Synthesis Of Nitrogen-Doped Graphene Films For Lithiu

ACS Nano 4, 6337-6342 DOI: 10.1021/nn101926g

Citation Report

#	Article	IF	CITATIONS
3	Metal free, end-opened, selective nitrogen-doped vertically aligned carbon nanotubes by a single step in situ low energy plasma process. Journal of Materials Chemistry, 2011, 21, 16162.	6.7	15
4	Theoretical investigation of formation mechanism of bipyridyl molecule on Ni(111) surface: implication for synthesis of N-doped graphene from pyridine. Physical Chemistry Chemical Physics, 2011, 13, 6053.	2.8	5
5	Nanohybridization of ferrocene clusters and reduced graphene oxides with enhanced lithium storage capability. Chemical Communications, 2011, 47, 10383.	4.1	32
6	Efficient coating of polystyrene microspheres with graphene nanosheets. Chemical Communications, 2011, 47, 10722.	4.1	33
7	Atomistic simulations of the implantation of low-energy boron and nitrogen ions into graphene. Physical Review B, 2011, 83, .	3.2	127
8	Nitrogen-doped graphene nanosheets with excellent lithium storage properties. Journal of Materials Chemistry, 2011, 21, 5430.	6.7	686
9	Flexible Holey Graphene Paper Electrodes with Enhanced Rate Capability for Energy Storage Applications. ACS Nano, 2011, 5, 8739-8749.	14.6	478
10	Nitrogen-Doped Graphitic Layers Deposited on Silicon Nanowires for Efficient Lithium-Ion Battery Anodes. Journal of Physical Chemistry C, 2011, 115, 9451-9457.	3.1	131
11	The ripple's enhancement in graphene sheets by spark plasma sintering. AIP Advances, 2011, 1, 032170.	1.3	2
12	Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes. Nano Letters, 2011, 11, 2472-2477.	9.1	1,547
13	Improved electrode performance of mesoporous β-In2S3 microspheres for lithium ion batteries using carbon coated microspheres. Journal of Materials Chemistry, 2011, 21, 18398.	6.7	41
14	Direct Synthesis of Lithium-Intercalated Graphene for Electrochemical Energy Storage Application. ACS Nano, 2011, 5, 4345-4349.	14.6	120
15	Nitrogen-Doped Graphene: Efficient Growth, Structure, and Electronic Properties. Nano Letters, 2011, 11, 5401-5407.	9.1	685
16	In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. Journal of Materials Chemistry, 2011, 21, 13290.	6.7	362
17	Porous graphene/carbon nanotube composite cathode for proton exchange membrane fuel cell. Synthetic Metals, 2011, 161, 2460-2465.	3.9	60
18	Wrinkled Graphenes: A Study on the Effects of Synthesis Parameters on Exfoliation-Reduction of Graphite Oxide. Journal of Physical Chemistry C, 2011, 115, 17660-17669.	3.1	107
19	Doped Graphene Sheets As Anode Materials with Superhigh Rate and Large Capacity for Lithium Ion Batteries. ACS Nano, 2011, 5, 5463-5471.	14.6	1,904
20	LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ –Graphene Composite as a Promising Cathode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2011, 3, 2966-2972.	8.0	244

#	Article	IF	CITATIONS
21	Synthesis and characterization of nitrogen-doped monolayer and multilayer graphene on TEM copper grids. Chemical Physics Letters, 2011, 516, 212-215.	2.6	17
22	Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochemistry Communications, 2011, 13, 822-825.	4.7	315
23	Nitrogen-doping of chemically reduced mesocarbon microbead oxide for the improved performance of lithium ion batteries. Carbon, 2012, 50, 1355-1362.	10.3	58
24	Actuator materials based on graphene oxide/polyacrylamide composite hydrogels prepared by in situ polymerization. Soft Matter, 2011, 7, 7231.	2.7	165
25	Nanosized N-doped graphene oxide with visible fluorescence in water for metal ion sensing. Journal of Materials Chemistry, 2011, 21, 17635.	6.7	52
26	Easy-to-Operate and Low-Temperature Synthesis of Gram-Scale Nitrogen-Doped Graphene and Its Application as Cathode Catalyst in Microbial Fuel Cells. ACS Nano, 2011, 5, 9611-9618.	14.6	205
27	Attractive interaction between transition-metal atom impurities and vacancies in graphene: a first-principles study. Theoretical Chemistry Accounts, 2011, 129, 625-630.	1.4	97
28	First-principles studies on doped graphene as anode materials in lithium-ion batteries. Theoretical Chemistry Accounts, 2011, 130, 209-213.	1.4	95
29	Aqueous-phase synthesis of Ag-TiO2-reduced graphene oxide and Pt-TiO2-reduced graphene oxide hybrid nanostructures and their catalytic properties. Nano Research, 2011, 4, 1153-1162.	10.4	63
30	Recent progress of computational investigation on anode materials in Li ion batteries. Frontiers of Physics, 2011, 6, 197-203.	5.0	16
31	Graphene Growth via Carburization of Stainless Steel and Application in Energy Storage. Small, 2011, 7, 1697-1700.	10.0	43
32	Synthesis of Nitrogenâ€Doped Graphene Using Embedded Carbon and Nitrogen Sources. Advanced Materials, 2011, 23, 1020-1024.	21.0	735
33	Nitrogen doping effects on the structure of graphene. Applied Surface Science, 2011, 257, 9193-9198.	6.1	476
34	Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. Journal of Colloid and Interface Science, 2011, 361, 270-277.	9.4	955
35	Graphene based materials: Past, present and future. Progress in Materials Science, 2011, 56, 1178-1271.	32.8	3,063
37	Mechanisms of Postsynthesis Doping of Boron Nitride Nanostructures with Carbon from First-Principles Simulations. Physical Review Letters, 2011, 107, 035501.	7.8	88
38	Anchoring platinum on graphene using metallic adatoms: a first principles investigation. Journal of Physics Condensed Matter, 2012, 24, 225003.	1.8	17
39	Control of graphene nanoribbon vacancies by Fe and N dopants: Implications for catalysis. Applied Physics Letters, 2012, 101, 064102.	3.3	37

#	Article	IF	CITATIONS
40	Synthesis of Nitrogen-Doped Graphene by Plasma-Enhanced Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2012, 51, 055101.	1.5	16
41	Thermal stability study of nitrogen functionalities in a graphene network. Journal of Physics Condensed Matter, 2012, 24, 235503.	1.8	55
43	Half-metallic ferromagnetism in substitutionally doped boronitrene. Physical Review B, 2012, 86, .	3.2	10
44	Charge-Selective Surface-Enhanced Raman Scattering Using Silver and Gold Nanoparticles Deposited on Silicon–Carbon Core–Shell Nanowires. ACS Nano, 2012, 6, 2459-2470.	14.6	42
45	Epitaxial Graphene on 4H-SiC(0001) Grown under Nitrogen Flux: Evidence of Low Nitrogen Doping and High Charge Transfer. ACS Nano, 2012, 6, 10893-10900.	14.6	95
46	Diffusion Mechanism of Lithium Ion through Basal Plane of Layered Graphene. Journal of the American Chemical Society, 2012, 134, 8646-8654.	13.7	344
47	Amino-grafted graphene as a stable and metal-free solid basic catalyst. Journal of Materials Chemistry, 2012, 22, 7456.	6.7	89
48	Flexible FET-Type VEGF Aptasensor Based on Nitrogen-Doped Graphene Converted from Conducting Polymer. ACS Nano, 2012, 6, 1486-1493.	14.6	232
49	Modulation-doped growth of mosaic graphene with single-crystalline p–n junctions for efficient photocurrent generation. Nature Communications, 2012, 3, 1280.	12.8	97
50	Fabrication and Electrochemical Characterization of Single and Multi-Layer Graphene Anodes for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2012, 159, A752-A761.	2.9	46
51	Covalent binding of Si nanoparticles to graphene sheets and its influence on lithium storage properties of Si negative electrode. Journal of Materials Chemistry, 2012, 22, 3420.	6.7	88
52	In situ synthesis of a graphene/titanium nitride hybrid material with highly improved performance for lithium storage. Journal of Materials Chemistry, 2012, 22, 4938.	6.7	79
53	Ni/C Hierarchical Nanostructures with Ni Nanoparticles Highly Dispersed in N-Containing Carbon Nanosheets: Origin of Li Storage Capacity. Journal of Physical Chemistry C, 2012, 116, 23974-23980.	3.1	199
54	Intensive Edge Effects of Nanographenes in Molecular Adsorptions. Journal of Physical Chemistry Letters, 2012, 3, 511-516.	4.6	35
55	Out-of-plane growth of CNTs on graphene for supercapacitor applications. Nanotechnology, 2012, 23, 015301.	2.6	140
56	Tunable Band Gaps and p-Type Transport Properties of Boron-Doped Graphenes by Controllable Ion Doping Using Reactive Microwave Plasma. ACS Nano, 2012, 6, 1970-1978.	14.6	244
57	Activity Modulated Low Platium Content Oxygen Reduction Electrocatalysts Prepared by Inducing Nano-Order Dislocations on Carbon Nanofiber through N ₂ -Doping. Journal of Physical Chemistry C, 2012, 116, 14754-14763.	3.1	22
58	The production of nitrogen-doped graphene from mixed amine plus ethanol flames. Thin Solid Films, 2012, 520, 6850-6855.	1.8	36

#	Article	IF	CITATIONS
59	Magnetism and structure of graphene nanodots with interiors modified by boron, nitrogen, and charge. Journal of Chemical Physics, 2012, 137, 054715.	3.0	5
60	Nitrogen-Doped Graphene Quantum Dots with Oxygen-Rich Functional Groups. Journal of the American Chemical Society, 2012, 134, 15-18.	13.7	1,832
61	The role of defects and doping in 2D graphene sheets and 1D nanoribbons. Reports on Progress in Physics, 2012, 75, 062501.	20.1	475
62	Long-range interactions between substitutional nitrogen dopants in graphene: Electronic properties calculations. Physical Review B, 2012, 86, .	3.2	91
63	Multicolour fluorescent graphene oxide by cutting carbon nanotubes upon oxidation. CrystEngComm, 2012, 14, 4976.	2.6	11
64	Functionalized Multilayered Graphene Platform for Urea Sensor. ACS Nano, 2012, 6, 168-175.	14.6	154
65	One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability. New Journal of Chemistry, 2012, 36, 861.	2.8	493
66	Electrochemical bisphenol A sensor based on N-doped graphene sheets. Analytica Chimica Acta, 2012, 711, 24-28.	5.4	200
67	Hydrothermal synthesis of highly nitrogen-doped carbon powder. Applied Surface Science, 2012, 258, 2510-2514.	6.1	31
68	Highly concentrated, stable nitrogen-doped graphene for supercapacitors: Simultaneous doping and reduction. Applied Surface Science, 2012, 258, 3438-3443.	6.1	163
69	One-pot solvothermal synthesis of doped graphene with the designed nitrogen type used as a Pt support for fuel cells. Electrochemistry Communications, 2012, 22, 65-68.	4.7	66
70	Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: an environmentally friendly method. Journal of Materials Chemistry, 2012, 22, 9696.	6.7	222
71	Grapheneâ€Based Electrodes. Advanced Materials, 2012, 24, 5979-6004.	21.0	829
72	Controlled Soft-Template Synthesis of Ultrathin C@FeS Nanosheets with High-Li-Storage Performance. ACS Nano, 2012, 6, 4713-4721.	14.6	293
73	First-principles study of transition metal doped Li2S as cathode materials in lithium batteries. Journal of Renewable and Sustainable Energy, 2012, 4, .	2.0	32
74	Hydrogenated Graphene as Metal-free Catalyst for Fenton-like Reaction. Chinese Journal of Chemical Physics, 2012, 25, 335-338.	1.3	22
75	First principles molecular dynamics study of nitrogen vacancy complexes in boronitrene. Journal of Physics Condensed Matter, 2012, 24, 265002.	1.8	8
76	Interaction of graphene with excited and ground state rhodamine revealed by steady state and time resolved fluorescence. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 246, 8-15.	3.9	28

#	Article	IF	CITATIONS
77	Synthesis and upconversion luminescence of N-doped graphene quantum dots. Applied Physics Letters, 2012, 101, .	3.3	173
78	Controllable synthesis of monodisperse ultrathin SnO2 nanorods on nitrogen-doped graphene and its ultrahigh lithium storage properties. Nanoscale, 2012, 4, 5425.	5.6	85
79	Lithium storage in nitrogen-rich mesoporous carbon materials. Energy and Environmental Science, 2012, 5, 7950.	30.8	593
80	One step synthesis of Fe2O3/nitrogen-doped graphene composite as anode materials for lithium ion batteries. Electrochimica Acta, 2012, 80, 302-307.	5.2	61
81	Hydrothermal preparation of nitrogen-doped graphene sheets via hexamethylenetetramine for application as supercapacitor electrodes. Electrochimica Acta, 2012, 85, 459-466.	5.2	158
82	Synthesis of graphene nanosheets by the electrolytic exfoliation of graphite andÂtheir direct assembly for lithium ion battery anodes. Materials Chemistry and Physics, 2012, 135, 309-316.	4.0	15
83	Nitrogen-doped graphene as transparent counter electrode for efficient dye-sensitized solar cells. Materials Research Bulletin, 2012, 47, 4252-4256.	5.2	31
84	Graphene-based multilayers: Critical evaluation of materials assembly techniques. Nano Today, 2012, 7, 430-447.	11.9	123
85	Metal ion binding with carbon nanotubes and graphene: Effect of chirality and curvature. Chemical Physics Letters, 2012, 549, 39-43.	2.6	46
86	Easy synthesis of nitrogen-doped graphene–silver nanoparticle hybrids by thermal treatment of graphite oxide with glycine and silver nitrate. Carbon, 2012, 50, 5148-5155.	10.3	39
87	Highly electrically conductive layered carbon derived from polydopamine and its functions in SnO2-based lithium ion battery anodes. Chemical Communications, 2012, 48, 10316.	4.1	209
88	One-step electrochemical preparation of graphene-based heterostructures for Li storage. Journal of Materials Chemistry, 2012, 22, 8455.	6.7	75
89	Production of Nitrogen-Doped Graphene by Low-Energy Nitrogen Implantation. Journal of Physical Chemistry C, 2012, 116, 5062-5066.	3.1	96
90	Localized state and charge transfer in nitrogen-doped graphene. Physical Review B, 2012, 85, .	3.2	134
91	Synthesis of Nitrogen-Doped MnO/Graphene Nanosheets Hybrid Material for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 658-664.	8.0	331
92	Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Scientific Reports, 2012, 2, 586.	3.3	563
93	Solvothermal Synthesis of Nitrogen-Containing Graphene for Electrochemical Oxygen Reduction in Acid Media. E-Journal of Surface Science and Nanotechnology, 2012, 10, 29-32.	0.4	18
94	A facile approach to nanoarchitectured three-dimensional graphene-based Li–Mn–O composite as high-power cathodes for Li-ion batteries. Beilstein Journal of Nanotechnology, 2012, 3, 513-523.	2.8	28

		CITATION REPORT		
#	Article		IF	CITATIONS
95	Carbon Nanomaterials for Advanced Energy Conversion and Storage. Small, 2012, 8, 113	30-1166.	10.0	1,304
96	Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, an Applications. ACS Catalysis, 2012, 2, 781-794.	d Its Potential	11.2	3,171
97	Nitrogen-Doped Multiwall Carbon Nanotubes for Lithium Storage with Extremely High Ca Letters, 2012, 12, 2283-2288.	apacity. Nano	9.1	468
98	The electrochemistry of CVD graphene: progress and prospects. Physical Chemistry Cher 2012, 14, 8264.	nical Physics,	2.8	148
99	Nitrogen and boron doped monolayer graphene by chemical vapor deposition using poly and boric acid. New Journal of Chemistry, 2012, 36, 1385.	styrene, urea	2.8	186
100	Amine-Modified Graphene: Thrombo-Protective Safer Alternative to Graphene Oxide for Applications. ACS Nano, 2012, 6, 2731-2740.	Biomedical	14.6	420
101	Defects and impurities in graphene-like materials. Materials Today, 2012, 15, 98-109.		14.2	298
102	Interplay between nitrogen dopants and native point defects in graphene. Physical Revie	w B, 2012, 85, .	3.2	133
103	Significant enhancement of blue emission and electrical conductivity of N-doped graphe Materials Chemistry, 2012, 22, 17992.	ne. Journal of	6.7	182
104	Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first study. Journal of Materials Chemistry, 2012, 22, 8911.	-principles	6.7	517
105	Connecting Dopant Bond Type with Electronic Structure in N-Doped Graphene. Nano Let 4025-4031.	tters, 2012, 12,	9.1	471
106	A LiF Nanoparticleâ€Modified Graphene Electrode for Highâ€Power and Highâ€Energy Li Advanced Functional Materials, 2012, 22, 3290-3297.	thium Ion Batteries.	14.9	70
107	Nanoporous nitrogen doped carbon modified graphene as electrocatalyst for oxygen rec reaction. Journal of Materials Chemistry, 2012, 22, 12810.	luction	6.7	138
108	Nâ€Doped Grapheneâ€SnO ₂ Sandwich Paper for Highâ€Performance Lithiı Advanced Functional Materials, 2012, 22, 2682-2690.	ımâ€lon Batteries.	14.9	506
109	Binary and Ternary Atomic Layers Built from Carbon, Boron, and Nitrogen. Advanced Mat 24, 4878-4895.	terials, 2012,	21.0	219
110	Low Temperature Growth of Highly Nitrogen-Doped Single Crystal Graphene Arrays by C Deposition. Journal of the American Chemical Society, 2012, 134, 11060-11063.	hemical Vapor	13.7	287
111	Transforming collagen wastes into doped nanocarbons for sustainable energy applicatio Chemistry, 2012, 14, 1689.	ns. Green	9.0	65
112	Anodic chlorine/nitrogen co-doping of reduced graphene oxide films at room temperatur 2012, 50, 3333-3341.	e. Carbon,	10.3	44

#	Article	IF	CITATIONS
113	Effect of feed rate on the production of nitrogen-doped graphene from liquid acetonitrile. Carbon, 2012, 50, 3659-3665.	10.3	18
114	Influence of N-doping on the structural and photoluminescence properties of graphene oxide films. Carbon, 2012, 50, 3799-3806.	10.3	79
115	Effects of reduction process and carbon nanotube content on the supercapacitive performance of flexible graphene oxide papers. Carbon, 2012, 50, 4239-4251.	10.3	109
116	A powerful approach to fabricate nitrogen-doped graphene sheets with high specific surface area. Electrochemistry Communications, 2012, 14, 39-42.	4.7	93
117	Electrochemical lithium storage of C/Co composite as an anode material for lithium ion batteries. Electrochemistry Communications, 2012, 18, 44-47.	4.7	55
118	Towards new graphene materials: Doped graphene sheets and nanoribbons. Materials Letters, 2012, 78, 209-218.	2.6	196
119	Catalytic activity of graphene–cobalt hydroxide composite for oxygen reduction reaction in alkaline media. Journal of Power Sources, 2012, 198, 122-126.	7.8	94
120	Graphene based supercapacitor fabricated by vacuum filtration deposition. Journal of Power Sources, 2012, 206, 476-482.	7.8	118
121	Nitrogen doping and curvature effects on thermal conductivity of graphene: A non-equilibrium molecular dynamics study. Solid State Communications, 2012, 152, 261-264.	1.9	97
122	Microwaveâ€Induced Inâ€Situ Synthesis of Zn ₂ GeO ₄ /Nâ€Doped Graphene Nanocomposites and Their Lithiumâ€Storage Properties. Chemistry - A European Journal, 2013, 19, 6027-6033.	3.3	83
123	MFe ₂ O ₄ and MFe@Oxide Core–Shell Nanoparticles Anchored on Nâ€Đoped Graphene Sheets for Synergistically Enhancing Lithium Storage Performance and Electrocatalytic Activity for Oxygen Reduction Reactions. Particle and Particle Systems Characterization, 2013, 30, 893-904.	2.3	25
124	Improved performance of graphene doped with pyridinic N for Li-ion battery: a density functional theory model. Physical Chemistry Chemical Physics, 2013, 15, 12982.	2.8	79
125	Hybrid carbon source for producing nitrogen-doped polymer nanodots: one-pot hydrothermal synthesis, fluorescence enhancement and highly selective detection of Fe(iii). Nanoscale, 2013, 5, 8015.	5.6	135
126	Plasmon-Enhanced Photothermoelectric Conversion in Chemical Vapor Deposited Graphene p–n Junctions. Journal of the American Chemical Society, 2013, 135, 10926-10929.	13.7	61
127	Synthesis and electrochemical applications of nitrogen-doped carbon nanomaterials. Nanotechnology Reviews, 2013, 2, 615-635.	5.8	58
128	Li diffusion through doped and defected graphene. Physical Chemistry Chemical Physics, 2013, 15, 15128.	2.8	86
129	Nitrogen-doped graphene as low-cost counter electrode for high-efficiency dye-sensitized solar cells. Electrochimica Acta, 2013, 92, 269-275.	5.2	95
130	Synthesis of Phosphorusâ€Doped Graphene and its Multifunctional Applications for Oxygen Reduction Reaction and Lithium Ion Batteries. Advanced Materials, 2013, 25, 4932-4937.	21.0	915

#	ARTICLE	IF	CITATIONS
131	Nitrogen-Doped Graphene Sheets Grown by Chemical Vapor Deposition: Synthesis and Influence of Nitrogen Impurities on Carrier Transport. ACS Nano, 2013, 7, 6522-6532.	14.6	264
132	Magnetic graphene oxides as highly effective adsorbents for rapid removal of a cationic dye rhodamine B from aqueous solutions. RSC Advances, 2013, 3, 7254.	3.6	40
133	Applications of Nanomaterials in Sensors and Diagnostics. Springer Series on Chemical Sensors and Biosensors, 2013, , .	0.5	37
134	Synthesis of N-doped carbon coated metal oxide nanoparticles for enhanced Li-ion storage ability. RSC Advances, 2013, 3, 15613.	3.6	22
135	C2V or C6V: Which is the most stable structure of the benzene–lithium complex?. Chemical Physics Letters, 2013, 573, 15-18.	2.6	21
136	Nitrogen doped graphene nanosheet supported platinum nanoparticles as high performance electrochemical homocysteine biosensors. Journal of Materials Chemistry B, 2013, 1, 4655.	5.8	58
137	Large-scale synthesis and application of SnS2–graphene nanocomposites as anode materials for lithium-ion batteries with enhanced cyclic performance and reversible capacity. Journal of Alloys and Compounds, 2013, 580, 457-464.	5.5	59
138	Energy-level structure of nitrogen-doped graphene quantum dots. Journal of Materials Chemistry C, 2013, 1, 4908.	5.5	277
139	Simultaneous N-intercalation and N-doping of epitaxial graphene on 6H-SiC(0001) through thermal reactions with ammonia. Nano Research, 2013, 6, 399-408.	10.4	41
140	Synthesis and electronic structure of nitrogen-doped graphene. Physics of the Solid State, 2013, 55, 1325-1332.	0.6	33
142	Modeling electronic properties and quantum transport in doped and defective graphene. Solid State Communications, 2013, 175-176, 90-100.	1.9	34
143	A novel ionic host solid electrolyte interface formation on reduced graphene oxide of lithium ion battery. Electrochimica Acta, 2013, 106, 425-431.	5.2	13
144	A Review on Li-S Batteries as a High Efficiency Rechargeable Lithium Battery. Journal of the Electrochemical Society, 2013, 160, A1256-A1263.	2.9	251
145	Effects of N-doping concentration on graphene structures and properties. Chemical Physics Letters, 2013, 581, 74-79.	2.6	8
146	Scalable synthesis of pyrrolic N-doped graphene by atmospheric pressure chemical vapor deposition and its terahertz response. Carbon, 2013, 62, 330-336.	10.3	61
147	Nitrogen-induced local spin polarization in graphene on cobalt. Journal of Magnetism and Magnetic Materials, 2013, 342, 144-148.	2.3	2
148	Electronic structure of boron nitride sheets doped with carbon from first-principles calculations. Physical Review B, 2013, 87, .	3.2	162
149	A unique sandwich-structured C/Ge/graphene nanocomposite as an anode material for high power lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 14115.	10.3	80

#	Article	IF	CITATIONS
150	Nitrogen-self-doped graphene as a high capacity anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 14586.	10.3	40
151	Boron-Doped Graphene: Scalable and Tunable p-Type Carrier Concentration Doping. Journal of Physical Chemistry C, 2013, 117, 23251-23257.	3.1	108
152	Deposition SnO ₂ /Nitrogen-Doped Graphene Nanocomposites on the Separator: A New Type of Flexible Electrode for Energy Storage Devices. ACS Applied Materials & Interfaces, 2013, 5, 12148-12155.	8.0	66
153	Graphene-Sandwiched LiNi _{0.5} Mn _{1.5} O ₄ Cathode Composites for Enhanced High Voltage Performance in Li Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A832-A837.	2.9	41
154	Structurally tailored graphene nanosheets as lithium ion battery anodes: an insight to yield exceptionally high lithium storage performance. Nanoscale, 2013, 5, 12607.	5.6	107
155	Hybrid of Co ₃ Sn ₂ @Co Nanoparticles and Nitrogen-Doped Graphene as a Lithium Ion Battery Anode. ACS Nano, 2013, 7, 10307-10318.	14.6	194
156	Hollow Carbon-Nanotube/Carbon-Nanofiber Hybrid Anodes for Li-Ion Batteries. Journal of the American Chemical Society, 2013, 135, 16280-16283.	13.7	426
157	Free Standing Reduced Graphene Oxide Film Cathodes for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 12295-12303.	8.0	89
158	Synthesis of graphene from asphaltene molecules adsorbed on vermiculite layers. Carbon, 2013, 62, 213-221.	10.3	63
159	Nitrogen-doped pyrolytic carbon films as highly electrochemically active electrodes. Physical Chemistry Chemical Physics, 2013, 15, 18688.	2.8	5
160	Flexible electrostatic nanogenerator using graphene oxide film. Nanoscale, 2013, 5, 8951.	5.6	80
161	Synthesis of amino-functionalized graphene as metal-free catalyst and exploration of the roles of various nitrogen states in oxygen reduction reaction. Nano Energy, 2013, 2, 88-97.	16.0	426
162	Boron and nitrogen doping of graphene via thermal exfoliation of graphite oxide in a BF3 or NH3 atmosphere: contrasting properties. Journal of Materials Chemistry A, 2013, 1, 13146.	10.3	72
163	Graphene-Based Carbon Materials for Electrochemical Energy Storage. Journal of Nanomaterials, 2013, 2013, 1-11.	2.7	24
164	The examination of graphene oxide for rechargeable lithium storage as a novel cathode material. Journal of Materials Chemistry A, 2013, 1, 3607.	10.3	73
165	Graphene sheets coated with a thin layer of nitrogen-enriched carbon as a high-performance anode for lithium-ion batteries. RSC Advances, 2013, 3, 14016.	3.6	12
166	Three-Dimensional Metal–Graphene–Nanotube Multifunctional Hybrid Materials. ACS Nano, 2013, 7, 58-64.	14.6	202
167	Simple preparation of nanoporous few-layer nitrogen-doped graphene for use as an efficient electrocatalyst for oxygen reduction and oxygen evolution reactions. Carbon, 2013, 53, 130-136.	10.3	331

#	Article	IF	CITATIONS
168	Graphene-related nanomaterials: tuning properties by functionalization. Nanoscale, 2013, 5, 4541.	5.6	614
169	A novel flexible capacitive touch pad based on graphene oxide film. Nanoscale, 2013, 5, 890-894.	5.6	38
170	Concentration dependence of the band gaps of phosphorus and sulfur doped graphene. Computational Materials Science, 2013, 67, 203-206.	3.0	83
171	Large scale boron carbon nitride nanosheets with enhanced lithium storage capabilities. Chemical Communications, 2013, 49, 352-354.	4.1	110
172	One-pot, aqueous-phase synthesis of graphene oxide functionalized with heterocyclic groups to give increased solubility in organic solvents. RSC Advances, 2013, 3, 45-49.	3.6	38
173	Dopamine as the coating agent and carbon precursor for the fabrication of N-doped carbon coated Fe3O4 composites as superior lithium ion anodes. Nanoscale, 2013, 5, 1168.	5.6	334
174	Nitrogen-doped graphene by microwave plasma chemical vapor deposition. Thin Solid Films, 2013, 528, 269-273.	1.8	38
175	Cobalt and nitrogen-cofunctionalized graphene as a durable non-precious metal catalyst with enhanced ORR activity,. Journal of Materials Chemistry A, 2013, 1, 3593.	10.3	169
176	Synthesis of three-dimensional flowerlike nitrogen-doped carbons by a copyrolysis route and the effect of nitrogen species on the electrocatalytic activity in oxygen reduction reaction. Carbon, 2013, 54, 249-257.	10.3	143
177	Synthesis of nitrogen-doped graphene from ployacrylonitrile. Materials Letters, 2013, 109, 182-185.	2.6	8
178	Scalable Functionalized Graphene Nano-platelets as Tunable Cathodes for High-performance Lithium Rechargeable Batteries. Scientific Reports, 2013, 3, 1506.	3.3	84
179	Benzyne-functionalized graphene and graphite characterized by Raman spectroscopy and energy dispersive X-ray analysis. Carbon, 2013, 54, 192-200.	10.3	30
180	Assembled gold nanoparticles on nitrogen-doped graphene for ultrasensitive electrochemical detection of matrix metalloproteinase-2. Carbon, 2013, 61, 357-366.	10.3	91
181	Nitrogen-tuned bonding mechanism of Li and Ti adatom embedded graphene. Journal of Solid State Chemistry, 2013, 205, 160-164.	2.9	7
182	A general polymer-assisted solution approach to grow transition metal oxide nanostructures directly on nickel foam as anodes for Li-ion batteries. Journal of Power Sources, 2013, 242, 604-609.	7.8	17
183	Highly nitrogen-doped carbon capsules: scalable preparation and high-performance applications in fuel cells and lithium ion batteries. Nanoscale, 2013, 5, 2726.	5.6	177
184	Influence of paper thickness on the electrochemical performances of graphene papers as an anode for lithium ion batteries. Electrochimica Acta, 2013, 91, 227-233.	5.2	56
185	A simple process to prepare nitrogen-modified few-layer graphene for a supercapacitor electrode. Carbon, 2013, 57, 184-190.	10.3	83

#	Article	IF	CITATIONS
186	Theoretical Study of sp ² -sp ³ Hybridized Carbon Network for Li-ion Battery Anode. Journal of Physical Chemistry C, 2013, 117, 4951-4956.	3.1	15
187	High rate capability of TiO2/nitrogen-doped graphene nanocomposite as an anode material for lithium–ion batteries. Journal of Alloys and Compounds, 2013, 561, 54-58.	5.5	79
188	Facile synthesis of SnO2 nanoparticles dispersed nitrogen doped graphene anode material for ultrahigh capacity lithium ion battery applications. Journal of Materials Chemistry A, 2013, 1, 3865.	10.3	120
189	<i>In Situ</i> Fabrication of Porous Graphene Electrodes for High-Performance Energy Storage. ACS Nano, 2013, 7, 2422-2430.	14.6	394
190	Structural evolution of functionalized graphene sheets during solvothermal reduction. Carbon, 2013, 56, 132-138.	10.3	45
191	Nanomaterials for energy conversion and storage. Chemical Society Reviews, 2013, 42, 3127.	38.1	1,356
192	N-Doped Graphene–VO ₂ (B) Nanosheet-Built 3D Flower Hybrid for Lithium Ion Battery. ACS Applied Materials & Interfaces, 2013, 5, 2708-2714.	8.0	172
193	Graphene–Nanotube–Iron Hierarchical Nanostructure as Lithium Ion Battery Anode. ACS Nano, 2013, 7, 4242-4251.	14.6	192
194	Graphene: A Twoâ€Ðimensional Platform for Lithium Storage. Small, 2013, 9, 1173-1187.	10.0	176
195	Ultrathin rechargeable all-solid-state batteries based on monolayer graphene. Journal of Materials Chemistry A, 2013, 1, 3177.	10.3	60
196	Indium-doped SnO2 nanoparticle–graphene nanohybrids: simple one-pot synthesis and their selective detection of NO2. Journal of Materials Chemistry A, 2013, 1, 4462.	10.3	129
197	Electronic structure of N-doped graphene with native point defects. Physical Review B, 2013, 87, .	3.2	113
198	Enhanced efficiency of graphene/silicon heterojunction solar cells by molecular doping. Journal of Materials Chemistry A, 2013, 1, 5736.	10.3	166
199	Graphene-Based Chemical and Biosensors. Springer Series on Chemical Sensors and Biosensors, 2013, , 103-141.	0.5	9
200	Superhigh capacity and rate capability of high-level nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Electrochimica Acta, 2013, 90, 492-497.	5.2	114
201	Nitrogen and sulfur co-doped ordered mesoporous carbon with enhanced electrochemical capacitance performance. Journal of Materials Chemistry A, 2013, 1, 7584.	10.3	169
202	Plasma-assisted simultaneous reduction and nitrogen doping of graphene oxide nanosheets. Journal of Materials Chemistry A, 2013, 1, 4431.	10.3	198
203	Enhanced rate performance of cobalt oxide/nitrogen doped graphene composite for lithium ion batteries. RSC Advances, 2013, 3, 5003.	3.6	44

#	Article	IF	CITATIONS
204	Pt–Au/nitrogen-doped graphene nanocomposites for enhanced electrochemical activities. Journal of Materials Chemistry A, 2013, 1, 1754-1762.	10.3	121
205	Nitrogen-doped graphene hollow nanospheres as novel electrode materials for supercapacitor applications. Journal of Power Sources, 2013, 243, 973-981.	7.8	157
206	Carbon Nanostructures in Lithium Ion Batteries: Past, Present, and Future. Critical Reviews in Solid State and Materials Sciences, 2013, 38, 128-166.	12.3	66
207	Unusual formation of α-Fe2O3 hexagonal nanoplatelets in N-doped sandwiched graphene chamber for high-performance lithium-ions batteries. Nano Energy, 2013, 2, 257-267.	16.0	92
208	Large Areal Mass, Flexible and Freeâ€standing Reduced Graphene Oxide/Manganese Dioxide Paper for Asymmetric Supercapacitor Device. Advanced Materials, 2013, 25, 2809-2815.	21.0	562
209	Growth and electronic structure of boron-doped graphene. Physical Review B, 2013, 87, .	3.2	113
210	Nickel Sulfide/Nitrogenâ€Doped Graphene Composites: Phaseâ€Controlled Synthesis and High Performance Anode Materials for Lithium Ion Batteries. Small, 2013, 9, 1321-1328.	10.0	297
211	Nitrogen-Doped Graphene Nanoplatelets from Simple Solution Edge-Functionalization for n-Type Field-Effect Transistors. Journal of the American Chemical Society, 2013, 135, 8981-8988.	13.7	113
212	Theoretical Characterization of X-ray Absorption, Emission, and Photoelectron Spectra of Nitrogen Doped along Graphene Edges. Journal of Physical Chemistry A, 2013, 117, 579-589.	2.5	39
213	Synthesis of Fluorinated Graphene Oxide and its Amphiphobic Properties. Particle and Particle Systems Characterization, 2013, 30, 266-272.	2.3	106
214	Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy and Environmental Science, 2013, 6, 871.	30.8	983
215	Randomly stacked holey graphene anodes for lithium ion batteries with enhanced electrochemical performance. Journal of Materials Chemistry A, 2013, 1, 7775.	10.3	104
216	Microscopic View on a Chemical Vapor Deposition Route to Boron-Doped Graphene Nanostructures. Chemistry of Materials, 2013, 25, 1490-1495.	6.7	130
217	Excellent electrical conductivity of the exfoliated and fluorinated hexagonal boron nitride nanosheets. Nanoscale Research Letters, 2013, 8, 49.	5.7	109
218	Evolution of Raman spectra in nitrogen doped graphene. Carbon, 2013, 61, 57-62.	10.3	228
219	Identifying the Active Site in Nitrogen-Doped Graphene for the VO ²⁺ /VO ₂ ⁺ Redox Reaction. ACS Nano, 2013, 7, 4764-4773.	14.6	236
220	Feasibility of Lithium Storage on Graphene and Its Derivatives. Journal of Physical Chemistry Letters, 2013, 4, 1737-1742.	4.6	297
221	Morphological and physical investigation of carbon nanotube and graphene buffers used in high capacity lithium ion battery anodes. Journal of Electroanalytical Chemistry, 2013, 695, 30-37.	3.8	11

#	Article	IF	CITATIONS
222	Sulfur-Doped Graphene <i>via</i> Thermal Exfoliation of Graphite Oxide in H ₂ S, SO ₂ , or CS ₂ Gas. ACS Nano, 2013, 7, 5262-5272.	14.6	321
223	Silicon nanoparticles encapsulated in hollow graphitized carbon nanofibers for lithium ion battery anodes. Nanoscale, 2013, 5, 2967.	5.6	164
224	Photochemical doping of graphene oxide with nitrogen for photoluminescence enhancement. Applied Physics Letters, 2013, 103, .	3.3	28
225	Graphene–molybdenum oxynitride porous material with improved cyclic stability and rate capability for rechargeable lithium ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 16898.	2.8	30
226	Chemically Functionalized Graphene and Their Applications in Electrochemical Energy Conversion and Storage. , 0, , .		9
227	Chargeâ€Transport Tuning of Solutionâ€Processable Graphene Nanoribbons by Substitutional Nitrogen Doping. Macromolecular Chemistry and Physics, 2013, 214, 2768-2773.	2.2	40
228	Nitrogenâ€doped Graphitic Carbon Synthesized by Laser Annealing of Sumanenemonoone Imine as a Bowlâ€shaped Ï€â€Conjugated Molecule. Chemistry - an Asian Journal, 2013, 8, 2569-2574.	3.3	17
229	Coal Char Derived Few-Layer Graphene Anodes for Lithium Ion Batteries. Photonics, 2014, 1, 251-259.	2.0	16
230	Nitrogen-rich graphene from small molecules as high performance anode material. Nanotechnology, 2014, 25, 415402.	2.6	9
231	MOLECULAR DYNAMICS STUDY OF PTX ADSORPTION ONTO N-DOPED GRAPHENE IN VACUUM AND AQUEOUS ENVIRONMENTS. Nano, 2014, 09, 1450088.	1.0	4
232	Electrode Nanostructures in Lithiumâ€Based Batteries. Advanced Science, 2014, 1, 1400012.	11.2	148
233	A resin-based methodology to synthesize N-doped graphene-like metal-free catalyst for oxygen reduction. Electrochimica Acta, 2014, 142, 182-186.	5.2	17
234	The Electrochemistry of Graphene. , 2014, , 79-126.		3
235	Fe2O3 nanowires on HOPG as precursor of new carbon-based anode for high-capacity lithium ion batteries. , 2014, , .		1
236	Rational Design of Ni Nanoparticles on Nâ€Rich Ultrathin Carbon Nanosheets for Highâ€Performance Supercapacitor Materials: Embedded―Versus Anchoredâ€Type Dispersion. Chemistry - A European Journal, 2014, 20, 5046-5053.	3.3	37
237	Sumanenemonoone Imines Bridged by Redoxâ€Active Ï€â€Conjugated Unit: Synthesis, Stepwise Coordination to Palladium(II), and Laserâ€Induced Formation of Nitrogenâ€Doped Graphitic Carbon. Chemistry - an Asian Journal, 2014, 9, 2568-2575.	3.3	13
238	Fabrication of Fully Fluorinated Graphene Nanosheets Towards Highâ€Performance Lithium Storage. Advanced Materials Interfaces, 2014, 1, 1300149.	3.7	51
239	Composites of Graphene and LiFePO4 as Cathode Materials for Lithium-Ion Battery: A Mini-review. Nano-Micro Letters, 2014, 6, 316-326.	27.0	44

# 240	ARTICLE Synthesis of nitrogen doped graphene from graphene oxide within an ammonia flame for high	IF 3.6	Citations
241	Copper and nitrogen co-doped SnO 2 hierarchical microspheres as a novel anode material for lithium ion batteries. Materials Letters, 2014, 133, 168-170.	2.6	6
242	Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells. Journal of Materials Chemistry A, 2014, 2, 15-32.	10.3	427
243	Synthesis of nitrogen-doped graphene by the thermal chemical vapor deposition method from a single liquid precursor. Materials Letters, 2014, 117, 199-203.	2.6	19
244	Superior cycle stability of graphene nanosheets prepared by freeze-drying process as anodes for lithium-ion batteries. Journal of Power Sources, 2014, 254, 198-203.	7.8	44
245	Synthesis and luminescence of graphene-nano calcium sulphide composite. Materials Chemistry and Physics, 2014, 147, 57-64.	4.0	9
246	Concurrent Phosphorus Doping and Reduction of Graphene Oxide. Chemistry - A European Journal, 2014, 20, 4284-4291.	3.3	46
247	Graphene closer to fruition. Nature Materials, 2014, 13, 328-329.	27.5	28
248	A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy and Environmental Science, 2014, 7, 1564.	30.8	996
249	Correlation Between Atomic Structure and Electrochemical Performance of Anodes Made from Electrospun Carbon Nanofiber Films. Advanced Energy Materials, 2014, 4, 1301448.	19.5	133
250	Graphene and Grapheneâ€like Layered Transition Metal Dichalcogenides in Energy Conversion and Storage. Small, 2014, 10, 2165-2181.	10.0	535
251	Atomistic Origins of High Rate Capability and Capacity of N-Doped Graphene for Lithium Storage. Nano Letters, 2014, 14, 1164-1171.	9.1	304
252	High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon, 2014, 68, 777-783.	10.3	78
253	Determination of methyl parathion by a molecularly imprinted sensor based on nitrogen doped graphene sheets. Electrochimica Acta, 2014, 116, 366-371.	5.2	94
254	Electrochemical studies of few-layered graphene as an anode material for Li ion batteries. Journal of Solid State Electrochemistry, 2014, 18, 941-949.	2.5	82
255	25th Anniversary Article: Chemically Modified/Doped Carbon Nanotubes & Graphene for Optimized Nanostructures & Nanodevices. Advanced Materials, 2014, 26, 40-67.	21.0	479
256	Application of N-doped graphene modified carbon ionic liquid electrode for direct electrochemistry of hemoglobin. Materials Science and Engineering C, 2014, 39, 86-91.	7.3	23
257	One-step synthesis Fe3N surface-modified Fe3O4 nanoparticles with excellent lithium storage ability. Applied Surface Science, 2014, 305, 683-688.	6.1	30

#	Article	IF	CITATIONS
258	Conversion of pyrazoline to pyrazole in hydrazine treated N-substituted reduced graphene oxide films obtained by ion bombardment and their electrical properties. Carbon, 2014, 74, 32-43.	10.3	25
259	Porous Li ₂ C ₈ H ₄ O ₄ coated with N-doped carbon by using CVD as an anode material for Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 5696-5702.	10.3	62
260	Phosphorus-doped reduced graphene oxide as an electrocatalyst counter electrode in dye-sensitized solar cells. Journal of Power Sources, 2014, 263, 246-251.	7.8	110
261	Distinct Mechanisms of DNA Sensing Based on Nâ€Doped Carbon Nanotubes with Enhanced Conductance and Chemical Selectivity. Small, 2014, 10, 774-781.	10.0	11
262	In situ nitrogen-doped nanoporous carbon nanocables as an efficient metal-free catalyst for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 10154.	10.3	73
263	Facile construction of Mn3O4 nanorods coated by a layer of nitrogen-doped carbon with high activity for oxygen reduction reaction. Nano Energy, 2014, 6, 44-50.	16.0	62
264	Threeâ€Dimensional Selfâ€Supported Metal Oxides for Advanced Energy Storage. Advanced Materials, 2014, 26, 3368-3397.	21.0	446
265	Graphene and Grapheneâ€Based Materials for Energy Storage Applications. Small, 2014, 10, 3480-3498.	10.0	653
266	Porous nitrogen-doped carbon nanosheet on graphene as metal-free catalyst for oxygen reduction reaction in air-cathode microbial fuel cells. Bioelectrochemistry, 2014, 95, 23-28.	4.6	105
267	Sulfur-incorporated, porous graphene films for high performance flexible electrochemical capacitors. Carbon, 2014, 77, 59-65.	10.3	114
268	Layerâ€byâ€Layer Assembled Heteroatomâ€Doped Graphene Films with Ultrahigh Volumetric Capacitance and Rate Capability for Microâ€Supercapacitors. Advanced Materials, 2014, 26, 4552-4558.	21.0	289
269	Filling the Voids of Graphene Foam with Graphene "Eggshell―for Improved Lithium-Ion Storage. ACS Applied Materials & Interfaces, 2014, 6, 9835-9841.	8.0	64
270	Boosting plant biology. Nature Materials, 2014, 13, 329-331.	27.5	19
271	Graphene Coupled Schiffâ€base Porous Polymers: Towards Nitrogenâ€enriched Porous Carbon Nanosheets with Ultrahigh Electrochemical Capacity. Advanced Materials, 2014, 26, 3081-3086.	21.0	224
272	Chemical Vapor Deposition of N-Doped Graphene and Carbon Films: The Role of Precursors and Gas Phase. ACS Nano, 2014, 8, 3337-3346.	14.6	133
273	Amorphous Nitrogen Doped Carbon Films: A Novel Corrosion Resistant Coating Material. Advanced Engineering Materials, 2014, 16, 532-538.	3.5	13
274	Recent progress on flexible lithium rechargeable batteries. Energy and Environmental Science, 2014, 7, 538-551.	30.8	355
275	Nitrogen-containing graphene analyzed by X-ray photoelectron spectroscopy. Carbon, 2014, 70, 59-74.	10.3	146

#	Article	IF	CITATIONS
276	Nitrogen-Doped Carbon Nanoparticles by Flame Synthesis as Anode Material for Rechargeable Lithium-Ion Batteries. Langmuir, 2014, 30, 318-324.	3.5	225
277	Rapid synthesis of nitrogen-doped graphene for a lithium ion battery anode with excellent rate performance and super-long cyclic stability. Physical Chemistry Chemical Physics, 2014, 16, 1060-1066.	2.8	146
278	Polarized X-ray Absorption Spectroscopy Observation of Electronic and Structural Changes of Chemical Vapor Deposition Graphene in Contact with Water. Journal of Physical Chemistry C, 2014, 118, 25456-25459.	3.1	23
279	Mid-infrared Polaritonic Coupling between Boron Nitride Nanotubes and Graphene. ACS Nano, 2014, 8, 11305-11312.	14.6	38
280	Enhanced microwave absorption properties of N-doped graphene@PANI nanorod arrays hierarchical structures modified by Fe3O4 nanoclusters. Synthetic Metals, 2014, 198, 300-307.	3.9	32
281	Chemical Reactivity and Bandâ€Gap Opening of Graphene Doped with Gallium, Germanium, Arsenic, and Selenium Atoms. ChemPhysChem, 2014, 15, 3994-4000.	2.1	67
282	Synthesis and Electrocatalytic Properties of Uniform Palladium Nanocubes by using Graphene Oxide as Surfactant and Support. ChemCatChem, 2014, 6, 2215-2218.	3.7	5
283	N-doped graphene quantum dots-functionalized titanium dioxide nanofibers and their highly efficient photocurrent response. Journal of Materials Research, 2014, 29, 1408-1416.	2.6	21
284	From melamine–resorcinol–formaldehyde to nitrogen-doped carbon xerogels with micro- and meso-pores for lithium batteries. Journal of Materials Chemistry A, 2014, 2, 14429-14438.	10.3	66
285	Selective Hydrogenation of Phenol to Cyclohexanone in Water over Pd@Nâ€Doped Carbon Derived from Ionicâ€Liquid Precursors. ChemCatChem, 2014, 6, 3328-3332.	3.7	76
286	High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nature Communications, 2014, 5, 5261.	12.8	1,257
287	Molybdenum nitride/nitrogen-doped graphene hybrid material for lithium storage in lithium ion batteries. Electrochimica Acta, 2014, 150, 15-22.	5.2	44
288	Patterned graphene functionalization via mask-free scanning of micro-plasma jet under ambient condition. Applied Physics Letters, 2014, 104, .	3.3	66
289	Stability and Spectroscopy of Single Nitrogen Dopants in Graphene at Elevated Temperatures. ACS Nano, 2014, 8, 11806-11815.	14.6	45
290	Fabrication of Nitrogen-Doped Holey Graphene Hollow Microspheres and Their Use as an Active Electrode Material for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 19082-19091.	8.0	62
291	Nitrogen doped graphene: influence of precursors and conditions of the synthesis. Journal of Materials Chemistry C, 2014, 2, 2887-2893.	5.5	61
292	Free-standing graphene-based nanohybrid paper electrode as an anode for lithium-ion batteries. RSC Advances, 2014, 4, 38310-38315.	3.6	3
293	Nitrogen containing graphene-like structures from pyrolysis of pyrimidine polymers for polymer/graphene hybrid field effect transistors. RSC Advances, 2014, 4, 41997-42001.	3.6	7

#	ARTICLE	IF	CITATIONS
294	High concentration of nitrogen doped into graphene using N ₂ plasma with an aluminum oxide buffer layer. Journal of Materials Chemistry C, 2014, 2, 933-939.	5.5	62
295	Synthesis of nitrogen-doped reduced graphene oxide directly from nitrogen-doped graphene oxide as a high-performance lithium ion battery anode. RSC Advances, 2014, 4, 42412-42417.	3.6	79
296	Recycling chicken eggshell membranes for high-capacity sodium battery anodes. RSC Advances, 2014, 4, 50950-50954.	3.6	31
297	Design of nitrogen doped graphene grafted TiO ₂ hollow nanostructures with enhanced sodium storage performance. Journal of Materials Chemistry A, 2014, 2, 12449-12458.	10.3	66
298	Nanocarbon-based electrochemical systems for sensing, electrocatalysis, and energy storage. Nano Today, 2014, 9, 405-432.	11.9	93
299	Enhancing the Li Storage Capacity and Initial Coulombic Efficiency for Porous Carbons by Sulfur Doping. ACS Applied Materials & Interfaces, 2014, 6, 15950-15958.	8.0	93
300	A promising monolayer membrane for oxygen separation from harmful gases: nitrogen-substituted polyphenylene. Nanoscale, 2014, 6, 9960-9964.	5.6	51
301	Reduction of the oxygen reduction reaction overpotential of nitrogen-doped graphene by designing it to a microspherical hollow shape. Journal of Materials Chemistry A, 2014, 2, 14071.	10.3	38
302	Spiers Memorial Lecture : Advances of carbon nanomaterials. Faraday Discussions, 2014, 173, 9-46.	3.2	24
303	Nitrogen-enriched electrospun porous carbon nanofiber networks as high-performance free-standing electrode materials. Journal of Materials Chemistry A, 2014, 2, 19678-19684.	10.3	165
304	First-Principles Studies of Lithium Adsorption and Diffusion on Graphene with Grain Boundaries. Journal of Physical Chemistry C, 2014, 118, 28055-28062.	3.1	70
305	Nitrogen doped graphene paper as a highly conductive, and light-weight substrate for flexible supercapacitors. RSC Advances, 2014, 4, 51878-51883.	3.6	33
306	One-pot synthesis of carbon nanoribbons and their enhanced lithium storage performance. Journal of Materials Chemistry A, 2014, 2, 11974-11979.	10.3	14
307	Bottom-up synthesis of nitrogen-doped graphene sheets for ultrafast lithium storage. Nanoscale, 2014, 6, 6075-6083.	5.6	110
308	Submerged liquid plasma – low energy synthesis of nitrogen-doped graphene for electrochemical applications. Journal of Materials Chemistry A, 2014, 2, 3332-3337.	10.3	51
309	Soft-template synthesis of nitrogen-doped carbon nanodots: tunable visible-light photoluminescence and phosphor-based light-emitting diodes. Journal of Materials Chemistry C, 2014, 2, 4221.	5.5	51
310	Direct synthesis of phosphorus and nitrogen co-doped monolayer graphene with air-stable n-type characteristics. Physical Chemistry Chemical Physics, 2014, 16, 20392-20397.	2.8	39
311	Synthesis and electrochemical properties of graphene-modified LiCo _{1/3} Ni _{1/3} Mn _{1/3} O ₂ cathodes for lithium ion batteries. RSC Advances, 2014, 4, 2568-2572.	3.6	73

#	Article	IF	CITATIONS
312	Improved Lithium Ion Behavior Properties of TiO2@Graphitic-like Carbon Core@Shell Nanostructure. Electrochimica Acta, 2014, 147, 241-249.	5.2	28
313	Phosphorus and Nitrogen Dual-Doped Few-Layered Porous Graphene: A High-Performance Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 14415-14422.	8.0	228
314	High-performance hybrid electrochemical capacitor with binder-free Nb ₂ O ₅ @graphene. RSC Advances, 2014, 4, 37389.	3.6	71
315	A facile and fast electrochemical route to produce functional few-layer graphene sheets for lithium battery anode application. Journal of Materials Chemistry A, 2014, 2, 15298-15302.	10.3	17
316	Edge‣electively Halogenated Graphene Nanoplatelets (XGnPs, X = Cl, Br, or I) Prepared by Ballâ€Milling and Used as Anode Materials for Lithiumâ€Ion Batteries. Advanced Materials, 2014, 26, 7317-7323.	21.0	160
317	Excellent Performance of Fewâ€Layer Borocarbonitrides as Anode Materials in Lithiumâ€lon Batteries. Chemistry - an Asian Journal, 2014, 9, 100-103.	3.3	40
318	Nitrogen-doped carbon coated SiO nanoparticles Co-modified with nitrogen-doped graphene as a superior anode material for lithium-ion batteries. RSC Advances, 2014, 4, 35717-35725.	3.6	5
319	All-solid-state flexible micro-supercapacitor arrays with patterned graphene/MWNT electrodes. Carbon, 2014, 79, 156-164.	10.3	151
320	A FeCl ₂ -graphite sandwich composite with Cl doping in graphite layers: a new anode material for high-performance Li-ion batteries. Nanoscale, 2014, 6, 14174-14179.	5.6	42
321	Interplay between Oxidized Monovacancy and Nitrogen Doping in Graphene. Journal of Physical Chemistry C, 2014, 118, 19795-19805.	3.1	11
322	Boron doped defective graphene as a potential anode material for Li-ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 16502.	2.8	111
323	High-performance tin oxide-nitrogen doped graphene aerogel hybrids as anode materials for lithium-ion batteries. Journal of Power Sources, 2014, 270, 28-33.	7.8	96
324	Freeâ€Standing Nitrogenâ€doped Graphene Paper as Electrodes for Highâ€Performance Lithium/Dissolved Polysulfide Batteries. ChemSusChem, 2014, 7, 2545-2553.	6.8	153
325	Epitaxial Growth of Asymmetricallyâ€Đoped Bilayer Graphene for Photocurrent Generation. Small, 2014, 10, 2245-2250.	10.0	6
326	Possible Oxygen Reduction Reactions for Graphene Edges from First Principles. Journal of Physical Chemistry C, 2014, 118, 17616-17625.	3.1	56
327	Nitrogen and Sulfur Codoped Graphene: Multifunctional Electrode Materials for Highâ€Performance Liâ€ion Batteries and Oxygen Reduction Reaction. Advanced Materials, 2014, 26, 6186-6192.	21.0	598
328	Continuous production of nitrogen-functionalized graphene nanosheets for catalysis applications. Nanoscale, 2014, 6, 12758-12768.	5.6	21
329	Heteroatom-doped graphene materials: syntheses, properties and applications. Chemical Society Reviews, 2014, 43, 7067-7098.	38.1	1,547

		CITATION REPORT		
#	Article		IF	CITATIONS
330	Graphene-based nanocomposite anodes for lithium-ion batteries. Nanoscale, 2014, 6, 2	11528-11552.	5.6	151
331	A general and scalable synthesis approach to porous graphene. Nature Communication	ns, 2014, 5, 4716.	12.8	180
332	Germanium Quantum Dots Embedded in Nâ€Doping Graphene Matrix with Spongeâ€l Enhanced Performance in Lithiumâ€lon Batteries. Chemistry - A European Journal, 2014	ike Architecture for 4, 20, 9675-9682.	3.3	44
333	Nitrogen-doped carbon nanotubes and graphene composite structures for energy and applications. Chemical Communications, 2014, 50, 6818.	catalytic	4.1	428
334	Unique Configuration of a Nitrogen-Doped Graphene Nanoribbon: Potential Application Semiconductor and Hydrogen Fuel Cell. Journal of Physical Chemistry C, 2014, 118, 24	ns to 723-24729.	3.1	8
335	Amino acid mediated functionalization and reduction of graphene oxide – synthesis mechanism of nitrogen-doped graphene. New Journal of Chemistry, 2014, 38, 3457-34	and the formation 67.	2.8	58
336	Low-Temperature Growth of Large-Area Heteroatom-Doped Graphene Film. Chemistry 2014, 26, 2460-2466.	of Materials,	6.7	87
337	High capacity Li storage in sulfur and nitrogen dual-doped graphene networks. Carbon 310-320.	, 2014, 79,	10.3	101
338	Large-Area, Conductive and Flexible Reduced Graphene Oxide (RGO) Membrane Fabric Electrophoretic Deposition (EPD). ACS Applied Materials & Interfaces, 2014, 6, 17	ated by '47-1753.	8.0	100
339	Assessing Carbon-Based Anodes for Lithium-Ion Batteries: A Universal Description of C Binding. Physical Review Letters, 2014, 113, 028304.	narge-Transfer	7.8	93
340	Recent progress on nitrogen/carbon structures designed for use in energy and sustaina applications. Energy and Environmental Science, 2014, 7, 1212-1249.	ability	30.8	559
341	Nanofluids based on fluorinated graphene oxide for efficient thermal management. RS 2014, 4, 24887.	C Advances,	3.6	47
342	Confined Nanospace Synthesis of Less Aggregated and Porous Nitrogen-Doped Graphe Electrocatalysts for Oxygen Reduction Reaction in Alkaline Solution. ACS Applied Mate Interfaces, 2014, 6, 3023-3030.	ene As Metal-Free rials &	8.0	42
343	Preparation of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for c reduction and methanol oxidation. Journal of Electroanalytical Chemistry, 2014, 728, 4	oxygen ·1-50.	3.8	41
344	Nitrogen-doped graphene with enhanced oxygen reduction activity produced by pyroly functionalized with imidazole derivatives. International Journal of Hydrogen Energy, 20 12749-12756.	rsis of graphene 14, 39,	7.1	24
345	Heteroatom-doped graphene for electrochemical energy storage. Science Bulletin, 201	4, 59, 2102-2121.	1.7	47
346	Layer-by-layer assembled ionic-liquid functionalized graphene–polyaniline nanocomp enhanced electrochemical sensing properties. Journal of Materials Chemistry C, 2014,	osite with 2, 4818.	5.5	34
347	Nitrogen-Doped Hierarchical Porous Carbon Nanowhisker Ensembles on Carbon Nanof High-Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2014	iber for , 2, 1525-1533.	6.7	99

#	Article	IF	CITATIONS
348	Increasing reversible capacity of soft carbon anode by phosphoric acid treatment. Electrochimica Acta, 2014, 146, 630-637.	5.2	19
349	Atomistic mechanisms of codoping-induced p- to n-type conversion in nitrogen-doped graphene. Nanoscale, 2014, 6, 14911-14918.	5.6	30
350	N-Doped Graphene: An Alternative Carbon-Based Matrix for Highly Efficient Detection of Small Molecules by Negative Ion MALDI-TOF MS. Analytical Chemistry, 2014, 86, 9122-9130.	6.5	104
351	Hollow-tunneled graphitic carbon nanofibers through Ni-diffusion-induced graphitization as high-performance anode materials. Energy and Environmental Science, 2014, 7, 2689-2696.	30.8	135
352	An electrochemical sensor based on the three-dimensional functionalized graphene for simultaneous determination of hydroquinone and catechol. Journal of Electroanalytical Chemistry, 2014, 722-723, 38-45.	3.8	42
353	Single step fabrication of N-doped graphene/Si3N4/SiC heterostructures. Nano Research, 2014, 7, 835-843.	10.4	17
354	Graphene-Supported Nanoelectrocatalysts for Fuel Cells: Synthesis, Properties, and Applications. Chemical Reviews, 2014, 114, 5117-5160.	47.7	899
355	Graphenal Polymers for Energy Storage. Small, 2014, 10, 2122-2135.	10.0	35
356	Pyrolyzed Polyaniline–Graphene Nanosheets with Enhanced Lithiumâ€ S torage Properties: Preparation and Characterization. ChemElectroChem, 2014, 1, 951-956.	3.4	9
357	Electrochemistry of Graphene and Related Materials. Chemical Reviews, 2014, 114, 7150-7188.	47.7	968
358	Amphiphilic Polymer Promoted Assembly of Macroporous Graphene/SnO ₂ Frameworks with Tunable Porosity for Highâ€Performance Lithium Storage. Small, 2014, 10, 2226-2232.	10.0	69
359	Nitrogen implantation of suspended graphene flakes: Annealing effects and selectivity of sp2 nitrogen species. Carbon, 2014, 73, 371-381.	10.3	68
360	Colloidal suspensions of N-modified graphene nano-platelets in water and organic solvent/water mixed systems. Solid State Sciences, 2014, 27, 1-4.	3.2	16
361	Nitrogen-doped carbon nanofibers as anode material for high-capacity and binder-free lithium ion battery. Materials Letters, 2014, 120, 39-42.	2.6	34
362	Porous nitrogen-doped carbon vegetable-sponges with enhanced lithium storage performance. Carbon, 2014, 69, 515-524.	10.3	96
363	One novel and universal method to prepare transition metal nitrides doped graphene anodes for Li-ion battery. Electrochimica Acta, 2014, 134, 28-34.	5.2	41
364	In-situ generated nano-Fe3C embedded into nitrogen-doped carbon for high performance anode in lithium ion battery. Electrochimica Acta, 2014, 116, 292-299.	5.2	66
365	Co3O4/nitrogen modified graphene electrode as Li-ion battery anode with high reversible capacity and improved initial cycle performance. Nano Energy, 2014, 3, 134-143.	16.0	72

#	Article	IF	CITATIONS
366	Synthesis of Nitrogen- and Sulfur-Codoped 3D Cubic-Ordered Mesoporous Carbon with Superior Performance in Supercapacitors. ACS Applied Materials & Interfaces, 2014, 6, 2657-2665.	8.0	176
367	Highly Conductive Freestanding Graphene Films as Anode Current Collectors for Flexible Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 11158-11166.	8.0	54
368	Anchoring CuO nanoparticles on nitrogen-doped reduced graphene oxide nanosheets as electrode material for supercapacitors. Journal of Electroanalytical Chemistry, 2014, 727, 154-162.	3.8	80
369	Nitrogen-doped reduced graphene oxide electrodes for electrochemical supercapacitors. Physical Chemistry Chemical Physics, 2014, 16, 2280.	2.8	87
370	Hollow Nanospheres Constructed by CoS ₂ Nanosheets with a Nitrogenâ€Dopedâ€Carbon Coating for Energyâ€&torage and Photocatalysis. ChemSusChem, 2014, 7, 2212-2220.	6.8	96
371	NMR Chemical Shifts of ¹⁵ N-Bearing Graphene. Journal of Physical Chemistry C, 2014, 118, 13929-13935.	3.1	11
372	Nitrogen-Doped Graphene Nanosheets from Bulk Graphite using Microwave Irradiation. ACS Applied Materials & Interfaces, 2014, 6, 6361-6368.	8.0	110
373	The Handbook of Graphene Electrochemistry. , 2014, , .		151
374	Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements. Nano Today, 2014, 9, 324-343.	11.9	369
375	Efficient reduction and exfoliation of graphite oxide by sequential chemical reduction and microwave irradiation. Synthetic Metals, 2014, 194, 71-76.	3.9	19
376	Optical properties of nitrogen-doped graphene thin films probed by spectroscopic ellipsometry. Thin Solid Films, 2014, 571, 675-679.	1.8	14
377	Fabrication of three-dimensional graphene foam with high electrical conductivity and large adsorption capability. Applied Surface Science, 2014, 311, 808-815.	6.1	72
378	Chemical nature of boron and nitrogen dopant atoms in graphene strongly influences its electronic properties. Physical Chemistry Chemical Physics, 2014, 16, 14231-14235.	2.8	86
380	Solvothermal-Induced 3D Macroscopic SnO ₂ /Nitrogen-Doped Graphene Aerogels for High Capacity and Long-Life Lithium Storage. ACS Applied Materials & Interfaces, 2014, 6, 3427-3436.	8.0	199
381	Facile graphene n-doping by wet chemical treatment for electronic applications. Nanoscale, 2014, 6, 8503.	5.6	35
382	Applications of Graphene in Lithium Ion Batteries. Electrochemical Energy Storage and Conversion, 2014, , 65-136.	0.0	0
383	Electrocatalytic activity of a nitrogen-enriched mesoporous carbon framework and its hybrids with metal nanoparticles fabricated through the pyrolysis of block copolymers. RSC Advances, 2015, 5, 105760-105773.	3.6	7
384	- Different Functionalization Methods of Carbon-Based Nanomaterials. , 2015, , 54-83.		0

		CITATION REPORT		
#	ARTICLE		IF	CITATIONS
386	Charge transfer and electronic doping in nitrogen-doped graphene. Scientific Reports, 201	5, 5, 14564.	3.3	79
387	Large-Scale Molecular Simulations on the Mechanical Response and Failure Behavior of a d Graphene: Cases of 5–8–5 Defects. Scientific Reports, 2015, 5, 14957.	efective	3.3	50
388	3D coral-like nitrogen-sulfur co-doped carbon-sulfur composite for high performance lithiu batteries. Scientific Reports, 2015, 5, 13340.	m-sulfur	3.3	104
389	3D hierarchical porous graphene aerogel with tunable meso-pores on graphene nanosheet high-performance energy storage. Scientific Reports, 2015, 5, 14229.	s for	3.3	139
390	Synthesis of Carboxylated Graphene Oxide–CdS Nanocomposite and Its Application on Devices. Bulletin of the Chemical Society of Japan, 2015, 88, 684-689.	Photovoltaic	3.2	4
391	The roles of lithium-philic giant nitrogen-doped graphene in protecting micron-sized silicor from fading. Scientific Reports, 2015, 5, 15665.	anode	3.3	42
392	Synthesis and characterization of nitrogen-doped graphene films using C5NCl5. Applied Pl Letters, 2015, 106, .	nysics	3.3	15
393	Direct Synthesis of Co-doped Graphene on Dielectric Substrates Using Solid Carbon Sourc Nano-Micro Letters, 2015, 7, 368-373.	es.	27.0	15
394	- Functionalization of Carbon Nanotubes with Polymers. , 2015, , 848-869.			1
395	Carbonâ€Based Materials for Lithiumâ€lon Batteries, Electrochemical Capacitors, and Thei Devices. ChemSusChem, 2015, 8, 2284-2311.	r Hybrid	6.8	259
396	Design Considerations for Unconventional Electrochemical Energy Storage Architectures. Energy Materials, 2015, 5, 1402115.	Advanced	19.5	271
397	Selective Nitrogen Functionalization of Graphene by Buchererâ€₹ype Reaction. Chemistry Journal, 2015, 21, 8090-8095.	- A European	3.3	19
398	A Self‣tanding and Flexible Electrode of Yolk–Shell CoS ₂ Spheres Encap Nitrogenâ€Doped Graphene for Highâ€Performance Lithiumâ€Ion Batteries. Chemistry - A 2015, 21, 4359-4367.	sulated with European Journal,	3.3	128
399	Supramolecular Polymerization Promoted In Situ Fabrication of Nitrogenâ€Doped Porous Sheets as Anode Materials for Liâ€ion Batteries. Advanced Energy Materials, 2015, 5, 1500	Graphene D559.	19.5	133
400	Free‣tanding SnO ₂ /Nitrogenâ€Doped Graphene Films as Highâ€Performar Electrodes for Flexible Lithiumâ€lon Batteries. Energy Technology, 2015, 3, 1225-1232.	ıce Binderâ€Free	3.8	11
401	Nitrogenâ€Doped Holey Graphene as an Anode for Lithiumâ€Ion Batteries with High Volur Density and Long Cycle Life. Small, 2015, 11, 6179-6185.	netric Energy	10.0	115
403	The Role of Intentionally Introduced Defects on Electrode Materials for Alkaliâ€lon Batteria Chemistry - an Asian Journal, 2015, 10, 1608-1617.	25.	3.3	69
404	Fabrication of Porous Nitrogenâ€Doped Carbon Materials as Anodes for Highâ€Performan Batteries. Chinese Journal of Chemistry, 2015, 33, 1293-1302.	ce Lithium Ion	4.9	21

#	Article	IF	CITATIONS
405	3D Porous Nâ€Doped Graphene Frameworks Made of Interconnected Nanocages for Ultrahighâ€Rate and Long‣ife Li–O ₂ Batteries. Advanced Functional Materials, 2015, 25, 6913-6920.	14.9	231
406	Nitrogen-doped graphene films from chemical vapor deposition of pyridine: influence of process parameters on the electrical and optical properties. Beilstein Journal of Nanotechnology, 2015, 6, 2028-2038.	2.8	63
407	Nitrogen-Doped Carbon Nanotube and Graphene Materials for Oxygen Reduction Reactions. Catalysts, 2015, 5, 1574-1602.	3.5	183
408	Synthesis of Ternary Borocarbonitrides by High Temperature Pyrolysis of Ethane 1,2-Diamineborane. Materials, 2015, 8, 5974-5985.	2.9	13
409	Reduction Expansion Synthesis as Strategy to Control Nitrogen Doping Level and Surface Area in Graphene. Materials, 2015, 8, 7048-7058.	2.9	14
410	Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications. Nanomaterials, 2015, 5, 755-777.	4.1	73
411	Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator. Nature Communications, 2015, 6, 7258.	12.8	211
412	The influence of source molecule structure on the low temperature growth of nitrogen-doped graphene. Physical Chemistry Chemical Physics, 2015, 17, 14115-14121.	2.8	11
413	Multifunctional glucose biosensors from Fe3O4 nanoparticles modified chitosan/graphene nanocomposites. Scientific Reports, 2015, 5, 11129.	3.3	103
414	Synthesis of fluorescent BCN hybrid nanosheets: a highly efficient fluorosensor for rapid, simple, sensitive Ag+ detection. RSC Advances, 2015, 5, 52452-52458.	3.6	13
415	High-performance electrospun nanostructured composite fiber anodes for lithium–ion batteries. , 2015, , 662-689.		2
416	Graphene-graphene oxide-graphene hybrid nanopapers with superior mechanical, gas barrier and electrical properties. AIP Advances, 2015, 5, .	1.3	16
417	Nitrogenâ€Doped Carbon Membrane Derived from Polyimide as Freeâ€Standing Electrodes for Flexible Supercapacitors. Small, 2015, 11, 3476-3484.	10.0	63
418	1â€Azaâ€15â€Crownâ€5 Functionalized Graphene Oxide for 2D Grapheneâ€Based Li ⁺ â€ion Conduc Small, 2015, 11, 3451-3457.	tor 10.0	16
419	Pyrolyzed polyaniline and graphene nano sheet composite with improved rate and cycle performance for lithium storage. Carbon, 2015, 92, 354-361.	10.3	21
420	Enhanced Shubnikov–De Haas Oscillation in Nitrogen-Doped Graphene. ACS Nano, 2015, 9, 7207-7214.	14.6	19
421	Band Gap Engineering of Boron Nitride by Graphene and Its Application as Positive Electrode Material in Asymmetric Supercapacitor Device. ACS Applied Materials & amp; Interfaces, 2015, 7, 14211-14222.	8.0	131
422	Ultrafine Metal Phosphide Nanocrystals <i>in Situ</i> Decorated on Highly Porous Heteroatom-Doped Carbons for Active Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2015, 7, 28369-28376.	8.0	72

#	ARTICLE	IF	CITATIONS
423	Electrodes. Journal of Physical Chemistry C, 2015, 119, 26290-26295.	3.1	118
424	Building graphene p–n junctions for next-generation photodetection. Nano Today, 2015, 10, 701-716.	11.9	45
425	Graphene-Based Glucose Sensors: A Brief Review. IEEE Transactions on Nanobioscience, 2015, 14, 818-834.	3.3	44
426	Preparation and Lithium Storage Performance of NiO/ C@CNT Anode Material. Rare Metal Materials and Engineering, 2015, 44, 2109-2113.	0.8	2
427	Hydrothermal deposition of manganese dioxide nanosheets on electrodeposited graphene covered nickel foam as a high-performance electrode for supercapacitors. Journal of Power Sources, 2015, 279, 138-145.	7.8	60
428	Nanoscale imaging of freestanding nitrogen doped single layer graphene. Nanoscale, 2015, 7, 2289-2294.	5.6	18
429	Hydrogenation and dehydrogenation of nitrogen-doped graphene investigated by X-ray photoelectron spectroscopy. Surface Science, 2015, 634, 89-94.	1.9	12
430	Heavily nitrogen doped, graphene supercapacitor from silk cocoon. Electrochimica Acta, 2015, 160, 244-253.	5.2	172
431	One-step and rapid synthesis of nitrogen and sulfur co-doped graphene for hydrogen peroxide and glucose sensing. Journal of Electroanalytical Chemistry, 2015, 742, 8-14.	3.8	53
432	Effect of Nitrogen Doping on the Migration of the Carbon Adatom and Monovacancy in Graphene. Journal of Physical Chemistry C, 2015, 119, 4922-4933.	3.1	29
433	Preparation of Metal-Free Nitrogen-Doped Graphene Via Direct Electrochemical Exfoliation of Graphite in Ammonium Nitrate. Australian Journal of Chemistry, 2015, 68, 830.	0.9	19
434	Silicon Phthalocyanine Covalently Functionalized N-Doped Ultrasmall Reduced Graphene Oxide Decorated with Pt Nanoparticles for Hydrogen Evolution from Water. ACS Applied Materials & Interfaces, 2015, 7, 3732-3741.	8.0	65
435	Recent advances in graphene and its metal-oxide hybrid nanostructures for lithium-ion batteries. Nanoscale, 2015, 7, 4820-4868.	5.6	169
436	The effect of diethylenetriamine on the solvothermal reactions of polyethyleneimine-graphene oxide/lithium titanate nanocomposites for lithium battery anode. Journal of Power Sources, 2015, 275, 702-711.	7.8	18
437	Core–Shell Carbonâ€Coated CuO Nanocomposites: A Highly Stable Electrode Material for Supercapacitors and Lithiumâ€lon Batteries. Chemistry - an Asian Journal, 2015, 10, 595-601.	3.3	46
438	Highâ€Performance Sodium Ion Batteries Based on a 3D Anode from Nitrogenâ€Doped Graphene Foams. Advanced Materials, 2015, 27, 2042-2048.	21.0	812
439	Microwave Enabled Oneâ€Pot, One‣tep Fabrication and Nitrogen Doping of Holey Graphene Oxide for Catalytic Applications. Small, 2015, 11, 3358-3368.	10.0	106
440	Structural characterization and chemical reactivity of dual doped graphene. Carbon, 2015, 87, 106-115.	10.3	83

#	Article	IF	CITATIONS
441	Computational study of interaction of alkali metals with C3N nanotubes. Journal of Molecular Modeling, 2015, 21, 20.	1.8	4
442	Performance of Dispersion-Corrected DFT for the Weak Interaction between Aromatic Molecules and Extended Carbon-Based Systems. Journal of Physical Chemistry C, 2015, 119, 1898-1904.	3.1	37
443	Green synthesis of fluorescent carbon quantum dots and carbon spheres from pericarp. Science China Chemistry, 2015, 58, 863-870.	8.2	44
444	Recent Development on Anodes for Naâ€ion Batteries. Israel Journal of Chemistry, 2015, 55, 486-507.	2.3	169
445	Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chemical Society Reviews, 2015, 44, 2168-2201.	38.1	1,858
446	Three-Dimensional Fe2O3 Nanocubes/Nitrogen-doped Graphene Aerogels: Nucleation Mechanism and Lithium Storage Properties. Scientific Reports, 2014, 4, 7171.	3.3	102
447	Preparation of Nitrogen and Sulfur dual-doped Mesoporous Carbon for Supercapacitor Electrodes with Long Cycle Stability. Electrochimica Acta, 2015, 177, 327-334.	5.2	57
448	Graphene modifications in polylactic acid nanocomposites: a review. Polymer Bulletin, 2015, 72, 931-961.	3.3	75
449	Half-filled energy bands induced negative differential resistance in nitrogen-doped graphene. Nanoscale, 2015, 7, 4156-4162.	5.6	32
450	A comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO ₂ /graphene for sodium-ion batteries. Nanoscale, 2015, 7, 3164-3172.	5.6	130
451	Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Physical Chemistry Chemical Physics, 2015, 17, 4799-4844.	2.8	237
452	Solvothermal synthesis of oxygen/nitrogen functionalized graphene-like materials with diversified morphology from different carbon sources and their fluorescence properties. Journal of Materials Science, 2015, 50, 1300-1308.	3.7	6
453	Synthesis of Nitrogen Doped Multilayered Graphene Flakes: Selective Nonâ€enzymatic Electrochemical Determination of Dopamine and Uric Acid in presence of Ascorbic Acid Electroanalysis, 2015, 27, 1253-1261.	2.9	12
454	Monolithic nitrogen-doped graphene frameworks as ultrahigh-rate anodes for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 15738-15744.	10.3	31
455	Design of N-doped graphene-coated cobalt-based nanoparticles supported on ceria. Journal of Materials Chemistry A, 2015, 3, 17728-17737.	10.3	17
456	A single-step room-temperature electrochemical synthesis of nitrogen-doped graphene nanoribbons from carbon nanotubes. Journal of Materials Chemistry A, 2015, 3, 18222-18228.	10.3	18
457	Predicted two-dimensional electrides: Lithium–carbon monolayer sheet. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 2511-2514.	2.1	11
459	Experimental and theoretical investigations of nitro-group doped porous carbon as a high performance lithium-ion battery anode. Journal of Materials Chemistry A, 2015, 3, 18657-18666.	10.3	54

#	Article	IF	CITATIONS
460	A highly nitrogen-doped porous graphene – an anode material for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 18229-18237.	10.3	101
461	Tuning and understanding the phase interface of TiO ₂ nanoparticles for more efficient lithium ion storage. Nanoscale, 2015, 7, 12833-12838.	5.6	36
462	lodine doped graphene as anode material for lithium ion battery. Carbon, 2015, 94, 1-8.	10.3	89
463	Nitrogen-doped graphene-supported copper complex: a novel photocatalyst for CO ₂ reduction under visible light irradiation. RSC Advances, 2015, 5, 54929-54935.	3.6	47
464	Defect-engineered mesoporous ternary nanoarchitecture of zinc-cobalt-oxide/nitrogen-doped graphene as anode material in lithium ion batteries. Carbon, 2015, 94, 455-463.	10.3	38
465	Branched Graphene Nanocapsules for Anode Material of Lithium-Ion Batteries. Chemistry of Materials, 2015, 27, 5253-5260.	6.7	74
466	One step microwaved-assisted hydrothermal synthesis of nitrogen doped graphene for high performance of supercapacitor. Applied Surface Science, 2015, 355, 419-428.	6.1	40
467	Efficient exfoliation N-doped graphene from N-containing bamboo-like carbon nanotubes for anode materials of Li-ion battery and Na-ion battery. Applied Physics A: Materials Science and Processing, 2015, 120, 471-478.	2.3	8
468	Experimental and numerical investigation of the effective electrical conductivity of nitrogen-doped graphene nanofluids. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	41
469	Three-dimensionally ordered mesoporous carbons activated by hot ammonia treatment as high-performance anode materials in lithium-ion batteries. New Journal of Chemistry, 2015, 39, 6178-6185.	2.8	22
470	Topotactical conversion of carbon coated Fe-based electrodes on graphene aerogels for lithium ion storage. Journal of Materials Chemistry A, 2015, 3, 14741-14749.	10.3	45
471	Nitrogen doped epitaxial graphene on 4H-SiC(0001) – Experimental and theoretical study. Carbon, 2015, 94, 214-223.	10.3	8
472	Nitrogen-doped ordered cubic mesoporous carbons as metal-free counter electrodes for dye-sensitized solar cells. Journal of Power Sources, 2015, 283, 305-313.	7.8	41
473	Tuning the Magnetic Properties of Carbon by Nitrogen Doping of Its Graphene Domains. Journal of the American Chemical Society, 2015, 137, 7678-7685.	13.7	82
474	Advanced graphene nanomaterials for electrochemical energy storage. Materials Research Innovations, 2015, 19, 7-19.	2.3	18
475	Carbon surface functionalities and SEI formation during Li intercalation. Carbon, 2015, 92, 193-244.	10.3	97
476	Fluorescent N-doped carbon dots for both cellular imaging and highly-sensitive catechol detection. Carbon, 2015, 91, 66-75.	10.3	161
477	Graphene-based materials for flexible supercapacitors. Chemical Society Reviews, 2015, 44, 3639-3665.	38.1	1,015

#	Article	IF	CITATIONS
478	Ruthenium nanoparticles mounted on multielement co-doped graphene: an ultra-high-efficiency cathode catalyst for Li–O ₂ batteries. Journal of Materials Chemistry A, 2015, 3, 11224-11231.	10.3	61
479	Nitrogen-Enriched Porous Carbon Coating for Manganese Oxide Nanostructures toward High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 9185-9194.	8.0	104
480	Flexible Electrodes and Electrolytes for Energy Storage. Electrochimica Acta, 2015, 175, 87-95.	5.2	65
481	Doped graphene: synthesis, properties and bioanalysis. RSC Advances, 2015, 5, 49521-49533.	3.6	49
482	Recent Advancement of Nanostructured Carbon for Energy Applications. Chemical Reviews, 2015, 115, 5159-5223.	47.7	703
483	Ultrafast lithium storage in TiO ₂ –bronze nanowires/N-doped graphene nanocomposites. Journal of Materials Chemistry A, 2015, 3, 4180-4187.	10.3	82
484	High-concentration boron doping of graphene nanoplatelets by simple thermal annealing and their supercapacitive properties. Scientific Reports, 2015, 5, 9817.	3.3	116
485	Hybrid of porous cobalt oxide nanospheres and nitrogen-doped graphene for applications in lithium-ion batteries and oxygen reduction reaction. Journal of Power Sources, 2015, 290, 25-34.	7.8	72
486	Synthesis of nitrogen-doped monolayer graphene with high transparent and n-type electrical properties. Journal of Materials Chemistry C, 2015, 3, 6172-6177.	5.5	24
487	Computational chemistry for graphene-based energy applications: progress and challenges. Nanoscale, 2015, 7, 6883-6908.	5.6	72
488	Facile Synthesis of In–Situ Nitrogenated Graphene Decorated by Few–Layer MoS 2 for Hydrogen Evolution Reaction. Electrochimica Acta, 2015, 171, 72-80.	5.2	49
489	Heteroatom-doped hierarchical porous carbons as high-performance metal-free oxygen reduction electrocatalysts. Journal of Materials Chemistry A, 2015, 3, 11725-11729.	10.3	79
490	Functionalized highly porous graphitic carbon fibers for high-rate supercapacitive electrodes. Nano Energy, 2015, 13, 658-669.	16.0	187
491	Robust reduced graphene oxide paper fabricated with a household non-stick frying pan: a large-area freestanding flexible substrate for supercapacitors. RSC Advances, 2015, 5, 33981-33989.	3.6	43
492	A new approach towards the synthesis of nitrogen-doped graphene/MnO ₂ hybrids for ultralong cycle-life lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 6291-6296.	10.3	52
493	Magnesiothermic synthesis of sulfur-doped graphene as an efficient metal-free electrocatalyst for oxygen reduction. Scientific Reports, 2015, 5, 9304.	3.3	93
494	Hydrogen storage in doped biphenylene based sheets. Computational and Theoretical Chemistry, 2015, 1062, 30-35.	2.5	48
495	A high-performance Fe and nitrogen doped catalyst derived from diazoniapentaphene salt and phenolic resin mixture for oxygen reduction reaction. Catalysis Science and Technology, 2015, 5, 1764-1774.	4.1	27

#	Article	IF	CITATIONS
496	Comparative Study of Potential Applications of Graphene, MoS ₂ , and Other Two-Dimensional Materials in Energy Devices, Sensors, and Related Areas. ACS Applied Materials & Interfaces, 2015, 7, 7809-7832.	8.0	362
497	Reduced Graphene Oxide/Boron Nitride Composite Film as a Novel Binder-Free Anode for Lithium Ion Batteries with Enhanced Performances. Electrochimica Acta, 2015, 166, 197-205.	5.2	69
498	Nitrogen doped graphene via thermal treatment of composite solid precursors as a high performance supercapacitor. RSC Advances, 2015, 5, 30679-30686.	3.6	64
499	Printing nanostructured carbon for energy storage and conversion applications. Carbon, 2015, 92, 150-176.	10.3	89
500	Heteroatom substituted and decorated graphene: preparation and applications. Physical Chemistry Chemical Physics, 2015, 17, 32077-32098.	2.8	64
501	Nanoconfined antimony in sulfur and nitrogen co-doped three-dimensionally (3D) interconnected macroporous carbon for high-performance sodium-ion batteries. Nano Energy, 2015, 18, 12-19.	16.0	97
502	N-doped carbon encapsulated ultrathin MoO ₃ nanosheets as superior anodes with high capacity and excellent rate capability for Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 24245-24253.	10.3	54
503	Lithium Intercalation in Graphene/MoS ₂ Composites: First-Principles Insights. Journal of Physical Chemistry C, 2015, 119, 25860-25867.	3.1	78
504	Ultrasensitive gas detection of large-area boron-doped graphene. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14527-14532.	7.1	177
505	Synthesis and characterization of Nitrogen-doped &CaCO3-decorated reduced graphene oxide nanocomposite for electrochemical supercapacitors. Electrochimica Acta, 2015, 184, 193-202.	5.2	36
506	Nitrogen-doped carbon-encapsulated SnO ₂ –SnS/graphene sheets with improved anodic performance in lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 24148-24154.	10.3	67
507	Improved electrochemical properties of LiFePO 4 /Cu cathode material synthesized via an optimized two-step chemical process. Journal of Alloys and Compounds, 2015, 651, 712-717.	5.5	12
508	Structural and Chemical Dynamics of Pyridinic-Nitrogen Defects in Graphene. Nano Letters, 2015, 15, 7408-7413.	9.1	204
509	One-pot synthesis and electrochemical properties of graphene/SnO2/poly (p-phenylenediamine) ternary nanocomposites. Journal of Alloys and Compounds, 2015, 652, 9-17.	5.5	16
510	Fluorinated graphene oxide for enhanced S and X-band microwave absorption. Applied Physics Letters, 2015, 106, .	3.3	67
511	Integrated 3D porous C-MoS2/nitrogen-doped graphene electrode for high capacity and prolonged stability lithium storage. Journal of Power Sources, 2015, 296, 392-399.	7.8	90
512	<i>In Situ</i> Activation of Nitrogen-Doped Graphene Anchored on Graphite Foam for a High-Capacity Anode. ACS Nano, 2015, 9, 8609-8616.	14.6	116
513	Photochemical doping of graphene oxide thin film with nitrogen for photoconductivity enhancement. Carbon, 2015, 94, 1037-1043.	10.3	10

#	Article	IF	CITATIONS
514	Theoretical prediction of silicene as a new candidate for the anode of lithium-ion batteries. Physical Chemistry Chemical Physics, 2015, 17, 29689-29696.	2.8	63
515	Nitrogen-doped holey graphene foams for high-performance lithium storage. RSC Advances, 2015, 5, 91114-91119.	3.6	21
516	Nitrogen and fluorine co-doped graphene as a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 23095-23105.	10.3	167
517	Microwave-Assisted Synthesis of Boron and Nitrogen co-doped Reduced Graphene Oxide for the Protection of Electromagnetic Radiation in Ku-Band. ACS Applied Materials & Interfaces, 2015, 7, 19831-19842.	8.0	145
518	Electronic structure and ultrafast charge transfer dynamics of phosphorous doped graphene layers on a copper substrate: a combined spectroscopic study. RSC Advances, 2015, 5, 74189-74197.	3.6	22
519	A carbon sandwich electrode with graphene filling coated by N-doped porous carbon layers for lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 20218-20224.	10.3	83
520	Honeycomb-like nitrogen-doped porous carbon supporting Pt nanoparticles as enzyme mimic for colorimetric detection of cholesterol. Sensors and Actuators B: Chemical, 2015, 221, 1515-1522.	7.8	46
521	A low-cost and one-step synthesis of N-doped monolithic quasi-graphene films with porous carbon frameworks for Li-ion batteries. Nano Energy, 2015, 17, 43-51.	16.0	73
522	Pseudocapacitance of amorphous TiO2@nitrogen doped graphene composite for high rate lithium storage. Electrochimica Acta, 2015, 180, 112-119.	5.2	60
523	Green fabrication of porous silk fibroin/graphene oxide hybrid scaffolds for bone tissue engineering. RSC Advances, 2015, 5, 78660-78668.	3.6	46
524	Lithium and Sodium Storage on Graphitic Carbon Nitride. Journal of Physical Chemistry C, 2015, 119, 21921-21927.	3.1	115
525	Nanosized Pt anchored onto 3D nitrogen-doped graphene nanoribbons towards efficient methanol electrooxidation. Journal of Materials Chemistry A, 2015, 3, 19696-19701.	10.3	60
526	Advances of graphene application in electrode materials for lithium ion batteries. Science China Technological Sciences, 2015, 58, 1829-1840.	4.0	17
527	Synthesis of Boron-Doped Polycyclic Aromatic Hydrocarbons by Tandem Intramolecular Electrophilic Arene Borylation. Organic Letters, 2015, 17, 6158-6161.	4.6	93
528	Synergistic effects of dopants on the spin density of catalytic active centres of N-doped fluorinated graphene for oxygen reduction reaction. Applied Materials Today, 2015, 1, 74-79.	4.3	66
529	Three-dimensional, sulfur-incorporated graphene aerogels for the enhanced performances of pseudocapacitive electrodes. Journal of Power Sources, 2015, 278, 484-489.	7.8	95
530	Searching for magnetism in pyrrolic N-doped graphene synthesized via hydrothermal reaction. Carbon, 2015, 84, 460-468.	10.3	112
531	Large scale production of nanoporous graphene sheets and their application in lithium ion battery. Carbon, 2015, 84, 469-478.	10.3	45

#	ARTICLE	IF	CITATIONS
" 532	Nitrogen-doped-carbon coated lithium iron phosphate cathode material with high performance for lithium-ion batteries, Journal of Alloys and Compounds, 2015, 627, 13-19.	5.5	23
533	Three dimensional metal oxides–graphene composites and their applications in lithium ion batteries. RSC Advances, 2015, 5, 8814-8834.	3.6	56
534	Fabrication of graphene oxide decorated with nitrogen-doped graphene quantum dots and its enhanced electrochemiluminescence for ultrasensitive detection of pentachlorophenol. Analyst, The, 2015, 140, 1253-1259.	3.5	53
535	How Much N-Doping Can Graphene Sustain?. Journal of Physical Chemistry Letters, 2015, 6, 106-112.	4.6	62
536	Gas sensing properties of graphene–WO3 composites prepared by hydrothermal method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 193, 97-104.	3.5	43
537	Beryllium doping graphene, graphene-nanoribbons, C60-fullerene, and carbon nanotubes. Carbon, 2015, 84, 317-326.	10.3	27
538	Nitrogenâ€Ðopingâ€Induced Defects of a Carbon Coating Layer Facilitate Naâ€Storage in Electrode Materials. Advanced Energy Materials, 2015, 5, 1400982.	19.5	321
539	One step in-situ synthesis of amine functionalized graphene for immunosensing of cardiac marker cTnl. Biosensors and Bioelectronics, 2015, 66, 129-135.	10.1	55
540	CO tolerance of Pt and PtSn intermetallic electrocatalysts on synthetically modified reduced graphene oxide supports. Dalton Transactions, 2015, 44, 977-987.	3.3	9
541	Significant impact of 2D graphene nanosheets on large volume change tin-based anodes in lithium-ion batteries: A review. Journal of Power Sources, 2015, 274, 869-884.	7.8	343
542	Graphene and carbon nanotube (CNT) in MEMS/NEMS applications. Microelectronic Engineering, 2015, 132, 192-206.	2.4	191
543	Synthesis of Phosphorusâ€Doped Graphene and its Wide Potential Window in Aqueous Supercapacitors. Chemistry - A European Journal, 2015, 21, 80-85.	3.3	230
544	The room temperature electrochemical synthesis of N-doped graphene and its electrocatalytic activity for oxygen reduction. Chemical Communications, 2015, 51, 1198-1201.	4.1	57
545	Facile fabrication of molybdenum dioxide/nitrogen-doped graphene hybrid as high performance anode material for lithium ion batteries. Journal of Power Sources, 2015, 274, 142-148.	7.8	58
546	Exfoliated-SnS ₂ restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries. Nanoscale, 2015, 7, 1325-1332.	5.6	262
547	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7, 4598-4810.	5.6	2,452
548	Room temperature deintercalation of alkali metal atoms from epitaxial graphene by formation of charge-transfer complexes. Applied Physics Letters, 2016, 109, .	3.3	3
549	Potential Energy Surfaces and Charge Transfer of PAHâ€Sodiumâ€PAH Complexes. ChemPhysChem, 2016, 17, 2908-2915.	2.1	3

#	Article	IF	Citations
550	Pyridinicâ€Nitrogenâ€Dominated Graphene Aerogels with Fe–N–C Coordination for Highly Efficient Oxygen Reduction Reaction. Advanced Functional Materials, 2016, 26, 5708-5717.	14.9	360
551	Grapheneâ€Based Nanocomposites for Energy Storage. Advanced Energy Materials, 2016, 6, 1502159.	19.5	306
552	Nitrogenâ€Doped Hollow Amorphous Carbon Spheres@Graphitic Shells Derived from Pitch: New Structure Leads to Robust Lithium Storage. Chemistry - A European Journal, 2016, 22, 2339-2344.	3.3	27
553	Direct CVD Graphene Growth on Semiconductors and Dielectrics for Transferâ€Free Device Fabrication. Advanced Materials, 2016, 28, 4956-4975.	21.0	113
554	Nanoparticle Cookies Derived from Metalâ€Organic Frameworks: Controlled Synthesis and Application in Anode Materials for Lithiumâ€Ion Batteries. Small, 2016, 12, 2365-2375.	10.0	96
555	Tuning Chemical Potential Difference across Alternately Doped Graphene p–n Junctions for High-Efficiency Photodetection. Nano Letters, 2016, 16, 4094-4101.	9.1	34
556	Nanocarbonâ€based Electrochemical Detection of Heavy Metals. Electroanalysis, 2016, 28, 2472-2488.	2.9	50
557	Highâ€Density Monolith of Nâ€Doped Holey Graphene for Ultrahigh Volumetric Capacity of Liâ€lon Batteries. Advanced Energy Materials, 2016, 6, 1502100.	19.5	158
558	Nanostructured Anode Materials for Lithium Ion Batteries: Progress, Challenge and Perspective. Advanced Energy Materials, 2016, 6, 1600374.	19.5	383
559	Time-dependent evolution of the nitrogen configurations in N-doped graphene films. RSC Advances, 2016, 6, 106914-106920.	3.6	119
560	Calligraphic solar cells: acknowledging paper and pencil. Journal of Materials Research, 2016, 31, 2578-2589.	2.6	19
561	Plasma engineering of graphene. Applied Physics Reviews, 2016, 3, 021301.	11.3	123
562	Enhanced Absorption and Diffusion Properties of Lithium on B,N,VC-decorated Graphene. Scientific Reports, 2016, 6, 37911.	3.3	13
563	Modification of the G-phonon mode of graphene by nitrogen doping. Applied Physics Letters, 2016, 108, .	3.3	5
564	In situ fabrication of three-dimensional nitrogen and boron co-doped porous carbon nanofibers for high performance lithium-ion batteries. Journal of Power Sources, 2016, 324, 294-301.	7.8	50
565	Nitrogen-doped carbonized polyimide microsphere as a novel anode material for high performance lithium ion capacitors. Electrochimica Acta, 2016, 196, 603-610.	5.2	94
566	Au/ZnO hybrid nanocatalysts impregnated in N-doped graphene for simultaneous determination of ascorbic acid, acetaminophen and dopamine. Materials Science and Engineering C, 2016, 65, 80-89.	7.3	75
567	Hybrid two-dimensional materials in rechargeable battery applications and their microscopic mechanisms. Chemical Society Reviews, 2016, 45, 4042-4073.	38.1	194

#	Article	IF	CITATIONS
568	A comparative DFT study on the CO oxidation reaction over Al- and Ge-embedded graphene as efficient metal-free catalysts. Applied Surface Science, 2016, 378, 418-425.	6.1	69
569	Effect of nitrogen-doped graphene nanofluid on the thermal performance of the grooved copper heat pipe. Energy Conversion and Management, 2016, 118, 459-473.	9.2	87
570	Electrochemical Exfoliation of Graphite into Nitrogen-doped Graphene in Glycine Solution and its Energy Storage Properties. Electrochimica Acta, 2016, 204, 100-107.	5.2	70
571	Three-Dimensional Network of N-Doped Carbon Ultrathin Nanosheets with Closely Packed Mesopores: Controllable Synthesis and Application in Electrochemical Energy Storage. ACS Applied Materials & Interfaces, 2016, 8, 11720-11728.	8.0	93
572	Porous <i>γ</i> -Fe ₂ O ₃ spheres coated with N-doped carbon from polydopamine as Li-ion battery anode materials. Nanotechnology, 2016, 27, 215403.	2.6	38
573	A universal strategy to prepare porous graphene films: binder-free anodes for high-rate lithium-ion and sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 8837-8843.	10.3	61
574	Nitrogen-doped heterostructure carbon functionalized by electroactive organic molecules for asymmetric supercapacitors with high energy density. RSC Advances, 2016, 6, 40602-40614.	3.6	28
575	Synthesis, Characterization, and Tribological Evaluation of TiO ₂ -Reinforced Boron and Nitrogen co-Doped Reduced Graphene Oxide Based Hybrid Nanomaterials as Efficient Antiwear Lubricant Additives. ACS Applied Materials & Interfaces, 2016, 8, 11698-11710.	8.0	104
576	Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy, 2016, 25, 120-127.	16.0	454
577	Graphene decorated with bimodal size of carbon polyhedrons for enhanced lithium storage. Carbon, 2016, 106, 9-19.	10.3	29
578	Self-assembled reduced graphene hydrogels by facile chemical reduction using acetaldehyde oxime for electrode materials in supercapacitors. RSC Advances, 2016, 6, 48276-48282.	3.6	7
579	The importance of covalent coupling in the synthesis of high performance composite anodes for lithium ion batteries. RSC Advances, 2016, 6, 45519-45524.	3.6	8
580	Tuning graphene for energy and environmental applications: Oxygen reduction reaction and greenhouse gas mitigation. Journal of Power Sources, 2016, 328, 472-481.	7.8	16
581	Band and bonding characteristics of N2+ ion-doped graphene. RSC Advances, 2016, 6, 84959-84964.	3.6	1
582	In situ grown Nb ₄ N ₅ nanocrystal on nitrogen-doped graphene as a novel anode for lithium ionÂbattery. RSC Advances, 2016, 6, 81290-81295.	3.6	39
584	Electrochemical catalysis at low dimensional carbons: Graphene, carbon nanotubes and beyond – A review. Applied Materials Today, 2016, 5, 134-141.	4.3	79
585	Energy storage capabilities of nitrogen-enriched pyropolymer nanoparticles fabricated through rapid pyrolysis. Journal of Power Sources, 2016, 331, 507-514.	7.8	8
586	Green and facile approach to synthesis of well-dispersed nitrogen-doped graphene without using surfactant or stabilizer with potential application for oxygen reduction reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 509, 574-582.	4.7	13

#	Article	IF	Citations
587	Synthesis of S/CoS2 Nanoparticles-Embedded N-doped Carbon Polyhedrons from Polyhedrons ZIF-67 and their Properties in Lithium-Sulfur Batteries. Electrochimica Acta, 2016, 218, 243-251.	5.2	141
588	Novel self-nitrogen-doped porous carbon from waste leather as highly active metal-free electrocatalyst for the ORR. International Journal of Hydrogen Energy, 2016, 41, 23409-23416.	7.1	48
589	A computational study on the SO2 adsorption by the pristine, Al, and Si doped BN nanosheets. Superlattices and Microstructures, 2016, 100, 350-357.	3.1	132
590	Hollow carbon nanosphere embedded with ultrafine Fe 3 O 4 nanoparticles as high performance Li-ion battery anode. Electrochimica Acta, 2016, 219, 356-362.	5.2	27
591	Nitrogen-doped hierarchically porous carbon networks: synthesis and applications in lithium-ion battery, sodium-ion battery and zinc-air battery. Electrochimica Acta, 2016, 219, 592-603.	5.2	151
592	Graphene Oxide Sheathed ZIF-8 Microcrystals: Engineered Precursors of Nitrogen-Doped Porous Carbon for Efficient Oxygen Reduction Reaction (ORR) Electrocatalysis. ACS Applied Materials & Interfaces, 2016, 8, 29373-29382.	8.0	139
593	Role of Nitrogen-Doped Graphene for Improved High-Capacity Potassium Ion Battery Anodes. ACS Nano, 2016, 10, 9738-9744.	14.6	640
594	In-vacuum thermolysis of ethane 1,2-diamineborane for the synthesis of ternary borocarbonitrides. Nanotechnology, 2016, 27, 435601.	2.6	17
595	Influence of oxygen on nitrogen-doped carbon nanofiber growth directly on nichrome foil. Nanotechnology, 2016, 27, 365602.	2.6	9
596	Zincâ€Reduced Mesoporous TiO _{<i>x</i>} Liâ€lon Battery Anodes with Exceptional Rate Capability and Cycling Stability. Chemistry - an Asian Journal, 2016, 11, 3382-3388.	3.3	8
597	3D graphene-based hybrid materials: synthesis and applications in energy storage and conversion. Nanoscale, 2016, 8, 15414-15447.	5.6	127
598	Sulfur confined in nitrogen-doped microporous carbon used in a carbonate-based electrolyte for long-life, safe lithium-sulfur batteries. Carbon, 2016, 109, 1-6.	10.3	119
599	Doped graphenes as anodes with large capacity for lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 13407-13413.	10.3	57
600	Recent progress in 2D or 3D N-doped graphene synthesis and the characterizations, properties, and modulations of N species. Journal of Materials Science, 2016, 51, 10323-10349.	3.7	77
601	Improved capacitive energy storage via surface functionalization of activated carbon as cathodes for lithium ion capacitors. Carbon, 2016, 109, 163-172.	10.3	38
602	Direct Synthesis of Few-Layer F-Doped Graphene Foam and Its Lithium/Potassium Storage Properties. ACS Applied Materials & Interfaces, 2016, 8, 20682-20690.	8.0	263
603	3D Macroscopic Graphene Assemblies. , 2016, , 281-294.		0
604	Granhene Heterostructures 2016 3-20		0

#	Article	IF	CITATIONS
605	Carbonâ€Coated Si Nanoparticles Anchored between Reduced Graphene Oxides as an Extremely Reversible Anode Material for High Energyâ€Density Liâ€Ion Battery. Advanced Energy Materials, 2016, 6, 1600904.	19.5	256
606	Synthesis of Nitrogenâ€Doped Electrospun Carbon Nanofibers as Anode Material for Highâ€Performance Sodiumâ€lon Batteries. Energy Technology, 2016, 4, 1440-1449.	3.8	49
607	Facile synthesis of titanium nitride-graphene nanocomposite and its improved rate-dependent electroactivity with respect to lithium storage. Materials Research Bulletin, 2016, 84, 388-396.	5.2	7
608	Enhanced Lithium–Oxygen Battery Performances with Pt Subnanocluster Decorated N-Doped Single-Walled Carbon Nanotube Cathodes. ACS Catalysis, 2016, 6, 7088-7097.	11.2	48
609	Tunable graphene oxide reduction and graphene patterning at room temperature on arbitrary substrates. Carbon, 2016, 109, 173-181.	10.3	38
610	A direct phase separation approach synthesis of hierarchically porous functional carbon as an advanced electrocatalyst for oxygen reduction reaction. Carbon, 2016, 109, 306-313.	10.3	6
611	Preparation and Nonlinear Optical Properties of Poly(2,3-Dimethylaniline) Grafted Reduced Graphene Oxide. Materials Science Forum, 0, 852, 754-759.	0.3	0
612	3D graphene-based anode materials for Li-ion batteries. Current Opinion in Chemical Engineering, 2016, 13, 124-132.	7.8	21
613	Ab initio investigations on bulk and monolayer V ₂ O ₅ as cathode materials for Li-, Na-, K- and Mg-ion batteries. Journal of Materials Chemistry A, 2016, 4, 16606-16611.	10.3	70
614	Cascading Boost Effect on the Capacity of Nitrogen-Doped Graphene Sheets for Li- and Na-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 26722-26729.	8.0	46
615	Hydrogenated Graphene: Preparation, Properties, and Applications. , 2016, , 449-468.		0
616	Synthesis Strategies for Graphene. , 2016, , 73-114.		0
617	Asymmetric Supercapacitor Based on Porous N-doped Carbon Derived from Pomelo Peel and NiO Arrays. ACS Applied Materials & Interfaces, 2016, 8, 20822-20830.	8.0	106
618	Pyridinic Nitrogen‣nriched Carbon Nanogears with Thin Teeth for Superior Lithium Storage. Advanced Energy Materials, 2016, 6, 1600917.	19.5	116
619	Nitrogen-doped graphene assists Fe2O3 in enhancing electrochemical performance. Journal of Power Sources, 2016, 326, 389-396.	7.8	42
620	Structural and Electronic Properties of Nitrogen-Doped Graphene. Physical Review Letters, 2016, 116, 126805.	7.8	64
621	Proposing the prospects of Ti ₃ CN transition metal carbides (MXenes) as anodes of Li-ion batteries: a DFT study. Physical Chemistry Chemical Physics, 2016, 18, 32937-32943.	2.8	105
622	A novel approach of binary doping sulfur and nitrogen into graphene layers for enhancing electrochemical performances of supercapacitors. Journal of Materials Chemistry A, 2016, 4, 19053-19059.	10.3	39

#	Article	IF	CITATIONS
623	Tunable electronic properties of graphene through controlling bonding configurations of doped nitrogen atoms. Scientific Reports, 2016, 6, 28330.	3.3	48
624	MOF-templated nanorice–nanosheet core–satellite iron dichalcogenides by heterogeneous sulfuration for high-performance lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 19179-19188.	10.3	64
625	Manipulation of defect density and nitrogen doping on few-layer graphene sheets using the plasma methodology for electrochemical applications. Electrochimica Acta, 2016, 221, 144-153.	5.2	13
626	Nitrogen-doped hierarchically porous carbon derived from ZIF-8 and its improved effect on the dehydrogenation of LiBH4. International Journal of Hydrogen Energy, 2016, 41, 17175-17182.	7.1	22
627	Influence of plasma process on the nitrogen configuration in graphene. Diamond and Related Materials, 2016, 70, 211-218.	3.9	23
628	Tuning the Carbon Crystallinity for Highly Stable Li–O ₂ Batteries. Chemistry of Materials, 2016, 28, 8160-8169.	6.7	47
629	Surface Modification of C ₃ N ₄ through Oxygen-Plasma Treatment: A Simple Way toward Excellent Hydrophilicity. ACS Applied Materials & Interfaces, 2016, 8, 31419-31425.	8.0	66
630	Charge transfer-resistance in nitrogen-doped/undoped graphene: Its influence on the electro-catalytic reduction of H 2 O 2. Electrochimica Acta, 2016, 220, 664-671.	5.2	9
631	Incorporating conjugated carbonyl compounds into carbon nanomaterials as electrode materials for electrochemical energy storage. Physical Chemistry Chemical Physics, 2016, 18, 31361-31377.	2.8	29
632	Large size nitrogen-doped graphene-coated graphite for high performance lithium-ion battery anode. RSC Advances, 2016, 6, 104010-104015.	3.6	14
633	First-principles calculations of K-shell X-ray absorption spectra for warm dense nitrogen. Physics of Plasmas, 2016, 23, 053304.	1.9	2
634	Tuning the Electrochemical Reactivity of Boron―and Nitrogenâ€6ubstituted Graphene. Advanced Materials, 2016, 28, 6239-6246.	21.0	107
635	Density Functional Theory Calculations of Lithium Adsorption and Insertion to Defect-Free and Defective Graphene. Journal of Physical Chemistry C, 2016, 120, 14009-14014.	3.1	48
636	Graphitic Carbon Nanocubes Derived from ZIF-8 for Photothermal Therapy. Inorganic Chemistry, 2016, 55, 5750-5752.	4.0	21
637	Contact Angle Hysteresis on Graphene Surfaces and Hysteresis-free Behavior on Oil-infused Graphite Surfaces. Applied Surface Science, 2016, 385, 153-161.	6.1	31
638	Graphene- and Graphene-Oxide-Based Gas Sensors. , 2016, , 317-328.		0
639	Tuning the electronic structure of graphene through nitrogen doping: experiment and theory. RSC Advances, 2016, 6, 56721-56727.	3.6	21
640	Metal Oxide Nanomaterials with Nitrogenâ€Doped Grapheneâ€Silk Nanofiber Complexes as Templates. Particle and Particle Systems Characterization, 2016, 33, 286-292.	2.3	4
ARTICLE IF CITATIONS Boron and nitrogen co-doped porous carbon nanotubes webs as a high-performance anode material 641 7.1 68 for lithium ion batteries. International Journal of Hydrogen Energy, 2016, 41, 14252-14260. Boric Acid Assisted Reduction of Graphene Oxide: A Promising Material for Sodium-Ion Batteries. ACS 642 8.0 Applied Materials & amp; Interfaces, 2016, 8, 18860-18866. Hydrogenated V₂O₅ Nanosheets for Superior Lithium Storage Properties. 643 14.9 149 Advanced Functional Materials, 2016, 26, 784-791. High power density nitridated hematite (\hat{I}_{\pm} -Fe2O3) nanorods as anode for high-performance flexible 644 182 lithium ion batteries. Journal of Power Sources, 2016, 308, 7-17. Characterization of nitrogen species incorporated into graphite using low energy nitrogen ion 645 2.8 25 sputtering. Physical Chemistry Chemical Physics, 2016, 18, 458-465. Egg yolk-derived phosphorus and nitrogen dual doped nano carbon capsules for high-performance lithium ion batteries. Materials Letters, 2016, 167, 93-97. 2.6 Nitrogen-doped graphene enwrapped silicon nanoparticles with nitrogen-doped carbon shell: a novel 647 5.2 42 nanocomposite for lithium-ion batteries. Electrochimica Acta, 2016, 192, 22-29. Sulfur and phosphorus co-doping of hierarchically porous graphene aerogels for enhancing 648 10.3 supercapacitor performance. Carbon, 2016, 101, 49-56. Functionalization of graphene by atmospheric pressure plasma jet in air or H2O2 environments. 649 6.1 11 Applied Surface Science, 2016, 367, 160-166. <i>In Situ</i> Raman and Nuclear Magnetic Resonance Study of Trapped Lithium in the Solid 3.1 Electrolyte Interface of Reduced Graphene Oxide. Journal of Physical Chemistry C, 2016, 120, 2600-2608. Modified solar power: electrochemical synthesis of Nitrogen doped few layer graphene for 651 2.2 15 supercapacitor applications. Journal of Materials Science: Materials in Electronics, 2016, 27, 3410-3419. Core–shell nano-FeS₂@N-doped graphene as an advanced cathode material for 4.1 84 rechargeable Li-ion batteries. Chemical Communications, 2016, 52, 986-989. Nitrogen-Doped Carbon-Encapsulated SnO₂@Sn Nanoparticles Uniformly Grafted on Three-Dimensional Graphene-like Networks as Anode for High-Performance Lithium-Ion Batteries. ACS 653 8.0 84 Applied Materials & amp; Interfaces, 2016, 8, 197-207. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal 654 31.5 1,557 anodes. Nature Nanotechnology, 2016, 11, 626-632. Activated carbon fiber paper with exceptional capacitive performance as a robust electrode for 655 10.3 95 supercapacitors. Journal of Materials Chemistry A, 2016, 4, 5828-5833. Study of nitrogen doping of graphene via in-situ transport measurements. Physica B: Condensed Matter, 2016, 490, 21-24. Recent advances in graphene-based hybrid nanostructures for electrochemical energy storage. 657 8.0 92 Nanoscale Horizons, 2016, 1, 340-374. The Synthesis, Properties, and Applications of Heteroatom-Doped Graphenes. Advanced Structured Materials, 2016, , 103-133.

#	Article	IF	CITATIONS
659	Comprehensive electronic structure characterization of pristine and nitrogen/phosphorus doped carbon nanocages. Carbon, 2016, 103, 480-487.	10.3	23
660	Improving low-energy boron/nitrogen ion implantation in graphene by ion bombardment at oblique angles. Nanoscale, 2016, 8, 8761-8772.	5.6	32
661	Nitrogen-Doped Graphdiyne Applied for Lithium-Ion Storage. ACS Applied Materials & Interfaces, 2016, 8, 8467-8473.	8.0	184
662	Layer-by-layer assembly of versatile nanoarchitectures with diverse dimensionality: a new perspective for rational construction of multilayer assemblies. Chemical Society Reviews, 2016, 45, 3088-3121.	38.1	294
663	Surface nitrogen functionality for the enhanced field emission of free-standing few-layer graphene nanowalls. Journal of Alloys and Compounds, 2016, 672, 433-439.	5.5	31
664	Dispersion stability of chemically reduced graphene oxide nanoribbons in organic solvents. RSC Advances, 2016, 6, 19389-19393.	3.6	27
665	Growth of N-doped graphene from nitrogen containing aromatic compounds: the effect of precursors on the doped site. RSC Advances, 2016, 6, 13392-13398.	3.6	29
666	Comparative Electrochemical Charge Storage Properties of Bulk and Nanoscale Vanadium Oxide Electrodes. Journal of Solid State Electrochemistry, 2016, 20, 1445-1458.	2.5	27
667	Bio-inspired synthesis of N,F co-doped 3D graphitized carbon foams containing manganese fluoride nanocrystals for lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 2691-2698.	10.3	42
668	Formation Mechanisms of Graphitic-N: Oxygen Reduction and Nitrogen Doping of Graphene Oxides. Journal of Physical Chemistry C, 2016, 120, 5673-5681.	3.1	29
669	Electron transport study on functionalized armchair graphene nanoribbons: DFT calculations. RSC Advances, 2016, 6, 21954-21960.	3.6	24
670	Graphene oxide as a p-dopant and an anti-reflection coating layer, in graphene/silicon solar cells. Nanoscale, 2016, 8, 6473-6478.	5.6	56
671	Seaweed-Derived Route to Fe ₂ O ₃ Hollow Nanoparticles/N-Doped Graphene Aerogels with High Lithium Ion Storage Performance. ACS Applied Materials & Interfaces, 2016, 8, 7047-7053.	8.0	179
672	Synthesis of SnO ₂ versus Sn crystals within N-doped porous carbon nanofibers via electrospinning towards high-performance lithium ion batteries. Nanoscale, 2016, 8, 7595-7603.	5.6	69
673	Amorphized graphene: A stiff material with low thermal conductivity. Carbon, 2016, 103, 318-326.	10.3	82
674	Lithium storage on carbon nitride, graphenylene and inorganic graphenylene. Physical Chemistry Chemical Physics, 2016, 18, 14205-14215.	2.8	93
675	Band Gap Opening in Dual-Doped Monolayer Graphene. Journal of Physical Chemistry C, 2016, 120, 7103-7112.	3.1	56
676	Nitrogen-doped interconnected carbon nanosheets from pomelo mesocarps for high performance supercapacitors. Electrochimica Acta, 2016, 190, 862-871.	5.2	174

#	Article	IF	CITATIONS
677	MoN-decorated nitrogen doped carbon nanotubes anode with high lithium storage performance. Electrochimica Acta, 2016, 190, 988-996.	5.2	28
678	Graphene/N-doped carbon sandwiched nanosheets with ultrahigh nitrogen doping for boosting lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 1423-1431.	10.3	146
679	An Advanced Lithium Ion Battery Based on a Sulfur-Doped Porous Carbon Anode and a Lithium Iron Phosphate Cathode. Electrochimica Acta, 2016, 190, 141-149.	5.2	41
680	An Approach to Synthesize Schiff Base Cobalt Complex with Different Shape by Electrochemical Deposition. Journal of the Electrochemical Society, 2016, 163, G26-G32.	2.9	4
681	Preparation of nitrogen- and phosphorous co-doped carbon microspheres and their superior performance as anode in sodium-ion batteries. Carbon, 2016, 99, 556-563.	10.3	218
682	Nanoparticle Ligands and Pyrolized Graphitic Carbon in CZTSSe Photovoltaic Devices. Chemistry of Materials, 2016, 28, 135-145.	6.7	30
683	Electrospun nanofibers as a platform for advanced secondary batteries: a comprehensive review. Journal of Materials Chemistry A, 2016, 4, 703-750.	10.3	350
684	The developments of SnO2/graphene nanocomposites as anode materials for high performance lithium ion batteries: A review. Journal of Power Sources, 2016, 304, 81-101.	7.8	216
685	Highly sensitive simultaneous determination of cadmium (II), lead (II), copper (II), and mercury (II) ions on N-doped graphene modified electrode. Journal of Electroanalytical Chemistry, 2016, 760, 52-58.	3.8	158
686	Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. Journal of Materials Chemistry A, 2016, 4, 1144-1173.	10.3	879
687	A novel N-doped porous carbon microsphere composed of hollow carbon nanospheres. Carbon, 2016, 96, 864-870.	10.3	62
688	Lithium adsorption on heteroatom mono and dual doped graphene. Chemical Physics Letters, 2017, 672, 70-79.	2.6	34
689	Sodiumâ€lon Batteries: Improving the Rate Capability of 3D Interconnected Carbon Nanofibers Thin Film by Boron, Nitrogen Dualâ€Doping. Advanced Science, 2017, 4, 1600468.	11.2	164
690	Two-Dimensional C ₄ N Global Minima: Unique Structural Topologies and Nanoelectronic Properties. Journal of Physical Chemistry C, 2017, 121, 2669-2674.	3.1	49
691	Doping with Graphitic Nitrogen Triggers Ferromagnetism in Graphene. Journal of the American Chemical Society, 2017, 139, 3171-3180.	13.7	202
692	Effect of Si content on structure and electrochemical performance of ternary nanohybrids integrating Si nanoparticles, N-doped carbon shell, and nitrogen-doped graphene. RSC Advances, 2017, 7, 4209-4215.	3.6	7
693	Superior lithium storage in nitrogen-doped carbon nanofibers with open-channels. Chemical Engineering Journal, 2017, 315, 1-9.	12.7	28
694	Mechanical and electromechanical properties of graphene and their potential application in MEMS. Journal Physics D: Applied Physics, 2017, 50, 053003.	2.8	73

#	Article	IF	CITATIONS
695	A Generic Conversion Strategy: From 2D Metal Carbides (M <i>_x</i> C <i>_y</i>) to M‣elfâ€Doped Graphene toward Highâ€Efficiency Energy Applications. Advanced Functional Materials, 2017, 27, 1604904.	14.9	67
696	Doping of graphene using ion beam irradiation and the atomic mechanism. Computational Materials Science, 2017, 129, 184-193.	3.0	18
697	Recent advances in inorganic 2D materials and their applications in lithium and sodium batteries. Journal of Materials Chemistry A, 2017, 5, 3735-3758.	10.3	329
698	Ultrafine Sn nanocrystals in a hierarchically porous N-doped carbon for lithium ion batteries. Nano Research, 2017, 10, 1950-1958.	10.4	76
699	Propelling polysulfides transformation for high-rate and long-life lithium–sulfur batteries. Nano Energy, 2017, 33, 306-312.	16.0	352
700	Freestanding highly defect nitrogen-enriched carbon nanofibers for lithium ion battery thin-film anodes. Journal of Materials Chemistry A, 2017, 5, 5532-5540.	10.3	33
701	The necessity of structural irregularities for the chemical applications of graphene. Materials Today Chemistry, 2017, 4, 1-16.	3.5	95
702	Synthesis and Preparation of Mono-Layer h-BN Nanopowders by Using a Combination of CVD Method with Isopropanol-Assisted Exfoliation Process. Powder Metallurgy and Metal Ceramics, 2017, 55, 530-540.	0.8	2
703	In Situ X-ray Photoelectron Spectroscopy Study of Lithium Interaction with Graphene and Nitrogen-Doped Graphene Films Produced by Chemical Vapor Deposition. Journal of Physical Chemistry C, 2017, 121, 5108-5114.	3.1	34
704	Tailoring thermal transport properties of graphene by nitrogen doping. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	8
705	Facile production of graphene nanosheets comprising nitrogen-doping through in situ cathodic plasma formation during electrochemical exfoliation. Journal of Materials Chemistry C, 2017, 5, 2597-2602.	5.5	31
706	A DFT study on the central-ring doped HBC nanographenes. Journal of Molecular Graphics and Modelling, 2017, 73, 101-107.	2.4	33
707	Strategies Based on Nitride Materials Chemistry to Stabilize Li Metal Anode. Advanced Science, 2017, 4, 1600517.	11.2	185
708	Efficient Nitrogen Doping of Single-Layer Graphene Accompanied by Negligible Defect Generation for Integration into Hybrid Semiconductor Heterostructures. ACS Applied Materials & Interfaces, 2017, 9, 10003-10011.	8.0	39
709	Hierarchical CuBi ₂ O ₄ microspheres as lithium-ion battery anodes with superior high-temperature electrochemical performance. RSC Advances, 2017, 7, 13250-13256.	3.6	29
710	Nanostructured Germanium Anode Materials for Advanced Rechargeable Batteries. Advanced Materials Interfaces, 2017, 4, 1600798.	3.7	107
711	Nanoscale engineering of nitrogen-doped carbon nanofiber aerogels for enhanced lithium ion storage. Journal of Materials Chemistry A, 2017, 5, 8247-8254.	10.3	114
712	Controlled Synthesis of Nitrogen-Doped Graphene on Ruthenium from Azafullerene. Nano Letters, 2017, 17, 2887-2894.	9.1	25

#	Article	IF	CITATIONS
713	Nitrogen-doped carbon composites derived from 7,7,8,8-tetracyanoquinodimethane-based metal–organic frameworks for supercapacitors and lithium-ion batteries. RSC Advances, 2017, 7, 25182-25190.	3.6	23
714	Facilitating the redox reaction of polysulfides by an electrocatalytic layer-modified separator for lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 10936-10945.	10.3	87
715	Fluorescent carbon dots with tunable negative charges for bio-imaging in bacterial viability assessment. Carbon, 2017, 120, 95-102.	10.3	65
716	Graphene: Synthesis and Functionalization. Nanostructure Science and Technology, 2017, , 101-132.	0.1	2
717	Understanding doping strategies in the design of organic electrode materials for Li and Na ion batteries: an electronic structure perspective. Physical Chemistry Chemical Physics, 2017, 19, 13195-13209.	2.8	21
718	Role of C <i>_x</i> N <i>_y</i> â€Triazine in Photocatalysis for Efficient Hydrogen Generation and Organic Pollutant Degradation Under Solar Light Irradiation. Solar Rrl, 2017, 1, 1700012.	5.8	16
719	Electron–Hole Symmetry Breaking in Charge Transport in Nitrogen-Doped Graphene. ACS Nano, 2017, 11, 4641-4650.	14.6	46
720	B-N Codoped Graphene as a Novel Support for Pd Catalyst with Enhanced Catalysis for Ethanol Electrooxidation in Alkaline Medium. Journal of the Electrochemical Society, 2017, 164, F638-F644.	2.9	24
721	Improved Li ⁺ Storage through Homogeneous Nâ€Đoping within Highly Branched Tubular Graphitic Foam. Advanced Materials, 2017, 29, 1603692.	21.0	113
722	Conductive Carbon Nitride for Excellent Energy Storage. Advanced Materials, 2017, 29, 1701674.	21.0	142
723	Fabrication of nitrogen-doped graphenes by pulsed laser deposition and improved chemical enhancement for Raman spectroscopy. Materials Letters, 2017, 204, 65-68.	2.6	17
724	Hierarchical Micro/Mesoporous Carbons Synthesized with a ZnO Template and Petroleum Pitch via a Solvent-Free Process for a High-Performance Supercapacitor. ACS Omega, 2017, 2, 2106-2113.	3.5	31
725	Interwoven N and P dual-doped hollow carbon fibers/graphitic carbon nitride: An ultrahigh capacity and rate anode for Li and Na ion batteries. Carbon, 2017, 122, 54-63.	10.3	127
726	Graphene aerogels: a review. 2D Materials, 2017, 4, 032001.	4.4	195
727	Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. Applied Physics Reviews, 2017, 4, .	11.3	476
728	Carbon encapsulated Fe ₃ O ₄ nanospheres with high electrochemical performance as anode materials for Liâ€ion battery. International Journal of Applied Ceramic Technology, 2017, 14, 938-947.	2.1	11
729	Nitrogen doping for facile and effective modification of graphene surfaces. RSC Advances, 2017, 7, 28383-28392.	3.6	45
730	Electrochemical performance of MXenes as K-ion battery anodes. Chemical Communications, 2017, 53, 6883-6886.	4.1	157

#	Article	IF	CITATIONS
731	Anchoring Iodine to N-Doped Hollow Carbon Fold-Hemisphere: Toward a Fast and Stable Cathode for Rechargeable Lithium–Iodine Batteries. ACS Applied Materials & Interfaces, 2017, 9, 20508-20518.	8.0	85
732	The use of graphene based materials for fuel cell, photovoltaics, and supercapacitor electrode materials. Solid State Sciences, 2017, 67, A1-A14.	3.2	33
733	Nitrogen doping in the carbon matrix for Li-ion hybrid supercapacitors: state of the art, challenges and future prospective. RSC Advances, 2017, 7, 18926-18936.	3.6	29
734	Pyridinic and graphitic nitrogen-rich graphene for high-performance supercapacitors and metal-free bifunctional electrocatalysts for ORR and OER. RSC Advances, 2017, 7, 17950-17958.	3.6	123
735	Nitrogen-Doped Hollow Carbon Nanospheres for High-Performance Li-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 14180-14186.	8.0	97
736	Reduced Graphene Oxide Wrapped Si/C Assembled on 3D Nâ€Doped Carbon Foam as Binderâ€Free Anode for Enhanced Lithium Storage. ChemistrySelect, 2017, 2, 2832-2840.	1.5	14
737	Ultrasmall Sn nanodots embedded inside N-doped carbon microcages as high-performance lithium and sodium ion battery anodes. Journal of Materials Chemistry A, 2017, 5, 8334-8342.	10.3	182
738	Two-dimensional nanosheets for electrocatalysis in energy generation and conversion. Journal of Materials Chemistry A, 2017, 5, 7257-7284.	10.3	220
739	"Protrusions―or "holes―in graphene: which is the better choice for sodium ion storage?. Energy and Environmental Science, 2017, 10, 979-986.	30.8	164
740	Temperature distribution in graphene doped with nitrogen and graphene with grain boundary. Journal of Molecular Graphics and Modelling, 2017, 74, 100-104.	2.4	14
741	Mesoporous C, N-codoped TiO ₂ hybrid shells with enhanced visible light photocatalytic performance. RSC Advances, 2017, 7, 15513-15520.	3.6	69
742	Hierarchical ball-in-ball structured nitrogen-doped carbon microspheres as high performance anode for sodium-ion batteries. Energy Storage Materials, 2017, 7, 229-235.	18.0	78
743	A Review on Design Strategies for Carbon Based Metal Oxides and Sulfides Nanocomposites for High Performance Li and Na Ion Battery Anodes. Advanced Energy Materials, 2017, 7, 1601424.	19.5	486
744	CuO nanoparticles supported on nitrogen and sulfur co-doped graphene nanocomposites for non-enzymatic glucose sensing. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	16
745	Critical Insight into the Relentless Progression Toward Graphene and Grapheneâ€Containing Materials for Lithiumâ€Ion Battery Anodes. Advanced Materials, 2017, 29, 1603421.	21.0	132
746	Doping two-dimensional materials: ultra-sensitive sensors, band gap tuning and ferromagnetic monolayers. Nanoscale Horizons, 2017, 2, 72-80.	8.0	85
747	Gas-liquid interfacial assembly and electrochemical properties of 3D highly dispersed α-Fe2O3@graphene aerogel composites with a hierarchical structure for applications in anodes of lithium ion batteries. Electrochimica Acta, 2017, 224, 40-48.	5.2	42
748	Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene. Progress in Polymer Science, 2017, 67, 1-47.	24.7	491

#	Article	IF	CITATIONS
749	Graphene-based materials supported advanced oxidation processes for water and wastewater treatment: a review. Environmental Science and Pollution Research, 2017, 24, 27047-27069.	5.3	113
750	Graphene and derivatives – Synthesis techniques, properties and their energy applications. Energy, 2017, 140, 766-778.	8.8	119
751	Enhanced electrochemical performance of a LTO/N-doped graphene composite as an anode material for Li-ion batteries. Solid State Ionics, 2017, 311, 98-104.	2.7	29
752	Adsorption of small gas molecules on pure and Al-doped graphene sheet: a quantum mechanical study. Bulletin of Materials Science, 2017, 40, 1263-1271.	1.7	21
753	Smart Combination of Cyclodextrin Polymer Host–Guest Recognition and Mg ²⁺ -Assistant Cyclic Cleavage Reaction for Sensitive Electrochemical Assay of Nucleic Acids. ACS Applied Materials & Interfaces, 2017, 9, 36688-36694.	8.0	50
754	Synthesis of Few-Layer Graphene by Peeling Graphite Flakes via Electron Exchange in Solution Plasma. Journal of Physical Chemistry C, 2017, 121, 23793-23802.	3.1	14
755	Highly flexible, high-performance perovskite solar cells with adhesion promoted AuCl ₃ -doped graphene electrodes. Journal of Materials Chemistry A, 2017, 5, 21146-21152.	10.3	92
756	Preparation of Co3O4/Carbon Derived from Ionic Liquid and Its Application in Lithium-ion Batteries. Electrochimica Acta, 2017, 257, 138-145.	5.2	34
757	<i>In situ</i> nitrogen-doped mesoporous carbon nanofibers as flexible freestanding electrodes for high-performance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 23620-23627.	10.3	95
758	Robust theoretical modelling of core ionisation edges for quantitative electron energy loss spectroscopy of B- and N-doped graphene. Journal of Physics Condensed Matter, 2017, 29, 225303.	1.8	8
759	Doping of active electrode materials for electrochemical batteries: an electronic structure perspective. MRS Communications, 2017, 7, 523-540.	1.8	27
760	Functionalized fullerenes for highly efficient lithium ion storage: Structure-property-performance correlation with energy implications. Nano Energy, 2017, 40, 327-335.	16.0	49
761	Crab shell-derived nitrogen-doped micro-/mesoporous carbon as an effective separator coating for high energy lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 19892-19900.	10.3	109
762	2D material integrated macroporous electrodes for Li-ion batteries. RSC Advances, 2017, 7, 32737-32742.	3.6	12
763	N+ implantation induce cytocompatibility of shape-controlled three-dimensional self-assembly graphene. Nanomedicine, 2017, 12, 2245-2255.	3.3	4
764	Fast microwave synthesis of SnO2@graphene/N-doped carbons as anode materials in sodium ion batteries. Journal of Alloys and Compounds, 2017, 728, 1305-1314.	5.5	42
765	A new strategy for integrating superior mechanical performance and high volumetric energy density into a Janus graphene film for wearable solid-state supercapacitors. Journal of Materials Chemistry A, 2017, 5, 20797-20807.	10.3	37
766	Nano-structure tin/nitrogen-doped reduced graphene oxide composites as high capacity lithium-ion batteries anodes. Journal of Materials Science: Materials in Electronics, 2017, 28, 18994-19002.	2.2	21

#	Article	IF	CITATIONS
767	Electrochemical dopamine sensor based on P-doped graphene: Highly active metal-free catalyst and metal catalyst support. Materials Science and Engineering C, 2017, 81, 452-458.	7.3	43
768	Theoretical studies on the structure and thermochemistry of cyclicparaphenylenediazenes. RSC Advances, 2017, 7, 40189-40199.	3.6	5
769	Porous rod-shaped Co3O4 derived from Co-MOF-74 as high-performance anode materials for lithium ion batteries. Inorganic Chemistry Communication, 2017, 84, 241-245.	3.9	35
770	Ultraâ€High Pyridinic Nâ€Doped Porous Carbon Monolith Enabling Highâ€Capacity Kâ€Ion Battery Anodes for Both Halfâ€Cell and Fullâ€Cell Applications. Advanced Materials, 2017, 29, 1702268.	21.0	348
771	Revealing impact of plasma condition on graphite nanostructures and effective charge doping of graphene. Carbon, 2017, 123, 174-185.	10.3	7
772	Recent advanced in energy harvesting and storage applications with two-dimensional layered materials. FlatChem, 2017, 6, 37-47.	5.6	20
773	Few-layer MoS ₂ as nitrogen protective barrier. Nanotechnology, 2017, 28, 415706.	2.6	6
774	Sandwich-Type NbS ₂ @S@I-Doped Graphene for High-Sulfur-Loaded, Ultrahigh-Rate, and Long-Life Lithium–Sulfur Batteries. ACS Nano, 2017, 11, 8488-8498.	14.6	174
775	Self nitrogen-doped carbon nanotubes as anode materials for high capacity and cycling stability lithium-ion batteries. Materials and Design, 2017, 133, 169-175.	7.0	25
776	Ionic liquid-derived Co3O4/carbon nano-onions composite and its enhanced performance as anode for lithium-ion batteries. Journal of Materials Science, 2017, 52, 13192-13202.	3.7	28
777	Dimensional Confinement in Carbonâ€based Structures – From 3D to 1D. Annalen Der Physik, 2017, 529, 1700051.	2.4	6
778	Monolayer BC ₂ : an ultrahigh capacity anode material for Li ion batteries. Physical Chemistry Chemical Physics, 2017, 19, 24230-24239.	2.8	29
779	Interaction and Quantum Capacitance of Nitrogen/Sulfur Co-Doped Graphene: A Theoretical Calculation. Journal of Physical Chemistry C, 2017, 121, 18344-18350.	3.1	40
780	Air-Stable Porous Fe ₂ N Encapsulated in Carbon Microboxes with High Volumetric Lithium Storage Capacity and a Long Cycle Life. Nano Letters, 2017, 17, 5740-5746.	9.1	132
781	Microwave irradiated N- and B,Cl-doped graphene: Oxidation method has strong influence on capacitive behavior. Applied Materials Today, 2017, 9, 204-211.	4.3	25
782	Controlled electrochemical doping of graphene-based 3D nanoarchitecture electrodes for supercapacitors and capacitive deionisation. Nanoscale, 2017, 9, 14548-14557.	5.6	52
783	Economic and High Performance Phosphorus–Carbon Composite for Lithium and Sodium Storage. ACS Omega, 2017, 2, 4440-4446.	3.5	10
784	Highly Nitrogen-Doped Three-Dimensional Carbon Fibers Network with Superior Sodium Storage Capacity. ACS Applied Materials & amp; Interfaces, 2017, 9, 28604-28611.	8.0	38

		CITATION REPORT		
#	Article		IF	CITATIONS
785	Structural characterization of water-metal interfaces. Physical Review B, 2017, 96, .		3.2	5
786	Nitrogen-Deficient Graphitic Carbon Nitride with Enhanced Performance for Lithium Ior Anodes. ACS Nano, 2017, 11, 12650-12657.	n Battery	14.6	297
787	Preparation and enhanced photocatalytic hydrogen-evolution activity of ZnGa ₂ O ₄ /N-rGO heterostructures. RSC Advances, 2017, 7, 5	53145-53156.	3.6	26
788	ZnO/ZnFe2O4/N-doped C micro-polyhedrons with hierarchical hollow structure as high anodes for lithium-ion batteries. Nano Energy, 2017, 42, 341-352.	-performance	16.0	103
789	A light-driven modulation of electric conductance through the adsorption of azobenzer silicon-doped- and pyridine-like N3-vacancy graphene. Nanoscale, 2017, 9, 19017-1902	ne onto !5.	5.6	5
790	Graphene-Like-Graphite as Fast-Chargeable and High-Capacity Anode Materials for Lithi Scientific Reports, 2017, 7, 14782.	um Ion Batteries.	3.3	116
791	Anchoring iron oxide nanoparticles on polypyrrole/rGO derived nitrogen-doped carbon battery anode. Journal of Alloys and Compounds, 2017, 723, 729-735.	as lithium-ion	5.5	14
792	Growth and properties of large-area sulfur-doped graphene films. Journal of Materials C 2017, 5, 7944-7949.	hemistry C,	5.5	21
793	Preparation of nitrogen-doped graphene by high-gravity technology and its application reduction. Particuology, 2017, 34, 110-117.	in oxygen	3.6	13
794	Pervaporative performance of polydimethylsiloxane–graphene/polyethersolfune hybr Effects of graphene structure and surface properties. Chemical Engineering Research a 124, 181-192.	id membrane: nd Design, 2017,	5.6	25
795	Graphene and graphene-based composites as Li-ion battery electrode materials and the full cells. Journal of Materials Chemistry A, 2017, 5, 15423-15446.	ir application in	10.3	184
796	Ammonia-modified graphene sheets decorated with magnetic Fe 3 O 4 nanoparticles for photocatalytic and photo-Fenton degradation of phenolic compounds under sunlight in Journal of Hazardous Materials, 2017, 325, 90-100.	or the radiation.	12.4	171
797	One-step electrochemical deposition of Schiff base cobalt complex as effective water o catalyst. Applied Surface Science, 2017, 396, 121-128.	vidation	6.1	21
798	Plasma-etched, S-doped graphene for effective hydrogen evolution reaction. Internatio Hydrogen Energy, 2017, 42, 4184-4192.	nal Journal of	7.1	67
799	Three-dimensional N-doped, plasma-etched graphene: Highly active metal-free catalyst evolution reaction. Applied Catalysis A: General, 2017, 529, 127-133.	for hydrogen	4.3	73
800	Applications of graphene in microbial fuel cells: The gap between promise and reality. R Sustainable Energy Reviews, 2017, 72, 1389-1403.	enewable and	16.4	148
801	Deposition Methods of Graphene as Electrode Material for Organic Solar Cells. Advance Materials, 2017, 7, 1601393.	ed Energy	19.5	56
802	Enhanced sulfide chemisorption using boron and oxygen dually doped multi-walled car for advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 632	bon nanotubes -640.	10.3	151

#	Article	IF	CITATIONS
803	Simple solution-based synthesis of pyridinic-rich nitrogen-doped graphene nanoplatelets for supercapacitors. Applied Energy, 2017, 195, 1071-1078.	10.1	60
804	Synthesis of nitrogen and sulfur co-doped graphene supported hollow ZnFe2O4 nanosphere composites for application in lithium-ion batteries. Journal of Alloys and Compounds, 2017, 691, 407-415.	5.5	102
805	Urchinlike ZnS Microspheres Decorated with Nitrogenâ€Đoped Carbon: A Superior Anode Material for Lithium and Sodium Storage. Chemistry - A European Journal, 2017, 23, 157-166.	3.3	95
806	Synthesis of in-situ high nitrogen-doped helical carbonaceous nanofibers toward high-performance lithium-ion batteries. Materials Letters, 2017, 188, 308-311.	2.6	5
807	A high–selectivity electrochemical sensor for ultra-trace lead (II) detection based on a nanocomposite consisting of nitrogen-doped graphene/gold nanoparticles functionalized with ETBD and Fe3O4@TiO2 core–shell nanoparticles. Sensors and Actuators B: Chemical, 2017, 242, 889-896.	7.8	36
808	Graphene-like carbon nanosheets as a new electrode material for electrochemical determination of hydroquinone and catechol. Talanta, 2017, 164, 300-306.	5.5	57
809	Generation of radical species in CVD grown pristine and N-doped solid carbon spheres using H ₂ and Ar as carrier gases. RSC Advances, 2017, 7, 21187-21195.	3.6	22
810	DFT Study of Cyanide Oxidation on Ge-Doped Carbon Nanotubes. Russian Journal of Applied Chemistry, 2017, 90, 1620-1626.	0.5	2
811	Nitrogen-doped Graphene Modified Glassy Carbon Electrode for Electrochemical Determination of Breast Cancer Marker Carbohydrate Antigen 15-3. International Journal of Electrochemical Science, 2017, 12, 8280-8287.	1.3	5
812	4. Controlled Chemical Synthesis in CVD Graphene. , 2017, , .		1
813	Nitrogen-doped twisted graphene grown on copper by atmospheric pressure CVD from a decane precursor. Beilstein Journal of Nanotechnology, 2017, 8, 145-158.	2.8	25
814	Effects of Electrospun Carbon Nanofibers' Interlayers on High-Performance Lithium–Sulfur Batteries. Materials, 2017, 10, 376.	2.9	35
815	Nitrogen Doped Macroporous Carbon as Electrode Materials for High Capacity of Supercapacitor. Polymers, 2017, 9, 2.	4.5	40
816	Emerging Corrosion Inhibitors for Interfacial Coating. Coatings, 2017, 7, 217.	2.6	63
817	Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications. Beilstein Journal of Nanotechnology, 2017, 8, 1571-1600.	2.8	119
818	Controlled Chemical Synthesis in CVD Graphene. ChemistrySelect, 2017, 2, .	1.5	7
819	Nitrogen-doped Graphene Sheets Prepared from Different Graphene-Based Precursors as High Capacity Anode Materials for Lithium-Ion Batteries. International Journal of Electrochemical Science, 2017, 12, 7154-7165.	1.3	12
820	Nano-Architecture of nitrogen-doped graphene films synthesized from a solid CN source. Scientific Reports, 2018, 8, 3247.	3.3	72

#	Article	IF	CITATIONS
821	CNT Applications in Drug and Biomolecule Delivery. , 2018, , 61-64.		12
822	Synthesis and Chemical Modification of Graphene. , 2018, , 107-119.		0
823	Graphene Applications in Sensors. , 2018, , 125-132.		0
825	Medical and Pharmaceutical Applications of Graphene. , 2018, , 149-150.		2
826	Graphene Applications in Specialized Materials. , 2018, , 151-154.		0
827	Miscellaneous Applications of Graphene. , 2018, , 155-155.		0
828	Basic Electrochromics of CPs. , 2018, , 251-282.		0
829	Batteries and Energy Devices. , 2018, , 575-600.		0
830	Brief, General Overview of Applications. , 2018, , 43-44.		0
831	CNT Applications in Batteries and Energy Devices. , 2018, , 49-52.		1
832	A Polycarboxylâ€Decorated Fe ^{III} â€Based Xerogelâ€Derived Multifunctional Composite (Fe ₃ O ₄ /Fe/C) as an Efficient Electrode Material towards Oxygen Reduction Reaction and Supercapacitor Application. Chemistry - A European Journal, 2018, 24, 6586-6594.	3.3	12
833	Facile synthesis of nitrogen-doped graphene frameworks for enhanced performance of hole transport material-free perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 3097-3103.	5.5	38
834	Direct Nitradated Graphite Felt as an Electrode Material for the Vanadium Redox Flow Battery. Bulletin of the Korean Chemical Society, 2018, 39, 281-286.	1.9	6
835	Hollow Nitrogen Rich Carbon Nanowire Array Electrode for Application in Lithium-Ion Battery. Materials Science Forum, 0, 914, 47-55.	0.3	2
836	High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries. Electrochemical Energy Reviews, 2018, 1, 35-53.	25.5	514
837	Mechanical responses of pristine and defective C3N nanosheets studied by molecular dynamics simulations. Computational Materials Science, 2018, 147, 316-321.	3.0	68
838	<i>N</i> -Alkynylpyridinium Salts: Highly Electrophilic Alkyne–Pyridine Conjugates as Precursors of Cationic Nitrogen-Embedded Polycyclic Aromatic Hydrocarbons. Journal of the American Chemical Society, 2018, 140, 3858-3862.	13.7	27
839	The chemistry of CVD graphene. Journal of Materials Chemistry C, 2018, 6, 6082-6101.	5.5	95

ARTICLE IF CITATIONS Control of Ion Species and Energy in High-Flux Helicon-Wave-Excited Plasma Using Ar/N₂ 840 1.3 2 Gas Mixtures. IEEE Transactions on Plasma Science, 2018, 46, 895-899. Self-templated synthesis of heavily nitrogen-doped hollow carbon spheres. Chemical Communications, 841 4.1 2018, 54, 4565-4568. Synthesis of a novel heterogeneous fenton catalyst and promote the degradation of methylene blue by fast regeneration of Fe2+. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 842 4.7 40 549, 94-104. NaBH4 assisted scalable graphene production: A bottom-up preparative strategy without external 843 4.5 energy input. Microchemical Journal, 2018, 140, 60-65. Fluorinated reduced graphene oxide as a protective layer on the metallic lithium for application in 844 3.3 51 the high energy batteries. Scientific Reports, 2018, 8, 5819. How to Construct DNA Hydrogels for Environmental Applications: Advanced Water Treatment and Environmental Analysis. Small, 2018, 14, e1703305. 845 59 The orientation construction of S and N dual-doped discoid-like graphene with high-rate electrode 846 6.1 14 property. Applied Surface Science, 2018, 442, 467-475. Co3O4 nanocrystals with exposed low-surface-energy planes anchored on chemically integrated graphitic carbon nitride-modified nitrogen-doped graphene: A high-performance anode material for 847 6.1 16 lithium-ion batteries. Applied Surface Science, 2018, 439, 447-455. 848 Topology and doping effects in three-dimensional nanoporous graphene. Carbon, 2018, 131, 258-265. 10.3 41 849 Nitrogen-doped carbon materials. Carbon, 2018, 132, 104-140. 566 Nitrogenâ€Doped Single Graphene Fiber with Platinum Water Dissociation Catalyst for Wearable 850 10.0 105 Humidity Sensor. Small, 2018, 14, e1703934. Metalâ€Free Catalytic Reduction of 4â€Nitrophenol by MOFsâ€Derived Nâ€Doped Carbon. ChemistrySelect, 1.5 29 2018, 3, 1108-1112. lonic liquids and derived materials for lithium and sodium batteries. Chemical Society Reviews, 2018, 852 38.1 452 47, 2020-2064. A two-dimensional nitrogen-rich carbon/silicon composite as high performance anode material for 12.7 lithium ion batteries. Chemical Engineering Journal, 2018, 341, 37-46. Computational investigation of double nitrogen doping on graphene. Journal of Molecular Modeling, 854 1.8 9 2018, 24, 26. Polyimide-derived carbon nanofiber membranes as anodes for high-performance flexible lithium ion 30 batteries. Chinese Chemical Letters, 2018, 29, 1692-1697. Graphene and its sensor-based applications: A review. Sensors and Actuators A: Physical, 2018, 270, 856 4.1 475 177-194. Atomistic Insights into FeF₃ Nanosheet: An Ultrahigh-Rate and Long-Life Cathode Material 19 for Li-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2018, 10, 3142-3151.

# 858	ARTICLE Tuning the band gap and the nitrogen content in carbon nitride materials by high temperature treatment at high pressure. Carbon, 2018, 130, 170-177.	IF 10.3	Citations 29
859	Resorcinol-formaldehyde derived carbon xerogels: A promising anode material for lithium-ion battery. Journal of Materials Research, 2018, 33, 1074-1087.	2.6	20
860	Recent Progress in Porous Graphene and Reduced Graphene Oxideâ€Based Nanomaterials for Electrochemical Energy Storage Devices. Advanced Materials Interfaces, 2018, 5, 1701212.	3.7	95
861	Tuning the Doping Types in Graphene Sheets by N Monoelement. Nano Letters, 2018, 18, 386-394.	9.1	44
862	Nâ€Doping and Defective Nanographitic Domain Coupled Hard Carbon Nanoshells for High Performance Lithium/Sodium Storage. Advanced Functional Materials, 2018, 28, 1706294.	14.9	392
863	A sustainable route from corn stalks to N, P-dual doping carbon sheets toward high performance sodium-ion batteries anode. Carbon, 2018, 130, 664-671.	10.3	123
864	A Universal Strategy for Hollow Metal Oxide Nanoparticles Encapsulated into B/N Coâ€Doped Graphitic Nanotubes as Highâ€Performance Lithiumâ€Ion Battery Anodes. Advanced Materials, 2018, 30, 1705441.	21.0	345
865	Facile Synthesis of Nitrogen and Halogen Dualâ€Doped Porous Graphene as an Advanced Performance Anode for Lithiumâ€lon Batteries. Advanced Materials Interfaces, 2018, 5, 1701261.	3.7	21
866	Direct production of nitrogen-doped porous carbon from urea via magnesiothermic reduction. Carbon, 2018, 130, 41-47.	10.3	41
867	Recent Advances in Designing Highâ€Capacity Anode Nanomaterials for Liâ€Ion Batteries and Their Atomicâ€Scale Storage Mechanism Studies. Advanced Science, 2018, 5, 1700902.	11.2	63
868	Boron-doped coronenes with high redox potential for organic positive electrodes in lithium-ion batteries: a first-principles density functional theory modeling study. Journal of Materials Chemistry A, 2018, 6, 10111-10120.	10.3	22
869	Hydrophobic coatings for improving corrosion resistance of manganese substrate. Surface and Coatings Technology, 2018, 347, 235-244.	4.8	20
870	Functionalization of Graphene Aerogels and their Applications in Energy Storage and Conversion. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1647-1674.	2.8	4
871	Internal structure – Na storage mechanisms – Electrochemical performance relations in carbons. Progress in Materials Science, 2018, 97, 170-203.	32.8	100
872	Carbon-coated Bi5Nb3O15 as anode material in rechargeable batteries for enhanced lithium storage. Ceramics International, 2018, 44, 11505-11511.	4.8	13
873	Free-Standing Nitrogen-Doped Cup-Stacked Carbon Nanotube Mats for Potassium-Ion Battery Anodes. ACS Applied Energy Materials, 2018, 1, 1703-1707.	5.1	90
874	Ordered mesoporous carbon supported Ni ₃ V ₂ O ₈ composites for lithium-ion batteries with long-term and high-rate performance. Journal of Materials Chemistry A, 2018, 6, 7005-7013.	10.3	74
875	Bottomâ€Up Confined Synthesis of Nanorodâ€inâ€Nanotube Structured Sb@N for Durable Lithium and Sodium Storage. Advanced Energy Materials, 2018, 8, 1703237.	19.5	192

#	Article	IF	CITATIONS
876	Nitrogen-doped graphene prepared by a millisecond photo-thermal process and its applications. Organic Electronics, 2018, 56, 221-231.	2.6	13
877	Heteroatom-doped carbonaceous electrode materials for high performance energy storage devices. Sustainable Energy and Fuels, 2018, 2, 1398-1429.	4.9	59
878	Carbon and non-carbon support materials for platinum-based catalysts in fuel cells. International Journal of Hydrogen Energy, 2018, 43, 7823-7854.	7.1	210
879	Silylated functionalized silicon-based composite as anode with excellent cyclic performance for lithium-ion battery. Journal of Power Sources, 2018, 385, 84-90.	7.8	22
880	Facile Synthesis of Nitrogen-Doped Double-Shelled Hollow Mesoporous Carbon Nanospheres as High-Performance Anode Materials for Lithium Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 5999-6007.	6.7	61
881	Ultra-long life Si@rGO/g-C ₃ N ₄ with a multiply synergetic effect as an anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 7557-7565.	10.3	60
882	High-temperature solvent-free sulfidation of MoO ₃ confined in a polypyrrole shell: MoS ₂ nanosheets encapsulated in a nitrogen, sulfur dual-doped carbon nanoprism for efficient lithium storage. Nanoscale, 2018, 10, 7536-7543.	5.6	35
883	A review on the heterostructure nanomaterials for supercapacitor application. Journal of Energy Storage, 2018, 17, 181-202.	8.1	129
884	Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chemical Reviews, 2018, 118, 6337-6408.	47.7	1,552
885	A New Anode for Lithiumâ€lon Batteries Based on Singleâ€Walled Carbon Nanotubes and Graphene: Improved Performance through a Binary Network Design. Chemistry - an Asian Journal, 2018, 13, 1223-1227.	3.3	13
886	Twoâ€Dimensional Layered Materials as Catalyst Supports. ChemNanoMat, 2018, 4, 28-40.	2.8	61
887	Strategies for improving the lithium-storage performance of 2D nanomaterials. National Science Review, 2018, 5, 389-416.	9.5	108
888	N,P co-doped carbon microsphere as superior electrocatalyst for VO2+/VO2+ redox reaction. Electrochimica Acta, 2018, 259, 122-130.	5.2	72
889	Fe–N co-decorated hierarchically porous graphene as a highly efficient electrocatalyst for the oxygen reduction reaction. Sustainable Energy and Fuels, 2018, 2, 169-174.	4.9	14
890	Facile synthesis of N and S co-doped graphene sheets as anode materials for high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2018, 731, 235-242.	5.5	39
891	Nitrogen doped graphene – Silver nanowire hybrids: An excellent anode material for lithium ion batteries. Applied Surface Science, 2018, 428, 1119-1129.	6.1	29
892	Ordered porous structure of nitrogen-self-doped carbon supporting Co ₃ O ₄ nanoparticles as anode for improving cycle stability in lithium-ion batteries. Journal of Materials Research, 2018, 33, 1226-1235.	2.6	12
893	Carbon Necklace Incorporated Electroactive Reservoir Constructing Flexible Papers for Advanced Lithium–Ion Batteries. Small, 2018, 14, 1702770.	10.0	70

#	Article	IF	CITATIONS
894	Stable silicon/3D porous N-doped graphene composite for lithium-ion battery anodes with self-assembly. Applied Surface Science, 2018, 436, 398-404.	6.1	42
895	NS codoped carbon nanorods as anode materials for high-performance lithium and sodium ion batteries. Journal of Energy Chemistry, 2018, 27, 203-208.	12.9	36
896	Nitrogen-doped graphene: Synthesis, characterizations and energy applications. Journal of Energy Chemistry, 2018, 27, 146-160.	12.9	254
897	Fe2O3/nitrogen-doped graphene nanosheet nanocomposites as anode materials for sodium-ion batteries with enhanced electrochemical performance. Journal of Alloys and Compounds, 2018, 737, 130-135.	5.5	28
898	Uniform Pt@Pd nanocrystals supported on N-doped reduced graphene oxide as catalysts for effective reduction of highly toxic chromium(VI). Materials Chemistry and Physics, 2018, 205, 64-71.	4.0	41
899	A review on manifold synthetic and reprocessing methods of 3D porous graphene-based architecture for Li-ion anode. Chemical Engineering Journal, 2018, 335, 954-969.	12.7	52
900	Facile synthesis of a nitrogen-doped graphene flower-like MnO2 nanocomposite and its application in supercapacitors. Applied Surface Science, 2018, 427, 986-993.	6.1	108
901	Graphene electrode with tunable charge transport in thin-film transistors. Nano Research, 2018, 11, 274-286.	10.4	14
902	Electrochemical properties of nitrogen-doped carbons prepared by the thermal reduction of furfurylamine-intercalated graphite oxide. Tanso, 2018, 2018, 2-7.	0.1	6
903	Electronic properties of boron doped single-layer graphene. AIP Conference Proceedings, 2018, , .	0.4	1
904	TiO ₂ nanocrystals embedded in sulfur-doped porous carbon as high-performance and long-lasting anode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 24224-24231.	10.3	25
905	Large-scale fabrication of BCN nanotube architecture entangled on a three-dimensional carbon skeleton for energy storage. Journal of Materials Chemistry A, 2018, 6, 21225-21230.	10.3	62
906	Selective nitrogen doping of graphene oxide by laser irradiation for enhanced hydrogen evolution activity. Chemical Communications, 2018, 54, 13726-13729.	4.1	28
907	Facile synthesis of graphene nanoribbons from zeolite-templated ultra-small carbon nanotubes for lithium ion storage. Journal of Materials Chemistry A, 2018, 6, 21327-21334.	10.3	6
908	A first-principles study of lithium and sodium storage in two-dimensional graphitic carbon nitride. New Carbon Materials, 2018, 33, 510-515.	6.1	8
909	Aqueous Preparation of Platinum Nanoflowers on Three-Dimensional Graphene for Efficient Methanol Oxidation. Catalysts, 2018, 8, 519.	3.5	11
910	Low-Cost and High-Performance Electrospun Carbon Nanofiber Film Anodes. International Journal of Electrochemical Science, 2018, 13, 2934-2944.	1.3	10
911	Unusual Enhancement of the Adsorption Energies of Sodium and Potassium in Sulfurâ^'Nitrogen and Siliconâ^'Boron Codoped Graphene. ACS Omega, 2018, 3, 15821-15828.	3.5	15

#	Article	IF	CITATIONS
912	Band Gap Control in Bilayer Graphene by Co-Doping with B-N Pairs. Scientific Reports, 2018, 8, 17689.	3.3	24
913	Sn-adopted fullerene \$\$(hbox {C}_{60})\$\$ (C 60) nanocage as acceptable catalyst for silicon monoxide oxidation. Bulletin of Materials Science, 2018, 41, 1.	1.7	1
914	Synthesis and properties of graphene and its 2D inorganic analogues with potential applications. Bulletin of Materials Science, 2018, 41, 1.	1.7	4
915	Enhanced Environmental Stability Coupled with a 12.5% Power Conversion Efficiency in an Aluminum Oxide-Encapsulated n-Graphene/p-Silicon Solar Cell. ACS Applied Materials & Interfaces, 2018, 10, 37181-37187.	8.0	13
916	One-pot hydrothermal synthesis of TiO2/graphene nanocomposite with simultaneous nitrogen-doping for energy storage application. Journal of Electroanalytical Chemistry, 2018, 829, 208-216.	3.8	34
917	Be3N2 monolayer: A graphene-like two-dimensional material and its derivative nanoribbons. AIP Advances, 2018, 8, .	1.3	17
918	Hierarchically Porous Heteroatomsâ€doped Vesicaâ€like Carbons as Highly Efficient Bifunctional Electrocatalysts for Znâ€air Batteries. ChemCatChem, 2018, 10, 5297-5305.	3.7	34
919	In-situ reduction derived nitrogen doped carbon anchored cobalt nanoparticles as highly capacity and long life lithium ion battery anodes. Journal of Materials Science: Materials in Electronics, 2018, 29, 19932-19941.	2.2	1
920	CoSe ₂ Nanoparticles Encapsulated by Nâ€Doped Carbon Framework Intertwined with Carbon Nanotubes: Highâ€Performance Dualâ€Role Anode Materials for Both Li―and Naâ€Ion Batteries. Advanced Science, 2018, 5, 1800763.	11.2	215
921	Advanced Bioâ€Based UVâ€Curable Anticorrosive Coatings Reinforced by hBN. ChemistrySelect, 2018, 3, 11277-11283.	1.5	12
922	Bottom-Up Construction of Reduced-Graphene-Oxide-Anchored MnO with an Nitrogen-Doped Carbon Coating for Synergistically Improving Lithium-Ion Storage. Inorganic Chemistry, 2018, 57, 13693-13701.	4.0	10
923	Achieving a High-Performance Carbon Anode through the P–O Bond for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 34245-34253.	8.0	57
924	Rapid Synthesis of Oxygen-Rich Covalent C ₂ N (CNO) Nanosheets by Sacrifice of HKUST-1: Advanced Metal-Free Nanofillers for Polymers. ACS Applied Materials & Interfaces, 2018, 10, 32688-32697.	8.0	9
925	MOF-derived porous Ni ₂ P nanosheets as novel bifunctional electrocatalysts for the hydrogen and oxygen evolution reactions. Journal of Materials Chemistry A, 2018, 6, 18720-18727.	10.3	149
927	Nanoarchitectured Nitrogen-Doped Graphene/Carbon Nanotube as High Performance Electrodes for Solid State Supercapacitors, Capacitive Deionization, Li-Ion Battery, and Metal-Free Bifunctional Electrocatalysis. ACS Applied Energy Materials, 0, , .	5.1	9
928	MOF-derived honeycomb-like N-doped carbon structures assembled from mesoporous nanosheets with superior performance in lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 18891-18897.	10.3	80
929	A facile synthetic route of nitrogen-doped graphite derived from chitosan for modifying LiFePO4 cathode. Journal of Materials Science: Materials in Electronics, 2018, 29, 16630-16638.	2.2	16
930	Structural engineering of S-doped Co/N/C mesoporous nanorods via the Ostwald ripening-assisted template method for oxygen reduction reaction and Li-ion batteries. Journal of Power Sources, 2018, 401, 55-64.	7.8	14

#	Article	IF	CITATIONS
931	Mass Production of Large‧ized, Nonlayered 2D Nanosheets: Their Directed Synthesis by a Rapid "Gelâ€Blowing―Strategy, and Applications in Li/Na Storage and Catalysis. Advanced Materials, 2018, 30, e1803569.	21.0	74
932	Oxidation of toxic gases via Ge B36N36 and Ge C72 nanocages as potential catalysts. Inorganic Chemistry Communication, 2018, 96, 206-210.	3.9	4
933	Triazine-graphdiyne: A new nitrogen-carbonous material and its application as an advanced rechargeable battery anode. Carbon, 2018, 137, 442-450.	10.3	64
934	Synthesis of rock salt Pb1-xSrxTe with unusual stabilized compositions and their electrochemical performance. Journal of Alloys and Compounds, 2018, 757, 246-258.	5.5	2
935	An all-in-one material with excellent electrical double-layer capacitance and pseudocapacitance performances for supercapacitor. Applied Surface Science, 2018, 453, 63-72.	6.1	28
936	Highly efficient electrocatalyst of N-doped graphene-encapsulated cobalt-iron carbides towards oxygen reduction reaction. Carbon, 2018, 137, 358-367.	10.3	95
937	The Role of Geometric Sites in 2D Materials for Energy Storage. Joule, 2018, 2, 1075-1094.	24.0	108
938	Concentric dopant segregation in CVD-grown N-doped graphene single crystals. Applied Surface Science, 2018, 454, 121-129.	6.1	5
939	Graphene-Based Flexible Energy Storage Devices. , 2018, , 175-199.		6
940	A facile and processable integration strategy towards Schiff-base polymer-derived carbonaceous materials with high lithium storage performance. Nanoscale, 2018, 10, 10351-10356.	5.6	15
941	Li–Ion onducting Pillar‣ike Graphitic Carbon Nitrides as Novel Anodes for Li–Ion Batteries. ChemistrySelect, 2018, 3, 5364-5376.	1.5	7
942	A DFT study of Li adsorption on surface of Si clusters anchored N-doped defective graphene composite. Applied Surface Science, 2018, 457, 789-796.	6.1	19
943	Free-standing nitrogen-doped graphene paper for lithium storage application. RSC Advances, 2018, 8, 14032-14039.	3.6	25
944	Properties of a granulated nitrogen-doped graphene oxide aerogel. Journal of Non-Crystalline Solids, 2018, 498, 236-243.	3.1	13
945	Few-atomic-layered hollow nanospheres constructed from alternate intercalation of carbon and MoS2 monolayers for sodium and lithium storage. Nano Energy, 2018, 51, 546-555.	16.0	98
946	Synthesis of Carbon Nanotube/Graphene Composites on Ni Foam without Additional Catalysts by CVD and their Nitrogen-Plasma Treatment for Anode Materials in Lithium-ion Batteries. Electrochemistry, 2018, 86, 109-115.	1.4	9
947	Bulk Phosphorus-Doped Graphitic Carbon. Chemistry of Materials, 2018, 30, 4580-4589.	6.7	15
948	Metal–Organophosphine Frameworkâ€Derived N,Pâ€Codoped Carbonâ€Confined Cu ₃ P Nanonaticles for Superb Naâ€lon Storage, Advanced Energy Materials, 2018, 8, 1801489	19.5	92

ARTICLE IF CITATIONS Energy and environmental applications of graphene and its derivatives., 2018,, 105-129. 3 949 Polymer nanocomposites for lithium battery applications., 2018, , 283-313. Large area ultra-thin graphene films for functional photovoltaic devices. Journal of Materials 951 2.6 3 Research, 2018, 33, 2306-2317. Synthesis and characterization of graphene/carbonized paper/tannic acid for flexible composite electrodes. New Journal of Chemistry, 2018, 42, 14576-14585. Exploring the correlation between MoS2 nanosheets and 3D graphene-based nanostructures for 953 6.1 11 reversible lithium storage. Applied Surface Science, 2018, 459, 98-104. Curving effects of concave dodecahedral nanocarbons enable enhanced Li-ion storage. Journal of 954 10.3 29 Materials Chemistry A, 2018, 6, 14894-14902. High Electrochemical Performance Phosphorus-Oxide Modified Graphene Electrode for Redox 955 4.1 20 Supercapacitors Prepared by One-Step Electrochemical Exfoliation. Nanomaterials, 2018, 8, 417. Electrophoretic Deposition of Nitrogen-Boron Co-Doped Graphene as High Performance Electrode for Next Generation Supercapacitors. ECS Transactions, 2018, 85, 521-530. Nitrogen-doped graphene and graphene quantum dots: A review onsynthesis and applications in 957 14.7 313 energy, sensors and environment. Advances in Colloid and Interface Science, 2018, 259, 44-64. Rational Design of Two-dimensional Anode Materials: B₂S as a Strained Graphene. Journal 4.6 of Physical Chemistry Letters, 2018, 9, 4852-4856. Single pot fabrication of N doped reduced GO (N-rGO) /ZnO-CuO nanocomposite as an efficient 959 3.5 39 electrode material for supercapacitor application. Vacuum, 2018, 157, 145-154. Enhancement of catalytic performance by regulating the surface properties of Fe3O4 composites. 5.3 Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 350-362. Nitrogen-Doped Nanoporous Carbon Nanospheroids for Selective Dye Adsorption and Pb(II) Ion 961 3.5 45 Removal from Waste Water. ACS Omega, 2018, 3, 9888-9898. Synthesis of Carbon Nanosheets and Nitrogen-Doped Carbon Nanosheets from Perylene Derivatives for Supercapacitor Application. ACS Applied Nano Materials, 2018, 1, 4576-4586. 5.0 Graphene Plasmon-Enhanced IR Biosensing for in Situ Detection of Aqueous-Phase Molecules with an 963 6.5 24 Attenuated Total Reflection Mode. Analytical Chemistry, 2018, 90, 10786-10794. The different influences of graphene quantum dots and N over oxygen reduction reaction. Integrated Ferroelectrics, 2018, 190, 1-7. 964 Tannic Acid-Decorated Spongy Graphene for Flexible and High Performance Supercapacitors. Journal 965 2.9 5 of the Electrochemical Society, 2018, 165, A1706-A1712. Coupled cluster and density functional investigation of the neutral sodium-benzene and potassium-benzene complexes. Chemical Physics Letters, 2018, 706, 343-347.

#	Article	IF	CITATIONS
967	Strategies toward Highâ€Performance Cathode Materials for Lithium–Oxygen Batteries. Small, 2018, 14, e1800078.	10.0	86
968	The recent progress of nitrogen-doped carbon nanomaterials for electrochemical batteries. Journal of Materials Chemistry A, 2018, 6, 12932-12944.	10.3	218
969	Oxidation of Methylene via Sn-adsorbed Boron Nitride Nanocage (B30N30): DFT Investigation. Silicon, 2019, 11, 995-1000.	3.3	0
970	Rice husk-derived Mn ₃ O ₄ /manganese silicate/C nanostructured composites for high-performance hybrid supercapacitors. Inorganic Chemistry Frontiers, 2019, 6, 2788-2800.	6.0	56
971	3D Nitrogen and Sulfur Co-Doped Graphene/Integrated Polysaccharides for Electrochemical Recognition Tryptophan Enantiomers. Journal of the Electrochemical Society, 2019, 166, B1053-B1062.	2.9	26
972	Carbon Nitride Transforms into a High Lithium Storage Capacity Nitrogen-Rich Carbon. ACS Nano, 2019, 13, 9279-9291.	14.6	58
973	Metal-doped graphene nanocomposites and their application in energy storage. , 2019, , 109-120.		1
974	Potential of Ge-adopted Boron Nitride Nanotube as Catalyst for Sulfur Dioxide Oxidation. Protection of Metals and Physical Chemistry of Surfaces, 2019, 55, 671-676.	1.1	24
975	Lithium-ion battery fast charging: A review. ETransportation, 2019, 1, 100011.	14.8	835
976	Highly wrinkled carbon tubes as an advanced anode for K-ion full batteries. Journal of Materials Chemistry A, 2019, 7, 20675-20682.	10.3	29
977	Stability of pyridine-like and pyridinium-like nitrogen in graphene. Journal of Physics Condensed Matter, 2019, 31, 265403.	1.8	0
978	Recent progress in the synthesis of graphene and derived materials for next generation electrodes of high performance lithium ion batteries. Progress in Energy and Combustion Science, 2019, 75, 100786.	31.2	379
979	Design of carbon sources: starting point for chemical vapor deposition of graphene. 2D Materials, 2019, 6, 042003.	4.4	8
980	Bio-Derived Hierarchical Multicore–Shell Fe2N-Nanoparticle-Impregnated N-Doped Carbon Nanofiber Bundles: A Host Material for Lithium-/Potassium-Ion Storage. Nano-Micro Letters, 2019, 11, 56.	27.0	47
981	Carbothermal process-derived porous N-doped carbon for flexible energy storage: Influence of carbon surface area and conductivity. Chemical Engineering Journal, 2019, 378, 122158.	12.7	19
982	Synthesis of uniform silica nanospheres wrapped in nitrogen-doped carbon nanosheets with stable lithium-ion storage properties. Journal of Materials Science, 2019, 54, 12767-12781.	3.7	12
983	Few-layer graphene coated current collectors for safe and powerful lithium ion batteries. Carbon, 2019, 153, 495-503.	10.3	36
984	Tailoring Storage Capacity and Ion Kinetics in Ti2CO2/ Graphene Heterostructures by Functionalization of Graphene. Physical Review Applied, 2019, 12, .	3.8	17

#	Article	IF	CITATIONS
985	Patterned macroporous Fe ₃ C/C membrane-induced high ionic conductivity for integrated Li–sulfur battery cathodes. Journal of Materials Chemistry A, 2019, 7, 20614-20623.	10.3	37
986	Flexible Grapheneâ€, Grapheneâ€Oxideâ€, and Carbonâ€Nanotubeâ€Based Supercapacitors and Batteries. Annale Der Physik, 2019, 531, 1800507.	en 2.4	44
987	Si-coordinated nitrogen doped graphene: A robust and highly active catalyst for NO + CO reaction. Applied Surface Science, 2019, 494, 659-665.	6.1	9
988	Nitrogen-doped metal-free carbon catalysts for (electro)chemical CO ₂ conversion and valorisation. Dalton Transactions, 2019, 48, 13508-13528.	3.3	71
989	Interaction of DNA nucleobases with boron, nitrogen, and sulfur doped graphene nano-ribbon for sequencing: An Ab initio study. Applied Surface Science, 2019, 492, 634-643.	6.1	13
990	Seedâ€Initiated Synthesis and Tunable Doping Graphene for Highâ€Performance Photodetectors. Advanced Optical Materials, 2019, 7, 1901388.	7.3	7
991	Nitrogen-doped carbon xerogels catalyst for oxygen reduction reaction: Improved structural and catalytic activity by enhancing nitrogen species and cobalt insertion. International Journal of Hydrogen Energy, 2019, 44, 28789-28802.	7.1	20
992	Biomaterials for Highâ€Energy Lithiumâ€Based Batteries: Strategies, Challenges, and Perspectives. Advanced Energy Materials, 2019, 9, 1901774.	19.5	73
993	Ionothermal Synthesis of Crystalline Nanoporous Silicon and Its Use as Anode Materials in Lithium-Ion Batteries. Nanoscale Research Letters, 2019, 14, 196.	5.7	3
995	Enhanced Sensitivity of Dopamine Biosensors: An Electrochemical Approach Based on Nanocomposite Electrodes Comprising Polyaniline, Nitrogen-Doped Graphene, and DNA-Functionalized Carbon Nanotubes. Journal of the Electrochemical Society, 2019, 166, B1415-B1425.	2.9	29
998	Wet-Chemical Assembly of 2D Nanomaterials into Lightweight, Microtube-Shaped, and Macroscopic 3D Networks. ACS Applied Materials & Interfaces, 2019, 11, 44652-44663.	8.0	30
999	Synthesis of Doped Porous 3D Graphene Structures by Chemical Vapor Deposition and Its Applications. Advanced Functional Materials, 2019, 29, 1904457.	14.9	64
1000	Synthetic control of Prussian blue derived nano-materials for energy storage and conversion application. Materials Today Energy, 2019, 14, 100332.	4.7	28
1001	Synthesis and Operando Sodiation Mechanistic Study of Nitrogenâ€Doped Porous Carbon Coated Bimetallic Sulfide Hollow Nanocubes as Advanced Sodium Ion Battery Anode. Advanced Energy Materials, 2019, 9, 1902312.	19.5	74
1002	Carbon-Related Bilayers: Nanoscale Building Blocks for Self-Assembly Nanomanufacturing. Journal of Physical Chemistry C, 2019, 123, 23195-23204.	3.1	5
1003	Enhanced Electrolyte Ion Penetration in Microdome-like Graphene with High Mass Loading for High-Performance Flexible Supercapacitors. ACS Applied Energy Materials, 2019, 2, 6790-6799.	5.1	14
1004	Silicon Nanoparticles Embedded in Nâ€Doped Fewâ€Layered Graphene: Facile Synthesis and Application as an Effective Anode for Lithium Ion Batteries. ChemPlusChem, 2019, 84, 1519-1524.	2.8	7
1005	A hierarchical porous architecture of silicon@TiO ₂ @carbon composite novel anode materials for high performance Li-ion batteries. New Journal of Chemistry, 2019, 43, 15342-15350.	2.8	7

#	Article	IF	CITATIONS
1006	Combustion synthesis of N-doped three-dimensional graphene networks using graphene oxide–nitrocellulose composites. Advanced Composites and Hybrid Materials, 2019, 2, 492-500.	21.1	29
1007	Effect of nitrogen doping in the few layer graphene cathode of an aluminum ion battery. Chemical Physics Letters, 2019, 733, 136669.	2.6	6
1008	Enhanced electrochemical and hydrogen storage properties of La–Mg–Ni-based alloy electrode using a Ni and N co-doped reduced graphene oxide nanocomposite as a catalyst. International Journal of Hydrogen Energy, 2019, 44, 25840-25849.	7.1	12
1009	Fabrication of highly N-Doped graphene-like carbon templated from g-C3N4 nanosheets as promising Li-ions battery anode. Electrochimica Acta, 2019, 324, 134880.	5.2	35
1010	Controllable nitrogen-doping of nanoporous carbons enabled by coordination frameworks. Journal of Materials Chemistry A, 2019, 7, 647-656.	10.3	43
1011	Powder exfoliated MoS ₂ nanosheets with highly monolayer-rich structures as high-performance lithium-/sodium-ion-battery electrodes. Nanoscale, 2019, 11, 1887-1900.	5.6	93
1012	Zn-MOFs derived porous carbon nanofiber for high performance lithium-ion batteries. Surface and Coatings Technology, 2019, 359, 384-389.	4.8	28
1013	<i>In situ</i> synthesis of a silicon flake/nitrogen-doped graphene-like carbon composite from organoclay for high-performance lithium-ion battery anodes. Chemical Communications, 2019, 55, 2644-2647.	4.1	44
1014	Coupled cluster investigation of the interaction of beryllium, magnesium, and calcium with pyridine: Implications for the adsorption on nitrogen-doped graphene. Computational and Theoretical Chemistry, 2019, 1150, 57-62.	2.5	12
1015	High-throughput fabrication of 3D N-doped graphenic framework coupled with Fe3C@porous graphite carbon for ultrastable potassium ion storage. Energy Storage Materials, 2019, 22, 185-193.	18.0	91
1016	An effective performance of F-Doped hexagonal boron nitride nanosheets as cathode material in magnesium battery. Materials Chemistry and Physics, 2019, 226, 356-361.	4.0	18
1017	Formation of environmentally stable hole-doped graphene films with instantaneous and high-density carrier doping via a boron-based oxidant. Npj 2D Materials and Applications, 2019, 3, .	7.9	21
1018	Enhanced lithium storage performance of graphene nanoribbons doped with high content of nitrogen atoms. Nanotechnology, 2019, 30, 225401.	2.6	6
1019	Multi nitrogen doped small honeycomb structure: investigation of their on SEM and TEM microscopy dynamic hierarchal self-assembles for high performance anodes lithium ion storage. Materials Research Express, 2019, 6, 085084.	1.6	0
1020	In-situ synthesis of Ge/reduced graphene oxide composites as ultrahigh rate anode for lithium-ion battery. Journal of Alloys and Compounds, 2019, 801, 90-98.	5.5	27
1021	Doping Graphene Oxide Aerogel with Nitrogen during Reduction with Hydrazine and Low Temperature Annealing in Air. Russian Journal of Physical Chemistry A, 2019, 93, 296-300.	0.6	7
1022	Sandwich-Type Si@C/rGO Composite Stabilized by Polyetherimide-Derived Interface with Efficient Lithium Storage and High Rate Performance. Journal of the Electrochemical Society, 2019, 166, A2096-A2104.	2.9	2
1023	Multifunctional Solar Waterways: Plasmaâ€Enabled Selfâ€Cleaning Nanoarchitectures for Energyâ€Efficient Desalination. Advanced Energy Materials, 2019, 9, 1901286.	19.5	109

#	Article	IF	CITATIONS
1024	Free-standing macro-porous nitrogen doped graphene film for high energy density supercapacitor. Electrochimica Acta, 2019, 318, 865-874.	5.2	34
1025	Theoretical investigating of graphene/antimonene heterostructure as a promising high cycle capability anodes for fast-charging lithium ion batteries. Applied Surface Science, 2019, 491, 451-459.	6.1	33
1026	Selective photoluminescence enhancement of red emitted surface modified poly(p-phenylenediamine) dots: An ultra-sensitive anion photoluminescence sensor for Fâ՞' in vitro. Synthetic Metals, 2019, 254, 29-33.	3.9	0
1027	A novel one-pot facile economic approach for the mass synthesis of exfoliated multilayered nitrogen-doped graphene-like nanosheets: new insights into the mechanistic study. Physical Chemistry Chemical Physics, 2019, 21, 13611-13622.	2.8	20
1028	Thermodynamic stability of nitrogen functionalities and defects in graphene and graphene na graphene nanoribbons from first principles. Carbon, 2019, 152, 715-726.	10.3	22
1029	Preparation of Nâ€doped graphene powders by cyclic voltammetry and a potential application of them: Anode materials of Liâ€ion batteries. International Journal of Energy Research, 2019, 43, 5346-5354.	4.5	34
1030	The Importance of the Interfacial Contact: Is Reduced Graphene Oxide Always an Enhancer in Photo(Electro)Catalytic Water Oxidation?. ACS Applied Materials & Interfaces, 2019, 11, 23125-23134.	8.0	34
1031	Multifunctional nitrogen-doped nanoporous carbons derived from metal–organic frameworks for efficient CO ₂ storage and high-performance lithium-ion batteries. New Journal of Chemistry, 2019, 43, 10405-10412.	2.8	12
1032	Electrochemically Exfoliating Graphite Cathode to N-Doped Graphene Analogue and Its Excellent Al Storage Performance. Journal of the Electrochemical Society, 2019, 166, A1738-A1744.	2.9	5
1033	2D layered Sb2Se3-based amorphous composite for high-performance Li- and Na-ion battery anodes. Journal of Power Sources, 2019, 433, 126639.	7.8	54
1034	Surfaceâ€Wrinkleâ€Modified Graphite Felt with High Effectiveness for Vanadium Redox Flow Batteries. Advanced Electronic Materials, 2019, 5, 1900036.	5.1	10
1035	High performance nanoporous carbon microsupercapacitors generated by a solvent-free MOF-CVD method. Carbon, 2019, 152, 688-696.	10.3	24
1036	Graphene as a material for energy generation and control: Recent progress in the control of graphene thermal conductivity by graphene defect engineering. Materials Today Energy, 2019, 12, 431-442.	4.7	76
1037	Robust nanocomposites of α-Fe2O3 and N-doped graphene oxide: Interfacial bonding and chemisorption of H2O. Carbon, 2019, 152, 497-502.	10.3	12
1038	Carbon-Dots-Derived 3D Highly Nitrogen-Doped Porous Carbon Framework for High-Performance Lithium Ion Storage. ACS Sustainable Chemistry and Engineering, 2019, 7, 9848-9856.	6.7	42
1039	Metal multiple-sulfides with nitrogen doped carbon layer for high performance lithium-sulfur batteries. Journal of Alloys and Compounds, 2019, 798, 531-539.	5.5	7
1040	The Inhibition Mechanism of Lithium Dendrite on Nitrogen-Doped Defective Graphite: The First Principles Studies. Journal of the Electrochemical Society, 2019, 166, A1603-A1610.	2.9	2
1041	Sulfur-Doped Reduced Graphene Oxide for Enhanced Sodium Ion Pseudocapacitance. Nanomaterials, 2019, 9, 752.	4.1	17

#	Article	IF	CITATIONS
1042	Impact of phosphorous and sulphur substitution on Dirac cone modification and optical behaviors of monolayer graphene for nano-electronic devices. Applied Surface Science, 2019, 489, 358-371.	6.1	5
1043	Inâ€situ Grown SnO ₂ Nanospheres on Reduced GO Nanosheets as Advanced Anodes for Lithiumâ€ion Batteries. ChemistryOpen, 2019, 8, 712-718.	1.9	16
1044	NEXAFS spectroscopy study of lithium interaction with nitrogen incorporated in porous graphitic material. Journal of Materials Science, 2019, 54, 11168-11178.	3.7	23
1045	Engineering N-reduced graphene oxide wrapped Co3O4@f-MWCNT hybrid for enhance performance dye-sensitized solar cells. Journal of Electroanalytical Chemistry, 2019, 844, 142-154.	3.8	14
1046	Nitrogen-doped hollow carbon spheres as chemical vapour sensors. New Journal of Chemistry, 2019, 43, 8418-8427.	2.8	23
1047	3D nitrogen-doped framework carbon for high-performance potassium ion hybrid capacitor. Energy Storage Materials, 2019, 23, 522-529.	18.0	190
1048	Noninvasive coupling of PbPc monolayers to epitaxial graphene on SiC(0001). Surface Science, 2019, 686, 45-51.	1.9	6
1049	Solution Synthesis of Porous Silicon Particles as an Anode Material for Lithium Ion Batteries. Chemistry - A European Journal, 2019, 25, 9071-9077.	3.3	25
1050	Influence of Inclined Magnetic Field on Carreau Nanoliquid Thin Film Flow and Heat Transfer with Graphene Nanoparticles. Energies, 2019, 12, 1459.	3.1	55
1051	Recent development of carbon based materials for energy storage devices. Materials Science for Energy Technologies, 2019, 2, 417-428.	1.8	69
1052	Planar NiC ₃ as a reversible anode material with high storage capacity for lithium-ion and sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 13356-13363.	10.3	47
1053	ZrO2 nanoparticle embedded carbon nanofibers by electrospinning technique as advanced negative electrode materials for vanadium redox flow battery. Electrochimica Acta, 2019, 309, 166-176.	5.2	96
1054	Improved Epitaxy of AlN Film for Deepâ€Ultraviolet Lightâ€Emitting Diodes Enabled by Graphene. Advanced Materials, 2019, 31, e1807345.	21.0	116
1055	Carbon-based functional nanomaterials: Preparation, properties and applications. Composites Science and Technology, 2019, 179, 10-40.	7.8	216
1056	1T MoS2 nanosheets with extraordinary sodium storage properties via thermal-driven ion intercalation assisted exfoliation of bulky MoS2. Nano Energy, 2019, 61, 361-369.	16.0	157
1057	Porous nitrogen-doped carbon networks derived from orange peel for high-performance supercapacitors. Ionics, 2019, 25, 4371-4380.	2.4	18
1058	Novel sponge-like N-doped graphene film as high-efficiency electrode for Li-ion battery. Applied Surface Science, 2019, 485, 529-535.	6.1	16
1059	Selfâ€Assembled Threeâ€Dimensional Graphene Aerogel with an Interconnected Porous Structure for Lithiumâ€ion Batteries. ChemElectroChem, 2019, 6, 2698-2706.	3.4	11

ARTICLE IF CITATIONS B₃S monolayer: prediction of a high-performance anode material for lithium-ion batteries. 1060 10.3 59 Journal of Materials Chemistry A, 2019, 7, 12706-12712. CVD-graphene/graphene flakes dual-films as advanced DSSC counter electrodes. 2D Materials, 2019, 6, 4.4 23 035007 Ultra-high performance of Li/Na ion batteries using N/O dual dopant porous hollow carbon 1062 10.3 42 nanocapsules as an anode. Journal of Materials Chemistry A, 2019, 7, 11117-11126. Density functional theory calculations for interactions between metal-free phthalocyanine and 1063 lithium polysulfides. Journal of Power Sources, 2019, 423, 34-39. One-pot <i>in situ</i> synthesis of CsPbX₃@h-BN (X = Cl, Br, I) nanosheet composites with 1064 5.5 47 superior thermal stability for white LEDs. Journal of Materials Chemistry C, 2019, 7, 4038-4042. Tailoring sandwich-like CNT@MnO@N-doped carbon hetero-nanotubes as advanced anodes for boosting lithium storage. Electrochimica Acta, 2019, 304, 158-167. 5.2 Electrocatalytic Activity of Functionalized Carbon Paper Electrodes and Their Correlation to the 1067 5.1 47 Fermi Level Derived from Raman Spectra. ACS Applied Energy Materials, 2019, 2, 2324-2336. Nitrogen-Doped Carbon-Encapsulated Antimony Sulfide Nanowires Enable High Rate Capability and 1068 5.0 40 Cyclic Stability for Sodium-Ion Batteries. ACS Applied Nano Materials, 2019, 2, 1457-1465. Adsorption and migration of alkali metals (Li, Na, and K) on pristine and defective graphene surfaces. 1069 5.6 149 Nanoscale, 2019, 11, 5274-5284. Prospects and challenges of graphene based fuel cells. Journal of Energy Chemistry, 2019, 39, 217-234. 63 Carbon sheet-decorated graphite felt electrode with high catalytic activity for vanadium redox flow 1073 10.3 40 batteries. Carbon, 2019, 148, 9-15. N- and B-Codoped Graphene: A Strong Candidate To Replace Natural Peroxidase in Sensitive and 1074 14.6 Selective Bioassays. ACS Nano, 2019, 13, 4312-4321. PdSe₂ Multilayer on Germanium Nanocones Array with Light Trapping Effect for Sensitive 1075 Infrared Photodetector and Image Sensing Application. Advanced Functional Materials, 2019, 29, 14.9 90 1900849. Catalytic Synthesis of Hard/Soft Carbon Hybrids with Heteroatom Doping for Enhanced Sodium Storage. ChemistrySelect, 2019, 4, 3551-3558. 1.5 Surface-induced synthesis of hybrid N, P functionalized hierarchically porous carbon nanosheets for 1077 4.4 11 lithium-ion batteries. Microporous and Mesoporous Materials, 2019, 282, 197-204. Nitrogen-Doped Graphene on Copper: Edge-Guided Doping Process and Doping-Induced Variation of 3.1 Local Work Function. Journal of Physical Chemistry C, 2019, 123, 8802-8812. Light-Induced Tunable n-Doping of Ag-Embedded GO/RGO Sheets in Polymer Matrix. Journal of Physical 1079 3.15 Chemistry C, 2019, 123, 10557-10563. Chemical and Bio Sensing Using Graphene-Enhanced Raman Spectroscopy. Nanomaterials, 2019, 9, 516. 4.1

#	Article	IF	CITATIONS
1082	Towel-like composite: Edge-rich MoS2 nanosheets oriented anchored on curly N-Doped graphene for high-performance lithium and sodium storage. Electrochimica Acta, 2019, 308, 217-226.	5.2	15
1083	Preparation and Electrochemical Properties of Bamboo-based Carbon for Lithium-Ion-Battery Anode Material. International Journal of Electrochemical Science, 2019, , 2452-2461.	1.3	5
1084	Synthesis of Flower‣ike Carbonâ€Doped Nickel Phosphides Electrocatalysts for Oxygen Evolution Reaction. ChemistrySelect, 2019, 4, 4271-4277.	1.5	9
1085	A Costâ€Effective and Scaleable Approach for the Inâ€Situ Synthesis of Porous Carbonâ€Coated Micrometerâ€Sized AlSi Particles as Anode for Lithiumâ€Ion Batteries. ChemElectroChem, 2019, 6, 2517-2523.	3.4	4
1086	Spectroscopic Fingerprints of Graphitic, Pyrrolic, Pyridinic, and Chemisorbed Nitrogen in N-Doped Graphene. Journal of Physical Chemistry C, 2019, 123, 10695-10702.	3.1	181
1088	Self-assembly encapsulation of Si in N-doped reduced graphene oxide for use as a lithium ion battery anode with significantly enhanced electrochemical performance. Sustainable Energy and Fuels, 2019, 3, 1427-1438.	4.9	32
1089	Smart construction of 3D N-doped graphene honeycombs with (NH ₄) ₂ SO ₄ as a multifunctional template for Li-ion battery anode: "A choice that serves three purposes― Green Chemistry, 2019, 21, 1472-1483.	9.0	61
1090	Cycling-induced structure refinement of MnO nanorods wrapped by N-doped carbon with internal void space for advanced lithium-ion anodes. Applied Surface Science, 2019, 479, 386-394.	6.1	13
1091	Lightweight Multi-Walled Carbon Nanotube/N-Doped Graphene Aerogel Composite for High-Performance Lithium-Ion Capacitors. Journal of the Electrochemical Society, 2019, 166, A532-A538.	2.9	13
1092	Functionalized Graphene Nanocomposites in Air Filtration Applications. , 2019, , 65-89.		2
1093	Fe3C-doped asymmetric porous carbon membrane binder-free integrated materials as high performance anodes of lithium-ion batteries. Chemical Engineering Journal, 2019, 368, 310-320.	12.7	37
1094	Tunable Electronic Properties of Nitrogen and Sulfur Doped Graphene: Density Functional Theory Approach. Nanomaterials, 2019, 9, 268.	4.1	39
1095	Graphene Based Futuristic Green Batteries For Energy Harvesting. , 2019, , .		1
1096	Atomistic molecular dynamics simulation study on the mechanical behavior and dispersion of surface functionalized graphene/polypropylene nanocomposites. Functional Composites and Structures, 2019, 1, 045007.	3.4	7
1097	A novel anode material for lithium-ion batteries: silicon nanoparticles and graphene composite films. IOP Conference Series: Earth and Environmental Science, 2019, 354, 012079.	0.3	3
1098	Biocompatible carbon dots with low-saturation-intensity and high-photobleaching-resistance for STED nanoscopy imaging of the nucleolus and tunneling nanotubes in living cells. Nano Research, 2019, 12, 3075-3084.	10.4	73
1099	Upgrading the Properties of Reduced Graphene Oxide and Nitrogen-Doped Reduced Graphene Oxide Produced by Thermal Reduction toward Efficient ORR Electrocatalysts. Nanomaterials, 2019, 9, 1761.	4.1	20
1100	Preparation of graphene via modified redox method and its electronic performance. Ferroelectrics, 2019, 551, 251-258.	0.6	2

#	Article	IF	CITATIONS
1101	A Feasible Way to Produce Carbon Nanofiber by Electrospinning from Sugarcane Bagasse. Polymers, 2019, 11, 1968.	4.5	16
1102	Co ₃ O ₄ /NiO@GQD@SO ₃ H nanocomposite as a superior catalyst for the synthesis of chromenpyrimidines. RSC Advances, 2019, 9, 37344-37354.	3.6	11
1103	Top-down strategy synthesis of fluorinated graphdiyne for lithium ion battery. RSC Advances, 2019, 9, 31406-31412.	3.6	13
1104	α-Fe2O3 anchored on porous N doped carbon derived from green microalgae via spray pyrolysis as anode materials for lithium ion batteries. Journal of Industrial and Engineering Chemistry, 2019, 69, 39-47.	5.8	31
1105	Heteroatom-doped graphene and its application as a counter electrode in dye-sensitized solar cells. International Journal of Energy Research, 2019, 43, 1702-1734.	4.5	22
1106	A systematic study of kinetics in mesocarbon microbeads anodes in presence of nano-conductive additives. Electrochimica Acta, 2019, 297, 916-928.	5.2	10
1107	Heavily nitrogen doped chemically exfoliated graphene by flash heating. Carbon, 2019, 144, 675-683.	10.3	13
1108	Thiophene containing conjugated microporous polymers derived sulfur-enriched porous carbon supported Fe3O4 nanoparticles with superior lithium storage properties. Journal of Materials Science: Materials in Electronics, 2019, 30, 1425-1433.	2.2	6
1109	Nitrogen-doped graphene/palladium nanoparticles/porous polyaniline ternary composite as an efficient electrode material for high performance supercapacitor. Materials Science for Energy Technologies, 2019, 2, 246-257.	1.8	22
1110	Piezo/triboelectric nanogenerators based on 2-dimensional layered structure materials. Nano Energy, 2019, 57, 680-691.	16.0	108
1111	Composite nanofibers through in-situ reduction with abundant active sites as flexible and stable anode for lithium ion batteries. Composites Part B: Engineering, 2019, 161, 369-375.	12.0	24
1112	Catalysis with Two-Dimensional Materials Confining Single Atoms: Concept, Design, and Applications. Chemical Reviews, 2019, 119, 1806-1854.	47.7	745
1113	A review on density functional theory–based study on two-dimensional materials used in batteries. Materials Today Chemistry, 2019, 11, 94-111.	3.5	42
1114	Experimental and theoretical study of Tetrakis(dimethylamino)ethylene induced magnetism in otherwise nonmagnetic graphene derivatives. Materials Chemistry and Physics, 2019, 222, 132-138.	4.0	7
1115	Synthesis of three dimensional N&S co-doped rGO foam with high capacity and long cycling stability for supercapacitors. Journal of Colloid and Interface Science, 2019, 537, 57-65.	9.4	29
1116	Polyborosilazane derived ceramics - Nitrogen sulfur dual doped graphene nanocomposite anode for enhanced lithium ion batteries. Electrochimica Acta, 2019, 296, 925-937.	5.2	198
1117	One-step hydrothermal synthesis of Fe2O3@TiO2 microspheres with high lithium storage performance. Materials Research Express, 2019, 6, 035503.	1.6	2
1118	Molecular dynamics simulation and finite element analysis on mechanical behavior of oxygen functionalized graphene/polymer nanocomposites. Journal of Mechanical Science and Technology, 2019, 33, 307-314.	1.5	20

#	Article	IF	CITATIONS
1119	Ni(II)-Dimeric Complex-Derived Nitrogen-Doped Graphitized Carbon-Encapsulated Nickel Nanoparticles: Efficient Trifunctional Electrocatalyst for Oxygen Reduction Reaction, Oxygen Evolution Reaction, and Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 2187-2199.	6.7	52
1120	Highly-flexible and -stable deep-ultraviolet photodiodes made of graphene quantum dots sandwiched between graphene layers. Dyes and Pigments, 2019, 163, 238-242.	3.7	21
1121	Enhanced stretchable graphene-based triboelectric nanogenerator via control of surface nanostructure. Nano Energy, 2019, 58, 304-311.	16.0	92
1122	Nitrogen-doped graphene in-situ modifying MnO nanoparticles for highly improved lithium storage. Applied Surface Science, 2019, 473, 893-901.	6.1	25
1123	Preparation and performance of poly(ethylene oxide)â€based composite solid electrolyte for all solidâ€state lithium batteries. Journal of Applied Polymer Science, 2019, 136, 47498.	2.6	38
1124	Review and prospect of Li2ZnTi3O8-based anode materials for Li-ion battery. Ionics, 2019, 25, 373-397.	2.4	20
1125	Manganese Monoxide/Biomass-Inherited Porous Carbon Nanostructure Composite Based on the High Water-Absorbent Agaric for Asymmetric Supercapacitor. ACS Sustainable Chemistry and Engineering, 2019, 7, 4284-4294.	6.7	45
1126	Recent Advances of 2D Nanomaterials in the Electrode Materials of Lithium-Ion Batteries. Nano, 2019, 14, 1930001.	1.0	22
1127	Core-shell Fe2N@amorphous carbon nanocomposite-filled 3D graphene framework: An additive-free anode material for lithium-ion batteries. Chemical Engineering Journal, 2019, 360, 1063-1070.	12.7	36
1128	In situ nano-Fe3O4/triisopropanolamine functionalized graphene oxide composites to enhance Pb2+ ions removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 561, 209-217.	4.7	16
1129	Bi-functional iron embedded carbon nanostructures from collagen waste for photocatalysis and Li-ion battery applications: A waste to wealth approach. Journal of Cleaner Production, 2019, 210, 190-199.	9.3	18
1130	N-doping nanoporous carbon microspheres derived from MOFs for highly efficient removal of formaldehyde. Nanotechnology, 2019, 30, 105702.	2.6	14
1131	Revealing a conversion-alloying reaction mechanism behind high capacity and rate capability of SnS/N-doped graphene anode by in situ TEM. Electrochimica Acta, 2019, 297, 46-54.	5.2	18
1132	Tailored N-doped porous carbon nanocomposites through MOF self-assembling for Li/Na ion batteries. Journal of Colloid and Interface Science, 2019, 538, 267-276.	9.4	63
1133	High-performance lithium-ion battery anodes based on Mn3O4/nitrogen-doped porous carbon hybrid structures. Journal of Alloys and Compounds, 2019, 775, 51-58.	5.5	31
1134	Large-scale template-free synthesis of nitrogen-doped 3D carbon frameworks as low-cost ultra-long-life anodes for lithium-ion batteries. Chemical Engineering Journal, 2019, 357, 376-383.	12.7	21
1135	Poly(ionic liquid)â€Derived Nâ€Doped Carbons with Hierarchical Porosity for Lithium―and Sodiumâ€Ion Batteries. Macromolecular Rapid Communications, 2019, 40, e1800545.	3.9	23
1136	Graphene-scroll-sheathed α-MnS coaxial nanocables embedded in N, S Co-doped graphene foam as 3D hierarchically ordered electrodes for enhanced lithium storage. Energy Storage Materials, 2019, 16, 46-55.	18.0	136

#	Article	IF	Citations
1137	Nitrogen-doped soft carbon frameworks built of well-interconnected nanocapsules enabling a superior potassium-ion batteries anode. Chemical Engineering Journal, 2020, 382, 121759.	12.7	98
1138	Nitrogen, Sulfur Co-Doped Reduced Graphene Oxide: Synthesis and Characterization. Micro and Nanosystems, 2020, 12, 129-134.	0.6	4
1139	Understanding the processing-structure-performance relationship of graphene and its variants as anode material for Li-ion batteries: A critical review. Carbon, 2020, 156, 130-165.	10.3	41
1140	Going green with batteries and supercapacitor: Two dimensional materials and their nanocomposites based energy storage applications. Progress in Solid State Chemistry, 2020, 58, 100254.	7.2	87
1141	Graphene nanosheets loaded Fe3O4 nanoparticles as a promising anode material for lithium ion batteries. Journal of Alloys and Compounds, 2020, 813, 152160.	5.5	65
1142	Review of photoreduction and synchronous patterning of graphene oxide toward advanced applications. Journal of Materials Science, 2020, 55, 480-497.	3.7	16
1143	Recent developments in graphene based novel structures for efficient and durable fuel cells. Materials Research Bulletin, 2020, 122, 110674.	5.2	36
1144	FeS2 nanoparticles embedded in N/S co-doped porous carbon fibers as anode for sodium-ion batteries. Chemical Engineering Journal, 2020, 380, 122455.	12.7	129
1145	Enhanced active sulfur in soft carbon via synergistic doping effect for ultra–stable lithium–ion batteries. Energy Storage Materials, 2020, 24, 450-457.	18.0	46
1146	Nitrogenâ€Đoped Carbon Nanomaterials: Synthesis, Characteristics and Applications. Chemistry - an Asian Journal, 2020, 15, 2282-2293.	3.3	100
1147	Ion-assisted construction of Sb/N-doped graphene as an anode for Li/Na ion batteries. Nanotechnology, 2020, 31, 095404.	2.6	12
1148	Porous N-doped carbon nanoflakes supported hybridized SnO2/Co3O4 nanocomposites as high-performance anode for lithium-ion batteries. Journal of Colloid and Interface Science, 2020, 560, 546-554.	9.4	33
1149	Engineering Carbon Distribution in Siliconâ€Based Anodes at Multiple Scales. Chemistry - A European Journal, 2020, 26, 1488-1496.	3.3	14
1150	Hierarchical porous nanofibers of carbon@nickel oxide nanoparticles derived from polymer/block copolymer system. Chinese Chemical Letters, 2020, 31, 2202-2206.	9.0	2
1151	Short-range ordered graphitized-carbon nanotubes with large cavity as high-performance lithium-ion battery anodes. Carbon, 2020, 158, 642-650.	10.3	24
1152	CVD grown nitrogen doped graphene is an exceptional visible-light driven photocatalyst for surface catalytic reactions. 2D Materials, 2020, 7, 015002.	4.4	12
1153	Electrochemical Properties of Nitrogen and Oxygen Doped Reduced Graphene Oxide. Energies, 2020, 13, 312.	3.1	22
1154	Boron-doped few-layer graphene nanosheet gas sensor for enhanced ammonia sensing at room temperature. RSC Advances, 2020, 10, 1007-1014.	3.6	46

#	Article	IF	CITATIONS
1155	Synthesis of rich N-doped hierarchically porous carbon flowers for electrochemical energy storage. Diamond and Related Materials, 2020, 102, 107691.	3.9	8
1156	Sn/SnO hybrid graphene for thermal interface material and interconnections with Sn hybrid carbon nanotubes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 253, 114485.	3.5	4
1157	Preparation and application of poly(ethylene oxide)â€based all solidâ€state electrolyte with a walnutâ€like SiO ₂ as nanoâ€fillers. Journal of Applied Polymer Science, 2020, 137, 48810.	2.6	29
1158	Graphene Quantum Dots Promoted the Synthesis of Heavily n-Type Graphene for Near-Infrared Photodetectors. Journal of Physical Chemistry C, 2020, 124, 1674-1680.	3.1	7
1159	Multilayer graphene spheres generated from anthracite and semi-coke as anode materials for lithium-ion batteries. Fuel Processing Technology, 2020, 198, 106241.	7.2	43
1160	N-doped carbon nanosheets as high-performance anodes for Li- and Na-ion batteries. Journal of Materials Research, 2020, 35, 12-19.	2.6	11
1161	Characteristics of pn junction diode made of multi-layer graphene. Japanese Journal of Applied Physics, 2020, 59, 015003.	1.5	3
1162	Promoting electrochemical performances of vanadium carbide nanodots via N and P co-doped carbon nanosheets wrapping. Chemical Engineering Journal, 2020, 393, 123596.	12.7	13
1163	Graphene materials in green energy applications: Recent development and future perspective. Renewable and Sustainable Energy Reviews, 2020, 120, 109656.	16.4	100
1164	CoS ₂ Nanoparticles-Embedded N-Doped Carbon Nanobox Derived from ZIF-67 for Electrocatalytic N ₂ -to-NH ₃ Fixation under Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2020, 8, 29-33.	6.7	46
1165	Synthesis of nitrogen-doped ordered mesoporous carbon with enhanced lithium storage performance from natural kaolin clay. Electrochimica Acta, 2020, 332, 135399.	5.2	26
1166	Tunable high workfunction contacts: Doped graphene. Applied Surface Science, 2020, 509, 144893.	6.1	10
1168	Experimental and theoretical evidence of P-type conduction in fluorinated hexagonal boron nitride nano-sheets. Ceramics International, 2020, 46, 7298-7305.	4.8	6
1169	Nano-Graphene Enclosed Multi Nitrogen: Dynamic Hierarchical Self-Assemble Property for Lithium Ion Storage. Journal of Nanoscience and Nanotechnology, 2020, 20, 2675-2688.	0.9	1
1170	Insights into the trapping mechanism of light metals on C2N-h2D: Utilisation as an anode material for metal ion batteries. Carbon, 2020, 160, 125-132.	10.3	29
1171	Low-Cost Scalable Production of Freestanding Two-Dimensional Metallic Nanosheets by Polymer Surface Buckling Enabled Exfoliation. Cell Reports Physical Science, 2020, 1, 100235.	5.6	14
1172	MOF-derived 3D hollow porous carbon/graphene composites for advanced lithium-ion battery anodes. Journal of Solid State Chemistry, 2020, 290, 121568.	2.9	15
1173	Advances in Materials Design for All-Solid-state Batteries: From Bulk to Thin Films. Applied Sciences (Switzerland), 2020, 10, 4727.	2.5	27

	CITATION	CITATION REPORT		
#	Article	IF	CITATIONS	
1174	Characterizations of nanoscale two-dimensional materials and heterostructures. , 2020, , 55-90.		1	
1175	Novel synthesis of highly phosphorus-doped carbon as an ultrahigh-rate anode for sodium ion batteries. Carbon, 2020, 168, 448-457.	10.3	52	
1176	Boosting Potassium Storage by Integration Advantageous of Defect Engineering and Spatial Confinement: A Case Study of Sb ₂ Se ₃ . Small, 2020, 16, e2005272.	10.0	43	
1177	Advanced energy materials for flexible batteries in energy storage: A review. SmartMat, 2020, 1, .	10.7	186	
1178	Selective formation of pyridinic-type nitrogen-doped graphene and its application in lithium-ion battery anodes. RSC Advances, 2020, 10, 39562-39571.	3.6	19	
1179	Heteroatom-doped carbon-based materials for lithium and sodium ion batteries. Energy Storage Materials, 2020, 32, 65-90.	18.0	225	
1180	Two-dimensional B3P monolayer as a superior anode material for Li and Na ion batteries: a first-principles study. Materials Today Energy, 2020, 17, 100486.	4.7	15	
1181	Amidation of Aldehydes with Amines under Mild Conditions Using Metalâ€Organic Framework Derived NiO@Ni Mottâ€Schottky Catalyst. ChemCatChem, 2020, 12, 5743-5749.	3.7	20	
1182	Bacterial Cellulose–Polyaniline Composite Derived Hierarchical Nitrogen-Doped Porous Carbon Nanofibers as Anode for High-Rate Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 8676-8687.	5.1	47	
1183	Smooth gap tuning strategy for cove-type graphene nanoribbons. RSC Advances, 2020, 10, 26937-26943.	3.6	10	
1184	Promising functional two-dimensional lamellar metal thiophosphates: synthesis strategies, properties and applications. Materials Horizons, 2020, 7, 3131-3160.	12.2	26	
1185	Photolithographic fabrication of planar on-chip micro-supercapacitors based on reduced graphene oxide films by modified liquid-air interface self-assembly. Ferroelectrics, 2020, 564, 146-152.	0.6	2	
1186	Enhanced electrochemical performance of modified thin carbon electrodes for all-vanadium redox flow batteries. Materials Advances, 2020, 1, 2033-2042.	5.4	5	
1187	Recent progress of defect chemistry on 2D materials for advanced battery anodes. Chemistry - an Asian Journal, 2020, 15, 3390-3404.	3.3	35	
1188	Preparation and physicochemical properties of nitrogen-doped graphene inks. New Carbon Materials, 2020, 35, 444-451.	6.1	7	
1189	Crowd-Sourced Data and Analysis Tools for Advancing the Chemical Vapor Deposition of Graphene: Implications for Manufacturing. ACS Applied Nano Materials, 2020, 3, 10144-10155.	5.0	5	
1190	Exclusive Substitutional Nitrogen Doping on Graphene Decoupled from an Insulating Substrate. Journal of Physical Chemistry C, 2020, 124, 22150-22157.	3.1	5	
1191	Superhalogen doping: a new and effective approach to design materials with excellent static and dynamic NLO responses. New Journal of Chemistry, 2020, 44, 16358-16369.	2.8	35	

#	Article	IF	CITATIONS
1192	Long Cycle Life, Highly Ordered SnO ₂ /GeO ₂ Nanocomposite Inverse Opal Anode Materials for Liâ€lon Batteries. Advanced Functional Materials, 2020, 30, 2005073.	14.9	39
1193	Modified graphene supported Ag–Cu NPs with enhanced bimetallic synergistic effect in oxidation and Chan–Lam coupling reactions. RSC Advances, 2020, 10, 30048-30061.	3.6	14
1194	Nanostructured Graphene Oxide-Based Hybrids as Anodes for Lithium-Ion Batteries. Journal of Carbon Research, 2020, 6, 81.	2.7	8
1195	Modeling electronic, mechanical, optical and thermal properties of graphene-like BC6N materials: Role of prominent BN-bonds. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126807.	2.1	28
1196	Recent Advancements of N-Doped Graphene for Rechargeable Batteries: A Review. Crystals, 2020, 10, 1080.	2.2	21
1197	Hydrogen sulfide removal from biogas on ZIF-derived nitrogen-doped carbons. Catalysis Today, 2020, 371, 221-221.	4.4	4
1198	Advancement of Platinum (Pt)-Free (Non-Pt Precious Metals) and/or Metal-Free (Non-Precious-Metals) Electrocatalysts in Energy Applications: A Review and Perspectives. Energy & Fuels, 2020, 34, 6634-6695.	5.1	100
1199	MOF-derived hollow SiO _x nanoparticles wrapped in 3D porous nitrogen-doped graphene aerogel and their superior performance as the anode for lithium-ion batteries. Nanoscale, 2020, 12, 13017-13027.	5.6	40
1200	Large-Scale Electric-Field Confined Silicon with Optimized Charge-Transfer Kinetics and Structural Stability for High-Rate Lithium-Ion Batteries. ACS Nano, 2020, 14, 7066-7076.	14.6	114
1201	Synthesis of Benzodiazepines Promoted by CeO ₂ /CuO@Nitrogen Graphene Quantum Dots@NH ₂ Nanocomposite. Polycyclic Aromatic Compounds, 2022, 42, 1235-1248.	2.6	7
1202	A review on Fe O -based materials for advanced lithium-ion batteries. Renewable and Sustainable Energy Reviews, 2020, 127, 109884.	16.4	36
1204	A novel path towards synthesis of nitrogen-rich porous carbon nanofibers for high performance supercapacitors. Chemical Engineering Journal, 2020, 399, 125788.	12.7	63
1205	Sonosynthesis of pyranochromenes and biscoumarins catalyzed by Co ₃ O ₄ /NiO@GQDs@SO ₃ H nanocomposite. Nanocomposites, 2020, 6, 56-65.	4.2	4
1206	A Bio-Based Flame-Retardant Starch Based On Phytic Acid. ACS Sustainable Chemistry and Engineering, 2020, 8, 10265-10274.	6.7	72
1207	Marcasite-FeS2@carbon nanodots anchored on 3D cell-like graphenic matrix for high-rate and ultrastable potassium ion storage. Journal of Power Sources, 2020, 469, 228429.	7.8	39
1208	Chemical properties and applications. , 2020, , 251-371.		2
1209	Singleâ€Atom Catalytic Materials for Advanced Battery Systems. Advanced Materials, 2020, 32, e1906548.	21.0	156
1210	The Chemistry and Promising Applications of Graphene and Porous Graphene Materials. Advanced Functional Materials, 2020, 30, 1909035.	14.9	181

#	Article	IF	CITATIONS
1211	Lifting the energy density of lithium ion batteries using graphite film current collectors. Journal of Power Sources, 2020, 455, 227991.	7.8	19
1212	Structural Optimization of Alkylbenzenes as Graphene Dispersants. Processes, 2020, 8, 238.	2.8	2
1213	Graphene-Like Graphite Negative Electrode Rapidly Chargeable at Constant Voltage. Journal of the Electrochemical Society, 2020, 167, 110518.	2.9	5
1214	Direct oxidation of methane to methanol on Co embedded N-doped graphene: Comparing the role of N2O and O2 as oxidants. Applied Catalysis A: General, 2020, 602, 117716.	4.3	11
1215	Boron-, nitrogen-, aluminum-, and phosphorus-doped graphite electrodes for non-lithium ion batteries. Current Applied Physics, 2020, 20, 988-993.	2.4	8
1216	Zwitterionic Conjugated Surfactant Functionalization of Graphene with pHâ€Independent Dispersibility: An Efficient Electron Mediator for the Oxygen Evolution Reaction in Acidic Media. Small, 2020, 16, 1906635.	10.0	8
1217	Long-wavelength excitation of carbon dots as the probe for real-time imaging of the living-cell cycle process. Sensors and Actuators B: Chemical, 2020, 311, 127891.	7.8	25
1218	Deconvoluting the XPS spectra for nitrogen-doped chars: An analysis from first principles. Carbon, 2020, 162, 528-544.	10.3	323
1219	Mathematical Modeling for the Design and Scale-Up of a Large Industrial Aerosol-Assisted Chemical Vapor Deposition Process under Uncertainty. Industrial & Engineering Chemistry Research, 2020, 59, 1249-1260.	3.7	16
1220	Stone–Wales Defect Induced Performance Improvement of BC ₃ Monolayer for High Capacity Lithium-Ion Rechargeable Battery Anode Applications. Journal of Physical Chemistry C, 2020, 124, 5910-5919.	3.1	52
1221	Band-gap engineering of graphene by Al doping and adsorption of Be and Br on impurity: A computational study. Computational Condensed Matter, 2020, 23, e00463.	2.1	7
1222	Honeycomb-like porous Ce–Cr oxide/N-doped carbon nanostructure: Achieving high catalytic performance for the selective oxidation of cyclohexane to KA oil. Carbon, 2020, 160, 287-297.	10.3	32
1223	Double-Layer Honeycomb AlP: A Promising Anode Material for Li-, Na-, and K-Ion Batteries. Journal of Physical Chemistry C, 2020, 124, 2978-2986.	3.1	11
1224	Synthesis of two-dimensional nanomaterials. , 2020, , 35-71.		10
1225	On battery materials and methods. Materials Today Advances, 2020, 6, 100046.	5.2	81
1226	Recent advances on photocatalytic nanomaterials for hydrogen energy evolution in sustainable environment. International Journal of Environmental Analytical Chemistry, 0, , 1-19.	3.3	12
1227	Sensitive detection of estriol with an electrochemical sensor based on core-shell N-MWCNT/GONR-imprinted electrode. Ionics, 2020, 26, 2633-2641.	2.4	12
1228	Theoretical Investigation of Piezoelectric Properties of Graphene/Hexagonal Boron Nitride Hybrid Structures. Physica Status Solidi (B): Basic Research, 2020, 257, 1900733.	1.5	4

#	Article	IF	CITATIONS
1229	The impact of surface chemistry of carbon xerogels on their performance in phenol removal from wastewaters via combined adsorption-catalytic process. Applied Surface Science, 2020, 511, 145467.	6.1	22
1230	Si-doped graphene in geopolymer: Its interfacial chemical bonding, structure evolution and ultrastrong reinforcing ability. Cement and Concrete Composites, 2020, 109, 103522.	10.7	23
1231	The lithium ions storage behavior of heteroatom-mediated echinus-like porous carbon spheres: From co-doping to multi-atom doping. Journal of Colloid and Interface Science, 2020, 567, 54-64.	9.4	6
1232	Synthesis of Multipleâ€Twinned Pd Nanoparticles Anchored on Graphitic Carbon Nanosheets for Use as Highlyâ€Active Multifunctional Electrocatalyst in Formic Acid and Methanol Oxidation Reactions. Advanced Materials Interfaces, 2020, 7, 2000142.	3.7	24
1233	Design of P-Doped Mesoporous Carbon Nitrides as High-Performance Anode Materials for Li-Ion Battery. ACS Applied Materials & Interfaces, 2020, 12, 24007-24018.	8.0	44
1234	CeO ₂ /CuO@Nâ€GQDs@NH ₂ nanocomposite as a highâ€performance catalyst for the synthesis of benzo[g]chromenes. Applied Organometallic Chemistry, 2020, 34, e5657.	3.5	10
1235	In situ construction of bamboo charcoal derived SiOx embedded in hierarchical porous carbon framework as stable anode material for superior lithium storage. Applied Surface Science, 2020, 521, 146497.	6.1	30
1237	Porous Nitrogenâ€doped Reduced Graphene Oxide Gels as Efficient Supercapacitor Electrodes and Oxygen Reduction Reaction Electrocatalysts. Chinese Journal of Chemistry, 2020, 38, 1123-1131.	4.9	15
1238	Fabrication of helical SiO2@Fe–N doped C nanofibers and their applications as stable lithium ion battery anodes and superior oxygen reduction reaction catalysts. Electrochimica Acta, 2020, 342, 136107.	5.2	17
1239	Self-assembly by electrostatic attraction to encapsulate Si in N-rich graphene for high performance lithium-ion batteries. Journal of Electroanalytical Chemistry, 2020, 867, 114125.	3.8	10
1240	Performance-Enhanced Flexible Triboelectric Nanogenerator Based on Gold Chloride-Doped Graphene. ACS Applied Electronic Materials, 2020, 2, 1106-1112.	4.3	23
1241	Highly Efficient Polysulfide Trapping and Ion Transferring within a Hierarchical Porous Membrane Interlayer for High-Energy Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2020, 3, 5050-5057.	5.1	32
1242	Ultrahigh capacity 2D anode materials for lithium/sodium-ion batteries: an entirely planar B ₇ P ₂ monolayer with suitable pore size and distribution. Journal of Materials Chemistry A, 2020, 8, 10301-10309.	10.3	44
1243	Synthesis of BCN nanoribbons from coconut shells using as high-performance anode materials for lithium-ion batteries. Electrochimica Acta, 2020, 346, 136239.	5.2	14
1244	Controllable Synthesis of Peapod-like Sb@C and Corn-like C@Sb Nanotubes for Sodium Storage. ACS Nano, 2020, 14, 5728-5737.	14.6	77
1245	Polyaniline supported g-C3N4 quantum dots surpass benchmark Pt/C: Development of morphologically engineered g-C3N4 catalysts towards "metal-free―methanol electro-oxidation. Journal of Power Sources, 2020, 461, 228150.	7.8	26
1246	Free-standing flexible graphene-based aerogel film with high energy density as an electrode for supercapacitors. Nano Materials Science, 2021, 3, 68-74.	8.8	33
1247	Preparation, characterization, and tribological properties of silica-nanoparticle-reinforced B-N-co-doped reduced graphene oxide as a multifunctional additive for enhanced lubrication. Friction, 2021 9 239-249	6.4	22

#	Article	IF	CITATIONS
1248	Contribution of oxygen functional groups in graphene to the mechanical and interfacial behaviour of nanocomposites: Molecular dynamics and micromechanics study. International Journal of Mechanical Sciences, 2021, 189, 105972.	6.7	24
1249	Maximizing the rate capability of carbon-based anode materials for sodium-ion batteries. Journal of Power Sources, 2021, 481, 228973.	7.8	16
1250	3D copper-confined N-Doped graphene/carbon nanotubes network as high-performing lithium-ion battery anode. Journal of Alloys and Compounds, 2021, 850, 156701.	5.5	19
1251	CoS2–MnS@Carbon nanoparticles derived from metal–organic framework as a promising anode for lithium-ion batteries. Journal of Alloys and Compounds, 2021, 854, 157315.	5.5	36
1252	Si-doped graphene nanosheets for NOx gas sensing. Sensors and Actuators B: Chemical, 2021, 328, 129005.	7.8	42
1253	High temperature nanomechanical and nanotribological behavior of sub-5†nm nitrogen-doped carbon overcoat films. Applied Surface Science, 2021, 535, 147662.	6.1	6
1254	Cesium Ionâ€Mediated Microporous Carbon for CO ₂ Capture and Lithiumâ€lon Storage. ChemNanoMat, 2021, 7, 150-157.	2.8	6
1255	Functionalized N-doped hollow graphitic carbon-nanotube/carbon -nanosphere composite. Composites Communications, 2021, 23, 100578.	6.3	23
1256	Binary composites of nickel-manganese phosphates for supercapattery devices. Journal of Energy Storage, 2021, 33, 102020.	8.1	37
1257	Application of two-dimensional materials as anodes for rechargeable metal-ion batteries: A comprehensive perspective from density functional theory simulations. Energy Storage Materials, 2021, 35, 203-282.	18.0	84
1258	Ingeniously designing anode material of Ni3S2/MnS2@Carbon nanocomposite with a wide potential window of 1.3ÂV. Electrochimica Acta, 2021, 365, 137386.	5.2	7
1259	Excellent electrochemical performance of Lithium-sulfur batteries via self-standing cathode from interwoven α-Fe2O3 integrated carbon nanofiber networks. Journal of Electroanalytical Chemistry, 2021, 880, 114829.	3.8	7
1260	PVP-assisted synthesis of g–C3N4–derived N-doped graphene with tunable interplanar spacing as high-performance lithium/sodium ions battery anodes. Carbon, 2021, 174, 98-109.	10.3	71
1261	Porosity and composition of nitrogen-doped carbon materials templated by the thermolysis products of calcium tartrate and their performance in electrochemical capacitors. Journal of Alloys and Compounds, 2021, 858, 158259.	5.5	11
1262	The layer-by-layer assembly of reduced graphene oxide films and their application as solution-gated field-effect transistors. Applied Surface Science, 2021, 543, 148698.	6.1	14
1263	Carbon materials for ion-intercalation involved rechargeable battery technologies. Chemical Society Reviews, 2021, 50, 2388-2443.	38.1	255
1264	A selenium-doped carbon anode of high performance for lithium ion batteries. Journal of Solid State Electrochemistry, 2021, 25, 457-464.	2.5	10
1265	Nitrogenâ€doped hierarchical few″ayered porous carbon for efficient electrochemical energy storage. , 2021, 3, 349-359.		34

#	Article	IF	CITATIONS
1266	Two-Dimensional Material-Based Heterostructures for Rechargeable Batteries. Cell Reports Physical Science, 2021, 2, 100286.	5.6	30
1267	Research on metallic chalcogen-functionalized monolayer-puckered V ₂ CX ₂ (X) Tj ETQq1 4672-4681.	1 0.7843 5.9	814 rgBT / 8
1268	Tight bonding and high-efficiency utilization of S–S moieties to enable ultra-stable and high-capacity alkali-metal conversion batteries. Journal of Materials Chemistry A, 2021, 9, 6160-6171.	10.3	17
1269	Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energy and Environmental Science, 2021, 14, 2036-2089.	30.8	351
1270	Enhanced performance of Mo ₂ P monolayer as lithium-ion battery anode materials by carbon and nitrogen doping: a first principles study. Physical Chemistry Chemical Physics, 2021, 23, 4030-4038.	2.8	26
1271	Graphene-Based Materials with Tailored Nanostructures for Lithium-Ion Batteries. , 2021, , 473-490.		0
1272	Co0.85Se particles encapsulated in the inner wall of nitrogen-doped carbon matrix nanotubes with rational interfacial bonds for high-performance lithium-ion batteries. Dalton Transactions, 2021, 50, 11458-11465.	3.3	3
1273	Synthesizing Highâ€quality Graphene from Spent Anode Graphite and Further Functionalization Applying in ORR Electrocatalyst. ChemistrySelect, 2021, 6, 90-95.	1.5	8
1274	Understanding Structure–Property Relationships under Experimental Conditions for the Optimization of Lithiumâ€Ion Capacitor Anodes based on Allâ€Carbonâ€Composite Materials. Energy Technology, 2021, 9, 2001054.	3.8	2
1275	Enhanced electrostatic potential with high energy and power density of a symmetric and asymmetric solid-state supercapacitor of boron and nitrogen co-doped reduced graphene nanosheets for energy storage devices. New Journal of Chemistry, 2021, 45, 12408-12425.	2.8	11
1276	A N-doped porous carbon framework with Ag-nanoparticles toward stable lithium metal anodes. Sustainable Energy and Fuels, 2021, 5, 5638-5644.	4.9	0
1277	Iron Nitride@C Nanocubes Inside Core–Shell Fibers to Realize High Air-Stability, Ultralong Life, and Superior Lithium/Sodium Storages. ACS Applied Materials & Interfaces, 2021, 13, 7297-7307.	8.0	22
1278	Carbon-Supported Nitrogen-Doped Graphene-Wrapped Copper Nanoparticles: An Effective Catalyst for the Oxidative Carbonylation of Methanol. Industrial & Engineering Chemistry Research, 2021, 60, 2944-2953.	3.7	13
1279	The electrochemical performance enhancement of carbon anode by hybrid from battery and capacitor through nitrogen doping. Ionics, 2021, 27, 1393-1401.	2.4	2
1280	Recent Progress in Binderâ€Free Electrodes Synthesis for Electrochemical Energy Storage Application. Batteries and Supercaps, 2021, 4, 860-880.	4.7	35
1281	Pulverizing Fe ₂ O ₃ Nanoparticles for Developing Fe ₃ C/Nâ€Codoped Carbon Nanoboxes with Multiple Polysulfide Anchoring and Converting Activity in Liâ€5 Batteries. Advanced Functional Materials, 2021, 31, 2011249.	14.9	79
1282	Green sonosynthesis of phenazinpyrimidines using <scp>Co₃O₄</scp> / <scp>ZnO</scp> @ <scp>Nâ€GQDs</scp> @ <scp>SO_{3nanocomposite as a robust heterogeneous catalyst. Journal of the Chinese Chemical Society, 2021, 68, 1302-1309.}</scp>	>H 1.4	5
1283	Structural Defects, Mechanical Behaviors, and Properties of Two-Dimensional Materials. Materials, 2021, 14, 1192.	2.9	48

#	Article	IF	CITATIONS
1284	The influence of nitrogen doping on reduced graphene oxide as highly cyclable Li-ion battery anode with enhanced performance. International Journal of Hydrogen Energy, 2021, 46, 11865-11877.	7.1	22
1285	Graphene: A promising candidate for charge regulation in high-performance lithium-ion batteries. Nano Research, 2021, 14, 4370-4385.	10.4	25
1286	Atomic Environments in N-Containing Graphitic Carbon Probed by First-Principles Calculations and Solid-State Nuclear Magnetic Resonance. Journal of Physical Chemistry C, 2021, 125, 8779-8787.	3.1	4
1287	Characteristics and Electrochemical Performances of Nitrogen-doped Graphene Prepared using different carbon and nitrogen sources as Anode for Lithium Ion Batteries. International Journal of Electrochemical Science, 2021, 16, 210459.	1.3	5
1288	Two-dimensional nanomaterials with engineered bandgap: Synthesis, properties, applications. Nano Today, 2021, 37, 101059.	11.9	82
1289	SnS nanosheets on carbon foam as a flexible anode platform for rechargeable Li- and Na-ion batteries. Applied Surface Science, 2021, 544, 148837.	6.1	11
1290	Graphene-Based Nanomaterials as the Cathode for Lithium-Sulfur Batteries. Molecules, 2021, 26, 2507.	3.8	18
1291	Gram‣cale Synthesis of Porous Graphene via Printing Paper Pyrolysis as Supercapacitor Electrodes. Energy Technology, 2021, 9, 2001025.	3.8	4
1292	Graphene family for hydrogen peroxide production in electrochemical system. Science of the Total Environment, 2021, 769, 144491.	8.0	14
1293	CeO2/CuO@GQDs@NH2 Nanocomposite as a Reusable Catalyst for the Preparation of bis-Pyrazoles. Organic Preparations and Procedures International, 2021, 53, 254-261.	1.3	2
1294	Preparation and properties of transition metal nitrides caged in N-doped hollow porous carbon sphere for oxygen reduction reaction. Transactions of Nonferrous Metals Society of China, 2021, 31, 1427-1438.	4.2	6
1295	Confined growth of Fe2O3 nanoparticles by holey graphene for enhanced sodium-ion storage. Carbon, 2021, 176, 31-38.	10.3	16
1296	First-principles calculations of K-shell x-ray absorption spectra for warm dense ammonia*. Chinese Physics B, 2021, 30, 057102.	1.4	1
1297	Trifunctional Electrocatalytic Activities of Nitrogenâ€Doped Graphitic Carbon Nanofibers Synthesized by Chemical Vapor Deposition. ChemistrySelect, 2021, 6, 4867-4873.	1.5	8
1298	N-doped reduced graphene oxide (rGO) wrapped carbon microfibers as binder-free electrodes for flexible fibre supercapacitors and sodium-ion batteries. Journal of Energy Storage, 2021, 37, 102453.	8.1	22
1299	Porous structure ZnV2O4/C-N composite activating vanadium-based cathode in aqueous zinc-ion batteries. Materials Today Communications, 2021, 27, 102271.	1.9	8
1300	Heteroatom-doped graphene-based materials for sustainable energy applications: A review. Renewable and Sustainable Energy Reviews, 2021, 143, 110849.	16.4	192
1301	High-efficient Schottky-junction silicon solar cell using silver nanowires covering nitrogen-doped amorphous carbon. Current Applied Physics, 2021, 26, 1-8.	2.4	4
#	Article	IF	CITATIONS
------	--	------	-----------
1302	Demonstration of epitaxial growth of strain-relaxed GaN films on graphene/SiC substrates for long wavelength light-emitting diodes. Light: Science and Applications, 2021, 10, 117.	16.6	30
1303	Si-doped graphene nanosheets as a metal-free catalyst for electrochemical detection of nitroaromatic explosives. Journal of Colloid and Interface Science, 2021, 594, 848-856.	9.4	11
1304	Mapping nitrogen heteroatoms in carbon fibres using atom probe tomography and photoelectron spectroscopy. Carbon, 2021, 179, 20-27.	10.3	10
1305	Recent Developments of Two-Dimensional Anode Materials and Their Composites in Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 7440-7461.	5.1	48
1306	Germanene Nanosheets: Achieving Superior Sodiumâ€lon Storage via Pseudointercalation Reactions. Small Structures, 2021, 2, 2100041.	12.0	20
1307	Materials Beyond Conventional Triboelectric Series for Fabrication and Applications of Triboelectric Nanogenerators. Advanced Energy Materials, 2021, 11, 2101170.	19.5	122
1308	Synthesis of Chromenes Using CuO/ZnO@N-GQDs@NH ₂ Nanocomposite as a High Performance Catalyst. Organic Preparations and Procedures International, 2021, 53, 479-487.	1.3	0
1309	Cobalt nanoparticles encapsulated by nitrogen-doped carbon framework as anode materials for high performance lithium-ion capacitors. Journal of Electroanalytical Chemistry, 2021, 893, 115326.	3.8	7
1310	Recent trends in silicon/graphene nanocomposite anodes for lithium-ion batteries. Journal of Power Sources, 2021, 501, 229709.	7.8	46
1311	Impact of nitrogen doping on the band structure and the charge carrier scattering in monolayer graphene. Physical Review Materials, 2021, 5, .	2.4	3
1312	Electrocatalytic acidic oxygen evolution reaction: From nanocrystals to single atoms. Aggregate, 2021, 2, e106.	9.9	27
1313	A review study on the recent advances in developing the heteroatom-doped graphene and porous graphene as superior anode materials for Li-ion batteries. Ceramics International, 2021, 47, 22269-22301.	4.8	47
1314	Nitrogen-enriched graphene framework from a large-scale magnesiothermic conversion of CO2 with synergistic kinetics for high-power lithium-ion capacitors. NPG Asia Materials, 2021, 13, .	7.9	29
1315	Nitrogen-Doped Carbon Aerogels Derived from Starch Biomass with Improved Electrochemical Properties for Li-Ion Batteries. International Journal of Molecular Sciences, 2021, 22, 9918.	4.1	8
1316	From regular arrays of liquid metal nano-islands to single crystalline biatomic-layer gallium film: Molecular dynamics and first principle study. Journal of Applied Physics, 2021, 130, 124304.	2.5	0
1317	Enabling the fast lithium storage of large-scalable γ-Fe2O3/Carbon nanoarchitecture anode material with an ultralong cycle life. Journal of Industrial and Engineering Chemistry, 2021, 101, 379-386.	5.8	28
1318	A review on applications of graphene in triboelectric nanogenerators. International Journal of Energy Research, 2022, 46, 544-576.	4.5	39
1319	Monolayer SnC as anode material for Na ion batteries. Computational Materials Science, 2021, 197, 110617.	3.0	11

#	Article	IF	CITATIONS
1320	One-pot solvothermal preparation of graphene encapsulated SnO nanospheres composites for enhanced lithium storage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625, 126912.	4.7	6
1321	A review on novel activation strategy on carbonaceous materials with special morphology/texture for electrochemical storage. Journal of Energy Chemistry, 2021, 60, 572-590.	12.9	49
1322	Carbon nitrides as cathode materials for aluminium ion batteries. Carbon, 2021, 183, 546-559.	10.3	9
1323	Nitrogen-doped graphene on a curved nickel surface. Carbon, 2021, 183, 711-720.	10.3	2
1324	Electrospinning technology to prepare in-situ Cr2O3 modified carbon nanofibers as dual-function electrode material for vanadium redox battery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127287.	4.7	5
1325	Fe2N stabilized on reduced graphene oxide to enhance the performance of a lithium-ion battery composite anode. Journal of Alloys and Compounds, 2021, 883, 160824.	5.5	14
1326	Rare earth-Mg-Ni-based alloys with superlattice structure for electrochemical hydrogen storage. Journal of Alloys and Compounds, 2021, 887, 161381.	5.5	25
1327	Electronic and magnetic properties of homonuclear and heteronuclear transition metal pairs in graphene. Applied Surface Science, 2021, 569, 150999.	6.1	4
1328	Highly fluorescent nitrogen-doped graphene quantum dots (N-GQDs) as an efficient nanoprobe for imaging of microbial cells. Fullerenes Nanotubes and Carbon Nanostructures, 2021, 29, 588-595.	2.1	14
1330	Graphene and Its Modifications for Supercapacitor Applications. Carbon Nanostructures, 2019, , 113-138.	0.1	6
1331	CNT Applications in Microelectronics, "Nanoelectronics,―and "Nanobioelectronics― , 2018, , 65-72.		1
1332	CNT Applications in Displays and Transparent, Conductive Films/Substrates. , 2018, , 73-75.		1
1333	Graphene Applications in Electronics, Electrical Conductors, and Related Uses. , 2018, , 141-146.		4
1334	Characterization Methods. , 2018, , 403-488.		2
1335	Microwave- and Conductivity-Based Technologies. , 2018, , 655-669.		3
1336	CNT Applications in Sensors and Actuators. , 2018, , 53-60.		3
1337	Facile Synthesis of Fluorine-Doped Hollow Mesoporous Carbon Nanospheres for Supercapacitor Application. Macromolecular Research, 2020, 28, 1304-1313.	2.4	5
1338	Stabilising Cobalt Sulphide Nanocapsules with Nitrogen-Doped Carbon for High-Performance Sodium-Ion Storage. Nano-Micro Letters, 2020, 12, 48.	27.0	25

#	Article	IF	CITATIONS
1339	Microstructural analysis of nitrogen-doped char by Raman spectroscopy: Raman shift analysis from first principles. Carbon, 2020, 167, 559-574.	10.3	52
1340	Unraveling the effect of nitrogen doping on graphene nanoflakes and the adsorption properties of ionic liquids: A DFT study. Journal of Molecular Liquids, 2020, 312, 113400.	4.9	16
1341	Silicon Few-Layer Graphene Nanocomposite as High-Capacity and High-Rate Anode in Lithium-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 1793-1802.	5.1	26
1342	High efficiency of bamboo-like carbon nanotubes on functionalized graphite felt as electrode in vanadium redox flow battery. RSC Advances, 2016, 6, 102068-102075.	3.6	33
1343	Biomass chitin-derived honeycomb-like nitrogen-doped carbon/graphene nanosheet networks for applications in efficient oxygen reduction and robust lithium storage. Journal of Materials Chemistry A, 2016, 4, 11789-11799.	10.3	71
1344	Lithiation properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>s</mml:mi> <mml:msup> <mml:mi: carbon allotropes. Physical Review Materials, 2018, 2, .</mml:mi: </mml:msup></mml:mrow></mml:math 	>p2,/mml:n	ni <i>s</i> <mml:mn< td=""></mml:mn<>
1345	Electronic properties of chemically doped graphene. Physical Review Materials, 2019, 3, .	2.4	36
1346	A Method for Synthesis of Nitrogen-Doped Graphene with High Specific Surface Area. Doklady Physical Chemistry, 2020, 495, 159-165.	0.9	4
1348	Review—Two-Dimensional Boron Carbon Nitride: A Comprehensive Review. ECS Journal of Solid State Science and Technology, 2020, 9, 083004.	1.8	49
1349	Performance Enhancement of Modified 3D SWCNT/RVC Electrodes Using Microwave-Irradiated Graphene Oxide. Nanoscale Research Letters, 2019, 14, 351.	5.7	7
1351	Laser fabrication of graphene-based supercapacitors. Photonics Research, 2020, 8, 577.	7.0	35
1352	Biomolecules Behavior on a Surface of Boron Doped/un-doped Graphene Nanosheets. International Journal of Electrochemical Science, 0, , 11427-11436.	1.3	9
1353	Synthesis of Nitrogen Doped Graphene through Microwave Irradiation. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2012, 27, 146-150.	1.3	8
1354	Composite anodes for lithium-ion batteries: status and trends. AIMS Materials Science, 2016, 3, 1054-1106.	1.4	30
1355	First-principles study of electronic structure and optical properties of nickel-doped multilayer graphene. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 187301.	0.5	5
1356	Synthesis of Nitrogen-Doped Graphene by Plasma-Enhanced Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2012, 51, 055101.	1.5	17
1357	Preparation and Electrochemical Characterization of Nitrogen-Doped Porous Carbon Textile from Waste Cotton T-Shirt for Supercapacitors. Korean Journal of Materials Research, 2021, 31, 502-510.	0.2	2
1358	Honeycomb Structured α-MnS@N-HC Nanocomposite Fabricated by Sol-Gel Pyrolysis Blowing Method and Its High-Performance Lithium Storage. Materials Today Energy, 2021, 22, 100876.	4.7	5

#	Article	IF	CITATIONS
1359	Best Practices for Analysis of Carbon Fibers by Atom Probe Tomography. Microscopy and Microanalysis, 2022, 28, 1092-1101.	0.4	1
1360	Selfâ€Sacrifice Template Fabrication of Grapheneâ€like Nitrogenâ€Doped Porous Carbon Nanosheets for Applications in Lithiumâ€lon Batteries and Oxygen Reduction Reaction. Energy Technology, 2021, 9, 2100666.	3.8	5
1361	Spatially Separated Photoinduced Charge Carriers for the Enhanced Photocatalysis Over the One-Dimensional Yolk–Shell In ₂ Se ₃ @N-C Nanoreactor. ACS Catalysis, 2021, 11, 12931-12939.	11.2	28
1362	Effect of Carbon Configuration on Mechanical, Friction and Wear Behavior of Nitrogen-Doped Diamond-Like Carbon Films for Magnetic Storage Applications. Tribology Letters, 2021, 69, 1.	2.6	6
1363	From Flowerâ€Like to Spherical Deposition: A GCNT Aerogel Scaffold for Fastâ€Charging Lithium Metal Batteries. Advanced Energy Materials, 2021, 11, 2102454.	19.5	14
1364	Impact of nitrogen doping on the linear and nonlinear terahertz response of graphene. Physical Review B, 2021, 104, .	3.2	3
1365	Charge/Discharge Reactions via LiPON/Multilayer-Graphene Interfaces without Li ⁺ Desolvation/Solvation Processes. ACS Applied Energy Materials, 2021, 4, 10442-10450.	5.1	4
1366	Density Functional Theory Study of IB Metals Binding to Perfect and N-Doped Graphene. Chinese Journal of Catalysis, 2013, 33, 1578-1585.	14.0	1
1368	Nanocomposites for Structural and Energy Applications. , 2018, , 1-23.		0
1369	A Review of Surface Engineering of Graphene for Electrochemical Sensing Applications. International Journal of Engineering Technology and Sciences, 2018, 4, 1-31.	0.4	5
1370	Basic Electrochemistry of CPs. , 2018, , 283-309.		0
1371	Miscellaneous CNT Applications. , 2018, , 89-90.		0
1372	CNT Applications in Specialized Materials. , 2018, , 45-48.		0
1373	Structural Aspects and Morphology of CPs. , 2018, , 389-402.		0
1374	Electronic Structure and Conduction Models of Graphene. , 2018, , 101-106.		0
1375	Electrochromics. , 2018, , 601-624.		1
1376	Classes of CPs: Part 1. , 2018, , 489-507.		0
1377	Electro-Optic and Optical Devices. , 2018, , 671-684.		2

#	Article	IF	CITATIONS
1378	Conduction Models and Electronic Structure of CNTs. , 2018, , 11-16.		0
1379	Miscellaneous Applications. , 2018, , 695-715.		Ο
1380	CNT Applications in the Environment and in Materials Used in Separation Science. , 2018, , 81-87.		0
1381	Graphene Applications in Displays and Transparent, Conductive Films/Substrates. , 2018, , 147-148.		Ο
1382	Classes of CPs: Part 2. , 2018, , 509-545.		0
1383	Introducing Conducting Polymers (CPs). , 2018, , 159-174.		Ο
1384	Syntheses and Processing of CPs. , 2018, , 311-388.		0
1385	Physical, Mechanical, and Thermal Properties of CNTs. , 2018, , 33-36.		Ο
1386	CNT Applications in Electrical Conductors, "Quantum Nanowires,―and Potential Superconductors. , 2018, , 77-79.		1
1387	Toxicology of CNTs. , 2018, , 37-39.		Ο
1388	Synthesis, Purification, and Chemical Modification of CNTs. , 2018, , 17-31.		0
1389	Introducing Graphene. , 2018, , 93-99.		Ο
1391	Conduction Models and Electronic Structure of CPs. , 2018, , 175-249.		1
1392	Brief, General Overview of Applications. , 2018, , 123-124.		Ο
1393	Electrochemomechanical, Chemomechanical, and Related Devices. , 2018, , 685-693.		0
1394	Displays, Including Light-Emitting Diodes (LEDs) and Conductive Films. , 2018, , 625-654.		0
1395	New High-energy Anode Materials. , 2019, , 1-25.		1
1396	Nanocomposites for Structural and Energy Applications. , 2019, , 833-854.		Ο

#	Article	IF	CITATIONS
1397	Theoretical study of density functional of confined CO oxidation reaction between bilayer graphene. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 218101.	0.5	0
1398	Chapter 2. Two-dimensional Layered Materials for High-performance Lithium-ion Batteries. RSC Smart Materials, 2019, , 39-70.	0.1	0
1400	Graphene modulated LiMn _{1.5} Ni _{0.4} Cr _{0.1} O ₄ spinel cathode for lithium ion battery. Nano Express, 2020, 1, 020028.	2.4	0
1401	Silicon-Reduced Graphene Oxide Composite as Negative Electrode of Li-Ion Batteries. Russian Journal of Applied Chemistry, 2020, 93, 1940-1946.	0.5	0
1402	Cobalt embedded in porous carbon fiber membranes for high-performance lithium-sulfur batteries. Carbon, 2022, 187, 187-195.	10.3	27
1403	A review of atomic layer deposition for high lithium-ion battery performance. Journal of Materials Research and Technology, 2021, 15, 5466-5481.	5.8	10
1404	Self-templating synthesis of heteroatom-doped large-scalable carbon anodes for high-performance lithium-ion batteries. Inorganic Chemistry Frontiers, 2022, 9, 1058-1069.	6.0	72
1405	Graphene Synthesis and Its Recent Advances in Applications—A Review. Journal of Carbon Research, 2021, 7, 76.	2.7	17
1406	Defect engineering of graphynes for energy storage and conversion. Chemical Engineering Journal, 2022, 432, 133617.	12.7	15
1407	Effect of synthesis conditions on the properties of graphene doped with nitrogen atoms. Fullerenes Nanotubes and Carbon Nanostructures, 2022, 30, 10-14.	2.1	1
1408	Molecular cooking: Amino acids trap silicon in carbon matrix to boost lithium-ion storage. Energy Storage Materials, 2022, 46, 344-351.	18.0	25
1409	Position difference between Mo clusters and N sites induced highly synergistic electrocatalysis in integrated electrode-separator membranes with crosslinked hierarchically porous interface. Energy Storage Materials, 2022, 45, 370-379.	18.0	13
1410	Co-embedded nitrogen-enriching biomass-derived porous carbon for highly efficient oxygen reduction and flexible zinc-air battery. Journal of Alloys and Compounds, 2022, 896, 162604.	5.5	10
1411	Graphene with nanoperforation for high-capacity potassium-ion storage: Decoupling structural defect and doping effects of N-doped graphene. Chemical Engineering Journal, 2022, 432, 134260.	12.7	11
1412	Radio-frequency plasma assisted reduction and nitrogen doping of graphene oxide. Carbon, 2022, 189, 571-578.	10.3	13
1413	Nitrogen Implantation to Graphene Oxides. A Radio Frequency Plasma Treatment and Computational Approach – Implications for Electrocatalytic Application. SSRN Electronic Journal, 0, , .	0.4	0
1414	Emerging trends in the application of carbon-based materials: A review. Journal of Environmental Chemical Engineering, 2022, 10, 107260.	6.7	26
1415	Structure and Magnetism of Few-Layer Nanographene Clusters in Carbon Microspheres. Journal of Physical Chemistry C, 2022, 126, 493-504.	3.1	2

#	Article	IF	CITATIONS
1416	N-Doped Graphenelike Nanostructures from <i>p</i> -Nitro Aniline-Based Foam: Formation, Structure, and Applications as a Nanofiller. ACS Omega, 2022, 7, 3230-3239.	3.5	6
1417	First principles studies on infrared band structure and absorption of As/Sb lateral heterostructures. Journal of Applied Physics, 2022, 131, 023101.	2.5	4
1418	Lithium-Ion Storage Mechanism in Metal-N-C Systems: A First-Principles Study. ACS Omega, 2022, 7, 2613-2617.	3.5	0
1419	Toward Practical Highâ€Energy and Highâ€Power Lithium Battery Anodes: Present and Future. Advanced Science, 2022, 9, e2105213.	11.2	84
1420	A sustainable approach from rice husks to P,N-dual doping porous C/SiOx composites for high-performance lithium-ion battery anodes. Journal of Electroanalytical Chemistry, 2022, 904, 115939.	3.8	8
1421	Adsorption mechanism and flotation behavior of ammonium salt of N-Nitroso-N-phenylhydroxyamine on malachite mineral. Applied Surface Science, 2022, 583, 152489.	6.1	12
1422	Low-Cost Biomass-Gel-Induced Conductive Polymer Networks for High-Efficiency Polysulfide Immobilization and Catalytic Conversion in Li–S Batteries. ACS Applied Energy Materials, 2022, 5, 2308-2317.	5.1	11
1423	Novel 2D Porous C ₃ N ₂ Framework as Promising Anode Materials with Ultra-High Specific Capacity for Lithium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1424	Hierarchical porous carbon-incorporated metal-based nanocomposites for secondary metal-ion batteries. , 2022, , 179-216.		1
1425	Defective Carbon Nanostructures for Biomedical Application. Advances in Material Research and Technology, 2022, , 1-34.	0.6	1
1426	Monodispersed copper phosphide nanocrystals <i>in situ</i> grown in a nitrogen-doped reduced graphene oxide matrix and their superior performance as the anode for lithium-ion batteries. Inorganic Chemistry Frontiers, 0, , .	6.0	1
1427	Dispersing Single-Layered Ti3c2tx Nanosheets in Hierarchically-Porous Membrane for High-Efficiency Li+ Transporting and Polysulfide Anchoring in Li-S Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1428	Tuning the Defects of Two-Dimensional Layered Carbon/TiO2 Superlattice Composite for a Fast Lithium-Ion Storage. Materials, 2022, 15, 1625.	2.9	4
1429	High Performance Nitrogen-Doped Si/C as the Anode Material of Lithium-Ion Batteries. Russian Journal of Electrochemistry, 2022, 58, 136-142.	0.9	2
1430	Spheres of Graphene and Carbon Nanotubes Embedding Silicon as Mechanically Resilient Anodes for Lithium-Ion Batteries. Nano Letters, 2022, 22, 3054-3061.	9.1	42
1431	Preparation and Recycling of High-Performance Carbon Nanotube Films. ACS Sustainable Chemistry and Engineering, 2022, 10, 3851-3861.	6.7	2
1432	Chemical vapor deposition-grown nitrogen-doped graphene's synthesis, characterization and applications. Npj 2D Materials and Applications, 2022, 6, .	7.9	29
1433	Reduction of Capacity Fading in High-Voltage NMC Batteries with the Addition of Reduced Graphene Oxide. Materials, 2022, 15, 2146.	2.9	7

#	Article	IF	CITATIONS
1434	A Study on Graphene Structure Control Using Ammonia Gas for a Highly Sensitive Pressure Sensor. Journal of Korean Institute of Metals and Materials, 2022, 60, 206-212.	1.0	1
1435	Nitrogen-doping effects on few-layer graphene as an anode material for lithium-ion batteries. Materials Today Communications, 2022, 31, 103498.	1.9	5
1438	Electrochemical Activation of Commercial Graphite Sheet for Supercapacitive Application. SSRN Electronic Journal, 0, , .	0.4	0
1439	Structures, properties, and applications of nitrogen-doped graphene. Theoretical and Computational Chemistry, 2022, , 211-248.	0.4	3
1440	A simple route to constructing rGO wrapped Fe2O3 cubes as a high-performance anode material for lithium-ion batteries. Ionics, 2022, 28, 3165-3176.	2.4	1
1441	Improved Performance of Li-Added Mo–Nb Oxide as the Anode for Li-Ion Batteries with N-Carbon Coating. ACS Applied Energy Materials, 2022, 5, 6129-6138.	5.1	5
1442	A Review of the Synthesis, Properties, and Applications of 2D Materials. Particle and Particle Systems Characterization, 2022, 39, .	2.3	81
1443	Coâ€doping Graphene with B and N Heteroatoms for Application in Energy Conversion and Storage Devices. ChemNanoMat, 2022, 8, .	2.8	8
1444	Prolate carbon architecture as a novel Li-ion battery anode with kinetic study. Carbon Trends, 2022, 8, 100178.	3.0	4
1445	Nitrogen-doped graphene–poly(hydroxymethylated-3,4-ethylenedioxythiophene) nanocomposite electrochemical sensor for ultrasensitive determination of luteolin. RSC Advances, 2022, 12, 15517-15525.	3.6	1
1446	Insights into Synergistic Effect of g-C ₃ N ₄ /Graphite Heterostructures for Boosting Sodium Ion Storage with Long Cycle Stability. ACS Applied Energy Materials, 2022, 5, 7308-7316.	5.1	8
1447	Advances in the Analysis of Pharmaceuticals by Using Grapheneâ€Based Sensors. ChemMedChem, 2022, 17,	3.2	1
1448	Preparation of Different Fexn/Rgo Nanocomposites and Their Application as Anodes for Lithium-Ion Battery. SSRN Electronic Journal, 0, , .	0.4	0
1449	Coalâ€based hierarchically porous carbon nanofibers as highâ€performance anode for sodiumâ€ion batteries. ChemElectroChem, 0, , .	3.4	3
1450	Selective recovery of lithium resources in salt lakes by polyacrylonitrile/ion-imprinted polymer: Synthesis, testing, and computation. Polymer Testing, 2022, 113, 107647.	4.8	6
1451	Self-Assembly of a Triphenylene-Based Electron Donor Molecule on Graphene: Structural and Electronic Properties. Journal of Physical Chemistry C, 0, , .	3.1	0
1452	Nitrogen Implantation into Graphene Oxide and Reduced Graphene Oxides Using Radio Frequency Plasma Treatment in Microscale. SSRN Electronic Journal, 0, , .	0.4	0
1453	One-dimensional N-doped carbon nanofibers produced by pre-oxide treatment for effective lithium storage. Dalton Transactions, 0, , .	3.3	0

#	Article	IF	CITATIONS
1454	Transfer- and lithography-free CVD of N-doped graphenic carbon thin films on non-metal substrates. Materials Research Bulletin, 2022, 154, 111943.	5.2	4
1455	Facile synthesis of self-support vanadium-doped Ni2P nanosheet arrays for highly efficient overall water splitting. Journal of Alloys and Compounds, 2022, 920, 165932.	5.5	7
1456	Anomalous Selfâ€Optimizing Microporous Grapheneâ€Based Lithiumâ€ion Battery Anode from Laser Activation of Small Organic Molecules. Small Methods, 0, , 2200280.	8.6	2
1457	Nitrogen-doped reduced graphene oxide incorporated Ni2O3-Co3O4@MoS2 hollow nanocubes for high-performance energy storage devices. Journal of Alloys and Compounds, 2022, 922, 166131.	5.5	12
1458	Multiscale modeling assessment of the interfacial properties and critical aspect ratio of structurally defected graphene in polymer nanocomposites for defect engineering. European Journal of Mechanics, A/Solids, 2022, 96, 104728.	3.7	6
1459	Preparation of different FexN/rGO nanocomposites and their application as anodes for lithium-ion battery. Journal of Alloys and Compounds, 2022, 922, 166208.	5.5	6
1460	Towards High-Performance Supercapacitor Electrodes via Achieving 3D Cross-Network and Favorable Surface Chemistry. ACS Applied Materials & Interfaces, 2022, 14, 34637-34648.	8.0	8
1461	Electrochemical activation of commercial graphite sheets for supercapacitive applications. Electrochimica Acta, 2022, 431, 140882.	5.2	1
1462	CoFe ₂ O ₄ Nanoparticles Grown within Porous Al ₂ O ₃ and Immobilized on Graphene Nanosheets: A Hierarchical Nanocomposite for Broadband Microwave Absorption. ACS Omega, 2022, 7, 28624-28635.	3.5	7
1463	Graphene-based lithium-ion battery anode materials manufactured by mechanochemical ball milling process: A review and perspective. Composites Part B: Engineering, 2022, 246, 110232.	12.0	35
1464	Nitrogen implantation into graphene oxide and reduced graphene oxides using radio frequency plasma treatment in microscale. Carbon, 2022, 199, 415-423.	10.3	9
1465	Dispersing single-layered Ti3C2TX nanosheets in hierarchically-porous membrane for high-efficiency Li+ transporting and polysulfide anchoring in Li-S batteries. Energy Storage Materials, 2022, 53, 32-41.	18.0	31
1466	Multifunctional materials and nanocomposite sensors for civil infrastructure monitoring. , 2022, , 497-553.		0
1467	Nanofibrous Nitrogen Doped Carbon Integrated Li2mnsio4/C Composite Cathode for Li Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1468	Diverse Electronic Structures Governed by N-Substitution in Stable Two-Dimensional Dumbbell Carbonitrides. SSRN Electronic Journal, 0, , .	0.4	0
1469	Three-dimensional tubular carbon aerogel for supercapacitors. , 2022, 52, 6.		0
1470	An Overview of Coating Processes on Metal Substrates Based on Graphene-Related Materials for Multifarious Applications. Industrial & Engineering Chemistry Research, 2022, 61, 13763-13786.	3.7	1
1471	Charge Transfer Dynamics of Doped Graphene Electrodes for Organic Light-Emitting Diodes. ACS Applied Materials & Amp; Interfaces, 2022, 14, 43907-43916.	8.0	4

#	Article	IF	CITATIONS
1472	Effect of Pt Decoration on the Optical Properties of Pristine and Defective MoS2: An Ab-Initio Study. International Journal of Molecular Sciences, 2022, 23, 11199.	4.1	1
1473	In situ self-assembled synthesis of polypyrrole-derived nitrogen-doped carbon nanotube reinforced graphene aerogels as high-performance anode materials for lithium ion batteries. Journal of Materials Science: Materials in Electronics, 2022, 33, 21425-21443.	2.2	0
1474	Stretchable separator/current collector composite for superior battery safety. Energy and Environmental Science, 2022, 15, 5313-5323.	30.8	16
1475	S-doped porous carbon fibers with superior electrode behaviors in lithium ion batteries and fuel cells. Materials Reports Energy, 2022, 2, 100160.	3.2	0
1476	Modified g-C3N4 with boron doping for efficient simultaneous catalytic reduction of Ag+ and organic pollutants. Materials Today Sustainability, 2022, 20, 100258.	4.1	4
1477	Diverse electronic structures governed by N-substitution in stable two-dimensional dumbbell carbonitrides. Applied Surface Science, 2023, 609, 155463.	6.1	0
1478	Chemical modification of graphene for atomic-scale catalyst supports. Nano Express, 2022, 3, 042001.	2.4	1
1479	Advances in platinum-based and platinum-free oxygen reduction reaction catalysts for cathodes in direct methanol fuel cells. Frontiers in Chemistry, 0, 10, .	3.6	8
1480	Facile Preparations of Electrochemically Exfoliated N-Doped Graphene Nanosheets from Spent Zn-Carbon Primary Batteries Recycled for Supercapacitors Using Natural Sea Water Electrolytes. Energies, 2022, 15, 8650.	3.1	3
1481	An organic acid consisted multiresponsive self-healing supramolecular Cu(II)-metallogel: Fabrication and analysis of semiconducting device. Journal of Molecular Liquids, 2023, 370, 121021.	4.9	4
1482	Symmetric Supercapacitor Based on Nitrogen-Doped and Plasma-Functionalized 3D Graphene. Batteries, 2022, 8, 258.	4.5	7
1483	Template Directed Synthesis of Boron Carbon Nitride Nanotubes (BCNâ€NTs) and Their Evaluation for Energy Storage Properties. Advanced Materials Interfaces, 2023, 10, .	3.7	6
1484	Graphene-Based Materials: Synthesis and Applications. , 2023, , 59-84.		2
1485	Doped graphene characterized via Raman spectroscopy and magneto-transport measurements. Journal of Applied Physics, 2023, 133, 025304.	2.5	1
1486	On the Road to the Frontiers of Lithiumâ€ion Batteries: A Review and Outlook of Graphene Anodes. Advanced Materials, 2023, 35, .	21.0	58
1487	Growth of Low-Defect Nitrogen-Doped Graphene Film Using Condensation-Assisted Chemical Vapor Deposition Method. Materials, 2023, 16, 1120.	2.9	1
1488	Oxynitride Amorphous Carbon Layer for Electrically and Thermally Robust Bipolar Resistive Switching. Advanced Electronic Materials, 2023, 9, .	5.1	0
1489	Synthesis and applications of carbon-polymer composites and nanocomposite functional materials. , 2023, , 71-105.		0

#	Article	IF	Citations
1490	Vertically aligned ZnO nanoarray directly orientated on Cu paper by h-BN monolayer for flexible and transparent piezoelectric nanogenerator. Nano Energy, 2023, 109, 108265.	16.0	14
1491	Review—Rational Design of Nitrogen-doped Graphene as Anode Material for Lithium-ion Batteries. Journal of the Electrochemical Society, 2023, 170, 040525.	2.9	2
1492	Al/Si dopants effect on the electronic and optical behaviors of graphene mono-layers useful for infrared detector devices. Journal of Electron Spectroscopy and Related Phenomena, 2023, 264, 147296.	1.7	0
1493	Enhancement of recovered graphite's electrochemical performance during LIB recycling to promote circular sustainable development. Sustainable Materials and Technologies, 2023, 36, e00613.	3.3	0
1494	Ultraslim and highly flexible supercapacitor based on chemical vapor deposited nitrogen-doped bernal graphene for wearable electronics. Carbon, 2023, 208, 227-237.	10.3	6
1495	MnO2/graphene supported on Ni foam: an advanced electrode for electrochemical detection of Pb(II). Carbon Letters, 2023, 33, 691-698.	5.9	3
1496	Facile synthesis of nitrogen-doped graphene, and its advanced electrochemical activity toward efficient lithium ion storage. Functional Materials Letters, 0, , .	1.2	0
1497	Room-Temperature One-Pot Synthesis of pH-Responsive Pyridine-Functionalized Carbon Surfaces. ACS Omega, 2023, 8, 10796-10805.	3.5	0
1498	Black Phosphorus Degradation during Intercalation and Alloying in Batteries. ACS Nano, 2023, 17, 6220-6233.	14.6	6
1499	Recent advancements in 3D porous graphene-based electrode materials for electrochemical energy storage applications. Materials Advances, 2023, 4, 2524-2543.	5.4	5
1500	Functionalized Chitosan and Biomedical Devices. Biological and Medical Physics Series, 2023, , 109-133.	0.4	0
1501	Regulating Electronic Structure of Iron Nitride by Tungsten Nitride Nanosheets for Accelerated Overall Water Splitting. Small, 2023, 19, .	10.0	10
1502	Synthesis and Applications of Graphene and Its Nanocomposites. Composites Science and Technology, 2023, , 39-87.	0.6	0
1503	Defective graphene decorated with TiO2 nanoparticles as negative electrode in Li-ion batteries. Journal of Alloys and Compounds, 2023, 958, 170420.	5.5	3
1504	Covalent "Bridge-crosslinking―strategy constructs facilitated transport mixed matrix membranes for highly-efficient CO2 separation. Journal of Membrane Science, 2023, 680, 121755.	8.2	4
1505	N-Doped Graphene-like Film/Silicon Structures as Micro-Capacitor Electrodes. Materials, 2023, 16, 4007.	2.9	1
1506	An amphiphilic nitrogen-doped graphene prepared by ammonia cold plasma and its supported platinum nanocatalyst for aqueous-phase hydrogenation of cinnamaldehyde. Applied Catalysis A: General, 2023, 663, 119286.	4.3	2
1507	Self-propagating synthesis of nitrogen-doped graphene as supercapacitor electrode materials. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	0

#	Article	IF	CITATIONS
1508	A polypyrrole derived nitrogen doped porous carbon support for an atomically dispersed Mn electrocatalyst for the oxygen reduction reaction. Sustainable Energy and Fuels, 2023, 7, 3684-3691.	4.9	3
1509	N-Doped Graphene and Polymer Sequent Nanocomposite—Nitty-Gritties and Scoping Insights. Polymer-Plastics Technology and Materials, 2023, 62, 1347-1363.	1.3	1
1510	Freestanding cathode design for lithium-sulfur batteries: CoP/Co-PCNF sandwich structure to enhance adsorption and catalysis for polysulfides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 671, 131666.	4.7	0
1511	Single-source formation and assessment of nitrogen-doped graphitic spheres for lithium- and sodium-ion batteries. RSC Advances, 2023, 13, 15918-15925.	3.6	0
1512	Effect of Fast Charging on Lithium-Ion Batteries: A Review. SAE International Journal of Electrified Vehicles, 0, 12, .	0.0	2
1513	Atomic-scale identification of nitrogen dopants in graphene on Ir(111) and Ru(0001). Journal of Physics Condensed Matter, 2023, 35, 405003.	1.8	1
1514	Magneto-electronic and thermopower properties of B, N and Si doped monolayer graphene. Diamond and Related Materials, 2023, 137, 110154.	3.9	7
1515	Deciphering ligand-controlled charge transfer from a metal–organic framework to cadmium sulfide for enhanced photocatalytic hydrogen evolution reaction. Journal of Materials Chemistry A, O, , .	10.3	0
1516	Tuning nonlinear optical properties of tetracyclopentatetraphenylnene by superhalogens doping: Quantum chemical perspective of novel NLO materials for modern optoelectronic applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 297, 116763.	3.5	2
1517	Highly Porous Polypyrrole (PPy) Hydrogel Support for the Design of a Co–N–C Electrocatalyst for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2023, 15, 37571-37579.	8.0	3
1518	Strategic catalyst modification for boosting CO ₂ concentration at electrode surface and easing selective CO ₂ reduction at higher potential. Sustainable Energy and Fuels, 2023, 7, 4630-4637.	4.9	1
1519	Au/NG/SWCNTs/FTO-glass modified electrode based electrochemical biosensor for DNA detection. Microchemical Journal, 2023, 193, 109206.	4.5	0
1520	Recent progress of Si-based anodes in the application of lithium-ion batteries. Journal of Energy Storage, 2023, 72, 108715.	8.1	3
1522	A critical review on visible light active graphitic carbon nitride (g-CN) based photocatalyst for environment remediation application: A sustainable approach. Journal of Cleaner Production, 2023, 427, 138855.	9.3	2
1523	Defect Identification of Nitrogen-Doped Graphene on Pt (111) Using Atomic Force Microscopy and Scanning Tunneling Microscopy. Journal of Physical Chemistry C, 0, , .	3.1	0
1524	Weighted average effective band structure of disordered solids. Computational Materials Science, 2024, 231, 112584.	3.0	0
1525	Reducing interfacial thermal resistance between polyethylene oxide-based solid-state polymer electrolyte and lithium anode by using IVA group two-dimensional materials: A molecular dynamics study. International Journal of Heat and Mass Transfer, 2024, 219, 124864.	4.8	0
1526	Bifunctional electrocatalyst for water splitting based on thermally exfoliated amorphous and ball mill derived nitrogen doped crystalline Cr2O3. Inorganic Chemistry Communication, 2023, 158, 111668.	3.9	0

#	Article	IF	CITATIONS
1527	Flexible neural recording electrodes based on reduced graphene oxide interfaces. Chemical Engineering Journal, 2023, 478, 147067.	12.7	0
1528	A comprehensive overview of the graphitic-carbon nitride computational approach: From basic properties to a wide range of applications. Chemical Physics Impact, 2024, 8, 100408.	3.5	0
1529	Graphene materials in pollution trace detection and environmental improvement. Environmental Research, 2024, 243, 117830.	7.5	0
1530	Multiscale Structural Design of 2D Nanomaterialsâ€based Flexible Electrodes for Wearable Energy Storage Applications. Advanced Science, 2024, 11, .	11.2	0
1531	A Review on Development of Carbon-Based Nanomaterials for Energy Storage Devices: Opportunities and Challenges. Energy & Fuels, 2023, 37, 19433-19460.	5.1	1
1532	Nanoscopic decoration of multivalent vanadium oxide on Laser-Induced graphene fibers via atomic layer deposition for flexible gel supercapacitors. Chemical Engineering Journal, 2024, 480, 147895.	12.7	0
1535	Green synthesis of reduced graphene oxide (rGO) and its applications in non-enzymatic electrochemical glucose sensors. Journal of Photochemistry and Photobiology A: Chemistry, 2024, 450, 115434.	3.9	0
1536	Advances in boron nitrideâ€based materials for electrochemical energy storage and conversion. , 2023, 1, 375-404.		2
1537	Heteroatom co-doped biomass carbon modified electrodes for all-vanadium redox flow batteries with ultra-low decay rate of energy efficiency. Journal of Power Sources, 2024, 591, 233890.	7.8	1
1538	Flexible wearable energy storage devices: Materials, structures, and applications. , 2024, 3, .		0
1539	Topological characterization of cove-edged graphene nanoribbons with applications to NMR spectroscopies. Journal of Molecular Structure, 2024, 1303, 137492.	3.6	0
1540	Modified 3D Graphene for Sensing and Electrochemical Capacitor Applications. Nanomaterials, 2024, 14, 108.	4.1	0
1541	Recent progress in utilizing carbon nanotubes and graphene to relieve volume expansion and increase electrical conductivity of Si-based composite anodes for lithium-ion batteries. Carbon, 2024, 219, 118800.	10.3	1
1543	Rh(III)-Catalyzed sequential ring-retentive/-opening [4â€+â€ ⁻ 2] annulations of 2H-imidazoles towards full-color emissive imidazo[5,1-a]isoquinolinium salts and AIE-active non-symmetric 1,1′-biisoquinolines. Chinese Chemical Letters, 2024, , 109533.	9.0	0
1544	Harnessing enhanced stability and high-rate capability in lithium-ion batteries using synergistic SnS2/MoS2 2D nanostructures with optimized conversion/alloying reactions. Journal of Alloys and Compounds, 2024, 984, 173886.	5.5	0
1545	Graphene-Based Metal-Ion Batteries. Engineering Materials, 2024, , 71-89.	0.6	0
1546	Nanohoneycomb rGO foam as a promising anode material for unprecedented ultrahigh Li storage and excellent endurance at ampere current stability. Applied Surface Science, 2024, 657, 159824.	6.1	0
1547	Nitrogen doped single layer graphene for CZTS-based thin film solar cells. Optical Materials, 2024, 150, 115167.	3.6	0

#	Article	IF	CITATIONS
1548	Waste plastic derived nitrogen-doped reduced graphene oxide decorated core–shell nano-structured metal catalyst (WpNrGO-Pd–Ru) for a proton exchange membrane fuel cell. Materials Advances, 2024, 5, 3771-3782.	5.4	0
1549	Simple solid-state synthesis of mesoporous NiCo2O4/N-doped reduced graphene oxide nanosheet composites with enhanced performance in electrochemical capacitors. Journal of Solid State Electrochemistry, 0, , .	2.5	0
1550	Synthesis of N-doped graphene film with tunable graphitic and pyridinic doping content. Diamond and Related Materials, 2024, 144, 111043.	3.9	0