosoproteomic Identification of Endogenously <i>S</i> -Nitrosylated Proteins in Arabidopsis. Plant Physiology, 2015, 167, 1731-1746.	2.3	202
463	Construction of a high-density genetic map and QTLs mapping for sugars and acids in grape berries. BMC Plant Biology, 2015, 15, 28.	1.6	94
464	Genome-wide analysis of bHLH transcription factor and involvement in the infection by yellow leaf curl virus in tomato (Solanum lycopersicum). BMC Genomics, 2015, 16, 39.	1.2	102
465	De novo assembly and characterization of transcriptomes of early-stage fruit from two genotypes of Annona squamosa L. with contrast in seed number. BMC Genomics, 2015, 16, 86.	1.2	14
466	Global nucleosome positioning regulates salicylic acid mediated transcription in Arabidopsis thaliana. BMC Plant Biology, 2015, 15, 13.	1.6	17
467	The Bimodal Distribution of Genic GC Content Is Ancestral to Monocot Species. Genome Biology and Evolution, 2015, 7, 336-348.	1.1	42
468	Seedling development traits in Brassica napus examined by gene expression analysis and association mapping. BMC Plant Biology, 2015, 15, 136.	1.6	28
469	Arabidopsis flower specific defense gene expression patterns affect resistance to pathogens. Frontiers in Plant Science, 2015, 6, 79.	1.7	17

#	Article	IF	CITATIONS
470	Novel insights into the Citrus sinensis nonhost response suggest photosynthesis decline, abiotic stress networks and secondary metabolism modifications. Functional Plant Biology, 2015, 42, 758.	1.1	4
471	Transcriptomic changes during maize roots development responsive to Cadmium (Cd) pollution using comparative RNAseq-based approach. Biochemical and Biophysical Research Communications, 2015, 464, 1040-1047.	1.0	37
472	RNA-seq for gene identification and transcript profiling in relation to root growth of bermudagrass (Cynodon dactylon) under salinity stress. BMC Genomics, 2015, 16, 575.	1.2	67
473	Nonuniform gene expression pattern detected along the longitudinal axis in the matured rice leaf. Scientific Reports, 2015, 5, 8015.	1.6	10
474	The Methylome of Soybean Roots during the Compatible Interaction with the Soybean Cyst Nematode. Plant Physiology, 2015, 168, 1364-1377.	2.3	70
475	Quantitative Proteomic and Phosphoproteomic Approaches for Deciphering the Signaling Pathway for Tension Wood Formation in Poplar. Journal of Proteome Research, 2015, 14, 3188-3203.	1.8	12
476	Transgenic poplar expressing the pine GS1a show alterations in nitrogen homeostasis during drought. Plant Physiology and Biochemistry, 2015, 94, 181-190.	2.8	24
477	Genome-wide identification, classification and expression analysis of GHMP genes family in Arabidopsis thaliana. Plant Systematics and Evolution, 2015, 301, 2125-2140.	0.3	8
478	A transcriptomic analysis of the response of the arctic pteropod Limacina helicina to carbon dioxide-driven seawater acidification. Polar Biology, 2015, 38, 1727-1740.	0.5	33
479	Natural variation in timing of stress-responsive gene expression predicts heterosis in intraspecific hybrids of Arabidopsis. Nature Communications, 2015, 6, 7453.	5.8	109
480	Novel insights into the molecular mechanisms underlying the resistance of Camellia sinensis to Ectropis oblique provided by strategic transcriptomic comparisons. Scientia Horticulturae, 2015, 192, 429-440.	1.7	24
481	Identification of differentially expressed microRNA in the stems and leaves during sugar accumulation in sweet sorghum. Gene, 2015, 571, 221-230.	1.0	27
482	Analysis of Arabidopsis floral transcriptome: detection of new florally expressed genes and expansion of Brassicaceae-specific gene families. Frontiers in Plant Science, 2015, 5, 802.	1.7	28
483	Common bean reaction to angular leaf spot comprises transcriptional modulation of genes in the ALS10.1 QTL. Frontiers in Plant Science, 2015, 6, 152.	1.7	20
484	Gene expression profile of Arabidopsis under sodium bisulfite treatment by oligo-microarray analysis. Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	0
485	Genomic architecture and functional relationships of intronless, constitutively- and alternatively-spliced genes in Brachypodium distachyon. Plant Signaling and Behavior, 2015, 10, e1042640.	1.2	6
486	Establishment of a 100-seed weight quantitative trait locus–allele matrix of the germplasm population for optimal recombination design in soybean breeding programmes. Journal of Experimental Botany, 2015, 66, 6311-6325.	2.4	91
487	A Comparative Epigenomic Analysis of Polyploidy-Derived Genes in Soybean and Common Bean. Plant Physiology, 2015, 168, 1433-1447.	2.3	88

#	Article	IF	CITATIONS
488	A putative pathogen-resistant regulatory pathway between MicroRNAs and candidate target genes in maize. Journal of Plant Biology, 2015, 58, 211-219.	0.9	11
489	Comparative Proteomic Analysis of <i>Brassica napus</i> in Response to Drought Stress. Journal of Proteome Research, 2015, 14, 3068-3081.	1.8	90
490	Toxicogenomic Responses of the Model Legume <i>Medicago truncatula</i> to Aged Biosolids Containing a Mixture of Nanomaterials (TiO ₂ , Ag, and ZnO) from a Pilot Wastewater Treatment Plant. Environmental Science & Technology, 2015, 49, 8759-8768.	4.6	70
491	RNA-seq analysis reveals genetic response and tolerance mechanisms to ozone exposure in soybean. BMC Genomics, 2015, 16, 426.	1.2	22
492	Genome-wide analysis reveals phytohormone action during cassava storage root initiation. Plant Molecular Biology, 2015, 88, 531-543.	2.0	46
493	An integrated RNA-Seq and network study reveals a complex regulation process of rice embryo during seed germination. Biochemical and Biophysical Research Communications, 2015, 464, 176-181.	1.0	20
494	A High-Resolution Tissue-Specific Proteome and Phosphoproteome Atlas of Maize Primary Roots Reveals Functional Gradients along the Root Axes. Plant Physiology, 2015, 168, 233-246.	2.3	64
495	Identification and Characterization of High Temperature Stress Responsive Novel miRNAs in French Bean (Phaseolus vulgaris). Applied Biochemistry and Biotechnology, 2015, 176, 835-849.	1.4	8
496	Transcriptomics-based analysis using RNA-Seq of the coconut (Cocos nucifera) leaf in response to yellow decline phytoplasma infection. Molecular Genetics and Genomics, 2015, 290, 1899-1910.	1.0	67
497	Transcriptome analysis of the mammary gland from GH transgenic goats during involution. Gene, 2015, 565, 228-234.	1.0	19
498	Transcriptome profiling of male gametophyte development in Nicotiana tabacum. Genomics Data, 2015, 3, 106-111.	1.3	45
499	Integrated transcriptomic and proteomic analysis of Arabidopsis thaliana exposed to glutathione unravels its role in plant defense. Plant Cell, Tissue and Organ Culture, 2015, 120, 975-988.	1.2	20
500	PAV markers in Sorghum bicolour: genome pattern, affected genes and pathways, and genetic linkage map construction. Theoretical and Applied Genetics, 2015, 128, 623-637.	1.8	15
501	Wild soybean roots depend on specific transcription factors and oxidation reduction related genesin response to alkaline stress. Functional and Integrative Genomics, 2015, 15, 651-660.	1.4	51
502	Small-Scale duplication as a genomic signature for crop improvement. Journal of Crop Science and Biotechnology, 2015, 18, 45-51.	0.7	2
503	Genome-wide expression profiling and phenotypic evaluation of European maize inbreds at seedling stage in response to heat stress. BMC Genomics, 2015, 16, 123.	1.2	83
504	The mature anther-preferentially expressed genes are associated with pollen fertility, pollen germination and anther dehiscence in rice. BMC Genomics, 2015, 16, 101.	1.2	19
505	Comparative transcriptome profiling of a rice line carrying Xa39 and its parents triggered by Xanthomonas oryzae pv. oryzae provides novel insights into the broad-spectrum hypersensitive response. BMC Genomics, 2015, 16, 111.	1.2	23

#	Article	IF	CITATIONS
506	Transcript profiling of Populus tomentosa genes in normal, tension, and opposite wood by RNA-seq. BMC Genomics, 2015, 16, 164.	1.2	58
507	A mRNA landscape of bovine embryos after standard and MAPK-inhibited culture conditions: a comparative analysis. BMC Genomics, 2015, 16, 277.	1.2	20
508	Impacts of nucleotide fixation during soybean domestication and improvement. BMC Plant Biology, 2015, 15, 81.	1.6	22
509	The transcriptome of Utricularia vulgaris, a rootless plant with minimalist genome, reveals extreme alternative splicing and only moderate sequence similarity with Utricularia gibba. BMC Plant Biology, 2015, 15, 78.	1.6	14
510	A Novel Function for Arabidopsis CYCLASE1 in Programmed Cell Death Revealed by Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) Analysis of Extracellular Matrix Proteins*. Molecular and Cellular Proteomics, 2015, 14, 1556-1568.	2.5	27
511	A Gene Expression Profiling of Early Rice Stamen Development that Reveals Inhibition of Photosynthetic Genes by OsMADS58. Molecular Plant, 2015, 8, 1069-1089.	3.9	29
512	Accumulation of long-lived mRNAs associated with germination in embryos during seed development of rice. Journal of Experimental Botany, 2015, 66, 4035-4046.	2.4	40
513	Dissection of the style's response to pollination using transcriptome profiling in self-compatible (Solanum pimpinellifolium) and self-incompatible (Solanum chilense) tomato species. BMC Plant Biology, 2015, 15, 119.	1.6	20
514	Poplar trees reconfigure the transcriptome and metabolome in response to drought in a genotype- and time-of-day-dependent manner. BMC Genomics, 2015, 16, 329.	1.2	60
515	Identification of Reproduction-Related Gene Polymorphisms Using Whole Transcriptome Sequencing in the Large White Pig Population. G3: Genes, Genomes, Genetics, 2015, 5, 1351-1360.	0.8	39
516	Constitutive expression of DaCBF7, an Antarctic vascular plant Deschampsia antarctica CBF homolog, resulted in improved cold tolerance in transgenic rice plants. Plant Science, 2015, 236, 61-74.	1.7	87
517	A CC-NBS-LRR type gene GHNTR1 confers resistance to southern root-knot nematode in Nicotiana.benthamiana and Nicotiana.tabacum. European Journal of Plant Pathology, 2015, 142, 715-729.	0.8	11
518	Transcriptomic profiling revealed the regulatory mechanism of Arabidopsis seedlings response to oxidative stress from cryopreservation. Plant Cell Reports, 2015, 34, 2161-2178.	2.8	41
519	The effect of indole-3-carbinol on PIN1 and PIN2 in Arabidopsis roots. Plant Signaling and Behavior, 2015, 10, e1062200.	1.2	20
520	Global poplar root and leaf transcriptomes reveal links between growth and stress responses under nitrogen starvation and excess. Tree Physiology, 2015, 35, 1283-1302.	1.4	131
521	High-throughput sequencing-based genome-wide identification of microRNAs expressed in developing cotton seeds. Science China Life Sciences, 2015, 58, 778-786.	2.3	10
522	Arabidopsis BNT1, an atypical TIR–NBS–LRR gene, acting as a regulator of the hormonal response to stress. Plant Science, 2015, 239, 216-229.	1.7	19
523	The additive effects of GS3 and qGL3 on rice grain length regulation revealed by genetic and transcriptome comparisons. BMC Plant Biology, 2015, 15, 156.	1.6	32

#	Article	IF	CITATIONS
524	Comprehensive meta-analysis, co-expression, and miRNA nested network analysis identifies gene candidates in citrus against Huanglongbing disease. BMC Plant Biology, 2015, 15, 184.	1.6	51
525	GLABRA2 Directly Suppresses Basic Helix-Loop-Helix Transcription Factor Genes with Diverse Functions in Root Hair Development. Plant Cell, 2015, 27, tpc.15.00607.	3.1	97
526	RiceNet v2: an improved network prioritization server for rice genes. Nucleic Acids Research, 2015, 43, W122-W127.	6.5	95
527	Perturbation of Maize Phenylpropanoid Metabolism by an AvrE Family Type III Effector from <i>Pantoea stewartii</i> Â Â. Plant Physiology, 2015, 167, 1117-1135.	2.3	44
528	The Genome and Methylome of a Beetle with Complex Social Behavior, <i>Nicrophorus vespilloides</i> (Coleoptera: Silphidae). Genome Biology and Evolution, 2015, 7, 3383-3396.	1.1	87
529	Analysis of global gene expression profiles in tobacco roots under drought stress. Open Life Sciences, 2014, 10, .	0.6	2
530	Transcriptome sequencing reveals the roles of transcription factors in modulating genotype by nitrogen interaction in maize. Plant Cell Reports, 2015, 34, 1761-1771.	2.8	21
531	Sequencing of 15Â622 geneâ€bearing BAC s clarifies the geneâ€dense regions of the barley genome. Plant Journal, 2015, 84, 216-227.	2.8	36
532	Meloidogyne javanica fatty acid- and retinol-binding protein (Mj-FAR-1) regulates expression of lipid-, cell wall-, stress- and phenylpropanoid-related genes during nematode infection of tomato. BMC Genomics, 2015, 16, 272.	1.2	48
533	Unraveling the evolution and regulation of the alternative oxidase gene family in plants. Development Genes and Evolution, 2015, 225, 331-339.	0.4	7
534	Transcriptomic changes due to water deficit define a general soybean response and accession-specific pathways for drought avoidance. BMC Plant Biology, 2015, 15, 26.	1.6	47
535	DNA-binding protein prediction using plant specific support vector machines: validation and application of a new genome annotation tool. Nucleic Acids Research, 2015, 43, e158-e158.	6.5	20
536	Effect of lipo-chitooligosaccharide on early growth of C ₄ grass seedlings. Journal of Experimental Botany, 2015, 66, 5727-5738.	2.4	39
537	Transcription Profiles Reveal Sugar and Hormone Signaling Pathways Mediating Flower Induction in Apple (<i>Malus domestica</i> Borkh.). Plant and Cell Physiology, 2015, 56, 2052-2068.	1.5	118
538	Transcription Factor Arabidopsis Activating Factor1 Integrates Carbon Starvation Responses with Trehalose Metabolism. Plant Physiology, 2015, 169, 379-390.	2.3	62
539	Hybrid mimics and hybrid vigor in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4959-67.	3.3	51
540	Transcriptomic analysis comparing stay-green and senescent <i>Sorghum bicolor</i> lines identifies a role for proline biosynthesis in the stay-green trait. Journal of Experimental Botany, 2015, 66, 7061-7073.	2.4	41
541	Population Level Purifying Selection and Gene Expression Shape Subgenome Evolution in Maize. Molecular Biology and Evolution, 2015, 32, msv191.	3.5	51

#	Article	IF	CITATIONS
542	Drought stress delays endosperm development and misregulates genes associated with cytoskeleton organization and grain quality proteins in developing wheat seeds. Plant Science, 2015, 240, 109-119.	1.7	64
543	Proteomic analysis of the effects of gibberellin on increased fruit sink strength in Asian pear (Pyrus) Tj ETQq1 1	0.784314	rgBT /Overloo 20
544	Meta-Analysis of Arabidopsis KANADI1 Direct Target Genes Identifies a Basic Growth-Promoting Module Acting Upstream of Hormonal Signaling Pathways. Plant Physiology, 2015, 169, 1240-1253.	2.3	26
545	Accelerated rates of protein evolution in barley grain and pistil biased genes might be legacy of domestication. Plant Molecular Biology, 2015, 89, 253-261.	2.0	6
546	Autotetraploid rice methylome analysis reveals methylation variation of transposable elements and their effects on gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E7022-9.	3.3	137
547	Transcriptome-Wide Identification of RNA Targets of Arabidopsis SERINE/ARGININE-RICH45 Uncovers the Unexpected Roles of This RNA Binding Protein in RNA Processing. Plant Cell, 2015, 27, 3294-3308.	3.1	107
548	Hormone-regulated defense and stress response networks contribute to heterosis in <i>Arabidopsis</i> F1 hybrids. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6397-406.	3.3	110
549	Daytime soybean transcriptome fluctuations during water deficit stress. BMC Genomics, 2015, 16, 505.	1.2	45
550	Differential expression of microRNAs by arsenate and arsenite stress in natural accessions of rice. Metallomics, 2015, 7, 174-187.	1.0	71
551	Quantitative trait loci mapping and transcriptome analysis reveal candidate genes regulating the response to ozone in <scp><i>A</i></scp> <i>rabidopsis thaliana</i> . Plant, Cell and Environment, 2015, 38, 1418-1433.	2.8	36
552	Stress signaling in response to polycyclic aromatic hydrocarbon exposure in Arabidopsis thaliana involves a nucleoside diphosphate kinase, NDPK-3. Planta, 2015, 241, 95-107.	1.6	33
553	Metabolomeâ€genomeâ€wide association study dissects genetic architecture for generating natural variation in rice secondary metabolism. Plant Journal, 2015, 81, 13-23.	2.8	152
554	Stress responses to trichlorophenol in Arabidopsis and integrative analysis of alteration in transcriptional profiling from microarray. Gene, 2015, 555, 159-168.	1.0	13
555	Synergistic regulatory networks mediated by microRNAs and transcription factors under drought, heat and salt stresses in Oryza Sativa spp Gene, 2015, 555, 127-139.	1.0	28
556	Bioinformatics approaches for the functional interpretation of protein lists: From ontology term enrichment to network analysis. Proteomics, 2015, 15, 981-996.	1.3	27
557	Transcriptional profiling of apple fruit in response to heat treatment: Involvement of a defense response during Penicillium expansum infection. Postharvest Biology and Technology, 2015, 101, 37-48.	2.9	40
558	More plant growth but less plant defence? First global gene expression data for plants grown in soil amended with biochar. GCB Bioenergy, 2015, 7, 658-672.	2.5	135
559	Prediction and characterization of Tomato leaf curl New Delhi virus (ToLCNDV) responsive novel microRNAs in Solanum lycopersicum. Virus Research, 2015, 195, 183-195.	1.1	40

#	Article	IF	CITATIONS
560	The floral transcriptome of <i><scp>E</scp>ucalyptus grandis</i> . New Phytologist, 2015, 206, 1406-1422.	3.5	61
561	Identification and characterisation of tobacco micro <scp>RNA</scp> transcriptome using highâ€throughput sequencing. Plant Biology, 2015, 17, 591-598.	1.8	12
562	Global transcriptional profiling of a coldâ€ŧolerant rice variety under moderate cold stress reveals different cold stress response mechanisms. Physiologia Plantarum, 2015, 154, 381-394.	2.6	47
563	Genome-wide identification of novel long non-coding RNAs in Populus tomentosa tension wood, opposite wood and normal wood xylem by RNA-seq. Planta, 2015, 241, 125-143.	1.6	109
564	Analysis of gene expression changes in peach leaves in response to <i><scp>P</scp>lum pox virus</i> infection using <scp>RNA</scp> â€ <scp>S</scp> eq. Molecular Plant Pathology, 2015, 16, 164-176.	2.0	56
565	Analysis of the Drought Stress-Responsive Transcriptome of Black Cottonwood (Populus) Tj ETQq1 1 0.784314 i	gBT /Over 1.0	lock 10 Tf 50
566	Transcript profiling analysis of Rhodosporidium paludigenum-mediated signalling pathways and defense responses in mandarin orange. Food Chemistry, 2015, 172, 603-612.	4.2	32
567	Differences in Physiological Characteristics and Gene Expression Levels in Fruits between Japanese Persimmon (<i>Diospyros kaki</i> Thunb.) †Hiratanenashi' and Its Small Fruit Mutant †Totsutanenashi'. Horticulture Journal, 2016, 85, 306-314.	0.3	8
568	Dynamic transcriptome profiling of Bean Common Mosaic Virus (BCMV) infection in Common Bean (Phaseolus vulgaris L.). BMC Genomics, 2016, 17, 613.	1.2	30
569	Reduced representation bisulphite sequencing of ten bovine somatic tissues reveals DNA methylation patterns and their impacts on gene expression. BMC Genomics, 2016, 17, 779.	1.2	30
570	α2-COP is involved in early secretory traffic in Arabidopsis and is required for plant growth. Journal of Experimental Botany, 2016, 68, erw446.	2.4	22
571	Population Structure in the Model Grass <i>Brachypodium distachyon</i> Is Highly Correlated with Flowering Differences across Broad Geographic Areas. Plant Genome, 2016, 9, plantgenome2015.08.0074.	1.6	29
572	Transcript Polymorphism Rates in Soybean Seed Tissue Are Increased in a Single Transformant of Glycine max. International Journal of Plant Genomics, 2016, 2016, 1-12.	2.2	2
573	Gene Expression Analysis of Alfalfa Seedlings Response to Acid-Aluminum. International Journal of Genomics, 2016, 2016, 1-13.	0.8	18
574	Identification and Functional Analysis of microRNAs Involved in the Anther Development in Cotton Genic Male Sterile Line Yu98-8A. International Journal of Molecular Sciences, 2016, 17, 1677.	1.8	14
575	Temporal Shift of Circadian-Mediated Gene Expression and Carbon Fixation Contributes to Biomass Heterosis in Maize Hybrids. PLoS Genetics, 2016, 12, e1006197.	1.5	100
576	Identification of Crowding Stress Tolerance Co-Expression Networks Involved in Sweet Corn Yield. PLoS ONE, 2016, 11, e0147418.	1.1	12
577	Identification of Gene Modules Associated with Low Temperatures Response in Bambara Groundnut by Network-Based Analysis. PLoS ONE, 2016, 11, e0148771.	1.1	44

#	Article	IF	CITATIONS
578	Physiological and Transcriptome Responses to Combinations of Elevated CO2 and Magnesium in Arabidopsis thaliana. PLoS ONE, 2016, 11, e0149301.	1.1	19
579	Comparative RNA-Seq Analysis Reveals That Regulatory Network of Maize Root Development Controls the Expression of Genes in Response to N Stress. PLoS ONE, 2016, 11, e0151697.	1.1	29
580	Linear Energy Transfer-Dependent Change in Rice Gene Expression Profile after Heavy-Ion Beam Irradiation. PLoS ONE, 2016, 11, e0160061.	1.1	8
581	Transcriptome Dynamics during Maize Endosperm Development. PLoS ONE, 2016, 11, e0163814.	1.1	26
582	Transcriptome Profiling of the Phaseolus vulgaris - Colletotrichum lindemuthianum Pathosystem. PLoS ONE, 2016, 11, e0165823.	1.1	51
583	Microarray Meta-Analysis Focused on the Response of Genes Involved in Redox Homeostasis to Diverse Abiotic Stresses in Rice. Frontiers in Plant Science, 2015, 6, 1260.	1.7	24
584	Microarray Analysis of Rice d1 (RGA1) Mutant Reveals the Potential Role of G-Protein Alpha Subunit in Regulating Multiple Abiotic Stresses Such as Drought, Salinity, Heat, and Cold. Frontiers in Plant Science, 2016, 7, 11.	1.7	67
585	RNA-SEQ Reveals Transcriptional Level Changes of Poplar Roots in Different Forms of Nitrogen Treatments. Frontiers in Plant Science, 2016, 7, 51.	1.7	27
586	Quantitative Proteomic Analysis Provides Novel Insights into Cold Stress Responses in Petunia Seedlings. Frontiers in Plant Science, 2016, 7, 136.	1.7	31
587	High-Density Genetic Mapping Identifies New Major Loci for Tolerance to Low-Phosphorus Stress in Soybean. Frontiers in Plant Science, 2016, 7, 372.	1.7	57
588	Genetic Adaptation of Giant Lobelias (Lobelia aberdarica and Lobelia telekii) to Different Altitudes in East African Mountains. Frontiers in Plant Science, 2016, 7, 488.	1.7	9
589	Soybean Roots Grown under Heat Stress Show Global Changes in Their Transcriptional and Proteomic Profiles. Frontiers in Plant Science, 2016, 7, 517.	1.7	56
590	Trait Specific Expression Profiling of Salt Stress Responsive Genes in Diverse Rice Genotypes as Determined by Modified Significance Analysis of Microarrays. Frontiers in Plant Science, 2016, 7, 567.	1.7	23
591	Identification and Characterization of Erysiphe necator-Responsive MicroRNAs in Chinese Wild Vitis pseudoreticulata by High-Throughput Sequencing. Frontiers in Plant Science, 2016, 7, 621.	1.7	50
592	Identification of microRNAs Involved in Regeneration of the Secondary Vascular System in Populus tomentosa Carr. Frontiers in Plant Science, 2016, 7, 724.	1.7	29
593	Novel Meiotic miRNAs and Indications for a Role of PhasiRNAs in Meiosis. Frontiers in Plant Science, 2016, 7, 762.	1.7	56
594	Nod Factor Effects on Root Hair-Specific Transcriptome of Medicago truncatula: Focus on Plasma Membrane Transport Systems and Reactive Oxygen Species Networks. Frontiers in Plant Science, 2016, 7, 794.	1.7	55
595	Natural Allelic Variations in Highly Polyploidy Saccharum Complex. Frontiers in Plant Science, 2016, 7, 804.	1.7	40

#	Article	IF	CITATIONS
596	Short-Term Treatment with the Urease Inhibitor N-(n-Butyl) Thiophosphoric Triamide (NBPT) Alters Urea Assimilation and Modulates Transcriptional Profiles of Genes Involved in Primary and Secondary Metabolism in Maize Seedlings. Frontiers in Plant Science, 2016, 7, 845.	1.7	38
597	Transcriptome Profiling Revealed Stress-Induced and Disease Resistance Genes Up-Regulated in PRSV Resistant Transgenic Papaya. Frontiers in Plant Science, 2016, 7, 855.	1.7	28
598	Mining Functional Modules in Heterogeneous Biological Networks Using Multiplex PageRank Approach. Frontiers in Plant Science, 2016, 7, 903.	1.7	18
599	A Genetic Relationship between Phosphorus Efficiency and Photosynthetic Traits in Soybean As Revealed by QTL Analysis Using a High-Density Genetic Map. Frontiers in Plant Science, 2016, 7, 924.	1.7	65
600	A De Novo-Assembly Based Data Analysis Pipeline for Plant Obligate Parasite Metatranscriptomic Studies. Frontiers in Plant Science, 2016, 7, 925.	1.7	10
601	Comparative Transcriptome Analysis Reveals Heat-Responsive Genes in Chinese Cabbage (Brassica rapa) Tj ETQq1	1,0.7843 1.7	14 rgBT /Ov 46
602	Natural Genetic Variation of Seed Micronutrients of Arabidopsis thaliana Grown in Zinc-Deficient and Zinc-Amended Soil. Frontiers in Plant Science, 2016, 7, 1070.	1.7	7
603	Identification of Drought Tolerant Mechanisms in Maize Seedlings Based on Transcriptome Analysis of Recombination Inbred Lines. Frontiers in Plant Science, 2016, 7, 1080.	1.7	98
604	Metabolic Reconstruction of Setaria italica: A Systems Biology Approach for Integrating Tissue-Specific Omics and Pathway Analysis of Bioenergy Grasses. Frontiers in Plant Science, 2016, 7, 1138.	1.7	24
605	Cotton Leaf Curl Multan Virus-Derived Viral Small RNAs Can Target Cotton Genes to Promote Viral Infection. Frontiers in Plant Science, 2016, 7, 1162.	1.7	27
606	A Snapshot of Functional Genetic Studies in Medicago truncatula. Frontiers in Plant Science, 2016, 7, 1175.	1.7	39
607	Genome-Wide Analysis of MicroRNA Responses to the Phytohormone Abscisic Acid in Populus euphratica. Frontiers in Plant Science, 2016, 7, 1184.	1.7	28
608	Temporal-Spatial Transcriptome Analyses Provide Insights into the Development of Petaloid Androecium in Canna indica. Frontiers in Plant Science, 2016, 7, 1194.	1.7	12
609	Differential Network Analysis Reveals Evolutionary Complexity in Secondary Metabolism of Rauvolfia serpentina over Catharanthus roseus. Frontiers in Plant Science, 2016, 7, 1229.	1.7	16
610	Quantitative Resistance to Verticillium Wilt in Medicago truncatula Involves Eradication of the Fungus from Roots and Is Associated with Transcriptional Responses Related to Innate Immunity. Frontiers in Plant Science, 2016, 7, 1431.	1.7	13
611	Gene Evolutionary Trajectories and GC Patterns Driven by Recombination in Zea mays. Frontiers in Plant Science, 2016, 7, 1433.	1.7	16
612	Salicylic Acid Induction of Flavonoid Biosynthesis Pathways in Wheat Varies by Treatment. Frontiers in Plant Science, 2016, 7, 1447.	1.7	85
613	Physiological Basis and Transcriptional Profiling of Three Salt-Tolerant Mutant Lines of Rice. Frontiers in Plant Science, 2016, 7, 1462.	1.7	13

#	Article	IF	CITATIONS
614	Transcriptome Sequencing Identified Genes and Gene Ontologies Associated with Early Freezing Tolerance in Maize. Frontiers in Plant Science, 2016, 7, 1477.	1.7	43
615	High-Throughput Sequencing Reveals H2O2 Stress-Associated MicroRNAs and a Potential Regulatory Network in Brachypodium distachyon Seedlings. Frontiers in Plant Science, 2016, 7, 1567.	1.7	16
616	Genome-Wide Differences in DNA Methylation Changes in Two Contrasting Rice Genotypes in Response to Drought Conditions. Frontiers in Plant Science, 2016, 7, 1675.	1.7	81
617	A Developmental and Molecular View of Formation of Auxin-Induced Nodule-Like Structures in Land Plants. Frontiers in Plant Science, 2016, 7, 1692.	1.7	22
618	Transcriptomic Effects of the Cell Cycle Regulator LGO in Arabidopsis Sepals. Frontiers in Plant Science, 2016, 7, 1744.	1.7	18
619	RNA-seq Transcriptome Response of Flax (Linum usitatissimum L.) to the Pathogenic Fungus Fusarium oxysporum f. sp. lini. Frontiers in Plant Science, 2016, 7, 1766.	1.7	67
620	Comparative Transcriptomics of Strawberries (Fragaria spp.) Provides Insights into Evolutionary Patterns. Frontiers in Plant Science, 2016, 7, 1839.	1.7	33
621	Identification and Analysis of NaHCO3 Stress Responsive Genes in Wild Soybean (Glycine soja) Roots by RNA-seq. Frontiers in Plant Science, 2016, 7, 1842.	1.7	31
622	Identification of Flowering-Related Genes Responsible for Differences in Bolting Time between Two Radish Inbred Lines. Frontiers in Plant Science, 2016, 7, 1844.	1.7	26
623	Identification and Network-Enabled Characterization of Auxin Response Factor Genes in Medicago truncatula. Frontiers in Plant Science, 2016, 7, 1857.	1.7	25
624	Transcriptomic Profiling Reveals Metabolic and Regulatory Pathways in the Desiccation Tolerance of Mungbean (Vigna radiata [L.] R. Wilczek). Frontiers in Plant Science, 2016, 7, 1921.	1.7	23
625	Jasmonate Signalling and Defence Responses in the Model Legume Medicago truncatula—A Focus on Responses to Fusarium Wilt Disease. Plants, 2016, 5, 11.	1.6	9
626	Global transcriptome analysis of Sabina chinensis (Cupressaceae), a valuable reforestation conifer. Molecular Breeding, 2016, 36, 1.	1.0	6
627	RNA-Seq revealed the impairment of immune defence of tilapia against the infection of Streptococcus agalactiae with simulated climate warming. Fish and Shellfish Immunology, 2016, 55, 679-689.	1.6	39
628	Temporal kinetics of the transcriptional response to carbon depletion and sucrose readdition in <i>Arabidopsis</i> seedlings. Plant, Cell and Environment, 2016, 39, 768-786.	2.8	37
629	Root–shoot interactions explain the reduction of leaf mineral content in <i>Arabidopsis</i> plants grown under elevated [<scp>CO₂</scp>] conditions. Physiologia Plantarum, 2016, 158, 65-79.	2.6	42
630	Imprinted gene <i>OsFIE1</i> modulates rice seed development by influencing nutrient metabolism and modifying genome H3K27me3. Plant Journal, 2016, 87, 305-317.	2.8	37
631	Comparative proteomics analysis of silkworm hemolymph during the stages of metamorphosis via liquid chromatography and mass spectrometry. Proteomics, 2016, 16, 1421-1431.	1.3	23
#	Article	IF	CITATIONS
-----	--	-----	-----------
632	Genome-Wide Mapping of Targets of Maize Histone Deacetylase HDA101 Reveals Its Function and Regulatory Mechanism during Seed Development. Plant Cell, 2016, 28, 629-645.	3.1	49
633	Natural variation of H3K27me3 modification in two <i>Arabidopsis</i> accessions and their hybrid. Journal of Integrative Plant Biology, 2016, 58, 466-474.	4.1	17
634	The multivariate association between genomewide <scp>DNA</scp> methylation and climate across the range of <i>Arabidopsis thaliana</i> . Molecular Ecology, 2016, 25, 1823-1837.	2.0	60
635	A transcriptomeâ€wide study on the micro <scp>RNA</scp> ―and the Argonaute 1â€enriched small <scp>RNA</scp> â€mediated regulatory networks involved in plant leaf senescence. Plant Biology, 2016, 18, 197-205.	1.8	18
636	Feedback Regulation of ABA Signaling and Biosynthesis by a bZIP Transcription Factor Targets Drought-Resistance-Related Genes. Plant Physiology, 2016, 171, 2810-2825.	2.3	245
637	A comprehensive study of the genomic differentiation between temperate Dent and Flint maize. Genome Biology, 2016, 17, 137.	3.8	51
638	Genetic architecture of growth traits in <i>Populus</i> revealed by integrated quantitative trait locus (<scp>QTL</scp>) analysis and association studies. New Phytologist, 2016, 209, 1067-1082.	3.5	73
639	Expression and diversification analysis reveals transposable elements play important roles in the origin of <scp>L</scp> ycopersiconâ€specific lnc <scp>RNA</scp> s in tomato. New Phytologist, 2016, 209, 1442-1455.	3.5	87
640	Recent matingâ€system evolution in <i>Eichhornia</i> is accompanied by <i>cis</i> â€regulatory divergence. New Phytologist, 2016, 211, 697-707.	3.5	7
641	Comparative metabolomic analysis reveals a reactive oxygen speciesâ€dominated dynamic model underlying chilling environment adaptation and tolerance in rice. New Phytologist, 2016, 211, 1295-1310.	3.5	118
642	Genomeâ€wide identification and characterization of <i>Eutrema salsugineum</i> <scp>microRNAs</scp> for salt tolerance. Physiologia Plantarum, 2016, 157, 453-468.	2.6	13
643	Definition of a core module for the nuclear retrograde response to altered organellar gene expression identifies <scp>GLK</scp> overexpressors as <i>gun</i> mutants. Physiologia Plantarum, 2016, 157, 297-309.	2.6	48
644	Whole-transcriptome response to water stress in a California endemic oak, <i>Quercus lobata</i> . Tree Physiology, 2017, 37, 632-644.	1.4	37
645	POWERDRESS and HDA9 interact and promote histone H3 deacetylation at specific genomic sites in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14858-14863.	3.3	111
646	Global Transcriptome Analysis Reveals Differences in Gene Expression Patterns Between Nonhyperhydric and Hyperhydric Peach Leaves. Plant Genome, 2016, 9, plantgenome2015.09.0080.	1.6	23
647	An Expanded Maize Gene Expression Atlas based on RNA Sequencing and its Use to Explore Root Development. Plant Genome, 2016, 9, plantgenome2015.04.0025.	1.6	289
648	De novo Transcriptome Assembly and Dynamic Spatial Gene Expression Analysis in Red Clover. Plant Genome, 2016, 9, plantgenome2015.06.0048.	1.6	20
649	Identification of candidate thermotolerance genes during early seedling stage in upland cotton (Gossypium hirsutum L.) revealed by comparative transcriptome analysis. Acta Physiologiae Plantarum, 2016, 38, 1.	1.0	1

#	Article	IF	Citations
650	Comparative phylogenetic analysis and transcriptional profiling of MADS-box gene family identified DAM and FLC-like genes in apple (Malusx domestica). Scientific Reports, 2016, 6, 20695.	1.6	80
651	A novel mutant allele of SSI2 confers a better balance between disease resistance and plant growth inhibition on Arabidopsis thaliana. BMC Plant Biology, 2016, 16, 208.	1.6	21
652	RNA-seq-based digital gene expression analysis reveals modification of host defense responses by rice stripe virus during disease symptom development in Arabidopsis. Virology Journal, 2016, 13, 202.	1.4	32
653	PoplarGene: poplar gene network and resource for mining functional information for genes from woody plants. Scientific Reports, 2016, 6, 31356.	1.6	11
654	Coexpression network analysis of the genes regulated by two types of resistance responses to powdery mildew in wheat. Scientific Reports, 2016, 6, 23805.	1.6	29
655	Co-expression network analyses identify functional modules associated with development and stress response in Gossypium arboreum. Scientific Reports, 2016, 6, 38436.	1.6	46
656	Temporal Transcription Profiling of Sweet Orange in Response to PthA4-Mediated Xanthomonas citri subsp. citri Infection. Phytopathology, 2016, 106, 442-451.	1.1	12
657	Differential apple transcriptomic responses to <i>Penicillium expansum</i> (pathogen) and <i>Penicillium digitatum</i> (non-host pathogen) infection. Acta Horticulturae, 2016, , 49-56.	0.1	0
658	Comparative transcriptome analysis highlights the crucial roles of photosynthetic system in drought stress adaptation in upland rice. Scientific Reports, 2016, 6, 19349.	1.6	57
659	Transcriptomic comparison between Brassica oleracea and rice (Oryza sativa) reveals diverse modulations on cell death in response to Sclerotinia sclerotiorum. Scientific Reports, 2016, 6, 33706.	1.6	11
660	Co-expression network analysis of duplicate genes in maize (Zea mays L.) reveals no subgenome bias. BMC Genomics, 2016, 17, 875.	1.2	36
661	Ty1-copia elements reveal diverse insertion sites linked to polymorphisms among flax (Linum) Tj ETQq1 1 0.7843	14.rgBT /0	Dvgrlock 10 T
662	Decoding regulatory landscape of somatic embryogenesis reveals differential regulatory networks between japonica and indica rice subspecies. Scientific Reports, 2016, 6, 23050.	1.6	43
663	Arabidopsis SWI/SNF chromatin remodeling complex binds both promoters and terminators to regulate gene expression. Nucleic Acids Research, 2017, 45, gkw1273.	6.5	58
664	Ectopically expressed glutaredoxin ROXY19 negatively regulates the detoxification pathway in Arabidopsis thaliana. BMC Plant Biology, 2016, 16, 200.	1.6	30
665	De novo Transcriptome Analysis Reveals Distinct Defense Mechanisms by Young and Mature Leaves of Hevea brasiliensis (Para Rubber Tree). Scientific Reports, 2016, 6, 33151.	1.6	40
666	High light intensity plays a major role in emergence of population level variation in Arabidopsis thaliana along an altitudinal gradient. Scientific Reports, 2016, 6, 26160.	1.6	14
667	Comparative transcriptome profiling and SSR marker identification in three Jerusalem artichoke (Helianthus tuberosus L.) cultivars exhibiting phenotypic variation. Plant Biotechnology Reports, 2016, 10, 447-461.	0.9	9

#	Article	IF	Citations
668	Genome-wide analysis of genes associated with bolting in heading type chinese cabbage. Euphytica, 2016, 212, 65-82.	0.6	5
669	InPSR42, a putative 14-3-3 protein, regulates petal opening and senescence in Japanese morning glory. Acta Horticulturae, 2016, , 105-110.	0.1	0
670	Small RNA profiles in soybean primary root tips under water deficit. BMC Systems Biology, 2016, 10, 126.	3.0	33
671	Downâ€regulation of <i>Os<scp>SPX</scp>1</i> caused semiâ€rnale sterility, resulting in reduction of grain yield in rice. Plant Biotechnology Journal, 2016, 14, 1661-1672.	4.1	29
672	Small <scp>RNA</scp> and degradome deep sequencing reveals droughtâ€and tissueâ€specific micrornas and their important roles in droughtâ€sensitive and droughtâ€tolerant tomato genotypes. Plant Biotechnology Journal, 2016, 14, 1727-1746.	4.1	146
673	The C-terminal motif of SiAGO1b is required for the regulation of growth, development and stress responses in foxtail millet (<i>Setaria italica</i> (L.) P. Beauv). Journal of Experimental Botany, 2016, 67, 3237-3249.	2.4	33
674	Differential transcriptomic responses to Fusarium graminearum infection in two barley quantitative trait loci associated with Fusarium head blight resistance. BMC Genomics, 2016, 17, 387.	1.2	64
675	Microbial symbionts affect Pisum sativum proteome and metabolome under Didymella pinodes infection. Journal of Proteomics, 2016, 143, 173-187.	1.2	42
676	Drought stress tolerance strategies revealed by RNA-Seq in two sorghum genotypes with contrasting WUE. BMC Plant Biology, 2016, 16, 115.	1.6	165
677	Morphological Convergence Between an Allopolyploid and One of its Parental Species Correlates with Biased Gene Expression and DNA Loss. Journal of Heredity, 2016, 107, 445-454.	1.0	11
678	Copy number variations in Hanwoo and Yanbian cattle genomes using the massively parallel sequencing data. Gene, 2016, 589, 36-42.	1.0	4
679	Metaâ€analysis and metaâ€regression of transcriptomic responses to water stress in Arabidopsis. Plant Journal, 2016, 85, 548-560.	2.8	64
680	Differential regulation of meristem size, morphology and organization by the ERECTA, CLAVATA and class III HD-ZIP pathways. Development (Cambridge), 2016, 143, 1612-22.	1.2	72
681	Long-term iron deficiency: Tracing changes in the proteome of different pea (Pisum sativum L.) cultivars. Journal of Proteomics, 2016, 140, 13-23.	1.2	9
682	Variation in Linked Selection and Recombination Drive Genomic Divergence during Allopatric Speciation of European and American Aspens. Molecular Biology and Evolution, 2016, 33, 1754-1767.	3.5	83
683	Identification of Bovine Sperm Surface Proteins Involved in Carbohydrate-mediated Fertilization Interactions. Molecular and Cellular Proteomics, 2016, 15, 2236-2251.	2.5	14
684	Differential miRNA expression in maize ear subjected to shading tolerance. Acta Physiologiae Plantarum, 2016, 38, 1.	1.0	5
685	Transcriptome analysis of reproductive-stage <i>Arabidopsis</i> plants exposed gamma-ray irradiation at various doses. International Journal of Radiation Biology, 2016, 92, 451-465.	1.0	13

		CITATION REPORT	
#	Article	IF	Citations
686	A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nature Genetics, 2016, 48, 657-666.	9.4	432
687	Cassava (Manihot esculenta) transcriptome analysis in response to infection by the fungus Colletotrichum gloeosporioides using an oligonucleotide-DNA microarray. Journal of Plant Research, 2016, 129, 711-726.	1.2	28
688	Identification of microRNAs involved in chilling response of maize by high-throughput sequencing. Biologia Plantarum, 2016, 60, 251-260.	1.9	4
689	Structural genomics and transcriptional characterization of the Dormancy-Associated MADS-box genes during bud dormancy progression in apple. Tree Genetics and Genomes, 2016, 12, 1.	0.6	35
690	Early transcriptomic response of Arabidopsis thaliana to polymetallic contamination: implications for the identification of potential biomarkers of metal exposure. Metallomics, 2016, 8, 518-531.	1.0	10
691	Meta-analysis of transcriptome data identified TGTCNN motif variants associated with the response plant hormone auxin in <i>Arabidopsis thaliana L.</i> . Journal of Bioinformatics and Computationa Biology, 2016, 14, 1641009.	e to al 0.3	31
692	Unraveling K63 Polyubiquitination Networks by Sensor-Based Proteomics. Plant Physiology, 2016, 1808-1820.	171, <u>2.3</u>	53
693	Genome-wide identification and functional prediction of nitrogen-responsive intergenic and intror long non-coding RNAs in maize (Zea mays L.). BMC Genomics, 2016, 17, 350.	ic 1.2	107
694	Transcriptome profiling of developmental leaf senescence in sorghum (Sorghum bicolor). Plant Molecular Biology, 2016, 92, 555-580.	2.0	36
695	Arabidopsis COP1-interacting protein 1 is a positive regulator of ABA response. Biochemical and Biophysical Research Communications, 2016, 477, 847-853.	1.0	15
696	A meta-analysis of potential candidate genes associated with salinity stress tolerance in rice. Agri Gene, 2016, 1, 126-134.	1.9	6
697	Transcript and hormone analyses reveal the involvement of ABA-signalling, hormone crosstalk and genotype-specific biological processes in coldâ€ s hock response in wheat. Plant Science, 2016, 25	3, 86-97. ^{1.7}	21
698	Plant adaptation or acclimation to rising CO ₂ ? Insight from first multigenerational RNA‣eq transcriptome. Global Change Biology, 2016, 22, 3760-3773.	4.2	47
699	Ethylene-Regulated Glutamate Dehydrogenase Fine-Tunes Metabolism during Anoxia-Reoxygenati Plant Physiology, 2016, 172, 1548-1562.	on. 2.3	53
700	Proteomic analysis of pear (<i>Pyrus pyrifolia</i>) ripening process provides new evidence for the sugar/acid metabolism difference between core and mesocarp. Proteomics, 2016, 16, 3025-3041.	1.3	16
701	Genome-wide mining for microRNAs and their targets in Betula luminifera using high-throughput sequencing and degradome analyses. Tree Genetics and Genomes, 2016, 12, 1.	0.6	10
702	Transcriptomic analysis for elucidating the physiological effects of 5-aminolevulinic acid accumulation on Corynebacterium glutamicum. Microbiological Research, 2016, 192, 292-299.	2.5	8
703	Nitrogen assimilation system in maize is regulated by developmental and tissue-specific mechanis Plant Molecular Biology, 2016, 92, 293-312.	ns. 2.0	16

#	Article	IF	CITATIONS
704	Gene discovery and genome editing to develop cisgenic crops with improved resistance against pathogen infection. Canadian Journal of Plant Pathology, 2016, 38, 279-295.	0.8	17
705	Coupling of gel-based 2-DE and 1-DE shotgun proteomics approaches to dig deep into the leaf senescence proteome of Glycine max. Journal of Proteomics, 2016, 148, 65-74.	1.2	30
706	Early changes of gene activity in developing seedlings of Arabidopsis hybrids relative to parents may contribute to hybrid vigour. Plant Journal, 2016, 88, 597-607.	2.8	37
707	First steps in studying the origins of secondary woodiness in <i>Begonia</i> (Begoniaceae): combining anatomy, phylogenetics, and stem transcriptomics. Biological Journal of the Linnean Society, 2016, 117, 121-138.	0.7	30
708	Multiâ€scale modeling of <i>Arabidopsis thaliana</i> response to different CO ₂ conditions: From gene expression to metabolic flux. Journal of Integrative Plant Biology, 2016, 58, 2-11.	4.1	20
709	Genome-Wide Discovery of Tissue-Specific Genes in Maize. Plant Molecular Biology Reporter, 2016, 34, 1204-1214.	1.0	3
710	Analyses of Drought-Tolerance Mechanism of Rice Based on the Transcriptome and Gene Ontology Data. , 2016, , 415-432.		2
711	Systems Biology Approaches to Improve Drought Stress Tolerance in Plants: State of the Art and Future Challenges. , 2016, , 433-471.		1
712	Conserved but Attenuated Parental Gene Expression in Allopolyploids: Constitutive Zinc Hyperaccumulation in the Allotetraploid <i>Arabidopsis kamchatica</i> . Molecular Biology and Evolution, 2016, 33, 2781-2800.	3.5	40
713	Poplar CBF1 functions specifically in an integrated cold regulatory network. Tree Physiology, 2016, 37, 98-115.	1.4	9
714	Abundant protein phosphorylation potentially regulates Arabidopsis anther development. Journal of Experimental Botany, 2016, 67, 4993-5008.	2.4	34
715	Multiple mutualist effects on genomewide expression in the tripartite association between <i>Medicago truncatula,</i> nitrogenâ€fixing bacteria and mycorrhizal fungi. Molecular Ecology, 2016, 25, 4946-4962.	2.0	51
716	Split-ubiquitin yeast two-hybrid interaction reveals a novel interaction between a natural resistance associated macrophage protein and a membrane bound thioredoxin in Brassica juncea. Plant Molecular Biology, 2016, 92, 519-537.	2.0	4
717	miRNA Profiling in Plants: Current Identification and Expression Approaches. , 2016, , 189-215.		0
718	Adaptive mechanisms and genomic plasticity for drought tolerance identified in European black poplar (<i>Populus nigra</i> L.). Tree Physiology, 2016, 36, 909-928.	1.4	56
719	Applications of Quantitative Proteomics in Plant Research. , 2016, , 1-29.		5
720	The plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly regulate thermomemory in Arabidopsis. Nature Communications, 2016, 7, 12439.	5.8	128
721	De novo transcriptome sequencing in Monsonia burkeana revealed putative genes for key metabolic pathways involved in tea quality and medicinal value. 3 Biotech, 2016, 6, 250.	1.1	3

#	Article	IF	CITATIONS
722	Association of the molecular regulation of ear leaf senescence/stress response and photosynthesis/metabolism with heterosis at the reproductive stage in maize. Scientific Reports, 2016, 6, 29843.	1.6	23
723	Genome-scale mRNA and small RNA transcriptomic insights into initiation of citrus apomixis. Journal of Experimental Botany, 2016, 67, 5743-5756.	2.4	36
724	Transcriptional Regulation of Arabidopsis Polycomb Repressive Complex 2 Coordinates Cell-Type Proliferation and Differentiation. Plant Cell, 2016, 28, 2616-2631.	3.1	78
725	Transcriptome analysis of the male-to-hermaphrodite sex reversal induced by low temperature in papaya. Tree Genetics and Genomes, 2016, 12, 1.	0.6	17
726	Survive or die? A molecular insight into salt-dependant signaling network. Environmental and Experimental Botany, 2016, 132, 140-153.	2.0	16
727	Transcriptome Analysis Reveals Candidate Genes involved in Blister Blight defense in Tea (Camellia) Tj ETQq1 1 C).784314 r 1.6	gBT_/Overloo
728	Comparative Transcriptome Analysis of Chinary, Assamica and Cambod tea (Camellia sinensis) Types during Development and Seasonal Variation using RNA-seq Technology. Scientific Reports, 2016, 6, 37244.	1.6	15
729	Genetic factors underlying boron toxicity tolerance in rice: genome-wide association study and transcriptomic analysis. Journal of Experimental Botany, 2017, 68, erw423.	2.4	31
730	Constitutive cyclic GMP accumulation in Arabidopsis thaliana compromises systemic acquired resistance induced by an avirulent pathogen by modulating local signals. Scientific Reports, 2016, 6, 36423.	1.6	27
731	Genome sequence and analysis of the Japanese morning glory Ipomoea nil. Nature Communications, 2016, 7, 13295.	5.8	138
732	Transcriptional changes during ovule development in two genotypes of litchi (Litchi chinensis Sonn.) with contrast in seed size. Scientific Reports, 2016, 6, 36304.	1.6	7
733	Transcriptome analysis uncovers key regulatory and metabolic aspects of soybean embryonic axes during germination. Scientific Reports, 2016, 6, 36009.	1.6	64
734	Identification of chilling-responsive microRNAs and their targets in vegetable soybean (Glycine max L.). Scientific Reports, 2016, 6, 26619.	1.6	44
735	Regulation of BZR1 in fruit ripening revealed by iTRAQ proteomics analysis. Scientific Reports, 2016, 6, 33635.	1.6	26
736	Development and cross-species transferability of EST-SSR markers in Siberian wildrye (Elymus sibiricus) Tj ETQqC	0 0 0 rgBT / 1.6	Overlock 10
737	Comparative transcriptome analysis of unripe and mid-ripe fruit of Mangifera indica (var. "Dashehariâ€) unravels ripening associated genes. Scientific Reports, 2016, 6, 32557.	1.6	35
738	Aberrant Meiotic Prophase I Leads to Genic Male Sterility in the Novel TE5A Mutant of Brassica napus. Scientific Reports, 2016, 6, 33955.	1.6	10
739	The evolution of inflorescence diversity in the nightshades and heterochrony during meristem maturation. Genome Research, 2016, 26, 1676-1686.	2.4	51

#	Article	IF	CITATIONS
740	Ethylene positively regulates cold tolerance in grapevine by modulating the expression of ETHYLENE RESPONSE FACTOR 057. Scientific Reports, 2016, 6, 24066.	1.6	105
741	Genetic regulation of salt stress tolerance revealed by RNA-Seq in cotton diploid wild species, Gossypium davidsonii. Scientific Reports, 2016, 6, 20582.	1.6	109
742	Transcriptome sequencing of Crucihimalaya himalaica (Brassicaceae) reveals how Arabidopsis close relative adapt to the Qinghai-Tibet Plateau. Scientific Reports, 2016, 6, 21729.	1.6	47
743	Transcriptome and Degradome Sequencing Reveals Dormancy Mechanisms of <i>Cunninghamia lanceolata</i> Seeds. Plant Physiology, 2016, 172, 2347-2362.	2.3	33
744	EIN2-dependent regulation of acetylation of histone H3K14 and non-canonical histone H3K23 in ethylene signalling. Nature Communications, 2016, 7, 13018.	5.8	125
745	Draft Assembly of Elite Inbred Line PH207 Provides Insights into Genomic and Transcriptome Diversity in Maize. Plant Cell, 2016, 28, 2700-2714.	3.1	183
746	A Multilayered Screening Method for the Identification of Regulatory Genes in Rice by Agronomic Traits. Evolutionary Bioinformatics, 2016, 12, EBO.S40622.	0.6	3
747	Embryo and endosperm specific comparative transcriptome analysis of triticum aestivum in response to ABA and H <inf>2</inf> O <inf>2</inf> stress. , 2016, , .		5
748	Cell wall related gene expression during secondary physiological fruit drop in ponkan (Citrus) Tj ETQq0 0 0 rgBT	/Overlock 0.1	10 ₁ Tf 50 422
748 749	Cell wall related gene expression during secondary physiological fruit drop in ponkan (Citrus) Tj ETQq0 0 0 rgBT Virus-induced gene silencing of the RPC5-like subunit of RNA polymerase III caused pleiotropic effects in Nicotiana benthamiana. Scientific Reports, 2016, 6, 27785.	/Overlock	10 ₁ Tf 50 422 7
748 749 750	Cell wall related gene expression during secondary physiological fruit drop in ponkan (Citrus) Tj ETQq0 0 0 rgBT Virus-induced gene silencing of the RPC5-like subunit of RNA polymerase III caused pleiotropic effects in Nicotiana benthamiana. Scientific Reports, 2016, 6, 27785. Transcriptome shock invokes disruption of parental expression-conserved genes in tetraploid wheat. Scientific Reports, 2016, 6, 26363.	/Overlock 1.6 1.6	10 ₁ Tf 50 422 7 23
748 749 750 751	Cell wall related gene expression during secondary physiological fruit drop in ponkan (Citrus) Tj ETQq0 0 0 rgBT Virus-induced gene silencing of the RPC5-like subunit of RNA polymerase III caused pleiotropic effects in Nicotiana benthamiana. Scientific Reports, 2016, 6, 27785. Transcriptome shock invokes disruption of parental expression-conserved genes in tetraploid wheat. Scientific Reports, 2016, 6, 26363. Transcriptome analysis in switchgrass discloses ecotype difference in photosynthetic efficiency. BMC Genomics, 2016, 17, 1040.	/Overlock 1.6 1.6 1.2	10 ₁ Tf 50 422 7 23 9
 748 749 750 751 752 	Cell wall related gene expression during secondary physiological fruit drop in ponkan (Citrus) Tj ETQq0 0 0 rgBT Virus-induced gene silencing of the RPC5-like subunit of RNA polymerase III caused pleiotropic effects in Nicotiana benthamiana. Scientific Reports, 2016, 6, 27785. Transcriptome shock invokes disruption of parental expression-conserved genes in tetraploid wheat. Scientific Reports, 2016, 6, 26363. Transcriptome analysis in switchgrass discloses ecotype difference in photosynthetic efficiency. BMC Cenomics, 2016, 17, 1040. Identification of nuclear genes controlling chlorophyll synthesis inÂbarley by RNA-seq. BMC Plant Biology, 2016, 16, 245.	/Overlock 1.6 1.6 1.2 1.6	10 ₁ Tf 50 422 7 23 9 10
 748 749 750 751 752 753 	Cell wall related gene expression during secondary physiological fruit drop in ponkan (Citrus) Tj ETQq0 0 0 rgBT Virus-induced gene silencing of the RPC5-like subunit of RNA polymerase III caused pleiotropic effects in Nicotiana benthamiana. Scientific Reports, 2016, 6, 27785. Transcriptome shock invokes disruption of parental expression-conserved genes in tetraploid wheat. Scientific Reports, 2016, 6, 26363. Transcriptome analysis in switchgrass discloses ecotype difference in photosynthetic efficiency. BMC Cenomics, 2016, 17, 1040. Identification of nuclear genes controlling chlorophyll synthesis inÂbarley by RNA-seq. BMC Plant Biology, 2016, 16, 245. Transcript profiling for early stages during embryo development in Scots pine. BMC Plant Biology, 2016, 16, 255.	/Overlock 1.6 1.6 1.2 1.6	10 ₁ Tf 50 422 7 23 9 10 19
 748 749 750 751 752 753 754 	Cell wall related gene expression during secondary physiological fruit drop in ponkan (Citrus) Tj ETQq0 0 0 rgBT Virus-induced gene silencing of the RPC5-like subunit of RNA polymerase III caused pleiotropic effects in Nicotiana benthamiana. Scientific Reports, 2016, 6, 27785. Transcriptome shock invokes disruption of parental expression-conserved genes in tetraploid wheat. Scientific Reports, 2016, 6, 26363. Transcriptome analysis in switchgrass discloses ecotype difference in photosynthetic efficiency. BMC Genomics, 2016, 17, 1040. Identification of nuclear genes controlling chlorophyll synthesis inÂbarley by RNA-seq. BMC Plant Biology, 2016, 16, 245. Transcript profiling for early stages during embryo development in Scots pine. BMC Plant Biology, 2016, 16, 245. Infiltration-RNAseq: transcriptome profiling of Agrobacterium-mediated infiltration of transcription factors to discover gene function and expression networks in plants. Plant Methods, 2016, 12, 41.	/Overlock 1.6 1.6 1.2 1.6 1.6	10 ₁ Tf 50 422 7 23 9 10 19 26
 748 749 750 751 752 753 754 755 	Cell wall related gene expression during secondary physiological fruit drop in ponkan (Citrus) Tj ETQq0 0 0 rgBT Virus-induced gene silencing of the RPC5-like subunit of RNA polymerase III caused pleiotropic effects in Nicotiana benthamiana. Scientific Reports, 2016, 6, 27785. Transcriptome shock invokes disruption of parental expression-conserved genes in tetraploid wheat. Scientific Reports, 2016, 6, 26363. Transcriptome analysis in switchgrass discloses ecotype difference in photosynthetic efficiency. BMC Cenomics, 2016, 17, 1040. Identification of nuclear genes controlling chlorophyll synthesis inÂbarley by RNA-seq. BMC Plant Biology, 2016, 16, 245. Transcript profiling for early stages during embryo development in Scots pine. BMC Plant Biology, 2016, 16, 255. Infiltration-RNAseq: transcriptome profiling of Agrobacterium-mediated infiltration of transcription factors to discover gene function and expression networks in plants. Plant Methods, 2016, 12, 41. neXtA5: accelerating annotation of articles via automated approaches in neXtProt. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw098.	/Overlock 1.6 1.2 1.6 1.6 1.9 1.4	10 ₁ Tf 50 422 7 23 9 10 19 26 10

Genomeâ€wide screen of genes imprinted in sorghum endosperm, and the roles of allelic differential cytosine methylation. Plant Journal, 2016, 85, 424-436.

#	Article	IF	CITATIONS
758	Genome-Wide Identification and Analysis of the MYB Transcription Factor Superfamily in <i>Solanum</i>	1.5	117
759	Interaction network of tobacco etch potyvirus NIa protein with the host proteome during infection. BMC Genomics, 2016, 17, 87.	1.2	57
760	Bioinformatics resources for pollen. Plant Reproduction, 2016, 29, 133-147.	1.3	6
761	Identifying candidate genes for wood formation in poplar based on microarray network analysis and graph theory. Tree Genetics and Genomes, 2016, 12, 1.	0.6	7
762	Functional Characterization of Maize C2H2 Zinc-Finger Gene Family. Plant Molecular Biology Reporter, 2016, 34, 761-776.	1.0	27
763	Mutational Evidence for the Critical Role of CBF Transcription Factors in Cold Acclimation in Arabidopsis. Plant Physiology, 2016, 171, 2744-2759.	2.3	453
764	A toolbox of genes, proteins, metabolites and promoters for improving drought tolerance in soybean includes the metabolite coumestrol and stomatal development genes. BMC Genomics, 2016, 17, 102.	1.2	88
765	Genetic features of red and green junglefowls and relationship with Indonesian native chickens Sumatera and Kedu Hitam. BMC Genomics, 2016, 17, 320.	1.2	40
766	Comparative fiber property and transcriptome analyses reveal key genes potentially related to high fiber strength in cotton (Gossypium hirsutum L.) line MD52ne. BMC Plant Biology, 2016, 16, 36.	1.6	51
767	Analysis of transcripts differentially expressed between fruited and deflowered â€~Gala' adult trees: a contribution to biennial bearing understanding in apple. BMC Plant Biology, 2016, 16, 55.	1.6	42
768	B chromosome contains active genes and impacts the transcription of A chromosomes in maize (Zea) Tj ETQq0 0	0_rgBT /O	verlock 10 Ti 62
769	Transcriptome profiling of grapevine seedless segregants during berry development reveals candidate genes associated with berry weight. BMC Plant Biology, 2016, 16, 104.	1.6	18
770	Transcriptome analysis of Arabidopsis thaliana in response to cement dust. Genes and Genomics, 2016, 38, 865-878.	0.5	3
771	Deep-sequencing transcriptome analysis of field-grown Medicago sativa L. crown buds acclimated to freezing stress. Functional and Integrative Genomics, 2016, 16, 495-511.	1.4	28
772	The Juvenile Phase of Maize Sees Upregulation of Stress-Response Genes and Is Extended by Exogenous Jasmonic Acid. Plant Physiology, 2016, 171, 2648-2658.	2.3	25
773	Host specificity in <i>Sporisorium reilianum</i> is determined by distinct mechanisms in maize and sorghum. Molecular Plant Pathology, 2016, 17, 741-754.	2.0	53
774	The transcriptomic signature of developing soybean seeds reveals the genetic basis of seed trait adaptation during domestication. Plant Journal, 2016, 86, 530-544.	2.8	113
775	Comparative proteomic analysis of Phalaenopsis leaves in the vegetative and flowering phase. Acta Physiologiae Plantarum, 2016, 38, 1.	1.0	4

#	Article	IF	CITATIONS
776	Global regulation of plant immunity by histone lysine methyl transferases. Plant Cell, 2016, 28, tpc.00012.2016.	3.1	65
777	Nonsyntenic genes drive tissue-specific dynamics of differential, nonadditive and allelic expression patterns in maize hybrids. Plant Physiology, 2016, 171, pp.00262.2016.	2.3	42
778	Root Type-Specific Reprogramming of Maize Pericycle Transcriptomes by Local High Nitrate Results in Disparate Lateral Root Branching Patterns. Plant Physiology, 2016, 170, 1783-1798.	2.3	53
779	Clobal transcriptome profiling analysis reveals insight into saliva-responsive genes in alfalfa. Plant Cell Reports, 2016, 35, 561-571.	2.8	29
780	A Stepwise Approach of Finding Dependent Variables via Coefficient of Intrinsic Dependence. Journal of Computational Biology, 2016, 23, 42-55.	0.8	2
781	MicroRNA expression profiles in response to drought stress in Sorghum bicolor. Gene Expression Patterns, 2016, 20, 88-98.	0.3	66
782	De novo assembly and transcriptome analysis of osmoregulation in Litopenaeus vannamei under three cultivated conditions with different salinities. Gene, 2016, 578, 185-193.	1.0	48
783	Complex molecular mechanisms underlying seedling salt tolerance in rice revealed by comparative transcriptome and metabolomic profiling. Journal of Experimental Botany, 2016, 67, 405-419.	2.4	104
784	Combining Quantitative Genetics Approaches with Regulatory Network Analysis to Dissect the Complex Metabolism of the Maize Kernel. Plant Physiology, 2016, 170, 136-146.	2.3	62
785	Transcriptomic and anatomical complexity of primary, seminal, and crown roots highlight root type-specific functional diversity in maize (<i>Zea mays</i> L.). Journal of Experimental Botany, 2016, 67, 1123-1135.	2.4	76
786	Maize maintains growth in response to decreased nitrate supply through a highly dynamic and developmental stageâ€specific transcriptional response. Plant Biotechnology Journal, 2016, 14, 342-353.	4.1	25
787	Genome-Wide Search for Translated Upstream Open Reading Frames in Arabidopsis Thaliana. IEEE Transactions on Nanobioscience, 2016, 15, 148-157.	2.2	16
788	Transcriptome comparisons shed light on the pre-condition and potential barrier for C4 photosynthesis evolution in eudicots. Plant Molecular Biology, 2016, 91, 193-209.	2.0	2
789	Characterization of a <i>JAZ7</i> activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen <i>Fusarium oxysporum</i> . Journal of Experimental Botany, 2016, 67, 2367-2386.	2.4	68
790	Population genomic analysis of gibberellin-responsive long non-coding RNAs in <i>Populus</i> . Journal of Experimental Botany, 2016, 67, 2467-2482.	2.4	98
791	Time-Series Transcriptomics Reveals That <i>AGAMOUS-LIKE22</i> Affects Primary Metabolism and Developmental Processes in Drought-Stressed Arabidopsis. Plant Cell, 2016, 28, 345-366.	3.1	92
792	Heat stress yields a unique MADS box transcription factor in determining seed size and thermal sensitivity. Plant Physiology, 2016, 171, 606-622.	2.3	146
793	Proteomics and transcriptomics analyses of Arabidopsis floral buds uncover important functions of ARABIDOPSIS SKP1-LIKE1. BMC Plant Biology, 2016, 16, 61.	1.6	11

#	Article	IF	CITATIONS
794	expVIP: a Customizable RNA-seq Data Analysis and Visualization Platform. Plant Physiology, 2016, 170, 2172-2186.	2.3	403
795	"Hit-and-Run―transcription: de novo transcription initiated by a transient bZIP1 "hit―persists after the "run― BMC Genomics, 2016, 17, 92.	1.2	22
796	Complementary Activities of TELOMERE REPEAT BINDING Proteins and Polycomb Group Complexes in Transcriptional Regulation of Target Genes. Plant Cell, 2016, 28, 87-101.	3.1	67
797	PPIM: A Protein-Protein Interaction Database for Maize. Plant Physiology, 2016, 170, 618-626.	2.3	85
798	Identification of Evening Complex Associated Proteins in Arabidopsis by Affinity Purification and Mass Spectrometry. Molecular and Cellular Proteomics, 2016, 15, 201-217.	2.5	170
799	JAZ7 negatively regulates dark-induced leaf senescence in <i>Arabidopsis</i> . Journal of Experimental Botany, 2016, 67, 751-762.	2.4	113
800	Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit. Journal of Experimental Botany, 2016, 67, 1095-1107.	2.4	78
801	Overlap between Signaling Pathways Responsive to Xanthomonas oryzae pv. oryzae Infection and Drought Stress in Rice Introgression Line Revealed by RNA-Seq. Journal of Plant Growth Regulation, 2016, 35, 345-356.	2.8	12
802	GDSL esterase/lipase genes in Brassica rapa L: genome-wide identification and expression analysis. Molecular Genetics and Genomics, 2016, 291, 531-542.	1.0	62
803	miRNA-based drought regulation in wheat. Functional and Integrative Genomics, 2016, 16, 221-233.	1.4	202
804	Computational Analysis of "-omics―Data to Identify Transcription Factors Regulating Secondary Metabolism in Rauvolfia serpentina. Plant Molecular Biology Reporter, 2016, 34, 283-302.	1.0	12
805	Expression Profiles of Endometrial Carcinoma by Integrative Analysis of TCGA Data. Gynecologic and Obstetric Investigation, 2017, 82, 30-38.	0.7	9
806	Phosphorus remobilization from rice flag leaves during grain filling: an <scp>RNA</scp> â€seq study. Plant Biotechnology Journal, 2017, 15, 15-26.	4.1	55
807	Comparative transcriptome profiling of chilling tolerant rice chromosome segment substitution line in response to early chilling stress. Genes and Genomics, 2017, 39, 127-141.	0.5	21
808	The U6 Biogenesis-Like 1 Plays an Important Role in Maize Kernel and Seedling Development by Affecting the 3′ End Processing of U6 snRNA. Molecular Plant, 2017, 10, 470-482.	3.9	33
809	Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses in <i>Arabidopsis</i> . Plant, Cell and Environment, 2017, 40, 748-764.	2.8	110
810	Genome-wide analysis of long non-coding RNAs at the mature stage of sea buckthorn (Hippophae) Tj ETQq0 0 0	rgBT /Ove 1.0	rlock 10 Tf 5 41

811Below-Ground Attack by the Root Knot Nematode <i>Meloidogyne graminicola</i>Predisposes Rice to1.428Blast Disease. Molecular Plant-Microbe Interactions, 2017, 30, 255-266.1.428

ARTICLE IF CITATIONS # DGE-seq analysis of MUR3-related Arabidopsis mutants provides insight into how dysfunctional 812 1.7 22 xyloglucan affects cell elongation. Plant Science, 2017, 258, 156-169. Genome-wide analysis of miRNAs and Tasi-RNAs in Zea mays in response to phosphate deficiency. 1.4 34 Functional and Intégrative Genomics, 2017, 17, 335-351. Transcriptome-wide identification and functional investigation of circular RNA in the teleost large 814 0.4 38 yellow croaker (Larimichthys crocea). Marine Genomics, 2017, 32, 71-78. BZR1 Positively Regulates Freezing Tolerance via CBF-Dependent and CBF-Independent Pathways in 3.9 Arabidopsis. Molecular Plant, 2017, 10, 545-559. Chilling Affects Phytohormone and Post-Embryonic Development Pathways during Bud Break and Fruit 816 1.6 22 Set in Apple (Malus domestica Borkh.). Scientífic Reports, 2017, 7, 42593. DCL2―and RDR6â€dependent transitive silencing of <i>SMXL4</i> and <i>SMXL5</i> in Arabidopsis <i>dcl4</i> mutants causes defective phloem transport and carbohydrate overâ€accumulation. Plant 2.8 Journal, 2017, 90, 1064-1078. Ethylene-induced transcriptional and hormonal responses at the onset of sugarcane ripening. 818 1.6 38 Scientific Reports, 2017, 7, 43364. Comparative transcriptomic analysis reveals the roles of overlapping heat-/drought-responsive genes 1.6 in poplars exposed to high temperature and drought. Scientific Reports, 2017, 7, 43215. Molecular analysis of the early interaction between the grapevine flower and <scp><i>Botrytis 820 cinerea</i></scp> reveals that prompt activation of specific host pathways leads to fungus 2.8 44 quiescence. Plant, Cell and Environment, 2017, 40, 1409-1428. Differential deposition of H2A.Z in rice seedling tissue during the day-night cycle. Plant Signaling and 1.2 Behavior, 2017, 12, e1286438. Analysis of small RNAs revealed differential expressions during pollen and embryo sac development in 822 1.2 62 autotetraploid rice. BMC Genomics, 2017, 18, 129. Shotgun proteomics of the barley seed proteome. BMC Genomics, 2017, 18, 44. 1.2 Skewing in Arabidopsis roots involves disparate environmental signaling pathways. BMC Plant 824 1.6 24 Biology, 2017, 17, 31. The abundance of homoeologue transcripts is disrupted by hybridization and is partially restored by genome doubling in synthetic hexaploid wheat. BMC Genomics, 2017, 18, 149. 1.2 Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. 826 316 9.4 Nature Genetics, 2017, 49, 765-772. ELF18-INDUCED LONG-NONCODING RNA Associates with Mediator to Enhance Expression of Innate 3.1 191 Immune Response Genes in Arabidopsis. Plant Cell, 2017, 29, 1024-1038. PIF4-controlled auxin pathway contributes to hybrid vigor in <i>Arabidopsis thaliana</i>. Proceedings 828 3.3 35 of the National Academy of Sciences of the United States of America, 2017, 114, E3555-E3562. Dose-dependent effects of higher methionine levels on the transcriptome and metabolome of 829 2.8 transgenic Arabidopsis seeds. Plant Cell Reports, 2017, 36, 719-730.

#	Article	IF	CITATIONS
830	WheatNet: a Genome-Scale Functional Network for Hexaploid Bread Wheat, Triticum aestivum. Molecular Plant, 2017, 10, 1133-1136.	3.9	29
831	Transcriptome Dynamics of Dominant Maize Dwarf Dwarf11 (D11) Revealed by RNA-seq and Co-expression Analysis. Plant Molecular Biology Reporter, 2017, 35, 355-365.	1.0	1
832	Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation. Nature Genetics, 2017, 49, 959-963.	9.4	208
833	Reproductive stage physiological and transcriptional responses to salinity stress in reciprocal populations derived from tolerant (Horkuch) and susceptible (IR29) rice. Scientific Reports, 2017, 7, 46138.	1.6	46
834	Protein sumoylation and phosphorylation intersect in Arabidopsis signaling. Plant Journal, 2017, 91, 505-517.	2.8	25
835	agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Research, 2017, 45, W122-W129.	6.5	1,872
836	Dynamic Cytology and Transcriptional Regulation of Rice Lamina Joint Development. Plant Physiology, 2017, 174, 1728-1746.	2.3	53
837	Ethylene Signaling Is Important for Isoflavonoid-Mediated Resistance to <i>Rhizoctonia solani</i> in Roots of <i>Medicago truncatula</i> . Molecular Plant-Microbe Interactions, 2017, 30, 691-700.	1.4	40
838	Identification of factors required for m ⁶ A mRNA methylation in <i>Arabidopsis</i> reveals a role for the conserved E3 ubiquitin ligase HAKAI. New Phytologist, 2017, 215, 157-172.	3.5	301
839	The identification of genes associated with Pb and Cd response mechanism in Brassica juncea L. by using Arabidopsis expression array. Environmental and Experimental Botany, 2017, 139, 105-115.	2.0	18
840	DNA methylation in lung tissues of mouse offspring exposed in utero to polycyclic aromatic hydrocarbons. Food and Chemical Toxicology, 2017, 109, 703-713.	1.8	7
841	Spatially resolved transcriptome profiling in model plant species. Nature Plants, 2017, 3, 17061.	4.7	135
842	Processes Underlying a Reproductive Barrier in <i>indica</i> - <i>japonica</i> Rice Hybrids Revealed by Transcriptome Analysis. Plant Physiology, 2017, 174, 1683-1696.	2.3	22
843	Transcriptomic response of durum wheat to nitrogen starvation. Scientific Reports, 2017, 7, 1176.	1.6	134
844	Sporobolus stapfianus: Insights into desiccation tolerance in the resurrection grasses from linking transcriptomics to metabolomics. BMC Plant Biology, 2017, 17, 67.	1.6	61
845	Wheat Ms2 encodes for an orphan protein that confers male sterility in grass species. Nature Communications, 2017, 8, 15121.	5.8	97
846	Characterization of pollen-expressed bZIP protein interactions and the role of ATbZIP18 in the male gametophyte. Plant Reproduction, 2017, 30, 1-17.	1.3	37
847	cDNA-AFLP analysis of transcripts induced in chickpea plants by TiO 2 nanoparticles during cold stress. Plant Physiology and Biochemistry, 2017, 111, 39-49.	2.8	44

ARTICLE IF CITATIONS # Patterns of gene expression in developing embryos of Arabidopsis hybrids. Plant Journal, 2017, 89, 848 2.8 14 927-939. RNA Sequencing Exposes Adaptive and Immune Responses to Intrauterine Growth Restriction in Fetal 849 1.4 29 Sheep Islets. Endocrinology, 2017, 158, 743-755. Nod factors potentiate auxin signaling for transcriptional regulation and lateral root formation 850 2.4 40 in<i>Medicago truncatula</i>. Journal of Experimental Botany, 2017, 68, erw474. Role of cleavage and polyadenylation specificity factor 100: anchoring poly(A) sites and modulating transcription termination. Plant Journal, 2017, 91, 829-839. AraNet: A Network Biology Server for Arabidopsis thaliana and Other Non-Model Plant Species. 852 0.4 17 Methods in Molecular Biology, 2017, 1629, 225-238. Cooperative Regulatory Functions of miR858 and MYB83 during Cyst Nematode Parasitism. Plant Physiology, 2017, 174, 1897-1912. 2.3 Dehydration stress extends mRNA 3â€² untranslated regions with noncoding RNA functions in 854 2.4 31 <i>Árabidopsis</i>. Genome Research, 2017, 27, 1427-1436. Transcriptome Profiling of Wheat Inflorescence Development from Spikelet Initiation to Floral 2.3 121 Patterning Identified Stage-Specific Regulatory Genes. Plant Physiology, 2017, 174, 1779-1794. MiR529a modulates panicle architecture through regulating SQUAMOSA PROMOTER BINDING-LIKE 856 2.0 45 genes in rice (Oryza sativa). Plant Molecular Biology, 2017, 94, 469-480. The function of OsbHLH068 is partially redundant with its homolog, AtbHLH112, in the regulation of the salt stress response but has opposite functions to control flowering in Arabidopsis. Plant Molecular Biology, 2017, 94, 531-548. Changes in the fine root proteome of Fagus sylvatica L. trees associated with P-deficiency and 858 1.2 10 amelioration of P-deficiency. Journal of Proteomics, 2017, 169, 33-40. Establishment of the model system between phytochemicals and gene expression profiles in 1.6 Macrosclereid cells of Medicago truncatula. Sciéntific Reports, 2017, 7, 2580. The gene expression landscape of pine seedling tissues. Plant Journal, 2017, 91, 1064-1087. 860 2.8 41 ceRNAs in plants: computational approaches and associated challenges for target mimic research. Briefings in Bioinformatics, 2017, 19, 1273-1289. 3.2 16 The Sequences of 1504 Mutants in the Model Rice Variety Kitaake Facilitate Rapid Functional Genomic 862 138 3.1 Studies. Plant Cell, 2017, 29, 1218-1231. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science, 2017, 356, 503 <u>1175-1</u>178. Proteomic analysis of the kissing bug Rhodnius prolixus antenna. Journal of Insect Physiology, 2017, 864 0.9 21 100, 108-118. Microarray meta-analysis to explore abiotic stress-specific gene expression patterns in Arabidopsis., 2017, 58, 22.

#	Article	IF	CITATIONS
866	Genomic variation associated with local adaptation of weedy rice during de-domestication. Nature Communications, 2017, 8, 15323.	5.8	132
867	<i>ATX3</i> , <i>ATX4</i> , and <i>ATX5</i> Encode Putative H3K4 Methyltransferases and Are Critical for Plant Development. Plant Physiology, 2017, 174, 1795-1806.	2.3	93
868	A Key Role for Apoplastic H ₂ O ₂ in Norway Spruce Phenolic Metabolism. Plant Physiology, 2017, 174, 1449-1475.	2.3	46
869	An alternative pathway to eusociality: Exploring the molecular and functional basis of fortress defense. Evolution; International Journal of Organic Evolution, 2017, 71, 1986-1998.	1.1	8
870	Topological features of a gene co-expression network predict patterns of natural diversity in environmental response. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170914.	1.2	24
871	Jasmonate inhibits <scp>COP</scp> 1 activity to suppress hypocotyl elongation and promote cotyledon opening in etiolated Arabidopsis seedlings. Plant Journal, 2017, 90, 1144-1155.	2.8	46
872	The Arabidopsis miR396 mediates pathogen-associated molecular pattern-triggered immune responses against fungal pathogens. Scientific Reports, 2017, 7, 44898.	1.6	111
873	Patterns of stress response and tolerance based on transcriptome profiling of rice crown tissue under zinc deficiency. Journal of Experimental Botany, 2017, 68, 1715-1729.	2.4	16
874	Heat Shock Protein HSP101 Affects the Release of Ribosomal Protein mRNAs for Recovery after Heat Shock. Plant Physiology, 2017, 174, 1216-1225.	2.3	81
875	Arabidopsis Transcription Factors SPL1 and SPL12 Confer Plant Thermotolerance at Reproductive Stage. Molecular Plant, 2017, 10, 735-748.	3.9	133
876	Albugo-imposed changes to tryptophan-derived antimicrobial metabolite biosynthesis may contribute to suppression of non-host resistance to Phytophthora infestans in Arabidopsis thaliana. BMC Biology, 2017, 15, 20.	1.7	48
877	Overexpression of OsGATA12 regulates chlorophyll content, delays plant senescence and improves rice yield under high density planting. Plant Molecular Biology, 2017, 94, 215-227.	2.0	48
878	All roads lead to weediness: Patterns of genomic divergence reveal extensive recurrent weedy rice origins from South Asian <i>Oryza</i> . Molecular Ecology, 2017, 26, 3151-3167.	2.0	51
879	Phosphoproteomic Analysis of Paper Mulberry Reveals Phosphorylation Functions in Chilling Tolerance. Journal of Proteome Research, 2017, 16, 1944-1961.	1.8	18
880	Kiwifruit SVP2 gene prevents premature budbreak during dormancy. Journal of Experimental Botany, 2017, 68, 1071-1082.	2.4	62
881	STABILIZED1 Modulates Pre-mRNA Splicing for Thermotolerance. Plant Physiology, 2017, 173, 2370-2382.	2.3	30
882	Cyst Nematode Parasitism Induces Dynamic Changes in the Root Epigenome. Plant Physiology, 2017, 174, 405-420.	2.3	66
883	Exogenous glutamate rapidly induces the expression of genes involved in metabolism and defense responses in rice roots. BMC Genomics, 2017, 18, 186.	1.2	88

#	Article	IF	CITATIONS
884	Differential Proteomic Analysis by iTRAQ Reveals the Mechanism of Pyropia haitanensis Responding to High Temperature Stress. Scientific Reports, 2017, 7, 44734.	1.6	52
885	Comparative analyses of transcriptome and proteome in response to cotton bollworm between a resistant wild soybean and a susceptible soybean cultivar. Plant Cell, Tissue and Organ Culture, 2017, 129, 511-520.	1.2	8
886	The regulation of lipid metabolism by a hypothetical P-loop NTPase and its impact on fecundity of the brown planthopper. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1750-1758.	1.1	17
887	The Bio-Analytic Resource for Plant Biology. Methods in Molecular Biology, 2017, 1533, 119-148.	0.4	36
888	The ANGULATA 7 gene encodes a DnaJâ€like zinc fingerâ€domain protein involved in chloroplast function and leaf development in Arabidopsis. Plant Journal, 2017, 89, 870-884.	2.8	25
889	Ara <scp>QTL</scp> – workbench and archive for systems genetics in <i>Arabidopsis thaliana</i> . Plant Journal, 2017, 89, 1225-1235.	2.8	24
890	Comparative transcriptome profiling of upland (VS16) and lowland (AP13) ecotypes of switchgrass. Plant Cell Reports, 2017, 36, 129-150.	2.8	15
891	Integrating QTL mapping and transcriptomics identifies candidate genes underlying QTLs associated with soybean tolerance to low-phosphorus stress. Plant Molecular Biology, 2017, 93, 137-150.	2.0	65
893	Fine-tuning of auxin homeostasis governs the transition from floral stem cell maintenance to gynoecium formation. Nature Communications, 2017, 8, 1125.	5.8	91
894	Enhanced resistance to rice blast and sheath blight in rice (oryza sativa L.) by expressing the oxalate decarboxylase protein Bacisubin from Bacillus subtilis. Plant Science, 2017, 265, 51-60.	1.7	21
895	Transcriptional profiling by RNA sequencing of black pepper (Piper nigrum L.) roots infected by Fusarium solani f. sp. piperis. Acta Physiologiae Plantarum, 2017, 39, 1.	1.0	2
896	Transcriptome analysis uncovers Arabidopsis F-BOX STRESS INDUCED 1 as a regulator of jasmonic acid and abscisic acid stress gene expression. BMC Genomics, 2017, 18, 533.	1.2	30
897	Combined biotic stresses trigger similar transcriptomic responses but contrasting resistance against a chewing herbivore in Brassica nigra. BMC Plant Biology, 2017, 17, 127.	1.6	61
898	ARG1 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight. Astrobiology, 2017, 17, 1077-1111.	1.5	22
899	Genome sequencing of the winged midge, Parochlus steinenii, from the Antarctic Peninsula. GigaScience, 2017, 6, 1-8.	3.3	15
900	Etiolated Seedling Development Requires Repression of Photomorphogenesis by a Small Cell-Wall-Derived Dark Signal. Current Biology, 2017, 27, 3403-3418.e7.	1.8	49
901	Arabidopsis DNA topoisomerase i alpha is required for adaptive response to light and flower development. Biology Open, 2017, 6, 832-843.	0.6	1
902	Competitive Ability of Maize Pollen Grains Requires Paralogous Serine Threonine Protein Kinases STK1 and STK2. Genetics, 2017, 207, 1361-1370.	1.2	11

#	Article	IF	CITATIONS
903	NbEXPA1, an αâ€expansin, is plasmodesmataâ€specific and a novel host factor for potyviral infection. Plant Journal, 2017, 92, 846-861.	2.8	60
904	The novel ethylene-responsive factor CsERF025 affects the development of fruit bending in cucumber. Plant Molecular Biology, 2017, 95, 519-531.	2.0	15
905	A genome-wide survey with different rapeseed ecotypes uncovers footprints of domestication and breeding. Journal of Experimental Botany, 2017, 68, 4791-4801.	2.4	52
906	Identification and characterization of responsive genes in rice during compatible interactions with pathogenic pathovars of Xanthomonas oryzae. European Journal of Plant Pathology, 2018, 151, 141.	0.8	5
907	The MADS-Box Gene SIMBP21 Regulates Sepal Size Mediated by Ethylene and Auxin in Tomato. Plant and Cell Physiology, 2017, 58, 2241-2256.	1.5	33
908	Global Analysis of Gene Expression in Response to Whole-Chromosome Aneuploidy in Hexaploid Wheat. Plant Physiology, 2017, 175, 828-847.	2.3	56
909	Genome-wide association study and gene set analysis for understanding candidate genes involved in salt tolerance at the rice seedling stage. Molecular Genetics and Genomics, 2017, 292, 1391-1403.	1.0	37
910	Cis and trans determinants of epigenetic silencing by Polycomb repressive complex 2 in Arabidopsis. Nature Genetics, 2017, 49, 1546-1552.	9.4	226
911	Evolutionarily Conserved Alternative Splicing Across Monocots. Genetics, 2017, 207, 465-480.	1.2	47
912	Persulfidation proteome reveals the regulation of protein function by hydrogen sulfide in diverse biological processes in Arabidopsis. Journal of Experimental Botany, 2017, 68, 4915-4927.	2.4	233
913	Transcriptome and phytohormone analysis reveals a comprehensive phytohormone and pathogen defence response in pear self-/cross-pollination. Plant Cell Reports, 2017, 36, 1785-1799.	2.8	32
914	Genome-wide association study Identified multiple Genetic Loci on Chilling Resistance During Germination in Maize. Scientific Reports, 2017, 7, 10840.	1.6	49
915	Environmental stress is the major cause of transcriptomic and proteomic changes in GM and non-GM plants. Scientific Reports, 2017, 7, 10624.	1.6	18
916	Adventitious root formation of in vitro peach shoots is regulated by auxin and ethylene. Scientia Horticulturae, 2017, 226, 250-260.	1.7	31
917	Molecular dissection of transcriptional reprogramming of steviol glycosides synthesis in leaf tissue during developmental phase transitions in Stevia rebaudiana Bert. Scientific Reports, 2017, 7, 11835.	1.6	51
918	Dynamic transcriptome and phytohormone profiling along the time of light exposure in the mesocotyl of rice seedling. Scientific Reports, 2017, 7, 11961.	1.6	55
919	Plant organ evolution revealed by phylotranscriptomics in Arabidopsis thaliana. Scientific Reports, 2017, 7, 7567.	1.6	11
920	Long read reference genome-free reconstruction of a full-length transcriptome from Astragalus membranaceus reveals transcript variants involved in bioactive compound biosynthesis. Cell Discovery, 2017, 3, 17031	3.1	95

#	Article	IF	CITATIONS
921	Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature. Nature Communications, 2017, 8, 309.	5.8	102
922	Salt tolerance response revealed by RNA-Seq in a diploid halophytic wild relative of sweet potato. Scientific Reports, 2017, 7, 9624.	1.6	22
923	Genome reconstruction in Cynara cardunculus taxa gains access to chromosome-scale DNA variation. Scientific Reports, 2017, 7, 5617.	1.6	30
924	Dissecting the â€`bacon and eggs' phenotype: transcriptomics of post-anthesis colour change in Lotus. Annals of Botany, 2017, 120, 563-575.	1.4	1
925	MsmiR156 affects global gene expression and promotes root regenerative capacity and nitrogen fixation activity in alfalfa. Transgenic Research, 2017, 26, 541-557.	1.3	28
926	Identification and Characterization of microRNAs from Saccharum officinarum L by Deep Sequencing. Tropical Plant Biology, 2017, 10, 134-150.	1.0	4
927	Data on the effect of in utero exposure to polycyclic aromatic hydrocarbons on genome-wide patterns of DNA methylation in lung tissues. Data in Brief, 2017, 13, 498-513.	0.5	2
928	5-Aminolevulinic Acid Dehydratase Gene Dosage Affects Programmed Cell Death and Immunity. Plant Physiology, 2017, 175, 511-528.	2.3	45
929	In vivo gene expression profiling of the entomopathogenic fungus Beauveria bassiana elucidates its infection stratagems in Anopheles mosquito. Science China Life Sciences, 2017, 60, 839-851.	2.3	33
930	Genome re-sequencing analysis uncovers pathogenecity-related genes undergoing positive selection in Magnaporthe oryzae. Science China Life Sciences, 2017, 60, 880-890.	2.3	11
931	Auxin regulates functional gene groups in a fold-change-specific manner in Arabidopsis thaliana roots. Scientific Reports, 2017, 7, 2489.	1.6	42
932	Genome-wide mapping of DNase I hypersensitive sites reveals chromatin accessibility changes in Arabidopsis euchromatin and heterochromatin regions under extended darkness. Scientific Reports, 2017, 7, 4093.	1.6	19
933	DES-TOMATO: A Knowledge Exploration System Focused On Tomato Species. Scientific Reports, 2017, 7, 5968.	1.6	8
934	Deficient glutamate biosynthesis triggers a concerted upregulation of ribosomal protein genes in Arabidopsis. Scientific Reports, 2017, 7, 6164.	1.6	9
935	The Rice Phytochrome Genes, PHYA and PHYB, Have Synergistic Effects on Anther Development and Pollen Viability. Scientific Reports, 2017, 7, 6439.	1.6	24
936	A systems approach to a spatio-temporal understanding of the drought stress response in maize. Scientific Reports, 2017, 7, 6590.	1.6	68
937	Construction and Optimization of a Large Gene Coexpression Network in Maize Using RNA-Seq Data. Plant Physiology, 2017, 175, 568-583.	2.3	55
938	<scp>HISTONE DEACETYLASE 6</scp> represses pathogen defence responses in <i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2017, 40, 2972-2986.	2.8	48

#	Article	IF	CITATIONS
939	De novo RNA sequencing and analysis of the transcriptome of signalgrass (Urochloa decumbens) roots exposed to aluminum. Plant Growth Regulation, 2017, 83, 157-170.	1.8	23
940	Genetic Architecture and Molecular Networks Underlying Leaf Thickness in Desert-Adapted Tomato <i>Solanum pennellii</i> . Plant Physiology, 2017, 175, 376-391.	2.3	38
941	Mutations in eIF5B Confer Thermosensitive and Pleiotropic Phenotypes via Translation Defects in <i>Arabidopsis thaliana</i> . Plant Cell, 2017, 29, 1952-1969.	3.1	43
942	Comparison of transcriptome profiles by Fusarium oxysporum inoculation between Fusarium yellows resistant and susceptible lines in Brassica rapa L Plant Cell Reports, 2017, 36, 1841-1854.	2.8	20
943	Overexpression of DEMETER, a DNA demethylase, promotes early apical bud maturation in poplar. Plant, Cell and Environment, 2017, 40, 2806-2819.	2.8	32
944	Contrasting Transcriptional Programs Control Postharvest Development of Apples (<i>Malus x) Tj ETQq1 1 0.7843 Food Chemistry, 2017, 65, 7813-7826.</i>	814 rgBT / 2.4	Overlock 1 26
945	The differentially expressed genes identification in dwarf mutant of Gossypium hirsutum by RNA-Seq approach. Agri Gene, 2017, 5, 37-44.	1.9	2
946	Prediction of cassava protein interactome based on interolog method. Scientific Reports, 2017, 7, 17206.	1.6	18
947	Integrated mRNA and microRNA transcriptome analysis reveals miRNA regulation in response to PVA in potato. Scientific Reports, 2017, 7, 16925.	1.6	23
948	Quantitative shotgun proteomic analysis of cold-stressed mature rice anthers. Plant Biotechnology Reports, 2017, 11, 417-427.	0.9	6
949	RapaNet: A Web Tool for the Co-Expression Analysis of Brassica rapa Genes. Evolutionary Bioinformatics, 2017, 13, 117693431771542.	0.6	9
950	Patterns and Consequences of Subgenome Differentiation Provide Insights into the Nature of Paleopolyploidy in Plants. Plant Cell, 2017, 29, 2974-2994.	3.1	88
951	Transient alkalinization of the leaf apoplast stiffens the cell wall during onset of chloride salinity in corn leaves. Journal of Biological Chemistry, 2017, 292, 18800-18813.	1.6	34
952	Transcriptome dynamics provide insights into long-term salinity stress tolerance in Triticum aestivum cv. Kharchia Local. Plant Physiology and Biochemistry, 2017, 121, 128-139.	2.8	37
953	Plant-to-plant communication triggered by systemin primes anti-herbivore resistance in tomato. Scientific Reports, 2017, 7, 15522.	1.6	50
954	Extreme Suppression of Lateral Floret Development by a Single Amino Acid Change in the VRS1 Transcription Factor. Plant Physiology, 2017, 175, 1720-1731.	2.3	49
955	The Zygotic Transition Is Initiated in Unicellular Plant Zygotes with Asymmetric Activation of Parental Genomes. Developmental Cell, 2017, 43, 349-358.e4.	3.1	83
956	Transcriptome dynamics revealed by a gene expression atlas of the early Arabidopsis embryo. Nature Plants, 2017, 3, 894-904.	4.7	77

#	Article	IF	CITATIONS
957	EIN3 and PIF3 Form an Interdependent Module That Represses Chloroplast Development in Buried Seedlings. Plant Cell, 2017, 29, 3051-3067.	3.1	64
958	Seed weight differences between wild and domesticated soybeans are associated with specific changes in gene expression. Plant Cell Reports, 2017, 36, 1417-1426.	2.8	14
959	Role of methionine adenosyltransferase 2A in bovine preimplantation development and its associated genomic regions. Scientific Reports, 2017, 7, 3800.	1.6	13
960	Investigating the regulatory roles of the microRNAs and the Argonaute 1-enriched small RNAs in plant metabolism. Gene, 2017, 628, 180-189.	1.0	1
961	Tobacco mosaic virus infection disproportionately impacts phloem associated translatomes in Arabidopsis thaliana and Nicotiana benthamiana. Virology, 2017, 510, 76-89.	1.1	17
962	Profiling of drought-responsive microRNA and mRNA in tomato using high-throughput sequencing. BMC Genomics, 2017, 18, 481.	1.2	92
963	Zinc oxide nanoparticle exposure triggers different gene expression patterns in maize shoots and roots. Environmental Pollution, 2017, 229, 479-488.	3.7	35
964	Arabidopsis ATRX Modulates H3.3 Occupancy and Fine-Tunes Gene Expression. Plant Cell, 2017, 29, 1773-1793.	3.1	35
965	Noncoding and coding transcriptome analysis reveals the regulation roles of long noncoding RNAs in fruit development of hot pepper (Capsicum annuum L.). Plant Growth Regulation, 2017, 83, 141-156.	1.8	30
966	Identification of heat-responsive miRNAs to reveal the miRNA-mediated regulatory network of heat stress response in Betula luminifera. Trees - Structure and Function, 2017, 31, 1635-1652.	0.9	29
967	Generation of nitric oxide by olive (Olea europaea L.) pollen during inÂvitro germination and assessment of the S-nitroso- and nitro-proteomes by computational predictive methods. Nitric Oxide - Biology and Chemistry, 2017, 68, 23-37.	1.2	21
968	RNA-Seq study reveals genetic responses of diverse wild soybean accessions to increased ozone levels. BMC Genomics, 2017, 18, 498.	1.2	15
969	Medium term water deficit elicits distinct transcriptome responses in Eucalyptus species of contrasting environmental origin. BMC Genomics, 2017, 18, 284.	1.2	16
970	Transcriptomic dynamics in soybean near-isogenic lines differing in alleles for an aphid resistance gene, following infestation by soybean aphid biotype 2. BMC Genomics, 2017, 18, 472.	1.2	25
971	Transcriptome profiling of Elymus sibiricus, an important forage grass in Qinghai-Tibet plateau, reveals novel insights into candidate genes that potentially connected to seed shattering. BMC Plant Biology, 2017, 17, 78.	1.6	16
972	Proanthocyanidin accumulation and transcriptional responses in the seed coat of cranberry beans (Phaseolus vulgaris L.) with different susceptibility to postharvest darkening. BMC Plant Biology, 2017, 17, 89.	1.6	32
973	Time-dependent leaf proteome alterations of Brachypodium distachyon in response to drought stress. Plant Molecular Biology, 2017, 94, 609-623.	2.0	5
974	Non-uniform salinity in the root zone alleviates salt damage by increasing sodium, water and nutrient transport genes expression in cotton. Scientific Reports, 2017, 7, 2879.	1.6	34

#	Article	IF	CITATIONS
975	Cross species selection scans identify components of C ₄ photosynthesis in the grasses. Journal of Experimental Botany, 2017, 68, 127-135.	2.4	61
976	The Arabidopsis Polycomb Repressive Complex 1 (PRC1) Components AtBMI1A, B, and C Impact Gene Networks throughout All Stages of Plant Development. Plant Physiology, 2017, 173, 627-641.	2.3	38
977	Transcriptomic variation among six <i>Arabidopsis thaliana</i> accessions identified several novel genes controlling aluminium tolerance. Plant, Cell and Environment, 2017, 40, 249-263.	2.8	29
978	Tandem affinity purification of AtTERT reveals putative interaction partners of plant telomerase in vivo. Protoplasma, 2017, 254, 1547-1562.	1.0	17
979	Meta-analysis of Genome-Wide Chromatin Data. Methods in Molecular Biology, 2017, 1456, 33-50.	0.4	2
980	Drought stress-induced changes of microRNAs in diploid and autotetraploid Paulownia tomentosa. Genes and Genomics, 2017, 39, 77-86.	0.5	17
981	Discovery of porcine mi <scp>RNA</scp> â€196a/b may influence porcine adipogenesis in longissimus dorsi muscle by mi <scp>RNA</scp> sequencing. Animal Genetics, 2017, 48, 175-181.	0.6	20
982	Genome-wide analysis of gene expression to distinguish photoperiod-dependent and -independent flowering in Brassicaceae. Genes and Genomics, 2017, 39, 207-223.	0.5	2
983	RNA-seq analysis of Brachypodium distachyon responses to Barley stripe mosaic virus infection. Crop Journal, 2017, 5, 1-10.	2.3	4
984	<i><scp>APETALA</scp>2</i> antagonizes the transcriptional activity of <i><scp>AGAMOUS</scp></i> in regulating floral stem cells in <i>Arabidopsis thaliana</i> . New Phytologist, 2017, 215, 1197-1209.	3.5	53
985	SAC3B, a central component of the mRNA export complex TREX-2, is required for prevention of epigenetic gene silencing in <i>Arabidopsis</i> . Nucleic Acids Research, 2017, 45, 181-197.	6.5	21
986	Altered gene expression by sedaxane increases PSII efficiency, photosynthesis and growth and improves tolerance to drought in wheat seedlings. Pesticide Biochemistry and Physiology, 2017, 137, 49-61.	1.6	21
987	SoyNet: a database of co-functional networks for soybeanGlycine max. Nucleic Acids Research, 2017, 45, D1082-D1089.	6.5	56
988	Differential deposition of H2A.Z in combination with histone modifications within related genes in Oryza sativa callus and seedling. Plant Journal, 2017, 89, 264-277.	2.8	38
989	Cross-Species Genome-Wide Identification of Evolutionary Conserved MicroProteins. Genome Biology and Evolution, 2017, 9, 777-789.	1.1	23
990	"Mirador―on the potential role of miRNAs in synergy of light and heat networks. Indian Journal of Plant Physiology, 2017, 22, 587-607.	0.8	10
991	Patterns of Arabidopsis gene expression in the face of hypobaric stress. AoB PLANTS, 2017, 9, .	1.2	10
992	Dominance and Sexual Dimorphism Pervade the Salix purpurea L. Transcriptome. Genome Biology and Evolution, 2017, 9, 2377-2394.	1.1	35

		CITATION RE	PORT	
#	Article		IF	CITATIONS
993	Comparative Transcriptome and Lipidome Analyses Reveal Molecular Chilling Responses in Chillingâ€Tolerant Sorghums. Plant Genome, 2017, 10, plantgenome2017.03.0025.		1.6	35
994	Comparative proteomic analysis of the response of fibrous roots of nematode-resistant an sweet potato cultivars to root-knot nematode Meloidogyne incognita. Acta Physiologiae P 2017, 39, 1.	d -sensitive lantarum,	1.0	17
995	The draft genome ofRuellia speciosa(Beautiful Wild Petunia: Acanthaceae). DNA Research, dsw054.	2017, 24,	1.5	31
996	Genomic Signature of Adaptive Divergence despite Strong Nonadaptive Forces on Edaphic Case Study of Primulina juliae. Genome Biology and Evolution, 2017, 9, 3495-3508.	Islands: A	1.1	44
997	An insight into structure and composition of the fig genome. Acta Horticulturae, 2017, , 6	9-74.	0.1	4
998	Chromatin states responsible for the regulation of differentially expressed genes under 60 radiation in rice. BMC Genomics, 2017, 18, 778.	Co∼γ ray	1.2	12
999	Photosynthesis in C ₃ –C ₄ intermediate <i>Moricandia</i> speci Experimental Botany, 2017, 68, 191-206.	es. Journal of	2.4	58
1000	Ethylene induces combinatorial effects of histone H3 acetylation in gene expression in Ara BMC Genomics, 2017, 18, 538.	bidopsis.	1.2	51
1001	Proteomic Analysis Reveals Proteins Involved in Seed Imbibition under Salt Stress in Rice. F Plant Science, 2016, 7, 2006.	rontiers in	1.7	32
1002	Quantitative iTRAQ Proteomics Revealed Possible Roles for Antioxidant Proteins in Sorghu Aluminum Tolerance. Frontiers in Plant Science, 2016, 7, 2043.	m	1.7	29
1003	Identification of MicroRNAs and Their Target Genes Related to the Accumulation of Anthoo Litchi chinensis by High-Throughput Sequencing and Degradome Analysis. Frontiers in Plar 2016, 7, 2059.	cyanins in It Science,	1.7	69
1004	Transcriptome Analyses Reveal Candidate Genes Potentially Involved in Al Stress Response Frontiers in Plant Science, 2017, 8, 26.	in Alfalfa.	1.7	27
1005	Isolation, Characterization and Transcriptome Analysis of a Cytokinin Receptor Mutant Os Frontiers in Plant Science, 2017, 8, 88.	ckt1 in Rice.	1.7	26
1006	Understanding Host-Pathogen Interactions with Expression Profiling of NILs Carrying Rice- Resistance Pi9 Gene. Frontiers in Plant Science, 2017, 8, 93.	Blast	1.7	48
1007	Expression of the Maize Dof1 Transcription Factor in Wheat and Sorghum. Frontiers in Pla 2017, 8, 434.	nt Science,	1.7	50
1008	Comparative Analysis of Expression Profiles of Panicle Development among Tolerant and S in Response to Drought Stress. Frontiers in Plant Science, 2017, 08, 437.	ensitive Rice	1.7	19
1009	Dissecting Low Atmospheric Pressure Stress: Transcriptome Responses to the Component Hypobaria in Arabidopsis. Frontiers in Plant Science, 2017, 8, 528.	s of	1.7	16
1010	Responses to Hypoxia and Endoplasmic Reticulum Stress Discriminate the Development of Floury Endosperms of Conventional Maize (Zea mays) Inbred Lines. Frontiers in Plant Scier 557.	Vitreous and ice, 2017, 8,	1.7	19

#	Article	IF	CITATIONS
1011	Regulation of Isoflavone Biosynthesis by miRNAs in Two Contrasting Soybean Genotypes at Different Seed Developmental Stages. Frontiers in Plant Science, 2017, 8, 567.	1.7	26
1012	Characterization of the Polycomb-Group Mark H3K27me3 in Unicellular Algae. Frontiers in Plant Science, 2017, 8, 607.	1.7	38
1013	Evolutionary Analysis of DELLA-Associated Transcriptional Networks. Frontiers in Plant Science, 2017, 8, 626.	1.7	35
1014	Transcriptional Responses to Pre-flowering Leaf Defoliation in Grapevine Berry from Different Growing Sites, Years, and Genotypes. Frontiers in Plant Science, 2017, 8, 630.	1.7	23
1015	Ectopic Expression of CDF3 Genes in Tomato Enhances Biomass Production and Yield under Salinity Stress Conditions. Frontiers in Plant Science, 2017, 8, 660.	1.7	45
1016	A Comprehensive Analysis of Alternative Splicing in Paleopolyploid Maize. Frontiers in Plant Science, 2017, 8, 694.	1.7	109
1017	RNA-Seq Analysis of Diverse Rice Genotypes to Identify the Genes Controlling Coleoptile Growth during Submerged Germination. Frontiers in Plant Science, 2017, 8, 762.	1.7	60
1018	Comparative Transcriptomics Reveals Differential Gene Expression Related to Colletotrichum gloeosporioides Resistance in the Octoploid Strawberry. Frontiers in Plant Science, 2017, 8, 779.	1.7	35
1019	Comparative Transcriptome Analysis Reveals Critical Function of Sucrose Metabolism Related-Enzymes in Starch Accumulation in the Storage Root of Sweet Potato. Frontiers in Plant Science, 2017, 8, 914.	1.7	52
1020	Toward Unveiling the Mechanisms for Transcriptional Regulation of Proline Biosynthesis in the Plant Cell Response to Biotic and Abiotic Stress Conditions. Frontiers in Plant Science, 2017, 8, 927.	1.7	56
1021	Survey of High Throughput RNA-Seq Data Reveals Potential Roles for IncRNAs during Development and Stress Response in Bread Wheat. Frontiers in Plant Science, 2017, 8, 1019.	1.7	111
1022	Transcriptomic Analysis of Soil Grown T. aestivum cv. Root to Reveal the Changes in Expression of Genes in Response to Multiple Nutrients Deficiency. Frontiers in Plant Science, 2017, 8, 1025.	1.7	41
1023	Abscisic Acid Regulates Auxin Homeostasis in Rice Root Tips to Promote Root Hair Elongation. Frontiers in Plant Science, 2017, 8, 1121.	1.7	75
1024	The Transcriptional Responses and Metabolic Consequences of Acclimation to Elevated Light Exposure in Grapevine Berries. Frontiers in Plant Science, 2017, 8, 1261.	1.7	26
1025	Transcriptome Profiling Reveals the Negative Regulation of Multiple Plant Hormone Signaling Pathways Elicited by Overexpression of C-Repeat Binding Factors. Frontiers in Plant Science, 2017, 8, 1647.	1.7	28
1026	Transcriptomics and Alternative Splicing Analyses Reveal Large Differences between Maize Lines B73 and Mo17 in Response to Aphid Rhopalosiphum padi Infestation. Frontiers in Plant Science, 2017, 8, 1738.	1.7	47
1027	Abiotic Stress Responsive miRNA-Target Network and Related Markers (SNP, SSR) in Brassica juncea. Frontiers in Plant Science, 2017, 8, 1943.	1.7	39
1028	An Integrated "Multi-Omics―Comparison of Embryo and Endosperm Tissue-Specific Features and Their Impact on Rice Seed Quality. Frontiers in Plant Science, 2017, 8, 1984.	1.7	48

#	Article	IF	CITATIONS
1029	Genome-wide characterization of the aldehyde dehydrogenase gene superfamily in soybean and its potential role in drought stress response. BMC Genomics, 2017, 18, 518.	1.2	59
1030	Genome-wide identification of soybean microRNA responsive to soybean cyst nematodes infection by deep sequencing. BMC Genomics, 2017, 18, 572.	1.2	56
1031	Whole genome sequencing and comparative transcriptome analysis of a novel seawater adapted, salt-resistant rice cultivar – sea rice 86. BMC Genomics, 2017, 18, 655.	1.2	57
1032	Short-Chain Chitin Oligomers: Promoters of Plant Growth. Marine Drugs, 2017, 15, 40.	2.2	72
1033	Overexpression of AmRosea1 Gene Confers Drought and Salt Tolerance in Rice. International Journal of Molecular Sciences, 2017, 18, 2.	1.8	61
1034	Analysis of Argonaute 4-Associated Long Non-Coding RNA in Arabidopsis thaliana Sheds Novel Insights into Gene Regulation through RNA-Directed DNA Methylation. Genes, 2017, 8, 198.	1.0	19
1035	Haustorium initiation in the obligate parasitic plant Phelipanche ramosa involves a host-exudated cytokinin signal. Journal of Experimental Botany, 2017, 68, 5539-5552.	2.4	40
1036	High-Throughput Sequencing of Small RNA Transcriptomes in Maize Kernel Identifies miRNAs Involved in Embryo and Endosperm Development. Genes, 2017, 8, 385.	1.0	16
1037	Metabolomics and Proteomics of Brassica napus Guard Cells in Response to Low CO2. Frontiers in Molecular Biosciences, 2017, 4, 51.	1.6	28
1038	PlantCircNet: a database for plant circRNA–miRNA–mRNA regulatory networks. Database: the Journal of Biological Databases and Curation, 2017, 2017, .	1.4	44
1039	Genome-wide analysis of salinity-stress induced DNA methylation alterations in cotton (Gossypium) Tj ETQq0 0 C) rgBT /Ov	erlock 10 Tf 5
1040	The Phosphoproteomic Response of Rice Seedlings to Cadmium Stress. International Journal of Molecular Sciences, 2017, 18, 2055.	1.8	32
1041	Transcriptomic analysis of Crassostrea sikamea × Crassostrea angulata hybrids in response to low salinity stress. PLoS ONE, 2017, 12, e0171483.	1.1	40
1042	Molecular responses of genetically modified maize to abiotic stresses as determined through proteomic and metabolomic analyses. PLoS ONE, 2017, 12, e0173069.	1.1	43
1043	Gene expression profiling in Pekin duck embryonic breast muscle. PLoS ONE, 2017, 12, e0174612.	1.1	9
1044	SeqEnrich: A tool to predict transcription factor networks from co-expressed Arabidopsis and Brassica napus gene sets. PLoS ONE, 2017, 12, e0178256.	1.1	35
1045	Global analysis of DNA methylation in young (J1) and senescent (J2) Gossypium hirsutum L. cotyledons by MeDIP-Seq. PLoS ONE, 2017, 12, e0179141.	1.1	12
1046	PLATINUM SENSITIVE 2 LIKE impacts growth, root morphology, seed set, and stress responses. PLoS ONE, 2017, 12, e0180478.	1.1	13

#	Article	IF	CITATIONS
1047	Formation of friable embryogenic callus in cassava is enhanced under conditions of reduced nitrate, potassium and phosphate. PLoS ONE, 2017, 12, e0180736.	1.1	20
1048	Global gene expression in cotton (Gossypium hirsutum L.) leaves to waterlogging stress. PLoS ONE, 2017, 12, e0185075.	1.1	37
1049	Differential transcriptome profiling of chilling stress response between shoots and rhizomes of Oryza longistaminata using RNA sequencing. PLoS ONE, 2017, 12, e0188625.	1.1	30
1050	Bioinformatics resources for deciphering the biogenesis and action pathways of plant small RNAs. Rice, 2017, 10, 38.	1.7	18
1051	Pervasive interactions of Sa and Sb loci cause high pollen sterility and abrupt changes in gene expression during meiosis that could be overcome by double neutral genes in autotetraploid rice. Rice, 2017, 10, 49.	1.7	33
1052	An integrated and comparative approach towards identification, characterization and functional annotation of candidate genes for drought tolerance in sorghum (Sorghum bicolor (L.) Moench). BMC Genetics, 2017, 18, 119.	2.7	27
1053	Seed maturation associated transcriptional programs and regulatory networks underlying genotypic difference in seed dormancy and size/weight in wheat (Triticum aestivum L.). BMC Plant Biology, 2017, 17, 154.	1.6	22
1054	Genome-wide trait-trait dynamics correlation study dissects the gene regulation pattern in maize kernels. BMC Plant Biology, 2017, 17, 163.	1.6	5
1055	RNA-Seq analysis of resistant and susceptible sub-tropical maize lines reveals a role for kauralexins in resistance to grey leaf spot disease, caused by Cercospora zeina. BMC Plant Biology, 2017, 17, 197.	1.6	43
1056	MAPK-triggered chromatin reprogramming by histone deacetylase in plant innate immunity. Genome Biology, 2017, 18, 131.	3.8	73
1057	Meiotic crossovers are associated with open chromatin and enriched with Stowaway transposons in potato. Genome Biology, 2017, 18, 203.	3.8	62
1058	Comparative epigenomics in the Brassicaceae reveals two evolutionarily conserved modes of PRC2-mediated gene regulation. Genome Biology, 2017, 18, 207.	3.8	8
1059	Optimized reduced representation bisulfite sequencing reveals tissue-specific mCHH islands in maize. Epigenetics and Chromatin, 2017, 10, 42.	1.8	19
1060	Metabolic pathways and genes identified by RNA-seq analysis of barley near-isogenic lines differing by allelic state of the Black lemma and pericarp (Blp) gene. BMC Plant Biology, 2017, 17, 182.	1.6	22
1061	Differential expression of NBS-LRR-encoding genes in the root transcriptomes of two Solanum phureja genotypes with contrasting resistance to Globodera rostochiensis. BMC Plant Biology, 2017, 17, 251.	1.6	15
1062	Regulation of gene expression in roots of the pH-sensitive Vaccinium corymbosum and the pH-tolerant Vaccinium arboreum in response to near neutral pH stress using RNA-Seq. BMC Genomics, 2017, 18, 580.	1.2	15
1063	Genetic dissection of metabolite variation in Arabidopsis seeds: evidence for mQTL hotspots and a master regulatory locus of seed metabolism. Journal of Experimental Botany, 2017, 68, 1655-1667.	2.4	36
1064	Complexity and specificity of the maize (Zea mays L.) root hair transcriptome. Journal of Experimental Botany, 2017, 68, 2175-2185.	2.4	19

#	Article	IF	CITATIONS
1065	Genomeâ€wide binding analysis of AtGNC and AtCGA1 demonstrates their crossâ€regulation and common and specific functions. Plant Direct, 2017, 1, e00016.	0.8	13
1066	Transcriptome and Metabolite Changes during Hydrogen Cyanamide-Induced Floral Bud Break in Sweet Cherry. Frontiers in Plant Science, 2017, 8, 1233.	1.7	81
1067	Genetic dissection of Arabidopsis MAP kinase phosphatase 1-dependent PAMP-induced transcriptional responses. Journal of Experimental Botany, 2017, 68, 5207-5220.	2.4	8
1068	Response of Gene Expression and Alternative Splicing to Distinct Growth Environments in Tomato. International Journal of Molecular Sciences, 2017, 18, 475.	1.8	20
1069	Differential transcriptome modulation leads to variation in arsenic stress response in Arabidopsis thaliana accessions. Journal of Hazardous Materials, 2018, 351, 1-10.	6.5	41
1070	Single-base resolution map of evolutionary constraints and annotation of conserved elements across major grass genomes. Genome Biology and Evolution, 2018, 10, 473-488.	1.1	11
1071	Proliferation of Regulatory DNA Elements Derived from Transposable Elements in the Maize Genome. Plant Physiology, 2018, 176, 2789-2803.	2.3	71
1072	Transcriptome profiling of rubber tree (Hevea brasiliensis) discovers candidate regulators of the cold stress response. Genes and Genomics, 2018, 40, 1181-1197.	0.5	34
1073	Plant Temperature Acclimation and Growth Rely on Cytosolic Ribosome Biogenesis Factor Homologs. Plant Physiology, 2018, 176, 2251-2276.	2.3	39
1074	Comparative transcriptome analysis provides key insights into gene expression pattern during the formation of nodule-like structures in Brachypodium. Functional and Integrative Genomics, 2018, 18, 315-326.	1.4	13
1075	Changes in chromatin accessibility between Arabidopsis stem cells and mesophyll cells illuminate cell typeâ€specific transcription factor networks. Plant Journal, 2018, 94, 215-231.	2.8	110
1076	Transcriptome changes induced by abiotic stresses in Artemisia annua. Scientific Reports, 2018, 8, 3423.	1.6	36
1077	MSD1 regulates pedicellate spikelet fertility in sorghum through the jasmonic acid pathway. Nature Communications, 2018, 9, 822.	5.8	56
1078	<i>FLOWERING LOCUS T</i> mRNA is synthesized in specialized companion cells in <i>Arabidopsis</i> and Maryland Mammoth tobacco leaf veins. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2830-2835.	3.3	52
1079	<i>Bacillus amyloliquefaciens</i> alters gene expression, <scp>ROS</scp> production and lignin synthesis in cotton seedling roots. Journal of Applied Microbiology, 2018, 124, 1589-1603.	1.4	48
1080	De novo transcriptome analysis of abiotic stress-responsive transcripts of Hevea brasiliensis. Molecular Breeding, 2018, 38, 1.	1.0	15
1081	Circadian clock components control daily growth activities by modulating cytokinin levels and cell divisionâ€associated gene expression in <i>Populus</i> trees. Plant, Cell and Environment, 2018, 41, 1468-1482.	2.8	22
1082	Identification of DNA methylated regions by using methylated DNA immunoprecipitation sequencing in Brassica rapa. Crop and Pasture Science, 2018, 69, 107.	0.7	16

#	Article	IF	CITATIONS
1083	RNA-seq data of control and powdery mildew pathogen (Golovinomyces orontii) treated transcriptomes of Helianthus niveus. Data in Brief, 2018, 17, 210-217.	0.5	2
1084	Thylakoidal APX modulates hydrogen peroxide content and stomatal closure in rice (Oryza sativa L.). Environmental and Experimental Botany, 2018, 150, 46-56.	2.0	20
1085	Comparative Proteome Analysis Reveals that Cuticular Proteins Analogous to Peritrophinâ€Motif Proteins are Involved in the Regeneration of Chitin Layer in the Silk Gland of <i>Bombyx mori</i> at the Molting Stage. Proteomics, 2018, 18, e1700389.	1.3	12
1086	Distinct gene networks modulate floral induction of autonomous maize and photoperiod-dependent teosinte. Journal of Experimental Botany, 2018, 69, 2937-2952.	2.4	39
1087	A molecular network for functional versatility of HECATE transcription factors. Plant Journal, 2018, 95, 57-70.	2.8	20
1088	The <scp>PP</scp> 2Aâ€interactor <scp>TIP</scp> 41 modulates <scp>ABA</scp> responses in <i>Arabidopsis thaliana</i> . Plant Journal, 2018, 94, 991-1009.	2.8	28
1089	miR156-SPL modules regulate induction of somatic embryogenesis in citrus callus. Journal of Experimental Botany, 2018, 69, 2979-2993.	2.4	78
1090	Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat. Scientific Reports, 2018, 8, 5710.	1.6	205
1091	An epigenetic breeding system in soybean for increased yield and stability. Plant Biotechnology Journal, 2018, 16, 1836-1847.	4.1	73
1092	Comparative analysis of transcriptome in two wheat genotypes with contrasting levels of drought tolerance. Protoplasma, 2018, 255, 1487-1504.	1.0	23
1093	An NMRA-Like Protein Regulates Gene Expression in <i>Phytophthora capsici</i> to Drive the Infection Cycle on Tomato. Molecular Plant-Microbe Interactions, 2018, 31, 665-677.	1.4	19
1094	Identifying the target genes of <scp>SUPPRESSOR OF GAMMA RESPONSE</scp> 1, a master transcription factor controlling <scp>DNA</scp> damage response in <i>Arabidopsis</i> . Plant Journal, 2018, 94, 439-453.	2.8	127
1095	A Global View of Transcriptome Dynamics During Male Floral Bud Development in Populus tomentosa. Scientific Reports, 2018, 8, 722.	1.6	39
1096	Regulation of floral meristem activity through the interaction of AGAMOUS, SUPERMAN, and CLAVATA3 in Arabidopsis. Plant Reproduction, 2018, 31, 89-105.	1.3	33
1097	Identification and characterization of long noncoding RNA in Paulownia tomentosa treated with methyl methane sulfonate. Physiology and Molecular Biology of Plants, 2018, 24, 325-334.	1.4	16
1098	Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nature Genetics, 2018, 50, 285-296.	9.4	413
1099	Beyond pathways: genetic dissection of tocopherol content in maize kernels by combining linkage and association analyses. Plant Biotechnology Journal, 2018, 16, 1464-1475.	4.1	70
1100	The calmodulin-like protein, CML39, is involved in regulating seed development, germination, and fruit development in Arabidopsis. Plant Molecular Biology, 2018, 96, 375-392.	2.0	48

#	Article	IF	CITATIONS
1101	iTRAQ-based proteomics analysis of autophagy-mediated immune responses against the vascular fungal pathogen <i>Verticillium dahliae</i> in <i>Arabidopsis</i> . Autophagy, 2018, 14, 598-618.	4.3	35
1102	Knockdown of Rice MicroRNA166 Confers Drought Resistance by Causing Leaf Rolling and Altering Stem Xylem Development. Plant Physiology, 2018, 176, 2082-2094.	2.3	198
1103	RNA-Seq transcriptomic analysis of the Morus alba L. leaves exposed to high-level UVB with or without dark treatment. Gene, 2018, 645, 60-68.	1.0	18
1104	The Cuticle Mutant <i>eca2</i> Modifies Plant Defense Responses to Biotrophic and Necrotrophic Pathogens and Herbivory Insects. Molecular Plant-Microbe Interactions, 2018, 31, 344-355.	1.4	26
1105	Arabidopsis ARGONAUTE 1 Binds Chromatin to Promote Gene Transcription in Response to Hormones and Stresses. Developmental Cell, 2018, 44, 348-361.e7.	3.1	121
1106	Systems Biology Modeling to Study Pathogen–Host Interactions. Methods in Molecular Biology, 2018, 1734, 97-112.	0.4	13
1107	Gene-based SNP identification and validation in soybean using next-generation transcriptome sequencing. Molecular Genetics and Genomics, 2018, 293, 623-633.	1.0	16
1108	Identification of Transcriptional and Receptor Networks That Control Root Responses to Ethylene. Plant Physiology, 2018, 176, 2095-2118.	2.3	41
1109	Molecular dissection of distinct symptoms induced by tomato chlorosis virus and tomato yellow leaf curl virus based on comparative transcriptome analysis. Virology, 2018, 516, 1-20.	1.1	46
1110	Discovery of microRNA-target modules of African rice (Oryza glaberrima) under salinity stress. Scientific Reports, 2018, 8, 570.	1.6	44
1111	Growth is required for perception of water availability to pattern root branches in plants. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E822-E831.	3.3	72
1112	Transcriptomeâ€based analyses of phosphiteâ€mediated suppression of rust pathogens <i>Puccinia emaculata</i> and <i>Phakopsora pachyrhizi</i> and functional characterization of selected fungal target genes. Plant Journal, 2018, 93, 894-904.	2.8	31
1113	Identification and prioritization of differentially expressed genes for time-series gene expression data. Frontiers of Computer Science, 2018, 12, 813-823.	1.6	1
1114	Loci That Control Nonlinear, Interdependent Responses to Combinations of Drought and Nitrogen Limitation. G3: Genes, Genomes, Genetics, 2018, 8, 1481-1496.	0.8	1
1115	bZIP17 regulates the expression of genes related to seed storage and germination, reducing seed susceptibility to osmotic stress. Journal of Cellular Biochemistry, 2018, 119, 6857-6868.	1.2	16
1116	A Lignin Molecular Brace Controls Precision Processing of Cell Walls Critical for Surface Integrity in Arabidopsis. Cell, 2018, 173, 1468-1480.e9.	13.5	109
1117	Genome-wide expression analysis suggests a role for jasmonates in the resistance to blue mold in apple. Plant Growth Regulation, 2018, 85, 375-387.	1.8	8
1118	Comparative transcriptomics and genomic patterns of discordance in Capsiceae (Solanaceae). Molecular Phylogenetics and Evolution, 2018, 126, 293-302.	1.2	15

#	Article	IF	CITATIONS
1119	Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b regulates multiple developmental genes under benign and stress conditions. Journal of Experimental Botany, 2018, 69, 2847-2862.	2.4	56
1120	Arabidopsis SWC4 Binds DNA and Recruits the SWR1 Complex to Modulate Histone H2A.Z Deposition at Key Regulatory Genes. Molecular Plant, 2018, 11, 815-832.	3.9	60
1121	Adaptive diversification of growth allometry in the plant <i>Arabidopsis thaliana</i> . Proceedings of the United States of America, 2018, 115, 3416-3421.	3.3	78
1122	Proteomic analysis of melatonin-mediated osmotic tolerance by improving energy metabolism and autophagy in wheat (Triticum aestivum L.). Planta, 2018, 248, 69-87.	1.6	45
1123	Transcriptional and epigenetic adaptation of maize chromosomes in Oat-Maize addition lines. Nucleic Acids Research, 2018, 46, 5012-5028.	6.5	19
1124	Genome-wide differential expression profiling in wild and cultivar genotypes of cardamom reveals regulation of key pathways in plant growth and development. Agri Gene, 2018, 8, 18-27.	1.9	2
1125	Ontology Visualization: An Overview. Advances in Intelligent Systems and Computing, 2018, , 880-891.	0.5	9
1126	Comparative alternative splicing analysis of two contrasting rice cultivars under drought stress and association of differential splicing genes with drought response QTLs. Euphytica, 2018, 214, 1.	0.6	20
1127	Root Development. Methods in Molecular Biology, 2018, , .	0.4	3
1128	Chromatin Immunoprecipitation Sequencing (ChIP-Seq) for Transcription Factors and Chromatin Factors in Arabidopsis thaliana Roots: From Material Collection to Data Analysis. Methods in Molecular Biology, 2018, 1761, 231-248.	0.4	11
1129	Reconstructing the suberin pathway in poplar by chemical and transcriptomic analysis of bark tissues. Tree Physiology, 2018, 38, 340-361.	1.4	51
1130	Transcriptome analysis of rootâ€knot nematode (<i>Meloidogyne incognita</i>)â€infected tomato (<i>Solanum lycopersicum</i>) roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance responses. Molecular Plant Pathology, 2018, 19, 615-633.	2.0	127
1131	Transcriptional analysis of the interaction between the oomycete biocontrol agent, Pythium oligandrum , and the roots of Vitis vinifera L. Biological Control, 2018, 120, 26-35.	1.4	18
1132	Development of iFOX â€hunting as a functional genomic tool and demonstration of its use to identify early senescenceâ€related genes in the polyploid Brassica napus. Plant Biotechnology Journal, 2018, 16, 591-602.	4.1	24
1133	Comparative transcriptome combined with morphoâ€physiological analyses revealed key factors for differential cadmium accumulation in two contrasting sweet sorghum genotypes. Plant Biotechnology Journal, 2018, 16, 558-571.	4.1	106
1134	Whole genome re-sequencing reveals evolutionary patterns of sacred lotus (<i>Nelumbo) Tj ETQq1 1 0.784314</i>	rgBT /Ove 4.1	rlogk 10 Tf 50
1135	PCSD: a plant chromatin state database. Nucleic Acids Research, 2018, 46, D1157-D1167.	6.5	107
1136	Successive evolutionary steps drove Pooideae grasses from tropical to temperate regions. New Phytologist, 2018, 217, 925-938.	3.5	27

#	Article	IF	CITATIONS
1137	Protocol for Coexpression Network Construction and Stress-Responsive Expression Analysis in Brachypodium. Methods in Molecular Biology, 2018, 1667, 203-221.	0.4	1
1138	Identification of gene co-expression networks involved in cold resistance of Lilium lancifolium. Biologia Plantarum, 2018, 62, 287-298.	1.9	14
1139	Effectors involved in fungal–fungal interaction lead to a rare phenomenon of hyperbiotrophy in the tritrophic system biocontrol agent–powdery mildew–plant. New Phytologist, 2018, 217, 713-725.	3.5	47
1140	Rice Stripe Tenuivirus Has a Greater Tendency To Use the Prime-and-Realign Mechanism in Transcription of Genomic than in Transcription of Antigenomic Template RNAs. Journal of Virology, 2018, 92, .	1.5	23
1141	Three AtCesA6â€like members enhance biomass production by distinctively promoting cell growth in <i>Arabidopsis</i> . Plant Biotechnology Journal, 2018, 16, 976-988.	4.1	49
1142	Comprehensive description of genomewide nucleotide and structural variation in shortâ€season soya bean. Plant Biotechnology Journal, 2018, 16, 749-759.	4.1	46
1143	Arabidopsis NAP-related proteins (NRPs) contribute to the coordination of plant growth, developmental rate, and age-related pathogen resistance under short days. Plant Science, 2018, 267, 124-134.	1.7	15
1144	Comparative epigenomics reveals evolution of duplicated genes in potato and tomato. Plant Journal, 2018, 93, 460-471.	2.8	33
1145	Transcriptome Profiling of <i>Melaleuca quinquenervia</i> Challenged by Myrtle Rust Reveals Differences in Defense Responses Among Resistant Individuals. Phytopathology, 2018, 108, 495-509.	1.1	16
1146	Profiling of Accessible Chromatin Regions across Multiple Plant Species and Cell Types Reveals Common Gene Regulatory Principles and New Control Modules. Plant Cell, 2018, 30, 15-36.	3.1	226
1147	Identification of virusâ€derived siRNAs and their targets in RBSDVâ€infected rice by deep sequencing. Journal of Basic Microbiology, 2018, 58, 227-237.	1.8	23
1148	Stage-Specific Gene Profiling of Germinal Cells Helps Delineate the Mitosis/Meiosis Transition. Plant Physiology, 2018, 176, 1610-1626.	2.3	19
1149	llluminating the role of the G \hat{l}_{\pm} heterotrimeric G protein subunit, RGA1, in regulating photoprotection and photoavoidance in rice. Plant, Cell and Environment, 2018, 41, 451-468.	2.8	36
1150	Drought stress responses in maize are diminished by <i>Piriformospora indica</i> . Plant Signaling and Behavior, 2018, 13, e1414121.	1.2	87
1151	Identification of tomato miRNAs responsive to root colonization by endophytic Pochonia chlamydosporia. Applied Microbiology and Biotechnology, 2018, 102, 907-919.	1.7	19
1152	Identification of circular RNAs and their targets during tomato fruit ripening. Postharvest Biology and Technology, 2018, 136, 90-98.	2.9	74
1153	Prominent alterations of wild barley leaf transcriptome in response to individual and combined drought acclimation and heat shock conditions. Physiologia Plantarum, 2018, 163, 18-29.	2.6	16
1154	RNA-Seq analysis reveals the distinctive adaxial–abaxial polarity in the asymmetric one-theca stamen of Canna indica. Molecular Genetics and Genomics, 2018, 293, 391-400.	1.0	12

#	Article	IF	CITATIONS
1155	Transcription Factors VND1-VND3 Contribute to Cotyledon Xylem Vessel Formation. Plant Physiology, 2018, 176, 773-789.	2.3	76
1156	Circular RNAs mediated by transposons are associated with transcriptomic and phenotypic variation in maize. New Phytologist, 2018, 217, 1292-1306.	3.5	92
1157	Alternative polyadenylation is involved in auxinâ€based plant growth and development. Plant Journal, 2018, 93, 246-258.	2.8	38
1158	Fine-mapping of QTLs for individual and total isoflavone content in soybean (Glycine max L.) using a high-density genetic map. Theoretical and Applied Genetics, 2018, 131, 555-568.	1.8	34
1159	Spatial Control of Gene Expression by miR319-Regulated TCP Transcription Factors in Leaf Development. Plant Physiology, 2018, 176, 1694-1708.	2.3	119
1160	The cereal pathogen <i>Fusarium pseudograminearum</i> produces a new class of active cytokinins during infection. Molecular Plant Pathology, 2018, 19, 1140-1154.	2.0	37
1161	Systematic miRNome profiling reveals differential microRNAs in transgenic maize metabolism. Environmental Sciences Europe, 2018, 30, 37.	2.6	0
1162	Meta-analysis of transcriptomic responses to biotic and abiotic stress in tomato. PeerJ, 2018, 6, e4631.	0.9	51
1163	Regulation through MicroRNAs in Response to Low-Energy N+ Ion Irradiation in Oryza sativa. Radiation Research, 2018, 191, 189.	0.7	2
1164	Phenotypic, transcriptional, physiological and metabolic responses to carbon nanodot exposure in <i>Arabidopsis thaliana</i> (L.). Environmental Science: Nano, 2018, 5, 2672-2685.	2.2	32
1165	Benzothiadiazole, a plant defense inducer, negatively regulates sheath blight resistance in Brachypodium distachyon. Scientific Reports, 2018, 8, 17358.	1.6	24
1166	iTRAQ analysis of a mouse acute myocardial infarction model reveals that vitamin D binding protein promotes cardiomyocyte apoptosis after hypoxia. Oncotarget, 2018, 9, 1969-1979.	0.8	9
1167	Unravelling transcriptome changes between two distinct maize inbred lines using RNA-seq. Journal of Integrative Agriculture, 2018, 17, 1574-1584.	1.7	2
1168	Transcriptomic evidence for distinct mechanisms underlying abscission deficiency in the Arabidopsis mutants haesa/haesa-like 2 and nevershed. BMC Research Notes, 2018, 11, 754.	0.6	6
1169	Comparative Transcriptome Analysis between a Resistant and a Susceptible Wild Tomato Accession in Response to Phytophthora parasitica. International Journal of Molecular Sciences, 2018, 19, 3735.	1.8	29
1170	Transcriptome-wide identification of genes involved in Ascorbate–Glutathione cycle (Halliwell–Asada pathway) and related pathway for elucidating its role in antioxidative potential in finger millet (Eleusine coracana (L.)). 3 Biotech, 2018, 8, 499.	1.1	17
1171	Maize multi-omics reveal roles for autophagic recycling in proteome remodelling and lipid turnover. Nature Plants, 2018, 4, 1056-1070.	4.7	124
1172	Changes of gene expression but not cytosine methylation are associated with male parental care reflecting behavioural state, social context, and individual flexibility. Journal of Experimental Biology, 2019, 222, .	0.8	12

#	Article	IF	CITATIONS
1173	Horizontal Gene Transfer in Five Parasite Plant Species in Orobanchaceae. Genome Biology and Evolution, 2018, 10, 3196-3210.	1.1	43
1174	Proteomic and ecophysiological responses of soybean (Glycine max L.) root nodules to Pb and hg stress. BMC Plant Biology, 2018, 18, 283.	1.6	26
1175	Dawn regulates guard cell proteins in Arabidopsis thaliana that function in ATP production from fatty acid beta-oxidation. Plant Molecular Biology, 2018, 98, 525-543.	2.0	10
1176	The transcriptome of zinc deficient maize roots and its relationship to DNA methylation loss. BMC Plant Biology, 2018, 18, 372.	1.6	28
1177	Anthocyanin accumulation correlates with hormones in the fruit skin of â€~Red Delicious' and its four generation bud sport mutants. BMC Plant Biology, 2018, 18, 363.	1.6	55
1178	Comparing <scp>RNA</scp> â€5eq and microarray gene expression data in two zones of the <i>Arabidopsis</i> root apex relevant to spaceflight. Applications in Plant Sciences, 2018, 6, e01197.	0.8	10
1179	Comparative RNA-sequencing-based transcriptome profiling of buds from profusely flowering â€~Qinguan' and weakly flowering â€~Nagafu no. 2' apple varieties reveals novel insights into the regulatory mechanisms underlying floral induction. BMC Plant Biology, 2018, 18, 370.	1.6	19
1180	Differences in Root Physiological and Proteomic Responses to Dibutyl Phthalate Exposure between Low- and High-DBP-Accumulation Cultivars of <i>Brassica parachinensis</i> . Journal of Agricultural and Food Chemistry, 2018, 66, 13541-13551.	2.4	13
1181	Chromatin-mediated feed-forward auxin biosynthesis in floral meristem determinacy. Nature Communications, 2018, 9, 5290.	5.8	73
1182	Co-expression Gene Network Analysis and Functional Module Identification in Bamboo Growth and Development. Frontiers in Genetics, 2018, 9, 574.	1.1	85
1183	Multilevel comparative bioinformatics to investigate evolutionary relationships and specificities in gene annotations: an example for tomato and grapevine. BMC Bioinformatics, 2018, 19, 435.	1.2	9
1184	Maize male sterile 33 encodes a putative glycerol-3-phosphate acyltransferase that mediates anther cuticle formation and microspore development. BMC Plant Biology, 2018, 18, 318.	1.6	12
1185	Downstream components of the calmodulin signaling pathway in the rice salt stress response revealed by transcriptome profiling and target identification. BMC Plant Biology, 2018, 18, 335.	1.6	61
1186	INDUCER OF CBF EXPRESSION 1 is a male fertility regulator impacting anther dehydration in Arabidopsis. PLoS Genetics, 2018, 14, e1007695.	1.5	46
1187	Early Responses to Severe Drought Stress in the Arabidopsis thaliana Cell Suspension Culture Proteome. Proteomes, 2018, 6, 38.	1.7	24
1188	Deletions linked to PROG1 gene participate in plant architecture domestication in Asian and African rice. Nature Communications, 2018, 9, 4157.	5.8	63
1189	Identification of candidate domesticationâ€related genes with a systematic survey of lossâ€ofâ€function mutations. Plant Journal, 2018, 96, 1218-1227.	2.8	11
1190	Opaque-2 Regulates a Complex Gene Network Associated with Cell Differentiation and Storage Functions of Maize Endosperm. Plant Cell, 2018, 30, 2425-2446.	3.1	83

#	Article	IF	CITATIONS
1191	Variation in the regulatory region of <i><scp>FZP</scp></i> causes increases in secondary inflorescence branching and grain yield in rice domestication. Plant Journal, 2018, 96, 716-733.	2.8	65
1192	Time-Course Transcriptome Analysis of Arabidopsis Siliques Discloses Genes Essential for Fruit Development and Maturation. Plant Physiology, 2018, 178, 1249-1268.	2.3	37
1193	Chronic Adrenergic Signaling Causes Abnormal RNA Expression of Proliferative Genes in Fetal Sheep Islets. Endocrinology, 2018, 159, 3565-3578.	1.4	13
1194	Transcriptome reprogramming of resistant and susceptible peach genotypes during Xanthomonas arboricola pv. pruni early leaf infection. PLoS ONE, 2018, 13, e0196590.	1.1	13
1195	Microarray dataset of after-ripening induced mRNA oxidation in wheat seeds. Data in Brief, 2018, 21, 852-855.	0.5	5
1196	Genome-wide RNA-seq analysis indicates that the DAG1 transcription factor promotes hypocotyl elongation acting on ABA, ethylene and auxin signaling. Scientific Reports, 2018, 8, 15895.	1.6	17
1197	Biomarkers for Early Stages of Johne's Disease Infection and Immunization in Goats. Frontiers in Microbiology, 2018, 9, 2284.	1.5	11
1198	Comparative proteomic analysis of Ulva prolifera response to high temperature stress. Proteome Science, 2018, 16, 17.	0.7	18
1199	Pathways and Network Based Analysis of Candidate Genes to Reveal Cross-Talk and Specificity in the Sorghum (Sorghum bicolor (L) Moench) Responses to Drought and It's Co-occurring Stresses. Frontiers in Genetics, 2018, 9, 557.	1.1	22
1200	Genome-Wide Transcriptomic Analysis Reveals Insights into the Response to Citrus bark cracking viroid (CBCVd) in Hop (Humulus lupulus L.). Viruses, 2018, 10, 570.	1.5	23
1201	An essential role for Abscisic acid in the regulation of xylem fibre differentiation. Development (Cambridge), 2018, 145, .	1.2	23
1202	Genome-wide transcriptome profiling of transgenic hop (Humulus lupulus L.) constitutively overexpressing HIWRKY1 and HIWDR1 transcription factors. BMC Genomics, 2018, 19, 739.	1.2	13
1203	Recovery of novel association loci in Arabidopsis thaliana and Drosophila melanogaster through leveraging INDELs association and integrated burden test. PLoS Genetics, 2018, 14, e1007699.	1.5	16
1204	Effects of sugarcane aphid herbivory on transcriptional responses of resistant and susceptible sorghum. BMC Genomics, 2018, 19, 774.	1.2	40
1205	<i>Cis</i> â€regulated alternative splicing divergence and its potential contribution to environmental responses in Arabidopsis. Plant Journal, 2019, 97, 555-570.	2.8	33
1206	Phosphate Deficiency Negatively Affects Early Steps of the Symbiosis between Common Bean and Rhizobia. Genes, 2018, 9, 498.	1.0	25
1207	Shared and genetically distinct Zea mays transcriptome responses to ongoing and past low temperature exposure. BMC Genomics, 2018, 19, 761.	1.2	29
1208	Comparative analysis of circular RNAs between soybean cytoplasmic male-sterile line NJCMS1A and its maintainer NJCMS1B by high-throughput sequencing. BMC Genomics, 2018, 19, 663.	1.2	35

#	Article	IF	CITATIONS
1209	Genome-wide analysis of DNA methylation to identify genes and pathways associated with male sterility in soybean. Molecular Breeding, 2018, 38, 1.	1.0	7
1210	Extensive Genetic Diversity is Present within North American Switchgrass Germplasm. Plant Genome, 2018, 11, 170055.	1.6	35
1211	Proteomics dataset containing proteins that obscure identification of TOPLESS interactors in Arabidopsis. Data in Brief, 2018, 20, 909-916.	0.5	0
1212	Comparative transcriptome meta-analysis of Arabidopsis thaliana under drought and cold stress. PLoS ONE, 2018, 13, e0203266.	1.1	67
1213	The Arabidopsis RNA Polymerase II Carboxyl Terminal Domain (CTD) Phosphatase-Like1 (CPL1) is a biotic stress susceptibility gene. Scientific Reports, 2018, 8, 13454.	1.6	18
1214	Stress response to low temperature: Transcriptomic characterization in <i>Crassostrea sikamea</i> Â×Â <i>Crassostrea angulata</i> hybrids. Aquaculture Research, 2018, 49, 3374-3385.	0.9	7
1215	Efficient QTL detection of flowering date in a soybean RIL population using the novel restricted two-stage multi-locus GWAS procedure. Theoretical and Applied Genetics, 2018, 131, 2581-2599.	1.8	31
1216	Differential transcriptome patterns associated with early seedling development in a wild and a domesticated common bean (Phaseolus vulgaris L.) accession. Plant Science, 2018, 274, 153-162.	1.7	9
1217	Role of <i>BASIC PENTACYSTEINE</i> transcription factors in a subset of cytokinin signaling responses. Plant Journal, 2018, 95, 458-473.	2.8	52
1218	SWI2/SNF2 ATPase CHR2 remodels pri-miRNAs via Serrate to impede miRNA production. Nature, 2018, 557, 516-521.	13.7	106
1219	The Defense Phytohormone Signaling Network Enables Rapid, High-Amplitude Transcriptional Reprogramming during Effector-Triggered Immunity. Plant Cell, 2018, 30, 1199-1219.	3.1	169
1220	Auxin decreases chromatin accessibility through the TIR1/AFBs auxin signaling pathway in proliferative cells. Scientific Reports, 2018, 8, 7773.	1.6	23
1221	SEUSS and PIF4 Coordinately Regulate Light and Temperature Signaling Pathways to Control Plant Growth. Molecular Plant, 2018, 11, 928-942.	3.9	82
1222	Ambient temperature regulates the expression of a small set of sRNAs influencing plant development through <i>NF</i> â€ <i>YA2</i> and <i>YUC2</i> . Plant, Cell and Environment, 2018, 41, 2404-2417.	2.8	67
1223	Comparative Transcriptome Analysis of Rhizoctonia solani-resistant and -Susceptible Rice Cultivars Reveals the Importance of Pathogen Recognition and Active Immune Responses in Host Resistance. Journal of Plant Biology, 2018, 61, 143-158.	0.9	14
1224	Genome-Wide Identification of Drought Response Genes in Soybean Seedlings and Development of Biomarkers for Early Diagnoses. Plant Molecular Biology Reporter, 2018, 36, 350-362.	1.0	5
1225			
	Identification of transcription factors from NF-Y, NAC, and SPL families responding to osmotic stress in multiple tomato varieties. Plant Science, 2018, 274, 441-450.	1.7	9

# 1227	ARTICLE Transcriptomic analysis of zebrafish (Danio rerio) embryos to assess integrated biotoxicity of Xitiaoxi River waters. Environmental Pollution, 2018, 242, 42-53.	IF 3.7	Citations
1228	Omics approaches revealed how arbuscular mycorrhizal symbiosis enhances yield and resistance to leaf pathogen in wheat. Scientific Reports, 2018, 8, 9625.	1.6	108
1229	Temporal Analyses of Barley Malting Stages Using Shotgun Proteomics. Proteomics, 2018, 18, e1800025.	1.3	21
1230	Salinity Responses and Tolerance in Plants, Volume 2. , 2018, , .		5
1231	Systems Biology Approach for Elucidation of Plant Responses to Salinity Stress. , 2018, , 307-326.		1
1232	Rice H2A.Z negatively regulates genes responsive to nutrient starvation but promotes expression of key housekeeping genes. Journal of Experimental Botany, 2018, 69, 4907-4919.	2.4	33
1233	Phytohormone participation during Citrus sinensis non-host response to Xanthomonas campestris pv. vesicatoria. Plant Gene, 2018, 15, 28-36.	1.4	7
1234	Global analysis of H3K4me3/H3K27me3 in <i>Brachypodium distachyon</i> reveals <i><scp>VRN</scp>3</i> as critical epigenetic regulation point in vernalization and provides insights into epigenetic memory. New Phytologist, 2018, 219, 1373-1387.	3.5	36
1235	Characterization of Transcription Factor Gene OsDRAP1 Conferring Drought Tolerance in Rice. Frontiers in Plant Science, 2018, 9, 94.	1.7	63
1236	In Silico Methods to Predict Disease-Resistance Candidate Genes in Plants. , 2018, , 91-106.		0
1237	Genome-wide atlas of alternative polyadenylation in the forage legume red clover. Scientific Reports, 2018, 8, 11379.	1.6	9
1238	Comparative transcriptome analysis of field- and chamber-grown samples of Colobanthus quitensis (Kunth) Bartl, an Antarctic flowering plant. Scientific Reports, 2018, 8, 11049.	1.6	27
1239	In Silico Approach for Sustainable Agriculture. , 2018, , .		1
1240	Transcriptomics analyses reveal the molecular roadmap and long non oding <scp>RNA</scp> landscape of sperm cell lineage development. Plant Journal, 2018, 96, 421-437.	2.8	15
1241	Natural Variation in <i>OsLG3</i> Increases Drought Tolerance in Rice by Inducing ROS Scavenging. Plant Physiology, 2018, 178, 451-467.	2.3	121
1242	Transcriptomic comparison reveals genetic variation potentially underlying seed developmental evolution of soybeans. Journal of Experimental Botany, 2018, 69, 5089-5104.	2.4	46
1243	Identification and expression analysis of a microRNA cluster derived from pre-ribosomal RNA in Papaver somniferum L. and Papaver bracteatum L PLoS ONE, 2018, 13, e0199673.	1.1	9
1244	Extracellular vesicles: a missing component in plant cell wall remodeling. Journal of Experimental Botany, 2018, 69, 4655-4658.	2.4	52

#	Article	IF	CITATIONS
1245	Intrachromosomal colocalization strengthens co-expression, co-modification and evolutionary conservation of neighboring genes. BMC Genomics, 2018, 19, 455.	1.2	18
1246	Transcriptomic analyses of rice (Oryza sativa) genes and non-coding RNAs under nitrogen starvation using multiple omics technologies. BMC Genomics, 2018, 19, 532.	1.2	100
1247	Auxin controls circadian flower opening and closure in the waterlily. BMC Plant Biology, 2018, 18, 143.	1.6	48
1248	Genome-Wide Transcriptome Analysis Reveals the Comprehensive Response of Two Susceptible Poplar Sections to Marssonina brunnea Infection. Genes, 2018, 9, 154.	1.0	36
1249	When Transcriptomics and Metabolomics Work Hand in Hand: A Case Study Characterizing Plant CDF Transcription Factors. High-Throughput, 2018, 7, 7.	4.4	4
1250	Genome-Wide Identification and Characterization of Warming-Related Genes in Brassica rapa ssp. pekinensis. International Journal of Molecular Sciences, 2018, 19, 1727.	1.8	10
1251	Transcriptome Analysis Provides Insight into the Molecular Mechanisms Underlying gametophyte factor 2-Mediated Cross-Incompatibility in Maize. International Journal of Molecular Sciences, 2018, 19, 1757.	1.8	9
1252	RNA-seq analysis reveals alternative splicing under salt stress in cotton, Gossypium davidsonii. BMC Genomics, 2018, 19, 73.	1.2	72
1253	Silicon protects soybean plants against Phytophthora sojae by interfering with effector-receptor expression. BMC Plant Biology, 2018, 18, 97.	1.6	80
1254	A Zinc Finger Transcriptional Repressor Confers Pleiotropic Effects on Rice Growth and Drought Tolerance by Down-Regulating Stress-Responsive Genes. Plant and Cell Physiology, 2018, 59, 2129-2142.	1.5	42
1255	Ranking genome-wide correlation measurements improves microarray and RNA-seq based global and targeted co-expression networks. Scientific Reports, 2018, 8, 10885.	1.6	73
1256	iTRAQ analysis of protein profile during the secondary stage of infection of Plasmodiophora brassicae in Chinese cabbage (Brassica rapa subsp. pekinensis). Journal of Plant Pathology, 2018, 100, 533-542.	0.6	12
1257	MCENet: A database for maize conditional co-expression network and network characterization collaborated with multi-dimensional omics levels. Journal of Genetics and Genomics, 2018, 45, 351-360.	1.7	39
1258	RNA-seq assistant: machine learning based methods to identify more transcriptional regulated genes. BMC Genomics, 2018, 19, 546.	1.2	40
1259	Genome re-sequencing, SNP analysis, and genetic mapping of the parental lines of a commercial F ₁ hybrid cultivar of Chinese cabbage. Breeding Science, 2018, 68, 375-380.	0.9	8
1260	Genome-wide (ChIP-seq) identification of target genes regulated by BdbZIP10 during paraquat-induced oxidative stress. BMC Plant Biology, 2018, 18, 58.	1.6	14
1261	Genome-wide profiling of sRNAs in the Verticillium dahliae-infected Arabidopsis roots. Mycology, 2018, 9, 155-165.	2.0	6
1262	Transcriptome-based identification of genes related to resistance against Botrytis elliptica in Lilium regale. Canadian Journal of Plant Science, 2018, 98, 1058-1071.	0.3	17

#	Article	IF	CITATIONS
1263	Transcriptome profiling using Illumina- and SMRT-based RNA-seq of hot pepper for in-depth understanding of genes involved in CMV infection. Gene, 2018, 666, 123-133.	1.0	62
1264	HOP family plays a major role in longâ€ŧerm acquired thermotolerance in Arabidopsis. Plant, Cell and Environment, 2018, 41, 1852-1869.	2.8	37
1265	Compounds Released by the Biocontrol Yeast Hanseniaspora opuntiae Protect Plants Against Corynespora cassiicola and Botrytis cinerea. Frontiers in Microbiology, 2018, 9, 1596.	1.5	26
1266	A Transcript and Metabolite Atlas of Blackcurrant Fruit Development Highlights Hormonal Regulation and Reveals the Role of Key Transcription Factors. Frontiers in Plant Science, 2018, 9, 1235.	1.7	11
1267	Rice nucleosome patterns undergo remodeling coincident with stress-induced gene expression. BMC Genomics, 2018, 19, 97.	1.2	12
1268	Auxin homeostasis and signaling alterations result in the aberrant phenotype in scl mutant of cotton (Gossypium hirsutum L.). Revista Brasileira De Botanica, 2018, 41, 775-784.	0.5	0
1269	Identification and characterization of ncRNA-associated ceRNA networks in Arabidopsis leaf development. BMC Genomics, 2018, 19, 607.	1.2	52
1270	Identifying QTL–allele system of seed protein content in Chinese soybean landraces for population differentiation studies and optimal cross predictions. Euphytica, 2018, 214, 1.	0.6	7
1271	Genome-Wide Analysis of Genetic Variations and the Detection of Rich Variants of NBS-LRR Encoding Genes in Common Wild Rice Lines. Plant Molecular Biology Reporter, 2018, 36, 618-630.	1.0	13
1272	Dehydration Stress Memory: Gene Networks Linked to Physiological Responses During Repeated Stresses of Zea mays. Frontiers in Plant Science, 2018, 9, 1058.	1.7	71
1273	High Performance of Photosynthesis and Osmotic Adjustment Are Associated With Salt Tolerance Ability in Rice Carrying Drought Tolerance QTL: Physiological and Co-expression Network Analysis. Frontiers in Plant Science, 2018, 9, 1135.	1.7	58
1274	Unravelling miRNA regulation in yield of rice (Oryza sativa) based on differential network model. Scientific Reports, 2018, 8, 8498.	1.6	28
1275	Transcriptome analysis during ripening of table grape berry cv. Thompson Seedless. PLoS ONE, 2018, 13, e0190087.	1.1	23
1276	Computational exploration of cis-regulatory modules in rhythmic expression data using the "Exploration of Distinctive CREs and CRMs―(EDCC) and "CRM Network Generator―(CNG) programs. PLoS ONE, 2018, 13, e0190421.	1.1	3
1277	Transcriptome-wide identification and characterization of the copper and cadmium stress-responsive small RNAs and their targets in Arabidopsis thaliana. Plant and Soil, 2018, 429, 391-405.	1.8	7
1278	Genome-Wide Analysis of Lectin Receptor-Like Kinases in Tomato (Solanum lycopersicum) and Its Association with the Infection of Tomato Yellow Leaf Curl Virus. Plant Molecular Biology Reporter, 2018, 36, 429-438.	1.0	14
1279	Genetic diversity in a collection of Italian long storage tomato landraces as revealed by SNP markers array. Plant Biosystems, 2019, 153, 288-297.	0.8	17
1280	Transcriptome and metabolome reveal distinct carbon allocation patterns during internode sugar accumulation in different sorghum genotypes. Plant Biotechnology Journal, 2019, 17, 472-487.	4.1	57
#	Article	IF	CITATIONS
------	---	-----	-----------
1281	Changes in gene expression during germination reveal pea genotypes with either "quiescence―or "escape―mechanisms of waterlogging tolerance. Plant, Cell and Environment, 2019, 42, 245-258.	2.8	26
1282	Use of omics analytical methods in the study of genetically modified maize varieties tested in 90â€ ⁻ days feeding trials. Food Chemistry, 2019, 292, 359-371.	4.2	13
1283	Transcriptomic analysis of Aegilops tauschii during long-term salinity stress. Functional and Integrative Genomics, 2019, 19, 13-28.	1.4	30
1284	Deep sequencing identified potential mi RNA s involved in defence response, stress and plant growth characteristics of wild genotypes of cardamom. Plant Biology, 2019, 21, 3-14.	1.8	8
1285	RNA-Sequencing Analysis Reveals Critical Roles of Hormone Metabolism and Signaling Transduction in Seed Germination of Andrographis paniculata. Journal of Plant Growth Regulation, 2019, 38, 273-282.	2.8	5
1286	<i>OsDCL1a</i> activation impairs phytoalexin biosynthesis and compromises disease resistance in rice. Annals of Botany, 2019, 123, 79-93.	1.4	15
1287	Methyl-CpG-binding domain 9 (MBD9) is required for H2A.Z incorporation into chromatin at a subset of H2A.Z-enriched regions in the Arabidopsis genome. PLoS Genetics, 2019, 15, e1008326.	1.5	34
1288	Male Sterility in Maize after Transient Heat Stress during the Tetrad Stage of Pollen Development. Plant Physiology, 2019, 181, 683-700.	2.3	139
1289	Time-dependent effects of Pochonia chlamydosporia endophytism on gene expression profiles of colonized tomato roots. Applied Microbiology and Biotechnology, 2019, 103, 8511-8527.	1.7	14
1290	A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution. Scientific Reports, 2019, 9, 11769.	1.6	179
1291	Mapping and analysis of QTLs related to seed length and seed width in Glycine max. Plant Breeding, 2019, 138, 733-740.	1.0	3
1292	A Weighted Mean Value Analysis to Identify Biological Pathway Activity Changes during Poplar Seed Germination. Forests, 2019, 10, 664.	0.9	2
1293	Transcriptome profile of Carrizo citrange roots in response to <i>Phytophthora parasitica</i> infection. Journal of Plant Interactions, 2019, 14, 187-204.	1.0	9
1294	DiVenn: An Interactive and Integrated Web-Based Visualization Tool for Comparing Gene Lists. Frontiers in Genetics, 2019, 10, 421.	1.1	85
1295	A Genetic Algorithm to Optimize Weighted Gene Co-Expression Network Analysis. Journal of Computational Biology, 2019, 26, 1349-1366.	0.8	18
1296	Transcriptome Landscape Variation in the Genus Thymus. Genes, 2019, 10, 620.	1.0	11
1297	Physiological responses and small RNAs changes in maize under nitrogen deficiency and resupply. Genes and Genomics, 2019, 41, 1183-1194.	0.5	22
1298	A multivariate Poisson-log normal mixture model for clustering transcriptome sequencing data. BMC Bioinformatics, 2019, 20, 394.	1.2	25

ARTICLE

IF CITATIONS

1299 Transcriptomic profiling and analysis of differentially expressed genes in asparagus bean (Vigna) Tj ETQq0 0 0 rgBT (Overlock 10 Tf 50 7-

1300	Identification of microRNAs responding to cold stress in Dongxiang common wild rice. Genome, 2019, 62, 635-642.	0.9	12
1301	Transcriptomic and Gas Chromatography–Mass Spectrometry Metabolomic Profiling Analysis of the Epidermis Provides Insights into Cuticular Wax Regulation in Developing â€`Yuluxiang' Pear Fruit. Journal of Agricultural and Food Chemistry, 2019, 67, 8319-8331.	2.4	15
1302	Transcriptomic Responses to Water Deficit and Nematode Infection in Mycorrhizal Tomato Roots. Frontiers in Microbiology, 2019, 10, 1807.	1.5	39
1303	Transcriptomic data during seed maturation in dormant and non-dormant genotypes of wheat (Triticum aestivum L.). Data in Brief, 2019, 25, 104254.	0.5	1
1304	A Role for PICKLE in the Regulation of Cold and Salt Stress Tolerance in Arabidopsis. Frontiers in Plant Science, 2019, 10, 900.	1.7	58
1305	Improving Silkworm Genome Annotation Using a Proteogenomics Approach. Journal of Proteome Research, 2019, 18, 3009-3019.	1.8	11
1306	Genome-Wide Profiling of Polyadenylation Events in Maize Using High-Throughput Transcriptomic Sequences. C3: Genes, Genomes, Genetics, 2019, 9, 2749-2760.	0.8	5
1307	Long noncoding RNAs in Brassica rapa L. following vernalization. Scientific Reports, 2019, 9, 9302.	1.6	42
1308	Characterization of functional relationships of R-loops with gene transcription and epigenetic modifications in rice. Genome Research, 2019, 29, 1287-1297.	2.4	38
1309	GmWRKY54 improves drought tolerance through activating genes in abscisic acid and Ca ²⁺ signaling pathways in transgenic soybean. Plant Journal, 2019, 100, 384-398.	2.8	87
1310	Genome-wide identification and comparative analysis of drought-related microRNAs in two maize inbred lines with contrasting drought tolerance by deep sequencing. PLoS ONE, 2019, 14, e0219176.	1.1	40
1311	Activation and Characterization of Cryptic Gene Cluster: Two Series of Aromatic Polyketides Biosynthesized by Divergent Pathways. Angewandte Chemie - International Edition, 2019, 58, 18046-18054.	7.2	12
1312	Fertility of Pedicellate Spikelets in Sorghum Is Controlled by a Jasmonic Acid Regulatory Module. International Journal of Molecular Sciences, 2019, 20, 4951.	1.8	31
1313	Continuous salt stress-induced long non-coding RNAs and DNA methylation patterns in soybean roots. BMC Genomics, 2019, 20, 730.	1.2	56
1314	The histone modification H3 lysine 27 tri-methylation has conserved gene regulatory roles in the triplicated genome of Brassica rapa L. DNA Research, 2019, 26, 433-443.	1.5	25
1315	An Integrative Approach to Analyze Seed Germination in Brassica napus. Frontiers in Plant Science, 2019, 10, 1342.	1.7	31
1316	Diffusible signal factor (DSF)-mediated quorum sensing modulates expression of diverse traits in Xanthomonas citri and responses of citrus plants to promote disease. BMC Genomics, 2019, 20, 55.	1.2	35

#	Apticie	IE	CITATIONS
π 1317	A High-Density Genetic Linkage Map and QTL Mapping for Sex and Growth-Related Traits of Large-Scale Loach (Paramisgurnus dabryanus). Frontiers in Genetics, 2019, 10, 1023.	1.1	13
1318	Insight into transketolase of Pyropia haitanensis under desiccation stress based on integrative analysis of omics and transformation. BMC Plant Biology, 2019, 19, 475.	1.6	17
1319	Activation and Characterization of Cryptic Gene Cluster: Two Series of Aromatic Polyketides Biosynthesized by Divergent Pathways. Angewandte Chemie, 2019, 131, 18214-18222.	1.6	0
1320	Arabidopsis thaliana Plants Engineered To Produce Astaxanthin Show Enhanced Oxidative Stress Tolerance and Bacterial Pathogen Resistance. Journal of Agricultural and Food Chemistry, 2019, 67, 12590-12598.	2.4	5
1321	QTL Mapping and Transcriptome Analysis to Identify Differentially Expressed Genes Induced by Septoria Tritici Blotch Disease of Wheat. Agronomy, 2019, 9, 510.	1.3	23
1322	QTL mapping for aluminum tolerance in RIL population of soybean (Glycine max L.) by RAD sequencing. PLoS ONE, 2019, 14, e0223674.	1.1	16
1323	Transcriptome Analyses of FY Mutants Reveal Its Role in mRNA Alternative Polyadenylation. Plant Cell, 2019, 31, 2332-2352.	3.1	36
1324	RNA-Seq analysis of gene expression changes triggered by Xanthomonas oryzae pv. oryzae in a susceptible rice genotype. Rice, 2019, 12, 44.	1.7	23
1325	Validation and delineation of a locus conferring Fusarium crown rot resistance on 1HL in barley by analysing transcriptomes from multiple pairs of near isogenic lines. BMC Genomics, 2019, 20, 650.	1.2	16
1326	High temperature reduces peel color in eggplant (<i>Solanum melongena</i>) as revealed by RNA-seq analysis. Genome, 2019, 62, 503-512.	0.9	22
1327	Evaluation of the effects of humic acids on maize root architecture by label-free proteomics analysis. Scientific Reports, 2019, 9, 12019.	1.6	39
1328	Comparative transcriptome profiling reveals the reprogramming of gene networks under arsenic stress in Indian mustard. Genome, 2019, 62, 833-847.	0.9	14
1329	Genome-Wide Association and Gene Co-expression Network Analyses Reveal Complex Genetics of Resistance to Goss's Wilt of Maize. G3: Genes, Genomes, Genetics, 2019, 9, 3139-3152.	0.8	6
1330	Ray Parenchymal Cells Contribute to Lignification of Tracheids in Developing Xylem of Norway Spruce. Plant Physiology, 2019, 181, 1552-1572.	2.3	37
1331	Transcriptome Profiles of Strawberry (Fragaria vesca) Fruit Interacting With Botrytis cinerea at Different Ripening Stages. Frontiers in Plant Science, 2019, 10, 1131.	1.7	54
1332	HSFA2 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight. International Journal of Molecular Sciences, 2019, 20, 390.	1.8	18
1333	Global Transcriptional Insights of Pollen-Pistil Interactions Commencing Self-Incompatibility and Fertilization in Tea [Camellia sinensis (L) O. Kuntze]. International Journal of Molecular Sciences, 2019, 20, 539.	1.8	34
1334	Comparative analysis of two sister Erythrophleum species (Leguminosae) reveal contrasting transcriptome-wide responses to early drought stress. Gene, 2019, 694, 50-62.	1.0	2

#	Article	IF	CITATIONS
1335	GOTrapper: a tool to navigate through branches of gene ontology hierarchy. BMC Bioinformatics, 2019, 20, 20.	1.2	11
1336	Comparative Transcriptome Profiling Under Cadmium Stress Reveals the Uptake and Tolerance Mechanism in Brassica juncea. Journal of Plant Growth Regulation, 2019, 38, 1141-1152.	2.8	30
1337	Meiocyte-Specific and AtSPO11-1–Dependent Small RNAs and Their Association with Meiotic Gene Expression and Recombination. Plant Cell, 2019, 31, 444-464.	3.1	37
1338	Systematic identification and characterization of candidate genes for the regulation of plant height in maize. Euphytica, 2019, 215, 1.	0.6	4
1339	Rapid identification of a candidate nicosulfuron sensitivity gene (Nss) in maize (Zea mays L.) via combining bulked segregant analysis and RNA-seq. Theoretical and Applied Genetics, 2019, 132, 1351-1361.	1.8	30
1340	Heliaphen, an Outdoor High-Throughput Phenotyping Platform for Genetic Studies and Crop Modeling. Frontiers in Plant Science, 2018, 9, 1908.	1.7	34
1341	Evaluation of a Chicken 600K SNP genotyping array in non-model species of grouse. Scientific Reports, 2019, 9, 6407.	1.6	7
1342	Expression levels of inositol phosphorylceramide synthase modulate plant responses to biotic and abiotic stress in Arabidopsis thaliana. PLoS ONE, 2019, 14, e0217087.	1.1	7
1343	RNA-seq reveals differentially expressed genes in rice (Oryza sativa) roots during interactions with plant-growth promoting bacteria, Azospirillum brasilense. PLoS ONE, 2019, 14, e0217309.	1.1	40
1344	A de novo transcriptome assembly approach elucidates the dynamics of ovarian maturation in the swordfish (Xiphias gladius). Scientific Reports, 2019, 9, 7375.	1.6	12
1345	Dysfunction in the arbuscular mycorrhizal symbiosis has consistent but small effects on the establishment of the fungal microbiota inLotus japonicus. New Phytologist, 2019, 224, 409-420.	3.5	16
1346	Lateral Root and Nodule Transcriptomes of Soybean. Data, 2019, 4, 64.	1.2	8
1347	Identification of microRNA-target modules from rice variety Pusa Basmati-1 under high temperature and salt stress. Functional and Integrative Genomics, 2019, 19, 867-888.	1.4	12
1348	Comparative RNA-Sequencing and DNA Methylation Analyses of Apple (<i>Malus domestica</i> Borkh.) Buds with Diverse Flowering Capabilities Reveal Novel Insights into the Regulatory Mechanisms of Flower Bud Formation. Plant and Cell Physiology, 2019, 60, 1702-1721.	1.5	27
1349	Cold stress induces enhanced chromatin accessibility and bivalent histone modifications H3K4me3 and H3K27me3 of active genes in potato. Genome Biology, 2019, 20, 123.	3.8	119
1350	miRNome. Compendium of Plant Genomes, 2019, , 195-203.	0.3	Ο
1351	Comparative analysis of the transcriptomes of the calyx abscission zone of sweet orange insights into the huanglongbing-associated fruit abscission. Horticulture Research, 2019, 6, 71.	2.9	39
1352	RST1 Is a FREE1 Suppressor That Negatively Regulates Vacuolar Trafficking in Arabidopsis. Plant Cell, 2019, 31, 2152-2168.	3.1	20

		CITATION REPOR	т
#	Article	IF	CITATION
1353	Expression profiling of immature florets of IR58025A, a wild-abortive cytoplasmic male sterile line c rice and its cognate, isonuclear maintainer line, IR58025B. 3 Biotech, 2019, 9, 278.	of 1.1	1
1354	Trait ontology analysis based on association mapping studies bridges the gap between crop genon and Phenomics. BMC Genomics, 2019, 20, 443.	nics 1.2	8
1355	The Globe Artichoke Genome. Compendium of Plant Genomes, 2019, , .	0.8	8 1
1356	Secondary metabolites have more influence than morphophysiological traits on litter decomposability across genotypes of Arabidopsis thaliana. New Phytologist, 2019, 224, 1532-154	3. ^{3.5}	7
1357	Identification and Analysis of Micro-Exon Genes in the Rice Genome. International Journal of Molecular Sciences, 2019, 20, 2685.	1.8	6
1358	Analysis of miRNAs Targeted Storage Regulatory Genes during Soybean Seed Development Based Transcriptome Sequencing. Genes, 2019, 10, 408.	on 1. 0	14
1359	Gene Expression analysis associated with salt stress in a reciprocally crossed rice population. Scientific Reports, 2019, 9, 8249.	1.6	66
1360	New steps in mucilage biosynthesis revealed by analysis of the transcriptome of the UDP-rhamnose/UDP-galactose transporter 2 mutant. Journal of Experimental Botany, 2019, 70, 5071-5088.	2.4	14
1361	Cytological and transcriptome analysis reveal that interaction at Sb pollen sterility locus cause down-regulation of important meiosis-related genes associated with high pollen sterility in autotetraploid rice hybrids. Plant Physiology and Biochemistry, 2019, 141, 73-82.	2.8	9
1362	Transcriptional Regulatory Network of GA Floral Induction Pathway in LA Hybrid Lily. International Journal of Molecular Sciences, 2019, 20, 2694.	1.8	13
1363	Transcriptome analysis of bolting in A. tequilana reveals roles for florigen, MADS, fructans and gibberellins. BMC Genomics, 2019, 20, 473.	1.2	17
1364	Deciphering the non-coding RNA-level response to arsenic stress in rice (<i>Oryza sativa</i>). Plant Signaling and Behavior, 2019, 14, 1629268.	1.2	22
1365	Construction and analysis of an interologous protein–protein interaction network of Camellia sinensis leaf (TeaLIPIN) from RNA–Seq data sets. Plant Cell Reports, 2019, 38, 1249-1262.	2.8	9
1366	Long-range interactions between proximal and distal regulatory regions in maize. Nature Communications, 2019, 10, 2633.	5.8	79
1367	Salt-Responsive Genes are Differentially Regulated at the Chromatin Levels Between Seedlings and Roots in Rice. Plant and Cell Physiology, 2019, 60, 1790-1803.	1.5	33
1368	Transcriptomic Response to Feeding and Starvation in a Herbivorous Dinoflagellate. Frontiers in Marine Science, 2019, 6, .	1.2	7
1369	Meta-analysis of drought-tolerant genotypes in Oryza sativa: A network-based approach. PLoS ONI 2019, 14, e0216068.	-, 1.1	40
1370	Transcriptional profiling of contrasting genotypes revealed key candidates and nucleotide variatior for drought dissection in Camellia sinensis (L.) O. Kuntze. Scientific Reports, 2019, 9, 7487.	IS	32

#	Article	IF	CITATIONS
1371	Characterization of cadmium-responsive MicroRNAs and their target genes in maize (Zea mays) roots. BMC Molecular Biology, 2019, 20, 14.	3.0	41
1372	RNA-Seq analysis and transcriptome assembly of raspberry fruit (Rubus idaeus ¨Heritage¨) revealed several candidate genes involved in fruit development and ripening. Scientia Horticulturae, 2019, 254, 26-34.	1.7	15
1373	Dynamic Transcriptome Changes Related to Oil Accumulation in Developing Soybean Seeds. International Journal of Molecular Sciences, 2019, 20, 2202.	1.8	26
1374	Cold stress activates disease resistance in <scp><i>Arabidopsis thaliana</i></scp> through a salicylic acid dependent pathway. Plant, Cell and Environment, 2019, 42, 2645-2663.	2.8	58
1375	Identification of miRNAs and Their Response to Cold Stress in Astragalus Membranaceus. Biomolecules, 2019, 9, 182.	1.8	51
1376	Charting oat (Avena sativa) embryo and endosperm transcription factor expression reveals differential expression of potential importance for seed development. Molecular Genetics and Genomics, 2019, 294, 1183-1197.	1.0	7
1377	Transcriptional regulation of Lonicera japonica Thunb. during flower development as revealed by comprehensive analysis of transcription factors. BMC Plant Biology, 2019, 19, 198.	1.6	26
1378	Global Transcriptomic Profile Analysis of Genes Involved in Lignin Biosynthesis and Accumulation Induced by Boron Deficiency in Poplar Roots. Biomolecules, 2019, 9, 156.	1.8	19
1379	Genome-Wide Analysis of Glycoside Hydrolase Family 1 β-glucosidase Genes in Brassica rapa and Their Potential Role in Pollen Development. International Journal of Molecular Sciences, 2019, 20, 1663.	1.8	24
1380	Heat Stress Suppresses Brassica napus Seed Oil Accumulation by Inhibition of Photosynthesis and BnWRI1 Pathway. Plant and Cell Physiology, 2019, 60, 1457-1470.	1.5	33
1381	Characterization of the Nicotianamine Exporter ENA1 in Rice. Frontiers in Plant Science, 2019, 10, 502.	1.7	21
1382	Chromatin State-Based Analysis of Epigenetic H3K4me3 Marks of Arabidopsis in Response to Dark Stress. Frontiers in Genetics, 2019, 10, 306.	1.1	17
1383	Comparative transcriptomics analysis of compatible wild type and incompatible ΔlaeA mutant strains of Epichloë festucae in association with perennial ryegrass. Data in Brief, 2019, 24, 103843.	0.5	7
1384	Identification of genes preferentially expressed in wild strawberry receptacle fruit and demonstration of their promoter activities. Horticulture Research, 2019, 6, 50.	2.9	6
1385	Eggplant Domestication: Pervasive Gene Flow, Feralization, and Transcriptomic Divergence. Molecular Biology and Evolution, 2019, 36, 1359-1372.	3.5	47
1386	Draft genome of Santalum album L. provides genomic resources for accelerated trait improvement. Tree Genetics and Genomes, 2019, 15, 1.	0.6	15
1387	Transcriptome Profiling and Genome-Wide Association Studies Reveal GSTs and Other Defense Genes Involved in Multiple Signaling Pathways Induced by Herbicide Safener in Grain Sorghum. Frontiers in Plant Science, 2019, 10, 192.	1.7	24
1388	Transcriptomic analysis of contrasting inbred lines and F2 segregant of Chinese cabbage provides valuable information on leaf morphology. Genes and Genomics, 2019, 41, 811-829.	0.5	1

#	Article	IF	CITATIONS
1389	Transcriptome profiling reveals genetic basis of disease resistance against Corynespora cassiicola in rubber tree (Hevea brasiliensis). Current Plant Biology, 2019, 17, 2-16.	2.3	22
1390	ABSCISIC ACID-INSENSITIVE 3 is involved in brassinosteroid-mediated regulation of flowering in plants. Plant Physiology and Biochemistry, 2019, 139, 207-214.	2.8	18
1391	Functional annotation and characterization of hypothetical protein involved in blister blight tolerance in tea (Camellia sinensis (L) O. Kuntze). Journal of Plant Biochemistry and Biotechnology, 2019, 28, 447-459.	0.9	6
1392	Genome of <i>Crucihimalaya himalaica</i> , a close relative of <i>Arabidopsis</i> , shows ecological adaptation to high altitude. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7137-7146.	3.3	108
1393	Transcriptomic dynamics provide an insight into the mechanism for silicon-mediated alleviation of salt stress in cucumber plants. Ecotoxicology and Environmental Safety, 2019, 174, 245-254.	2.9	60
1394	Metabolomic and transcriptomic changes underlying cold and anaerobic stresses after storage of table grapes. Scientific Reports, 2019, 9, 2917.	1.6	33
1395	Genome-wide analysis of long non-coding RNAs unveils the regulatory roles in the heat tolerance of Chinese cabbage (Brassica rapa ssp.chinensis). Scientific Reports, 2019, 9, 5002.	1.6	95
1396	Maize glossy6 is involved in cuticular wax deposition and drought tolerance. Journal of Experimental Botany, 2019, 70, 3089-3099.	2.4	62
1397	The Chromatin-Associated Protein PWO1 Interacts with Plant Nuclear Lamin-like Components to Regulate Nuclear Size. Plant Cell, 2019, 31, 1141-1154.	3.1	56
1398	A Phytophthora capsici Effector Targets ACD11 Binding Partners that Regulate ROS-Mediated Defense Response in Arabidopsis. Molecular Plant, 2019, 12, 565-581.	3.9	95
1399	Transcriptome analysis of a rice cultivar reveals the differentially expressed genes in response to wild and mutant strains of Xanthomonas oryzae pv. oryzae. Scientific Reports, 2019, 9, 3757.	1.6	19
1400	Neonicotinoid Insecticides Alter the Transcriptome of Soybean and Decrease Plant Resistance. International Journal of Molecular Sciences, 2019, 20, 783.	1.8	20
1401	Identification of phloem-associated translatome alterations during leaf development in Prunus domestica L Horticulture Research, 2019, 6, 16.	2.9	10
1402	Elymus nutans genes for seed shattering and candidate gene-derived EST-SSR markers for germplasm evaluation. BMC Plant Biology, 2019, 19, 102.	1.6	14
1403	Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines. International Journal of Molecular Sciences, 2019, 20, 1268.	1.8	78
1404	Linkage mapping and genome-wide association reveal candidate genes conferring thermotolerance of seed-set in maize. Journal of Experimental Botany, 2019, 70, 4849-4864.	2.4	38
1405	Dynamic control of enhancer activity drives stage-specific gene expression during flower morphogenesis. Nature Communications, 2019, 10, 1705.	5.8	70
1406	Hypermorphic <i>SERK1</i> Mutations Function via a <i>SOBIR1</i> Pathway to Activate Floral Abscission Signaling. Plant Physiology, 2019, 180, 1219-1229.	2.3	11

#	Article	IF	CITATIONS
1407	A global coexpression network of soybean genes gives insights into the evolution of nodulation in nonlegumes and legumes. New Phytologist, 2019, 223, 2104-2119.	3.5	21
1408	Ubiquitin Extension Protein UEP1 Modulates Cell Death and Resistance to Various Pathogens in Tobacco. Phytopathology, 2019, 109, 1257-1269.	1.1	6
1409	Identification and characterization of dwarf mistletoe responding genes in Ziarat juniper tree (Juniperus excelsa M.Bieb) through suppression subtractive hybridization and deep sequencing. Trees - Structure and Function, 2019, 33, 1027-1039.	0.9	1
1410	Globular structures in roots accumulate phosphorus to extremely high concentrations following phosphorus addition. Plant, Cell and Environment, 2019, 42, 1987-2002.	2.8	9
1411	Resistant and susceptible cacao genotypes exhibit defense gene polymorphism and unique early responses to Phytophthora megakarya inoculation. Plant Molecular Biology, 2019, 99, 499-516.	2.0	24
1412	Developmental analysis of the early steps in strigolactoneâ€mediated axillary bud dormancy in rice. Plant Journal, 2019, 97, 1006-1021.	2.8	45
1413	Induction of desiccation tolerance in desiccation sensitive <i>Citrus limon</i> seeds. Journal of Integrative Plant Biology, 2019, 61, 624-638.	4.1	20
1414	Spatio-Temporal Transcriptional Dynamics of Maize Long Non-Coding RNAs Responsive to Drought Stress. Genes, 2019, 10, 138.	1.0	41
1415	Transcriptome Analysis of Chinese Chestnut (Castanea mollissima Blume) in Response to Dryocosmus kuriphilus Yasumatsu Infestation. International Journal of Molecular Sciences, 2019, 20, 855.	1.8	19
1416	RNA Binding Motif Protein 48 Is Required for U12 Splicing and Maize Endosperm Differentiation. Plant Cell, 2019, 31, 715-733.	3.1	27
1417	Transcriptomic analysis of genes involved in reproduction at different ages in Daphnia pulex (Branchiopoda, Cladocera). Crustaceana, 2019, 92, 1311-1335.	0.1	1
1418	Early cold stress responses in post-meiotic anthers from tolerant and sensitive rice cultivars. Rice, 2019, 12, 94.	1.7	11
1419	Genome-wide analysis of the H3K27me3 epigenome and transcriptome in Brassica rapa. GigaScience, 2019, 8, .	3.3	27
1420	The Trithorax Group Factor ULTRAPETALA1 Regulates Developmental as Well as Biotic and Abiotic Stress Response Genes in Arabidopsis. G3: Genes, Genomes, Genetics, 2019, 9, 4029-4043.	0.8	10
1421	Genomeâ€Wide Association Study of 13 Traits in Maize Seedlings under Low Phosphorus Stress. Plant Genome, 2019, 12, 1-13.	1.6	36
1422	Gene Expression Changes During the Allo-/Deallopolyploidization Process of Brassica napus. Frontiers in Genetics, 2019, 10, 1279.	1.1	6
1423	Optimized nitrogen management enhances lodging resistance of rice and its morpho-anatomical, mechanical, and molecular mechanisms. Scientific Reports, 2019, 9, 20274.	1.6	30
1424	DeepDRBP-2L: A New Genome Annotation Predictor for Identifying DNA-Binding Proteins and RNA-Binding Proteins Using Convolutional Neural Network and Long Short-Term Memory. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 1451-1463.	1.9	30

#	Article	IF	Citations
1425	A Meta-Analysis of Comparative Transcriptomic Data Reveals a Set of Key Genes Involved in the Tolerance to Abiotic Stresses in Rice. International Journal of Molecular Sciences, 2019, 20, 5662.	1.8	24
1426	The Arabidopsis Transcriptome Responds Specifically and Dynamically to High Light Stress. Cell Reports, 2019, 29, 4186-4199.e3.	2.9	119
1427	Expression QTL (eQTLs) Analyses Reveal Candidate Genes Associated With Fruit Flesh Softening Rate in Peach [Prunus persica (L.) Batsch]. Frontiers in Plant Science, 2019, 10, 1581.	1.7	41
1428	Microarray analysis of transcriptional responses to salt and drought stress in Arabidopsis thaliana. Heliyon, 2019, 5, e02614.	1.4	22
1429	Transcriptome profiling using RNA-seq to provide insights into foxtail millet seedling tolerance to short-term water deficit stress induced by PEG-6000. Journal of Integrative Agriculture, 2019, 18, 2457-2471.	1.7	26
1430	Jasmonate-Induced Defense Mechanisms in the Belowground Antagonistic Interaction Between Pythium arrhenomanes and Meloidogyne graminicola in Rice. Frontiers in Plant Science, 2019, 10, 1515.	1.7	15
1431	Endophytic fungus, Fusarium sp. reduces alternative splicing events in rice plants under salinity stress. Plant Physiology Reports, 2019, 24, 487-495.	0.7	7
1432	Complement Genome Annotation Lift Over Using a Weighted Sequence Alignment Strategy. Frontiers in Genetics, 2019, 10, 1046.	1.1	9
1433	Pesticide application has little influence on coding and non-coding gene expressions in rice. BMC Genomics, 2019, 20, 1009.	1.2	10
1434	Different transcriptional response between susceptible and resistant common carp (Cyprinus carpio) fish hints on the mechanism of CyHV-3 disease resistance. BMC Genomics, 2019, 20, 1019.	1.2	21
1435	Osa-miR7695 enhances transcriptional priming in defense responses against the rice blast fungus. BMC Plant Biology, 2019, 19, 563.	1.6	34
1436	Integrated analyses of miRNAome and transcriptome reveal zinc deficiency responses in rice seedlings. BMC Plant Biology, 2019, 19, 585.	1.6	27
1437	GenFam: A web application and database for gene familyâ€based classification and functional enrichment analysis. Plant Direct, 2019, 3, e00191.	0.8	16
1438	Fungal resistance mediated by maize wallâ€associated kinase Zm <scp>WAK</scp> â€ <scp>RLK</scp> 1 correlates with reduced benzoxazinoid content. New Phytologist, 2019, 221, 976-987.	3.5	71
1439	Transcriptomics of <i>Epichloë</i> -Grass Symbioses in Host Vegetative and Reproductive Stages. Molecular Plant-Microbe Interactions, 2019, 32, 194-207.	1.4	22
1440	Candidates responsible for dwarf pear phenotype as revealed by comparative transcriptome analysis. Molecular Breeding, 2019, 39, 1.	1.0	32
1441	ANAC019 is required for recovery of reproductive development under drought stress in Arabidopsis. Plant Molecular Biology, 2019, 99, 161-174.	2.0	27
1442	Characterization of Proteome Variation During Modern Maize Breeding*. Molecular and Cellular Proteomics, 2019, 18, 263-276.	2.5	36

#	Article	IF	CITATIONS
1443	Adapting INTACT to analyse cell-type-specific transcriptomes and nucleocytoplasmic mRNA dynamics in the Arabidopsis embryo. Plant Reproduction, 2019, 32, 113-121.	1.3	16
1444	Functional screening of salt tolerance genes from a halophyte Sporobolus virginicus and transcriptomic and metabolomic analysis of salt tolerant plants expressing glycine-rich RNA-binding protein. Plant Science, 2019, 278, 54-63.	1.7	18
1445	Whole-Genome Sequencing of Three Native Cattle Breeds Originating From the Northernmost Cattle Farming Regions. Frontiers in Genetics, 2018, 9, 728.	1.1	57
1446	Quantitative Proteomic Analysis of the Response to Cold Stress in Jojoba, a Tropical Woody Crop. International Journal of Molecular Sciences, 2019, 20, 243.	1.8	15
1447	Molecular response of poplar to single and combined ozone and drought. Science of the Total Environment, 2019, 655, 1364-1375.	3.9	19
1448	Variation in the transcriptome of different ecotypes of <i>Arabidopsis thaliana</i> reveals signatures of oxidative stress in plant responses to spaceflight. American Journal of Botany, 2019, 106, 123-136.	0.8	57
1449	Tissue-specific transcriptional biomarkers in medicinal plants: Application of large-scale meta-analysis and computational systems biology. Gene, 2019, 691, 114-124.	1.0	14
1450	A gene expression map of shoot domains reveals regulatory mechanisms. Nature Communications, 2019, 10, 141.	5.8	96
1451	Applications of transgenic approaches in developing an understanding of drought tolerance in poplar. Advances in Botanical Research, 2019, , 257-279.	0.5	0
1452	Analysis of ambient temperature-responsive transcriptome in shoot apical meristem of heat-tolerant and heat-sensitive broccoli inbred lines during floral head formation. BMC Plant Biology, 2019, 19, 3.	1.6	21
1453	The Arabidopsis nucleoporin NUP1 is essential for megasporogenesis and early stages of pollen development. Plant Cell Reports, 2019, 38, 59-74.	2.8	11
1454	Seasonal variation in expression pattern of genes in irrigated and water stressed transcriptomes of Zea mays Z59. Journal of Plant Biochemistry and Biotechnology, 2019, 28, 271-279.	0.9	1
1455	Characterization of maize translational responses to sugarcane mosaic virus infection. Virus Research, 2019, 259, 97-107.	1.1	11
1456	Compendium of Colletotrichum graminicola responsive infection-induced transcriptomic shifts in the maize. Plant Gene, 2019, 17, 100166.	1.4	3
1457	Extensive alleleâ€level remodeling of histone methylation modification in reciprocal F ₁ hybrids of rice subspecies. Plant Journal, 2019, 97, 571-586.	2.8	12
1458	Transcriptome profiles of soybean leaves and roots in response to zinc deficiency. Physiologia Plantarum, 2019, 167, 330-351.	2.6	27
1459	Kernel sizeâ€related genes revealed by an integrated <scp>eQTL</scp> analysis during early maize kernel development. Plant Journal, 2019, 98, 19-32.	2.8	34
1460	Identification and characterization of drought responsive microRNAs and their target genes in cardamom (Elettaria cardamomum Maton). Plant Growth Regulation, 2019, 87, 201-216.	1.8	15

#	Article	IF	CITATIONS
1461	Transcription profiles reveal the regulatory mechanisms of spur bud changes and flower induction in response to shoot bending in apple (Malus domestica Borkh.). Plant Molecular Biology, 2019, 99, 45-66.	2.0	21
1462	Deciphering genome-wide WRKY gene family of Triticum aestivum L. and their functional role in response to Abiotic stress. Genes and Genomics, 2019, 41, 79-94.	0.5	31
1463	Comparing Arabidopsis receptor kinase and receptor proteinâ€mediated immune signaling reveals BIK1â€dependent differences. New Phytologist, 2019, 221, 2080-2095.	3.5	73
1464	Effect of water-deficit on tassel development in maize. Gene, 2019, 681, 86-92.	1.0	8
1465	Genome-wide identification and comprehensive analysis of Excretory/Secretory proteins in nematodes provide potential drug targets for parasite control. Genomics, 2019, 111, 297-309.	1.3	10
1466	Deepâ€sequencing of Solanum commersonii small RNA libraries reveals riboregulators involved in cold stress response. Plant Biology, 2020, 22, 133-142.	1.8	20
1467	<i>Gb<scp>CYP</scp>86A1â€I</i> from <i>Gossypium barbadense</i> positively regulates defence against <i>Verticillium dahliae</i> by cell wall modification and activation of immune pathways. Plant Biotechnology Journal, 2020, 18, 222-238.	4.1	37
1468	Comprehensive expression-based isoform biomarkers predictive of drug responses based on isoform co-expression networks and clinical data. Genomics, 2020, 112, 647-658.	1.3	12
1469	Plant Meiosis. Methods in Molecular Biology, 2020, , .	0.4	1
1470	SnRK2 Protein Kinases and mRNA Decapping Machinery Control Root Development and Response to Salt. Plant Physiology, 2020, 182, 361-377.	2.3	62
1471	Early transcriptional responses to soybean cyst nematode HG Type 0 show genetic differences among resistant and susceptible soybeans. Theoretical and Applied Genetics, 2020, 133, 87-102.	1.8	17
1472	Combined transcriptome and metabolome analysis identifies defence responses in spider mite-infested pepper (Capsicum annuum). Journal of Experimental Botany, 2020, 71, 330-343.	2.4	61
1473	Genome-wide transcriptome profiling provides insights into the responses of maize (Zea mays L.) to diazotrophic bacteria. Plant and Soil, 2020, 451, 121-143.	1.8	14
1474	Ethephon-regulated maize internode elongation associated with modulating auxin and gibberellin signal to alter cell wall biosynthesis and modification. Plant Science, 2020, 290, 110196.	1.7	35
1475	A role for Arabidopsis growth-regulating factors 1 and 3 in growth–stress antagonism. Journal of Experimental Botany, 2020, 71, 1402-1417.	2.4	32
1476	NBS-LRR genes—Plant health sentinels: Structure, roles, evolution and biotechnological applications. , 2020, , 63-120.		9
1477	Novel B-chromosome-specific transcriptionally active sequences are present throughout the maize B chromosome. Molecular Genetics and Genomics, 2020, 295, 313-325.	1.0	9
1478	Plant Regulomics: a dataâ€driven interface for retrieving upstream regulators from plant multiâ€omics data. Plant Journal, 2020, 101, 237-248.	2.8	75

#	Article	IF	CITATIONS
1479	Wideâ€ r anging transcriptome remodelling mediated by alternative polyadenylation in response to abiotic stresses in <i>Sorghum</i> . Plant Journal, 2020, 102, 916-930.	2.8	24
1480	Comparative transcriptome analysis revealed gamma-irradiation mediated disruption of floral integrator gene(s) leading to prolonged vegetative phase in Stevia rebaudiana Bertoni. Plant Physiology and Biochemistry, 2020, 148, 90-102.	2.8	14
1481	Silver nanoparticles regulate Arabidopsis root growth by concentration-dependent modification of reactive oxygen species accumulation and cell division. Ecotoxicology and Environmental Safety, 2020, 190, 110072.	2.9	22
1484	Barley long non-coding RNAs (IncRNA) responsive to excess boron. Genomics, 2020, 112, 1947-1955.	1.3	20
1485	Comparative transcriptomic analysis reveals novel insights into the response to Cr(VI) exposure in Cr(VI) tolerant ectomycorrhizal fungi Pisolithus sp. 1 LS-2017. Ecotoxicology and Environmental Safety, 2020, 188, 109935.	2.9	10
1486	STCH4/REIL2 Confers Cold Stress Tolerance in Arabidopsis by Promoting rRNA Processing and CBF Protein Translation. Cell Reports, 2020, 30, 229-242.e5.	2.9	52
1487	Genetic regulatory networks for salt-alkali stress in Gossypium hirsutum with differing morphological characteristics. BMC Genomics, 2020, 21, 15.	1.2	33
1488	Favorable haplotypes and associated genes for flowering time and photoperiod sensitivity identified by comparative selective signature analysis and GWAS in temperate and tropical maize. Crop Journal, 2020, 8, 227-242.	2.3	6
1489	Shedding light on response of Triticum aestivum cv. Kharchia Local roots to long-term salinity stress through transcriptome profiling. Plant Growth Regulation, 2020, 90, 369-381.	1.8	36
1490	Genome-wide association analyses reveal the genetic basis of biomass accumulation under symbiotic nitrogen fixation in African soybean. Theoretical and Applied Genetics, 2020, 133, 665-676.	1.8	21
1491	The NINâ€like protein 5 (ZmNLP5) transcription factor is involved in modulating the nitrogen response in maize. Plant Journal, 2020, 102, 353-368.	2.8	41
1492	A transcriptomic analysis reveals soybean seed pre-harvest deterioration resistance pathways under high temperature and humidity stress. Genome, 2020, 63, 115-124.	0.9	13
1493	Dynamic patterns of circular and linear RNAs in maize hybrid and parental lines. Theoretical and Applied Genetics, 2020, 133, 593-604.	1.8	5
1494	A Tripartite Interaction among the Basidiomycete <i>Rhodotorula mucilaginosa</i> , N ₂ -Fixing Endobacteria, and Rice Improves Plant Nitrogen Nutrition. Plant Cell, 2020, 32, 486-507.	3.1	29
1495	RNA-seq and ChIP-seq as Complementary Approaches for Comprehension of Plant Transcriptional Regulatory Mechanism. International Journal of Molecular Sciences, 2020, 21, 167.	1.8	24
1496	Identification, characterization, and functional prediction of circular RNAs in maize. Molecular Genetics and Genomics, 2020, 295, 491-503.	1.0	20
1497	Gene Expression Analysis in Response to Vernalization in Chinese Cabbage (<i>Brassica) Tj ETQq0 0 0 rgBT</i>	/Oyerlock	10 Tf 50 102

1498	Transcriptomic Analysis Reveals Important Roles of Lignin and Flavonoid Biosynthetic Pathways in Rice Thermotolerance During Reproductive Stage. Frontiers in Genetics, 2020, 11, 562937.	1.1	22
------	---	-----	----

#	Article	IF	CITATIONS
1499	iDRBP_MMC: Identifying DNA-Binding Proteins and RNA-Binding Proteins Based on Multi-Label Learning Model and Motif-Based Convolutional Neural Network. Journal of Molecular Biology, 2020, 432, 5860-5875.	2.0	43
1500	Over-expression of rice R1-type MYB transcription factor confers different abiotic stress tolerance in transgenic Arabidopsis. Ecotoxicology and Environmental Safety, 2020, 206, 111361.	2.9	18
1501	Systemic induction of phosphatidylinositol-based signaling in leaves of arbuscular mycorrhizal rice plants. Scientific Reports, 2020, 10, 15896.	1.6	13
1502	Comparative transcriptomic analysis of contrasting hybrid cultivars reveal key drought-responsive genes and metabolic pathways regulating drought stress tolerance in maize at various stages. PLoS ONE, 2020, 15, e0240468.	1.1	7
1503	Global insights into duplicated gene expression and alternative splicing in polyploid <i>Brassica napus</i> under heat, cold, and drought stress. Plant Genome, 2020, 13, e20057.	1.6	23
1504	Dwarfism of highâ€monolignol Arabidopsis plants is rescued by ectopic LACCASE overexpression. Plant Direct, 2020, 4, e00265.	0.8	17
1505	Proteomics and phosphoproteomics revealed molecular networks of stomatal immune responses. Planta, 2020, 252, 66.	1.6	17
1506	Characterization of floral morphoanatomy and identification of marker genes preferentially expressed during specific stages of cotton flower development. Planta, 2020, 252, 71.	1.6	6
1507	NST- and SND-subgroup NAC proteins coordinately act to regulate secondary cell wall formation in cotton. Plant Science, 2020, 301, 110657.	1.7	15
1508	Linking key steps of microRNA biogenesis by TREX-2 and the nuclear pore complex in Arabidopsis. Nature Plants, 2020, 6, 957-969.	4.7	71
1509	Transcriptional reprogramming and enhanced photosynthesis drive inducible salt tolerance in sugarcane mutant line M4209. Journal of Experimental Botany, 2020, 71, 6159-6173.	2.4	9
1510	Genomic insights on the contribution of balancing selection and local adaptation to the longâ€ŧerm survival of a widespread living fossil tree, <i>Cercidiphyllum japonicum</i> . New Phytologist, 2020, 228, 1674-1689.	3.5	22
1511	Identification of candidate tolerance genes to low-temperature during maize germination by GWAS and RNA-seq approaches. BMC Plant Biology, 2020, 20, 333.	1.6	53
1512	Involvement of Arabidopsis BIG protein in cell death mediated by Myo-inositol homeostasis. Scientific Reports, 2020, 10, 11268.	1.6	3
1513	Large-Scale Phosphoproteomic Study of Arabidopsis Membrane Proteins Reveals Early Signaling Events in Response to Cold. International Journal of Molecular Sciences, 2020, 21, 8631.	1.8	19
1514	Profiling Alternative 3′ Untranslated Regions in Sorghum using RNA-seq Data. Frontiers in Genetics, 2020, 11, 556749.	1.1	4
1515	A bipartite transcription factor module controlling expression in the bundle sheath of Arabidopsis thaliana. Nature Plants, 2020, 6, 1468-1479.	4.7	20
1516	Chorismate mutase and isochorismatase, two potential effectors of the migratory nematode <i>Hirschmanniella oryzae</i> , increase host susceptibility by manipulating secondary metabolite content of rice. Molecular Plant Pathology, 2020, 21, 1634-1646	2.0	12

#	Article	IF	CITATIONS
1517	Transcriptome analysis of genes related to cadmium absorption and transportation in pepper. Israel Journal of Ecology and Evolution, 2020, 67, 29-38.	0.2	0
1518	Salt-responsive transcriptome analysis of triticale reveals candidate genes involved in the key metabolic pathway in response to salt stress. Scientific Reports, 2020, 10, 20669.	1.6	16
1519	Amino Acid and Carbohydrate Metabolism Are Coordinated to Maintain Energetic Balance during Drought in Sugarcane. International Journal of Molecular Sciences, 2020, 21, 9124.	1.8	25
1520	Technical benefit on apple fruit of controlled atmosphere influenced by 1-MCP at molecular levels. Molecular Genetics and Genomics, 2020, 295, 1443-1457.	1.0	1
1521	Separation and Paired Proteome Profiling of Plant Chloroplast and Cytoplasmic Ribosomes. Plants, 2020, 9, 892.	1.6	12
1522	Transcriptomic variation of the flower–fruit transition in Physalis and Solanum. Planta, 2020, 252, 28.	1.6	7
1523	Systematic Analysis of Differential H3K27me3 and H3K4me3 Deposition in Callus and Seedling Reveals the Epigenetic Regulatory Mechanisms Involved in Callus Formation in Rice. Frontiers in Genetics, 2020, 11, 766.	1.1	13
1524	Transcriptome analysis of contrasting resistance to herbivory by Empoasca fabae in two shrub willow species and their hybrid progeny. PLoS ONE, 2020, 15, e0236586.	1.1	4
1525	Identification of Key Genes for the Ultrahigh Yield of Rice Using Dynamic Cross-tissue Network Analysis. Genomics, Proteomics and Bioinformatics, 2020, 18, 256-270.	3.0	9
1526	High-Throughput Sequencing and Expression Analysis Suggest the Involvement of Pseudomonas putida RA-Responsive microRNAs in Growth and Development of Arabidopsis. International Journal of Molecular Sciences, 2020, 21, 5468.	1.8	12
1527	The mechanism of potato resistance to Globodera rostochiensis: comparison of root transcriptomes of resistant and susceptible Solanum phureja genotypes. BMC Plant Biology, 2020, 20, 350.	1.6	5
1528	Differential transcriptome and metabolome analysis of Plumbago zeylanica L. reveal putative genes involved in plumbagin biosynthesis. Fìtoterapìâ, 2020, 147, 104761.	1.1	12
1529	The histone modification H3K4me3 marks functional genes in soybean nodules. Genomics, 2020, 112, 5282-5294.	1.3	8
1530	Metabolic Control of Gametophore Shoot Formation through Arginine in the Moss Physcomitrium patens. Cell Reports, 2020, 32, 108127.	2.9	28
1531	Petal abscission in fragrant roses is associated with large scale differential regulation of the abscission zone transcriptome. Scientific Reports, 2020, 10, 17196.	1.6	9
1532	Cyclic <scp>AMP</scp> mediates heat stress response by the control of redox homeostasis and ubiquitinâ€proteasome system. Plant, Cell and Environment, 2020, 43, 2727-2742.	2.8	22
1533	SUPER STARCHY1/ONAC025 participates in rice grain filling. Plant Direct, 2020, 4, e00249.	0.8	11
1534	Humic acid enhances heat stress tolerance via transcriptional activation of Heat-Shock Proteins in Arabidopsis. Scientific Reports, 2020, 10, 15042.	1.6	31

#	Article	IF	CITATIONS
1535	Transcriptomic Analysis of a Susceptible African Maize Line to Fusarium verticillioides Infection. Plants, 2020, 9, 1112.	1.6	10
1536	A DNA Methylation Reader–Chaperone Regulator–Transcription Factor Complex Activates <i>OsHKT1;5</i> Expression during Salinity Stress. Plant Cell, 2020, 32, 3535-3558.	3.1	63
1537	Transcriptome profiling and weighted gene co-expression network analysis of early floral development in Aquilegia coerulea. Scientific Reports, 2020, 10, 19637.	1.6	12
1538	A functional genomics approach to dissect spotted alfalfa aphid resistance in Medicago truncatula. Scientific Reports, 2020, 10, 22159.	1.6	3
1539	Differential Gene Expression Analysis of Wheat Breeding Lines Reveal Molecular Insights in Yellow Rust Resistance under Field Conditions. Agronomy, 2020, 10, 1888.	1.3	8
1540	Temporal regulation of alternative splicing events in rice memory under drought stress. Plant Diversity, 2022, 44, 116-125.	1.8	10
1541	Melon short internode (CmSi) encodes an ERECTA-like receptor kinase regulating stem elongation through auxin signaling. Horticulture Research, 2020, 7, 202.	2.9	14
1542	Temperature differentially modulates the transcriptome response in Oryza sativa to Xanthomonas oryzae pv. oryzae infection. Genomics, 2020, 112, 4842-4852.	1.3	11
1543	Global mRNA and microRNA expression dynamics in response to anthracnose infection in sorghum. BMC Genomics, 2020, 21, 760.	1.2	20
1544	Potential Molecular Mechanisms of Plantain in the Treatment of Gout and Hyperuricemia Based on Network Pharmacology. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-20.	0.5	20
1545	Transcriptomic data-driven discovery of global regulatory features of rice seeds developing under heat stress. Computational and Structural Biotechnology Journal, 2020, 18, 2556-2567.	1.9	7
1546	Transcriptomic profiling of purple broccoli reveals light-induced anthocyanin biosynthetic signaling and structural genes. PeerJ, 2020, 8, e8870.	0.9	19
1547	The draft genome sequence of an upland wild rice species, Oryza granulata. Scientific Data, 2020, 7, 131.	2.4	21
1548	Bioinformatics Resources for Plant Abiotic Stress Responses: State of the Art and Opportunities in the Fast Evolving -Omics Era. Plants, 2020, 9, 591.	1.6	25
1549	Exploring dynamic protein-protein interactions in cassava through the integrative interactome network. Scientific Reports, 2020, 10, 6510.	1.6	15
1550	De novo transcriptome sequence of Senna tora provides insights into anthraquinone biosynthesis. PLoS ONE, 2020, 15, e0225564.	1.1	14
1551	Genomeâ€wide analysis of polymorphisms identified domesticationâ€associated long lowâ€diversity region carrying important rice grain size/weight quantitative trait loci. Plant Journal, 2020, 103, 1525-1547.	2.8	9
1552	Transcriptional dynamics of Zn-accumulation in developing kernels of maize reveals important Zn-uptake mechanisms. Genomics, 2020, 112, 3435-3447.	1.3	9

# 1553	ARTICLE Draft genomes of two outcrossing wild rice, Oryza rufipogon and O. longistaminata , reveal genomic features associated with matingâ€system evolution. Plant Direct, 2020, 4, e00232.	IF 0.8	Citations 9
1554	Cell-type-dependent histone demethylase specificity promotes meiotic chromosome condensation in Arabidopsis. Nature Plants, 2020, 6, 823-837.	4.7	13
1555	Effect of Arsenic Stress on Expression Pattern of a Rice Specific miR156j at Various Developmental Stages and Their Allied Co-expression Target Networks. Frontiers in Plant Science, 2020, 11, 752.	1.7	31
1556	Transcriptome analyses suggest that changes in fungal endophyte lifestyle could be involved in grapevine bud necrosis. Scientific Reports, 2020, 10, 9514.	1.6	14
1557	Functional characterization of Arabidopsis ARGONAUTE 3 in reproductive tissues. Plant Journal, 2020, 103, 1796-1809.	2.8	22
1559	RNA-seq Reveals Differentially Expressed Genes between Two indica Inbred Rice Genotypes Associated with Drought-Yield QTLs. Agronomy, 2020, 10, 621.	1.3	21
1560	Comparative Transcriptome Analysis of Two Contrasting Soybean Varieties in Response to Aluminum Toxicity. International Journal of Molecular Sciences, 2020, 21, 4316.	1.8	16
1561	<i>ENO</i> regulates tomato fruit size through the floral meristem development network. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8187-8195.	3.3	108
1562	miR159 Represses a Constitutive Pathogen Defense Response in Tobacco. Plant Physiology, 2020, 182, 2182-2198.	2.3	30
1564	The zoospores of the thraustochytridAurantiochytrium limacinum: Transcriptional reprogramming and lipid metabolism associated to their specific functions. Environmental Microbiology, 2020, 22, 1901-1916.	1.8	9
1565	Comparative Root Transcriptomics Provide Insights into Drought Adaptation Strategies in Chickpea (Cicer arietinum L.). International Journal of Molecular Sciences, 2020, 21, 1781.	1.8	31
1566	Seasonal nitrogen remobilization and the role of auxin transport in poplar trees. Journal of Experimental Botany, 2020, 71, 4512-4530.	2.4	14
1567	Mapping and validation of a fiber length QTL on chromosome D11 using two independent F2 populations of upland cotton. Molecular Breeding, 2020, 40, 1.	1.0	6
1568	Melatonin improves rice salinity stress tolerance by <scp>NADPH</scp> oxidaseâ€dependent control of the plasma membrane K ⁺ transporters and K ⁺ homeostasis. Plant, Cell and Environment, 2020, 43, 2591-2605.	2.8	93
1569	Water lily (<i>Nymphaea thermarum</i>) genome reveals variable genomic signatures of ancient vascular cambium losses. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8649-8656.	3.3	33
1570	Epigenomic Regulatory Mechanism in Vegetative Phase Transition of <i>Malus hupehensis</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 4812-4829.	2.4	10
1571	The Role of Gibberellins in Regulation of Nitrogen Uptake and Physiological Traits in Maize Responding to Nitrogen Availability. International Journal of Molecular Sciences, 2020, 21, 1824.	1.8	23
1572	Identification of introduced and stably inherited DNA methylation variants in soybean associated with soybean cyst nematode parasitism. New Phytologist, 2020, 227, 168-184.	3.5	27

#	ARTICLE	IF	CITATIONS
1573	A Comprehensive Transcriptomics Analysis Reveals Long Non-Coding RNA to Be Involved in the Key Metabolic Pathway in Response to Waterlogging Stress in Maize. Genes, 2020, 11, 267.	1.0	27
1574	Genomic variation between PRSV resistant transgenic SunUp and its progenitor cultivar Sunset. BMC Genomics, 2020, 21, 398.	1.2	3
1575	Characterization of microRNA genes from Pigeonpea (Cajanus cajan L.) and understanding their involvement in drought stress. Journal of Biotechnology, 2020, 321, 23-34.	1.9	10
1576	Genetic architecture, demographic history, and genomic differentiation of <i>Populus davidiana</i> revealed by wholeâ€genome resequencing. Evolutionary Applications, 2020, 13, 2582-2596.	1.5	10
1577	Generation of High Yielding and Fragrant Rice (Oryza sativa L.) Lines by CRISPR/Cas9 Targeted Mutagenesis of Three Homoeologs of Cytochrome P450 Gene Family and OsBADH2 and Transcriptome and Proteome Profiling of Revealed Changes Triggered by Mutations. Plants, 2020, 9, 788.	1.6	57
1578	Genomic identification of salt induced microRNAs in niger (Guizotia abyssinica Cass.). Plant Gene, 2020, 23, 100242.	1.4	5
1579	Morphological and metabolic profiling of a tropicalâ€adapted potato association panel subjected to water recovery treatment reveals new insights into plant vigor. Plant Journal, 2020, 103, 2193-2210.	2.8	10
1580	PHYTOCHROME-INTERACTING FACTOR-LIKE14 and SLENDER RICE1 Interaction Controls Seedling Growth under Salt Stress. Plant Physiology, 2020, 184, 506-517.	2.3	60
1581	Identification and characterization of differentially expressed genes in the rice root following exogenous application of spermidine during salt stress. Genomics, 2020, 112, 4125-4136.	1.3	2
1582	Comparative transcriptomics reveals candidate transcription factors involved in costunolide biosynthesis in medicinal plant-Saussurea lappa. International Journal of Biological Macromolecules, 2020, 150, 52-67.	3.6	13
1583	Comparative transcriptome provides molecular insight into defense-associated mechanisms against spider mite in resistant and susceptible common bean cultivars. PLoS ONE, 2020, 15, e0228680.	1.1	15
1584	TGFâ€Î² Signaling Plays a Pivotal Role During Developmental Biliary Atresia in Sea Lamprey (Petromyzon) Tj ETQqI	1 <u>1 0</u> .784: 2.0	314 rgBT /O
1585	Spatial transcriptional dynamics of geographically separated genotypes revealed key regulators of podophyllotoxin biosynthesis in Podophyllum hexandrum. Industrial Crops and Products, 2020, 147, 112247.	2.5	11
1587	Genome-wide identification and comparative analysis of drought related genes in roots of two maize inbred lines with contrasting drought tolerance by RNA sequencing. Journal of Integrative Agriculture, 2020, 19, 449-464.	1.7	17
1588	PIF4 and HOOKLESS1 Impinge on Common Transcriptome and Isoform Regulation in Thermomorphogenesis. Plant Communications, 2020, 1, 100034.	3.6	28
1589	Global identification and analysis revealed differentially expressed IncRNAs associated with meiosis and low fertility in autotetraploid rice. BMC Plant Biology, 2020, 20, 82.	1.6	28
1590	Dual Transcriptome and Metabolic Analysis of Vitis vinifera cv. Pinot Noir Berry and Botrytis cinerea During Quiescence and Egressed Infection. Frontiers in Plant Science, 2019, 10, 1704.	1.7	26
1591	Time-course RNA-seq analysis provides an improved understanding of gene regulation during the formation of nodule-like structures in rice. Plant Molecular Biology, 2020, 103, 113-128.	2.0	6

#	Article	IF	CITATIONS
1592	Phosphate excess increases susceptibility to pathogen infection in rice. Molecular Plant Pathology, 2020, 21, 555-570.	2.0	45
1593	An endophyte from salt-adapted Pokkali rice confers salt-tolerance to a salt-sensitive rice variety and targets a unique pattern of genes in its new host. Scientific Reports, 2020, 10, 3237.	1.6	58
1594	Rice pyramided line IRBB67 (Xa4/Xa7) homeostasis under combined stress of high temperature and bacterial blight. Scientific Reports, 2020, 10, 683.	1.6	27
1595	Differential Expression of Genes at Panicle Initiation and Grain Filling Stages Implied in Heterosis of Rice Hybrids. International Journal of Molecular Sciences, 2020, 21, 1080.	1.8	12
1596	Host and symbiont genetic determinants of nutritional phenotype in a natural population of the pea aphid. Molecular Ecology, 2020, 29, 848-858.	2.0	15
1597	Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. Journal of Experimental Botany, 2020, 71, 3780-3802.	2.4	186
1598	Quantitative trait loci analysis of seed oil content and composition of wild and cultivated soybean. BMC Plant Biology, 2020, 20, 51.	1.6	36
1599	Dissection of Dynamic Transcriptome Landscape of Leaf, Bract, and Lupulin Gland in Hop (Humulus) Tj ETQq1 1	0.784314 1.8	rgBT /Overloo
1600	Monitoring rice anther proteome expression patterns during pollen development. Plant Biotechnology Reports, 2020, 14, 293-300.	0.9	1
1601	Genetic variants and underlying mechanisms influencing variance heterogeneity in maize. Plant Journal, 2020, 103, 1089-1102.	2.8	7
1602	Fine mapping of a Phytophthora-resistance locus RpsGZ in soybean using genotyping-by-sequencing. BMC Genomics, 2020, 21, 280.	1.2	20
1603	Ascorbate oxidation activates systemic defence against root-knot nematode Meloidogyne graminicola in rice. Journal of Experimental Botany, 2020, 71, 4271-4284.	2.4	26
1604	Largeâ€scale identification of expression quantitative trait loci in Arabidopsis reveals novel candidate regulators of immune responses and other processes. Journal of Integrative Plant Biology, 2020, 62, 1469-1484.	4.1	7
1605	In Arabidopsis thaliana Heterosis Level Varies among Individuals in an F1 Hybrid Population. Plants, 2020, 9, 414.	1.6	2
1606	The Spread and Transmission of Sweet Potato Virus Disease (SPVD) and Its Effect on the Gene Expression Profile in Sweet Potato. Plants, 2020, 9, 492.	1.6	17
1607	mGWAS Uncovers Gln-Glucosinolate Seed-Specific Interaction and its Role in Metabolic Homeostasis. Plant Physiology, 2020, 183, 483-500.	2.3	24
1608	WRKY15 Suppresses Tracheary Element Differentiation Upstream of VND7 During Xylem Formation. Plant Cell, 2020, 32, 2307-2324.	3.1	36
1609	Epigenomic regulation of OTU5 in Arabidopsis thaliana. Genomics, 2020, 112, 3549-3559.	1.3	7

#	Article	IF	CITATIONS
1610	Highä€quality chromosomeä€level genomes of two tilapia species reveal their evolution of repeat sequences and sex chromosomes. Molecular Ecology Resources, 2021, 21, 543-560.	2.2	40
1611	Root system architecture, physiological analysis and dynamic transcriptomics unravel the drought-responsive traits in rice genotypes. Ecotoxicology and Environmental Safety, 2021, 207, 111252.	2.9	39
1612	LAZY1 Controls Tiller Angle and Shoot Gravitropism by Regulating the Expression of Auxin Transporters and Signaling Factors in Rice. Plant and Cell Physiology, 2021, 61, 2111-2125.	1.5	27
1613	Transcriptome analysis reveals rice MADS13 as an important repressor of the carpel development pathway in ovules. Journal of Experimental Botany, 2021, 72, 398-414.	2.4	7
1614	Proteomic investigation of Zn-challenged rice roots reveals adverse effects and root physiological adaptation. Plant and Soil, 2021, 460, 69-88.	1.8	9
1615	TCP5 controls leaf margin development by regulating KNOX and BEL-like transcription factors in Arabidopsis. Journal of Experimental Botany, 2021, 72, 1809-1821.	2.4	26
1616	Comparative RNA-Seq analysis of the root revealed transcriptional regulation system for aluminum tolerance in contrasting indica rice of North East India. Protoplasma, 2021, 258, 517-528.	1.0	6
1617	Multiple-genotypes transcriptional analysis revealed candidates genes and nucleotide variants for improvement of quality characteristics in tea (Camellia sinensis (L.) O. Kuntze). Genomics, 2021, 113, 305-316.	1.3	10
1618	TOA: A software package for automated functional annotation in nonâ€model plant species. Molecular Ecology Resources, 2021, 21, 621-636.	2.2	10
1619	The transcriptional response to salicylic acid plays a role in Fusarium yellows resistance in Brassica rapa L Plant Cell Reports, 2021, 40, 605-619.	2.8	7
1620	Candidatus Liberibacter asiaticus manipulates the expression of vitellogenin, cytoskeleton, and endocytotic pathway-related genes to become circulative in its vector, Diaphorina citri (Hemiptera:) Tj ETQq0 0 0	rgBiT /Ove	erl o ck 10 Tf 5
1621	Arabidopsis REI-LIKE proteins activate ribosome biogenesis during cold acclimation. Scientific Reports, 2021, 11, 2410.	1.6	19
1622	Profiling of MicroRNAs and Their Targets in Roots and Shoots Reveals a Potential MiRNA-Mediated Interaction Network in Response to Phosphate Deficiency in the Forestry Tree Betula luminifera. Frontiers in Genetics, 2021, 12, 552454.	1.1	10
1623	Auxin is involved in arbuscular mycorrhizal fungi-promoted tomato growth and NADP-malic enzymes expression in continuous cropping substrates. BMC Plant Biology, 2021, 21, 48.	1.6	22
1624	Transcriptome and degradome sequencing reveals changes in Populus × euramericana â€~Neva' ca its allelopathic response to p-hydroxybenzoic acid. Journal of Forestry Research, 2021, 32, 2155-2168.	used by	3
1625	Microarray analysis of Arabidopsis thaliana exposed to single and mixed infections with Cucumber mosaic virus and turnip viruses. Physiology and Molecular Biology of Plants, 2021, 27, 11-27.	1.4	2
1626	Silencing of an Ubiquitin Ligase Increases Grain Width and Weight in indica Rice. Frontiers in Genetics, 2020, 11, 600378.	1.1	10
1627	Selection of transcripts related to low-temperature tolerance using RNA sequencing from F2 plants between japonica and indica rice (Oryza sativa L.) cultivars. Functional Plant Biology, 2021, 48, 984.	1.1	3

#	Article	IF	CITATIONS
1628	New insights into the response of maize to fluctuations in the light environment. Molecular Genetics and Genomics, 2021, 296, 615-629.	1.0	3
1629	Linkage analysis, GWAS, transcriptome analysis to identify candidate genes for rice seedlings in response to high temperature stress. BMC Plant Biology, 2021, 21, 85.	1.6	23
1631	<i>Rickettsia</i> increases its infection and spread in whitefly populations by manipulating the defense patterns of the host plant. FEMS Microbiology Ecology, 2021, 97, .	1.3	8
1633	Comparative transcriptome analysis of Rheum australe, an endangered medicinal herb, growing in its natural habitat and those grown in controlled growth chambers. Scientific Reports, 2021, 11, 3702.	1.6	11
1634	Transcriptome analysis of the role of autophagy in plant response to heat stress. PLoS ONE, 2021, 16, e0247783.	1.1	5
1635	An epigenetic pathway in rice connects genetic variation to anaerobic germination and seedling establishment. Plant Physiology, 2021, 186, 1042-1059.	2.3	12
1636	Transcriptome Changes Reveal the Molecular Mechanisms of Humic Acid-Induced Salt Stress Tolerance in Arabidopsis. Molecules, 2021, 26, 782.	1.7	9
1637	The Arabidopsis condensin CAPâ€Ð subunits arrange interphase chromatin. New Phytologist, 2021, 230, 972-987.	3.5	9
1638	Natural population re-sequencing detects the genetic basis of local adaptation to low temperature in a woody plant. Plant Molecular Biology, 2021, 105, 585-599.	2.0	9
1639	Manipulating <i>ZmEXPA4</i> expression ameliorates the drought-induced prolonged anthesis and silking interval in maize. Plant Cell, 2021, 33, 2058-2071.	3.1	33
1640	RNAseq Reveals Differential Gene Expression Contributing to Phytophthora nicotianae Adaptation to Partial Resistance in Tobacco. Agronomy, 2021, 11, 656.	1.3	1
1641	Proteomic analysis reveals how pairing of a Mycorrhizal fungus with plant <scp>growthâ€promoting</scp> bacteria modulates growth and defense in wheat. Plant, Cell and Environment, 2021, 44, 1946-1960.	2.8	26
1642	Resequencing and SNP discovery of Amur ide (Leuciscus waleckii) provides insights into local adaptations to extreme environments. Scientific Reports, 2021, 11, 5064.	1.6	15
1643	Development of genic KASP SNP markers from RNA-Seq data for map-based cloning and marker-assisted selection in maize. BMC Plant Biology, 2021, 21, 157.	1.6	14
1645	Identification of virulence associated milRNAs and their bidirectional targets in Rhizoctonia solani and maize during infection. BMC Plant Biology, 2021, 21, 155.	1.6	7
1646	Bacterial effector targeting of a plant iron sensor facilitates iron acquisition and pathogen colonization. Plant Cell, 2021, 33, 2015-2031.	3.1	40
1647	Genome-wide analysis of long noncoding RNAs, 24-nt siRNAs, DNA methylation and H3K27me3 marks in Brassica rapa. PLoS ONE, 2021, 16, e0242530.	1.1	8
1648	MicroRNAs modulate ethylene induced retrograde signal for rice endosperm starch biosynthesis by default expression of transcriptome. Scientific Reports, 2021, 11, 5573.	1.6	8

#	Article	IF	CITATIONS
1649	Transcriptome Analysis of Eggplant Root in Response to Root-Knot Nematode Infection. Pathogens, 2021, 10, 470.	1.2	11
1650	Comparative transcriptome analysis reveals key insights into male sterility in <i>Salvia miltiorrhiza</i> Bunge. PeerJ, 2021, 9, e11326.	0.9	10
1651	Distinct morpho-physiological and biochemical features of arid and hyper-arid ecotypes of Ziziphus nummularia under drought suggest its higher tolerance compared with semi-arid ecotype. Tree Physiology, 2021, 41, 2063-2081.	1.4	2
1652	MP3RNAâ€seq: Massively parallel 3′ end RNA sequencing for highâ€throughput gene expression profiling and genotyping. Journal of Integrative Plant Biology, 2021, 63, 1227-1239.	4.1	4
1653	Metatranscriptomic Comparison of Endophytic and Pathogenic <i>Fusarium</i> –Arabidopsis Interactions Reveals Plant Transcriptional Plasticity. Molecular Plant-Microbe Interactions, 2021, 34, 1071-1083.	1.4	25
1654	Cryptococcus neoformans <i>-</i> Infected Macrophages Release Proinflammatory Extracellular Vesicles: Insight into Their Components by Multi-omics. MBio, 2021, 12, .	1.8	14
1655	Global Analysis of RNA-Dependent RNA Polymerase-Dependent Small RNAs Reveals New Substrates and Functions for These Proteins and SGS3 in Arabidopsis. Non-coding RNA, 2021, 7, 28.	1.3	10
1657	Comparative transcriptome analyses revealed different heat stress responses in pigeonpea (Cajanus) Tj ETQq1 1	0.784314	rgBT /Overlo
1658	Comparative Analyses Reveal Peroxidases Play Important Roles in Soybean Tolerance to Aluminum Toxicity. Agronomy, 2021, 11, 670.	1.3	6
1659	Comparative Analysis Based on Transcriptomics and Metabolomics Data Reveal Differences between Emmer and Durum Wheat in Response to Nitrogen Starvation. International Journal of Molecular Sciences, 2021, 22, 4790.	1.8	5
1662	Transcriptome analysis reveals genes expression pattern of seed response to heat stress in Brassica napus L Oil Crop Science, 2021, 6, 87-96.	0.9	14
1663	Comparative Transcriptome Analysis of Rice Resistant and Susceptible Genotypes to Xanthomonas oryzae pv. oryzae Identifies Novel Genes to Control Bacterial Leaf Blight. Molecular Biotechnology, 2021, 63, 719-731.	1.3	12
1664	Transcriptome profiling of Capsicum annuum using Illumina- and PacBio SMRT-based RNA-Seq for in-depth understanding of genes involved in trichome formation. Scientific Reports, 2021, 11, 10164.	1.6	6
1665	Underpinning the molecular programming attributing heat stress associated thermotolerance in tea (Camellia sinensis (L.) O. Kuntze). Horticulture Research, 2021, 8, 99.	2.9	19
1666	Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in Fabaceae. Molecular Plant, 2021, 14, 748-773.	3.9	86
1667	Assessing Physiological and Genetic Evidence for Evolution of Shared Weedy Rice Traits at the Vegetative Growth Stage. Frontiers in Agronomy, 2021, 3, .	1.5	3
1670	Whole-Genome Doubling Affects Pre-miRNA Expression in Plants. Plants, 2021, 10, 1004.	1.6	1
1671	Characterization of Histone H3 Lysine 4 and 36 Tri-methylation in Brassica rapa L Frontiers in Plant Science, 2021, 12, 659634.	1.7	9

#	Article	IF	CITATIONS
1672	Genome-wide association study reveals early seedling vigour-associated quantitative trait loci in indica rice. Euphytica, 2021, 217, 1.	0.6	1
1673	Cleaning the Medicago Microarray Database to Improve Gene Function Analysis. Plants, 2021, 10, 1240.	1.6	1
1674	Functional interplay of histone lysine 2-hydroxyisobutyrylation and acetylation in Arabidopsis under dark-induced starvation. Nucleic Acids Research, 2021, 49, 7347-7360.	6.5	12
1675	Comparative analysis of sRNAs, degradome and transcriptomics in sweet sorghum reveals the regulatory roles of miRNAs in Cd accumulation and tolerance. Planta, 2021, 254, 16.	1.6	6
1676	Molecular signatures of silencing suppression degeneracy from a complex RNA virus. PLoS Computational Biology, 2021, 17, e1009166.	1.5	3
1677	Using high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance. Genome Biology, 2021, 22, 185.	3.8	47
1678	H3K27me3 demethylases alter HSP22 and HSP17.6C expression in response to recurring heat in Arabidopsis. Nature Communications, 2021, 12, 3480.	5.8	68
1679	Agrobacterium VirE2 Protein Modulates Plant Gene Expression and Mediates Transformation From Its Location Outside the Nucleus. Frontiers in Plant Science, 2021, 12, 684192.	1.7	8
1681	Transcriptome profiling of developing leaf and shoot apices to reveal the molecular mechanism and co-expression genes responsible for the wheat heading date. BMC Genomics, 2021, 22, 468.	1.2	11
1682	Identifying Genomic Regions Targeted During Eggplant Domestication Using Transcriptome Data. Journal of Heredity, 2021, 112, 519-525.	1.0	3
1683	mRNA-seq and miRNA-seq profiling analyses reveal molecular mechanisms regulating induction of fruiting body in Ophiocordyceps sinensis. Scientific Reports, 2021, 11, 12944.	1.6	5
1684	Genome-wide transcriptional analysis unveils the molecular basis of organ-specific expression of isosteroidal alkaloids biosynthesis in critically endangered Fritillaria roylei Hook. Phytochemistry, 2021, 187, 112772.	1.4	20
1685	Comparative Label-Free Quantitative Proteomics Analysis Reveals the Essential Roles of N-Glycans in Salt Tolerance by Modulating Protein Abundance in Arabidopsis. Frontiers in Plant Science, 2021, 12, 646425.	1.7	9
1686	Divergence among rice cultivars reveals roles for transposition and epimutation in ongoing evolution of genomic imprinting. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11
1687	Potential evidence for transgenerational epigenetic memory in Arabidopsis thaliana following spaceflight. Communications Biology, 2021, 4, 835.	2.0	17
1688	Internet of Things for Agricultural Applications: The State of the Art. IEEE Internet of Things Journal, 2021, 8, 10973-10997.	5.5	39
1689	The Induction of the Isoflavone Biosynthesis Pathway Is Associated with Resistance to Common Bacterial Blight in Phaseolus vulgaris L Metabolites, 2021, 11, 433.	1.3	3
1690	Sex biased expression of hormone related genes at early stage of sex differentiation in papaya flowers. Horticulture Research, 2021, 8, 147.	2.9	12

#	Article	IF	CITATIONS
1691	<i>In vivo</i> homopropargylglycine incorporation enables sampling, isolation and characterization of nascent proteins from <i>Arabidopsis thaliana</i> . Plant Journal, 2021, 107, 1260-1276.	2.8	7
1692	What Antarctic Plants Can Tell Us about Climate Changes: Temperature as a Driver for Metabolic Reprogramming. Biomolecules, 2021, 11, 1094.	1.8	15
1693	Data Comparison and Software Design for Easy Selection and Application of CRISPR-based Genome Editing Systems in Plants. Genomics, Proteomics and Bioinformatics, 2021, 19, 937-948.	3.0	3
1694	Expression of cyanobacterial genes enhanced CO ₂ assimilation and biomass production in transgenic <i>Arabidopsis thaliana</i> . PeerJ, 2021, 9, e11860.	0.9	7
1695	A novel plant-fungal association reveals fundamental sRNA and gene expression reprogramming at the onset of symbiosis. BMC Biology, 2021, 19, 171.	1.7	10
1696	Effects of tobacco compound 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) on the expression of epigenetically regulated genes in lung carcinogenesis. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2021, 84, 1004-1019.	1.1	3
1697	Comparative Transcriptome Analysis to Identify Candidate Genes for FaRCg1 Conferring Resistance Against Colletotrichum gloeosporioides in Cultivated Strawberry (Fragaria A— ananassa). Frontiers in Genetics, 2021, 12, 730444.	1.1	5
1698	Atlas of tissue-specific and tissue-preferential gene expression in ecologically and economically significant conifer <i>Pinus sylvestris</i> . PeerJ, 2021, 9, e11781.	0.9	5
1701	Genetic Dissection of Phosphorus Use Efficiency in a Maize Association Population under Two P Levels in the Field. International Journal of Molecular Sciences, 2021, 22, 9311.	1.8	12
1702	Transcriptomes and DNA methylomes in apomictic cells delineate nucellar embryogenesis initiation in citrus. DNA Research, 2021, 28, .	1.5	12
1703	Timeâ€series transcriptomics reveals a <i>BBX32</i> â€directed control of acclimation to high light in mature <i>Arabidopsis</i> leaves. Plant Journal, 2021, 107, 1363-1386.	2.8	11
1705	Genome-wide Analysis of Alternative Gene Splicing Associated with Virulence in the Brown Planthopper <i>Nilaparvata lugens</i> (Hemiptera: Delphacidae). Journal of Economic Entomology, 2021, 114, 2512-2523.	0.8	2
1706	The expression pattern, polymorphisms and association analyses of the porcine <i>NREP</i> gene. Journal of Animal Breeding and Genetics, 2022, 139, 62-70.	0.8	2
1707	Combined Transcriptome and Proteome Analysis of Maize (Zea mays L.) Reveals A Complementary Profile in Response to Phosphate Deficiency. Current Issues in Molecular Biology, 2021, 43, 1142-1155.	1.0	5
1708	Computational approaches to decipher miRNA-target association in Mango (Mangifera indica L.). Plant Gene, 2021, 27, 100292.	1.4	2
1709	Molecular regulation of anthocyanin discoloration under water stress and high solar irradiance in pluckable shoots of purple tea cultivar. Planta, 2021, 254, 85.	1.6	8
1710	Genome sequencing of the neotype strain CBS 554.65 reveals the MAT1–2 locus of Aspergillus niger. BMC Genomics, 2021, 22, 679.	1.2	5
1711	Transcriptome repository of North-Western Himalayan endangered medicinal herbs: a paramount approach illuminating molecular perspective of phytoactive molecules and secondary metabolism. Molecular Genetics and Genomics, 2021, 296, 1177-1202.	1.0	6

#	Article	IF	CITATIONS
1712	Nitric oxide sensing revisited. Trends in Plant Science, 2021, 26, 885-897.	4.3	10
1713	Acclimation of Photosynthesis to Changes in the Environment Results in Decreases of Oxidative Stress in Arabidopsis thaliana. Frontiers in Plant Science, 2021, 12, 683986.	1.7	5
1715	Deciphering common temporal transcriptional response during powdery mildew disease in plants using meta-analysis. Plant Gene, 2021, 27, 100307.	1.4	3
1716	Multilayer regulatory landscape during patternâ€ŧriggered immunity in rice. Plant Biotechnology Journal, 2021, 19, 2629-2645.	4.1	21
1717	Silicon Alleviates the Disease Severity of Sclerotinia Stem Rot in Rapeseed. Frontiers in Plant Science, 2021, 12, 721436.	1.7	4
1718	PlantCSAD: a comprehensive gene set annotation database for plant species. Nucleic Acids Research, 2022, 50, D1456-D1467.	6.5	20
1719	A reevaluation of the role of the <i>ASIL</i> trihelix transcription factors as repressors of the seed maturation program. Plant Direct, 2021, 5, e345.	0.8	2
1720	Use Chou's 5-steps rule to identify protein post-translational modification and its linkage to secondary metabolism during the floral development of Lonicera japonica Thunb. Plant Physiology and Biochemistry, 2021, 167, 1035-1048.	2.8	4
1721	Harnessing the potential of modern omics approaches to study plant biotic and abiotic stresses. , 2022, , 101-122.		1
1722	Gibberellin signaling mediates lateral root inhibition in response to K+-deprivation. Plant Physiology, 2021, 185, 1198-1215.	2.3	21
1723	Genome-Wide Analysis of the COBRA-Like Gene Family Supports Gene Expansion through Whole-Genome Duplication in Soybean (Glycine max). Plants, 2021, 10, 167.	1.6	10
1724	Bioinformatics Methods to Deduce Biological Interpretation from Proteomics Data. Methods in Molecular Biology, 2017, 1549, 147-161.	0.4	2
1725	Isolating Male Meiocytes from Maize and Wheat for "-Omics―Analyses. Methods in Molecular Biology, 2020, 2061, 237-258.	0.4	4
1726	Citrus Genomes: From Sequence Variations to Epigenetic Modifications. Compendium of Plant Genomes, 2020, , 141-165.	0.3	1
1727	A Stacking-Based Approach to Identify Translated Upstream Open Reading Frames in Arabidopsis Thaliana. Lecture Notes in Computer Science, 2015, , 138-149.	1.0	6
1728	Protein networks reveal organ-specific defense strategies in maize in response to an aboveground herbivore. Arthropod-Plant Interactions, 2018, 12, 147-175.	0.5	17
1729	Characterization of DNA methylation variations during fruit development and ripening of Vitis vinifera (cv. â€ Fujiminori'). Physiology and Molecular Biology of Plants, 2020, 26, 617-637.	1.4	13
1730	Transcriptome analysis in Parhyale hawaiensis reveal sex-specific responses to AgNP and AgCl exposure. Environmental Pollution, 2020, 260, 113963.	3.7	13

#	Article	IF	CITATIONS
1731	Auxin-salicylic acid cross-talk ameliorates OsMYB–R1 mediated defense towards heavy metal, drought and fungal stress. Journal of Hazardous Materials, 2020, 399, 122811.	6.5	54
1732	Genetic regulation of salt stress tolerance revealed by RNA-Seq in cotton diploid wild species, Gossypium davidsonii. , 0, .		1
1733	Functional genomics: applications to production agriculture CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-21.	0.6	2
1734	Two interacting ethylene response factors regulate heat stress response. Plant Cell, 2021, 33, 338-357.	3.1	72
1735	<i>OsYUC11</i> -mediated auxin biosynthesis is essential for endosperm development of rice. Plant Physiology, 2021, 185, 934-950.	2.3	46
1736	<i>Miniature Seed6</i> , encoding an endoplasmic reticulum signal peptidase, is critical in seed development. Plant Physiology, 2021, 185, 985-1001.	2.3	8
1766	Transcriptomic characterization of candidate genes responsive to salt tolerance of <i>Miscanthus</i> energy crops. GCB Bioenergy, 2017, 9, 1222-1237.	2.5	13
1767	The neonicotinoid insecticide thiamethoxam enhances expression of stress-response genes in Zea mays in an environmentally specific pattern. Genome, 2021, 64, 1-13.	0.9	5
1768	Transcriptome Analysis of Early Defenses in Rice against Fusarium fujikuroi. Rice, 2020, 13, 65.	1.7	13
1769	Preliminary investigation of glyphosate resistance mechanism in giant ragweed using transcriptome analysis. F1000Research, 0, 5, 1354.	0.8	3
1770	Limited Contribution of DNA Methylation Variation to Expression Regulation in Arabidopsis thaliana. PLoS Genetics, 2016, 12, e1006141.	1.5	94
1771	Ovule identity mediated by pre-mRNA processing in Arabidopsis. PLoS Genetics, 2018, 14, e1007182.	1.5	17
1772	EAT1 transcription factor, a non-cell-autonomous regulator of pollen production, activates meiotic small RNA biogenesis in rice anther tapetum. PLoS Genetics, 2018, 14, e1007238.	1.5	76
1773	POWERDRESS-mediated histone deacetylation is essential for thermomorphogenesis in Arabidopsis thaliana. PLoS Genetics, 2018, 14, e1007280.	1.5	99
1774	Transcriptome Profiling Analysis Reveals That Flavonoid and Ascorbate-Glutathione Cycle Are Important during Anther Development in Upland Cotton. PLoS ONE, 2012, 7, e49244.	1.1	32
1775	Bioinformatic Analysis of Epigenetic and MicroRNA Mediated Regulation of Drought Responsive Genes in Rice. PLoS ONE, 2012, 7, e49331.	1.1	41
1776	Expression-Based Functional Investigation of the Organ-Specific MicroRNAs in Arabidopsis. PLoS ONE, 2012, 7, e50870.	1.1	16
1777	Deep Sequencing of Maize Small RNAs Reveals a Diverse Set of MicroRNA in Dry and Imbibed Seeds. PLoS ONE, 2013, 8, e55107.	1.1	73

#	Article	IF	CITATIONS
1778	Enhanced Botrytis cinerea Resistance of Arabidopsis Plants Grown in Compost May Be Explained by Increased Expression of Defense-Related Genes, as Revealed by Microarray Analysis. PLoS ONE, 2013, 8, e56075.	1.1	31
1779	Genome-Wide Identification, Phylogenetic and Co-Expression Analysis of OsSET Gene Family in Rice. PLoS ONE, 2013, 8, e65426.	1.1	29
1780	The Transcriptomic Basis of Oviposition Behaviour in the Parasitoid Wasp Nasonia vitripennis. PLoS ONE, 2013, 8, e68608.	1.1	21
1781	High-Throughput Sequencing of Small RNAs from Pollen and Silk and Characterization of miRNAs as Candidate Factors Involved in Pollen-Silk Interactions in Maize. PLoS ONE, 2013, 8, e72852.	1.1	20
1782	The LOV Protein of Xanthomonas citri subsp. citri Plays a Significant Role in the Counteraction of Plant Immune Responses during Citrus Canker. PLoS ONE, 2013, 8, e80930.	1.1	18
1783	RNA-Seq Transcriptome Profiling of Upland Cotton (Gossypium hirsutum L.) Root Tissue under Water-Deficit Stress. PLoS ONE, 2013, 8, e82634.	1.1	53
1784	Analysis of Global Gene Expression in Brachypodium distachyon Reveals Extensive Network Plasticity in Response to Abiotic Stress. PLoS ONE, 2014, 9, e87499.	1.1	80
1785	Disruption of the Homogentisate Solanesyltransferase Gene Results in Albino and Dwarf Phenotypes and Root, Trichome and Stomata Defects in Arabidopsis thaliana. PLoS ONE, 2014, 9, e94031.	1.1	16
1786	Tissue Culture-Induced Heritable Genomic Variation in Rice, and Their Phenotypic Implications. PLoS ONE, 2014, 9, e96879.	1.1	74
1787	Global Analysis of Gene Expression Profiles in Physic Nut (Jatropha curcas L.) Seedlings Exposed to Salt Stress. PLoS ONE, 2014, 9, e97878.	1.1	87
1788	The hnRNP-Q Protein LIF2 Participates in the Plant Immune Response. PLoS ONE, 2014, 9, e99343.	1.1	52
1789	Whole-Genome Analyses of Korean Native and Holstein Cattle Breeds by Massively Parallel Sequencing. PLoS ONE, 2014, 9, e101127.	1.1	42
1790	Identification of Heat Responsive Genes in Brassica napus Siliques at the Seed-Filling Stage through Transcriptional Profiling. PLoS ONE, 2014, 9, e101914.	1.1	49
1791	Sequence, Structural and Expression Divergence of Duplicate Genes in the Bovine Genome. PLoS ONE, 2014, 9, e102868.	1.1	13
1792	Comparative Transcriptional Profiling of Two Wheat Genotypes, with Contrasting Levels of Minerals in Grains, Shows Expression Differences during Grain Filling. PLoS ONE, 2014, 9, e111718.	1.1	23
1793	Comparative Analysis of Predicted Plastid-Targeted Proteomes of Sequenced Higher Plant Genomes. PLoS ONE, 2014, 9, e112870.	1.1	8
1794	Transcriptional Analyses of Natural Leaf Senescence in Maize. PLoS ONE, 2014, 9, e115617.	1.1	51
1795	Proteomic Analysis of Seedling Roots of Two Maize Inbred Lines That Differ Significantly in the Salt Stress Response. PLoS ONE, 2015, 10, e0116697.	1.1	42

#	Article	IF	CITATIONS
1796	Transcriptomic Profiling of Arabidopsis thaliana Mutant pad2.1 in Response to Combined Cold and Osmotic Stress. PLoS ONE, 2015, 10, e0122690.	1.1	25
1797	Comparative Transcriptomics of Sijung and Jumli Marshi Rice during Early Chilling Stress Imply Multiple Protective Mechanisms. PLoS ONE, 2015, 10, e0125385.	1.1	14
1798	The Arabidopsis KH-Domain RNA-Binding Protein ESR1 Functions in Components of Jasmonate Signalling, Unlinking Growth Restraint and Resistance to Stress. PLoS ONE, 2015, 10, e0126978.	1.1	45
1799	Combining Next Generation Sequencing with Bulked Segregant Analysis to Fine Map a Stem Moisture Locus in Sorghum (Sorghum bicolor L. Moench). PLoS ONE, 2015, 10, e0127065.	1.1	48
1800	The Complexity of Posttranscriptional Small RNA Regulatory Networks Revealed by In Silico Analysis of Gossypium arboreum L. Leaf, Flower and Boll Small Regulatory RNAs. PLoS ONE, 2015, 10, e0127468.	1.1	11
1801	Investigating the Association between Flowering Time and Defense in the Arabidopsis thaliana-Fusarium oxysporum Interaction. PLoS ONE, 2015, 10, e0127699.	1.1	61
1802	Global Gene-Expression Analysis to Identify Differentially Expressed Genes Critical for the Heat Stress Response in Brassica rapa. PLoS ONE, 2015, 10, e0130451.	1.1	44
1803	Genes Upregulated in Winter Wheat (Triticum aestivum L.) during Mild Freezing and Subsequent Thawing Suggest Sequential Activation of Multiple Response Mechanisms. PLoS ONE, 2015, 10, e0133166.	1.1	13
1804	Transcriptomic Analysis of the Anterior Silk Gland in the Domestic Silkworm (Bombyx mori) – Insight into the Mechanism of Silk Formation and Spinning. PLoS ONE, 2015, 10, e0139424.	1.1	25
1805	Comparative De Novo Transcriptome Analysis of Fertilized Ovules in Xanthoceras sorbifolium Uncovered a Pool of Genes Expressed Specifically or Preferentially in the Selfed Ovule That Are Potentially Involved in Late-Acting Self-Incompatibility. PLoS ONE, 2015, 10, e0140507.	1.1	22
1806	Nutrigenomic and Nutritional Analyses Reveal the Effects of Pelleted Feeds on Asian Seabass (Lates) Tj ETQq0 0 C	rgBT /Ove	erlock 10 Tf 14
1807	Transcriptomic Analysis of Grapevine (cv. Summer Black) Leaf, Using the Illumina Platform. PLoS ONE, 2016, 11, e0147369.	1.1	20
1808	Comparative Analysis of Lacinutrix Genomes and Their Association with Bacterial Habitat. PLoS ONE, 2016, 11, e0148889.	1.1	9
1809	Identification of Differentially Expressed Genes Related to Dehydration Resistance in a Highly Drought-Tolerant Pear, Pyrus betulaefolia, as through RNA-Seq. PLoS ONE, 2016, 11, e0149352.	1.1	37
1810	Deciphering the Molecular Variations of Pine Wood Nematode Bursaphelenchus xylophilus with Different Virulence. PLoS ONE, 2016, 11, e0156040.	1.1	37
1811	Transcriptomic Analysis of Responses to Imbalanced Carbon: Nitrogen Availabilities in Rice Seedlings. PLoS ONE, 2016, 11, e0165732.	1.1	19
1812	Statistical Approaches for Gene Selection, Hub Gene Identification and Module Interaction in Gene Co-Expression Network Analysis: An Application to Aluminum Stress in Soybean (Glycine max L.). PLoS ONE, 2017, 12, e0169605.	1.1	52
1813	Genetic architecture of cold tolerance in rice (Oryza sativa) determined through high resolution genome-wide analysis. PLoS ONE, 2017, 12, e0172133.	1.1	107

#	Article	IF	CITATIONS
1814	Transcriptome analysis of two recombinant inbred lines of common bean contrasting for symbiotic nitrogen fixation. PLoS ONE, 2017, 12, e0172141.	1.1	12
1815	Comparative transcriptome analysis of the different tissues between the cultivated and wild tomato. PLoS ONE, 2017, 12, e0172411.	1.1	22
1816	High throughput deep degradome sequencing reveals microRNAs and their targets in response to drought stress in mulberry (Morus alba). PLoS ONE, 2017, 12, e0172883.	1.1	20
1817	Genome-wide association analysis identifies resistance loci for bacterial blight in a diverse collection of indica rice germplasm. PLoS ONE, 2017, 12, e0174598.	1.1	27
1818	Genome-wide identification and characterization of miRNAome from tomato (Solanum lycopersicum) roots and root-knot nematode (Meloidogyne incognita) during susceptible interaction. PLoS ONE, 2017, 12, e0175178.	1.1	42
1819	MEDIATOR18 and MEDIATOR20 confer susceptibility to Fusarium oxysporum in Arabidopsis thaliana. PLoS ONE, 2017, 12, e0176022.	1.1	32
1820	A genome-wide analysis of the RNA-guided silencing pathway in coffee reveals insights into its regulatory mechanisms. PLoS ONE, 2017, 12, e0176333.	1.1	16
1821	Changes in gene expression between a soybean F1 hybrid and its parents are associated with agronomically valuable traits. PLoS ONE, 2017, 12, e0177225.	1.1	8
1822	Genome-wide identification of gene expression in contrasting maize inbred lines under field drought conditions reveals the significance of transcription factors in drought tolerance. PLoS ONE, 2017, 12, e0179477.	1.1	45
1823	BIG LEAF is a regulator of organ size and adventitious root formation in poplar. PLoS ONE, 2017, 12, e0180527.	1.1	17
1824	Differentially expressed genes in mycorrhized and nodulated roots of common bean are associated with defense, cell wall architecture, N metabolism, and P metabolism. PLoS ONE, 2017, 12, e0182328.	1.1	29
1825	Whole-genome sequencing reveals mutational landscape underlying phenotypic differences between two widespread Chinese cattle breeds. PLoS ONE, 2017, 12, e0183921.	1.1	33
1826	Identification of functionally important microRNAs from rice inflorescence at heading stage of a qDTY4.1-QTL bearing Near Isogenic Line under drought conditions. PLoS ONE, 2017, 12, e0186382.	1.1	15
1827	Insights into soybean transcriptome reconfiguration under hypoxic stress: Functional, regulatory, structural, and compositional characterization. PLoS ONE, 2017, 12, e0187920.	1.1	15
1828	QTL mapping and transcriptome analysis of cowpea reveals candidate genes for root-knot nematode resistance. PLoS ONE, 2018, 13, e0189185.	1.1	47
1829	Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species. PLoS ONE, 2018, 13, e0192678.	1.1	24
1830	Identification of responsive genes and analysis of genes with bacterial-inducible cis-regulatory elements in the promoter regions in Oryza sativa L. Acta Agriculturae Slovenica, 2020, 116, .	0.2	6
1831	Microarray Analysis of Gene Expression in Triploid Black Poplar. Silvae Genetica, 2012, 61, 148-157.	0.4	3

#	Article	IF	CITATIONS
1833	Comprehensive Understanding of the Interaction Among Stress Hormones Signalling Pathways by Gene Co-expression Network. Current Bioinformatics, 2019, 14, 602-613.	0.7	3
1834	Investigation of Drought and Salinity Tolerance Related Genes and their Regulatory Mechanisms in Arabidopsis (Arabidopsis thaliana). Open Bioinformatics Journal, 2018, 11, 12-28.	1.0	21
1835	Transcriptome analysis deciphers the mechanisms of exogenous nitric oxide action on the response of melon leaves to chilling stress. Biologia Plantarum, 0, 64, 465-472.	1.9	10
1836	miR-133b May Regulate Mouse B Cell Development by Targeting The Transcription Factor foxO1*. Progress in Biochemistry and Biophysics, 2011, 38, 744-750.	0.3	2
1837	Differential Expression of miRNAs in <i>Sorghum bicolor</i> under Drought and Salt Stress. American Journal of Plant Sciences, 2016, 07, 870-878.	0.3	11
1838	RNA-seq reveals the downregulated proteins related to photosynthesis in growth-inhibited rice seedlings induced by low-energy N+ beam implantation. Genetics and Molecular Research, 2014, 13, 7029-7036.	0.3	5
1839	Genome-wide transcriptional profiling reveals molecular signatures of secondary xylem differentiation in Populus tomentosa. Genetics and Molecular Research, 2014, 13, 9489-9504.	0.3	7
1840	Effect of LED mixed light conditions on the glucosinolate pathway in brassica rapa. Journal of Plant Biotechnology, 2015, 42, 245-256.	0.1	11
1841	Proteomic Analysis of Common Bean (Phaseolus vulgaris L.) by Two-Dimensional Gel Electrophoresis and Mass Spectrometry. Journal of Basic & Applied Sciences, 0, 9, 424-437.	0.8	7
1842	Constitutive auxin response in Physcomitrella reveals complex interactions between Aux/IAA and ARF proteins. ELife, 2016, 5, .	2.8	144
1843	XA21-specific induction of stress-related genes following <i>Xanthomonas</i> infection of detached rice leaves. PeerJ, 2016, 4, e2446.	0.9	9
1844	Comparative transcriptomics reveals the difference in early endosperm development between maize with different amylose contents. PeerJ, 2019, 7, e7528.	0.9	8
1845	Analysis of small RNA changes in different <i> Brassica napus</i> synthetic allopolyploids. PeerJ, 2019, 7, e7621.	0.9	7
1846	Grafting-Induced Gene Expression Change in Brassica rapa Leaves is Different from Fruit Trees. Plant Breeding and Biotechnology, 2015, 3, 67-76.	0.3	2
1847	Differential Expression of Flowering Genes between Rapid- and Slow-Cycling <i>Brassica rapa</i> . Plant Breeding and Biotechnology, 2016, 4, 145-157.	0.3	4
1848	Molecular signature of gastric cancer progression in clinical using whole genome sequencing and the Cancer Genome Atlas (TCGA) analysis. Translational Cancer Research, 2021, .	0.4	0
1849	Inactivating transcription factor <i>OsWRKY5</i> enhances drought tolerance through abscisic acid signaling pathways. Plant Physiology, 2022, 188, 1900-1916.	2.3	62
1850	RabA2b Overexpression Alters the Plasma-Membrane Proteome and Improves Drought Tolerance in Arabidopsis. Frontiers in Plant Science, 2021, 12, 738694.	1.7	5

#	Article	IF	CITATIONS
1851	Testis transcriptome profiling identified IncRNAs involved in spermatogenic arrest of cattleyak. Functional and Integrative Genomics, 2021, 21, 665-678.	1.4	9
1852	Genome-Wide Analysis of Major Facilitator Superfamily and Its Expression in Response of Poplar to Fusarium oxysporum. Frontiers in Genetics, 2021, 12, 769888.	1.1	3
1853	bHLH Transcription Factors Undergo Alternative Splicing During Cold Acclimation in a Eucalyptus hybrid. Plant Molecular Biology Reporter, 0, , 1.	1.0	2
1854	Arabidopsis MED18 Interaction With RNA Pol IV and V Subunit NRPD2a in Transcriptional Regulation of Plant Immune Responses. Frontiers in Plant Science, 2021, 12, 692036.	1.7	7

Cataloguing of Anther Expressed Genes through Differential Slot Blot in Oriental Lily (Lilium) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 582 T

1858	Aspergillus flavus Blast2GO Gene Ontology Database: Elevated Growth Temperature Alters Amino Acid Metabolism. Journal of Genetics and Genome Research, 2014, 1, .	0.3	1
1859	The Curation and Analysis of Rice Stress-Resistance Genes Based on RiceWiki. Hans Journal of Computational Biology, 2015, 05, 29-40.	0.0	0
1861	Rice Anther Protein Identification by Shotgun Proteomic Analysis. Plant Breeding and Biotechnology, 2015, 3, 264-273.	0.3	Ο
1862	Different Sets of Post-Embryonic Development Genes Are Conserved or Lost in Two Caryophyllales Species (Reaumuria soongorica and Agriophyllum squarrosum). PLoS ONE, 2016, 11, e0148034.	1.1	3
1874	Changes in Microsatellite Motifs in Response to Abiotic Stresses: a Case Study Using Wheat and Rice RNA-sequencing Data. Asian Journal of Scientific Research, 2017, 11, 12-21.	0.3	1
1875	Genome-Wide Identification, Classification and Evolutionary Expansion of KNOX Gene Family in Rice (<i>Oryza sativa</i>) and <i>Populus</i> (<i>Populustrichocarpa</i>). American Journal of Plant Sciences, 2018, 09, 1071-1092.	0.3	7
1884	Applications of Computational Systems Biology in Cancer Signaling Pathways. , 2019, , 513-537.		0
1885	Comparative Analysis of the 5' Flanking Region in <i>Arabidopsis</i> and <i>O. sative</i> RP Genes Revealed Conserved and Divergent Regulating Mechanisms. American Journal of Plant Sciences, 2019, 10, 1090-1101.	0.3	0
1886	Omics Data Integration in Microbial Research for Agricultural and Environmental Applications. , 2019, , 461-491.		2
1888	Positively Selected Orthologous Genes Identified in Sesame (<i>Sesamum indicum</i>) by Deep Resequencing. Plant Breeding and Biotechnology, 2019, 7, 24-33.	0.3	0
1893	De novo transcriptome analysis of peduncle necking in cut Rosa hybrida cultivar â€~H30'. Acta Horticulturae, 2019, , 351-358.	0.1	1
1899	Genome-wide association study uncovers major genetic loci associated with seed flooding tolerance in soybean. BMC Plant Biology, 2021, 21, 497.	1.6	13
1901	Combined Transcriptome and Proteome Analysis to Elucidate Salt Tolerance Strategies of the Halophyte Panicum antidotale Retz. Frontiers in Plant Science, 2021, 12, 760589.	1.7	4

#	Article	IF	CITATIONS
1902	Comparative Transcriptomic Analysis of Two Rice (Oryza sativa L.) Male Sterile Line Seed Embryos Under Accelerated Aging. Plant Molecular Biology Reporter, 2020, 38, 282-293.	1.0	4
1903	Improving Maize Trait through Modifying Combination of Genes. Emerging Topics in Statistics and Biostatistics, 2020, , 173-196.	0.1	0
1904	Early transcriptional response to gravistimulation in poplar without phototropic confounding factors. AoB PLANTS, 2021, 13, plaa071.	1.2	6
1905	Examination of the usability of leaf chlorophyll content and gene expression analyses as nitrogen status biomarkers in <i>Sorghum bicolor</i> . Journal of Plant Nutrition, 2021, 44, 773-790.	0.9	3
1906	Variation of biomolecules in plant species. , 2022, , 81-99.		2
1908	Identification of quantitative trait loci associated with upper temperature tolerance in turbot, Scophthalmus maximus. Scientific Reports, 2021, 11, 21920.	1.6	12
1909	The Elite Alleles of OsSPL4 Regulate Grain Size and Increase Grain Yield in Rice. Rice, 2021, 14, 90.	1.7	23
1910	Leaf Apoplast of Field-Grown Potato Analyzed by Quantitative Proteomics and Activity-Based Protein Profiling. International Journal of Molecular Sciences, 2021, 22, 12033.	1.8	1
1911	Atherosclerosis prediction by microarray-based DNA methylation analysis. Experimental and Therapeutic Medicine, 2020, 20, 2863-2869.	0.8	3
1912	Transcriptome-wide identification of MAPKKK genes in bermudagrass (<i>Cynodon dactylon</i> L.) and their potential roles in low temperature stress responses. PeerJ, 2020, 8, e10159.	0.9	3
1914	Transcriptomic analysis of seed germination improvement of Andrographis paniculata responding to air plasma treatment. PLoS ONE, 2020, 15, e0240939.	1.1	4
1917	Sugar modulation of anaerobic-response networks in maize root tips. Plant Physiology, 2021, 185, 295-317.	2.3	7
1918	RNA-seq for revealing the function of the transcriptome. , 2022, , 105-129.		3
1920	Genome-wide identification and functional prediction of salt- stress related long non-coding RNAs (IncRNAs) in chickpea (Cicer arietinum L.). Physiology and Molecular Biology of Plants, 2021, 27, 2605-2619.	1.4	12
1921	Transcriptome profiling based on Illumina- and SMRT-based RNA-seq reveals circadian regulation of key pathways in flower bud development in walnut. PLoS ONE, 2021, 16, e0260017.	1.1	1
1922	Flavonoids Modulate the Accumulation of Toxins From Aspergillus flavus in Maize Kernels. Frontiers in Plant Science, 2021, 12, 761446.	1.7	5
1924	PNET2 is a component of the plant nuclear lamina and is required for proper genome organization and activity. Developmental Cell, 2022, 57, 19-31.e6.	3.1	22
1926	Transcriptomic Analysis of Quinoa Reveals a Group of Germin-Like Proteins Induced by Trichoderma. Frontiers in Fungal Biology, 2021, 2, .	0.9	3

#	Article	IF	CITATIONS
1927	Identification and verification of seed development related miRNAs in kernel almond by small RNA sequencing and qPCR. PLoS ONE, 2021, 16, e0260492.	1.1	3
1928	De novo Transcriptome Assembly of Senna occidentalis Sheds Light on the Anthraquinone Biosynthesis Pathway. Frontiers in Plant Science, 2021, 12, 773553.	1.7	4
1929	Population Evolution, Genetic Diversity and Structure of the Medicinal Legume, Glycyrrhiza uralensis and the Effects of Geographical Distribution on Leaves Nutrient Elements and Photosynthesis. Frontiers in Plant Science, 2021, 12, 708709.	1.7	3
1930	Phenotypic Diversity and Association Mapping of Ascorbic Acid Content in Spinach. Frontiers in Genetics, 2021, 12, 752313.	1.1	4
1931	Mining the Wheat Grain Proteome. International Journal of Molecular Sciences, 2022, 23, 713.	1.8	6
1932	Systems scale characterization of circadian rhythm pathway in Camellia sinensis. Computational and Structural Biotechnology Journal, 2022, 20, 598-607.	1.9	5
1933	De novo transcriptome analysis of bamboo in vitro shoots for identification of genes differentiating juvenile and aged plants. Industrial Crops and Products, 2022, 176, 114353.	2.5	3
1934	Transcriptome and hormone analyses reveals differences in physiological age of ′Hass′ avocado fruit. Postharvest Biology and Technology, 2022, 185, 111806.	2.9	8
1935	Genome-wide expression and variation in nucleotide sequences lead to differential response of Arabidopsis thaliana ecotypes towards arsenic stress under sulfur limiting condition. Environmental and Experimental Botany, 2022, 195, 104764.	2.0	5
1937	Salt Stress Modulates the Landscape of Transcriptome and Alternative Splicing in Date Palm (Phoenix) Tj ETQq1 1	0.78431	4 rgBT /Over
1938	Genome-wide Identification and Expression Analysis of CaM/CML Gene Family in Sacred Lotus (Nelumbo) Tj ETQq	0 0 0 rgBT 1.0 rgBT	/gverlock 1
1939	Genome-Wide Association Study Reveals Complex Genetic Architecture of Cadmium and Mercury Accumulation and Tolerance Traits in Medicago truncatula. Frontiers in Plant Science, 2021, 12, 806949.	1.7	10
1940	Variation burst during dedifferentiation and increased CHH-type DNA methylation after 30Âyears of <i>in vitro</i> culture of sweet orange. Horticulture Research, 2022, 9, .	2.9	2
1941	Broad-spectrum fungal resistance in sorghum is conferred through the complex regulation of an immune receptor gene embedded in a natural antisense transcript. Plant Cell, 2022, 34, 1641-1665.	3.1	17
1942	Conserved and distinct roles of H3K27me3 demethylases regulating flowering time in <i>Brassica rapa</i> . Plant, Cell and Environment, 2022, 45, 1428-1441.	2.8	3
1943	Regulation of ammonium acquisition and use in <i>Oryza longistaminata</i> ramets under nitrogen source heterogeneity. Plant Physiology, 2022, 188, 2364-2376.	2.3	7
1944	Identification of Molecular Subgroups in Liver Cirrhosis by Gene Expression Profiles. Hepatitis Monthly, 2022, 21, .	0.1	0
1945	SKIP Regulates ABA Signaling through Alternative Splicing in Arabidopsis. Plant and Cell Physiology, 2022, 63, 494-507.	1.5	7

#	Article	IF	CITATIONS
1946	Distinct salinity-induced changes in wheat metabolic machinery in different root tissue types. Journal of Proteomics, 2022, 256, 104502.	1.2	10
1947	Identification of genes associated with kernel size in almond [Prunus dulcis (Mill.) D.A. Webb] using RNA-Seq. Plant Growth Regulation, 2022, 97, 357-373.	1.8	4
1948	Accumulation of somatic mutations leads to genetic mosaicism in cannabis. Plant Genome, 2022, 15, e20169.	1.6	16
1949	Loss-of-function alleles of ZmPLD3 cause haploid induction in maize. Nature Plants, 2021, 7, 1579-1588.	4.7	52
1950	Transcriptional Landscape of Cotton Fiber Development and Its Alliance With Fiber-Associated Traits. Frontiers in Plant Science, 2022, 13, 811655.	1.7	5
1952	Meta-Analysis of Common and Differential Transcriptomic Responses to Biotic and Abiotic Stresses in Arabidopsis thaliana. Plants, 2022, 11, 502.	1.6	8
1953	MonaGO: a novel gene ontology enrichment analysis visualisation system. BMC Bioinformatics, 2022, 23, 69.	1.2	12
1954	Identification of One Major QTL and a Novel Gene OsIAA17q5 Associated with Tiller Number in Rice Using QTL Analysis. Plants, 2022, 11, 538.	1.6	12
1955	Global analysis of switchgrass (Panicum virgatum L) transcriptomes in response to interactive effects of drought and heat stresses. BMC Plant Biology, 2022, 22, 107.	1.6	4
1957	Uncovering the Gene Regulatory Network of Maize Hybrid ZD309 under Heat Stress by Transcriptomic and Metabolomic Analysis. Plants, 2022, 11, 677.	1.6	11
1959	GhENODL6 Isoforms from the Phytocyanin Gene Family Regulated Verticillium Wilt Resistance in Cotton. International Journal of Molecular Sciences, 2022, 23, 2913.	1.8	12
1961	Genome-wide SNP and InDel analysis of three Philippine mango species inferred from whole-genome sequencing. Journal of Genetic Engineering and Biotechnology, 2022, 20, 46.	1.5	5
1963	The Nitrate Transporter MtNPF6.8 Is a Master Sensor of Nitrate Signal in the Primary Root Tip of Medicago truncatula. Frontiers in Plant Science, 2022, 13, 832246.	1.7	4
1964	Genome-Wide Expression and Physiological Profiling of Pearl Millet Genotype Reveal the Biological Pathways and Various Gene Clusters Underlying Salt Resistance. Frontiers in Plant Science, 2022, 13, 849618.	1.7	15
1965	A Proteome-Level Investigation Into Plasmodiophora brassicae Resistance in Brassica napus Canola. Frontiers in Plant Science, 2022, 13, 860393.	1.7	8
1966	Transcriptome expression profiles reveal response mechanisms to drought and drought-stress mitigation mechanisms by exogenous glycine betaine in maize. Biotechnology Letters, 2022, 44, 367-386.	1.1	13
1967	GC-MS/LC-MS and transcriptome analyses revealed the metabolisms of fatty acid and flavonoid in olive fruits (Olea europaea L.). Scientia Horticulturae, 2022, 299, 111017.	1.7	8
1968	Proteomics and metabolomics reveal the mechanism underlying differential antioxidant activity among the organs of two base plants of Shiliang tea (Chimonanthus salicifolius and Chimonanthus) Tj ETQq1 1	0.74844314	rg₿0/Overl⊙

#	Article	IF	CITATIONS
1969	Evidence for thermosensitivity of the cotton (Gossypium hirsutum L.) immature fiber (im) mutant via hypersensitive stomatal activity. PLoS ONE, 2021, 16, e0259562.	1.1	3
1970	Nonadditive gene expression is correlated with nonadditive phenotypic expression in interspecific triploid hybrids of willow (<i>Salix</i> spp.). G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	3
1972	UVâ€B Irradiation Results in Inhibition of Hypocotyl Elongation, Cell Cycle Arrest, and Decreased Endoreduplication Mediated by miR5642. Photochemistry and Photobiology, 2022, 98, 1084-1099.	1.3	4
1973	Identification of DIR1-Dependant Cellular Responses in Guard Cell Systemic Acquired Resistance. Frontiers in Molecular Biosciences, 2021, 8, 746523.	1.6	0
1974	<i>ZmERF21</i> directly regulates hormone signaling and stressâ€responsive gene expression to influence drought tolerance in maize seedlings. Plant, Cell and Environment, 2022, 45, 312-328.	2.8	29
1976	TimesVector-Web: A Web Service for Analysing Time Course Transcriptome Data with Multiple Conditions. Genes, 2022, 13, 73.	1.0	2
1977	Diverse Effect of Two Cytokinins, Kinetin and Benzyladenine, on Plant Development, Biotic Stress Tolerance, and Gene Expression. Life, 2021, 11, 1404.	1.1	3
1978	Transcriptome analysis reveals the regulatory mechanism by which <i>MdWOX11</i> suppresses adventitious shoot formation in apple. Horticulture Research, 2022, 9, .	2.9	5
1979	Systemic Regulation of Iron Acquisition by <i>Arabidopsis</i> in Environments with Heterogeneous Iron Distributions. Plant and Cell Physiology, 2022, 63, 842-854.	1.5	10
1980	Verticillium dahliae Secretes Small RNA to Target Host MIR157d and Retard Plant Floral Transition During Infection. Frontiers in Plant Science, 2022, 13, 847086.	1.7	8
2111	Expression analysis of transcription factors in sugarcane during cold stress. Brazilian Journal of Biology, 2021, 83, e242603.	0.4	3
2112	Comparative Proteomic Analysis of Plasma Membrane Proteins in Rice Leaves Reveals a Vesicle Trafficking Network in Plant Immunity That Is Provoked by Blast Fungi. Frontiers in Plant Science, 2022, 13, 853195.	1.7	2
2113	GmPIN1â€mediated auxin asymmetry regulates leaf petiole angle and plant architecture in soybean. Journal of Integrative Plant Biology, 2022, 64, 1325-1338.	4.1	20
2114	Overexpression of NDR1 leads to pathogen resistance at elevated temperatures. New Phytologist, 2022, 235, 1146-1162.	3.5	8
2116	Heterologous Expression of Arabidopsis AtARA6 in Soybean Enhances Salt Tolerance. Frontiers in Genetics, 2022, 13, .	1.1	2
2117	QKI-6 Suppresses Cell Proliferation, Migration, and EMT in Non-Small Cell Lung Cancer. Frontiers in Oncology, 2022, 12, .	1.3	3
2118	The tomato yellow leaf curl virus C4 protein alters the expression of plant developmental genes correlating to leaf upward cupping phenotype in tomato. PLoS ONE, 2022, 17, e0257936.	1.1	7
2119	Identification of a Major QTL and Validation of Related Genes for Tiller Angle in Rice Based on QTL Analysis. International Journal of Molecular Sciences, 2022, 23, 5192.	1.8	4

#	Article	IF	CITATIONS
2120	Reprogramming of sorghum proteome in response to sugarcane aphid infestation. Plant Science, 2022, 320, 111289.	1.7	10
2121	Integration of the transcriptome and proteome provides insights into the mechanism calcium regulated of Ulva prolifera in response to high-temperature stress. Aquaculture, 2022, 557, 738344.	1.7	6
2122	A Putative Plasma Membrane Na+/H+ Antiporter GmSOS1 Is Critical for Salt Stress Tolerance in Glycine max. Frontiers in Plant Science, 2022, 13, .	1.7	19
2123	miR778 mediates gene expression, histone modification, and DNA methylation during cyst nematode parasitism. Plant Physiology, 2022, 189, 2432-2453.	2.3	4
2124	Transcriptomic and genomic analysis provides new insights in molecular and genetic processes involved in zucchini ZYMV tolerance. BMC Genomics, 2022, 23, 371.	1.2	4
2125	Enhanced reactive oxygen detoxification occurs in saltâ€ s tressed soybean roots expressing <scp><i>GmSALT3</i></scp> . Physiologia Plantarum, 2022, 174, e13709.	2.6	13
2126	Genome-Wide Association Analysis for Candidate Genes Contributing to Kernel-Related Traits in Maize. Frontiers in Plant Science, 2022, 13, .	1.7	6
2127	Common gene expression patterns are observed in rice roots during associations with plant growth-promoting bacteria, Herbaspirillum seropedicae and Azospirillum brasilense. Scientific Reports, 2022, 12, .	1.6	11
2128	Host genomic influence on bacterial composition in the switchgrass rhizosphere. Molecular Ecology, 2022, 31, 3934-3950.	2.0	13
2129	Secondary metabolite pathway of SDG (secoisolariciresinol) was observed to trigger ROS scavenging system in response to Ca2+ stress in cotton. Genomics, 2022, 114, 110398.	1.3	5
2135	Time-resolved multiomics analysis of the genetic regulation of maize kernel moisture. Crop Journal, 2023, 11, 247-257.	2.3	8
2136	Analysis of the Arabidopsis <i>coilin</i> mutant reveals a positive role of AtCOILIN in plant immunity. Plant Physiology, 2022, 190, 745-761.	2.3	6
2137	Comparative proteomic analysis on chloroplast proteins provides new insights into the effects of low temperature in sugar beet. , 2022, 63, .		0
2138	Genomic Differentiation and Demographic Histories of Two Closely Related Salicaceae Species. Frontiers in Plant Science, 0, 13, .	1.7	0
2139	Transgenic Soybeans Expressing Phosphatidylinositol-3-Phosphate-Binding Proteins Show Enhanced Resistance Against the Oomycete Pathogen Phytophthora sojae. Frontiers in Microbiology, 0, 13, .	1.5	2
2140	Multi-Omics Analysis Reveals a Regulatory Network of ZmCCT During Maize Resistance to Gibberella Stalk Rot at the Early Stage. Frontiers in Plant Science, 0, 13, .	1.7	1
2141	A Calcineurin Regulator MoRCN1 Is Important for Asexual Development, Stress Response, and Plant Infection of Magnaporthe oryzae. Frontiers in Plant Science, 0, 13, .	1.7	4
2142	MicroSugar: A database of comprehensive miRNA target prediction framework for sugarcane (Saccharum officinarum L.). Genomics, 2022, , 110420.	1.3	1

#	Article	IF	CITATIONS
2143	Analysis of TCP Transcription Factors Revealed Potential Roles in Plant Growth and Fusarium oxysporum f.sp. cubense Resistance in Banana (cv. Rasthali). Applied Biochemistry and Biotechnology, 2022, 194, 5456-5473.	1.4	5
2144	Refining bulk segregant analyses: ontology-mediated discovery of flowering time genes in Brassica oleracea. Plant Methods, 2022, 18, .	1.9	1
2145	Evolutionary fates of geneâ€body methylation and its divergent association with gene expression in pigeonpea. Plant Genome, 2022, 15, .	1.6	1
2146	Simultaneous Ozone and High Light Treatments Reveal an Important Role for the Chloroplast in Co-ordination of Defense Signaling. Frontiers in Plant Science, 0, 13, .	1.7	Ο
2147	Multiple compensatory mutations contribute to the deâ€domestication of Iberian weedy rice. Plants People Planet, 2022, 4, 499-510.	1.6	4
2148	Blue light increases anthocyanin content and delays fruit ripening in purple pepper fruit. Postharvest Biology and Technology, 2022, 192, 112024.	2.9	23
2149	Active components and molecular mechanism of Syringa oblata Lindl. in the treatment of endometritis based on pharmacology network prediction. Frontiers in Veterinary Science, 0, 9, .	0.9	0
2150	Functional characterization of ZmbHLH121, a bHLH transcription factor, focusing on Zea mays kernel development. Gene Reports, 2022, , 101645.	0.4	2
2151	GWAS and RNA-seq analysis uncover candidate genes associated with alkaline stress tolerance in maize (Zea mays L.) seedlings. Frontiers in Plant Science, 0, 13, .	1.7	5
2152	C1QTNF6 regulated by miRâ€⊋9a-3p promotes proliferation and migration in stage I lung adenocarcinoma. BMC Pulmonary Medicine, 2022, 22, .	0.8	3
2153	Stable sorghum grain quality QTL were identified using SC35 × RTx430 mapping population. Plant Genome, 0, , .	1.6	2
2154	Comprehensive evaluation of the response to aluminum stress in olive tree (Olea europaea L.). Frontiers in Plant Science, 0, 13, .	1.7	3
2155	New insights into defense responses against Verticillium dahliae infection revealed by a quantitative proteomic analysis in Arabidopsis thaliana. Functional Plant Biology, 2022, , .	1.1	1
2157	Complex developmental and transcriptional dynamics underlie pollinatorâ€driven evolutionary transitions in nectar spur morphology in <i>Aquilegia</i> (columbine). American Journal of Botany, 2022, 109, 1360-1381.	0.8	1
2158	Mining of publicly available RNA-seq data to reveal phenotypic differences between Landsberg erecta-0 and Columbia-0 ecotypes in Arabidopsis thaliana. Plant Growth Regulation, 0, , .	1.8	0
2160	The START domain mediates Arabidopsis GLABRA2 dimerization and turnover independently of homeodomain DNA binding. Plant Physiology, 2022, 190, 2315-2334.	2.3	7
2161	Transcriptome Meta-Analysis Identifies Candidate Hub Genes and Pathways of Pathogen Stress Responses in Arabidopsis thaliana. Biology, 2022, 11, 1155.	1.3	3
2162	The BBX gene <i>CmBBX22</i> negatively regulates drought stress tolerance in chrysanthemum. Horticulture Research, 2022, 9, .	2.9	5
#	Article	IF	Citations
------	---	--------------------	-----------
2163	Positive selection and heatâ€response transcriptomes reveal adaptive features of the Brassicaceae desert model, <i>Anastatica hierochuntica</i> . New Phytologist, 2022, 236, 1006-1026.	3.5	6
2164	CisCross: A gene list enrichment analysis to predict upstream regulators in Arabidopsis thaliana. Frontiers in Plant Science, 0, 13, .	1.7	2
2165	Role of a ZF-HD Transcription Factor in miR157-Mediated Feed-Forward Regulatory Module That Determines Plant Architecture in Arabidopsis. International Journal of Molecular Sciences, 2022, 23, 8665.	1.8	4
2166	Transcriptomic analysis of CO2-treated strawberries (Fragaria vesca) with enhanced resistance to softening and oxidative stress at consumption. Frontiers in Plant Science, 0, 13, .	1.7	3
2168	Comparative Transcriptome Analysis of Salt-Stress-Responsive Genes in Rice Roots. Phyton, 2023, 92, 237-250.	0.4	1
2169	An Integrative Transcriptional Network Revealed Spatial Molecular Interplay Underlying Alantolactone and Inulin Biosynthesis in Inula racemosa Hook f International Journal of Molecular Sciences, 2022, 23, 11213.	1.8	1
2170	Transcriptome Analysis of Berries of Spine Grape (Vitis davidii Föex) Infected by Colletotrichum viniferum during Symptom Development. Horticulturae, 2022, 8, 843.	1.2	4
2171	Multi-omic characterization of bifunctional peroxidase 4-coumarate 3-hydroxylase knockdown in Brachypodium distachyon provides insights into lignin modification-associated pleiotropic effects. Frontiers in Plant Science, 0, 13, .	1.7	0
2172	Genetic factors underlying anaerobic germination in rice: Genomeâ€wide association study and transcriptomic analysis. Plant Genome, 0, , .	1.6	7
2173	Genetic variation underlying differential ammonium and nitrate responses in <i>Arabidopsis thaliana</i> . Plant Cell, 2022, 34, 4696-4713.	3.1	10
2174	Spatial Genomic Resource Reveals Molecular Insights into Key Bioactive-Metabolite Biosynthesis in Endangered Angelica glauca Edgew. International Journal of Molecular Sciences, 2022, 23, 11064.	1.8	1
2175	Identification and characterization of genes for drought tolerance in upland rice cultivar â€~Banglami' of North East India. Molecular Biology Reports, 2022, 49, 11547-11555.	1.0	2
2176	Exogenous strigolactones enhance tolerance in soybean seedlings in response to alkaline stress. Physiologia Plantarum, 2022, 174, .	2.6	5
2177	Identification and characterization of putative targets of VEGETATIVE1/FULc, a key regulator of development of the compound inflorescence in pea and related legumes. Frontiers in Plant Science, 0, 13, .	1.7	2
2178	Glutathione imparts stress tolerance against <i>Alternaria brassicicola</i> infection via miRNA mediated gene regulation. Plant Signaling and Behavior, 2022, 17, .	1.2	5
2179	基于å¨åŸºå›ç»"å3èťå^†æžè§£æžęŽ‰ç±³ç±½ç2'å\$å°ęš"é⊷ä¼ç»"æž". Acta Agronomica Sinica(China), 202	2, 48 , 304	-309.
2180	The Perennial Horse Gram (Macrotyloma axillare) Genome, Phylogeny, and Selection Across the Fabaceae. Compendium of Plant Genomes, 2022, , 255-279.	0.3	2
2181	Utility of Network Biology Approaches to Understand the Aluminum Stress Responses in Soybean. , 2022, , 109-124.		0

CITATION REPORT

IF

CITATIONS

2182	Transcriptomic Analysis to Unravel Potential Pathways and Genes Involved in Pecan (Carya) Tj ETQq0 0 0 rgBT /O 2022, 23, 11621.	verlock 10 1.8	Tf 50 747 T 4
2183	Histone methyltransferases SDG33 and SDG34 regulate organ-specific nitrogen responses in tomato. Frontiers in Plant Science, 0, 13, .	1.7	4
2184	Molecular basis of genetic plasticity to varying environmental conditions on growing rice by dry/direct-sowing and exposure to drought stress: Insights for DSR varietal development. Frontiers in Plant Science, 0, 13, .	1.7	8
2185	Insight into the regulatory networks underlying the high lipid perennial ryegrass growth under different irradiances. PLoS ONE, 2022, 17, e0275503.	1.1	1
2186	Heat production and volatile biosynthesis are linked via alternative respiration in Magnolia denudata during floral thermogenesis. Frontiers in Plant Science, 0, 13, .	1.7	1
2187	RNA G-quadruplex structure contributes to cold adaptation in plants. Nature Communications, 2022, 13, .	5.8	15
2188	Plant microProteins: Small but powerful modulators of plant development. IScience, 2022, 25, 105400.	1.9	5
2189	Identification of Potential Zinc Deficiency Responsive Genes and Regulatory Pathways in Rice by Weighted Gene Co-expression Network Analysis. Rice Science, 2022, 29, 545-558.	1.7	1
2190	Effect of prior drought and heat stress on Camellia sinensis transcriptome changes to Ectropis oblique (Lepidoptera: Geometridae) resistance. Genomics, 2022, 114, 110506.	1.3	3
2191	Time Course RNA-seq Reveals Soybean Responses against Root-Lesion Nematode and Resistance Players. Plants, 2022, 11, 2983.	1.6	1
2192	Identification of Genetic Variations and Candidate Genes Responsible for Stalk Sugar Content and Agronomic Traits in Fresh Corn via GWAS across Multiple Environments. International Journal of Molecular Sciences, 2022, 23, 13490.	1.8	3
2193	Low-Density Reference Fingerprinting SNP Dataset of CIMMYT Maize Lines for Quality Control and Genetic Diversity Analyses. Plants, 2022, 11, 3092.	1.6	1
2194	Comprehensive Analysis of Phaseolus vulgarisÂSnRK Gene Family and Their Expression during Rhizobial and Mycorrhizal Symbiosis. Genes, 2022, 13, 2107.	1.0	1
2195	Predictable and stable epimutations induced during clonal plant propagation with embryonic transcription factor. PLoS Genetics, 2022, 18, e1010479.	1.5	2
2196	Evolution of ImiRNAs and their targets from MITEs for rice adaptation. Journal of Integrative Plant Biology, 2022, 64, 2411-2424.	4.1	4
2198	Co-Expression of ZmVPP1 with ZmNAC111 Confers Robust Drought Resistance in Maize. Genes, 2023, 14, 8.	1.0	5
2199	Iron Induces Resistance Against the Rice Blast Fungus Magnaporthe oryzae Through Potentiation of Immune Responses. Rice, 2022, 15, .	1.7	7
2200	Long non-coding RNAs as the regulatory hubs in rice response to salt stress. Scientific Reports, 2022, 12, .	1.6	7

ARTICLE

#

CITATION REPORT

#	Article	IF	CITATIONS
2201	Transcriptomic analysis reveals the regulation of early ear-length development in maize. Plant Growth Regulation, 0, , .	1.8	1
2202	Detection of Hub QTLs Underlying the Genetic Basis of Three Modules Covering Nine Agronomic Traits in an F2 Soybean Population. Agronomy, 2022, 12, 3135.	1.3	0
2203	Unveiling the characteristics of popcorn by genome re-sequencing and integrating the ESTs and proteome data. Cereal Research Communications, 0, , .	0.8	0
2204	Genome and Transcriptome-Wide Analysis of OsWRKY and OsNAC Gene Families in Oryza sativa and Their Response to White-Backed Planthopper Infestation. International Journal of Molecular Sciences, 2022, 23, 15396.	1.8	4
2205	The AP2/ERF transcription factor ORA59 regulates ethyleneâ€induced phytoalexin synthesis through modulation of an acyltransferase gene expression. Journal of Cellular Physiology, 0, , .	2.0	6
2207	Bacterial outer membrane vesicles induce a transcriptional shift in arabidopsis towards immune system activation leading to suppression of pathogen growth in planta. Journal of Extracellular Vesicles, 2023, 12, .	5.5	5
2208	Comparative transcriptomic analysis of early fruit development in eggplant (Solanum melongena L.) and functional characterization of SmOVATE5. Plant Cell Reports, 0, , .	2.8	2
2209	A binary interaction map between turnip mosaic virus and Arabidopsis thaliana proteomes. Communications Biology, 2023, 6, .	2.0	8
2210	Transcriptome analysis and differential expression in Arabidopsis thaliana in response to rohitukine (a) Tj ETQqO	0 0 rgBT /0	Dverlock 10 T
2212	Genomic divergence and introgression among three Populus species. Molecular Phylogenetics and Evolution, 2023, 180, 107686.	1.2	5
2212 2213	Genomic divergence and introgression among three Populus species. Molecular Phylogenetics and Evolution, 2023, 180, 107686. Specific suppression of long terminal repeat retrotransposon mobilization in plants. Plant Physiology, 2023, 191, 2245-2255.	1.2 2.3	5
2212 2213 2214	Genomic divergence and introgression among three Populus species. Molecular Phylogenetics and Evolution, 2023, 180, 107686. Specific suppression of long terminal repeat retrotransposon mobilization in plants. Plant Physiology, 2023, 191, 2245-2255. Genome-wide annotation and expression analysis of WRKY and bHLH transcriptional factor families reveal their involvement under cadmium stress in tomato (Solanum lycopersicum L.). Frontiers in Plant Science, 0, 14, .	1.2 2.3 1.7	5 2 13
2212 2213 2214 2216	Genomic divergence and introgression among three Populus species. Molecular Phylogenetics and Evolution, 2023, 180, 107686. Specific suppression of long terminal repeat retrotransposon mobilization in plants. Plant Physiology, 2023, 191, 2245-2255. Genome-wide annotation and expression analysis of WRKY and bHLH transcriptional factor families reveal their involvement under cadmium stress in tomato (Solanum lycopersicum L). Frontiers in Plant Science, 0, 14, . Strigolactones positively regulate Verticillium wilt resistance in cotton via crosstalk with other hormones. Plant Physiology, 2023, 192, 945-966.	1.2 2.3 1.7 2.3	5 2 13 6
2212 2213 2214 2216 2217	Genomic divergence and introgression among three Populus species. Molecular Phylogenetics and Evolution, 2023, 180, 107686. Specific suppression of long terminal repeat retrotransposon mobilization in plants. Plant Physiology, 2023, 191, 2245-2255. Genome-wide annotation and expression analysis of WRKY and bHLH transcriptional factor families reveal their involvement under cadmium stress in tomato (Solanum lycopersicum L.). Frontiers in Plant Science, 0, 14, . Strigolactones positively regulate Verticillium wilt resistance in cotton via crosstalk with other hormones. Plant Physiology, 2023, 192, 945-966. Extensive crop– wild hybridization during <i>Brassica</i> crops. Genetics, 2023, 223, .	1.2 2.3 1.7 2.3 1.2	5 2 13 6 4
2212 2213 2214 2216 2217 2218	Genomic divergence and introgression among three Populus species. Molecular Phylogenetics and Evolution, 2023, 180, 107686. Specific suppression of long terminal repeat retrotransposon mobilization in plants. Plant Physiology, 2023, 191, 2245-2255. Genome-wide annotation and expression analysis of WRKY and bHLH transcriptional factor families reveal their involvement under cadmium stress in tomato (Solanum lycopersicum L). Frontiers in Plant Science, 0, 14, . Strigolactones positively regulate Verticillium wilt resistance in cotton via crosstalk with other hormones. Plant Physiology, 2023, 192, 945-966. Extensive crop–wild hybridization during <\>Brassicaevolution and selection during the domestication and diversification of <\>Brassicaevolution and selection during the annetication of <\>Brassicaevolution and selection during the annetication and combined anaerobic and cold stress. BMC Genomics, 2023, 24, .	 1.2 2.3 1.7 2.3 1.2 1.2 	5 2 13 6 4 5
2212 2213 2214 2216 2217 2218 2219	Genomic divergence and introgression among three Populus species. Molecular Phylogenetics and Evolution, 2023, 180, 107686. Specific suppression of long terminal repeat retrotransposon mobilization in plants. Plant Physiology, 2023, 191, 2245-2255. Genome-wide annotation and expression analysis of WRKY and bHLH transcriptional factor families reveal their involvement under cadmium stress in tomato (Solanum lycopersicum L). Frontiers in Plant Science, 0, 14, . Strigolactones positively regulate Verticillium wilt resistance in cotton via crosstalk with other hormones. Plant Physiology, 2023, 192, 945-966. Extensive cropâ ^{Cet} wild hybridization during <> Brassica evolution and selection during the domestication and diversification of <> Brassica crops. Genetics, 2023, 223, . Comparative transcriptomic analysis of germinating rice seedlings to individual and combined anaerobic and cold stress. BMC Genomics, 2023, 24, . FERONIA coordinates plant growth and salt tolerance via the phosphorylation of phyB. Nature Plants, 2023, 9, 645-660.	 1.2 2.3 1.7 2.3 1.2 1.2 4.7 	5 2 13 6 4 5
2212 2213 2214 2216 2217 2218 2219	Genomic divergence and introgression among three Populus species. Molecular Phylogenetics and Evolution, 2023, 180, 107686. Specific suppression of long terminal repeat retrotransposon mobilization in plants. Plant Physiology, 2023, 191, 2245-2255. Genome-wide annotation and expression analysis of WRKY and bHLH transcriptional factor families reveal their involvement under cadmium stress in tomato (Solanum lycopersicum L.). Frontiers in Plant Science, 0, 14, . Strigolactones positively regulate Verticillium wilt resistance in cotton via crosstalk with other hormones. Plant Physiology, 2023, 192, 945-966. Extensive cropâ€ ^{c*} wild hybridization during <i>Brassica</i> evolution and selection during the domestication and diversification of <i>Brassica</i> crops. Genetics, 2023, 223, . Comparative transcriptomic analysis of germinating rice seedlings to individual and combined anaerobic and cold stress. BMC Genomics, 2023, 24, . FERONIA coordinates plant growth and salt tolerance via the phosphorylation of phyB. Nature Plants, 2023, 9, 645-660. Identification of chilling-tolerant genes in maize via bulked segregant analysis sequencing. Environmental and Experimental Botany, 2023, 208, 105234.	 1.2 2.3 1.7 2.3 1.2 1.2 4.7 2.0 	5 2 13 6 4 5 17

CITATION REPORT

#	Article	IF	CITATIONS
2222	Identification of a Major Locus for Lodging Resistance to Typhoons Using QTL Analysis in Rice. Plants, 2023, 12, 449.	1.6	4
2223	Transcriptome Landscapes of Salt-Susceptible Rice Cultivar IR29 Associated with a Plant Growth Promoting Endophytic Streptomyces. Rice, 2023, 16, .	1.7	7
2224	<scp>Mdmâ€miR160–MdARF17–MdWRKY33</scp> module mediates freezing tolerance in apple. Plant Journal, 2023, 114, 262-278.	2.8	9
2225	Pearl millet response to drought: A review. Frontiers in Plant Science, 0, 14, .	1.7	6
2226	Comparative transcriptome-wide identification and differential expression of genes and lncRNAs in rice near-isogenic line (KW-Bph36-NIL) in response to BPH feeding. Frontiers in Plant Science, 0, 13, .	1.7	5
2227	Brachypodium distachyon Seedlings Display Accession-Specific Morphological and Transcriptomic Responses to the Microgravity Environment of the International Space Station. Life, 2023, 13, 626.	1.1	0
2228	Cell wall polysaccharides of endophytic <i>Pseudomonas putida</i> elicit defense against rice blast disease. Journal of Applied Microbiology, 2023, 134, .	1.4	5
2229	Nuclear <scp>OsFKBP20</scp> â€1b maintains <scp>SR34</scp> stability and promotes the splicing of retained introns upon <scp>ABA</scp> exposure in rice. New Phytologist, 2023, 238, 2476-2494.	3.5	0
2230	FERONIA and wall-associated kinases coordinate defense induced by lignin modification in plant cell walls. Science Advances, 2023, 9, .	4.7	16
2231	Proteomics analyses of herbicide-tolerant genetically modified, conventionally, and organically farmed soybean seeds. Food Control, 2023, 151, 109795.	2.8	2
2232	Cytological, transcriptome and miRNome temporal landscapes decode enhancement of rice grain size. BMC Biology, 2023, 21, .	1.7	0
2233	Coâ€expression network analysis of diverse wheat landraces reveals markersÂof early thermotolerance and a candidate master regulator of thermotolerance genes. Plant Journal, 2023, 115, 614-626.	2.8	2
2238	Introduction to the World of Bioinformatics. , 2023, , 105-126.		0
2262	Bio Prospecting of Endophytes and PGPRs in Artemisinin Production for the Socio-economic Advancement, Current Microbiology, 2024, 81, .	1.0	2