Graphene-Wrapped Fe₃O₄ An Capacity and Cyclic Stability for Lithium Ion Batteries

Chemistry of Materials 22, 5306-5313 DOI: 10.1021/cm101532x

Citation Report

#	Article	IF	CITATIONS
3	The Hobbling of Coal: Policy and Regulatory Uncertainties. Science, 1978, 200, 153-158.	6.0	17
4	Mn ₃ O ₄ â~Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries. Journal of the American Chemical Society, 2010, 132, 13978-13980.	6.6	1,849
5	Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities. Nanoscale, 2011, 3, 2158.	2.8	223
6	Hierarchical self-assembly of Mn2Mo3O8–graphene nanostructures and their enhanced lithium-storage properties. Journal of Materials Chemistry, 2011, 21, 17229.	6.7	50
7	SnSe2 nanoplate–graphene composites as anode materials for lithium ion batteries. Chemical Communications, 2011, 47, 5241.	2.2	203
8	Functionalization of PNIPAAm microgels using magnetic graphene and their application in microreactors as switch materials. Journal of Materials Chemistry, 2011, 21, 10512.	6.7	24
9	Synergetic approach to achieve enhanced lithium ion storage performance in ternary phased SnO2–Fe2O3/rGO composite nanostructures. Journal of Materials Chemistry, 2011, 21, 12770.	6.7	80
10	Sheet-like and fusiform CuO nanostructures grown on graphene by rapid microwave heating for high Li-ion storage capacities. Journal of Materials Chemistry, 2011, 21, 17916.	6.7	97
11	Synthesis of single-crystalline α-Fe2O3 nanobelts via a facile PEG-200 assisted solution route. CrystEngComm, 2011, 13, 6045.	1.3	19
12	Nanostructured NiO electrode for high rate Li-ion batteries. Journal of Materials Chemistry, 2011, 21, 3571.	6.7	330
13	Preparation of LiCoO2 concaved cuboctahedra and their electrochemical behavior in lithium-ion battery. Dalton Transactions, 2011, 40, 7645.	1.6	27
14	Carbon Nanocapsules as Nanoreactors for Controllable Synthesis of Encapsulated Iron and Iron Oxides: Magnetic Properties and Reversible Lithium Storage. Journal of Physical Chemistry C, 2011, 115, 3612-3620.	1.5	101
15	One-step molybdate ion assisted electrochemical synthesis of \hat{i} ±-MoO3-decorated graphene sheets and its potential applications. Journal of Materials Chemistry, 2011, 21, 15009.	6.7	50
16	Nanohybridization of ferrocene clusters and reduced graphene oxides with enhanced lithium storage capability. Chemical Communications, 2011, 47, 10383.	2.2	32
17	Effects of Crystalline Phase and Particle Size on the Properties of Plate-Like Fe ₂ O ₃ Nanoparticles during l³- to l±-Phase Transformation. Journal of Physical Chemistry C, 2011, 115, 3602-3611.	1.5	38
18	Co ₃ O ₄ @graphene Composites as Anode Materials for High-Performance Lithium Ion Batteries. Inorganic Chemistry, 2011, 50, 1628-1632.	1.9	354
19	Ultralong single crystalline V2O5 nanowire/graphene composite fabricated by a facile green approach and its lithium storage behavior. Energy and Environmental Science, 2011, 4, 4000.	15.6	252
20	Porous Fe ₃ O ₄ /Carbon Core/Shell Nanorods: Synthesis and Electromagnetic Properties. Journal of Physical Chemistry C, 2011, 115, 13603-13608.	1.5	368

ITATION REDO

	CITATION	CITATION REPORT	
#	ARTICLE	IF	CITATIONS
21	Nanostructured Reduced Graphene Oxide/Fe ₂ O ₃ Composite As a High-Performance Anode Material for Lithium Ion Batteries. ACS Nano, 2011, 5, 3333-3338.	7.3	1,222
22	Magnetite/graphene nanosheet composites: interfacial interaction and its impact on the durable high-rate performance in lithium-ion batteries. RSC Advances, 2011, 1, 782.	1.7	332
23	Spinel LiMn2O4/reduced graphene oxide hybrid for high rate lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 17309.	6.7	138
24	SnO ₂ –Graphene Composite Synthesized via an Ultrafast and Environmentally Friendly Microwave Autoclave Method and Its Use as a Superior Anode for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 25115-25120.	1.5	147
25	Graphene-encapsulated iron microspheres on the graphene nanosheets. Physical Chemistry Chemical Physics, 2011, 13, 17818.	1.3	15
26	Graphene-Encapsulated Hollow Fe ₃ O ₄ Nanoparticle Aggregates As a High-Performance Anode Material for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2011, 3, 3078-3083.	4.0	288
27	A novel bath lily-like graphene sheet-wrapped nano-Si composite as a high performance anode material for Li-ion batteries. RSC Advances, 2011, 1, 958.	1.7	85
28	A one-pot microwave-assisted non-aqueous sol–gel approach to metal oxide/graphene nanocomposites for Li-ion batteries. RSC Advances, 2011, 1, 1687.	1.7	75
29	NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries. Nanoscale, 2011, 3, 2615.	2.8	342
30	Superparamagnetic Fe3O4 nanocrystals@graphene composites for energy storage devices. Journal of Materials Chemistry, 2011, 21, 5069.	6.7	336
31	One-pot synthesis of ZnFe2O4/C hollow spheres as superior anode materials for lithium ion batteries. Chemical Communications, 2011, 47, 6828.	2.2	214
32	Free-Standing Layer-By-Layer Hybrid Thin Film of Graphene-MnO ₂ Nanotube as Anode for Lithium Ion Batteries. Journal of Physical Chemistry Letters, 2011, 2, 1855-1860.	2.1	271
33	Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. Journal of Materials Chemistry, 2011, 21, 3422.	6.7	430
34	Origin of Bonding between the SWCNT and the Fe ₃ O ₄ (001) Surface and the Enhanced Electrical Conductivity. Journal of Physical Chemistry Letters, 2011, 2, 2853-2858.	2.1	17
35	Monolayer graphene/NiO nanosheets with two-dimension structure for supercapacitors. Journal of Materials Chemistry, 2011, 21, 18792.	6.7	305
36	NiO nanocone array electrode with high capacity and rate capability for Li-ion batteries. Journal of Materials Chemistry, 2011, 21, 9988.	6.7	194
37	A general strategy toward graphene@metal oxide core–shell nanostructures for high-performance lithium storage. Energy and Environmental Science, 2011, 4, 4954.	15.6	255
38	Fabrication of Co3O4-reduced graphene oxide scrolls for high-performance supercapacitor electrodes. Physical Chemistry Chemical Physics, 2011, 13, 14462.	1.3	215

#	Article	IF	CITATIONS
39	Self-Assembled Hierarchical MoO ₂ /Graphene Nanoarchitectures and Their Application as a High-Performance Anode Material for Lithium-Ion Batteries. ACS Nano, 2011, 5, 7100-7107.	7.3	611
40	Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Nanoscale, 2011, 3, 1084-1089.	2.8	352
41	One-Pot Synthesis of Uniform Fe ₃ O ₄ Nanospheres with Carbon Matrix Support for Improved Lithium Storage Capabilities. ACS Applied Materials & Interfaces, 2011, 3, 3276-3279.	4.0	162
42	Design and Tailoring of a Three-Dimensional TiO ₂ –Graphene–Carbon Nanotube Nanocomposite for Fast Lithium Storage. Journal of Physical Chemistry Letters, 2011, 2, 3096-3101.	2.1	205
43	Synthesis of 3D Hierarchical Fe ₃ O ₄ /Graphene Composites with High Lithium Storage Capacity and for Controlled Drug Delivery. Journal of Physical Chemistry C, 2011, 115, 21567-21573.	1.5	288
44	Enhancing the lithium storage performance of iron oxide composites through partial substitution with Ni2+ or Co2+. Journal of Materials Chemistry, 2011, 21, 19101.	6.7	40
45	Controllable synthesis of spinel nano-ZnMn2O4via a single source precursor route and its high capacity retention as anode material for lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 11987.	6.7	130
46	Fe ₂ O ₃ -Graphene Rice-on-Sheet Nanocomposite for High and Fast Lithium Ion Storage. Journal of Physical Chemistry C, 2011, 115, 20747-20753.	1.5	168
47	Fe3O4 nanoparticle-integrated graphene sheets for high-performance half and full lithium ion cells. Physical Chemistry Chemical Physics, 2011, 13, 7170.	1.3	238
48	Synthesis of Magnetite/Graphene Oxide Composite and Application for Cobalt(II) Removal. Journal of Physical Chemistry C, 2011, 115, 25234-25240.	1.5	386
49	Non-covalent doping of graphitic carbon nitride polymer with graphene: controlled electronic structure and enhanced optoelectronic conversion. Energy and Environmental Science, 2011, 4, 4517.	15.6	408
50	SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties. Chemical Communications, 2011, 47, 7155.	2.2	387
51	Enhanced rate performance and cyclic stability of Fe3O4–graphene nanocomposites for Li ion battery anodes. Chemical Communications, 2011, 47, 10371.	2.2	130
52	Water-dispersible magnetite-graphene-LDH composites for efficient arsenate removal. Journal of Materials Chemistry, 2011, 21, 17353.	6.7	240
53	Fe ₃ O ₄ –Graphene Nanocomposites with Improved Lithium Storage and Magnetism Properties. Journal of Physical Chemistry C, 2011, 115, 14469-14477.	1.5	456
54	Preparation of Fe2O3/graphene composite and its electrochemical performance as an anode material for lithium ion batteries. Journal of Alloys and Compounds, 2011, 509, L216-L220.	2.8	111
55	Enhanced anode performances of the Fe3O4–Carbon–rGO three dimensional composite in lithium ion batteries. Chemical Communications, 2011, 47, 10374.	2.2	182
56	A sandwich structure of graphene and nickel oxide with excellent supercapacitive performance. Journal of Materials Chemistry, 2011, 21, 9014.	6.7	125

#	Article	IF	CITATIONS
57	Graphene-supported anatase TiO2 nanosheets for fast lithium storage. Chemical Communications, 2011, 47, 5780.	2.2	305
58	Assembly of Graphene Sheets into Hierarchical Structures for High-Performance Energy Storage. ACS Nano, 2011, 5, 3831-3838.	7.3	382
59	Conducting solids. Annual Reports on the Progress of Chemistry Section A, 2011, 107, 434.	0.8	2
60	Li ion battery materials with core–shell nanostructures. Nanoscale, 2011, 3, 3967.	2.8	473
61	Nanosized Li4Ti5O12/graphene hybrid materials with low polarization for high rate lithium ion batteries. Journal of Power Sources, 2011, 196, 8610-8617.	4.0	306
62	Facile synthesis and electrochemical properties of Fe3O4 nanoparticles for Li ion battery anode. Journal of Power Sources, 2011, 196, 8669-8674.	4.0	72
63	Low temperature synthesis of Fe3O4 nanoparticles and its application in lithium ion batteries. Materials Chemistry and Physics, 2011, 130, 1260-1264.	2.0	8
64	Hydrothermal synthesis of magnetic reduced graphene oxide sheets. Materials Research Bulletin, 2011, 46, 2077-2083.	2.7	52
65	A facile one-step hydrothermal method to produce graphene–MoO3 nanorod bundle composites. Materials Letters, 2011, 65, 2341-2344.	1.3	35
66	Durable high-rate performance of CuO hollow nanoparticles/graphene-nanosheet composite anode material for lithium-ion batteries. Electrochemistry Communications, 2011, 13, 1357-1360.	2.3	114
67	Preparation and characterization of core–shell structure Fe3O4/C nanoparticles with unique stability and high electrochemical performance for lithium-ion battery anode material. Electrochimica Acta, 2011, 56, 9233-9239.	2.6	47
68	High capacity ZnFe2O4 anode material for lithium ion batteries. Electrochimica Acta, 2011, 56, 9433-9438.	2.6	166
69	Co2SnO4–multiwalled carbon nanotubes composite as a highly reversible anode material for lithium-ion batteries. Electrochimica Acta, 2011, 56, 9515-9519.	2.6	49
70	A novel Fe3O4–SnO2–graphene ternary nanocomposite as an anode material for lithium-ion batteries. Electrochimica Acta, 2011, 58, 81-88.	2.6	71
71	Improved storage capacity and rate capability of Fe3O4–graphene anodes for lithium-ion batteries. Electrochimica Acta, 2011, 58, 119-124.	2.6	71
72	Liquid-phase exfoliation, functionalization and applications of graphene. Nanoscale, 2011, 3, 2118.	2.8	265
73	Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy and Environmental Science, 2011, 4, 2682.	15.6	2,057
74	Grapheneâ€Based Materials: Synthesis, Characterization, Properties, and Applications. Small, 2011, 7, 1876-1902.	5.2	2,239

#	Article	IF	CITATIONS
75	Battery Performance and Photocatalytic Activity of Mesoporous Anatase TiO ₂ Nanospheres/Graphene Composites by Templateâ€Free Selfâ€Assembly. Advanced Functional Materials, 2011, 21, 1717-1722.	7.8	601
76	Selfâ€Assembly and Embedding of Nanoparticles by In Situ Reduced Graphene for Preparation of a 3D Graphene/Nanoparticle Aerogel. Advanced Materials, 2011, 23, 5679-5683.	11.1	822
77	Hydrothermal synthesis of MoO ₃ nanobeltâ€graphene composites. Crystal Research and Technology, 2011, 46, 1195-1201.	0.6	57
78	Surface amorphization and deoxygenation of graphene oxide paper by Ti ion implantation. Carbon, 2011, 49, 3141-3147.	5.4	57
79	Effect of graphene nanosheet addition on the electrochemical performance of anode materials for lithium-ion batteries. Analytica Chimica Acta, 2011, 688, 146-155.	2.6	37
80	Activated-phosphorus as new electrode material for Li-ion batteries. Electrochemistry Communications, 2011, 13, 346-349.	2.3	164
81	An overview of graphene in energy production and storage applications. Journal of Power Sources, 2011, 196, 4873-4885.	4.0	819
82	Reduced graphene oxide/tin oxide composite as an enhanced anode material for lithium ion batteries prepared by homogenous coprecipitation. Journal of Power Sources, 2011, 196, 6473-6477.	4.0	148
83	Graphene based materials: Past, present and future. Progress in Materials Science, 2011, 56, 1178-1271.	16.0	3,063
84	The Impacts of Graphene Nanosheets and Manganese Valency on Lithium Storage Characteristics in Graphene/Manganese Oxide Hybrid Anode. Journal of Nanomaterials, 2012, 2012, 1-10.	1.5	8
85	SELF-ASSEMBLY FABRICATION OF GRAPHENE-BASED MATERIALS WITH OPTICAL–ELECTRONIC, TRANSIENT OPTICAL AND ELECTROCHEMICAL PROPERTIES. International Journal of Nanoscience, 2012, 11, 1240032.	0.4	4
86	Development of Lithium-ion Batteries from Micro-Structured to Nanostructured Materials: Its Issues and Challenges. Science Progress, 2012, 95, 283-314.	1.0	7
87	Spinel Mn1.5Co1.5O4 core–shell microspheres as Li-ion battery anode materials with a long cycle life and high capacity. Journal of Materials Chemistry, 2012, 22, 23254.	6.7	140
88	Graphene-based materials for energy applications. MRS Bulletin, 2012, 37, 1265-1272.	1.7	140
89	Building Robust Architectures of Carbon and Metal Oxide Nanocrystals toward High-Performance Anodes for Lithium-Ion Batteries. ACS Nano, 2012, 6, 9911-9919.	7.3	165
90	Facile Synthesis of Graphene-Wrapped Honeycomb MnO ₂ Nanospheres and Their Application in Supercapacitors. ACS Applied Materials & amp; Interfaces, 2012, 4, 1770-1776.	4.0	345
91	Synthesis of graphene-based nanomaterials and their application in energy-related and environmental-related areas. RSC Advances, 2012, 2, 9286.	1.7	226
92	A facile chemical method to produce superparamagnetic graphene oxide–Fe ₃ O ₄ hybrid composite and its application in the removal of dyes from aqueous solution. Journal of Materials Chemistry, 2012, 22, 1033-1039.	6.7	347

#	Article	IF	CITATIONS
93	Beyond Intercalation: Nanoscale-Enabled Conversion Anode Materials for Lithium-Ion Batteries. Nanostructure Science and Technology, 2012, , 85-116.	0.1	2
94	Graphene-Based Composite Anodes for Lithium-Ion Batteries. Nanostructure Science and Technology, 2012, , 117-162.	0.1	2
95	Facile and green synthesis of Co3O4 nanoplates/graphene nanosheets composite for supercapacitor. Journal of Solid State Electrochemistry, 2012, 16, 3593-3602.	1.2	82
96	Complementary microscopy techniques applied for optimizing the structure and performance of graphene-based hybrids. Ultramicroscopy, 2012, 119, 97-101.	0.8	9
97	A green and fast strategy for the scalable synthesis of Fe2O3/graphene with significantly enhanced Li-ion storage properties. Journal of Materials Chemistry, 2012, 22, 3868.	6.7	125
98	Synthesis of Hierarchical Hollow-Structured Single-Crystalline Magnetite (Fe ₃ O ₄) Microspheres: The Highly Powerful Storage versus Lithium as an Anode for Lithium Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 6495-6502.	1.5	220
99	An organometallic approach for ultrathin SnOxFeySz plates and their graphene composites as stable anode materials for high performance lithium ion batteries. Chemical Communications, 2012, 48, 6244.	2.2	13
100	Hexagonal and cubic Ni nanocrystals grown on graphene: phase-controlled synthesis, characterization and their enhanced microwave absorption properties. Journal of Materials Chemistry, 2012, 22, 15190.	6.7	249
101	Columnar assembly and successive heating of colloidal 2D nanomaterials on graphene as an efficient strategy for new anode materials in lithium ion batteries: the case of In2S3 nanoplates. Journal of Materials Chemistry, 2012, 22, 11107.	6.7	30
102	Fabrication of superior-performance SnO2@C composites for lithium-ion anodes using tubular mesoporous carbon with thin carbon walls and high pore volume. Journal of Materials Chemistry, 2012, 22, 9645.	6.7	186
103	A nanosized Fe2O3 decorated single-walled carbon nanotube membrane as a high-performance flexible anode for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 17942.	6.7	153
104	Three-dimensional porous nano-Ni/Fe3O4 composite film: enhanced electrochemical performance for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 18639.	6.7	56
105	Self-assembly of a ZnFe2O4/graphene hybrid and its application as a high-performance anode material for Li-ion batteries. New Journal of Chemistry, 2012, 36, 2236.	1.4	62
106	SnO2–carbon–RGO heterogeneous electrode materials with enhanced anode performances in lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 2851.	6.7	65
107	Interconnected porous MnO nanoflakes for high-performance lithium ion battery anodes. Journal of Materials Chemistry, 2012, 22, 9189.	6.7	169
108	Magnetite modified graphene nanosheets with improved rate performance and cyclic stability for Li ion battery anodes. RSC Advances, 2012, 2, 4397.	1.7	18
109	Improving the Li-Electrochemical Properties of Monodisperse Ni ₂ P Nanoparticles by Self-Generated Carbon Coating. Chemistry of Materials, 2012, 24, 688-697.	3.2	86
110	Facile synthesis of single-crystalline mesoporous α-Fe2O3 and Fe3O4 nanorods as anode materials for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 20566.	6.7	148

#	Article	IF	CITATIONS
111	Hydrothermal synthesis and characterization of graphene/self-assembled SnO2 hybrid. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 1931-1935.	1.3	16
112	Graphene-based materials for catalysis. Catalysis Science and Technology, 2012, 2, 54-75.	2.1	882
113	Photothermally Reduced Graphene as High-Power Anodes for Lithium-Ion Batteries. ACS Nano, 2012, 6, 7867-7878.	7.3	320
114	Copper Ferrite-Graphene Hybrid: A Multifunctional Heteroarchitecture for Photocatalysis and Energy Storage. Industrial & Engineering Chemistry Research, 2012, 51, 11700-11709.	1.8	198
115	Electrospun TiO ₂ –Graphene Composite Nanofibers as a Highly Durable Insertion Anode for Lithium Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 14780-14788.	1.5	181
116	Two-Dimensional Carbon-Coated Graphene/Metal Oxide Hybrids for Enhanced Lithium Storage. ACS Nano, 2012, 6, 8349-8356.	7.3	402
117	Green synthesis of Fe3O4 nanoparticles embedded in a porous carbon matrix and its use as anode material in Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 21373.	6.7	74
118	A facile route to the synthesis copper oxide/reduced graphene oxide nanocomposites and electrochemical detection of catechol organic pollutant. CrystEngComm, 2012, 14, 6710.	1.3	187
119	Benzoxazole and benzimidazole heterocycle-grafted graphene for high-performance supercapacitor electrodes. Journal of Materials Chemistry, 2012, 22, 23439.	6.7	126
120	Hybridization of graphene sheets and carbon-coated Fe3O4 nanoparticles as a synergistic adsorbent of organic dyes. Journal of Materials Chemistry, 2012, 22, 25108.	6.7	214
121	Flower-like SnO2/graphene composite for high-capacity lithium storage. Applied Surface Science, 2012, 258, 4917-4921.	3.1	100
122	Graphene/Si multilayer structure anodes for advanced half and full lithium-ion cells. Nano Energy, 2012, 1, 164-171.	8.2	151
123	Graphene/metal oxide composite electrode materials for energy storage. Nano Energy, 2012, 1, 107-131.	8.2	1,669
124	Nanostructured carbon for energy storage and conversion. Nano Energy, 2012, 1, 195-220.	8.2	895
125	An Fe3O4–FeO–Fe@C composite and its application as anode for lithium-ion battery. Journal of Alloys and Compounds, 2012, 513, 460-465.	2.8	40
126	A magnetite nanocrystal/graphene composite as high performance anode for lithium-ion batteries. Journal of Alloys and Compounds, 2012, 514, 76-80.	2.8	59
127	Enhanced nanoscale conduction capability of a MoO2/Graphene composite for high performance anodes in lithium ion batteries. Journal of Power Sources, 2012, 216, 169-178.	4.0	107
128	MnO/reduced graphene oxide sheet hybrid as an anode for Li-ion batteries with enhanced lithium storage performance. Journal of Power Sources, 2012, 216, 201-207.	4.0	193

#	Article	IF	CITATIONS
129	Graphene anchored with Fe3O4 nanoparticles as anode for enhanced Li-ion storage. Journal of Power Sources, 2012, 217, 85-91.	4.0	104
130	Porous Iron Oxide Ribbons Grown on Graphene for High-Performance Lithium Storage. Scientific Reports, 2012, 2, 427.	1.6	119
131	Nanoconfined phosphorus in mesoporous carbon as an electrode for Li-ion batteries: performance and mechanism. Journal of Materials Chemistry, 2012, 22, 22713.	6.7	98
132	Composites of chemically-reduced graphene oxide sheets and carbon nanospheres with three-dimensional network structure as anode materials for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 23194.	6.7	41
133	Grapheneâ€Based Electrodes. Advanced Materials, 2012, 24, 5979-6004.	11.1	829
134	Oxygen Bridges between NiO Nanosheets and Graphene for Improvement of Lithium Storage. ACS Nano, 2012, 6, 3214-3223.	7.3	977
135	Review on the latest design of graphene-based inorganic materials. Nanoscale, 2012, 4, 6205.	2.8	90
136	Ultrathin CoO/Graphene Hybrid Nanosheets: A Highly Stable Anode Material for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 20794-20799.	1.5	154
137	Facile Ultrasonic Synthesis of CoO Quantum Dot/Graphene Nanosheet Composites with High Lithium Storage Capacity. ACS Nano, 2012, 6, 1074-1081.	7.3	475
138	Controllable synthesis of monodisperse ultrathin SnO2 nanorods on nitrogen-doped graphene and its ultrahigh lithium storage properties. Nanoscale, 2012, 4, 5425.	2.8	85
139	Synthesis of hexagonal-symmetry $\hat{l}\pm$ -iron oxyhydroxide crystals using reduced graphene oxide as a surfactant and their Li storage properties. CrystEngComm, 2012, 14, 147-153.	1.3	49
140	Ultrasonic synthesis of CoO/graphene nanohybrids as high performance anode materials for lithium-ion batteries. Transactions of Nonferrous Metals Society of China, 2012, 22, 2517-2522.	1.7	24
141	Fe3O4/reduced graphene oxide nanocomposite as high performance anode for lithium ion batteries. Applied Surface Science, 2012, 261, 298-305.	3.1	55
142	Green synthesis of graphene/Ag nanocomposites. Applied Surface Science, 2012, 261, 753-758.	3.1	129
143	Synthesis and electrochemical performance of CoO/graphene nanocomposite as anode for lithium ion batteries. Applied Surface Science, 2012, 263, 573-578.	3.1	44
144	Fe3O4 nanoparticles embedded in carbon-framework as anode material for high performance lithium-ion batteries. Electrochimica Acta, 2012, 83, 53-58.	2.6	30
145	CoFe2O4-graphene nanocomposite as a high-capacity anode material for lithium-ion batteries. Electrochimica Acta, 2012, 83, 166-174.	2.6	194
146	Green and controllable strategy to fabricate well-dispersed graphene–gold nanocomposite film as sensing materials for the detection of hydroquinone and resorcinol with electrodeposition. Electrochimica Acta, 2012, 85, 42-48.	2.6	23

#	Article	IF	CITATIONS
147	Na0.33V2O5·1.5H2O nanorings/nanorods and Na0.33V2O5·1.5H2O/RGO composite fabricated by a facile one pot synthesis and its lithium storage behavior. Solid State Ionics, 2012, 227, 30-38.	1.3	30
148	Nitrogen-doped carbon-encapsulation of Fe3O4 for increased reversibility in Li+ storage by the conversion reaction. Journal of Materials Chemistry, 2012, 22, 7845.	6.7	139
149	Control on the formation of Fe ₃ O ₄ nanoparticles on chemically reduced graphene oxide surfaces. CrystEngComm, 2012, 14, 499-504.	1.3	71
150	Highly efficient dye adsorption and removal: a functional hybrid of reduced graphene oxide–Fe3O4 nanoparticles as an easily regenerative adsorbent. Journal of Materials Chemistry, 2012, 22, 3527.	6.7	369
151	Origin of Reduced Graphene Oxide Enhancements in Electrochemical Energy Storage. ACS Catalysis, 2012, 2, 807-816.	5.5	49
152	Synthesis of porous hollow Fe3O4 beads and their applications in lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 5006.	6.7	224
153	Quaternary Nanocomposites Consisting of Graphene, Fe ₃ O ₄ @Fe Core@Shell, and ZnO Nanoparticles: Synthesis and Excellent Electromagnetic Absorption Properties. ACS Applied Materials & Interfaces, 2012, 4, 6436-6442.	4.0	329
154	Facile synthesis of laminate-structured graphene sheet–Fe3O4 nanocomposites with superior high reversible specific capacity and cyclic stability for lithium-ion batteries. RSC Advances, 2012, 2, 10680.	1.7	50
155	Reduced Graphene Oxide Decorated with Fe ₃ O _{4 } Nanoparticles as High Performance Anode for Lithium Ion Batteries. Key Engineering Materials, 0, 519, 108-112.	0.4	5
156	Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials. Chemical Society Reviews, 2012, 41, 97-114.	18.7	487
157	Fe ₃ O ₄ /Fe/Carbon Composite and Its Application as Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 1350-1356.	4.0	110
158	Self-assembly of a CoFe2O4/graphene sandwich by a controllable and general route: towards a high-performance anode for Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 19738.	6.7	122
159	Facile preparation of ZnMn ₂ O ₄ hollow microspheres as high-capacity anodes for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 827-829.	6.7	236
160	A novel and simple approach for the synthesis of Fe3O4-graphene composite. Korean Journal of Chemical Engineering, 2012, 29, 989-993.	1.2	12
161	A novel open-tubular capillary electrochromatography using β-cyclodextrin functionalized graphene oxide-magnetic nanocomposites as tunable stationary phase. Journal of Chromatography A, 2012, 1266, 95-102.	1.8	110
162	Ni ₂ P/Graphene Sheets as Anode Materials with Enhanced Electrochemical Properties versus Lithium. Journal of Physical Chemistry C, 2012, 116, 22217-22225.	1.5	132
163	A facile approach toward transition metal oxide hierarchical structures and their lithium storage properties. Nanoscale, 2012, 4, 3718.	2.8	58
164	Facile and economical synthesis of hierarchical carbon-coated magnetite nanocomposite particles and their applications in lithium ion battery anodes. Energy and Environmental Science, 2012, 5, 9528.	15.6	111

#	Article	IF	CITATIONS
165	Nanocomposites of hematite (α-Fe2O3) nanospindles with crumpled reduced graphene oxide nanosheets as high-performance anode material for lithium-ion batteries. RSC Advances, 2012, 2, 10977.	1.7	75
166	Synthesis of Fe3O4 and Pt nanoparticles on reduced graphene oxide and their use as a recyclable catalyst. Nanoscale, 2012, 4, 2478.	2.8	131
167	Comprehensive design of carbon-encapsulated Fe ₃ O ₄ nanocrystals and their lithium storage properties. Nanotechnology, 2012, 23, 505401.	1.3	80
168	Synthesis of Nitrogen-Doped MnO/Graphene Nanosheets Hybrid Material for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 658-664.	4.0	331
169	An immunosensor for ultrasensitive detection of aflatoxin B1 with an enhanced electrochemical performance based on graphene/conducting polymer/gold nanoparticles/the ionic liquid composite film on modified gold electrode with electrodeposition. Sensors and Actuators B: Chemical, 2012, 174, 359-365.	4.0	104
170	Facile and rapid synthesis of RGO–In2S3 composites with enhanced cyclability and high capacity for lithium storage. Nanoscale, 2012, 4, 7354.	2.8	53
171	Synthesis and Superior Anode Performances of TiO2–Carbon–rGO Composites in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 4776-4780.	4.0	64
172	Chemical Approaches toward Grapheneâ€Based Nanomaterials and their Applications in Energyâ€Related Areas. Small, 2012, 8, 630-646.	5.2	368
173	Graphene Sheets Stabilized on Genetically Engineered M13 Viral Templates as Conducting Frameworks for Hybrid Energy‣torage Materials. Small, 2012, 8, 1006-1011.	5.2	57
174	A graphene-based nanostructure with expanded ion transport channels for high rate Li-ion batteries. Chemical Communications, 2012, 48, 5904.	2.2	68
175	Graphene-based composites. Chemical Society Reviews, 2012, 41, 666-686.	18.7	3,513
176	Graphene–inorganic nanocomposites. RSC Advances, 2012, 2, 64-98.	1.7	547
177	Growth of Copper Nanocubes on Graphene Paper as Free-Standing Electrodes for Direct Hydrazine Fuel Cells. Journal of Physical Chemistry C, 2012, 116, 7719-7725.	1.5	114
178	Hollow Iron Oxide Nanoparticles for Application in Lithium Ion Batteries. Nano Letters, 2012, 12, 2429-2435.	4.5	369
179	One-step synthesis of hollow porous Fe3O4 beads–reduced graphene oxide composites with superior battery performance. Journal of Materials Chemistry, 2012, 22, 17656.	6.7	104
180	Small quantities of cobalt deposited on tin oxide as anode material to improve performance of lithium-ion batteries. Nanoscale, 2012, 4, 5731.	2.8	14
181	Pulse Microwave Deposition of Cobalt Oxide Nanoparticles on Graphene Nanosheets as Anode Materials for Lithium Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 15251-15258.	1.5	62
182	α-Fe2O3 nanoparticles anchored on graphene with 3D quasi-laminated architecture: in situ wet chemistry synthesis and enhanced electrochemical performance for lithium ion batteries. New Journal of Chemistry, 2012, 36, 1589.	1.4	87

#	Article	IF	CITATIONS
183	Hierarchical Three-Dimensional ZnCo ₂ O ₄ Nanowire Arrays/Carbon Cloth Anodes for a Novel Class of High-Performance Flexible Lithium-Ion Batteries. Nano Letters, 2012, 12, 3005-3011.	4.5	967
184	A LiF Nanoparticleâ€Modified Graphene Electrode for Highâ€Power and Highâ€Energy Lithium Ion Batteries. Advanced Functional Materials, 2012, 22, 3290-3297.	7.8	70
185	The electrocapacitive properties of graphene oxide reduced by urea. Energy and Environmental Science, 2012, 5, 6391-6399.	15.6	460
186	Electrochemical Lithiation of Graphene-Supported Silicon and Germanium for Rechargeable Batteries. Journal of Physical Chemistry C, 2012, 116, 11917-11923.	1.5	87
187	Graphene electrochemistry: fundamental concepts through to prominent applications. Chemical Society Reviews, 2012, 41, 6944.	18.7	540
188	Formation of ZnMn ₂ O ₄ Ballâ€inâ€Ball Hollow Microspheres as a Highâ€Performance Anode for Lithiumâ€ion Batteries. Advanced Materials, 2012, 24, 4609-4613.	11.1	603
190	Nanoparticulate Iron Oxide Tubes from Microporous Organic Nanotubes as Stable Anode Materials for Lithium Ion Batteries. Angewandte Chemie - International Edition, 2012, 51, 6626-6630.	7.2	179
191	Selectively Deposited Noble Metal Nanoparticles on Fe ₃ O ₄ /Graphene Composites: Stable, Recyclable, and Magnetically Separable Catalysts. Chemistry - A European Journal, 2012, 18, 7601-7607.	1.7	126
192	Oneâ€Step Solvothermal Synthesis of Singleâ€Crystalline TiOF ₂ Nanotubes with High Lithiumâ€Ion Battery Performance. Chemistry - A European Journal, 2012, 18, 4026-4030.	1.7	31
193	Fabrication Based on the Kirkendall Effect of Co ₃ O ₄ Porous Nanocages with Extraordinarily High Capacity for Lithium Storage. Chemistry - A European Journal, 2012, 18, 8971-8977.	1.7	225
194	A Yolk–Shell Fe ₃ O ₄ @C Composite as an Anode Material for Highâ€Rate Lithium Batteries. ChemPlusChem, 2012, 77, 748-751.	1.3	61
195	Fe ₃ O ₄ Anchored onto Helical Carbon Nanofibers as Highâ€Performance Anode in Lithiumâ€Ion Batteries. ChemSusChem, 2012, 5, 1397-1400.	3.6	39
196	Controlled Synthesis of ZnS Quantum Dots and ZnS Quantum Flakes with Graphene as a Template. Langmuir, 2012, 28, 9729-9734.	1.6	28
197	Flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor. Journal of Materials Chemistry, 2012, 22, 17245.	6.7	350
198	Nanoscale interface control for high-performance Li-ion batteries. Electronic Materials Letters, 2012, 8, 91-105.	1.0	45
199	A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Research, 2012, 5, 199-212.	5.8	562
200	Graphene anchored with mesoporous NiO nanoplates as anode material for lithium-ion batteries. Journal of Solid State Electrochemistry, 2012, 16, 1889-1892.	1.2	54
201	Nanocrystalline tin compounds/graphene nanocomposite electrodes as anode for lithium-ion battery. Journal of Solid State Electrochemistry, 2012, 16, 1767-1774.	1.2	30

#	Article	IF	CITATIONS
202	Platinum supported on reduced graphene oxide as a catalyst for hydrogenation of nitroarenes. Carbon, 2012, 50, 586-596.	5.4	335
203	Preparation and characterization of graphite nanosheets decorated with Fe3O4 nanoparticles used in the immobilization of glucoamylase. Carbon, 2012, 50, 2976-2986.	5.4	80
204	Structural, magnetic, and textural properties of iron oxide-reduced graphene oxide hybrids and their use for the electrochemical detection of chromium. Carbon, 2012, 50, 4209-4219.	5.4	151
205	SnO2 nanorods grown on graphite as a high-capacity anode material for lithium ion batteries. Ceramics International, 2012, 38, 5145-5149.	2.3	30
206	Influences of the thickness of self-assembled graphene multilayer films on the supercapacitive performance. Electrochimica Acta, 2012, 60, 41-49.	2.6	23
207	Reduced graphene oxide and nanosheet-based nickel oxide microsphere composite as an anode material for lithium ion battery. Electrochimica Acta, 2012, 64, 23-28.	2.6	80
208	Nanocrystal manganese oxide (Mn3O4, MnO) anchored on graphite nanosheet with improved electrochemical Li-storage properties. Electrochimica Acta, 2012, 66, 271-278.	2.6	125
209	Electrochemical and safety characteristics of TiP2O7–graphene nanocomposite anode for rechargeable lithium-ion batteries. Electrochimica Acta, 2012, 75, 247-253.	2.6	41
210	Synergies of the crystallinity and conductive agents on the electrochemical properties of the hollow Fe3O4 spheres. Electrochimica Acta, 2012, 76, 495-503.	2.6	35
211	Flocculant-assisted synthesis of Fe2O3/carbon composites for superior lithium rechargeable batteries. Materials Research Bulletin, 2012, 47, 152-155.	2.7	11
212	Hollow Fe3O4/C spheres as superior lithium storage materials. Journal of Power Sources, 2012, 197, 305-309.	4.0	111
213	NiO–graphene hybrid as an anode material for lithium ion batteries. Journal of Power Sources, 2012, 204, 155-161.	4.0	189
214	High gravimetric capacity and long cycle life in Mn3O4/graphene platelet/LiCMC composite lithium-ion battery anodes. Journal of Power Sources, 2012, 213, 249-254.	4.0	77
215	Synthesis and characterization of a nanocomposite of goethite nanorods and reduced graphene oxide for electrochemical capacitors. Journal of Solid State Chemistry, 2012, 185, 191-197.	1.4	123
216	Pickering emulsion fabrication and enhanced supercapacity of graphene oxide-covered polyaniline nanoparticles. Materials Letters, 2012, 81, 48-51.	1.3	52
217	MnO nanoparticles anchored on graphene nanosheets via in situ carbothermal reduction as high-performance anode materials for lithium-ion batteries. Materials Letters, 2012, 84, 9-12.	1.3	46
218	Graphene-based surface modification on layered Li-rich cathode for high-performance Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 9954.	5.2	163
219	Graphene/Acid Coassisted Synthesis of Ultrathin MoS ₂ Nanosheets with Outstanding Rate Capability for a Lithium Battery Anode. Inorganic Chemistry, 2013, 52, 9807-9812.	1.9	106

#	Article	IF	CITATIONS
220	Self-assembly to monolayer graphene film with high electrical conductivity. Journal of Energy Chemistry, 2013, 22, 52-57.	7.1	18
221	Reconstruction of Conformal Nanoscale MnO on Graphene as a Highâ€Capacity and Longâ€Life Anode Material for Lithium Ion Batteries. Advanced Functional Materials, 2013, 23, 2436-2444.	7.8	770
222	Synthesis and characterization of Li4Ti5O12/graphene composite as anode material with enhanced electrochemical performance. Ionics, 2013, 19, 717-723.	1.2	20
223	High rate capability and long cycle stability Fe3O4–graphene nanocomposite as anode material for lithium ion batteries. Journal of Alloys and Compounds, 2013, 551, 53-60.	2.8	76
224	MFe ₂ O ₄ and MFe@Oxide Core–Shell Nanoparticles Anchored on Nâ€Doped Graphene Sheets for Synergistically Enhancing Lithium Storage Performance and Electrocatalytic Activity for Oxygen Reduction Reactions. Particle and Particle Systems Characterization, 2013, 30, 893-904.	1.2	25
225	In situ synthesis of CoS2/RGO nanocomposites with enhanced electrode performance for lithium-ion batteries. Journal of Alloys and Compounds, 2013, 579, 372-376.	2.8	81
226	Hybrids of iron oxide/ordered mesoporous carbon as anode materials for high-capacity and high-rate capability lithium-ion batteries. RSC Advances, 2013, 3, 17097.	1.7	15
227	Designed constitution of NiO/Ni nanostructured electrode for high performance lithium ion battery. Electrochimica Acta, 2013, 91, 267-274.	2.6	129
228	Synthesis and supercapacitor performance studies of N-doped graphene materials using o-phenylenediamine as the double-N precursor. Carbon, 2013, 63, 508-516.	5.4	179
229	In situ nitrogenated graphene–few-layer WS2 composites for fast and reversible Li+ storage. Nanoscale, 2013, 5, 7890.	2.8	182
230	Investigation of Modified Graphene for Energy Storage Applications. ACS Applied Materials & Interfaces, 2013, 5, 7881-7885.	4.0	35
231	Hierarchical nanostructured core–shell Sn@C nanoparticles embedded in graphene nanosheets: spectroscopic view and their application in lithium ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 3535.	1.3	113
232	Scalable synthesis of Fe3O4 nanoparticles anchored on graphene as a high-performance anode for lithium ion batteries. Journal of Solid State Chemistry, 2013, 201, 330-337.	1.4	43
233	Graphene-Patched CNT/MnO ₂ Nanocomposite Papers for the Electrode of High-Performance Flexible Asymmetric Supercapacitors. ACS Applied Materials & Interfaces, 2013, 5, 3408-3416.	4.0	326
234	Synthesis of N-doped carbon coated metal oxide nanoparticles for enhanced Li-ion storage ability. RSC Advances, 2013, 3, 15613.	1.7	22
235	Enhanced rate performance and cycling stability of a CoCO3–polypyrrole composite for lithium ion battery anodes. Journal of Materials Chemistry A, 2013, 1, 11200.	5.2	91
236	Zn3V2O7(OH)2·2H2O and Zn3(VO4)2 3D microspheres as anode materials for lithium-ion batteries. Journal of Materials Science, 2013, 48, 3679-3685.	1.7	36
237	CO2–expanded ethanol chemical synthesis of a Fe3O4@graphene composite and its good electrochemical properties as anode material for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 3954.	5.2	58

#	Article	IF	CITATIONS
238	Rapid synthesis of free-standing MoO3/Graphene films by the microwave hydrothermal method as cathode for bendable lithium batteries. Journal of Power Sources, 2013, 228, 198-205.	4.0	116
239	Multifunctional Fe3O4/graphene oxide nanocomposites for magnetic resonance imaging and drug delivery. Materials Chemistry and Physics, 2013, 141, 997-1004.	2.0	125
240	Preparation of SnO2–graphene from SnS–graphene oxide for enhanced reversible lithium ion storage. Ionics, 2013, 19, 1223-1228.	1.2	5
241	Microwave absorption response of nickel/graphene nanocomposites prepared by electrodeposition. Journal of Materials Science, 2013, 48, 8060-8067.	1.7	39
242	Yolk–Shell, Hollow, and Singleâ€Crystalline ZnCo ₂ O ₄ Powders: Preparation Using a Simple Oneâ€Pot Process and Application in Lithiumâ€Ion Batteries. ChemSusChem, 2013, 6, 2111-2116.	3.6	133
243	One-pot synthesis of graphene/In2S3 nanoparticle composites for stable rechargeable lithium ion battery. CrystEngComm, 2013, 15, 6578.	1.3	28
244	Using graphene nanosheets as a conductive additive to enhance the rate performance of spinel LiMn2O4 cathode material. Physical Chemistry Chemical Physics, 2013, 15, 6406.	1.3	33
245	Mesoporous graphene paper immobilised sulfur as a flexible electrode for lithium–sulfur batteries. Journal of Materials Chemistry A, 2013, 1, 13484.	5.2	103
246	Facile synthesis of porous Mn2O3 hierarchical microspheres for lithium battery anode with improved lithium storage properties. Journal of Alloys and Compounds, 2013, 576, 86-92.	2.8	61
247	Graphene/Fe ₂ O ₃ /SnO ₂ Ternary Nanocomposites as a High-Performance Anode for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 8607-8614.	4.0	129
248	Facile synthesis of a Co ₃ O ₄ –carbon nanotube composite and its superior performance as an anode material for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 1141-1147.	5.2	169
249	High-performance supercapacitor and lithium-ion battery based on 3D hierarchical NH4F-induced nickel cobaltate nanosheet–nanowire cluster arrays as self-supported electrodes. Nanoscale, 2013, 5, 9812.	2.8	242
250	Trace Amounts of Water-Induced Distinct Growth Behaviors of NiO Nanostructures on Graphene in CO2-Expanded Ethanol and Their Applications in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 7065-7071.	4.0	29
251	One-pot solvothermal synthesis of graphene-supported TiO2 (B) nanosheets with enhanced lithium storage properties. Journal of Colloid and Interface Science, 2013, 409, 38-42.	5.0	28
252	Carbon-Coated Fe–Mn–O Composites as Promising Anode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 9470-9477.	4.0	48
253	Graphene for energy solutions and its industrialization. Nanoscale, 2013, 5, 10108.	2.8	86
254	Synthesis of a novel carbon network-supported Fe3O4@C composite and its applications in high-power lithium-ion batteries. Electrochimica Acta, 2013, 111, 809-813.	2.6	13
255	Controlled synthesis of α-FeOOH nanorods and their transformation to mesoporous α-Fe2O3, Fe3O4@C nanorods as anodes for lithium ion batteries. RSC Advances, 2013, 3, 15316.	1.7	66

ARTICLE IF CITATIONS # PEG-200-assisted hydrothermal method for the controlled-synthesis of highly dispersed hollow 256 2.8 32 Fe3O4 nanoparticlés. Journal of Alloys and Compounds, 2013, 574, 340-344. Graphene anchored with ZnFe2O4 nanoparticles as a high-capacity anode material for lithium-ion 1.5 batteries. Solid State Sciences, 2013, 17, 67-71. Preparation of carbon-coated MgFe2O4 with excellent cycling and rate performance. Electrochimica 258 2.6 73 Acta, 2013, 90, 119-127. Enhanced electrochemical performance of graphene modified LiFePO4 cathode material for lithium ion batteries. Solid State Ionics, 2013, 253, 94-100. A novel electrochemical activation effect induced morphology variation from massif-like CuxO to forest-like Cu2O nanostructure and the excellent electrochemical performance as anode for Li-ion 260 2.6 78 battery. Electrochimica Acta, 2013, 96, 253-260. Nanocomposite of manganese ferrocyanide and graphene: A promising cathode material for rechargeable lithium ion batteries. Electrochemistry Communications, 2013, 34, 246-249. 2.3 Influence of the carbonaceous conductive network on the electrochemical performance of ZnFe2O4 262 4.0 88 nanoparticles. Journal of Power Sources, 2013, 236, 87-94. A facile synthesis of Fe3O4/C composite with high cycle stability as anode material for lithium-ion 139 batteries. Journal of Power Sources, 2013, 239, 466-474. Highly Reversible Lithium Storage in Hierarchical Ca₂Ge₇O₁₆ 264 1.7 50 Nanowire Arrays/Carbon Textile Anodes. Chemistry - A European Journal, 2013, 19, 8650-8656. One-pot synthesis of uniform Fe3O4 nanocrystals encapsulated in interconnected carbon 5.4 nanospheres for superior lithium storage capability. Carbon, 2013, 57, 130-138. Composites of V2O3–ordered mesoporous carbon as anode materials for lithium-ion batteries. 266 5.489 Carbon, 2013, 62, 382-388. Single-crystalline metal germanate nanowire–carbon textiles as binder-free, self-supported anodes 2.8 for high-performance lithium storage. Nanoscale, 2013, 5, 10291. Reduced graphene oxide/CoFe2O4–Co nanocomposite as high performance anode for lithium ion 268 2.8 33 batteries. Journal of Alloys and Compounds, 2013, 566, 131-136. Fabrication of Free-Standing ZnMn₂O₄ Mesoscale Tubular Arrays for Lithium-Ion Anodes with Highly Reversible Lithium Storage Properties. ACS Applied Materials & amp; Interfaces, 2013, 5, 11321-11328. 167 Formation of Iron Oxyfluoride Phase on the Surface of Nano-Fe3O4 Conversion Compound for 270 2.1 28 Electrochemical Energy Storage. Journal of Physical Chemistry Letters, 2013, 4, 3798-3805. Synthesis of 3D nitrogen-doped graphene/Fe3O4 by a metal ion induced self-assembly process for 271 5.2 108 high-performance Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 14658. Preparation via an electrochemical method of graphene films coated on both sides with NiO 272 1.317 nanoparticles for use as high-performance lithium ion anodes. Nanotechnology, 2013, 24, 475402. Performance Improvement of Nano-Sized Zinc Oxide Electrode by Embedding in Carbon Matrix for 273 1.3 Lithium-Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A11-A14.

	CITATION	Report	
#	Article	IF	CITATIONS
274	Effect of Graphene on Sulfur/Polyacrylonitrile Nanocomposite Cathode in High Performance Lithium/Sulfur Batteries. Journal of the Electrochemical Society, 2013, 160, A1194-A1198.	1.3	66
275	One-pot rapid synthesis of core–shell structured NiO@TiO2 nanopowders and their excellent electrochemical properties as anode materials for lithium ion batteries. Nanoscale, 2013, 5, 12645.	2.8	41
276	Morphologically Robust NiFe ₂ O ₄ Nanofibers as High Capacity Li-Ion Battery Anode Material. ACS Applied Materials & Interfaces, 2013, 5, 9957-9963.	4.0	278
277	High performance Li4Ti5O12 material as anode for lithium-ion batteries. Electrochimica Acta, 2013, 113, 679-685.	2.6	37
278	Three-Dimensional Graphene Foam Supported Fe ₃ O ₄ Lithium Battery Anodes with Long Cycle Life and High Rate Capability. Nano Letters, 2013, 13, 6136-6143.	4.5	738
279	Core-leaf onion-like carbon/MnO2 hybrid nano-urchins for rechargeable lithium-ion batteries. Carbon, 2013, 64, 230-236.	5.4	91
280	Enhancing electrochemical performance of LiFePO4 by in situ reducing flexible graphene. Russian Journal of Electrochemistry, 2013, 49, 955-959.	0.3	5
281	Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications. Energy and Environmental Science, 2013, 6, 3483.	15.6	480
282	A novel magnetic recyclable photocatalyst based on a core–shell metal–organic framework Fe3O4@MIL-100(Fe) for the decolorization of methylene blue dye. Journal of Materials Chemistry A, 2013, 1, 14329.	5.2	375
283	Fe3O4–pyrolytic graphite oxide composite as an anode material for lithium secondary batteries. Electrochimica Acta, 2013, 90, 426-432.	2.6	65
284	Bifunctional Graphene/ <i>γ</i> â€Fe ₂ O ₃ Hybrid Aerogels with Double Nanocrystalline Networks for Enzyme Immobilization. Small, 2013, 9, 2331-2340.	5.2	121
285	Synthesis of ZnO@Graphene composites as anode materials for lithium ion batteries. Electrochimica Acta, 2013, 111, 359-365.	2.6	104
286	Role of transition metal nanoparticles in the extra lithium storage capacity of transition metal oxides: a case study of hierarchical core–shell Fe3O4@C and Fe@C microspheres. Journal of Materials Chemistry A, 2013, 1, 15158.	5.2	230
287	Co-precipitation synthesis and electrochemical properties of graphene supported LiMn _{1/3} Ni _{1/3} Co _{1/3} O ₂ cathode materials for lithium-ion batteries. Nanotechnology, 2013, 24, 375401.	1.3	12
288	Mesoporous iron oxide directly anchored on a graphene matrix for lithium-ion battery anodes with enhanced strain accommodation. RSC Advances, 2013, 3, 699-703.	1.7	76
289	High density Co3O4 nanoparticles confined in a porous graphene nanomesh network driven by an electrochemical process: ultra-high capacity and rate performance for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 14023.	5.2	63
290	Order-aligned Mn3O4 nanostructures as super high-rate electrodes for rechargeable lithium-ion batteries. Journal of Power Sources, 2013, 222, 32-37.	4.0	75
291	Chemical vapor deposition derived flexible graphene paper and its application as high performance anodes for lithium rechargeable batteries. Journal of Materials Chemistry A, 2013, <u>1</u> , 408-414.	5.2	78

#	Article	IF	CITATIONS
292	Intercalation of Sodium Ions into Hollow Iron Oxide Nanoparticles. Chemistry of Materials, 2013, 25, 245-252.	3.2	104
293	Flexible free-standing hollow Fe ₃ O ₄ /graphene hybrid films for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 1794-1800.	5.2	182
294	Graphene–Fe3O4 nanohybrids: Synthesis and excellent electromagnetic absorption properties. Journal of Applied Physics, 2013, 113, .	1.1	203
295	Facile Spray Drying Route for the Three-Dimensional Graphene-Encapsulated Fe2O3 Nanoparticles for Lithium Ion Battery Anodes. Industrial & Engineering Chemistry Research, 2013, 52, 1197-1204.	1.8	116
296	TiO ₂ nanotube arrays grafted with Fe ₂ O ₃ hollow nanorods as integrated electrodes for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 122-127.	5.2	130
297	Dopamine as the coating agent and carbon precursor for the fabrication of N-doped carbon coated Fe3O4 composites as superior lithium ion anodes. Nanoscale, 2013, 5, 1168.	2.8	334
298	A simple <scp>l</scp> -cysteine-assisted method for the growth of MoS ₂ nanosheets on carbon nanotubes for high-performance lithium ion batteries. Dalton Transactions, 2013, 42, 2399-2405.	1.6	131
299	Sucrose assisted hydrothermal synthesis of SnO2/graphene nanocomposites with improved lithium storage properties. Journal of Solid State Electrochemistry, 2013, 17, 201-208.	1.2	28
300	Coating graphene oxide sheets with luminescent rare-earth complexes. Journal of Materials Science, 2013, 48, 805-811.	1.7	35
301	A facile hydrothermal synthesis of graphene porous NiO nanocomposite and its application in electrochemical capacitors. Electrochimica Acta, 2013, 91, 173-178.	2.6	115
302	Facile synthesis of sulfur coated SnO2–graphene nanocomposites for enhanced lithium ion storage. Electrochimica Acta, 2013, 91, 323-329.	2.6	48
303	Nanosize SnO2 confined in the porous shells of carbon cages for kinetically efficient and long-term lithium storage. Nanoscale, 2013, 5, 1576.	2.8	70
304	Silicon-Graphene Composite Anodes for High-Energy Lithium Batteries. Energy Technology, 2013, 1, 77-84.	1.8	18
305	Axial compressive α-Fe2O3 microdisks prepared from CSS template for potential anode materials of lithium ion batteries. Nano Energy, 2013, 2, 1010-1018.	8.2	41
306	SnO2/NiO core-shell nanobelts and their high reversible lithium storage capacity arising from synergisticeffect. Materials Letters, 2013, 96, 158-161.	1.3	24
307	Li4Ti5O12/Reduced Graphene Oxide composite as a high rate capability material for lithium ion batteries. Solid State Ionics, 2013, 236, 30-36.	1.3	37
308	Improved initial discharge capacity of nanostructured Ni-Co spinel ferrite as anode material in lithium ion batteries. Solid State Ionics, 2013, 253, 247-252.	1.3	22
309	Electromagnetic Wave Absorption Properties of Reduced Graphene Oxide Modified by Maghemite Colloidal Nanoparticle Clusters. Journal of Physical Chemistry C, 2013, 117, 19701-19711.	1.5	322

#	Article	IF	CITATIONS
310	Hydrothermal preparation of Co3O4/graphene composite as anode material for lithium-ion batteries. Materials Letters, 2013, 106, 178-181.	1.3	40
311	Monodispersed hollow carbon/Fe3O4 composite microspheres for high performance anode materials in lithium-ion batteries. Journal of Power Sources, 2013, 244, 538-543.	4.0	33
312	A general polymer-assisted solution approach to grow transition metal oxide nanostructures directly on nickel foam as anodes for Li-ion batteries. Journal of Power Sources, 2013, 242, 604-609.	4.0	17
313	Tungsten doping magnetic iron oxide and their enhanced lithium ion storage properties. Materials Letters, 2013, 106, 304-307.	1.3	10
314	Synthesis and electrochemical performance of reduced graphene oxide/maghemite composite anode for lithium ion batteries. Carbon, 2013, 52, 56-64.	5.4	143
315	Oneâ€Pot Approach to a Highly Robust Iron Oxide/Reduced Graphene Oxide Nanocatalyst for Fischer–Tropsch Synthesis. ChemCatChem, 2013, 5, 714-719.	1.8	32
316	Facile one-pot preparation of α-SnWO ₄ /reduced graphene oxide (RGO) nanocomposite with improved visible light photocatalytic activity and anode performance for Li-ion batteries. RSC Advances, 2013, 3, 1235-1242.	1.7	67
317	Self-assembly of hybrid Fe2Mo3O8–reduced graphene oxide nanosheets with enhanced lithium storage properties. Journal of Materials Chemistry A, 2013, 1, 4468.	5.2	40
318	Facile approach to synthesize CuO/reduced graphene oxide nanocomposite as anode materials for lithium-ion battery. Journal of Power Sources, 2013, 244, 435-441.	4.0	116
319	A reduced graphene oxide–nanoporous magnetic oxide iron hybrid as an improved anode material for lithium ion batteries. Electrochimica Acta, 2013, 95, 24-28.	2.6	24
320	Defect effects on the physical and electrochemical properties of nanoscale LiFe0.92PO4 and LiFe0.92PO4/C/graphene composites. Nanoscale, 2013, 5, 3704.	2.8	22
321	Conformal Fe ₃ O ₄ Sheath on Aligned Carbon Nanotube Scaffolds as High-Performance Anodes for Lithium Ion Batteries. Nano Letters, 2013, 13, 818-823.	4.5	289
322	Electric Papers of Graphene-Coated Co ₃ O ₄ Fibers for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 997-1002.	4.0	145
323	In Situ Synthesis of Porous Fe ₃ O ₄ /C Microbelts and Their Enhanced Electrochemical Performance for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 1698-1703.	4.0	72
324	Electrochemical immunosensor for ultrasensitive detection of microcystin-LR based on graphene–gold nanocomposite/functional conducting polymer/gold nanoparticle/ionic liquid composite film with electrodeposition. Biosensors and Bioelectronics, 2013, 44, 235-240.	5.3	87
325	Free-standing graphene–carbon nanotube hybrid papers used as current collector and binder free anodes for lithium ion batteries. Journal of Power Sources, 2013, 237, 41-46.	4.0	118
326	Strongly coupled inorganic–nano-carbon hybrid materials for energy storage. Chemical Society Reviews, 2013, 42, 3088.	18.7	795
327	Sonochemical fabrication of Fe3O4 nanoparticles on reduced graphene oxide for biosensors. Ultrasonics Sonochemistry, 2013, 20, 872-880.	3.8	148

#	Article	IF	CITATIONS
328	A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale, 2013, 5, 2045.	2.8	445
329	Facile Preparation of Ordered Porous Graphene–Metal Oxide@C Binderâ€Free Electrodes with High Li Storage Performance. Small, 2013, 9, 3390-3397.	5.2	62
330	3D Graphene Foams Crossâ€linked with Preâ€encapsulated Fe ₃ O ₄ Nanospheres for Enhanced Lithium Storage. Advanced Materials, 2013, 25, 2909-2914.	11.1	727
331	Controllable fabrication of mono-dispersed RGO–hematite nanocomposites and their enhanced wave absorption properties. Journal of Materials Chemistry A, 2013, 1, 5996.	5.2	251
332	Carbon-Encapsulated Fe ₃ O ₄ Nanoparticles as a High-Rate Lithium Ion Battery Anode Material. ACS Nano, 2013, 7, 4459-4469.	7.3	937
333	Graphene-based electrodes for electrochemical energy storage. Energy and Environmental Science, 2013, 6, 1388.	15.6	696
334	Carbon Coated ZnFe ₂ O ₄ Nanoparticles for Advanced Lithiumâ€ion Anodes. Advanced Energy Materials, 2013, 3, 513-523.	10.2	312
335	Three-dimensional network structured α-Fe2O3 made from a stainless steel plate as a high-performance electrode for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 6400.	5.2	148
336	Thermal evaporation-induced anhydrous synthesis of Fe3O4–graphene composite with enhanced rate performance and cyclic stability for lithium ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 7174.	1.3	58
337	A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy and Environmental Science, 2013, 6, 1623.	15.6	875
338	Graphene composites as anode materials in lithium-ion batteries. Electronic Materials Letters, 2013, 9, 133-153.	1.0	71
339	Structureâ€Properties Relationship in Iron Oxideâ€Reduced Graphene Oxide Nanostructures for Liâ€ion Batteries. Advanced Functional Materials, 2013, 23, 4293-4305.	7.8	96
340	Nanowire-graphene hybrids for lithium-ion-battery. Proceedings of SPIE, 2013, , .	0.8	0
341	Surfactant-assisted synthesis of a Co3O4/reduced graphene oxide composite as a superior anode material for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 7159.	5.2	67
342	Octahedral Co3O4 particles threaded by carbon nanotube arrays as integrated structure anodes for lithium ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 5582.	1.3	49
343	Hierarchical self-assembly of microscale leaf-like CuO on graphene sheets for high-performance electrochemical capacitors. Journal of Materials Chemistry A, 2013, 1, 367-373.	5.2	177
344	MoO2–ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery. Physical Chemistry Chemical Physics, 2013, 15, 13601.	1.3	51
345	Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries. Chemical Reviews, 2013, 113, 5364-5457.	23.0	2,670

#	Article	IF	CITATIONS
346	Influence of component content on the capacitance of magnetite/reduced graphene oxide composite. Journal of Electroanalytical Chemistry, 2013, 698, 1-8.	1.9	71
347	Enhanced conductivity of reduced graphene oxide decorated with aluminium oxide nanoparticles by oxygen annealing. Nanoscale, 2013, 5, 5725.	2.8	15
348	Graphene Nanoelectrodes: Fabrication and Size-Dependent Electrochemistry. Journal of the American Chemical Society, 2013, 135, 10073-10080.	6.6	89
349	Core–shell Fe@Fe3C/C nanocomposites as anode materials for Li ion batteries. Electrochimica Acta, 2013, 87, 180-185.	2.6	124
350	Developing a light weight lithium ion battery – an effective material and electrode design for high performance conversion anodes. RSC Advances, 2013, 3, 6386.	1.7	20
351	A new green, ascorbic acid-assisted method for versatile synthesis of Au–graphene hybrids as efficient surface-enhanced Raman scattering platforms. Journal of Materials Chemistry C, 2013, 1, 4094.	2.7	111
352	Enhanced Electrochemical Performance of FeWO ₄ by Coating Nitrogen-Doped Carbon. ACS Applied Materials & Interfaces, 2013, 5, 4209-4215.	4.0	47
353	Preparation and electrochemical properties of (Fe2.5Ti0.5)1.04O4–graphene nanocomposite. Electrochimica Acta, 2013, 104, 267-273.	2.6	7
354	One-pot synthesis of NiFe2O4/C composite as an anode material for lithium-ion batteries. Journal of Power Sources, 2013, 244, 610-613.	4.0	62
355	An In Situ Ionic-Liquid-Assisted Synthetic Approach to Iron Fluoride/Graphene Hybrid Nanostructures as Superior Cathode Materials for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 5057-5063.	4.0	64
356	A simple reduction process to synthesize MoO2/C composites with cage-like structure for high-performance lithium-ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 8831.	1.3	49
357	Fabrication, characterization, and photocatalytic property of α-Fe2O3/graphene oxide composite. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	22
358	A brief review of graphene–metal oxide composites synthesis and applications in photocatalysis. Journal of the Chinese Advanced Materials Society, 2013, 1, 21-39.	0.7	135
359	Layer by layer assembly of sandwiched graphene/SnO2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties. Energy and Environmental Science, 2013, 6, 2900.	15.6	335
360	Ultra-small Fe3O4 nanoparticle decorated graphene nanosheets with superior cyclic performance and rate capability. Nanoscale, 2013, 5, 6797.	2.8	73
361	A chemical composition evolution for the shape-controlled synthesis and energy storage applicability of Fe3O4–C nanostructures. CrystEngComm, 2013, 15, 4431.	1.3	17
363	Three-dimensional graphene/LiFePO4 nanostructures as cathode materials for flexible lithium-ion batteries. Materials Research Bulletin, 2013, 48, 3713-3716.	2.7	42
364	Controlled synthesis of hierarchical graphene-wrapped TiO ₂ @Co ₃ O ₄ coaxial nanobelt arrays for high-performance lithium storage. Journal of Materials Chemistry A, 2013, 1, 273-281.	5.2	135

#	Article	IF	CITATIONS
365	One-pot synthesis of mixed-valence MoO x on carbon nanotube as an anode material for lithium ion batteries. Journal of Electroceramics, 2013, 31, 218-223.	0.8	31
366	Enhanced photocatalytic properties of titania–graphene nanocomposites: a density functional theory study. Physical Chemistry Chemical Physics, 2013, 15, 6025.	1.3	72
367	In situ synthesis of SnO2 nanosheet/graphene composite as anode materials for lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2013, 24, 3640-3645.	1.1	34
368	Fast lithium-ion insertion of TiO2 nanotube and graphene composites. Electrochimica Acta, 2013, 88, 847-857.	2.6	66
369	Synthesis of porous Fe3O4 hollow microspheres/graphene oxide composite for Cr(vi) removal. Dalton Transactions, 2013, 42, 14710.	1.6	175
370	Facile self-assembly of Au nanoparticles on a magnetic attapulgite/Fe3O4 composite for fast catalytic decoloration of dye. RSC Advances, 2013, 3, 11515.	1.7	46
371	Facile synthesis of CuO nanorod for lithium storage application. Materials Letters, 2013, 90, 4-7.	1.3	57
372	One-step solvothermal synthesis of an iron oxide–graphene magnetic hybrid material with high porosity. Microporous and Mesoporous Materials, 2013, 165, 234-239.	2.2	36
373	Hollow versus nonhollow: The electrochemical preference in a case study of the conversion reaction of Fe3O4. Electrochimica Acta, 2013, 105, 47-52.	2.6	10
374	CNT@Fe ₃ O ₄ @C Coaxial Nanocables: Oneâ€Pot, Additiveâ€Free Synthesis and Remarkable Lithium Storage Behavior. Chemistry - A European Journal, 2013, 19, 9866-9874.	1.7	107
375	Enhancing the Electromagnetic Performance of Co through the Phase-Controlled Synthesis of Hexagonal and Cubic Co Nanocrystals Grown on Graphene. ACS Applied Materials & Interfaces, 2013, 5, 12716-12724.	4.0	190
376	Graphene–molybdenum oxynitride porous material with improved cyclic stability and rate capability for rechargeable lithium ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 16898.	1.3	30
377	Synthesis of Reduced Graphene Oxide for Helianthine Removal. Advanced Materials Research, 0, 864-867, 1713-1716.	0.3	1
378	Electrostatic Self-Assembly of Fe3O4 Nanoparticles on Graphene Oxides for High Capacity Lithium-Ion Battery Anodes. Energies, 2013, 6, 4830-4840.	1.6	65
379	MnO ₂ /Graphene Nanocomposite for Use in High Performance Lithium-Ion Batteries. Advanced Materials Research, 0, 709, 157-160.	0.3	6
381	Electrochemical Properties of Yolk–Shellâ€6tructured CuO–Fe ₂ O ₃ Powders with Various Cu/Fe Molar Ratios Prepared by Oneâ€Pot Spray Pyrolysis. ChemSusChem, 2013, 6, 2299-2303.	3.6	20
382	Structure, Stoichiometry, and Electrochemical Performance of Li ₂ CoTi ₃ O ₈ as an Anode Material for Lithiumâ€lon Batteries. ChemPlusChem, 2013, 78, 1530-1535.	1.3	15
383	SYNTHESIS OF SUB-MICROMETER CARBON SUPPORTED Fe3O4 HOLLOW SPHERES WITH ENHANCED LITHIUM STORAGE PROPERTIES. Journal of Molecular and Engineering Materials, 2013, 01, 1340018.	0.9	0

#	Article	IF	CITATIONS
384	Carbon Materials and Their Energy Conversion and Storage Applications. , 2013, , 59-94.		2
386	Raman enhancement by graphene-Ga2O3 2D bilayer film. Nanoscale Research Letters, 2014, 9, 48.	3.1	13
387	Supercritical Carbon Dioxide Assisted Deposition of Fe ₃ O ₄ Nanoparticles on Hierarchical Porous Carbon and Their Lithiumâ€Storage Performance. Chemistry - A European Journal, 2014, 20, 4308-4315.	1.7	47
388	3D Hollow Sn@Carbon-Graphene Hybrid Material as Promising Anode for Lithium-Ion Batteries. Journal of Nanomaterials, 2014, 2014, 1-6.	1.5	5
389	Fe2O3 nanowires on HOPG as precursor of new carbon-based anode for high-capacity lithium ion batteries. , 2014, , .		1
390	Physical deoxygenation of graphene oxide paper surface and facile in situ synthesis of graphene based ZnO films. Applied Physics Letters, 2014, 105, 233106.	1.5	11
391	N-Doped Amorphous Carbon Coated Fe ₃ O ₄ /SnO ₂ Coaxial Nanofibers as a Binder-Free Self-Supported Electrode for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 20334-20339.	4.0	82
392	Oneâ€Pot Method for Synthesizing Sphericalâ€Like Metal Sulfide–Reduced Graphene Oxide Composite Powders with Superior Electrochemical Properties for Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2014, 20, 12183-12189.	1.7	36
393	Formation of quasi-mesocrystal ZnMn ₂ O ₄ twin microspheres via an oriented attachment for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 14236-14244.	5.2	89
394	Enhanced Cycle Stability of Magnetite/Carbon Nanoparticles for Li Ion Battery Electrodes. Journal of the American Ceramic Society, 2014, 97, 1413-1420.	1.9	10
395	Supercritical Carbon Dioxide Anchored Fe ₃ O ₄ Nanoparticles on Graphene Foam and Lithium Battery Performance. ACS Applied Materials & Interfaces, 2014, 6, 22527-22533.	4.0	86
396	Synthesis of 3D-hierarchical NiO-G composites with enhanced electrochemical performances as anode for lithium secondary batteries. , 2014, , .		1
397	Graphene Applications. , 2014, , 127-174.		3
398	A facile nitrogen-doped carbon encapsulation of CoFe2O4 nanocrystalline for enhanced performance of lithium ion battery anodes. Journal of Solid State Electrochemistry, 2014, 18, 19-27.	1.2	10
399	One-step, in situ growth of unmodified graphene – magnetic nanostructured composites. Carbon, 2014, 66, 467-475.	5.4	23
400	Sputtered nickel oxide on vertically-aligned multiwall carbon nanotube arrays for lithium-ion batteries. Carbon, 2014, 68, 619-627.	5.4	46
401	Highly porous Fe3O4–Fe nanowires grown on C/TiC nanofiber arrays as the high performance anode of lithium-ion batteries. Journal of Power Sources, 2014, 258, 260-265.	4.0	31
402	Encapsulated within graphene shell silicon nanoparticles anchored on vertically aligned graphene trees as lithium ion battery anodes. Nano Energy, 2014, 5, 105-115.	8.2	109

#	Article	IF	CITATIONS
403	Porous SnO2@C/graphene nanocomposite with 3D carbon conductive network as a superior anode material for lithium-ion batteries. Electrochimica Acta, 2014, 116, 103-110.	2.6	130
404	Sonochemical synthesis of CuS/reduced graphene oxide nanocomposites with enhanced absorption and photocatalytic performance. Materials Letters, 2014, 126, 220-223.	1.3	55
405	Three-Dimensional Reduced Graphene Oxides Hydrogel Anchored with Ultrafine CoO Nanoparticles as Anode for Lithium Ion Batteries. Electrochimica Acta, 2014, 129, 425-432.	2.6	65
406	CuO nanorods/graphene nanocomposites for high-performance lithium-ion battery anodes. Journal of Alloys and Compounds, 2014, 590, 424-427.	2.8	36
407	Hydrothermal preparation of Fe2O3/graphene nanocomposite and its enhanced catalytic activity on the thermal decomposition of ammonium perchlorate. Applied Surface Science, 2014, 303, 354-359.	3.1	125
408	Graphene–Fe3O4 micro–nano scaled hybrid spheres: Synthesis and synergistic electromagnetic effect. Materials Research Bulletin, 2014, 50, 285-291.	2.7	36
409	Fe ₃ O ₄ Nanoparticles Embedded in Uniform Mesoporous Carbon Spheres for Superior Highâ€Rate Battery Applications. Advanced Functional Materials, 2014, 24, 319-326.	7.8	165
410	Three-dimensionally porous Fe3O4 as high-performance anode materials for lithium–ion batteries. Journal of Power Sources, 2014, 246, 198-203.	4.0	74
411	MnO nanorods on graphene as an anode material for high capacity lithium ion batteries. Journal of Materials Science, 2014, 49, 1861-1867.	1.7	38
412	25th Anniversary Article: Hybrid Nanostructures Based on Twoâ€Dimensional Nanomaterials. Advanced Materials, 2014, 26, 2185-2204.	11.1	579
413	A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy and Environmental Science, 2014, 7, 1564.	15.6	996
414	Fabrication of Reduced Graphene Oxide (RGO)/Co ₃ O ₄ Nanohybrid Particles and a RGO/Co ₃ O ₄ /Poly(vinylidene fluoride) Composite with Enhanced Waveâ€Absorption Properties. ChemPlusChem, 2014, 79, 375-381.	1.3	76
415	Graphene and Grapheneâ€like Layered Transition Metal Dichalcogenides in Energy Conversion and Storage. Small, 2014, 10, 2165-2181.	5.2	535
416	Enhanced Electrochemical Performance of Maghemite/Graphene Nanosheets Composite as Electrode in Half and Full Li–Ion Cells. Electrochimica Acta, 2014, 130, 551-558.	2.6	51
417	Progress in flexible lithium batteries and future prospects. Energy and Environmental Science, 2014, 7, 1307-1338.	15.6	1,312
418	Graphene/Fe3O4 hollow sphere nanocomposites as superior anode material for lithium ion batteries. Ceramics International, 2014, 40, 10359-10365.	2.3	25
419	Hollow and Yolkâ€Shell Iron Oxide Nanostructures on Fewâ€Layer Graphene in Liâ€Ion Batteries. Chemistry - A European Journal, 2014, 20, 2022-2030.	1.7	37
420	Sandwich-like carbon-anchored ultrathin TiO ₂ nanosheets realizing ultrafast lithium storage. Inorganic Chemistry Frontiers, 2014, 1, 58-64.	3.0	39

#	Article	IF	CITATIONS
421	Oneâ€Pot Magnetic Field Induced Formation of Fe ₃ O ₄ /C Composite Microrods with Enhanced Lithium Storage Capability. Small, 2014, 10, 2815-2819.	5.2	120
422	Porous CuCo ₂ O ₄ nanocubes wrapped by reduced graphene oxide as high-performance lithium-ion battery anodes. Nanoscale, 2014, 6, 6551-6556.	2.8	130
423	Ultrasmall Fe ₃ O ₄ Nanoparticle/MoS ₂ Nanosheet Composites with Superior Performances for Lithium Ion Batteries. Small, 2014, 10, 1536-1543.	5.2	257
424	Selfâ€Assembling Synthesis of Freeâ€standing Nanoporous Graphene–Transitionâ€Metal Oxide Flexible Electrodes for Highâ€Performance Lithium″on Batteries and Supercapacitors. Chemistry - an Asian Journal, 2014, 9, 206-211.	1.7	62
425	Preparation of fluorine-doped, carbon-encapsulated hollow Fe3O4 spheres as an efficient anode material for Li-ion batteries. Nanoscale, 2014, 6, 3889.	2.8	81
426	Microwave-assisted synthesis of graphene–SnO2 nanocomposite for rechargeable lithium-ion batteries. Materials Letters, 2014, 115, 125-128.	1.3	15
427	Fe2O3 nanorods/carbon nanofibers composite: Preparation and performance as anode of high rate lithium ion battery. Journal of Power Sources, 2014, 251, 85-91.	4.0	76
428	Ironâ€Oxideâ€Based Advanced Anode Materials for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2014, 4, 1300958.	10.2	498
429	One-step synthesis Fe3N surface-modified Fe3O4 nanoparticles with excellent lithium storage ability. Applied Surface Science, 2014, 305, 683-688.	3.1	30
430	A novel 3D structured reduced graphene oxide/TiO ₂ composite: synthesis and photocatalytic performance. Journal of Materials Chemistry A, 2014, 2, 3605-3612.	5.2	59
431	In Situ Hydrothermal Synthesis of Mn3O4 Nanoparticles on Nitrogen-doped Graphene as High-Performance Anode materials for Lithium Ion Batteries. Electrochimica Acta, 2014, 120, 452-459.	2.6	145
432	A Graphene–Pureâ€Sulfur Sandwich Structure for Ultrafast, Longâ€Life Lithium–Sulfur Batteries. Advanced Materials, 2014, 26, 625-631.	11.1	908
433	Preparation of carbon-coated iron oxide nanoparticles dispersed on graphene sheets and applications as advanced anode materials for lithium-ion batteries. Nano Research, 2014, 7, 502-510.	5.8	102
434	Composite graphene/semiconductor nanostructures for energy storage. , 2014, , 213-266.		2
435	Graphene and Grapheneâ€Based Materials for Energy Storage Applications. Small, 2014, 10, 3480-3498.	5.2	653
436	Design and Fabrication of New Nanostructured SnO ₂ â€Carbon Composite Microspheres for Fast and Stable Lithium Storage Performance. Small, 2014, 10, 3240-3245.	5.2	66
437	TiO2/graphene nanocomposites as anode materials for high rate lithium-ion batteries. Journal of Central South University, 2014, 21, 1714-1718.	1.2	9
438	Unusual Formation of ZnCo ₂ O ₄ 3D Hierarchical Twin Microspheres as a Highâ€Rate and Ultralongâ€Life Lithiumâ€lon Battery Anode Material. Advanced Functional Materials, 2014, 24, 3012-3020.	7.8	382

#	Article	IF	CITATIONS
439	GeO _{<i>x</i>} /Reduced Graphene Oxide Composite as an Anode for Liâ€Ion Batteries: Enhanced Capacity via Reversible Utilization of Li ₂ O along with Improved Rate Performance. Advanced Functional Materials, 2014, 24, 1059-1066.	7.8	143
440	Templateâ€Free Fabrication of Mesoporous Hollow ZnMn ₂ O ₄ Subâ€microspheres with Enhanced Lithium Storage Capability towards Highâ€Performance Liâ€Ion Batteries. Particle and Particle Systems Characterization, 2014, 31, 657-663.	1.2	68
441	Visible light photocatalytic activity of reduced graphene oxide synergistically enhanced by successive inclusion of I³-Fe2O3, TiO2, and Ag nanoparticles. Materials Science in Semiconductor Processing, 2014, 26, 69-78.	1.9	31
442	Enhanced electroactivity with Li in Fe3O4/MWCNT nanocomposite electrodes. Journal of Alloys and Compounds, 2014, 615, S397-S400.	2.8	3
443	Monolithic Fe2O3/graphene hybrid for highly efficient lithium storage and arsenic removal. Carbon, 2014, 67, 500-507.	5.4	137
444	Self-organized amorphous titania nanotubes with deposited graphene film like a new heterostructured electrode for lithium ion batteries. Journal of Power Sources, 2014, 248, 886-893.	4.0	35
445	Synthesis of magnetic citricâ€acidâ€functionalized graphene oxide and its application in the removal of methylene blue from contaminated water. Polymer International, 2014, 63, 1881-1888.	1.6	62
446	Polymer-directed synthesis of metal oxide-containing nanomaterials for electrochemical energy storage. Nanoscale, 2014, 6, 106-121.	2.8	40
447	Efficient reduced graphene oxide grafted porous Fe3O4 composite as a high performance anode material for Li-ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 5284.	1.3	128
448	Sn@graphene grown on vertically aligned graphene for high-capacity, high-rate, and long-life lithium storage. Nano Energy, 2014, 3, 102-112.	8.2	102
449	Electrochemical characteristics of lithium vanadate, Li3VO4 as a new sort of anode material for Li-ion batteries. Journal of Power Sources, 2014, 248, 122-129.	4.0	107
450	Polyvinyl pyrrolidone-assisted synthesis of a Fe3O4/graphene composite with excellent lithium storage properties. RSC Advances, 2014, 4, 6379.	1.7	21
451	Effective wrapping of graphene on individual Li ₄ Ti ₅ O ₁₂ grains for high-rate Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 2023-2027.	5.2	76
452	Energy storage of thermally reduced graphene oxide. International Journal of Hydrogen Energy, 2014, 39, 3799-3804.	3.8	26
453	Self-assembly of hierarchical Fe ₃ O ₄ microsphere/graphene nanosheet composite: towards a promising high-performance anode for Li-ion batteries. RSC Advances, 2014, 4, 322-330.	1.7	57
454	Graphene improving lithium-ion battery performance by construction of NiCo2O4/graphene hybrid nanosheet arrays. Nano Energy, 2014, 3, 88-94.	8.2	189
455	Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Research, 2014, 7, 1-62.	5.8	292
456	One-step solvothermal preparation of Fe3O4/graphene composites at elevated temperature and their application as anode materials for lithium-ion batteries. RSC Advances, 2014, 4, 59981-59989.	1.7	38

#	Article	IF	CITATIONS
457	Facile shape design and fabrication of ZnFe ₂ O ₄ as an anode material for Li-ion batteries. RSC Advances, 2014, 4, 55173-55178.	1.7	31
458	Facile Synthesis of NiFe2O4/Reduced Graphene Oxide Hybrid with Enhanced Electrochemical Lithium Storage Performance. Journal of Materials Science and Technology, 2014, 30, 1078-1083.	5.6	22
459	Chemically Bonded Phosphorus/Graphene Hybrid as a High Performance Anode for Sodium-Ion Batteries. Nano Letters, 2014, 14, 6329-6335.	4.5	434
460	Molybdenum nitride/nitrogen-doped graphene hybrid material for lithium storage in lithium ion batteries. Electrochimica Acta, 2014, 150, 15-22.	2.6	44
461	Unique Advantages of Exfoliated 2D Nanosheets for Tailoring the Functionalities of Nanocomposites. Journal of Physical Chemistry Letters, 2014, 5, 4149-4161.	2.1	104
462	Preparation of rGO-wrapped magnetite nanocomposites and their energy storage properties. RSC Advances, 2014, 4, 64142-64150.	1.7	23
463	CoFe2O4-Graphene Nanocomposites Synthesized through An Ultrasonic Method with Enhanced Performances as Anode Materials for Li-ion Batteries. Nano-Micro Letters, 2014, 6, 307-315.	14.4	75
464	Tailoring the Void Size of Iron Oxide@Carbon Yolk–Shell Structure for Optimized Lithium Storage. Advanced Functional Materials, 2014, 24, 4337-4342.	7.8	212
465	Determination of Trace Gibberellin A3 by Magnetic Self-assembly Molecularly Imprinted Electrochemical Sensor. Chinese Journal of Analytical Chemistry, 2014, 42, 1580-1585.	0.9	13
466	CoMoO ₄ Nanoparticles Anchored on Reduced Graphene Oxide Nanocomposites as Anodes for Long-Life Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 20414-20422.	4.0	125
467	Assembly of MnO2 nanowires@reduced graphene oxide hybrid with an interconnected structure for a high performance lithium ion battery. RSC Advances, 2014, 4, 54416-54421.	1.7	17
468	Nanospace-confined formation of flattened Sn sheets in pre-seeded graphenes for lithium ion batteries. Nanoscale, 2014, 6, 9554-9558.	2.8	46
469	Reduced graphene oxide networks as an effective buffer matrix to improve the electrode performance of porous NiCo2O4 nanoplates for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 4449.	5.2	131
470	Ultrafast preparation of three-dimensional porous tin–graphene composites with superior lithium ion storage. Journal of Materials Chemistry A, 2014, 2, 12918.	5.2	53
471	NiO nanorod array anchored Ni foam as a binder-free anode for high-rate lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 20022-20029.	5.2	90
472	Controllable synthesis of RGO/Fe _x O _y nanocomposites as high-performance anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 9844-9850.	5.2	68
473	High-performance amorphous carbon–graphene nanocomposite anode for lithium-ion batteries. RSC Advances, 2014, 4, 18899.	1.7	16
474	One-step synthesis of Ni3S2 nanoparticles wrapped with in situ generated nitrogen-self-doped graphene sheets with highly improved electrochemical properties in Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 3142.	5.2	130

#	Article	IF	CITATIONS
475	CuGeO3 nanowires covered with graphene as anode materials of lithium ion batteries with enhanced reversible capacity and cyclic performance. Nanoscale, 2014, 6, 8350.	2.8	49
476	One-pot low-temperature synthesis of a MnFe ₂ O ₄ –graphene composite for lithium ion battery applications. RSC Advances, 2014, 4, 28421-28425.	1.7	36
477	Synthesis of a nanowire self-assembled hierarchical ZnCo ₂ O ₄ shell/Ni current collector core as binder-free anodes for high-performance Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 3741-3748.	5.2	91
478	Scalable synthesis of graphene-wrapped Li ₄ Ti ₅ O ₁₂ dandelion-like microspheres for lithium-ion batteries with excellent rate capability and long-cycle life. Journal of Materials Chemistry A, 2014, 2, 20221-20230.	5.2	73
479	Facile preparation of Mn ₃ O ₄ octahedra and their long-term cycle life as an anode material for Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 87-93.	5.2	123
480	Microwave-assisted hydrothermal synthesis of graphene-wrapped CuO hybrids for lithium ion batteries. RSC Advances, 2014, 4, 51362-51365.	1.7	14
481	Self-assembled growth of Sn@CNTs on vertically aligned graphene for binder-free high Li-storage and excellent stability. Journal of Materials Chemistry A, 2014, 2, 2526.	5.2	69
482	On the large capacitance of nitrogen doped graphene derived by a facile route. RSC Advances, 2014, 4, 38689-38697.	1.7	148
483	Preparation of porous and hollow Fe3O4@C spheres as an efficient anode material for a high-performance Li-ion battery. RSC Advances, 2014, 4, 6430.	1.7	46
484	Carbon Coating and Zn 2+ Doping of Magnetite Nanorods for Enhanced Electrochemical Energy Storage. Electrochimica Acta, 2014, 148, 118-126.	2.6	31
485	Formation of carbon-coated ZnFe2O4 nanowires and their highly reversible lithium storage properties. RSC Advances, 2014, 4, 27714.	1.7	50
486	In situ synthesis of flowery-shaped α-FeOOH/Fe ₂ O ₃ nanoparticles and their phase dependent supercapacitive behaviour. RSC Advances, 2014, 4, 18827-18834.	1.7	63
487	A novel graphene sheet-wrapped Co ₂ (OH) ₃ Cl composite as a long-life anode material for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 16925-16930.	5.2	39
488	One-pot synthesis of ultrafine ZnFe2O4 nanocrystals anchored on graphene for high-performance Li and Li-ion batteries. RSC Advances, 2014, 4, 7703.	1.7	41
489	Metal hydroxides as a conversion electrode for lithium-ion batteries: a case study with a Cu(OH) ₂ nanoflower array. Journal of Materials Chemistry A, 2014, 2, 18515-18522.	5.2	36
490	ZnO Anchored on Vertically Aligned Graphene: Binder-Free Anode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 20590-20596.	4.0	90
491	Dipole-directed assembly of Fe ₃ O ₄ nanoparticles into nanorings via oriented attachment. CrystEngComm, 2014, 16, 1482-1487.	1.3	18
492	Facile fabrication of mesoporous N-doped Fe ₃ O ₄ @C nanospheres as superior anodes for Li-ion batteries. RSC Advances, 2014, 4, 713-716.	1.7	15

#	Article	IF	CITATIONS
493	Hierarchical WO ₃ @SnO ₂ core–shell nanowire arrays on carbon cloth: a new class of anode for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 7367-7372.	5.2	84
494	Synthesis of SnO ₂ /Sn@carbon nanospheres dispersed in the interspaces of a three-dimensional SnO ₂ /Sn@carbon nanowires network, and their application as an anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 12881.	5.2	49
495	Low temperature plasma synthesis of mesoporous Fe3O4 nanorods grafted on reduced graphene oxide for high performance lithium storage. Nanoscale, 2014, 6, 2286.	2.8	97
496	Hollow nanospheres of loosely packed Si/SiO _x nanoparticles encapsulated in carbon shells with enhanced performance as lithium ion battery anodes. Journal of Materials Chemistry A, 2014, 2, 12289-12295.	5.2	41
497	Graphene anchored with ZrO ₂ nanoparticles as anodes of lithium ion batteries with enhanced electrochemical performance. RSC Advances, 2014, 4, 8472-8480.	1.7	28
498	A high efficiency H ₂ S gas sensor material: paper like Fe ₂ O ₃ /graphene nanosheets and structural alignment dependency of device efficiency. Journal of Materials Chemistry A, 2014, 2, 6714-6717.	5.2	87
499	Mesoporous Fe ₃ O ₄ @C submicrospheres evolved by a novel self-corrosion mechanism for high-performance lithium-ion batteries. New Journal of Chemistry, 2014, 38, 2428-2434.	1.4	31
500	In situ simultaneous reduction–doping route to synthesize hematite/N-doped graphene nanohybrids with excellent photoactivity. RSC Advances, 2014, 4, 31754-31758.	1.7	17
501	Nitrogen-doped graphene–Fe3O4 architecture as anode material for improved Li-ion storage. RSC Advances, 2014, 4, 17653.	1.7	41
502	Solvothermal synthesis of pyrite FeS ₂ nanocubes and their superior high rate lithium storage properties. RSC Advances, 2014, 4, 48770-48776.	1.7	51
503	Facile fabrication of Chinese lantern-like MnO@N–C: a high-performance anode material for lithium-ion batteries. RSC Advances, 2014, 4, 23027-23035.	1.7	31
504	Facile fabrication and electrochemical properties of high-quality reduced graphene oxide/cobalt sulfide composite as anode material for lithium-ion batteries. RSC Advances, 2014, 4, 37180-37186.	1.7	59
505	Magnetic graphene oxide nanocomposites: nanoparticles growth mechanism and property analysis. Journal of Materials Chemistry C, 2014, 2, 9478-9488.	2.7	92
506	Chemically Integrated Two-Dimensional Hybrid Zinc Manganate/Graphene Nanosheets with Enhanced Lithium Storage Capability. ACS Nano, 2014, 8, 8610-8616.	7.3	141
507	Free-Standing Hierarchically Sandwich-Type Tungsten Disulfide Nanotubes/Graphene Anode for Lithium-Ion Batteries. Nano Letters, 2014, 14, 5899-5904.	4.5	268
508	Nano-sized Fe 3 O 4 /carbon as anode material for lithium ion battery. Materials Chemistry and Physics, 2014, 148, 699-704.	2.0	15
509	LiFe(MoO ₄) ₂ as a Novel Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 10661-10666.	4.0	58
510	3D functional hetero-nanostructures of vertically anchored metal oxide nanowire arrays on porous graphene substrates. Carbon, 2014, 79, 330-336.	5.4	6

#	Article	IF	CITATIONS
511	Nitrogen-doped carbon coated SiO nanoparticles Co-modified with nitrogen-doped graphene as a superior anode material for lithium-ion batteries. RSC Advances, 2014, 4, 35717-35725.	1.7	5
512	Dealloyed Fe 3 O 4 octahedra as anode material for lithium-ion batteries with stable and high electrochemical performance. Journal of Alloys and Compounds, 2014, 617, 787-791.	2.8	25
513	Rapid low-temperature synthesis of mesoporous nanophase ZnFe ₂ O ₄ with enhanced lithium storage properties for Li-ion batteries. RSC Advances, 2014, 4, 49212-49218.	1.7	50
514	Lithium Storage Properties of Pristine and (Mg, Cu) Codoped ZnFe ₂ O ₄ Nanoparticles. ACS Applied Materials & Interfaces, 2014, 6, 10744-10753.	4.0	91
515	Preparation of Carbon-Encapsulated ZnO Tetrahedron as an Anode Material for Ultralong Cycle Life Performance Lithium-ion Batteries. Electrochimica Acta, 2014, 146, 52-59.	2.6	78
516	Facile Fabrication of a Three-Dimensional Cross-Linking TiO ₂ Nanowire Network and Its Long-Term Cycling Life for Lithium Storage. ACS Applied Materials & Interfaces, 2014, 6, 10107-10112.	4.0	31
517	Superior cycling and rate performances of rattle-type CoMoO4 microspheres prepared by one-pot spray pyrolysis. RSC Advances, 2014, 4, 17873.	1.7	28
518	Carbon encapsulated 3D hierarchical Fe3O4 spheres as advanced anode materials with long cycle lifetimes for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 14641-14648.	5.2	62
519	Hydrothermal controlled synthesis of Fe3O4 nanorods/graphene nanocomposite for high-performance lithium ion batteries. Ceramics International, 2014, 40, 14713-14725.	2.3	27
520	Easy synthesis of MnO-graphene hybrids for high-performance lithium storage. New Carbon Materials, 2014, 29, 316-321.	2.9	15
521	Ultrafast Synthesis of Yolk-Shell and Cubic NiO Nanopowders and Application in Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 2312-2316.	4.0	90
522	Facile synthesis of hierarchically porous hematite nanostructures composed of aligned nanorods for superior lithium storage capability. Journal of Power Sources, 2014, 272, 997-1002.	4.0	13
523	Advances and challenges for flexible energy storage and conversion devices and systems. Energy and Environmental Science, 2014, 7, 2101.	15.6	767
524	Synthesis, characterization and cytotoxicity of europium incorporated ZnO–graphene nanocomposites on human MCF7 breast cancer cells. RSC Advances, 2014, 4, 37479-37490.	1.7	49
525	Novel Fe3O4-CNTs nanocomposite for Li-ion batteries with enhanced electrochemical performance. Electrochimica Acta, 2014, 144, 235-242.	2.6	64
526	Shell Thickness-Dependent Microwave Absorption of Core–Shell Fe ₃ O ₄ @C Composites. ACS Applied Materials & Interfaces, 2014, 6, 12997-13006.	4.0	853
527	Synthesis of ZnO quantum dot/graphene nanocomposites by atomic layer deposition with high lithium storage capacity. Journal of Materials Chemistry A, 2014, 2, 7319-7326.	5.2	117
528	Graphene/silicon nanocomposite anode with enhanced electrochemical stability for lithium-ion battery applications. Journal of Power Sources, 2014, 269, 873-882.	4.0	106

# 529	ARTICLE Chemical synthesis of Fe3O4–graphene oxide nanohybrids as building blocks for magnetic and conductive membranes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 189, 13-20.	IF 1.7	Citations 37
530	Supported CuBr on graphene oxide/Fe3O4: a highly efficient, magnetically separable catalyst for the multi-gram scale synthesis of 1,2,3-triazoles. RSC Advances, 2014, 4, 9830.	1.7	62
531	In situ sonochemical synthesis of Fe3O4–graphene nanocomposite for lithium rechargeable batteries. Chemical Engineering and Processing: Process Intensification, 2014, 83, 49-55.	1.8	86
532	Iron-Oxide-Supported Nanocarbon in Lithium-Ion Batteries, Medical, Catalytic, and Environmental Applications. ACS Nano, 2014, 8, 7571-7612.	7.3	157
533	Preparation and Characterization of Magnetic Porous Carbon Microspheres for Removal of Methylene Blue by a Heterogeneous Fenton Reaction. ACS Applied Materials & Interfaces, 2014, 6, 7275-7285.	4.0	218
534	Carbon-Coated Magnetite Embedded on Carbon Nanotubes for Rechargeable Lithium and Sodium Batteries. ACS Applied Materials & Interfaces, 2014, 6, 11749-11757.	4.0	63
535	Facile synthesis of ultrasmall tin oxide nanoparticles embedded in carbon as high-performance anode for lithium-ion batteries. Journal of Power Sources, 2014, 269, 479-485.	4.0	61
536	Graphene supported Zn2SnO4 nanoflowers with superior electrochemical performance as lithium-ion battery anode. Ceramics International, 2014, 40, 15183-15190.	2.3	13
537	One-Pot Synthesis of Fe ₂ O ₃ Nanoparticles on Nitrogen-Doped Graphene as Advanced Supercapacitor Electrode Materials. Journal of Physical Chemistry C, 2014, 118, 17231-17239.	1.5	288
538	Building Robust Carbon Nanotube-Interweaved-Nanocrystal Architecture for High-Performance Anode Materials. ACS Nano, 2014, 8, 9265-9273.	7.3	46
539	Three-dimensional Co ₃ O ₄ /flocculent graphene hybrid on Ni foam for supercapacitor applications. Journal of Materials Chemistry A, 2014, 2, 15987-15994.	5.2	47
540	Surfactant-Assisted Synthesis of Fe ₂ O ₃ Nanoparticles and F-Doped Carbon Modification toward an Improved Fe ₃ O ₄ @CF _{<i>x</i>} /LiNi _{0.5} Mn _{1.5} O _{4ACS Applied Materials & amp: Interfaces, 2014, 6, 15499-15509.}	b≯Battery	, 72
541	Diaminohexane-Assisted Preparation of Coral-like, Poly(benzoxazine)-Based Porous Carbons for Electrochemical Energy Storage. ACS Applied Materials & Interfaces, 2014, 6, 11101-11109.	4.0	21
542	Graphene-wrapped Ni2P materials: a 3D porous architecture with improved electrochemical performance. Journal of Solid State Electrochemistry, 2014, 18, 2245-2253.	1.2	16
543	Preparation and microwave absorbing properties of hollow glass microspheres/Fe3O4/Ag composites with core–shell structure. Journal of Materials Science: Materials in Electronics, 2014, 25, 3455-3460.	1.1	16
544	An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode. Nano Letters, 2014, 14, 4901-4906.	4.5	402
545	Enhanced Electrode Performance of Fe ₂ O ₃ Nanoparticle-Decorated Nanomesh Graphene As Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 7189-7197.	4.0	87
546	Selective detection toward Cd2+ using Fe3O4/RGO nanoparticle modified glassy carbon electrode. Journal of Electroanalytical Chemistry, 2014, 714-715, 97-102.	1.9	65

#	Article	IF	CITATIONS
547	Intercalating graphene with clusters of Fe ₃ O ₄ nanocrystals for electrochemical supercapacitors. Materials Research Express, 2014, 1, 025015.	0.8	59
548	Self-assembly of nano/micro-structured Fe ₃ O ₄ microspheres among 3D rGO/CNTs hierarchical networks with superior lithium storage performances. Nanotechnology, 2014, 25, 225401.	1.3	27
549	Fe3O4 nanosphere@microporous organic networks: enhanced anode performances in lithium ion batteries through carbonization. Chemical Communications, 2014, 50, 7723.	2.2	57
550	Interconnected MnO2 nanoflakes supported by 3D nanostructured stainless steel plates for lithium ion battery anodes. Electrochimica Acta, 2014, 121, 415-420.	2.6	34
551	Fabrication of Graphene-Encapsulated Porous Carbon–Metal Oxide Composites as Anode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 6332-6339.	4.0	59
552	Study on SnO2/graphene composites with superior electrochemical performance for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 9345.	5.2	42
553	Space-Confined Growth of MoS ₂ Nanosheets within Graphite: The Layered Hybrid of MoS ₂ and Graphene as an Active Catalyst for Hydrogen Evolution Reaction. Chemistry of Materials, 2014, 26, 2344-2353.	3.2	634
554	Defect-Free, Size-Tunable Graphene for High-Performance Lithium Ion Battery. Nano Letters, 2014, 14, 4306-4313.	4.5	82
555	The synthesis of core–shell Fe3O4@mesoporous carbon in acidic medium and its efficient removal of dye. Microporous and Mesoporous Materials, 2014, 197, 221-228.	2.2	40
556	Confined Nanospace Pyrolysis for the Fabrication of Coaxial Fe ₃ O ₄ @C Hollow Particles with a Penetrated Mesochannel as a Superior Anode for Liâ€ion Batteries. Chemistry - A European Journal, 2014, 20, 139-145.	1.7	63
557	Facile Preparation of One-Dimensional Wrapping Structure: Graphene Nanoscroll-Wrapped of Fe ₃ O ₄ Nanoparticles and Its Application for Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2014, 6, 9890-9896.	4.0	96
558	Partially Crystalline Zn ₂ GeO ₄ Nanorod/Graphene Composites as Anode Materials for High Performance Lithium Ion Batteries. Langmuir, 2014, 30, 8215-8220.	1.6	54
559	Morphology-controlled synthesis of Fe3O4/carbon nanostructures for lithium ion batteries. New Carbon Materials, 2014, 29, 301-308.	2.9	15
560	Understanding Li-storage mechanism and performance of MnFe2O4 by in situ TEM observation on its electrochemical process in nano lithium battery. Nano Energy, 2014, 8, 84-94.	8.2	97
561	An efficient route to a hierarchical CoFe 2 O 4 @graphene hybrid films with superior cycling stability and rate capability for lithium storage. Electrochimica Acta, 2014, 146, 679-687.	2.6	48
562	Fe3O4-decorated hollow graphene balls prepared by spray pyrolysis process for ultrafast and long cycle-life lithium ion batteries. Carbon, 2014, 79, 58-66.	5.4	71
563	Functionalized graphene oxide based on p-phenylenediamine as spacers and nitrogen dopants for high performance supercapacitors. Science Bulletin, 2014, 59, 1809-1815.	1.7	23
564	Synthesis of SnO ₂ /MoS ₂ composites with different component ratios and their applications as lithium ion battery anodes. Journal of Materials Chemistry A, 2014, 2, 17857-17866.	5.2	90

#	Article	IF	CITATIONS
565	Enhanced electrochemical performance of MnO nanowire/graphene composite during cycling as the anode material for lithium-ion batteries. Nano Energy, 2014, 10, 172-180.	8.2	171
566	An extremely stable MnO2 anode incorporated with 3D porous graphene-like networks for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 3163.	5.2	91
567	A minky-dot-fabric-shaped composite of porous TiO ₂ microsphere/reduced graphene oxide for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 16931-16938.	5.2	44
568	A magnetic field assisted self-assembly strategy towards strongly coupled Fe3O4 nanocrystal/rGO paper for high-performance lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 9636.	5.2	48
569	Fe ₂ O ₃ @SnO ₂ nanoparticle decorated graphene flexible films as high-performance anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 4598-4604.	5.2	70
570	"Butterfly Effect―in CuO/Graphene Composite Nanosheets: A Small Interfacial Adjustment Triggers Big Changes in Electronic Structure and Li-Ion Storage Performance. ACS Applied Materials & Interfaces, 2014, 6, 17236-17244.	4.0	110
571	Electrochemical properties of graphene-MnO composite and hollow-structured MnO powders prepared by a simple one-pot spray pyrolysis process. Electrochimica Acta, 2014, 132, 441-447.	2.6	38
572	Facile synthesis of interwoven ZnMn2O4 nanofibers by electrospinning and their performance in Li-ion batteries. Materials Letters, 2014, 128, 336-339.	1.3	39
573	A Facile Synthetic Approach to Reduced Graphene Oxide–Fe3O4 Composite as High Performance Anode for Lithium-ion Batteries. Journal of Materials Science and Technology, 2014, 30, 759-764.	5.6	29
574	AB5-alloy oxide/graphene composite anode with excellent cyclic stability for lithium ion batteries. Journal of Alloys and Compounds, 2014, 582, 289-293.	2.8	11
575	High lithium storage capacity and rate capability achieved by mesoporous Co 3 O 4 hierarchical nanobundles. Journal of Power Sources, 2014, 247, 49-56.	4.0	133
576	Needle-like Co ₃ O ₄ Anchored on the Graphene with Enhanced Electrochemical Performance for Aqueous Supercapacitors. ACS Applied Materials & Interfaces, 2014, 6, 7626-7632.	4.0	316
577	Facile preparation and electrochemical properties of carbon coated Fe3O4 as anode material for lithium-ion batteries. Journal of Power Sources, 2014, 259, 92-97.	4.0	69
578	Cathodic performance of V2O5 nanowires and reduced graphene oxide composites for lithium ion batteries. Current Applied Physics, 2014, 14, 215-221.	1.1	51
579	Mechanical properties of Fe3O4/GO/chitosan composites. Composites Part B: Engineering, 2014, 66, 89-96.	5.9	129
580	Stable cyclic performance of nickel oxide–carbon composite anode for lithium-ion batteries. Thin Solid Films, 2014, 558, 356-364.	0.8	17
581	CulnZnS-decorated graphene as a high-rate durable anode for lithium-ion batteries. Journal of Power Sources, 2014, 257, 90-95.	4.0	17
582	Enhanced Electrochemical Performance of Zn-Doped Fe3O4 with Carbon Coating. Electrochimica Acta, 2014, 117, 230-238.	2.6	45

#	Article	IF	CITATIONS
583	One-step synthesis of Fe3O4@C/reduced-graphite oxide nanocomposites for high-performance lithium ion batteries. Journal of Physics and Chemistry of Solids, 2014, 75, 588-593.	1.9	13
584	Self-assembly of NiO/graphene with three-dimension hierarchical structure as high performance electrode material for supercapacitors. Journal of Alloys and Compounds, 2014, 597, 291-298.	2.8	76
585	Nanostructured Fe3O4@C as anode material for lithium-ion batteries. Journal of Power Sources, 2014, 248, 15-21.	4.0	110
586	Green synthesis of mesoporous ZnFe2O4/C composite microspheres as superior anode materials for lithium-ion batteries. Journal of Power Sources, 2014, 258, 305-313.	4.0	97
587	Layer-by-layer assembled graphene-coated mesoporous SnO2 spheres as anodes for advanced Li-ion batteries. Journal of Power Sources, 2014, 263, 239-245.	4.0	39
588	Nanoflake nickel hydroxide and reduced graphene oxide composite as anode materials for high capacity lithium ion batteries. Electrochimica Acta, 2014, 132, 364-369.	2.6	46
589	Synthesis of novel porous graphene nanocomposite and its use as electrode and absorbent. RSC Advances, 2014, 4, 14042.	1.7	6
590	Three-Dimensional Macroporous Graphene–Li ₂ FeSiO ₄ Composite as Cathode Material for Lithium-Ion Batteries with Superior Electrochemical Performances. ACS Applied Materials & Interfaces, 2014, 6, 11724-11733.	4.0	54
591	Photoelectrocatalytic Reduction of CO ₂ into Chemicals Using Pt-Modified Reduced Graphene Oxide Combined with Pt-Modified TiO ₂ Nanotubes. Environmental Science & Technology, 2014, 48, 7076-7084.	4.6	141
592	In situ growth of monodisperse Fe ₃ O ₄ nanoparticles on graphene as flexible paper for supercapacitor. Journal of Materials Chemistry A, 2014, 2, 12068-12074.	5.2	132
593	Effect of supercritical CO2 on fabrication of free-standing hierarchical graphene oxide/carbon nanofiber/polypyrrole film and its electrochemical property. Physical Chemistry Chemical Physics, 2014, 16, 7350.	1.3	20
594	Citrateâ€Assisted Growth of NiCo ₂ O ₄ Nanosheets on Reduced Graphene Oxide for Highly Reversible Lithium Storage. Advanced Energy Materials, 2014, 4, 1400422.	10.2	227
595	Science and Engineering of Graphene Oxide. Particle and Particle Systems Characterization, 2014, 31, 619-638.	1.2	33
596	Growth of Hierarchical 3D Mesoporous NiSi _{<i>x</i>} /NiCo ₂ O ₄ Core/Shell Heterostructures on Nickel Foam for Lithiumâ€ion Batteries. ChemSusChem, 2014, 7, 2325-2334.	3.6	58
597	The Handbook of Graphene Electrochemistry. , 2014, , .		151
598	Fe3O4/C composites synthesized from Fe-based xerogels for anode materials of Li-ion batteries. Solid State Ionics, 2014, 261, 45-52.	1.3	14
599	Improving the gas barrier properties of Fe3O4/graphite nanoplatelet reinforced nanocomposites by a low magnetic field induced alignment. Composites Science and Technology, 2014, 99, 124-130.	3.8	71
600	Chemically derived graphene. , 2014, , 50-80.		11

#	Article	IF	CITATIONS
601	Recent Advances in Tin Dioxide Materials: Some Developments in Thin Films, Nanowires, and Nanorods. Chemical Reviews, 2014, 114, 7442-7486.	23.0	146
602	One-step synthesis of high-quality N-doped graphene/Fe ₃ O ₄ hybrid nanocomposite and its improved supercapacitor performances. RSC Advances, 2014, 4, 25658-25665.	1.7	53
603	Controlled growth of single-crystalline nanostructured dendrites of α-Fe2O3 blended with MWCNT: a systematic investigation of highly selective determination of l-dopa. RSC Advances, 2014, 4, 23050.	1.7	12
604	Facile preparation of magnetically functionalized graphite nanosheets for porcine pancreatic lipase immobilization. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	104
605	Constructing Fe3O4@N-rich Carbon Core-Shell Microspheres as Anode for Lithium Ion Batteries with Enhanced Electrochemical Performance. Electrochimica Acta, 2014, 130, 679-688.	2.6	72
606	Single-step sensitization of reduced graphene oxide sheets and CdS nanoparticles on ZnO nanorods as visible-light photocatalysts. Applied Catalysis B: Environmental, 2014, 144, 57-65.	10.8	197
607	Graphene-Based Materials for Electrochemical Energy Storage. , 2014, , 195-258.		0
608	Applications of Graphene in Lithium Ion Batteries. Electrochemical Energy Storage and Conversion, 2014, , 65-136.	0.0	0
609	- Nanotechnology in Advanced Life Support: Water Recycling. , 2014, , 118-147.		0
610	A Highâ€Performance Anode Material for Liâ€Ion Batteries Based on a Vertically Aligned CNTs/NiCo ₂ O ₄ Core/Shell Structure. Particle and Particle Systems Characterization, 2014, 31, 1151-1157.	1.2	35
611	Advanced Materials for Lithium-Ion Batteries. Electrochemical Energy Storage and Conversion, 2015, , 79-142.	0.0	0
612	Phases Hybriding and Hierarchical Structuring of Mesoporous TiO ₂ Nanowire Bundles for Highâ€Rate and Highâ€Capacity Lithium Batteries. Advanced Science, 2015, 2, 1500070.	5.6	39
613	Three-Dimensional (3D) Bicontinuous Hierarchically Porous Mn2O3 Single Crystals for High Performance Lithium-Ion Batteries. Scientific Reports, 2015, 5, 14686.	1.6	47
614	Influence of PVP on Solvothermal Synthesized Fe ₃ O ₄ /Graphene Composites as Anodes for Lithium-ion Batteries. Electrochemistry, 2015, 83, 619-623.	0.6	4
615	Impact of Morphology of Conductive Agent and Anode Material on Lithium Storage Properties. Nano-Micro Letters, 2015, 7, 360-367.	14.4	12
616	Elaborately Designed Hierarchical Heterostructures Consisting of Carbon oated TiO ₂ (B) Nanosheets Decorated with Fe ₃ O ₄ Nanoparticles for Remarkable Synergy in Highâ€Rate Lithium Storage. Advanced Materials Interfaces, 2015, 2, 1500239.	1.9	41
617	Design Considerations for Unconventional Electrochemical Energy Storage Architectures. Advanced Energy Materials, 2015, 5, 1402115.	10.2	271
618	Bi ₂ O ₃ @Reduced Graphene Oxide Nanocomposite: An Anode Material for Sodiumâ€ion Storage. ChemPlusChem, 2015, 80, 1000-1006.	1.3	56

#	Article	IF	CITATIONS
619	Fabrication of Cu@M <i>_x</i> O <i>_y</i> (M = Cu, Mn, Co, Fe) Nanocable Arrays for Lithiumâ€Ion Batteries with Long Cycle Lives and High Rate Capabilities. Particle and Particle Systems Characterization, 2015, 32, 1083-1091.	1.2	4
620	Monodisperse Sandwichâ€Like Coupled Quasiâ€Graphene Sheets Encapsulating Ni ₂ P Nanoparticles for Enhanced Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2015, 21, 9229-9235.	1.7	50
621	Mesoporous Manganese Sulfide Spheres Anchored on Graphene Sheets as Highâ€Capacity and Longâ€Life Anode Materials for Lithiumâ€Ion Batteries. ChemElectroChem, 2015, 2, 1314-1320.	1.7	29
622	Enhanced Secondary Battery Anodes Based on Si and Fe ₃ O ₄ Nanoparticle Infilled Monodisperse Carbon Starburst Colloidal Crystals. Particle and Particle Systems Characterization, 2015, 32, 928-933.	1.2	3
623	Graphene ontaining Nanomaterials for Lithiumâ€ion Batteries. Advanced Energy Materials, 2015, 5, 1500400.	10.2	184
624	Oneâ€Pot Synthesis of Carbon oated Nanostructured Iron Oxide on Fewâ€Layer Graphene for Lithiumâ€lon Batteries. Chemistry - A European Journal, 2015, 21, 16154-16161.	1.7	12
625	Exfoliation of Graphene and Assembly Formation with Alkylated ₆₀ : A Nanocarbon Hybrid towards Photoâ€Energy Conversion Electrode Devices. Advanced Optical Materials, 2015, 3, 925-930.	3.6	9
626	Enhanced Cycling Stability of Lithiumâ€lon Batteries Using Grapheneâ€Wrapped Fe ₃ O ₄ â€Graphene Nanoribbons as Anode Materials. Advanced Energy Materials, 2015, 5, 1500171.	10.2	133
627	Encapsulation of SnO ₂ /Sn Nanoparticles into Mesoporous Carbon Nanowires and its Excellent Lithium Storage Properties. Particle and Particle Systems Characterization, 2015, 32, 381-388.	1.2	31
629	Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications. Nanomaterials, 2015, 5, 755-777.	1.9	73
630	Synthesis and Ethanol Sensing Properties of Novel Hierarchical Sn ₃ O ₄ Nanoflowers. Journal of Nanomaterials, 2015, 2015, 1-7.	1.5	9
631	Self-template synthesis of CoFe ₂ O ₄ nanotubes for high-performance lithium storage. RSC Advances, 2015, 5, 29837-29841.	1.7	23
632	Effect of Carbon Coating on the Physicochemical and Electrochemical Properties of Fe ₂ O ₃ Nanoparticles for Anode Application in High Performance Lithium Ion Batteries. Inorganic Chemistry, 2015, 54, 5239-5248.	1.9	17
633	Synthesis of graphene@Fe ₃ O ₄ @C core–shell nanosheets for high-performance lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 7036-7043.	5.2	93
634	Porous MnFe ₂ O ₄ microrods as advanced anodes for Li-ion batteries with long cycle lifespan. Journal of Materials Chemistry A, 2015, 3, 9550-9555.	5.2	49
635	A wire-shaped flexible asymmetric supercapacitor based on carbon fiber coated with a metal oxide and a polymer. Journal of Materials Chemistry A, 2015, 3, 13461-13467.	5.2	149
636	Capacitance of Fe3O4/rGO nanocomposites in an aqueous hybrid electrochemical storage device. Journal of Power Sources, 2015, 293, 42-50.	4.0	40
637	Nitrogen-Doped Carbon Nanotubes and Graphene Nanohybrid for Oxygen Reduction Reaction in Acidic, Alkaline and Neutral Solutions. Journal of Nano Research, 2015, 30, 50-58.	0.8	7
#	Article	IF	CITATIONS
-----	---	-----	-----------
638	Nanogravel structured NiO/Ni foam as electrode for high-performance lithium-ion batteries. Ionics, 2015, 21, 2709-2723.	1.2	23
639	"Concrete―inspired construction of a silicon/carbon hybrid electrode for high performance lithium ion battery. Carbon, 2015, 93, 59-67.	5.4	78
640	Laser-induced chemical transformation of graphene oxide–iron oxide nanoparticles composites deposited on polymer substrates. Carbon, 2015, 93, 373-383.	5.4	22
641	Carbon-coated MoO2 dispersed in three-dimensional graphene aerogel for lithium-ion battery. Electrochimica Acta, 2015, 174, 8-14.	2.6	57
642	Highly nanoporous carbons by single-step organic salt carbonization for high-performance supercapacitors. Journal of Applied Electrochemistry, 2015, 45, 839-848.	1.5	5
643	GO/rGO as Advanced Materials for Energy Storage and Conversion. , 2015, , 97-127.		0
644	Fe ₃ O ₄ nanoplates/carbon network synthesized by in situ pyrolysis of an organic–inorganic layered hybrid as a high-performance lithium-ion battery anode. Journal of Materials Chemistry A, 2015, 3, 14210-14216.	5.2	36
645	Fe ₃ O ₄ /carbon nanofibres with necklace architecture for enhanced electrochemical energy storage. Journal of Materials Chemistry A, 2015, 3, 14245-14253.	5.2	87
646	Core–shell-structured nickel ferrite/onion-like carbon nanocapsules: an anode material with enhanced electrochemical performance for lithium-ion batteries. RSC Advances, 2015, 5, 42875-42880.	1.7	25
647	Large-Scale Production of MoO 3 -Reduced Graphene Oxide Powders with Superior Lithium Storage Properties by Spray-Drying Process. Electrochimica Acta, 2015, 173, 581-587.	2.6	38
648	Self-Assembled Sandwich-like Vanadium Oxide/Graphene Mesoporous Composite as High-Capacity Anode Material for Lithium Ion Batteries. Inorganic Chemistry, 2015, 54, 11799-11806.	1.9	52
649	2D materials via liquid exfoliation: a review on fabrication and applications. Science Bulletin, 2015, 60, 1994-2008.	4.3	270
650	Amorphous Ultrathin SnO ₂ Films by Atomic Layer Deposition on Graphene Network as Highly Stable Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 27735-27742.	4.0	59
651	Stabilising a Mn ₃ O ₄ nanosheet on graphene via forming a 2D–2D nanostructure for improvement of lithium storage. RSC Advances, 2015, 5, 106206-106212.	1.7	14
652	Decoration of Fe ₃ O ₄ magnetic nanoparticles on graphene oxide nanosheets. RSC Advances, 2015, 5, 105499-105506.	1.7	33
653	Growth of Fe ₃ O ₄ nanosheet arrays on graphene by a mussel-inspired polydopamine adhesive for remarkable enhancement in electromagnetic absorptions. RSC Advances, 2015, 5, 101121-101126.	1.7	41
654	First-principles study of lithium adsorption and diffusion on graphene: the effects of strain. Materials Research Express, 2015, 2, 105016.	0.8	20
655	Anchoring superparamagnetic core–shells onto reduced graphene oxide: fabrication of Ni–carbon–rGO nanocomposite for effective adsorption and separation. RSC Advances, 2015, 5, 10033-10039.	1.7	11

#	Article	IF	Citations
656	High-intensity ultrasonication as a way to prepare graphene/amorphous iron oxyhydroxide hybrid electrode with high capacity in lithium battery. Ultrasonics Sonochemistry, 2015, 24, 238-246.	3.8	12
657	Preparation of core–shell porous magnetite@carbon nanospheres through chemical vapor deposition as anode materials for lithium-ion batteries. Electrochimica Acta, 2015, 154, 136-141.	2.6	25
658	Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science, 2015, 347, 1246501.	6.0	2,925
659	Improving the electrochemical performance of Fe3O4 nanoparticles via a double protection strategy through carbon nanotube decoration and graphene networks. Nano Research, 2015, 8, 1339-1347.	5.8	30
660	Tin dioxide dodecahedral nanocrystals anchored on graphene sheets with enhanced electrochemical performance for lithium-ion batteries. Electrochimica Acta, 2015, 159, 46-51.	2.6	28
661	Application and Uses of Graphene Oxide and Reduced Graphene Oxide. , 2015, , 39-55.		82
662	Graphene/acid assisted facile synthesis of structure-tuned Fe3O4 and graphene composites as anode materials for lithium ion batteries. Carbon, 2015, 86, 310-317.	5.4	61
663	Double Metal Ions Synergistic Effect in Hierarchical Multiple Sulfide Microflowers for Enhanced Supercapacitor Performance. ACS Applied Materials & Interfaces, 2015, 7, 4311-4319.	4.0	202
664	Facile complex-coprecipitation synthesis of mesoporous Fe3O4 nanocages and their high lithium storage capacity as anode material for lithium-ion batteries. Electrochimica Acta, 2015, 160, 114-122.	2.6	70
665	Biomineralized Multifunctional Magnetite/Carbon Microspheres for Applications in Li″on Batteries and Water Treatment. Chemistry - A European Journal, 2015, 21, 4655-4663.	1.7	12
666	Nitrogen-rich carbon coupled multifunctional metal oxide/graphene nanohybrids for long-life lithium storage and efficient oxygen reduction. Nano Energy, 2015, 12, 578-587.	8.2	76
667	Construction of reduced graphene oxide-supported Ag–Cu ₂ O composites with hierarchical structures for enhanced photocatalytic activities and recyclability. Journal of Materials Chemistry A, 2015, 3, 5923-5933.	5.2	89
668	Fe3O4@porous carbon hybrid as the anode material for a lithium-ion battery: performance optimization by composition and microstructure tailoring. New Journal of Chemistry, 2015, 39, 3435-3443.	1.4	17
669	Recent advances in graphene and its metal-oxide hybrid nanostructures for lithium-ion batteries. Nanoscale, 2015, 7, 4820-4868.	2.8	169
670	Microwave synthesis of nitrogen-doped carbon nanotubes anchored on graphene substrates. Carbon, 2015, 87, 186-192.	5.4	45
671	Facile general strategy toward hierarchical mesoporous transition metal oxides arrays on three-dimensional macroporous foam with superior lithium storage properties. Nano Energy, 2015, 13, 77-91.	8.2	164
672	<i>In Situ</i> Synthesis of Self-Assembled Three-Dimensional Graphene–Magnetic Palladium Nanohybrids with Dual-Enzyme Activity through One-Pot Strategy and Its Application in Glucose Probe. ACS Applied Materials & Interfaces, 2015, 7, 3480-3491.	4.0	86
673	Highly Efficient Removal of Pathogenic Bacteria with Magnetic Graphene Composite. ACS Applied Materials & Interfaces, 2015, 7, 4290-4298.	4.0	98

#	Article	IF	CITATIONS
674	Smart construction of three-dimensional hierarchical tubular transition metal oxide core/shell heterostructures with high-capacity and long-cycle-life lithium storage. Nano Energy, 2015, 12, 437-446.	8.2	220
675	Lithium-ion batteries (LIBs) for medium- and large-scale energy storage. , 2015, , 213-289.		6
676	Sandwich Nanoarchitecture of Si/Reduced Graphene Oxide Bilayer Nanomembranes for Li-Ion Batteries with Long Cycle Life. ACS Nano, 2015, 9, 1198-1205.	7.3	137
677	Ultrahigh Capacity Due to Multiâ€Electron Conversion Reaction in Reduced Graphene Oxideâ€Wrapped MoO ₂ Porous Nanobelts. Small, 2015, 11, 2446-2453.	5.2	59
678	Electrospinning preparation of ultra-long aligned nanofibers thin films for high performance fully flexible lithium-ion batteries. Nano Energy, 2015, 12, 339-346.	8.2	81
679	One-pot synthesis of ultra-small magnetite nanoparticles on the surface of reduced graphene oxide nanosheets as anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 4793-4798.	5.2	59
683	Encapsulation of α-Fe ₂ O ₃ nanoparticles in graphitic carbon microspheres as high-performance anode materials for lithium-ion batteries. Nanoscale, 2015, 7, 3270-3275.	2.8	82
684	An Alumina-Coated Fe3O4-Reduced Graphene Oxide Composite Electrode as a Stable Anode for Lithium-ion Battery. Electrochimica Acta, 2015, 156, 147-153.	2.6	52
685	Cu5(VO4)2(OH)4·H2O nanobelts as anode materials for lithium-ion batteries. Chemical Physics Letters, 2015, 621, 1-4.	1.2	15
686	Facile synthesis of porous Fe3O4@C nanospheres as high-performance anode for lithium-ion battery. Journal of Solid State Electrochemistry, 2015, 19, 1211-1215.	1.2	36
687	Large-scale fabrication of porous carbon-decorated iron oxide microcuboids from Fe–MOF as high-performance anode materials for lithium-ion batteries. RSC Advances, 2015, 5, 7356-7362.	1.7	57
688	Space onfined Creation of Nanoframes In Situ on Reduced Graphene Oxide. Small, 2015, 11, 1512-1518.	5.2	7
689	Lithium-ion batteries (LIBs) for medium- and large-scale energy storage:. , 2015, , 125-211.		10
690	Porous carbon nanotubes decorated with nanosized cobalt ferrite as anode materials for high-performance lithium-ion batteries. Journal of Power Sources, 2015, 283, 289-299.	4.0	81
691	Li Storage Performance for the Composite Structure Of Graphene and Boron Fullerene. Chinese Physics Letters, 2015, 32, 026102.	1.3	4
692	Fe3O4 nanoparticles encapsulated in electrospun porous carbon fibers with a compact shell as high-performance anode for lithium ion batteries. Carbon, 2015, 87, 347-356.	5.4	131
693	Foam carbon loading Fe3O4 nanoparticles for superior lithium-ion batteries anode material. Ionics, 2015, 21, 1901-1908.	1.2	5
694	Facile synthesis of multi-shell structured binary metal oxide powders with a Ni/Co mole ratio of 1:2 for Li-Ion batteries. Journal of Power Sources, 2015, 284, 481-488.	4.0	31

#	Article	IF	CITATIONS
695	Nanostructured Carbon Materials for Energy Conversion and Storage. RSC Catalysis Series, 2015, , 445-506.	0.1	0
696	Performance improvement of lithium ion batteries using magnetite–graphene nanocomposite anode materials synthesized by a microwave-assisted method. Microelectronic Engineering, 2015, 138, 47-51.	1.1	11
697	Recent advances on multi-component hybrid nanostructures for electrochemical capacitors. Journal of Power Sources, 2015, 294, 31-50.	4.0	107
698	Novel sodium/lithium-ion anode material based on ultrathin Na ₂ Ti ₂ O ₄ (OH) ₂ nanosheet. Nanoscale, 2015, 7, 14618-14626.	2.8	20
699	In situ and ex situ carbon coated Zn ₂ SnO ₄ nanoparticles as promising negative electrodes for Li-ion batteries. RSC Advances, 2015, 5, 67210-67219.	1.7	31
700	Employment of Chitosan–linked Iron Oxides as Mesoporous Anode Materials for Improved Lithium–ion Batteries. Electrochimica Acta, 2015, 170, 146-153.	2.6	23
701	The preparation of flowerlike ZnMn ₂ O ₄ microspheres assembled with porous nanosheets and their lithium battery performance as anode materials. RSC Advances, 2015, 5, 70379-70386.	1.7	26
702	Novel route to synthesis of N-doped graphene/Cu–Ni oxide composite for high electrochemical performance. Carbon, 2015, 94, 962-970.	5.4	79
703	FeOxand Si nano-dots as dual Li-storage centers bonded with graphene for high performance lithium ion batteries. Nanoscale, 2015, 7, 14344-14350.	2.8	8
704	A graphene titanium dioxide nanocomposite (GTNC): one pot green synthesis and its application in a solid rocket propellant. RSC Advances, 2015, 5, 63777-63785.	1.7	44
705	Crumpled graphene: preparation and applications. RSC Advances, 2015, 5, 66767-66796.	1.7	69
706	Preparation of graphene supported flower-like porous 3D ZnO–NiO ternary composites for high capacity anode materials for Li-ion batteries. Ceramics International, 2015, 41, 13532-13540.	2.3	28
707	Facile synthesis of mesoporous ZnCo2O4 coated with polypyrrole as an anode material for lithium-ion batteries. Journal of Power Sources, 2015, 296, 298-304.	4.0	91
708	Microwave assisted synthesis of α-Fe ₂ O ₃ /reduced graphene oxide as anode material for high performance lithium ion batteries. New Journal of Chemistry, 2015, 39, 7923-7931.	1.4	42
709	Design and tailoring of three-dimensional graphene–Vulcan carbon–Bi ₂ S ₃ ternary nanostructures for high-performance lithium-ion-battery anodes. RSC Advances, 2015, 5, 52687-52694.	1.7	19
710	Tuning and understanding the phase interface of TiO ₂ nanoparticles for more efficient lithium ion storage. Nanoscale, 2015, 7, 12833-12838.	2.8	36
711	Large-scale synthesis of Co ₂ V ₂ O ₇ hexagonal microplatelets under ambient conditions for highly reversible lithium storage. Journal of Materials Chemistry A, 2015, 3, 16728-16736.	5.2	116
712	Hierarchical composites of ultrathin carbon self-coated TiO2 nanosheets on reduced graphene oxide with enhanced lithium storage capability. Chemical Engineering Journal, 2015, 280, 614-622.	6.6	27

#	Article	IF	CITATIONS
713	A general strategy of decorating 3D carbon nanofiber aerogels derived from bacterial cellulose with nano-Fe ₃ O ₄ for high-performance flexible and binder-free lithium-ion battery anodes. Journal of Materials Chemistry A, 2015, 3, 15386-15393.	5.2	91
714	Multifunctional Iron Oxide Nanoflake/Graphene Composites Derived from Mechanochemical Synthesis for Enhanced Lithium Storage and Electrocatalysis. ACS Applied Materials & Interfaces, 2015, 7, 14446-14455.	4.0	75
715	Long cycle life of CoMn ₂ O ₄ lithium ion battery anodes with high crystallinity. Journal of Materials Chemistry A, 2015, 3, 14759-14767.	5.2	72
716	Branched Graphene Nanocapsules for Anode Material of Lithium-Ion Batteries. Chemistry of Materials, 2015, 27, 5253-5260.	3.2	74
717	A highly sensitive enzymeless glucose sensor based on 3D graphene–Cu hybrid electrodes. New Journal of Chemistry, 2015, 39, 7481-7487.	1.4	21
718	Constructing the optimal conductive network in MnO-based nanohybrids as high-rate and long-life anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 19738-19746.	5.2	135
719	Green and facile synthesis of Fe ₃ O ₄ and graphene nanocomposites with enhanced rate capability and cycling stability for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 16206-16212.	5.2	50
720	Controllable synthesis of graphene nanoscroll-wrapped Fe ₃ O ₄ nanoparticles and their lithium-ion battery performance. RSC Advances, 2015, 5, 57906-57911.	1.7	26
721	Synthesis of multimodal porous ZnCo2O4 and its electrochemical properties as an anode material for lithium ion batteries. Journal of Power Sources, 2015, 294, 112-119.	4.0	99
722	Improved Cycle Stability and Rate Capability of Graphene Oxide Wrapped Tavorite LiFeSO ₄ F as Cathode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 13972-13979.	4.0	18
723	An experimental insight into the advantages of in situ solvothermal route to construct 3D graphene-based anode materials for lithium-ion batteries. Nano Energy, 2015, 16, 235-246.	8.2	69
724	Porous Fe ₃ O ₄ hollow spheres with chlorine-doped-carbon coating as superior anode materials for lithium ion batteries. RSC Advances, 2015, 5, 52993-52997.	1.7	23
725	Enhanced Performance of Lithiumâ€lon Batteries with Copper Oxide Microspheres @ Graphene Oxide Micro/Nanocomposite Electrodes. Energy Technology, 2015, 3, 488-495.	1.8	17
726	Facile Synthesis of Hollow Mesoporous CoFe ₂ O ₄ Nanospheres and Graphene Composites as Highâ€Performance Anode Materials for Lithiumâ€Ion Batteries. ChemElectroChem, 2015, 2, 1010-1018.	1.7	45
727	Facile preparation of a three-dimensional Fe ₃ O ₄ /macroporous graphene composite for high-performance Li storage. Journal of Materials Chemistry A, 2015, 3, 12031-12037.	5.2	51
728	Porous Co ₃ O ₄ /CuO Composite Assembled from Nanosheets as Highâ€Performance Anodes for Lithiumâ€ion Batteries. ChemSusChem, 2015, 8, 1435-1441.	3.6	46
729	Fluorine-doped porous carbon-decorated Fe3O4-FeF2 composite versus LiNi0.5Mn1.5O4 towards a full battery with robust capability. Electrochimica Acta, 2015, 169, 291-299.	2.6	32
730	Ba0.95La0.05FeO3â^–multi-layer graphene as a low-cost and synergistic catalyst for oxygen evolution reaction. Carbon, 2015, 90, 122-129.	5.4	29

#	Article	IF	CITATIONS
731	A high-performance anode for lithium ion batteries: Fe ₃ O ₄ microspheres encapsulated in hollow graphene shells. Journal of Materials Chemistry A, 2015, 3, 11847-11856.	5.2	159
732	Chemical stability and electrochemical characteristics of FeS microcrystals as the cathode material of rechargeable lithium batteries. Journal of Materials Chemistry A, 2015, 3, 12240-12246.	5.2	33
733	Ultrasmall metal oxide nanoparticles anchored on three-dimensional hierarchical porous gaphene-like networks as anode for high-performance lithium ion batteries. Nano Energy, 2015, 13, 563-572.	8.2	78
734	Synthesis of self-assembled cobalt sulphide coated carbon nanotube and its superior electrochemical performance as anodes for Li-ion batteries. Electrochimica Acta, 2015, 167, 388-395.	2.6	65
735	The electrochemical performance and mechanism of cobalt (II) fluoride as anode material for lithium and sodium ion batteries. Electrochimica Acta, 2015, 168, 225-233.	2.6	56
736	MnO/C nanocomposite prepared by one-pot hydrothermal reaction for high performance lithium-ion battery anodes. Korean Journal of Chemical Engineering, 2015, 32, 178-183.	1.2	25
737	Co3O4-reduced graphene oxide nanocomposite synthesized by microwave-assisted hydrothermal process for Li-ion batteries. Electronic Materials Letters, 2015, 11, 282-287.	1.0	20
738	Graphene supported silver@silver chloride & ferroferric oxide hybrid, a magnetically separable photocatalyst with high performance under visible light irradiation. Applied Surface Science, 2015, 347, 242-249.	3.1	28
739	3D sponge-like nanoporous carbons via a facile synthesis for high-performance supercapacitors: direct carbonization of tartrate salt. Electrochimica Acta, 2015, 169, 13-21.	2.6	47
740	Recent Advancement of Nanostructured Carbon for Energy Applications. Chemical Reviews, 2015, 115, 5159-5223.	23.0	703
741	Carbon-coated Fe2O3 nanocrystals with enhanced lithium storage capability. Applied Surface Science, 2015, 347, 178-185.	3.1	45
742	Highly tough cellulose/graphene composite hydrogels prepared from ionic liquids. Industrial Crops and Products, 2015, 70, 56-63.	2.5	60
743	Hierarchical mesoporous urchin-like Mn3O4/carbon microspheres with highly enhanced lithium battery performance by in-situ carbonization of new lamellar manganese alkoxide (Mn-DEG). Nano Energy, 2015, 12, 833-844.	8.2	96
744	Superior cycle performance and high reversible capacity of SnO2/graphene composite as an anode material for lithium-ion batteries. Scientific Reports, 2015, 5, 9055.	1.6	160
745	The synergistic effect of metallic molybdenum dioxide nanoparticle decorated graphene as an active electrocatalyst for an enhanced hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 8055-8061.	5.2	85
746	Synthesis of shape-controlled NiO–graphene nanocomposites with enhanced supercapacitive properties. New Journal of Chemistry, 2015, 39, 4026-4034.	1.4	46
747	Gelatin-derived sustainable carbon-based functional materials for energy conversion and storage with controllability of structure and component. Science Advances, 2015, 1, e1400035.	4.7	144
748	One-pot synthesis of core–shell-structured tin oxide–carbon composite powders by spray pyrolysis for use as anode materials in Li-ion batteries. Carbon, 2015, 88, 262-269.	5.4	34

		CITATION REPORT		
#	Article		IF	CITATIONS
749	Heterogeneous Photocatalysts Based on Organic/Inorganic Semiconductor. , 2015, , 43	3-96.		3
750	Rational synthesis of ZnMn ₂ O ₄ porous spheres and graphen with enhanced performance for lithium-ion batteries. Journal of Materials Chemistry A, 211430-11436.	e nanocomposite 2015, 3,	5.2	57
751	Porous tremella-like MoS2/polyaniline hybrid composite with enhanced performance fo battery anodes. Electrochimica Acta, 2015, 167, 132-138.	r lithium-ion	2.6	70
752	Na ₃ V ₂ (PO ₄) ₃ /C composite as the anode material for sodium-ion batteries with superior rate capability and long-cycle life. Materials Chemistry A, 2015, 3, 8636-8642.	intercalation-type Journal of	5.2	100
753	Graphene oxide sheets-induced growth of nanostructured Fe ₃ O ₄₉ 0 ₄₉₉₉₉₉₉₉₉₉	sub> for a y A, 2015, 3,	5.2	98
754	A novel Fe ₂ O ₃ rhombohedra/graphene composite as a high s for lithium-ion batteries. Journal of Materials Research, 2015, 30, 761-769.	tability electrode	1.2	7
755	Fe3O4-nanoparticle-decorated TiO2 nanofiber hierarchical heterostructures with impro lithium-ion battery performance over wide temperature range. Nano Research, 2015, 8,	ved 1659-1668.	5.8	33
756	Design and synthesis of micron-sized spherical aggregates composed of hollow Fe ₂ O ₃ nanospheres for use in lithium-ion batteries. Nanoscal 8361-8367.	e, 2015, 7,	2.8	65
757	Graphene supported ZnO/CuO flowers composites as anode materials for lithium ion ba Materials Letters, 2015, 152, 181-184.	atteries.	1.3	40
758	Enhancing the comprehensive electrochemical performance by compositing intercalation/deintercalation-type of TiO2 with conversion-type of MnO. Journal of Alloy Compounds, 2015, 640, 15-22.	<i>i</i> s and	2.8	4
759	Coordination-driven self-assembly: construction of a Fe ₃ O ₄ â 3D framework and its long cycle lifetime for lithium-ion batteries. RSC Advances, 2015,	€"graphene hybrid 5, 40249-40257.	1.7	16
760	Interconnected MnO2 nanoflakes assembled on graphene foam as a binder-free and log lithium battery anode. Carbon, 2015, 92, 177-184.	ng-cycle life	5.4	78
761	Graphene-encapsulated cobalt sulfides nanocages with excellent anode performances f batteries. Electrochimica Acta, 2015, 167, 32-38.	or lithium ion	2.6	71
762	Designed synthesis of hollow Co ₃ O ₄ nanoparticles encapsul carbon nanosheet array for high and reversible lithium storage. Journal of Materials Che 2015, 3, 8825-8831.	ated in a thin mistry A,	5.2	54
764	Quasi-graphene-envelope Fe-doped Ni ₂ P sandwiched nanocomposites for splitting and lithium storage performance. Journal of Materials Chemistry A, 2015, 3, 95	enhanced water 587-9594.	5.2	61
765	Enhanced tribological properties of bismaleimides filled with aligned graphene nanoshe with Fe ₃ O ₄ nanorods. Journal of Materials Chemistry A, 201	ets coated 5, 3, 10559-10565.	5.2	52
767	Influence of calcination temperature on the catalytic performance of Co ₃ O ₄ /GO nanocomposites for Orange II degradation. RSC / 34125-34133.	Advances, 2015, 5,	1.7	25
768	In-situ TEM examination and exceptional long-term cyclic stability of ultrafine Fe3O4 nanocrystal/carbon nanofiber composite electrodes. Energy Storage Materials, 2015, 1	, 25-34.	9.5	46

	Сітаті	on Report	
#	Article	IF	CITATIONS
769	Multifunctional magnetic graphene hybrid architectures: one-pot synthesis and their applications as organic pollutants adsorbents and supercapacitor electrodes. RSC Advances, 2015, 5, 83480-83485.	1.7	14
770	Assembling porous carbon-coated TiO2(B)/anatase nanosheets on reduced graphene oxide for high performance lithium-ion batteries. Electrochimica Acta, 2015, 182, 406-415.	2.6	36
771	Coaxial three-dimensional CoMoO4 nanowire arrays with conductive coating on carbon cloth for high-performance lithium ion battery anode. Journal of Power Sources, 2015, 300, 132-138.	4.0	72
772	Highly porous TiO2 hollow microspheres constructed by radially oriented nanorods chains for high capacity, high rate and long cycle capability lithium battery. Nano Energy, 2015, 16, 339-349.	8.2	73
773	Hollow Nitrogen-doped Fe3O4/Carbon Nanocages with Hierarchical Porosities as Anode Materials for Lithium-ion Batteries. Electrochimica Acta, 2015, 186, 50-57.	2.6	48
774	Large-scale solvent-thermal synthesis of graphene/magnetite/conductive oligomer ternary composites for microwave absorption. Science China Materials, 2015, 58, 566-573.	3.5	19
775	Hollow Nanostructured Metal Silicates with Tunable Properties for Lithium Ion Battery Anodes. ACS Applied Materials & Interfaces, 2015, 7, 25725-25732.	4.0	71
776	General Synthesis of MnOx (MnO2, Mn2O3, Mn3O4, MnO) Hierarchical Microspheres as Lithium-ion Battery Anodes. Electrochimica Acta, 2015, 184, 250-256.	2.6	152
777	A novel shuttle-like Fe ₃ O ₄ –Co ₃ O ₄ self-assembling architecture with highly reversible lithium storage. RSC Advances, 2015, 5, 70527-70535.	1.7	9
778	Binder-free Co–CoO _x nanowire arrays for lithium ion batteries with excellent rate capability and ultra-long cycle life. Journal of Materials Chemistry A, 2015, 3, 19711-19717.	5.2	39
779	Chemically Integrated Multiwalled Carbon Nanotubes/Zinc Manganate Nanocrystals as Ultralong-Life Anode Materials for Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2015, 3, 2170-2177.	3.2	34
780	Structural design for anodes of lithium-ion batteries: emerging horizons from materials to electrodes. Materials Horizons, 2015, 2, 553-566.	6.4	115
781	Excellent performance of Fe3O4-perforated graphene composite as promising anode in practical Li-ion configuration with LiMn2O4. Energy Storage Materials, 2015, 1, 152-157.	9.5	23
782	Six-armed twin crystals composed of lithium iron silicate nanoplates and their electrochemical properties. CrystEngComm, 2015, 17, 8486-8491.	1.3	8
783	Synthesis of rGO-Fe3O4-SnO2-C Quaternary Hybrid Mesoporous Nanosheets as a High-performance Anode Material for Lithium Ion Batteries. Electrochimica Acta, 2015, 182, 715-722.	2.6	24
784	In situ electrochemical creation of cobalt oxide nanosheets with favorable performance as a high tap density anode material for lithium-ion batteries. Electrochimica Acta, 2015, 180, 914-921.	2.6	18
785	High-performance lithium storage of Co3O4 achieved by constructing porous nanotube structure. Electrochimica Acta, 2015, 182, 507-515.	2.6	34
786	Polymer based graphene/titanium dioxide nanocomposite (GTNC): an emerging and efficient thermoelectric material. Dalton Transactions, 2015, 44, 19248-19255.	1.6	33

#	Article	IF	CITATIONS
787	Inheritance of Crystallographic Orientation during Lithiation/Delithiation Processes of Single-Crystal α-Fe ₂ O ₃ Nanocubes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 24191-24196.	4.0	33
788	Enhanced electrochemical performance of barium hexaferrite nanoplates by Zn ²⁺ doping serving as anode materials. RSC Advances, 2015, 5, 70749-70757.	1.7	14
789	Facile fabrication of composited Mn3O4/Fe3O4 nanoflowers with high electrochemical performance as anode material for lithium ion batteries. Electrochimica Acta, 2015, 180, 493-500.	2.6	45
790	Nanocrystal-constructed mesoporous CoFe ₂ O ₄ nanowire arrays aligned on flexible carbon fabric as integrated anodes with enhanced lithium storage properties. Physical Chemistry Chemical Physics, 2015, 17, 21476-21484.	1.3	28
791	Synthesis of CNT@Fe3O4-C hybrid nanocables as anode materials with enhanced electrochemical performance for lithium ion batteries. Electrochimica Acta, 2015, 176, 1332-1337.	2.6	61
792	Unique synthesis of hollow Co ₃ O ₄ nanoparticles embedded in thin Al ₂ O ₃ nanosheets for enhanced lithium storage. Nanoscale, 2015, 7, 15983-15989.	2.8	19
793	Electrode nanomaterials for lithium-ion batteries. Russian Chemical Reviews, 2015, 84, 826-852.	2.5	84
794	Poly L-lysine (PLL)-mediated porous hematite clusters as anode materials for improved Li-ion batteries. Electronic Materials Letters, 2015, 11, 815-821.	1.0	1
795	Excellent Cycle Stability of Fe ₃ O ₄ Nanoparticles Decorated Graphene as Anode Material for Lithium-ion Batteries. Nano, 2015, 10, 1550081.	0.5	6
796	Perforated Metal Oxide–Carbon Nanotube Composite Microspheres with Enhanced Lithium-Ion Storage Properties. ACS Nano, 2015, 9, 10173-10185.	7.3	91
797	From supramolecular hydrogels to functional aerogels: a facile strategy to fabricate Fe ₃ O ₄ /N-doped graphene composites. RSC Advances, 2015, 5, 77296-77302.	1.7	12
798	The synthesis of shape-controlled α-MoO ₃ /graphene nanocomposites for high performance supercapacitors. New Journal of Chemistry, 2015, 39, 8780-8786.	1.4	50
799	SiO ₂ -directed surface control of hierarchical MoS ₂ microspheres for stable lithium-ion batteries. RSC Advances, 2015, 5, 74012-74016.	1.7	6
800	Ionic liquid assisted solid-state synthesis of lithium iron oxide nanoparticles for rechargeable lithium ion batteries. Solid State Ionics, 2015, 280, 37-43.	1.3	7
801	Fabrication of mesoporous graphene electrodes with enhanced capacitive deionization. Electrochimica Acta, 2015, 182, 183-191.	2.6	56
802	First-Principles Study of Phosphorene and Graphene Heterostructure as Anode Materials for Rechargeable Li Batteries. Journal of Physical Chemistry Letters, 2015, 6, 5002-5008.	2.1	274
803	Polyaniline nanofiber/electrochemically reduced graphene oxide layer-by-layer electrodes for electrochemical energy storage. Journal of Materials Chemistry A, 2015, 3, 3757-3767.	5.2	72
804	Three-dimensional graphene-based composites for energy applications. Nanoscale, 2015, 7, 6924-6943.	2.8	241

#	Article	IF	CITATIONS
805	Hierarchical TiO ₂ –SnO ₂ –graphene aerogels for enhanced lithium storage. Physical Chemistry Chemical Physics, 2015, 17, 1580-1584.	1.3	28
806	One pot green synthesis of graphene–iron oxide nanocomposite (GINC): an efficient material for enhancement of thermoelectric performance. RSC Advances, 2015, 5, 10358-10364.	1.7	34
807	Orderly Packed Anodes for Highâ€Power Lithiumâ€Ion Batteries with Superâ€Long Cycle Life: Rational Design of MnCO ₃ /Largeâ€Area Graphene Composites. Advanced Materials, 2015, 27, 806-812.	11.1	181
808	Carbon dioxide-induced homogeneous deposition of nanometer-sized cobalt ferrite (CoFe2O4) on graphene as high-rate and cycle-stable anode materials for lithium-ion batteries. Journal of Power Sources, 2015, 275, 650-659.	4.0	41
809	Facile synthesis of MnO multi-core@nitrogen-doped carbon shell nanoparticles for high performance lithium-ion battery anodes. Carbon, 2015, 84, 419-425.	5.4	97
810	Lithium–Air Batteries: Performance Interplays with Instability Factors. ChemElectroChem, 2015, 2, 312-323.	1.7	30
811	One-step synthesis of hematite nanospindles from choline chloride/urea deep eutectic solvent with highly powerful storage versus lithium. Journal of Power Sources, 2015, 274, 1-7.	4.0	74
812	Reduced graphene oxide anchored magnetic ZnFe ₂ O ₄ nanoparticles with enhanced visible-light photocatalytic activity. RSC Advances, 2015, 5, 9069-9074.	1.7	48
813	Nanostructured La _{0.7} Sr _{0.3} MnO ₃ compounds for effective electromagnetic interference shielding in the X-band frequency range. Journal of Materials Chemistry C, 2015, 3, 820-827.	2.7	45
814	Graphene/carbon-coated Fe ₃ O ₄ nanoparticle hybrids for enhanced lithium storage. Journal of Materials Chemistry A, 2015, 3, 2361-2369.	5.2	78
815	Polyacrylic Acid Assisted Assembly of Oxide Particles and Carbon Nanotubes for Highâ€Performance Flexible Battery Anodes. Advanced Energy Materials, 2015, 5, 1401207.	10.2	27
816	Superior electrochemical properties of spherical-like Co2(OH)3Cl-reduced graphene oxide composite powders with ultrafine nanocrystals. Carbon, 2015, 84, 14-23.	5.4	23
817	In situ preparation of 3D graphene aerogels@hierarchical Fe ₃ O ₄ nanoclusters as high rate and long cycle anode materials for lithium ion batteries. Chemical Communications, 2015, 51, 1597-1600.	2.2	76
818	Monodisperse Iron Oxide Nanoparticle-Reduced Graphene Oxide Composites Formed by Self-Assembly in Aqueous Phase. Fullerenes Nanotubes and Carbon Nanostructures, 2015, 23, 283-289.	1.0	12
819	Superior Lithium Storage Properties of βâ€FeOOH. Advanced Energy Materials, 2015, 5, 1401517.	10.2	56
820	High performance binder-free Sn coated carbon nanotube array anode. Carbon, 2015, 82, 282-287.	5.4	65
821	Electrochemical properties of iron oxides/carbon nanotubes as anode material for lithium ion batteries. Journal of Power Sources, 2015, 274, 1091-1099.	4.0	72
822	Sustainable synthetic route for γ-Fe ₂ O ₃ /C hybrid as anode material for lithium-ion batteries. Dalton Transactions, 2015, 44, 2150-2156.	1.6	13

#	Article	IF	CITATIONS
823	Structural and functional investigation of graphene oxide–Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction. Scientific Reports, 2014, 4, 4594.	1.6	407
824	Preparation and application of iron oxide/graphene based composites for electrochemical energy storage and energy conversion devices: Current status and perspective. Nano Energy, 2015, 11, 277-293.	8.2	146
825	Fabrication of Fe ₃ O ₄ @reduced graphene oxide composite via novel colloid electrostatic self-assembly process for removal of contaminants from water. Journal of Materials Chemistry A, 2015, 3, 832-839.	5.2	90
826	Dealloying to porous hybrid manganese oxides microspheres for high performance anodes in lithium ion batteries. Journal of Power Sources, 2015, 274, 862-868.	4.0	29
827	Design and construction of three dimensional graphene-based composites for lithium ion battery applications. Energy and Environmental Science, 2015, 8, 456-477.	15.6	243
828	Self-assembled three-dimensional mesoporous ZnFe2O4-graphene composites for lithium ion batteries with significantly enhanced rate capability and cycling stability. Journal of Power Sources, 2015, 275, 769-776.	4.0	81
829	Graphene-iron oxide nanocomposite (GINC): an efficient catalyst for ammonium perchlorate (AP) decomposition and burn rate enhancer for AP based composite propellant. RSC Advances, 2015, 5, 1950-1960.	1.7	81
830	Electrochemical properties of cobalt hydroxychloride microspheres as a new anode material for Li-ion batteries. Scientific Reports, 2015, 4, 5785.	1.6	30
831	A facile approach to produce holey graphene and its application in supercapacitors. Carbon, 2015, 81, 347-356.	5.4	89
832	Sonochemical Synthesis of Graphene Oxideâ€Wrapped Gold Nanoparticles Hybrid Materials: Visible Light Photocatalytic Activity. Chinese Journal of Chemistry, 2015, 33, 119-124.	2.6	29
833	Improving the microstructure and electrochemical performance of carbon nanofibers containing graphene-wrapped silicon nanoparticles as a Li-ion battery anode. Journal of Power Sources, 2015, 273, 404-412.	4.0	42
834	Influence of Oxides on the Stress Evolution and Reversibility during SnO _x Conversion and Li‣n Alloying Reactions. Advanced Energy Materials, 2015, 5, 1400317.	10.2	24
835	Reduced graphene oxide/porous Si composite as anode for high-performance lithium ion batteries. Ionics, 2015, 21, 617-622.	1.2	13
836	One-pot synthesis of manganese oxide-carbon composite microspheres with three dimensional channels for Li-ion batteries. Scientific Reports, 2014, 4, 5751.	1.6	37
837	Enhancement mechanisms of graphene in nano-58S bioactive glass scaffold: mechanical and biological performance. Scientific Reports, 2014, 4, 4712.	1.6	125
838	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7, 4598-4810.	2.8	2,452
839	Porous Graphene Materials for Energy Storage and Conversion Applications. , 0, , .		2
840	Nanostructured Fe2O3 Based Composites Prepared through Arc Plasma Method as Anode Materials in the Lithium-Ion Battery. Journal of Nanomaterials, 2016, 2016, 1-9.	1.5	2

#	Article	IF	CITATIONS
841	The Application of Graphene and Its Derivatives to Energy Conversion, Storage, and Environmental and Biosensing Devices. Chemical Record, 2016, 16, 1591-1634.	2.9	58
842	Germaniumbasierte Nanomaterialien für wiederaufladbare Batterien. Angewandte Chemie, 2016, 128, 8028-8054.	1.6	5
843	Germaniumâ€Based Nanomaterials for Rechargeable Batteries. Angewandte Chemie - International Edition, 2016, 55, 7898-7922.	7.2	162
844	High performance porous iron oxide-carbon nanotube nanocomposite as an anode material for lithium-ion batteries. Electrochimica Acta, 2016, 212, 179-186.	2.6	34
845	Grapheneâ€Encapsulated Nanosheetâ€Assembled Zinc–Nickel–Cobalt Oxide Microspheres for Enhanced Lithium Storage. ChemSusChem, 2016, 9, 186-196.	3.6	35
846	Synthesis of highâ€quality graphene oxide from spent mobile phone batteries. Environmental Progress and Sustainable Energy, 2016, 35, 1485-1491.	1.3	27
847	Electronic structures and quantum capacitance of monolayer and multilayer graphenes influenced by Al, B, N and P doping, and monovacancy: Theoretical study. Carbon, 2016, 108, 7-20.	5.4	99
848	Revealing the Electrochemical Lithiation Routes of CuO Nanowires by inâ€Situ TEM. ChemElectroChem, 2016, 3, 1296-1300.	1.7	11
849	Polypyrrole oated Zinc Ferrite Hollow Spheres with Improved Cycling Stability for Lithiumâ€lon Batteries. Small, 2016, 12, 3732-3737.	5.2	102
850	Core-Shelled Low-Oxidation State Oxides@Reduced Graphene Oxides Cubes via Pressurized Reduction for Highly Stable Lithium Ion Storage. Advanced Functional Materials, 2016, 26, 2959-2965.	7.8	38
851	Li 4 Ti 5 O 12 /reduced graphene oxide composite as a high-rate anode material for lithium ion batteries. Electrochimica Acta, 2016, 209, 235-243.	2.6	33
852	Understanding Origin of Voltage Hysteresis in Conversion Reaction for Na Rechargeable Batteries: The Case of Cobalt Oxides. Advanced Functional Materials, 2016, 26, 5042-5050.	7.8	61
853	Atomic Layerâ€byâ€Layer Co ₃ O ₄ /Graphene Composite for High Performance Lithiumâ€lon Batteries. Advanced Energy Materials, 2016, 6, 1501835.	10.2	316
854	Preparation of Fe3O4/carbon Composites on the Basis of Cellulose Microspheres and their Application as Anode Material for Lithium-ion Batteries. MATEC Web of Conferences, 2016, 67, 02018.	0.1	1
855	An Insight into the Convenience and Efficiency of the Freeze-Drying Route to Construct 3D Graphene-Based Hybrids for Lithium-Ion Batteries. Electrochimica Acta, 2016, 221, 124-132.	2.6	32
856	Hexagonal Boron Nitride/Au Substrate for Manipulating Surface Plasmon and Enhancing Capability of Surface-Enhanced Raman Spectroscopy. ACS Nano, 2016, 10, 11156-11162.	7.3	64
857	A facile and functional process to enhance electrochemical performance of silicon anode in lithium ion batteries. Electrochimica Acta, 2016, 222, 1538-1544.	2.6	18
858	Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy. Nature Communications, 2016, 7, 11441.	5.8	162

#	Article	IF	CITATIONS
860	A facile method to prepare graphene-coat cotton and its application for lithium battery. Journal of Solid State Electrochemistry, 2016, 20, 1251-1261.	1.2	23
861	Ultrafine Fe ₃ O ₄ Quantum Dots on Hybrid Carbon Nanosheets for Longâ€Life, Highâ€Rate Alkaliâ€Metal Storage. ChemElectroChem, 2016, 3, 38-44.	1.7	32
862	Reduced graphene oxide anchored with MnO2 nanorods as anode for high rate and long cycle Lithium ion batteries. Electrochimica Acta, 2016, 201, 165-171.	2.6	72
863	Mesoporous Co ₃ V ₂ O ₈ nanoparticles grown on reduced graphene oxide as a high-rate and long-life anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 6264-6270.	5.2	88
864	Elucidation of the Conversion Reaction of CoMnFeO ₄ Nanoparticles in Lithium Ion Battery Anode via Operando Studies. ACS Applied Materials & Interfaces, 2016, 8, 15320-15332.	4.0	35
865	Designed construction and validation of carbon-free porous MnO spheres with hybrid architecture as anodes for lithium-ion batteries. Physical Chemistry Chemical Physics, 2016, 18, 15854-15860.	1.3	16
866	Nitrogen-doped Mesoporous Carbon-encapsulation Urchin-like Fe 3 O 4 as Anode Materials for High Performance Li-ions Batteries. Electrochimica Acta, 2016, 195, 94-105.	2.6	75
867	One-pot hydrothermal synthesis of hollow Fe3O4 microspheres assembled with nanoparticles for lithium-ion battery anodes. Materials Letters, 2016, 172, 76-80.	1.3	9
868	Solvothermal synthesis of hollow Fe3O4 sub-micron spheres and their enhanced electrochemical properties for supercapacitors. Materials and Design, 2016, 101, 35-43.	3.3	39
869	Strongly coupled MoS2–3D graphene materials for ultrafast charge slow discharge LIBs and water splitting applications. Energy Storage Materials, 2016, 4, 84-91.	9.5	55
870	High electrochemical energy storage in self-assembled nest-like CoO nanofibers with long cycle life. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	25
871	Enhanced cycling stability of Li-rich nanotube cathodes by 3D graphene hierarchical architectures for Li-ion batteries. Acta Materialia, 2016, 112, 11-19.	3.8	30
872	Hierarchical three-dimensional porous SnS2/carbon cloth anode for high-performance lithium ion batteries. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 210, 24-28.	1.7	18
873	Unusually Huge Charge Storage Capacity of Mn ₃ O ₄ –Graphene Nanocomposite Achieved by Incorporation of Inorganic Nanosheets. ACS Applied Materials & Interfaces, 2016, 8, 13360-13372.	4.0	46
874	Advanced cathode materials for lithium-ion batteries using nanoarchitectonics. Nanoscale Horizons, 2016, 1, 423-444.	4.1	119
875	Synthesis of one-dimensional NiFe ₂ O ₄ nanostructures: tunable morphology and high-performance anode materials for Li ion batteries. Journal of Materials Chemistry A, 2016, 4, 8620-8629.	5.2	81
876	Optimal hydrothermal synthesis of hierarchical porous ZnMn 2 O 4 microspheres with more porous core for improved lithium storage performance. Electrochimica Acta, 2016, 207, 58-65.	2.6	24
877	Sandwich structure of graphene-protected silicon/carbon nanofibers for lithium-ion battery anodes. Electrochimica Acta, 2016, 210, 53-60.	2.6	63

#	Article	IF	CITATIONS
878	Simple synthesis of porous carbon materials for high-performance supercapacitors. Journal of Applied Electrochemistry, 2016, 46, 703-712.	1.5	19
879	Room-temperature synthesis of ultrathin Mn3O4 nanosheets as anode materials for lithium-ion batteries. Materials Letters, 2016, 177, 21-24.	1.3	30
880	Dealloying technique in the synthesis of lithium-ion battery anode materials. Journal of Solid State Electrochemistry, 2016, 20, 2105-2111.	1.2	25
881	Coating Fe2O3 with graphene oxide for high-performance sodium-ion battery anode. Composites Communications, 2016, 1, 48-53.	3.3	36
882	Preparation of Sn-Cu-graphene nanocomposites with superior reversible lithium ion storage. Materials Letters, 2016, 185, 565-568.	1.3	24
883	High cycling stability of anodes for lithium-ion batteries based on Fe3O4 nanoparticles and poly(acrylic acid) binder. Journal of Power Sources, 2016, 332, 79-87.	4.0	33
884	Hollow carbon nanosphere embedded with ultrafine Fe 3 O 4 nanoparticles as high performance Li-ion battery anode. Electrochimica Acta, 2016, 219, 356-362.	2.6	27
885	Graphene-Modified Electrodeposited Dendritic Porous Tin Structures as Binder Free Anode for High Performance Lithium-Sulfur Batteries. Electrochimica Acta, 2016, 219, 701-710.	2.6	21
886	The Role of Reduced Graphite Oxide in Transition Metal Oxide Nanocomposites Used as Li Anode Material: An Operando Study on CoFe ₂ O ₄ /rGO. Chemistry - A European Journal, 2016, 22, 16929-16938.	1.7	16
887	Intergrown SnO2–TiO2@graphene ternary composite as high-performance lithium-ion battery anodes. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	19
888	Functionalized-Graphene Composites: Fabrication and Applications in Sustainable Energy and Environment. Chemistry of Materials, 2016, 28, 8082-8118.	3.2	179
889	Manganese oxides nanocrystals supported on mesoporous carbon microspheres for energy storage application. Korean Journal of Chemical Engineering, 2016, 33, 3029-3034.	1.2	13
890	Preparation and performance of novel enhanced electrochemical capacitors based on graphene constructed self-assembled Co ₃ O ₄ microspheres. RSC Advances, 2016, 6, 91904-91909.	1.7	4
891	Hierarchical porous nitrogen-rich carbon nanospheres with high and durable capabilities for lithium and sodium storage. Nanoscale, 2016, 8, 17911-17918.	2.8	57
892	Improved Electrochemical Performance of LiFePO ₄ @N-Doped Carbon Nanocomposites Using Polybenzoxazine as Nitrogen and Carbon Sources. ACS Applied Materials & Interfaces, 2016, 8, 26908-26915.	4.0	71
893	Structural and morphological study of magnetic Fe3O4/ reduced graphene oxide nanocomposites. Materials Today: Proceedings, 2016, 3, 1576-1581.	0.9	18
894	Phosphate Based Cathodes and Reduced Graphene Oxide Composite Anodes for Energy Storage Applications. Springer Theses, 2016, , .	0.0	6
895	Polysiloxane-functionalized graphene oxide paper: pyrolysis and performance as a Li-ion battery and supercapacitor electrode. RSC Advances, 2016, 6, 74323-74331.	1.7	17

# 896	ARTICLE Introduction to Li-ion Batteries. Springer Theses, 2016, , 1-30.	IF 0.0	CITATIONS
897	Graphene Wrapped Fe3O4 Nanoparticles as Stable and High Performance Anodes for Lithium Ion Batteries. Springer Theses, 2016, , 131-148.	0.0	0
898	NiO hollow microspheres interconnected by carbon nanotubes as an anode for lithium ion batteries. Electrochimica Acta, 2016, 213, 75-82.	2.6	27
899	Shape-controlled iron oxide nanocrystals: synthesis, magnetic properties and energy conversion applications. CrystEngComm, 2016, 18, 6303-6326.	1.3	61
900	Bottom-up Approach Design, Band Structure, and Lithium Storage Properties of Atomically Thin γ-FeOOH Nanosheets. ACS Applied Materials & Interfaces, 2016, 8, 21334-21342.	4.0	49
901	Modified Electronic Properties of Graphene. , 2016, , 167-182.		0
902	Facile Synthesis of Ni _{<i>x</i>} Zn _{1â^'<i>x</i>} Fe ₂ O ₄ (<i>x</i> =0, 0.25, 0.5, 0.75, 1) as Anode Materials for Lithium Storage. ChemPlusChem, 2016, 81, 1174-1181.	1.3	11
903	2D materials for renewable energy storage devices: Outlook and challenges. Chemical Communications, 2016, 52, 13528-13542.	2.2	96
904	Fabrication of a novel magnetic carbon nanocomposite adsorbent via pyrolysis of sugar. Chemosphere, 2016, 163, 305-312.	4.2	34
905	Formation of C@Fe ₃ O ₄ @C Hollow Sandwiched Structures with Enhanced Lithium‣torage Properties. European Journal of Inorganic Chemistry, 2016, 2016, 3722-3727.	1.0	14
906	Controlling the Placement of Spherical Nanoparticles in Electrically Driven Polymer Jets and its Application to Liâ€lon Battery Anodes. Small, 2016, 12, 5543-5553.	5.2	10
907	Liquid-Solid-Solution Assembly of CoFe 2 O 4 /Graphene Nanocomposite as a High-Performance Lithium-Ion Battery Anode. Electrochimica Acta, 2016, 215, 247-252.	2.6	41
908	A bubble-template approach for assembling Ni–Co oxide hollow microspheres with an enhanced electrochemical performance as an anode for lithium ion batteries. Physical Chemistry Chemical Physics, 2016, 18, 25879-25886.	1.3	39
909	Fe3O4 nanoparticles decorated on the biochar derived from pomelo pericarp as excellent anode materials for Li-ion batteries. Electrochimica Acta, 2016, 222, 1562-1568.	2.6	43
910	MOF-derived Fe ₃ O ₄ /carbon octahedral nanostructures with enhanced performance as anode materials for lithium-ion batteries. RSC Advances, 2016, 6, 85917-85923.	1.7	35
911	Facile synthesis of an Fe ₃ O ₄ /FeO/Fe/C composite as a high-performance anode for lithium-ion batteries. RSC Advances, 2016, 6, 89715-89720.	1.7	20
912	Facile preparation of tiny gold nanoparticle loaded magnetic yolk–shell carbon nanoreactors for confined catalytic reactions. New Journal of Chemistry, 2016, 40, 9684-9693.	1.4	13
913	Leveraging valuable synergies by combining alloying and conversion for lithium-ion anodes. Energy and Environmental Science, 2016, 9, 3348-3367.	15.6	202

	C	itation Report	
#	Article	IF	CITATIONS
914	Synthesis and electrochemical performance of a coaxial VGCF@ZnMnO 3 nanocomposite as a high-capacity anode material for lithium-ion batteries. Electrochimica Acta, 2016, 216, 376-385.	2.6	15
915	High surface area monodispersed Fe3O4 nanoparticles alone and on physical exfoliated graphite for improved supercapacitors. Journal of Physics and Chemistry of Solids, 2016, 99, 138-147.	1.9	33
916	Effects of TiO ₂ content on the microstructure, mechanical properties and photocatalytic activity of three dimensional TiO ₂ –Graphene composite prepared by hydrothermal reaction. Materials Research Express, 2016, 3, 075602.	0.8	2
917	Assessing Charge Contribution from Thermally Treated Ni Foam as Current Collectors for Li-Ion Batteries. Journal of the Electrochemical Society, 2016, 163, A1805-A1811.	1.3	14
918	Reactions of graphene supported Co ₃ O ₄ nanocubes with lithium and magnesium studied by <i>in situ</i> transmission electron microscopy. Nanotechnology, 2016, 27, 085402.	1.3	15
919	Surfactant-free self-assembly of reduced graphite oxide-MoO2 nanobelt composites used as electrod for lithium-ion batteries. Electrochimica Acta, 2016, 211, 972-981.	e 2.6	53
920	Facile synthesis of CoFe2O4 nanoparticles anchored on graphene sheets for enhanced performance of lithium ion battery. Progress in Natural Science: Materials International, 2016, 26, 498-502.	of 1.8	11
921	Electrochemical possibility of iron compounds in used disposable heating pads and their use in lithium ion batteries. Environmental Science and Pollution Research, 2016, 23, 14656-14662.	2.7	2
922	Facile One-pot Transformation of Iron Oxides from Fe2O3 Nanoparticles to Nanostructured Fe3O4@ Core-Shell Composites via Combustion Waves. Scientific Reports, 2016, 6, 21792.	C 1.6	27
923	Ultrafine CoO Embedded Reduced Graphene Oxide Nanocomposites: A High Rate Anode for Li–Ion Battery. ChemistrySelect, 2016, 1, 5758-5767.	0.7	22
924	ZIFâ€67 Derived Co ₃ O ₄ /rGO Electrodes for Electrochemical Detection of H ₂ O ₂ with High Sensitivity and Selectivity. ChemistrySelect, 2016, 1, 5727	7-5732. 0.7	15
925	A scalable in situ surfactant-free synthesis of a uniform MnO/graphene composite for highly reversible lithium storage. Dalton Transactions, 2016, 45, 19221-19225.	1.6	12
926	Highly Conductive In-SnO2/RGO Nano-Heterostructures with Improved Lithium-Ion Battery Performance. Scientific Reports, 2016, 6, 25860.	1.6	34
927	Chapter 6 Graphene: A New Star Nanomaterial in Energy and Environment Applications. , 2016, , 273	-306.	0
928	Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries. Nature Communications, 2016, 7, 10998.	5.8	327
929	Flower-like Fe2O3/reduced graphene oxide composite for electrochemical energy storage. Synthetic Metals, 2016, 222, 198-204.	2.1	14
930	Study on the Electrochemical Reaction Mechanism of ZnFe2O4 by In Situ Transmission Electron Microscopy. Scientific Reports, 2016, 6, 28197.	1.6	31
931	Boosting the power performance of multilayer graphene as lithium-ion battery anode via unconventional doping with in-situ formed Fe nanoparticles. Scientific Reports, 2016, 6, 23585.	1.6	36

#	Article	IF	CITATIONS
932	Hierarchically structured C@SnO ₂ @C nanofiber bundles with high stability and effective ambipolar diffusion kinetics for high-performance Li-ion batteries. Journal of Materials Chemistry A, 2016, 4, 18783-18791.	5.2	42
933	Cu3P/RGO Nanocomposite as a New Anode for Lithium-Ion Batteries. Scientific Reports, 2016, 6, 35189.	1.6	51
934	Novel synthesis of holey reduced graphene oxide (HRGO) by microwave irradiation method for anode in lithium-ion batteries. Scientific Reports, 2016, 6, 29854.	1.6	54
935	Pushing the theoretical capacity limits of iron oxide anodes: capacity rise of γ-Fe ₂ O ₃ nanoparticles in lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 18107-18115.	5.2	61
936	Incorporating conjugated carbonyl compounds into carbon nanomaterials as electrode materials for electrochemical energy storage. Physical Chemistry Chemical Physics, 2016, 18, 31361-31377.	1.3	29
937	Conversion Reactionâ€Based Oxide Nanomaterials for Lithium Ion Battery Anodes. Small, 2016, 12, 2146-2172.	5.2	405
938	Etchingâ€inâ€aâ€Box: A Novel Strategy to Synthesize Unique Yolk‣helled Fe ₃ O ₄ @Carbon with an Ultralong Cycling Life for Lithium Storage. Advanced Energy Materials, 2016, 6, 1502318.	10.2	158
939	Growth of Hollow Transition Metal (Fe, Co, Ni) Oxide Nanoparticles on Graphene Sheets through Kirkendall Effect as Anodes for Highâ€Performance Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2016, 22, 1638-1645.	1.7	55
940	Facile Fabrication of Solidâ€state Electrochemiluminescence Sensor via Nonâ€covalent Ï€â€Ï€ Stacking and Covalent Bonding on Graphite Electrode. Electroanalysis, 2016, 28, 936-939.	1.5	8
941	K ₂ Mn ₄ O ₈ /Reduced Graphene Oxide Nanocomposites for Excellent Lithium Storage and Adsorption of Lead Ions. Chemistry - A European Journal, 2016, 22, 3397-3404.	1.7	14
942	Synthesis of hierarchical nanospheres Fe2O3/graphene composite and its application in lithium-ion battery as a high-performance anode material. Ionics, 2016, 22, 2015-2020.	1.2	22
943	Active Fe ₂ O ₃ nanoparticles encapsulated in porous g-C ₃ N ₄ /graphene sandwich-type nanosheets as a superior anode for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 10666-10672.	5.2	94
944	Covalently Functionalized Graphene by Radical Polymers for Graphene-Based High-Performance Cathode Materials. ACS Applied Materials & Interfaces, 2016, 8, 17352-17359.	4.0	93
945	Solvent-free synthesis of crystalline mesoporous γ-Fe ₂ O ₃ as an anode material in lithium-ion batteries. RSC Advances, 2016, 6, 57009-57012.	1.7	10
946	Printed Graphene-Based Electrochemical Sensors. , 2016, , 163-178.		0
947	Synthesis and electrochemical performances of Mn x Co y Ni z CO 3 as novel anode material. Ceramics International, 2016, 42, 7888-7894.	2.3	12
948	Graphene-wrapped nickel sulfide nanoprisms with improved performance for Li-ion battery anodes and supercapacitors. Nano Energy, 2016, 26, 425-437.	8.2	160
949	Sandwich-like mesoporous graphene@magnetite@carbon nanosheets for high-rate lithium ion batteries. Solid State Sciences, 2016, 57, 16-23.	1.5	6

#	Article	IF	Citations
950	Preparation and microwave absorbing properties of nickel-coated carbon fiber with polyaniline via in situ polymerization. Journal of Materials Science: Materials in Electronics, 2016, 27, 5607-5612.	1.1	35
951	Uniform Hierarchical Fe ₃ O ₄ @Polypyrrole Nanocages for Superior Lithium Ion Battery Anodes. Advanced Energy Materials, 2016, 6, 1600256.	10.2	184
952	Three-dimensional Fe3O4 Nanotube Array on Carbon Cloth Prepared from A Facile Route for Lithium ion Batteries. Electrochimica Acta, 2016, 193, 32-38.	2.6	38
953	Synthesis of a Ni0.8Zn0.2Fe2O4–RGO nanocomposite: an excellent magnetically separable catalyst for dye degradation and microwave absorber. RSC Advances, 2016, 6, 14090-14096.	1.7	38
954	Cuprous Sulfide/Reduced Graphene Oxide Hybrid Nanomaterials: Solvothermal Synthesis and Enhanced Electrochemical Performance. Journal of Electronic Materials, 2016, 45, 285-290.	1.0	7
955	<i>In-Situ</i> Crafting of ZnFe ₂ O ₄ Nanoparticles Impregnated within Continuous Carbon Network as Advanced Anode Materials. ACS Nano, 2016, 10, 2728-2735.	7.3	192
956	Nanocrystalline iron oxide based electroactive materials in lithium ion batteries: the critical role of crystallite size, morphology, and electrode heterostructure on battery relevant electrochemistry. Inorganic Chemistry Frontiers, 2016, 3, 26-40.	3.0	83
957	Scalable synthesis of nanometric α-Fe ₂ O ₃ within interconnected carbon shells from pyrolytic alginate chelates for lithium storage. RSC Advances, 2016, 6, 7961-7969.	1.7	15
958	Synthesis of Cu2ZnSnS4 as Novel Anode material for Lithium-ion Battery. Electrochimica Acta, 2016, 190, 703-712.	2.6	35
959	Enhanced rate capability of a lithium ion battery anode based on liquid–solid-solution assembly of Fe ₂ O ₃ on crumpled graphene. RSC Advances, 2016, 6, 9007-9012.	1.7	20
960	An overview of AB ₂ O ₄ - and A ₂ BO ₄ -structured negative electrodes for advanced Li-ion batteries. RSC Advances, 2016, 6, 21448-21474.	1.7	76
961	Hybridization of graphene nanosheets and carbon-coated hollow Fe ₃ O ₄ nanoparticles as a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 2453-2460.	5.2	128
962	A novel reducing graphene/polyaniline/cuprous oxide composite hydrogel with unexpected photocatalytic activity for the degradation of Congo red. Applied Surface Science, 2016, 360, 594-600.	3.1	80
963	MoO2/Mo2C/C spheres as anode materials for lithium ion batteries. Carbon, 2016, 96, 1200-1207.	5.4	96
964	Facile fabrication of reduced graphene oxide covered ZnCo ₂ O ₄ porous nanowire array hierarchical structure on Ni-foam as a high performance anode for a lithium-ion battery. RSC Advances, 2016, 6, 547-554.	1.7	19
965	Enhancing the performance of MnO by double carbon modification for advanced lithium-ion battery anodes. Journal of Materials Chemistry A, 2016, 4, 920-925.	5.2	70
966	ZnO nanoparticles encapsulated in a 3D hierarchical carbon framework as anode for lithium ion battery. Electrochimica Acta, 2016, 189, 245-251.	2.6	60
967	Porous and hollow NiO microspheres for high capacity and long-life anode materials of Li-ion batteries. Materials and Design, 2016, 92, 160-165.	3.3	39

#	Article	IF	CITATIONS
968	A brief review on graphene/inorganic nanostructure composites: materials for the future. Indian Journal of Physics, 2016, 90, 1019-1032.	0.9	27
969	Highly ordered mesoporous spinel ZnCo2O4 as a high-performance anode material for lithium-ion batteries. Electrochimica Acta, 2016, 197, 58-67.	2.6	69
970	Interface engineering of Graphene-Silicon heterojunction solar cells. Superlattices and Microstructures, 2016, 99, 3-12.	1.4	12
971	Superior electrochemical properties of manganese dioxide/reduced graphene oxide nanocomposites as anode materials for high-performance lithium ion batteries. Journal of Power Sources, 2016, 312, 207-215.	4.0	57
972	Co ₉ S ₈ nanoparticles encapsulated in nitrogen-doped mesoporous carbon networks with improved lithium storage properties. RSC Advances, 2016, 6, 31775-31781.	1.7	69
973	Coral-Inspired Nanoengineering Design for Long-Cycle and Flexible Lithium-Ion Battery Anode. ACS Applied Materials & Interfaces, 2016, 8, 9185-9193.	4.0	22
974	SnSb/TiO ₂ /C nanocomposite fabricated by high energy ball milling for high-performance lithium-ion batteries. RSC Advances, 2016, 6, 32462-32466.	1.7	15
975	3D hierarchical porous ZnO/ZnCo ₂ O ₄ nanosheets as high-rate anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 6042-6047.	5.2	91
976	Unique walnut-shaped porous MnO ₂ /C nanospheres with enhanced reaction kinetics for lithium storage with high capacity and superior rate capability. Journal of Materials Chemistry A, 2016, 4, 4264-4272.	5.2	53
977	A facile synthesis of Fe ₃ O ₄ nanoparticles/graphene for high-performance lithium/sodium-ion batteries. RSC Advances, 2016, 6, 16624-16633.	1.7	71
978	Facile fabrication of binder-free NiO electrodes with high rate capacity for lithium-ion batteries. Applied Surface Science, 2016, 368, 298-302.	3.1	35
979	Ultra-small Fe3O4 nanocrystals decorated on 2D graphene nanosheets with excellent cycling stability as anode materials for lithium ion batteries. Electrochimica Acta, 2016, 194, 219-227.	2.6	69
980	Graphene-based materials with tailored nanostructures for energy conversion and storage. Materials Science and Engineering Reports, 2016, 102, 1-72.	14.8	221
981	Ultrahigh cycling stability and rate capability of ZnFe ₂ O ₄ @graphene hybrid anode prepared through a facile syn-graphenization strategy. New Journal of Chemistry, 2016, 40, 3139-3146.	1.4	15
982	Solvent-directed sol-gel assembly of 3-dimensional graphene-tented metal oxides and strong synergistic disparities in lithium storage. Journal of Materials Chemistry A, 2016, 4, 4032-4043.	5.2	19
983	Enhanced bone formation in electrospun poly(l-lactic-co-glycolic acid)–tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide. Materials Science and Engineering C, 2016, 62, 823-834.	3.8	100
984	Designed Construction of a Graphene and Iron Oxide Freestanding Electrode with Enhanced Flexible Energy-Storage Performance. ACS Applied Materials & amp; Interfaces, 2016, 8, 6972-6981.	4.0	47
985	PVAc/PEDOT:PSS/graphene–iron oxide nanocomposite (GINC): an efficient thermoelectric material. RSC Advances, 2016, 6, 22453-22460.	1.7	32

#	Article	IF	CITATIONS
986	Microwave-assisted synthesis of void-induced graphene-wrapped nickel oxide hybrids for supercapacitor applications. RSC Advances, 2016, 6, 26612-26620.	1.7	90
987	Electrochemical properties of hollow copper (II) oxide nanopowders prepared by salt-assisted spray drying process applying nanoscale Kirkendall diffusion. Journal of Applied Electrochemistry, 2016, 46, 469-477.	1.5	6
988	Porous one-dimensional carbon/iron oxide composite for rechargeable lithium-ion batteries with high and stable capacity. Journal of Alloys and Compounds, 2016, 672, 79-85.	2.8	66
989	Electrospun Lotus Root-like CoMoO4@Graphene Nanofibers as High-Performance Anode for Lithium Ion Batteries. Electrochimica Acta, 2016, 196, 125-130.	2.6	63
990	The green reduction of graphene oxide. RSC Advances, 2016, 6, 27807-27828.	1.7	235
991	Assembling mesoporous ZnxCo3-xO4 fibers with interconnected nanocrystals via a topotactic conversion route for enhanced performance Lithium-ion batteries. Electrochimica Acta, 2016, 190, 894-902.	2.6	16
992	Synthesis and electrochemical performances of Mn x Co y Ni z CO3. Journal of Materials Science: Materials in Electronics, 2016, 27, 1700-1707.	1.1	5
993	Strategy for yolk-shell structured metal oxide-carbon composite powders and their electrochemical properties for lithium-ion batteries. Carbon, 2016, 100, 137-144.	5.4	35
994	One-step preparation of graphene nanosheets via ball milling of graphite and the application in lithium-ion batteries. Journal of Materials Science, 2016, 51, 3675-3683.	1.7	58
995	Recycling of graphite anodes for the next generation of lithium ion batteries. Journal of Applied Electrochemistry, 2016, 46, 123-148.	1.5	189
996	Facile synthesis of three-dimensional porous Ni3S2 electrode with superior lithium ion storage. Materials Letters, 2016, 166, 307-310.	1.3	9
997	Magnetic PSA-Fe 3 O 4 @C 3D mesoporous microsphere as anode for lithium ion batteries. Electrochimica Acta, 2016, 188, 734-743.	2.6	26
998	Hydrothermal synthesis of graphene-LaFeO3 composite supported with Cu-Co nanocatalyst for higher alcohol synthesis from syngas. Applied Surface Science, 2016, 364, 388-399.	3.1	40
999	Simple self-assembly of SnS 2 entrapped graphene aerogel and its enhanced lithium storage performance. Ceramics International, 2016, 42, 6572-6580.	2.3	20
1000	Template-directed metal oxides for electrochemical energy storage. Energy Storage Materials, 2016, 3, 1-17.	9.5	50
1001	Atomic-layer-deposited iron oxide on arrays of metal/carbon spheres and their application for electrocatalysis. Nano Energy, 2016, 20, 244-253.	8.2	62
1002	Hierarchical sandwich-type tungsten trioxide nanoplatelets/graphene anode for high-performance lithium-ion batteries with long cycle life. Electrochimica Acta, 2016, 190, 964-971.	2.6	21
1003	Sol–gel design strategy for embedded Na3V2(PO4)3 particles into carbon matrices for high-performance sodium-ion batteries. Carbon, 2016, 96, 1028-1033.	5.4	77

#	Article	IF	CITATIONS
1004	Preparation of Fe 3 O 4 /rebar graphene composite via solvothermal route as binder free anode for lithium ion batteries. Journal of Alloys and Compounds, 2016, 661, 448-454.	2.8	25
1005	Dual hybrid strategy towards achieving high capacity and long-life lithium storage of ZnO. Journal of Power Sources, 2016, 305, 1-9.	4.0	22
1006	Effect of PEDOT:PSS Coating on Manganese Oxide Nanowires for Lithium Ion Battery Anodes. Electrochimica Acta, 2016, 187, 340-347.	2.6	39
1007	Literature Review and Research Background. Springer Theses, 2016, , 1-49.	0.0	2
1008	Facile Preparation of Fe ₃ O ₄ /Carbon Nanocomposite With High Lithium Storage Capacity. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 647-652.	0.6	3
1009	Growth of hierarchal porous CoO nanowire arrays on carbon cloth as binder-free anodes for high-performance flexible lithium-ion batteries. Journal of Alloys and Compounds, 2016, 655, 372-377.	2.8	38
1010	A novel Fe 3 O 4 /buckypaper composite as free-standing anode for lithium-ion battery. Journal of Alloys and Compounds, 2016, 657, 109-114.	2.8	18
1011	Structure and electrochemical performance of highly porous carbons by single-step potassium humate carbonization for application in supercapacitors. Journal of Applied Electrochemistry, 2016, 46, 113-121.	1.5	13
1012	A novel porous CuO nanorod/rGO composite as a high stability anode material for lithium-ion batteries. Ceramics International, 2016, 42, 1833-1839.	2.3	45
1013	Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges. Energy Storage Materials, 2016, 2, 107-138.	9.5	371
1014	Magnetic responsive metal–organic frameworks nanosphere with core–shell structure for highly efficient removal of methylene blue. Chemical Engineering Journal, 2016, 283, 1127-1136.	6.6	175
1015	2-Dimensional graphene as a route for emergence of additional dimension nanomaterials. Biosensors and Bioelectronics, 2017, 89, 8-27.	5.3	31
1016	Magnetic property, thermal stability, UV-resistance, and moisture absorption behavior of magnetic wood composites. Polymer Composites, 2017, 38, 1646-1654.	2.3	9
1017	Reversible control of the magnetization of Fe ₃ O ₄ via lithium ions. RSC Advances, 2017, 7, 2644-2649.	1.7	13
1018	Ultrathin Layered Hydroxide Cobalt Acetate Nanoplates Faceâ€ŧoâ€Face Anchored to Graphene Nanosheets for Highâ€Efficiency Lithium Storage. Advanced Functional Materials, 2017, 27, 1605544.	7.8	103
1019	Plasma-treated Co3O4/graphene nanocomposite as high performance anode of lithium-ion battery. Journal of Alloys and Compounds, 2017, 701, 200-207.	2.8	30
1020	Graphene coated La 3+ /Sc 3+ co-doped Li 4 Ti 5 O 12 anodes for enhanced Li-ion battery performance. Materials Letters, 2017, 193, 179-182.	1.3	11
1021	From zinc-cyanide hybrid coordination polymers to hierarchical yolk-shell structures for high-performance and ultra-stable lithium-ion batteries. Nano Energy, 2017, 33, 168-176.	8.2	51

#	Article	IF	CITATIONS
1022	Development of manganese ferrite/graphene oxide nanocomposites for magnetorheological fluid with enhanced sedimentation stability. Journal of Industrial and Engineering Chemistry, 2017, 48, 142-150.	2.9	88
1023	Investigation of electronic and local structural changes during lithium uptake and release of nano-crystalline NiFe2O4 by X-ray absorption spectroscopy. Journal of Power Sources, 2017, 342, 56-63.	4.0	29
1024	How much does size really matter? Exploring the limits of graphene as Li ion battery anode material. Solid State Communications, 2017, 251, 88-93.	0.9	36
1025	Graphene-based Composites for Electrochemical Energy Storage. Springer Theses, 2017, , .	0.0	10
1026	Design of hierarchical CuS/graphene architectures with enhanced lithium storage capability. Applied Surface Science, 2017, 403, 1-8.	3.1	57
1027	High-Performance Graphene Foam/Fe3O4 Hybrid Electrode for Lithium Ion Battery. Springer Theses, 2017, , 51-63.	0.0	0
1028	Ultrathinâ€Nanosheetâ€Induced Synthesis of 3D Transition Metal Oxides Networks for Lithium Ion Battery Anodes. Advanced Functional Materials, 2017, 27, 1605017.	7.8	284
1029	Complex Hollow Nanostructures: Synthesis and Energyâ€Related Applications. Advanced Materials, 2017, 29, 1604563.	11.1	627
1030	A three-dimensional core-shell nanostructured composite of polypyrrole wrapped MnO2/reduced graphene oxide/carbon nanotube for high performance lithium ion batteries. Journal of Colloid and Interface Science, 2017, 493, 241-248.	5.0	41
1031	Facile preparation of graphene nanosheets encapsulated Fe3O4 octahedra composite and its high lithium storage performances. Chemical Engineering Journal, 2017, 315, 115-123.	6.6	48
1032	Quadrangular-CNT-Fe3O4-C composite based on quadrilateral carbon nanotubes as anode materials for high performance lithium-ion batteries. Journal of Alloys and Compounds, 2017, 702, 499-508.	2.8	20
1033	Facile preparation of Mn ₃ O ₄ hollow microspheres via reduction of pentachloropyridine and their performance in lithium-ion batteries. RSC Advances, 2017, 7, 8264-8271.	1.7	22
1034	Uniform one-pot anchoring of Fe 3 O 4 to defective reduced graphene oxide for enhanced lithium storage. Chemical Engineering Journal, 2017, 317, 890-900.	6.6	34
1035	Magnetite nano-islands on silicon-carbide with graphene. Journal of Applied Physics, 2017, 121, 014310.	1.1	5
1036	Phase Separation Derived Core/Shell Structured Cu ₁₁ V ₆ O ₂₆ /V ₂ O ₅ Microspheres: First Synthesis and Excellent Lithium-Ion Anode Performance with Outstanding Capacity Self-Restoration. Small, 2017, 13, 1603140.	5.2	35
1037	Ironâ€Based Electrodes Meet Waterâ€Based Preparation, Fluorineâ€Free Electrolyte and Binder: A Chance for More Sustainable Lithiumâ€Ion Batteries?. ChemSusChem, 2017, 10, 2431-2448.	3.6	32
1038	Graphene-like carbon sheet/Fe3O4 nanocomposites derived from soda papermaking black liquor for high performance lithium ion batteries. Electrochimica Acta, 2017, 232, 550-560.	2.6	40
1039	Flexible batteries under extreme bending: Interfacial contact pressure and conductance. Extreme Mechanics Letters, 2017, 13, 108-115.	2.0	7

#	Article	IF	CITATIONS
1040	Fabrication of high-pore volume carbon nanosheets with uniform arrangement of mesopores. Nano Research, 2017, 10, 2106-2116.	5.8	16
1041	One-step hydrothermal synthesis of nitrogen doping graphene based cobalt oxide and its supercapacitive properties. Journal of Alloys and Compounds, 2017, 705, 801-805.	2.8	28
1042	Synergistic Effect of Flakes Containing Interconnected Nanoparticles and Conducting Graphene Additive to Qualify ZnMn ₂ 0 ₄ as Potential Lithiumâ€Battery Anode. ChemElectroChem, 2017, 4, 1154-1164.	1.7	16
1043	Fe3O4/Ag microsheets assembled by interlaced nanothorns as high performance anode materials for lithium storage. International Journal of Hydrogen Energy, 2017, 42, 10072-10080.	3.8	13
1044	Fabrication of C/SiO1.5 nanospheres by emulsion polymerization of twin monomer for high-performance lithium-ion battery anode. Journal of Alloys and Compounds, 2017, 701, 487-493.	2.8	4
1045	Depolarization effect to enhance the performance of lithium ions batteries. Nano Energy, 2017, 33, 497-507.	8.2	79
1046	Exfoliation approach for preparing high conductive reduced graphite oxide and its application in natural rubber composites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 218, 74-83.	1.7	18
1047	Electrochemical deposition of Fe 3 O 4 nanoparticles and flower-like hierarchical porous nanoflakes on 3D Cu-cone arrays for rechargeable lithium battery anodes. Materials and Design, 2017, 121, 321-334.	3.3	17
1048	Fabrication of core–shell, yolk–shell and hollow Fe ₃ O ₄ @carbon microboxes for high-performance lithium-ion batteries. Materials Chemistry Frontiers, 2017, 1, 823-830.	3.2	58
1049	Highly Efficient High-Pressure Homogenization Approach for Scalable Production of High-Quality Graphene Sheets and Sandwich-Structured α-Fe ₂ O ₃ /Graphene Hybrids for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 11025-11034.	4.0	75
1050	Good lithium storage performance of Fe ₂ SiO ₄ as an anode material for secondary lithium ion batteries. RSC Advances, 2017, 7, 4437-4443.	1.7	35
1051	Graphene–Pure Sulfur Sandwich Structure for Ultrafast, Long-Life Lithium-Sulfur Batteries. Springer Theses, 2017, , 75-94.	0.0	3
1052	Self-assembly of novel hierarchical flowers-like Sn3O4 decorated on 2D graphene nanosheets hybrid as high-performance anode materials for LIBs. Applied Surface Science, 2017, 405, 13-19.	3.1	16
1053	Twoâ€Dimensional Metal Oxide Nanomaterials for Nextâ€Generation Rechargeable Batteries. Advanced Materials, 2017, 29, 1700176.	11.1	317
1054	Magnetic Graphene Nanocomposites for Multifunctional Applications. , 2017, , 317-357.		2
1055	Quantitative 3D evolution of colloidal nanoparticle oxidation in solution. Science, 2017, 356, 303-307.	6.0	125
1056	Octahedron Fe 3 O 4 particles supported on 3D MWCNT/graphene foam: In-situ method and application as a comprehensive microwave absorption material. Applied Surface Science, 2017, 416, 329-337.	3.1	58
1057	In situ hybridization of CoO _X nanoparticles on N-doped graphene through one step mineralization of co-responsive hydrogels. Dalton Transactions, 2017, 46, 6163-6167.	1.6	11

#	Article	IF	CITATIONS
1058	A critical review-promises and barriers of conversion electrodes for Li-ion batteries. Journal of Solid State Electrochemistry, 2017, 21, 1907-1923.	1.2	78
1059	Facile preparation of a V ₂ O ₃ /carbon fiber composite and its application for long-term performance lithium-ion batteries. New Journal of Chemistry, 2017, 41, 5380-5386.	1.4	29
1060	3D Ordered Macroporous Carbon Encapsulated ZnO Nanoparticles as a Highâ€Performance Anode for Lithiumâ€ion Batteries. ChemElectroChem, 2017, 4, 2359-2365.	1.7	19
1061	Construction of 3D CoO Quantum Dots/Graphene Hydrogels as Binder-Free Electrodes for Ultra-high Rate Energy Storage Applications. Electrochimica Acta, 2017, 243, 152-161.	2.6	32
1062	Sizeâ€Controlled Hollow Spheres of C/αâ€Fe ₂ O ₃ Prepared through the Quasiemulsionâ€Templated Method and Their Electrochemical Properties for Lithiumâ€Ion Storage. ChemElectroChem, 2017, 4, 2045-2051.	1.7	23
1063	Recoverable Wire-Shaped Supercapacitors with Ultrahigh Volumetric Energy Density for Multifunctional Portable and Wearable Electronics. ACS Applied Materials & Interfaces, 2017, 9, 17051-17059.	4.0	31
1064	Recent advances in cathode materials for Li–S battery: structure and performance. Rare Metals, 2017, 36, 365-380.	3.6	27
1065	Moâ€Based Ultrasmall Nanoparticles on Hierarchical Carbon Nanosheets for Superior Lithium Ion Storage and Hydrogen Generation Catalysis. Advanced Energy Materials, 2017, 7, 1602782.	10.2	123
1066	Formation of NiFe2O4/Expanded Graphite Nanocomposites with Superior Lithium Storage Properties. Nano-Micro Letters, 2017, 9, 34.	14.4	42
1067	Electrochemical Performance of Li 4 Ti 5 O 12 Nanowire/Fe 3 O 4 Nanoparticle Compound as Anode Material of Lithium Ion Batteries. Electrochimica Acta, 2017, 241, 179-188.	2.6	17
1068	Enhanced conductivity and electrochemical performance of conformal mesoporous N/C co-decorated TiO2-RGO composites for lithium ion batteries. Journal of Alloys and Compounds, 2017, 710, 784-793.	2.8	10
1069	Graphene oxide wrapped Fe 2 O 3 as a durable anode material for high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2017, 714, 425-432.	2.8	44
1070	Photovoltaic Monocrystalline Silicon Wasteâ€Derived Hierarchical Silicon/Flake Graphite/Carbon Composite as Lowâ€Cost and Highâ€Capacity Anode for Lithiumâ€Ion Batteries. ChemistrySelect, 2017, 2, 3479-3489.	0.7	22
1071	Design and synthesis of the composites of multiporous NiMnO 3 micro-nano structure spheres and graphene with alleviated side reaction and enhanced performances as anode materials for lithium ion batteries. Journal of Alloys and Compounds, 2017, 716, 270-277.	2.8	13
1072	Imaging and Analysis of Encapsulated Objects through Selfâ€Assembled Electron and Optically Transparent Graphene Oxide Membranes. Advanced Materials Interfaces, 2017, 4, 1600734.	1.9	8
1073	Template-free 3D titanium carbide (Ti ₃ C ₂ T _x) MXene particles crumpled by capillary forces. Chemical Communications, 2017, 53, 400-403.	2.2	271
1074	Rationally designed hollow precursor-derived Zn 3 V 2 O 8 nanocages as a high-performance anode material for lithium-ion batteries. Nano Energy, 2017, 31, 367-376.	8.2	94
1075	Recent progress in two-dimensional COFs for energy-related applications. Journal of Materials Chemistry A, 2017, 5, 14463-14479.	5.2	243

#		IF	CITATIONS
1076	Quantitative Analysis of the Morphology of {101} and {001} Faceted Anatase TiO ₂ Nanocrystals and Its Implication on Photocatalytic Activity. Chemistry of Materials, 2017, 29, 5591-5604.	3.2	65
1077	Current and future directions in electron transfer chemistry of graphene. Chemical Society Reviews, 2017, 46, 4530-4571.	18.7	125
1078	Sandwich-structured nanocomposites of N-doped graphene and nearly monodisperse Fe3O4 nanoparticles as high-performance Li-ion battery anodes. Nano Research, 2017, 10, 2923-2933.	5.8	30
1079	Construction of SnO2â^Graphene Composite with Half-Supported Cluster Structure as Anode toward Superior Lithium Storage Properties. Scientific Reports, 2017, 7, 3276.	1.6	14
1080	A Wire-Shaped Supercapacitor in Micrometer Size Based on Fe3O4 Nanosheet Arrays on Fe Wire. Nano-Micro Letters, 2017, 9, 46.	14.4	64
1081	Carbon nanofiber-based nanostructures for lithium-ion and sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 13882-13906.	5.2	134
1082	Aluminum fumarate-based metal organic frameworks with tremella-like structure as ultrafast and stable anode for lithium-ion batteries. Nano Energy, 2017, 39, 200-210.	8.2	96
1083	Carbon encapsulated Fe ₃ O ₄ nanospheres with high electrochemical performance as anode materials for Liâ€ion battery. International Journal of Applied Ceramic Technology, 2017, 14, 938-947.	1.1	11
1084	Synthesis and superior lithium storage performances of hybrid hollow urchin-like silicate constructed by nanotubes wrapped in reduced graphene oxides. Electrochimica Acta, 2017, 245, 361-370.	2.6	9
1085	Synthesis of strontium hexaferrite nanoplates and the enhancement of their electrochemical performance by Zn ²⁺ doping for high-rate and long-life lithium-ion batteries. New Journal of Chemistry, 2017, 41, 6427-6435.	1.4	14
1086	KCl-Modified Graphite as High Performance Anode Material for Lithium-Ion Batteries with Excellent Rate Performance. Journal of Physical Chemistry C, 2017, 121, 13052-13058.	1.5	22
1087	Facile template-free one-pot fabrication of ZnCo2O4 nanospheres for advanced lithium storage capability. Ionics, 2017, 23, 3323-3328.	1.2	3
1088	Preparation of novel magnetic molecular imprinted polymers nanospheres via reversible addition – fragmentation chain transfer polymerization for selective and efficient determination of tetrabromobisphenol A. Journal of Hazardous Materials, 2017, 339, 418-426.	6.5	46
1089	Fe3O4 quantum dots on 3D-framed graphene aerogel as an advanced anode material in lithium-ion batteries. Ionics, 2017, 23, 2005-2011.	1.2	6
1090	Complex Magnetic Nanostructures. , 2017, , .		6
1091	Bioinspired Co3O4/graphene layered composite films as self-supported electrodes for supercapacitors. Composites Part B: Engineering, 2017, 121, 68-74.	5.9	37
1092	Nano-Co3O4 supported on magnetic N-doped graphene as highly efficient catalyst for epoxidation of alkenes. Molecular Catalysis, 2017, 432, 267-273.	1.0	24
1093	Inducing the magnetic character in reduced graphene oxide through incorporation of Fe2O3 nanoparticles. International Journal of Modern Physics B, 2017, 31, 1750118.	1.0	4

#	Article	IF	CITATIONS
1094	SC-CO2-assisted process for a high energy density aerogel supercapacitor: the effect of GO loading. Nanotechnology, 2017, 28, 204001.	1.3	31
1095	Quick one-pot synthesis of amorphous carbon-coated cobalt–ferrite twin elliptical frustums for enhanced lithium storage capability. Journal of Materials Chemistry A, 2017, 5, 8062-8069.	5.2	47
1096	Cycling performance of Mn ₂ O ₃ porous nanocubes and hollow spheres for lithium-ion batteries. Proceedings of SPIE, 2017, , .	0.8	0
1097	Filling and unfilling carbon capsules with transition metal oxide nanoparticles for Li-ion hybrid supercapacitors: towards hundred grade energy density. Science China Materials, 2017, 60, 217-227.	3.5	17
1098	Enhancing the Li-ion storage performance of graphite anode material modified by LiAlO2. Electrochimica Acta, 2017, 235, 463-470.	2.6	26
1099	Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors. Scientific Reports, 2017, 7, 44562.	1.6	76
1100	Interfacial engineering of metal oxide/graphene nanoscrolls with remarkable performance for lithium ion batteries. Energy Storage Materials, 2017, 8, 35-41.	9.5	31
1101	Metal-Organic Frameworks Triggered High-Efficiency Li storage in Fe-Based Polyhedral Nanorods for Lithium-ion Batteries. Electrochimica Acta, 2017, 235, 595-603.	2.6	93
1102	Much enhanced electrocatalysis of Pt/PtO 2 and low platinum loading Pt/PtO 2 -Fe 3 O 4 dumbbell nanoparticles. International Journal of Hydrogen Energy, 2017, 42, 23631-23638.	3.8	22
1103	A Review on Design Strategies for Carbon Based Metal Oxides and Sulfides Nanocomposites for High Performance Li and Na Ion Battery Anodes. Advanced Energy Materials, 2017, 7, 1601424.	10.2	486
1104	Critical Insight into the Relentless Progression Toward Graphene and Grapheneâ€Containing Materials for Lithiumâ€lon Battery Anodes. Advanced Materials, 2017, 29, 1603421.	11.1	132
1105	3D architectures of titania nanotubes and graphene with efficient nanosynergy for supercapacitors. Materials and Design, 2017, 117, 203-212.	3.3	44
1106	Graphene encapsulated Fe ₃ O ₄ nanorods assembled into a mesoporous hybrid composite used as a high-performance lithium-ion battery anode material. Materials Chemistry Frontiers, 2017, 1, 1185-1193.	3.2	41
1107	Low Molecular Weight Spandex as a Promising Polymeric Binder for LiFePO ₄ Electrodes. Advanced Energy Materials, 2017, 7, 1602147.	10.2	27
1108	Hydrothermal Synthesis of 3D Porous Structure Bi ₂ WO ₆ /Reduced Graphene Oxide Hydrogels for Enhancing Supercapacitor Performance. ChemElectroChem, 2017, 4, 577-584.	1.7	40
1109	Bacteria-inspired Fabrication of Fe 3 O 4 -Carbon/Graphene Foam for Lithium-Ion Battery Anodes. Electrochimica Acta, 2017, 223, 39-46.	2.6	50
1110	Preparation of hollow core/shell Fe ₃ O ₄ @graphene oxide composites as	1.0	20
	337-349.	1.9	32

#	Article	IF	CITATIONS
1112	Rheology and applications of highly filled polymers: A review of current understanding. Progress in Polymer Science, 2017, 66, 22-53.	11.8	287
1113	Facet-Selective Deposition of FeO _{<i>x</i>} on α-MoO ₃ Nanobelts for Lithium Storage. ACS Applied Materials & Interfaces, 2017, 9, 39425-39431.	4.0	36
1114	Graphene and derivatives – Synthesis techniques, properties and their energy applications. Energy, 2017, 140, 766-778.	4.5	119
1116	Fe ₃ O ₄ @Carbon@Polyaniline Trilaminar Core–Shell Composites as Superior Microwave Absorber in Shielding of Electromagnetic Pollution. ACS Sustainable Chemistry and Engineering, 2017, 5, 10710-10721.	3.2	161
1117	A facile one-pot synthesis of cobalt-doped magnetite/graphene nanocomposite as peroxidase mimetics in dopamine detection. New Journal of Chemistry, 2017, 41, 12678-12684.	1.4	46
1118	Remarkable high-temperature Li-storage performance of few-layer graphene-anchored Fe ₃ O ₄ nanocomposites as an anode. Journal of Materials Chemistry A, 2017, 5, 23035-23042.	5.2	56
1119	High-index faceted nickel ferrite nanocrystals encapsulated by graphene with high performance for lithium-ion batteries. Electrochimica Acta, 2017, 257, 99-108.	2.6	23
1120	The influence of covering a germanium nanowire with a single wall carbon nanotube on mechanical properties: A molecular dynamics study. Journal of Applied Physics, 2017, 122, .	1.1	6
1121	Facile Fabrication of ZnFe ₂ O ₄ â€MWCNTs Composite as an Anode Material for Rechargeable Lithiumâ€ion Batteries. ChemistrySelect, 2017, 2, 7194-7201.	0.7	10
1122	That's a Wrap: Graphene-Wrapped Magnetite Anodes for Lithium Ion Batteries. Chemistry of Materials, 2017, 29, 6561-6562.	3.2	2
1123	An X-ray absorption fine structure spectroscopy study of metal sorption to graphene oxide. Journal of Colloid and Interface Science, 2017, 508, 75-86.	5.0	10
1124	Nanorod Mn3O4 anchored on graphene nanosheet as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. Journal of Alloys and Compounds, 2017, 728, 383-390.	2.8	21
1125	Electrochemically exfoliated graphene as a novel microwave susceptor: the ultrafast microwave-assisted synthesis of carbon-coated siliconâ^'graphene film as a lithium-ion battery anode. Nanoscale, 2017, 9, 15582-15590.	2.8	32
1126	Twoâ€Step Synthesis of Hierarchical Dual Fewâ€Layered Fe ₃ O ₄ /MoS ₂ Nanosheets and Their Synergistic Effects on Lithiumâ€Storage Performance. Advanced Materials Interfaces, 2017, 4, 1700639.	1.9	20
1127	ZnO-Embedded N-Doped Porous Carbon Nanocomposite as a Superior Anode Material for Lithium-Ion Batteries. Electrochimica Acta, 2017, 253, 190-199.	2.6	37
1128	Environment-benign synthesis of rGO/MnO nanocomposites with superior electrochemical performance for supercapacitors. Journal of Alloys and Compounds, 2017, 729, 9-18.	2.8	32
1129	<i>In situ</i> preparation of Fe ₃ O ₄ in a carbon hybrid of graphene nanoscrolls and carbon nanotubes as high performance anode material for lithium-ion batteries. Nanotechnology, 2017, 28, 465401.	1.3	10
1130	Cornlike Ordered Mesoporous Silicon Particles Modified by Nitrogen-Doped Carbon Layer for the Application of Li-Ion Battery. ACS Applied Materials & amp; Interfaces, 2017, 9, 32829-32839.	4.0	62

#	Article	IF	CITATIONS
1131	Facile synthesis of Fe2O3@graphite nanoparticle composite as the anode for Lithium ion batteries with high cyclic stability. Electrochimica Acta, 2017, 253, 104-113.	2.6	47
1132	Interfacial Phenomena/Capacities Beyond Conversion Reaction Occurring in Nanoâ€sized Transitionâ€Metalâ€Oxideâ€Based Negative Electrodes in Lithiumâ€lon Batteries: A Review. ChemElectroChem, 2017, 4, 2727-2754.	1.7	48
1133	Porous rod-shaped Co3O4 derived from Co-MOF-74 as high-performance anode materials for lithium ion batteries. Inorganic Chemistry Communication, 2017, 84, 241-245.	1.8	35
1134	Selective isolation and eradication of E. coli associated with urinary tract infections using anti-fimbrial modified magnetic reduced graphene oxide nanoheaters. Journal of Materials Chemistry B, 2017, 5, 8133-8142.	2.9	23
1135	Evaluation of electrochemical performances of ZnFe ₂ O ₄ /γ-Fe ₂ O ₃ nanoparticles prepared by laser pyrolysis. New Journal of Chemistry, 2017, 41, 9236-9243.	1.4	16
1136	Controlled 3D Carbon Nanotube Architecture Coated with MoO <i>_x</i> Material by ALD Technique: A High Energy Density Lithiumâ€lon Battery Electrode. Advanced Materials Interfaces, 2017, 4, 1700332.	1.9	16
1137	A Lithium Ion Highway by Surface Coordination Polymerization: In Situ Growth of Metal–Organic Framework Thin Layers on Metal Oxides for Exceptional Rate and Cycling Performance. Chemistry - A European Journal, 2017, 23, 11513-11518.	1.7	10
1138	Novel Co ₂ VO ₄ Anodes Using Ultralight 3D Metallic Current Collector and Carbon Sandwiched Structures for Highâ€Performance Liâ€Ion Batteries. Small, 2017, 13, 1701260.	5.2	49
1139	In-situ synthesized ZnFe 2 O 4 firmly anchored to the surface of MWCNTs as a long-life anode material with high lithium storage performance. Applied Surface Science, 2017, 425, 978-987.	3.1	32
1140	A heterogenized chiral imino indanol complex of manganese as an efficient catalyst for aerobic epoxidation of olefins. New Journal of Chemistry, 2017, 41, 9866-9874.	1.4	12
1141	Electrophoretic Deposition of Binderâ€Free <scp>MnO₂</scp> /Graphene Films for Lithiumâ€Ion Batteries. Chinese Journal of Chemistry, 2017, 35, 1575-1585.	2.6	13
1142	Fabrication of Fe ₃ O ₄ Dots Embedded in 3D Honeycomb‣ike Carbon Based on Metallo–Organic Molecule with Superior Lithium Storage Performance. Small, 2017, 13, 1701351.	5.2	49
1143	Magnetic Properties of FeMnyCoyFe2â^2yO4@Oleylamine Nanocomposite with Cation Distribution. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 1740-1749.	1.9	3
1144	Remarkable High-temperature Performance of Hollow Co 9 S 8 Nanoparticles Integrated with Carbon Materials for Lithium-ion Batteries. Electrochimica Acta, 2017, 250, 196-202.	2.6	38
1145	Flower-like WO3/CoWO4/Co nanostructures as high performance anode for lithium ion batteries. Journal of Alloys and Compounds, 2017, 727, 107-113.	2.8	28
1146	Scalable Dry Production Process of a Superior 3D Netâ€Like Carbonâ€Based Iron Oxide Anode Material for Lithiumâ€Ion Batteries. Angewandte Chemie, 2017, 129, 12823-12827.	1.6	21
1147	Scalable Dry Production Process of a Superior 3D Netâ€Like Carbonâ€Based Iron Oxide Anode Material for Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2017, 56, 12649-12653.	7.2	126
1148	Co ₃ O ₄ Nanosheets with In-Plane Pores and Highly Active {112} Exposed Facets for High Performance Lithium Storage. Journal of Physical Chemistry C, 2017, 121, 19002-19009.	1.5	30

ARTICLE IF CITATIONS New Hybrid Nanomaterials Derived from Chemical Functionalization of Clicked Graphene Oxide / 1149 12 0.7 Magnetite Nanocomposite with Peroxopolyoxotungstate Species. ChemistrySelect, 2017, 2, 10786-10792. Manganese silicate hollow spheres enclosed in reduced graphene oxide as anode for lithium-ion 2.6 batteries. Electrochimica Acta, 2017, 258, 535-543. Large area photoelectrodes based on hybrids of CNT fibres and ALD-grown TiO₂. Journal 1151 5.236 of Materials Chemistry A, 2017, 5, 24695-24706. Nanostructured materials: A progressive assessment and future direction for energy device applications. Coordination Chemistry Reviews, 2017, 353, 113-141. Box-implanted Nb2O5 nanorods as superior anode materials in lithium ion batteries. Ceramics 1153 2.3 37 International, 2017, 43, 12388-12395. Fe3O4 nanoparticles dispersed graphene nanosheets for high performance lithium-ion battery anode. Materials Letters, 2017, 205, 118-121. 1154 1.3 Fabrication of Metal Molybdate Micro/Nanomaterials for Electrochemical Energy Storage. Small, 2017, 1155 5.2 110 13, 1700917. Facile synthesis of hierarchical CoMn2O4 microspheres with porous and micro-/nanostructural morphólogy as anode electrodes for lithium-ion batteries. Electronic Materials Letters, 2017, 13, 1.0 427-433. The high capacity and cycle stability of NiFe2O4 thin film prepared by E-beam evaporation method for 1157 2.8 14 lithium ion batteries. Journal of Alloys and Compounds, 2017, 729, 802-808. High-yield synthesis of ZnO nanoparticles homogeneously coated on exfoliated graphite and simplified method to determine the surface coverage. Surface and Coatings Technology, 2017, 325, 2.2 445-453. Hydrolysis-Coupled Redox Reaction to 3D Cu/Fe₃O₄ Nanorod Array Electrodes 1159 17 1.9 for High-Performance Lithium-Ion Batteries. Inorganic Chemistry, 2017, 56, 7657-7667. Ultrathin Ni-Co double hydroxide nanosheets with conformal graphene coating for highly active oxygen evolution reaction and lithium ion battery anode materials. Chemical Engineering Journal, 6.6 2017, 327, 9-17. Heterogeneous Double-Shelled Constructed Fe₃O₄ Yolkâ€"Shell Magnetite Nanoboxes with Superior Lithium Storage Performances. ACS Applied Materials & amp; Interfaces, 2017, 1161 4.0 37 9, 24662-24670. NiFe2O4 porous nanorods/graphene composites as high-performance anode materials for lithium-ion batteries. Electrochimica Acta, 2017, 248, 292-298. 2.6 34 A green and template recyclable approach to prepare Fe3O4/porous carbon from petroleum asphalt for 1163 2.8 49 lithium-ion batteries. Journal of Alloys and Compounds, 2017, 695, 2612-2618. Growth of ultrafine CuCo2O4 nanoparticle on graphene with enhanced lithium storage properties. Chemical Engineering Journal, 2017, 314, 301-310. 1164 43 Synergistic effect of co-existence of hematite (\hat{I} ±-Fe 2 O 3) and magnetite (Fe 3 O 4) nanoparticles on 1165 3.3 58 graphene sheet for dye adsorption. Journal of Environmental Chemical Engineering, 2017, 5, 26-37. Electrochemical Fabrication of Carbon Nanomaterial and Conducting Polymer Composites for Chemical Sensing., 2017, , 417-471.

#	Article	IF	CITATIONS
1167	Transition metal dichalcogenide based nanomaterials for rechargeable batteries. Chemical Engineering Journal, 2017, 307, 189-207.	6.6	89
1168	One-step synthesis of nitrogen-doped porous carbon for supercapacitors utilizing KNO3 as an electrolyte. Journal of Solid State Electrochemistry, 2017, 21, 171-181.	1.2	5
1169	C@CoFe2O4 fiber-in-tube mesoporous nanostructure: Formation mechanism and high electrochemical performance as an anode for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 693, 110-117.	2.8	42
1170	Synthesis and electrochemical properties of Fe3O4/MnO2/RGOs sandwich-like nano-superstructures. Journal of Alloys and Compounds, 2017, 693, 373-380.	2.8	13
1171	Construction of point-line-plane (0-1-2 dimensional) Fe2O3-SnO2/graphene hybrids as the anodes with excellent lithium storage capability. Nano Research, 2017, 10, 121-133.	5.8	36
1172	Twin-functional graphene oxide: compacting with Fe 2 O 3 into a high volumetric capacity anode for lithium ion battery. Energy Storage Materials, 2017, 6, 98-103.	9.5	74
1173	General Synthesis of N-Doped Macroporous Graphene-Encapsulated Mesoporous Metal Oxides and Their Application as New Anode Materials for Sodium-Ion Hybrid Supercapacitors. Advanced Functional Materials, 2017, 27, 1603921.	7.8	118
1174	Hierarchically structured Fe3O4/C nanosheets for effective lithium-ion storage. Journal of Alloys and Compounds, 2017, 691, 592-599.	2.8	34
1175	SnO2/polypyrrole hollow spheres with improved cycle stability asÂlithium-ion battery anodes. Journal of Alloys and Compounds, 2017, 691, 34-39.	2.8	53
1176	Influence of donor substitution at \$\$mathrm{D}{-}uppi {-}mathrm{A}\$\$ D - π - A architecture in efficient sensitizers for dye-sensitized solar cells: first-principle study. Bulletin of Materials Science, 2017, 40, 1389-1396.	0.8	30
1177	A Critical Review of Spinel Structured Iron Cobalt Oxides Based Materials for Electrochemical Energy Storage and Conversion. Energies, 2017, 10, 1787.	1.6	51
1178	Carbon nanotube-wrapped Fe ₂ O ₃ anode with improved performance for lithium-ion batteries. Beilstein Journal of Nanotechnology, 2017, 8, 649-656.	1.5	13
1179	Facile Synthesis of Reduced Graphene Oxide/Fe3O4 Nanocomposite Film. Journal of Applied Biomaterials and Functional Materials, 2017, 15, 1-6.	0.7	11
1180	A Sensor for Detection of 4-nitrophenol Based on a Glassy Carbon Electrode Modified with a Reduced Graphene Oxide/Fe304 Nanoparticle Composite. International Journal of Electrochemical Science, 2017, 12, 7754-7764.	0.5	27
1181	Graphene hybridization for energy storage applications. Chemical Society Reviews, 2018, 47, 3189-3216.	18.7	297
1182	CNT Applications in Drug and Biomolecule Delivery. , 2018, , 61-64.		12
1183	Synthesis and Chemical Modification of Graphene. , 2018, , 107-119.		0
1184	Graphene Applications in Sensors. , 2018, , 125-132.		0

#	Article	IF	CITATIONS
1186	Medical and Pharmaceutical Applications of Graphene. , 2018, , 149-150.		2
1187	Graphene Applications in Specialized Materials. , 2018, , 151-154.		0
1188	Miscellaneous Applications of Graphene. , 2018, , 155-155.		0
1189	Basic Electrochromics of CPs. , 2018, , 251-282.		0
1190	Batteries and Energy Devices. , 2018, , 575-600.		0
1191	Brief, General Overview of Applications. , 2018, , 43-44.		0
1192	CNT Applications in Batteries and Energy Devices. , 2018, , 49-52.		1
1193	Development of Surfaceâ€Engineered Tapeâ€Casting Method for Fabricating Freestanding Carbon Nanotube Sheets Containing Fe ₂ O ₃ Nanoparticles for Flexible Batteries. Advanced Engineering Materials, 2018, 20, 1701019.	1.6	16
1194	Microwaveâ€Assisted Preparation and Characterization of a Polyoxometalateâ€Based Inorganic 2D Framework Anode for Enhancing Lithiumâ€Ion Battery Performance. Chemistry - an Asian Journal, 2018, 13, 1199-1205.	1.7	12
1195	Facile synthesis of Fe3O4/reduced graphene oxide/polyvinyl pyrrolidone ternary composites and their enhanced microwave absorbing properties. Journal of Saudi Chemical Society, 2018, 22, 979-984.	2.4	20
1196	Graphene-supported platinum/nickel phosphide electrocatalyst with improved activity and stability for methanol oxidation. RSC Advances, 2018, 8, 8228-8232.	1.7	15
1197	Equilibria and Rate Phenomena from Atomistic to Mesoscale: Simulation Studies of Magnetite. Accounts of Chemical Research, 2018, 51, 583-590.	7.6	14
1198	3 D Porous CoS ₂ Hexadecahedron Derived from MOC toward Ultrafast and Longâ€Lifespan Lithium Storage. Chemistry - A European Journal, 2018, 24, 6798-6803.	1.7	16
1199	Facile synthesis of three-dimensional Cu/Fe3O4 nanowires as binder-free anode for lithium-ion batteries. Applied Surface Science, 2018, 450, 356-363.	3.1	12
1200	Polyaniline/graphene nanocomposites towards high-performance supercapacitors: A review. Composites Communications, 2018, 8, 83-91.	3.3	133
1201	Enhanced electrochemical performance of lithium ion batteries using Sb ₂ S ₃ nanorods wrapped in graphene nanosheets as anode materials. Nanoscale, 2018, 10, 3159-3165.	2.8	65
1202	Structural design of anode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 6183-6205.	5.2	127
1203	Synthesis, Characterization and Magnetic Properties of Bi-metallic Copper Complex, as a Precursor for the Preparation of CuO Nanoparticles and Its Application for Removal of Arsenic from Water. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 1255-1262.	1.9	4

#	Article	IF	CITATIONS
1204	A new approach to improve the electrochemical performance of ZnMn ₂ O ₄ through a charge compensation mechanism using the substitution of Al ³⁺ for Zn ²⁺ . RSC Advances, 2018, 8, 7361-7368.	1.7	0
1205	Hierarchical CoO/MnCo ₂ O _{4.5} nanorod arrays on flexible carbon cloth as high-performance anode materials for lithium-ion batteries. Dalton Transactions, 2018, 47, 3775-3784.	1.6	38
1206	Two-dimensional Fe ₃ O ₄ /MoS ₂ nanocomposites for a magnetorheological fluid with enhanced sedimentation stability. Soft Matter, 2018, 14, 1917-1924.	1.2	27
1207	High-Performance Ga ₂ O ₃ Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 5519-5526.	4.0	60
1208	Ultrasound-assisted one-pot syntheses of ZnO nanoparticles that are homogeneously adsorbed on exfoliated graphite and a simplified method to determine the graphite layer thickness in such composites. Journal of Materials Science, 2018, 53, 6586-6601.	1.7	3
1209	Electrochemical Evaluation and Phase-related Impedance Studies on Silicon–Few Layer Graphene (FLG) Composite Electrode Systems. Scientific Reports, 2018, 8, 1386.	1.6	39
1210	A Micro racked Conductive Layer Made of Multiwalled Carbon Nanotubes for Lithiumâ€lon Batteries. Energy Technology, 2018, 6, 658-669.	1.8	1
1211	MoS2 intercalated p-Ti3C2 anode materials with sandwich-like three dimensional conductive networks for lithium-ion batteries. Journal of Alloys and Compounds, 2018, 735, 1262-1270.	2.8	78
1212	3D Graphene Encapsulated Hollow CoSnO ₃ Nanoboxes as a High Initial Coulombic Efficiency and Lithium Storage Capacity Anode. Small, 2018, 14, 1703513.	5.2	60
1213	Core-shell Fe3O4@Fe ultrafine nanoparticles as advanced anodes for Li-ion batteries. Journal of Alloys and Compounds, 2018, 735, 833-839.	2.8	16
1214	Graphene and its sensor-based applications: A review. Sensors and Actuators A: Physical, 2018, 270, 177-194.	2.0	475
1215	Enhanced cycle stability of iron(II, III) oxide nanoparticles encapsulated with nitrogen-doped carbon and graphene frameworks for lithium battery anodes. Carbon, 2018, 129, 621-630.	5.4	28
1216	Synthesis of Fe3O4 cluster microspheres/graphene aerogels composite as anode for high-performance lithium ion battery. Applied Surface Science, 2018, 439, 927-933.	3.1	35
1217	ZnO/rGO/C composites derived from metal–organic framework as advanced anode materials for Li-ion and Na-ion batteries. Journal of Materials Science, 2018, 53, 6785-6795.	1.7	44
1218	Graphene aerogels for efficient energy storage and conversion. Energy and Environmental Science, 2018, 11, 772-799.	15.6	435
1219	A high-capacity NiCo2O4@reduced graphene oxide nanocomposite Li-ion battery anode. Journal of Alloys and Compounds, 2018, 741, 223-230.	2.8	41
1220	Reduced Graphene Oxide-Wrapped FeS2 Composite as Anode for High-Performance Sodium-Ion Batteries. Nano-Micro Letters, 2018, 10, 30.	14.4	53
1221	Novel in-situ redox synthesis of Fe3O4/rGO composites with superior electrochemical performance for lithium-ion batteries. Electrochimica Acta, 2018, 262, 233-240.	2.6	55

#	Article	IF	CITATIONS
1222	The Role of LiTDI Additive in LiNi _{1/3} Mn _{1/3} Co _{1/3} O ₂ /Graphite Lithium-Ion Batteries at Elevated Temperatures. Journal of the Electrochemical Society, 2018, 165, A40-A46.	1.3	16
1223	Novel flame synthesis of nanostructured α-Fe2O3 electrode as high-performance anode for lithium ion batteries. Journal of Power Sources, 2018, 378, 511-515.	4.0	45
1224	Surface confined titania redox couple for ultrafast energy storage. Materials Horizons, 2018, 5, 691-698.	6.4	20
1225	FeO <i>_x</i> â€Based Materials for Electrochemical Energy Storage. Advanced Science, 2018, 5, 1700986.	5.6	151
1226	Structural effects on the catalytic activity of carbon-supported magnetite nanocomposites in heterogeneous Fenton-like reactions. RSC Advances, 2018, 8, 16193-16201.	1.7	14
1227	One-pot sonochemical synthesis of magnetite@reduced graphene oxide nanocomposite for high performance Li ion storage. Ultrasonics Sonochemistry, 2018, 45, 167-172.	3.8	23
1228	High-stability tin/carbon battery electrodes produced using reduction expansion synthesis. Carbon, 2018, 132, 411-419.	5.4	18
1229	Mechanism of the First Lithiation/Delithiation Process in the Anode Material CoFeOPO ₄ @C for Li-Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 7139-7148.	1.5	18
1230	Organic vanadium oxy-acetylacetonate as electro-active anode material with high capacity and rate performance for lithium-ion batteries. Journal of Materials Science, 2018, 53, 9701-9709.	1.7	3
1231	Zn defective ZnCo2O4 nanorods as high capacity anode for lithium ion batteries. Journal of Electroanalytical Chemistry, 2018, 815, 151-157.	1.9	36
1232	Core–shell structured MnSiO ₃ supported with CNTs as a high capacity anode for lithium-ion batteries. Dalton Transactions, 2018, 47, 5328-5334.	1.6	14
1233	Enhanced pseudocapacitance contribution to outstanding Li-storage performance for a reduced graphene oxide-wrapped FeS composite anode. Journal of Materials Chemistry A, 2018, 6, 7155-7161.	5.2	43
1234	Three-dimensional iron sulfide-carbon interlocked graphene composites for high-performance sodium-ion storage. Nanoscale, 2018, 10, 7851-7859.	2.8	56
1235	A facile and stable colorimetric sensor based on three-dimensional graphene/mesoporous Fe3O4 nanohybrid for highly sensitive and selective detection of p-nitrophenol. Sensors and Actuators B: Chemical, 2018, 266, 86-94.	4.0	54
1236	ZnO nanoparticles encapsulated in three dimensional ordered macro-/mesoporous carbon as high-performance anode for lithium-ion battery. Electrochimica Acta, 2018, 270, 274-283.	2.6	44
1237	A New Anode for Lithiumâ€lon Batteries Based on Singleâ€Walled Carbon Nanotubes and Graphene: Improved Performance through a Binary Network Design. Chemistry - an Asian Journal, 2018, 13, 1223-1227.	1.7	13
1238	CuO nanoparticles supported on threeâ€dimensional nitrogenâ€doped graphene as a promising catalyst for thermal decomposition of ammonium perchlorate. Applied Organometallic Chemistry, 2018, 32, e3959.	1.7	59
1239	Highly ordered structured montmorillonite/brominated butyl rubber nanocomposites: Dramatic enhancement of the gas barrier properties by an external magnetic field. Journal of Membrane Science, 2018, 546, 22-30.	4.1	26

#	Article	IF	CITATIONS
1240	Rational design and synthesis of yolk–shell ZnGa 2 O 4 @C nanostructure with enhanced lithium storage properties. Applied Surface Science, 2018, 433, 983-987.	3.1	6
1241	Facile synthesis of 4,4′-diaminostilbene-2,2′-disulfonic-acid-grafted reduced graphene oxide and its application as a high-performance asymmetric supercapacitor. Chemical Engineering Journal, 2018, 333, 170-184.	6.6	23
1242	Facile synthesis of monodispersed 3D hierarchical Fe 3 O 4 nanostructures decorated r-GO as the negative electrodes for Li-ion batteries. Materials Research Bulletin, 2018, 97, 272-280.	2.7	20
1243	A facile synthesis of a 3D high-index Au NCs@CuO supported on reduced graphene oxide for glucose sensing. Sensors and Actuators B: Chemical, 2018, 255, 454-462.	4.0	30
1244	Saqima-like Co3O4/CNTs secondary microstructures with ultrahigh initial Coulombic efficiency as an anode for lithium ion batteries. Journal of Solid State Electrochemistry, 2018, 22, 417-427.	1.2	11
1245	Enhanced lithium storage of mesoporous vanadium dioxide(B) nanorods by reduced graphene oxide support. Journal of Energy Chemistry, 2018, 27, 183-189.	7.1	15
1246	Crosslinking-induced spontaneous growth: A novel strategy for synthesizing sandwich-type graphene@Fe3O4 dots/amorphous carbon with high lithium storage performance. Chemical Engineering Journal, 2018, 334, 1614-1620.	6.6	57
1247	Two- and three-dimensional graphene-based hybrid composites for advanced energy storage and conversion devices. Journal of Materials Chemistry A, 2018, 6, 702-734.	5.2	126
1248	Graphene oxide reduction by solid-state laser irradiation for bolometric applications. Nanotechnology, 2018, 29, 035301.	1.3	13
1249	NANOMATERIALS AND NANOSTRUCTURES FOR REGULATING IONS AND ELECTRON TRANSPORT IN ADVANCED ENERGY STORAGE DEVICES. , 2018, , 757-809.		0
1250	Hierarchical three-dimensional Fe3O4@porous carbon matrix/graphene anodes for high performance lithium ion batteries. Electrochimica Acta, 2018, 260, 965-973.	2.6	61
1251	Different synthesis of Mn x Co y Ni z CO3 microspheres as new anode material for lithium ion battery. Journal of Materials Science: Materials in Electronics, 2018, 29, 3992-3998.	1.1	0
1252	Uniform Pomegranateâ€Like Nanoclusters Organized by Ultrafine Transition Metal Oxide@Nitrogenâ€Doped Carbon Subunits with Enhanced Lithium Storage Properties. Advanced Energy Materials, 2018, 8, 1702347.	10.2	95
1253	Two-dimensional organic cathode materials for alkali-metal-ion batteries. Journal of Energy Chemistry, 2018, 27, 86-98.	7.1	56
1254	Graphene-Co/CoO shaddock peel-derived carbon foam hybrid as anode materials for lithium-ion batteries. Ionics, 2018, 24, 1321-1328.	1.2	15
1255	Sponge-like reduced graphene oxide/silicon/carbon nanotube composites for lithium ion batteries. Applied Surface Science, 2018, 436, 345-353.	3.1	45
1256	Continuous Carbon Hollow Shell with Zinc Oxide Nanoparticles Embedded as an Anode Material with Excellent Lithium Storage Capability. Energy Technology, 2018, 6, 188-195.	1.8	12
1257	Electrosprayed porous Fe3O4/carbon microspheres as anode materials for high-performance lithium-ion batteries. Nano Research, 2018, 11, 892-904.	5.8	110

#	ARTICLE	IF	Citations
1258	The role of reduced graphene oxide on the electrochemical activity of MFe2O4 (M = Fe, Co, Ni and Zn) nanohybrids. Journal of Magnetism and Magnetic Materials, 2018, 448, 43-51.	1.0	9
1259	Pomegranate-like, carbon-coated Fe3O4 nanoparticle superparticles for high-performance lithium storage. Energy Storage Materials, 2018, 10, 32-39.	9.5	45
1260	Interface Engineering of Carbonâ€Based Nanocomposites for Advanced Electrochemical Energy Storage. Advanced Materials Interfaces, 2018, 5, 1800430.	1.9	95
1261	Self-assembled 3D flower-like Fe ₃ O ₄ /C architecture with superior lithium ion storage performance. Journal of Materials Chemistry A, 2018, 6, 24940-24948.	5.2	88
1262	In situ synthesis of V ₂ O ₃ nanorods anchored on reduced graphene oxide as highâ€performance lithium ion battery anode. ChemistrySelect, 2018, 3, 12108-12112.	0.7	13
1263	Acetylcholinesterase Biosensor Based On Mesoporous Hollow Carbon Spheres/Core-Shell Magnetic Nanoparticles-Modified Electrode for the Detection of Organophosphorus Pesticides. Sensors, 2018, 18, 4429.	2.1	25
1264	Hierarchically Structured LiFePO4/C with Enhanced Electrochemical Performance for Lithium-Ion Batteries. International Journal of Electrochemical Science, 2018, 13, 1376-1389.	0.5	6
1265	High-Efficient and Recyclable Magnetic Separable Catalyst for Catalytic Hydrogenolysis of β-O-4 Linkage in Lignin. Polymers, 2018, 10, 1077.	2.0	6
1266	Doping Graphene into Monodispersed Fe 3 O 4 Microspheres with Droplet Microfluidics for Enhanced Electrochemical Performance in Lithiumâ€Ion Batteries. Batteries and Supercaps, 2018, 2, 49.	2.4	3
1267	Electrochemical performance of flexible graphene-based fibers as electrodes for wearable supercapacitors. Synthetic Metals, 2018, 246, 108-114.	2.1	19
1268	Nitrogen-rich Porous Carbon Derived from Biomass as High Performance Electrode Materials for Supercapacitors. International Journal of Electrochemical Science, 2018, 13, 5204-5218.	0.5	8
1269	3D graphene aerogel wrapped 3D flower-like Fe3O4 as a long stable and high rate anode material for lithium ion batteries. Journal of Electroanalytical Chemistry, 2018, 830-831, 106-115.	1.9	21
1270	Further surface modification by carbon coating for in-situ growth of Fe3O4 nanoparticles on MXene Ti3C2 multilayers for advanced Li-ion storage. Electrochimica Acta, 2018, 289, 228-237.	2.6	51
1271	The facile preparation of hollow Fe3O4/C/CNT microspheres assisted by the spray drying method as an an an anode material for lithium-ion batteries. Journal of Materials Science, 2018, 53, 16447-16457.	1.7	19
1272	Decoration of graphite nanoplatelets with Nb2O5 deposited by radio frequency sputtering. Diamond and Related Materials, 2018, 89, 206-217.	1.8	1
1273	The electrochemical properties of Co ₃ O ₄ as a lithium-ion battery electrode: a first-principles study. Physical Chemistry Chemical Physics, 2018, 20, 25016-25022.	1.3	11
1274	Perovskite ABO ₃ â€Type MOFâ€Derived Carbon Decorated Fe ₃ O ₄ with Enhanced Lithium Storage Performance. ChemElectroChem, 2018, 5, 3426-3436.	1.7	9
1275	Influence of Ferrites Nanoparticles Anchored on CNT Hybrid Nanocomposites for High-Performance Energy Storage Applications. Journal of Electronic Materials, 2018, 47, 6878-6885.	1.0	5

#	Article	IF	CITATIONS
1276	Bimetallic carbide Fe2MoC as electrode material for high-performance capacitive energy storage. Ceramics International, 2018, 44, 21874-21881.	2.3	14
1277	Rapid and controllable synthesis of Fe3O4 octahedral nanocrystals embedded-reduced graphene oxide using microwave irradiation for high performance lithium-ion batteries. Electrochimica Acta, 2018, 281, 78-87.	2.6	87
1278	Fe ₃ O ₄ nanoclusters highly dispersed on a porous graphene support as an additive for improving the hydrogen storage properties of LiBH ₄ . RSC Advances, 2018, 8, 19353-19361.	1.7	18
1279	Amorphizing of Ag Nanoparticles under Bioinspired Oneâ€step Assembly of Fe ₃ O ₄ â€Ag/rGO Hybrids via Selfâ€redox Process with Enhanced Activity. Applied Organometallic Chemistry, 2018, 32, e4428.	1.7	8
1280	Nanosheet assembled hollow ZnFe2O4 microsphere as anode for lithium-ion batteries. Journal of Alloys and Compounds, 2018, 762, 480-487.	2.8	37
1281	Carbon modified porous γ-Fe2O3 as anode for high performance Li-ion batteries. Journal of Materials Science: Materials in Electronics, 2018, 29, 11936-11944.	1.1	3
1282	α-Fe 2 O 3 /SnO 2 heterostructure composites: A high stability anode for lithium-ion battery. Materials Research Bulletin, 2018, 106, 7-13.	2.7	20
1283	Sea-Sponge-like Structure of Nano-Fe ₃ O ₄ on Skeleton-C with Long Cycle Life under High Rate for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 19656-19663.	4.0	56
1284	Graphene-Based Flexible Energy Storage Devices. , 2018, , 175-199.		6
1285	Fabricating 3D Macroscopic Graphene-Based Architectures with Outstanding Flexibility by the Novel Liquid Drop/Colloid Flocculation Approach for Energy Storage Applications. ACS Applied Materials & Interfaces, 2018, 10, 21991-22001.	4.0	12
1286	Porous CaFe ₂ O ₄ as a promising lithium ion battery anode: a trade-off between high capacity and long-term stability. Nanoscale, 2018, 10, 12963-12969.	2.8	33
1287	High performance of yolk-shell structured MnO@nitrogen doped carbon microspheres as lithium ion battery anode materials and their in operando X-ray diffraction study. Electrochimica Acta, 2018, 282, 719-727.	2.6	25
1288	Application of Nanomaterials Prepared by Thermolysis of Metal Chelates. Springer Series on Polymer and Composite Materials, 2018, , 459-541.	0.5	1
1289	Improving the mechanical properties of Fe ₃ O ₄ /carbon nanotube reinforced nanocomposites by a low-magnetic-field induced alignment. Journal of Polymer Engineering, 2018, 38, 731-738.	0.6	8
1290	Electrochemical sensor using graphene/Fe3O4 nanosheets functionalized with garlic extract for the detection of lead ion. Journal of Solid State Electrochemistry, 2018, 22, 3515-3525.	1.2	15
1291	ZnSe nanoparticles dispersed in reduced graphene oxides with enhanced electrochemical properties in lithium/sodium ion batteries. RSC Advances, 2018, 8, 25734-25744.	1.7	42
1292	Encapsulated hollow Na2Ti3O7 spheres in reduced graphene oxide films for flexible sodium-ion batteries. Electrochimica Acta, 2018, 284, 287-293.	2.6	32
1293	Facile synthesis of Fe3O4/NiFe2O4 nanosheets with enhanced Lithium-ion storage by one-step chemical dealloying. Journal of Materials Science, 2018, 53, 15631-15642.	1.7	27
#	Article	IF	CITATIONS
------	--	-----	-----------
1294	High-Yield Preparation of ZnO Nanoparticles on Exfoliated Graphite as Anode Material for Lithium Ion Batteries and the Effect of Particle Size as well as of Conductivity on the Electrochemical Performance of Such Composites. Batteries, 2018, 4, 24.	2.1	2
1295	Magnetic graphene oxide functionalized by poly dimethyl diallyl ammonium chloride for efficient removal of Cr(VI). Journal of the Taiwan Institute of Chemical Engineers, 2018, 91, 499-506.	2.7	34
1296	Ambient N ₂ fixation to NH ₃ electrocatalyzed by a spinel Fe ₃ O ₄ nanorod. Nanoscale, 2018, 10, 14386-14389.	2.8	199
1297	Calcination Temperature Effect on Citrateâ€Capped Iron Oxide Nanoparticles as Lithiumâ€Storage Anode Materials. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1701004.	0.8	5
1298	CoO nanorod arrays on carbon nanotube foams fabricated by reducing carbon dioxide as high-performance electrode materials for Li-ion batteries. Journal of Solid State Electrochemistry, 2018, 22, 3235-3243.	1.2	4
1299	One-pot synthesis of Li3VO4 particles with thin nitrogen-doped carbon coating layers as an anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2018, 767, 657-665.	2.8	28
1300	Fe3O4 nanoparticle/graphene aerogel composite with enhanced lithium storage performance. Applied Surface Science, 2018, 458, 1035-1042.	3.1	39
1301	Synthesis of hierarchical free-standing NiMoO4/reduced graphene oxide membrane for high-performance lithium storage. Journal of Solid State Electrochemistry, 2018, 22, 2659-2669.	1.2	8
1302	Pseudocapacitive behavior of the Fe ₂ O ₃ anode and its contribution to high reversible capacity in lithium ion batteries. Nanoscale, 2018, 10, 18010-18018.	2.8	58
1303	One-pot synthesis of Sn/graphene/polydopamine ternary nanocomposites with improving lithium storage properties. Ionics, 2018, 24, 3699-3703.	1.2	4
1304	Fe2O3@C core@shell nanotubes: Porous Fe2O3 nanotubes derived from MIL-88A as cores and carbon as shells for high power lithium ion batteries. Journal of Alloys and Compounds, 2018, 769, 969-976.	2.8	57
1305	Bulky carbon layer inlaid with nanoscale Fe2O3 as an excellent lithium-storage anode material. Journal of Industrial and Engineering Chemistry, 2018, 68, 140-145.	2.9	7
1306	Recent progress in magnetic nanoparticles: synthesis, properties, and applications. Nanotechnology, 2018, 29, 452001.	1.3	56
1307	Composite Graphene/Semiconductor Nano-Structures for Energy Storage. , 2018, , 295-352.		1
1308	Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Science China Materials, 2018, 61, 1527-1535.	3.5	42
1309	Novel high performance reduced graphene oxide based nanocatalyst decorated with Rh2O3/Rh-NPs for CO2 photoreduction. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 344-354.	2.0	30
1310	Sustainable Energy System Utilizing Highâ€Voltageâ€Stable and Energyâ€dense Supercapacitors Based on Porous Fe ₂ O ₃ @Graphene Electrode in Ionic Liquid Electrolyte. Energy Technology, 2018, 6, 2399-2407.	1.8	7
1311	Mechanochemistry: Toward Sustainable Design of Advanced Nanomaterials for Electrochemical Energy Storage and Catalytic Applications. ACS Sustainable Chemistry and Engineering, 2018, 6, 9530-9544.	3.2	130

#	Article	IF	CITATIONS
1312	A Nanoâ€Micro Hybrid Structure Composed of Fe ₇ S ₈ Nanoparticles Embedded in Nitrogenâ€Doped Porous Carbon Framework for Highâ€Performance Lithium/Sodiumâ€Ion Batteries. Particle and Particle Systems Characterization, 2018, 35, 1800163.	1.2	32
1313	Constructing radially oriented macroporous spheres with central cavities as ultrastable lithium-ion battery anodes. Energy Storage Materials, 2019, 17, 242-252.	9.5	23
1314	Design of three-dimensional macroporous reduced graphene oxide–Fe3O4 nanocomposites for the removal of Cr(VI) from wastewater. Journal of Porous Materials, 2019, 26, 109-119.	1.3	6
1315	Design and synthesis of covalent organic frameworks towards energy and environment fields. Chemical Engineering Journal, 2019, 355, 602-623.	6.6	197
1316	Scalable synthesis of Î ³ -Fe2O3/CNT composite as high-performance anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 770, 116-124.	2.8	47
1317	Rational design of multi-walled carbon nanotube@hollow Fe ₃ O ₄ @C coaxial nanotubes as long-cycle-life lithium ion battery anodes. Nanotechnology, 2019, 30, 465402.	1.3	12
1318	Design and synthesis of carbon-coated α-Fe2O3@Fe3O4 heterostructured as anode materials for lithium ion batteries. Applied Surface Science, 2019, 495, 143590.	3.1	94
1319	Energy storage properties of graphene nanofillers. , 2019, , 155-179.		1
1320	In situ synthesis of Fe3O4-reinforced carbon fiber composites as anodes in lithium-ion batteries. Journal of Materials Science, 2019, 54, 13479-13490.	1.7	41
1321	Refilling Nitrogen to Oxygen Vacancies in Ultrafine Tungsten Oxide Clusters for Superior Lithium Storage. Advanced Energy Materials, 2019, 9, 1902148.	10.2	48
1322	Cobaltâ€Tungsten Bimetallic Carbide Nanoparticles as Efficient Catalytic Material for Highâ€Performance Lithium–Sulfur Batteries. ChemSusChem, 2019, 12, 4866-4873.	3.6	32
1323	A monocrystal Fe ₃ O ₄ @ultrathin N-doped carbon core/shell structure: from magnetotactic bacteria to Li storage. Journal of Materials Chemistry A, 2019, 7, 20899-20904.	5.2	12
1324	Carbon nanotubes, graphene, porous carbon, and hybrid carbon-based materials: synthesis, properties, and functionalization for efficient energy storage. , 2019, , 1-24.		7
1325	Fabrication of SnO2-decorated Fe3O4 nanoparticles with anionic surface modification. Ceramics International, 2019, 45, 21395-21400.	2.3	8
1326	Recent Progress of Electrochemical Energy Devices: Metal Oxide–Carbon Nanocomposites as Materials for Next-Generation Chemical Storage for Renewable Energy. Sustainability, 2019, 11, 3694.	1.6	32
1327	Graphene anchored with super-tiny Ni nanoparticles for high performance electromagnetic absorption applications. Journal of Materials Science: Materials in Electronics, 2019, 30, 14480-14489.	1.1	5
1328	Shapeâ€Assisted 2D MOF/Graphene Derived Hybrids as Exceptional Lithiumâ€Ion Battery Electrodes. Advanced Functional Materials, 2019, 29, 1902539.	7.8	118
1329	Synthesis, Properties, and Applications of Graphene. , 2019, , 25-90.		10

ARTICLE IF CITATIONS Binderâ€free carbonâ€coated nanocotton transition metal oxides integrated anodes by laser surface 1330 0.8 5 ablation for lithiumâ€ion batteries. Surface and Interface Analysis, 2019, 51, 874-881. Intercalation and exfoliation syntheses of high specific surface area graphene and FeC₂0₄/graphene composite for anode material of lithium ion battery. 1.0 Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27, 746-754. Fe₃O₄/Nitrogenâ€Doped Carbon Electrodes from Tailored Thermal Expansion toward Flexible Solidâ€State Asymmetric Supercapacitors. Advanced Materials Interfaces, 2019, 6, 1332 1.9 8 1901250. Synthesis of MgCo2O4-coated Li4Ti5O12 composite anodes using co-precipitation method for 1.2 lithium-ion batteries. Journal of Solid State Electrochemistry, 2019, 23, 3197-3207. Carboxylated Poly(thiophene) Binders for High-Performance Magnetite Anodes: Impact of Cation 1336 4.0 11 Structure. ACS Applied Materials & amp; Interfaces, 2019, 11, 44046-44057. Phosphorizationâ€Induced Voidâ€Containing Fe 3 O 4 Nanoparticles Enabling Low Lithiation/Delithiation Potential for Highâ€Performance Lithiumâ€Ion Batteries. ChemElectroChem, 2019, 6, 5060-5069. 1.7 A facile one–pot synthesis of Sn/graphite/graphene nanocomposites as anode materials for 1338 2.8 26 lithium–ion batteries. Journal of Alloys and Compounds, 2019, 809, 151870. Uniform carbon coating drastically enhances the electrochemical performance of a Fe3O4 electrode for alkaline nickel–iron rechargeable batteries. International Journal of Hydrogen Energy, 2019, 44, 3.8 24895-24904. Facile direct synthesis of graphene-wrapped ZnO nanospheres from cyanobacterial cells. Chemical Communications, 2019, 55, 11410-11413. 1340 2.2 9 Ternary metal selenide/MWCNT/PANI: potential n-type nanohybrids for room-temperature 1341 1.6 thermoelectric applications. Dalton Transactions, 2019, 48, 14497-14504. Self-Assembled Nanoparticle Supertubes as Robust Platform for Revealing Long-Term, Multiscale 1342 5.041 Lithiation Evolution. Matter, 2019, 1, 976-987. Cladding transition metal oxide particles with graphene oxide sheets: an efficient protocol to improve their structural stability and lithium ion diffusion rate. Journal of Solid State Electrochemistry, 2019, 23, 2969-2977. 1343 1.2 1344 Nanowires for Electrochemical Energy Storage. Chemical Reviews, 2019, 119, 11042-11109. 23.0 309 Biomass-Derived Carbon Paper to Sandwich Magnetite Anode for Long-Life Li-Ion Battery. ACS Nano, 1345 Alignment of polymer based magnetic composites in magnetic field. Progress in Organic Coatings, 2019, 1346 1.9 4 137, 105366. Multilevel Coupled Hybrids Made of Porous Cobalt Oxides and Graphene for Highâ€Performance Lithium 1347 Storage. Chemistry - A European Journal, 2019, 25, 5527-5533. Hydrothermal synthesis and characterization of α-Fe2O3/C using acid-pickled iron oxide red for Li-ion 1348 6.5 73 batteries. Journal of Hazardous Materials, 2019, 368, 714-721. Graphene aerogel derived by purification-free graphite oxide for high performance supercapacitor 1349 5.4 electrodes. Carbon, 2019, 146, 147-154.

#	Article	IF	CITATIONS
1350	Zn2SnO4 particles coated with N-doped carbon as an anode material for lithium and sodium-ion batteries. Journal of Alloys and Compounds, 2019, 786, 346-355.	2.8	22
1351	Threeâ€Dimensional Graphene/Ag Aerogel for Durable and Stable Li Metal Anodes in Carbonateâ€Based Electrolytes. Chemistry - A European Journal, 2019, 25, 5036-5042.	1.7	25
1352	Chemically bubbled hollow Fe _x O nanospheres anchored on 3D N-doped few-layer graphene architecture as a performance-enhanced anode material for potassium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 744-754.	5.2	74
1353	Water-dispersible graphene–wrapped MnO2 nanospheres and their applications in coin cell supercapacitors. Ionics, 2019, 25, 4425-4436.	1.2	4
1354	Hollow MoS2/rGO composites as high-performance anode materials for lithium-ion batteries. Ionics, 2019, 25, 4659-4666.	1.2	12
1355	Facile <i>in situ</i> growth of ZnO nanosheets standing on Ni foam as binder-free anodes for lithium ion batteries. RSC Advances, 2019, 9, 19253-19260.	1.7	17
1356	Preparation and application of magnetic molecular imprinted polymers for extraction of cephalexin from pork and milk samples. Journal of Chromatography A, 2019, 1602, 124-134.	1.8	31
1357	Synthesis and magnetic properties of Fe-Ni-Zn, Fe-Co-Zn and Co-Ni-Zn nanoparticles by co-precipitation method. Inorganic and Nano-Metal Chemistry, 2019, 49, 163-168.	0.9	4
1358	3D Hollow Porous Spherical Architecture Packed by Iron-Borate Amorphous Nanoparticles as High-Performance Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 25254-25263.	4.0	11
1359	Integrated MXene&CoFe ₂ O ₄ electrodes with multi-level interfacial architectures for synergistic lithium-ion storage. Nanoscale, 2019, 11, 15037-15042.	2.8	33
1360	High-Performance Lithium-Ion Capacitors Based on CoO-Graphene Composite Anode and Holey Carbon Nanolayer Cathode. ACS Sustainable Chemistry and Engineering, 2019, 7, 11275-11283.	3.2	65
1361	One-Step In Situ Self-Assembly of Cypress Leaf-Like Cu(OH)2 Nanostructure/Graphene Nanosheets Composite with Excellent Cycling Stability for Supercapacitors. Nanoscale Research Letters, 2019, 14, 167.	3.1	20
1362	Hollow Fe3O4 microspheres/graphene composites with adjustable electromagnetic absorption properties. Diamond and Related Materials, 2019, 97, 107441.	1.8	22
1363	Unique structured microspheres with multishells comprising graphitic carbon-coated Fe ₃ O ₄ hollow nanopowders as anode materials for high-performance Li-ion batteries. Journal of Materials Chemistry A, 2019, 7, 15766-15773.	5.2	61
1364	In Situ Synthesis of Reduced Graphite Oxide-Li ₂ ZnTi ₃ O ₈ Composite as a High Rate Anode Material for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A2002-A2012.	1.3	13
1365	A hollow Co2SiO4 nanosheet Li-ion battery anode with high electrochemical performance and its dynamic lithiation/delithiation using in situ transmission electron microscopy technology. Applied Surface Science, 2019, 490, 510-515.	3.1	14
1366	Electrochemical performance of porous CaFe2O4 as a promising anode material for lithium-ion batteries. Applied Surface Science, 2019, 491, 757-764.	3.1	41
1367	Well-Wrapped Li-Rich Layered Cathodes by Reduced Graphene Oxide towards High-Performance Li-Ion Batteries. Molecules, 2019, 24, 1680.	1.7	3

~			_	
	ΙΤΑΤ	ION	REE	DOBT
~				

#	Article	IF	CITATIONS
1368	One-step hydrothermal synthesis of 2D WO3 nanoplates@ graphene nanocomposite with superior anode performance for lithium ion battery. Electrochimica Acta, 2019, 313, 99-108.	2.6	42
1369	Phase evolution of conversion-type electrode for lithium ion batteries. Nature Communications, 2019, 10, 2224.	5.8	99
1370	Poly-melamine sponge derived N-doped carbon/Fe3O4/graphene synthesized for lithium-ion anode. Materials Letters, 2019, 251, 57-60.	1.3	3
1371	Insights on the Stability and Cationic Nonstoichiometry of CuFeO ₂ Delafossite. Inorganic Chemistry, 2019, 58, 6431-6444.	1.9	19
1372	Self‣uspended Nanoparticles for Nâ€Alkylation Reactions: A New Concept for Catalysis. ChemistryOpen, 2019, 8, 520-531.	0.9	2
1373	Hierarchical Architecture of Electrospun Hybrid PAN/Agâ€rGO/Fe ₃ O ₄ ÂComposite Nanofibrous Mat for Antibacterial Applications. ChemistrySelect, 2019, 4, 5044-5054.	0.7	4
1374	Developing the processing stages of carbon fiber composite paper as efficient materials for energy conversion, storage, and conservation. Materials Science for Energy Technologies, 2019, 2, 490-502.	1.0	11
1375	Ferroelectric order associated with ordered occupancy at the octahedral site of the inverse spinel structure of multiferroic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>NiFe</mml:mi><mml:mnvariant="normal">O<mml:mnvariant="normal">O<mml:mnvariant="normal">O<mml:mnvariant="normal">O<mml:mnvariant="normal">O<mml:mnvariant="normal">O<mml:mnvariant="normal">O<mml:mnvariant="normal">O<mml:mnvariant="normal">O<mml:mnvariant="normal">O<mml:mnvariant="normal">O<mml:mnvariant="normal">O<mml:mnvariant="normal">O<mml:mnvariant="normal">O<mml:mnvariant="normal">O<mml:mnvariant="normal">O<mml:mnvariant="normal">O<mml:mnvariant="normal">O<mml:mnvariant="normal">O<mml:mnvariant="normal">O<mml:mnvariant="normal">O<mml:mnvariant="normal">O<mml:mnvariant="normal">O<mml:mnvariant="normal">O<mml:mnvariant="normal">O<mml:mnvariant="normal">OOOOOOOOO</mml:mnvariant="normal"></mml:mnvariant="normal"></mml:mnvariant="normal"></mml:mnvariant="normal"></mml:mnvariant="normal"></mml:mnvariant="normal"></mml:mnvariant="normal"></mml:mnvariant="normal"></mml:mnvariant="normal"></mml:mnvariant="normal"></mml:mnvariant="normal"></mml:mnvariant="normal"></mml:mnvariant="normal"></mml:mnvariant="normal"></mml:mnvariant="normal"></mml:mnvariant="normal"></mml:mnvariant="normal"></mml:mnvariant="normal"></mml:mnvariant="normal"></mml:mnvariant="normal"></mml:mnvariant="normal"></mml:mnvariant="normal"></mml:mnvariant="normal"></mml:mnvariant="normal"></mml:mnvariant="normal"></mml:mnvariant="normal"></mml:msub></mml:mrow></mml:math>	:m1112 <td>າເກາ່ະເອາກ > < /ກາ</td>	າເກາ ່ະເອ າກ > < /ກາ
1376	Physical Review B, 2019, 99, . Flexible freestanding 3D Si/C composite nanofiber film fabricated using the electrospinning technique for lithium-ion batteries anode. Solid State Ionics, 2019, 337, 70-75.	1.3	20
1377	New Li-ion battery full-cells: MoO3 nanobelts as high energy density electrode. Materials Research Express, 2019, 6, 075003.	0.8	9
1378	High capacity conversion anodes in Li-ion batteries: A review. International Journal of Hydrogen Energy, 2019, 44, 10852-10905.	3.8	88
1380	Prospects and challenges of graphene based fuel cells. Journal of Energy Chemistry, 2019, 39, 217-234.	7.1	63
1381	Band Engineered I/III/V–VI Binary Metal Selenide/MWCNT/PANI Nanocomposites for Potential Room Temperature Thermoelectric Applications. ACS Applied Energy Materials, 2019, 2, 2680-2691.	2.5	21
1383	A Review on Iron Oxideâ€Based Nanoarchitectures for Biomedical, Energy Storage, and Environmental Applications. Small Methods, 2019, 3, 1800512.	4.6	78
1384	Synthesis Mechanism of Magnetite Nanorods Containing Ordered Mesocages. Chemistry of Materials, 2019, 31, 2263-2268.	3.2	16
1385	One-pot microwave-assisted combustion synthesis of NiFe2O4-reduced graphene oxide composite for adsorptive desulfurization of diesel fuel. Materials Chemistry and Physics, 2019, 229, 294-302.	2.0	12
1388	Reduced graphene oxide@CoSe2 interlayer as anchor of polysulfides for high properties of lithium–sulfur battery. Journal of Materials Science, 2019, 54, 9622-9631.	1.7	26
1389	Carbon framework microbelt supporting SnOx as a high performance electrode for lithium ion batteries. Nanotechnology, 2019, 30, 325405.	1.3	13

#	Article	IF	CITATIONS
1390	Boosted pseudocapacitance contribution in lithium ion storage performance of Fe3O4/Fe7S8 anode by nanoscale heterostructuring. Applied Surface Science, 2019, 481, 1352-1359.	3.1	16
1391	Template-free synthesis of hierarchical NiO microtubes as high performance anode materials for Li-ion batteries. Current Applied Physics, 2019, 19, 715-720.	1.1	10
1392	Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study. Applied Energy, 2019, 242, 378-392.	5.1	257
1393	Tunable nitrogen-doped graphene sheets produced with in situ electrochemical cathodic plasma at room temperature for lithium-ion batteries. Materials Today Energy, 2019, 12, 336-347.	2.5	25
1395	Role of polyvinylpyrrolidone in the electrochemical performance of Li ₂ MnO ₃ cathode for lithium-ion batteries. RSC Advances, 2019, 9, 10297-10304.	1.7	7
1396	Vanadateâ€Based Materials for Liâ€lon Batteries: The Search for Anodes for Practical Applications. Advanced Energy Materials, 2019, 9, 1803324.	10.2	168
1397	Bioelectronics and Interfaces Using Monolayer Graphene. ChemElectroChem, 2019, 6, 31-59.	1.7	46
1398	Functionalized Graphene-Based Nanocomposites for Energy Applications. , 2019, , 219-243.		30
1399	Carbon–metal compound composite electrodes for capacitive deionization: synthesis, development and applications. Journal of Materials Chemistry A, 2019, 7, 26693-26743.	5.2	77
1400	Energy storage: The future enabled by nanomaterials. Science, 2019, 366, .	6.0	1,119
1401	Influence of point and linear defects on thermal and mechanical properties of germanium nanowire: a molecular dynamics study. Materials Research Express, 2019, 6, 1250j4.	0.8	0
1402	An advanced cathode material for high-power Li-ion storage full cells with a long lifespan. Journal of Materials Chemistry A, 2019, 7, 22444-22452.	5.2	1
1403	Co-based metal–organic framework and its derivatives as high-performance anode materials for lithium-ion batteries. Journal of Materials Science, 2019, 54, 1529-1538.	1.7	24
1404	Strategies for Building Robust Traffic Networks in Advanced Energy Storage Devices: A Focus on Composite Electrodes. Advanced Materials, 2019, 31, e1804204.	11.1	69
1405	Versatile reorganization of metal-polyphenol coordination on CNTs for dispersion, assembly, and transformation. Carbon, 2019, 144, 402-409.	5.4	10
1406	Emergence of graphene as a promising anode material for rechargeable batteries: a review. Materials Today Chemistry, 2019, 11, 225-243.	1.7	91
1407	Solvothermal synthesis of Mn3O4 as an anode material for lithium ion batteries. Journal of Electroceramics, 2019, 42, 156-164.	0.8	0
1408	Combination-based nanomaterial designs in single and double dimensions for improved electrodes in lithium ion-batteries and faradaic supercapacitors. Journal of Energy Chemistry, 2019, 38, 119-146.	7.1	20

#	Article	IF	CITATIONS
1409	Magnetic Zink-based metal organic framework as advance and recyclable adsorbent for the extraction of trace pyrethroids. Microchemical Journal, 2019, 146, 134-141.	2.3	30
1410	Firstâ€Row Transitionâ€Metal Cations (Co ²⁺ , Ni ²⁺ , Mn ²⁺ ,) Tj ETQq1 1 0. Applications. Chemistry - A European Journal, 2019, 25, 3131-3140.	784314 rg 1.7	gBT /Overloo 21
1411	A comprehensive review of applications of magnetic graphene oxide based nanocomposites for sustainable water purification. Journal of Environmental Management, 2019, 231, 622-634.	3.8	253
1412	Synergistic removal of arsanilic acid using adsorption and magnetic separation technique based on Fe3O4@ graphene nanocomposite. Journal of Industrial and Engineering Chemistry, 2019, 70, 346-354.	2.9	76
1413	Hierarchical Sb2MoO6 microspheres for high-performance sodium-ion battery anode. Energy Storage Materials, 2019, 17, 101-110.	9.5	32
1414	Conversion of electrolytic MnO2 to Mn3O4 nanowires for high-performance anode materials for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2019, 833, 79-92.	1.9	36
1415	Thermal decomposition followed by acid etching to synthesize Fe3O4@C for lithium storage. Journal of Materials Science: Materials in Electronics, 2019, 30, 91-97.	1.1	1
1416	Rapid microwave-irradiation synthesis of ZnCo2O4/ZnO nanocrystals/carbon nanotubes composite as anodes for high-performance lithium-ion battery. Journal of Materials Science, 2019, 54, 4154-4167.	1.7	17
1417	Cobalt oxide thin films for high capacity and stable Li-ion battery anode. Journal of Solid State Electrochemistry, 2019, 23, 513-518.	1.2	7
1418	Novel design of Fe3O4/hollow graphene spheres composite for high performance lithium-ion battery anodes. Journal of Alloys and Compounds, 2019, 779, 466-473.	2.8	25
1419	Controlled synthesis of CoFe2O4/MoS2 nanocomposites with excellent sedimentation stability for magnetorheological fluid. Journal of Industrial and Engineering Chemistry, 2019, 70, 439-446.	2.9	31
1420	Adsorption of doxorubicin hydrochloride on glutaric anhydride functionalized Fe3O4@SiO2 magnetic nanoparticles. Materials Science and Engineering C, 2019, 98, 65-73.	3.8	74
1421	Investigation of ordered mesoporous carbon@MnO core–shell nanospheres as anode material for lithium-ion batteries. Journal of Materials Science, 2019, 54, 6461-6470.	1.7	16
1422	Enhanced Roles of Carbon Architectures in High-Performance Lithium-Ion Batteries. Nano-Micro Letters, 2019, 11, 5.	14.4	56
1423	High-rate-induced capacity evolution of mesoporous C@SnO2@C hollow nanospheres for ultra-long cycle lithium-ion batteries. Journal of Power Sources, 2019, 414, 233-241.	4.0	81
1424	In-situ porous nano-Fe3O4/C composites derived from citrate precursor as anode materials for lithium-ion batteries. Materials Chemistry and Physics, 2019, 225, 379-383.	2.0	12
1425	Preparation of carbon encapsulated core-shell Fe@CoFe2O4 particles through the Kirkendall effect and application as advanced anode materials for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2019, 835, 22-29.	1.9	12
1426	Facile Synthesis of quantum dots SnO2/Fe3O4 hybrid composites for superior reversible lithium-ion storage. Journal of Industrial and Engineering Chemistry, 2019, 72, 504-511.	2.9	26

#	Article	IF	CITATIONS
1427	Recent Advances of 2D Nanomaterials in the Electrode Materials of Lithium-Ion Batteries. Nano, 2019, 14, 1930001.	0.5	22
1428	Hierarchically structural Ge encapsulated with nitrogen-doped carbon for high performance lithium storage. Journal of Electroanalytical Chemistry, 2019, 832, 182-188.	1.9	6
1429	Targeted interfacial anchoring and wrapping of Fe3O4 nanoparticles onto graphene by PPy-derived-carbon for stable lithium-ion battery anodes. Materials Research Bulletin, 2019, 111, 170-176.	2.7	10
1430	Preparation of dual layers N-doped Carbon@Mesoporous Carbon@Fe3O4 nanoparticle superlattice and its application in lithium-ion battery. Journal of Alloys and Compounds, 2019, 775, 776-783.	2.8	36
1431	MWCNTs modified α-Fe2O3 nanoparticles as anode active materials and carbon nanofiber paper as a flexible current collector for lithium-ion batteries application. Journal of Alloys and Compounds, 2019, 776, 974-983.	2.8	24
1432	Core-shells on nanosheets: Fe3O4@carbon-reduced graphene oxide composites for lithium-ion storage. Journal of Solid State Electrochemistry, 2019, 23, 237-244.	1.2	7
1433	Skein-shaped ZnO/N-doped carbon microstructures as a high performance anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 772, 507-515.	2.8	41
1434	Superior Li-ion storage performance of graphene decorated NiO nanowalls on Ni as anode for lithium ion batteries. Materials Chemistry and Physics, 2019, 222, 31-36.	2.0	27
1435	Effects of annealing temperature on the electrochemical characteristics of ZnO microrods as anode materials of lithium-ion battery using chemical bath deposition. Ionics, 2019, 25, 457-466.	1.2	13
1436	Magnetically hyper-cross-linked polymers with well-developed mesoporous: a broad-spectrum and highly efficient adsorbent for water purification. Journal of Materials Science, 2019, 54, 2712-2728.	1.7	21
1437	Li3VO4/carbon sheets composites from cellulose as an anode material for high performance lithium-ion batteries. Ceramics International, 2020, 46, 2247-2254.	2.3	26
1438	Going green with batteries and supercapacitor: Two dimensional materials and their nanocomposites based energy storage applications. Progress in Solid State Chemistry, 2020, 58, 100254.	3.9	87
1439	Structural Reorganization–Based Nanomaterials as Anodes for Lithiumâ€ion Batteries: Design, Preparation, and Performance. Small, 2020, 16, e1902841.	5.2	32
1440	Graphene nanosheets loaded Fe3O4 nanoparticles as a promising anode material for lithium ion batteries. Journal of Alloys and Compounds, 2020, 813, 152160.	2.8	65
1441	Solvothermal synthesis of magnetically separable reduced graphene oxide/Fe3O4 hybrid nanocomposites with enhanced photocatalytic properties. Physica B: Condensed Matter, 2020, 580, 411752.	1.3	37
1442	Encapsulated Fe3O4 into tubular mesoporous carbon as a superior performance anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2020, 815, 152542.	2.8	22
1443	Hollow Fe3O4/carbon with surface mesopores derived from MOFs for enhanced lithium storage performance. Science Bulletin, 2020, 65, 233-242.	4.3	58
1444	Ferroferric oxide nanoclusters decorated Ti3C2Tx nanosheets as high performance anode materials for lithium ion batteries. Electrochimica Acta, 2020, 329, 135146.	2.6	41

#	Article	IF	CITATIONS
1445	Synthesis and Characterization of Graphene Based Hybrid Ligands and Their Metal Complexes: Investigation of Chemosensor and Catalytic Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 2774-2788.	1.9	3
1446	Porous architectures assembled with ultrathin Cu2O–Mn3O4 hetero-nanosheets vertically anchoring on graphene for high-rate lithium-ion batteries. Journal of Alloys and Compounds, 2020, 819, 152969.	2.8	19
1447	Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium―and Sodiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 1902485.	10.2	511
1448	Enhanced capacity and significant rate capability of Mn3O4/reduced graphene oxide nanocomposite as high performance anode material in lithium-ion batteries. Applied Surface Science, 2020, 505, 144629.	3.1	38
1449	Preparation and Electrochemical Performance of CoSe ₂ â^'MnSe ₂ for Application in Lithiumâ€ion Batteries. ChemElectroChem, 2020, 7, 782-791.	1.7	22
1450	Stability study of SOFC using layered perovskite oxide La1·85Sr0·15CuO4 mixed with ionic conductor as membrane. Electrochimica Acta, 2020, 332, 135487.	2.6	38
1451	Nanotechnology in energy storage: the supercapacitors. Studies in Surface Science and Catalysis, 2020, 179, 431-458.	1.5	28
1452	Nanoscale Phenomena in Lithium-Ion Batteries. Chemical Reviews, 2020, 120, 6684-6737.	23.0	142
1453	A freestanding nitrogen-doped carbon nanofiber/MoS2 nanoflowers with expanded interlayer for long cycle-life lithium-ion batteries. Journal of Alloys and Compounds, 2020, 818, 152835.	2.8	34
1454	Fabrication and electrochemical properties of flexible transparent supercapacitor electrode materials based on cellulose nanofibrils and reduced graphene oxide. Polymer Composites, 2020, 41, 1135-1144.	2.3	14
1455	A new CoO/Co2B/rGO nanocomposite anode with large capacitive contribution for high-efficiency and durable lithium storage. Applied Surface Science, 2020, 508, 144698.	3.1	12
1456	Synergistic Effect of a Defect-Free Graphene Nanostructure as an Anode Material for Lithium Ion Batteries. Nanomaterials, 2020, 10, 9.	1.9	14
1457	Cr2O3/rGO nanocomposite with excellent electrochemical capacitive properties. SN Applied Sciences, 2020, 2, 1.	1.5	2
1458	Synthesis of gold and palladium nanoparticles supported on CuO/rGO using imidazolium ionic liquid for CO oxidation. Research on Chemical Intermediates, 2020, 46, 5499-5516.	1.3	13
1459	Vibration analysis of damaged and undamaged steel structure systems: cantilever column and frame. Earthquake Engineering and Engineering Vibration, 2020, 19, 725-737.	1.1	14
1460	Biomimetic Mesoporous Cobalt Ferrite/Carbon Nanoflake Helices for Freestanding Lithium″on Battery Anodes. ChemistrySelect, 2020, 5, 8207-8217	0.7	9
1461	Current trends in spinel based modified polymer composite materials for electromagnetic shielding. Materials Today Chemistry, 2020, 17, 100346.	1.7	16
1462	MoS2/graphene composites: Fabrication and electrochemical energy storage. Energy Storage Materials, 2020, 33, 470-502	9.5	85

#	Article	IF	CITATIONS
1463	Supported heterogeneous nanocatalysts in sustainable, selective and eco-friendly epoxidation of olefins. Green Chemistry, 2020, 22, 5902-5936.	4.6	75
1464	TEMPO ontained Polymer Grafted onto Graphene Oxide via Click Chemistry as Cathode Materials for Organic Battery. Macromolecular Chemistry and Physics, 2020, 221, 2000160.	1.1	5
1465	Scalable Synthesis of Few-Layered 2D Tungsten Diselenide (2H-WSe ₂) Nanosheets Directly Grown on Tungsten (W) Foil Using Ambient-Pressure Chemical Vapor Deposition for Reversible Li-Ion Storage. ACS Omega, 2020, 5, 19409-19421.	1.6	23
1466	Biomolecule-assisted synthesis of porous network-like Ni ₃ S ₂ nanoarchitectures assembled with ultrathin nanosheets as integrated negative electrodes for high-performance lithium storage. New Journal of Chemistry, 2020, 44, 14453-14462.	1.4	4
1467	Ti3SiC2/Carbon Nanofibers Fabricated by Electrospinning as Electrode Material for High-Performance Supercapacitors. Journal of Nanoscience and Nanotechnology, 2020, 20, 6441-6449.	0.9	3
1468	Bifunctional NaCl template for the synthesis of Si@graphitic carbon nanosheets as advanced anode materials for lithium ion batteries. New Journal of Chemistry, 2020, 44, 14278-14285.	1.4	8
1469	Microwave-assisted preparation of magnetic ternary core-shell nanofiller (CoFe2O4/rGO/SiO2) and their epoxy nanocomposite for microwave absorption properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 262, 114711.	1.7	32
1470	Metal–Organic Framework Derived Fe ₇ S ₈ Nanoparticles Embedded in Heteroatomâ€Doped Carbon with Lithium and Sodium Storage Capability. Small Methods, 2020, 4, 2000637.	4.6	46
1471	Porous PtAg nanoshells/reduced graphene oxide based biosensors for low-potential detection of NADH. Mikrochimica Acta, 2020, 187, 544.	2.5	7
1472	Design, characterization, and application of elemental 2D materials for electrochemical energy storage, sensing, and catalysis. Materials Advances, 2020, 1, 2562-2591.	2.6	21
1473	Synthesis, Characterization, Electrochemistry, and Inâ€Situ Xâ€ray Diffraction Investigation of Ni ₃ (PO ₄) ₂ as a Negative Electrode Material for Lithiumâ€lon Batteries. ChemElectroChem, 2020, 7, 3866-3873.	1.7	12
1474	Reduced Graphene Oxide-Supported Co ₃ O ₄ Nanocomposite Bifunctional Electrocatalysts for Glucose–Oxygen Fuel Cells. Energy & Fuels, 2020, 34, 12984-12994.	2.5	11
1475	Superparamagnetic Iron Oxide Nanoparticles and Essential Oils: A New Tool for Biological Applications. International Journal of Molecular Sciences, 2020, 21, 6633.	1.8	17
1476	Highly durable Li-ion battery anode from Fe3O4 nanoparticles embedded in nitrogen-doped porous carbon with improved rate capabilities. Journal of Materials Science, 2020, 55, 15667-15680.	1.7	9
1477	Nanostructured Graphene Oxide-Based Hybrids as Anodes for Lithium-Ion Batteries. Journal of Carbon Research, 2020, 6, 81.	1.4	8
1478	A Ti-site deficient spinel Li2CoTi3O8 anode with superior cycling performance for lithium-ion batteries. Solid State Ionics, 2020, 355, 115423.	1.3	5
1479	Boosting the lithium storage of SnO2 nanoparticles by anchoring onto an interconnected carbon nanoribbons assembled 3D architecture. Chemical Physics Letters, 2020, 761, 138043.	1.2	9
1480	Tin dioxide with a support assembled from hollow carbon nanospheres for high capacity anode of lithium-ion batteries. Journal of Electroanalytical Chemistry, 2020, 879, 114797.	1.9	6

#	Article	IF	CITATIONS
1481	OHM Sponge: A Versatile, Efficient, and Ecofriendly Environmental Remediation Platform. Industrial & Engineering Chemistry Research, 2020, 59, 10945-10954.	1.8	18
1482	Magnetically Triggered Release of Entrapped Bioactive Proteins from Thermally Responsive Polymer-Coated Iron Oxide Nanoparticles for Stem-Cell Proliferation. ACS Applied Nano Materials, 2020, 3, 5008-5013.	2.4	19
1483	A review on Fe O -based materials for advanced lithium-ion batteries. Renewable and Sustainable Energy Reviews, 2020, 127, 109884.	8.2	36
1484	Structural engineering of Fe2.8Sn0.2O4@C micro/nano composite as anode material for high-performance lithium ion batteries. Journal of Power Sources, 2020, 468, 228366.	4.0	11
1485	Layered mesoporous CoO/reduced graphene oxide with strong interfacial coupling as a high-performance anode for lithium-ion batteries. Journal of Alloys and Compounds, 2020, 843, 156050.	2.8	32
1486	Bubble-sheet-like Ni0.85Co2.15V2O8 nanosheets for high-rate lithium storage. Ceramics International, 2020, 46, 14488-14495.	2.3	2
1487	N-doped 3D porous carbon materials derived from hierarchical porous IRMOF-3 using a citric acid modulator: fabrication and application in lithium ion batteries as anode materials. Dalton Transactions, 2020, 49, 9369-9376.	1.6	8
1488	Electrophoretic Deposition of Nickel Cobaltite/Polyaniline/rGO Composite Electrode for High-Performance All-Solid-State Asymmetric Supercapacitors. Energy & Fuels, 2020, 34, 6448-6461.	2.5	35
1489	Strong influence of strain gradient on lithium diffusion: flexo-diffusion effect. Nanoscale, 2020, 12, 15175-15184.	2.8	9
1490	Hierarchically Wellâ€Developed Porous Graphene Nanofibers Comprising Nâ€Doped Graphitic Câ€Coated Cobalt Oxide Hollow Nanospheres As Anodes for Highâ€Rate Liâ€Ion Batteries. Small, 2020, 16, e2002213.	5.2	46
1491	A novel and facile-to-synthesize three-dimensional honeycomb-like nano-Fe3O4@C composite: Electromagnetic wave absorption with wide bandwidth. Carbon, 2020, 169, 118-128.	5.4	72
1492	Simultaneous determination of dopamine, uric acid and estriol in maternal urine samples based on the synergetic effect of reduced graphene oxide, silver nanowires and silver nanoparticles in their ternary 3D nanocomposite. Microchemical Journal, 2020, 158, 105185.	2.3	19
1493	Three-dimensional hierarchical graphene and CNT-coated spinel ZnMn2O4 as a high-stability anode for lithium-ion batteries. Electrochimica Acta, 2020, 338, 135853.	2.6	36
1494	Metal/metal oxide decorated graphene synthesis and application as supercapacitor: a review. Journal of Materials Science, 2020, 55, 6375-6400.	1.7	111
1495	Impact of Surface Modification on the Lithium, Sodium, and Potassium Intercalation Efficiency and Capacity of Few-Layer Graphene Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 19393-19401.	4.0	16
1496	A Biomimeticâ€Mineralizationâ€Inspired Hybrid Mesocrystal with Boosted Lithium Storage Properties. ChemistrySelect, 2020, 5, 2240-2246.	0.7	3
1497	Pyrochlore phase Ce ₂ Sn ₂ O ₇ <i>via</i> an atom-confining strategy for reversible lithium storage. Journal of Materials Chemistry A, 2020, 8, 5744-5749.	5.2	15
1498	A Facile Synthesis of Urchinâ€Like ZnMn 2 O 4 Architectures with Enhanced Electrochemical Lithium Storage. ChemistrySelect, 2020, 5, 1491-1495.	0.7	12

	Сітаті	on Report	
#	Article	IF	CITATIONS
1499	Two-Dimensional Materials to Address the Lithium Battery Challenges. ACS Nano, 2020, 14, 2628-2658.	7.3	214
1500	Preparation and electrochemical properties of sucrose-based porous carbon materials by combustion expansion-chemical activation method. Journal of Applied Electrochemistry, 2020, 50, 549-558.	1.5	7
1501	Facile preparation of one-dimensional hollow tin dioxide@carbon nanocomposite for lithium-ion battery anode. Journal of Electroanalytical Chemistry, 2020, 861, 113943.	1.9	6
1502	Carbon layer encapsulated Fe3O4@Reduced graphene oxide lithium battery anodes with long cycle performance. Ceramics International, 2020, 46, 12732-12739.	2.3	43
1503	Designed synthesis of Fe3O4@NC yolk-shell hollow spheres as high performance anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2020, 821, 153569.	2.8	14
1504	NiCo2O4/biomass-derived carbon composites as anode for high-performance lithium ion batteries. Journal of Power Sources, 2020, 451, 227761.	4.0	71
1505	Understanding the Role of Graphene in Hydrated Layered V-Oxide Based Cathodes for Rechargeable Aqueous Zn-Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 070515.	1.3	5
1506	Room temperature processed in-situ carbon-coated vanadium carbide (VC@C) as a high capacity robust Li/Na battery anode material. Carbon, 2020, 161, 108-116.	5.4	24
1507	Carbon-coated Fe3O4 nanospindles as solid electrolyte interface for improving graphite anodes in lithium ion batteries. Journal of Applied Electrochemistry, 2020, 50, 321-331.	1.5	6
1508	Porous ZnO/C microspheres prepared with maleopimaric acid as an anode material for lithium-ion batteries. Carbon, 2020, 165, 55-66.	5.4	51
1509	Constructing three-dimensional Li-transport channels within the Fe3O4@SiO2@RGO composite to improve its electrochemical performance in Li-ion batteries. Ceramics International, 2020, 46, 18868-18877.	2.3	17
1510	Fabrication of helical SiO2@Fe–N doped C nanofibers and their applications as stable lithium ion battery anodes and superior oxygen reduction reaction catalysts. Electrochimica Acta, 2020, 342, 136107.	2.6	17
1511	Transition Metal Migration Can Facilitate Ionic Diffusion in Defect Garnet-Based Intercalation Electrodes. ACS Energy Letters, 2020, 5, 1448-1455.	8.8	5
1512	Porous FeO <i> _x </i> /carbon nanocomposites with different iron oxidation degree for building high-performance lithium ion batteries. Nanotechnology, 2020, 31, 285403.	1.3	7
1513	Ni-nanoparticle-bound boron nitride nanosheets prepared by a radiation-induced reduction-exfoliation method and their catalytic performance. Journal of Materials Chemistry A, 2020, 8, 9109-9120.	5.2	19
1514	Diethylenetriamine directed the assembly of Co0.85Se nanosheets layer by layer on N-doped carbon nanosheets for high performance lithium ion batteries. Journal of Colloid and Interface Science, 2020, 570, 332-339.	5.0	21
1515	Magnetite-graphene oxide nanocomposites: Facile synthesis and characterization of optical and magnetic property. Materials Today: Proceedings, 2020, 30, 17-22.	0.9	7
1516	Highly Stable Fe ₃ O ₄ /C Composite: A Candidate Material for All Solid-State Lithium-Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 070556.	1.3	10

#	Article	IF	Citations
1517	Enabling improved cycling stability of hollow SnO2/C composite anode for lithium-ion battery by constructing a built-in porous carbon support. Applied Surface Science, 2021, 537, 148052.	3.1	17
1518	Retracting interphasial stored Li+ ions by transition metal/metal carbide nanoparticles for enhanced Li+ ion storage capacity. Journal of Colloid and Interface Science, 2021, 582, 1213-1222.	5.0	7
1519	Structural, optical, thermal and electrochemical studies of SnO2 by the influence of carbon derived from filter paper as carbon precursor. Materials Today: Proceedings, 2021, 36, 841-847.	0.9	0
1520	Magnetic nickel cobalt sulfide/sodium dodecyl benzene sulfonate with excellent ciprofloxacin adsorption capacity and wide pH adaptability. Chemical Engineering Journal, 2021, 426, 127208.	6.6	33
1521	Uniformly dispersed nano-crystallite graphite in a silicon-oxygen-carbon matrix for high rate performance lithium-ion batteries. Journal of Alloys and Compounds, 2021, 857, 157476.	2.8	5
1522	Mechanism and improvement strategy of CoSe capacity change during lithiation/delithiation. Journal of Alloys and Compounds, 2021, 864, 158099.	2.8	11
1523	Recycling of graphite and metals from spent Li-ion batteries aiming the production of graphene/CoO-based electrochemical sensors. Journal of Environmental Chemical Engineering, 2021, 9, 104689.	3.3	21
1524	Preparation and electrochemical properties of Fe/Fe3O4@r-GO composite nanocage with 3D hollow structure. Journal of Solid State Electrochemistry, 2021, 25, 869-879.	1.2	5
1525	Structural orientation effect of cellulose nanocrystals (CNC) films on electrochemical kinetics and stability in lithium-ion batteries. Chemical Engineering Journal, 2021, 417, 128128.	6.6	23
1526	One-step fabrication of two-dimensional hierarchical Mn2O3@graphene composite as high-performance anode materials for lithium ion batteries. Journal of Materials Science and Technology, 2021, 80, 13-19.	5.6	22
1527	Engineering capacitive contribution in dual carbon-confined Fe3O4 nanoparticle enabling superior Li+ storage capability. Journal of Materials Science, 2021, 56, 5100-5112.	1.7	3
1528	Removal behaviors and mechanisms for series of azo dye wastewater by novel nano constructed macro-architectures material. Bioresource Technology, 2021, 322, 124556.	4.8	29
1529	Coumarin-based D–π–A dyes for efficient DSSCs: DFT and TD-DFT study of the π-spacers influence on photovoltaic properties. Research on Chemical Intermediates, 2021, 47, 875-893.	1.3	14
1530	Rosa roxburghii-like hierarchical hollow sandwich-structure C@Fe2O3@C microspheres as second nanomaterialsfor superior lithium storage. Journal of Alloys and Compounds, 2021, 855, 157518.	2.8	29
1531	Controlled thermal oxidation derived Mn3O4 encapsulated in nitrogen doped carbon as an anode for lithium/sodium ion batteries with enhanced performance. Chemical Engineering Journal, 2021, 406, 126894.	6.6	57
1533	Hierarchically Fe-doped porous carbon derived from phenolic resin for high performance supercapacitor. Ceramics International, 2021, 47, 5998-6009.	2.3	27
1534	One step solvothermal synthesis and characterization of rGO/NiO nanocomposites. Materials Today: Proceedings, 2021, 35, 17-22.	0.9	2
1535	Electrospun Nanostructured Iron Oxide Carbon Composites for High-Performance Lithium Ion Batteries. Materials Horizons, 2021, , 235-276.	0.3	0

#	Article	IF	CITATIONS
1536	Metal-organic framework modified pine needle-derived N, O-doped magnetic porous carbon embedded with Au nanoparticles for adsorption and catalytic degradation of tetracycline. Journal of Cleaner Production, 2021, 278, 123575.	4.6	25
1537	Application of graphene in energy storage device – A review. Renewable and Sustainable Energy Reviews, 2021, 135, 110026.	8.2	452
1538	Investigating the stable operating voltage for the MnFe ₂ O ₄ Li-ion battery anode. Sustainable Energy and Fuels, 2021, 5, 1904-1913.	2.5	9
1539	Several carbon-coated Ga ₂ O ₃ anodes: efficient coating of reduced graphene oxide enhanced the electrochemical performance of lithium ion batteries. Dalton Transactions, 2021, 50, 3660-3670.	1.6	14
1540	Efficient energy storage in mustard husk derived porous spherical carbon nanostructures. Materials Advances, 2021, 2, 7463-7472.	2.6	15
1541	Electrospun Nanostructured Iron Oxides for High-Performance Lithium Ion Batteries. Materials Horizons, 2021, , 277-318.	0.3	1
1542	Microwave-Assisted Synthesis of Ge/GeO2-Reduced Graphene Oxide Nanocomposite with Enhanced Discharge Capacity for Lithium-Ion Batteries. Nanomaterials, 2021, 11, 319.	1.9	16
1543	Tin dioxide-based nanomaterials as anodes for lithium-ion batteries. RSC Advances, 2021, 11, 1200-1221.	1.7	14
1544	Oxygen-Deficient Stannic Oxide/Graphene for Ultrahigh-Performance Supercapacitors and Gas Sensors. Nanomaterials, 2021, 11, 372.	1.9	7
1545	Oxygenâ€Doped Carbon Nitride Tubes for Highly Stable Lithium–Sulfur Batteries. Energy Technology, 2021, 9, 2001057.	1.8	10
1546	Porous Manganese Oxide Networks as High-Capacity and High-Rate Anodes for Lithium-Ion Batteries. Energies, 2021, 14, 1299.	1.6	1
1547	Synthesis and electrochemical properties of ZnFe2O4/C as novel anode material for lithium ion battery. Ionics, 2021, 27, 1377-1384.	1.2	7
1548	TowardÂhigh-performance Li storage anodes: design and construction of spherical carbon-coated CoNiO2 materials. Materials Today Chemistry, 2021, 19, 100407.	1.7	45
1549	Janus Graphene Oxide Sheets with Fe ₃ O ₄ Nanoparticles and Polydopamine as Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 14786-14795.	4.0	38
1550	Microwave-Assisted Facile Hydrothermal Synthesis of Fe ₃ O ₄ –GO Nanocomposites for the Efficient Bifunctional Electrocatalytic Activity of OER/ORR. Energy & Fuels, 2021, 35, 8263-8274.	2.5	22
1551	First-principles study on S and N doping graphene/SnS2 heterostructure for lithium-ion battery. Chemical Physics Letters, 2021, 769, 138391.	1.2	12
1552	A unique corn-like architecture composed of Se-doped carbon load Fe3O4 particles as high-performance lithium-ion battery anodes. Ionics, 2021, 27, 2825-2833.	1.2	5
1553	Magnetohydrodynamic Interfaceâ€Rearranged Lithium Ions Distribution for Uniform Lithium Deposition and Stable Lithium Metal Anode. ChemPhysChem, 2021, 22, 1027-1033.	1.0	1

#	Article	IF	CITATIONS
1554	One pot synthesis of Fe2O3-reduced graphene nanocomposite as cathode material for Lithium Ion Batteries. International Journal of Electrochemical Science, 2021, 16, 210461.	0.5	3
1555	A systematic review on graphene-based nanofluids application in renewable energy systems: Preparation, characterization, and thermophysical properties. Sustainable Energy Technologies and Assessments, 2021, 44, 101058.	1.7	19
1556	Asymmetric Reaction Pathways of Conversion-Type Electrodes for Lithium-Ion Batteries. Chemistry of Materials, 2021, 33, 3515-3523.	3.2	5
1557	High energy storage MnO2@C fabricated by ultrasonic-assisted stepwise electrodeposition and vapor carbon coating. Chemical Engineering Journal Advances, 2021, 6, 100098.	2.4	7
1558	Steady self-scrolling of graphene sheets upon the solvation status of adsorbed polyhexylthiophene. Polymer, 2021, 224, 123758.	1.8	1
1559	Octahedral Fe3O4/FeS composite synthesized by one-pot hydrothermal method as a high-performance anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2021, 864, 158796.	2.8	22
1560	Binary nanocomposites of reduced graphene oxide and cobalt (II, III) oxide for supercapacitor devices. Materials Technology, 2022, 37, 1168-1182.	1.5	5
1561	Application of Carbonized Starches as Carbon Electrode Active Material Compared to Graphene Nanoplatelets-Based Anode in a Lithium-Ion Cell. Waste and Biomass Valorization, 2021, 12, 6403-6422.	1.8	4
1562	Facile Preparation of Fe3O4 Nanoparticles/Reduced Graphene Oxide Composite as an Efficient Anode Material for Lithium-Ion Batteries. Coatings, 2021, 11, 836.	1.2	8
1563	Synthesis of freestanding binder- and additive-free carbon nanofiber with graphene wrapped Nb2O5 composite anode for lithium-ion batteries. Nanotechnology, 2021, 33, .	1.3	1
1564	Piezoelectric composite of BaTiO3-coated SnO2 microsphere: Li-ion battery anode with enhanced electrochemical performance based on accelerated Li+ mobility. Journal of Alloys and Compounds, 2021, 870, 159267.	2.8	10
1565	Modification of the Properties of Polymer Composites in a Constant Magnetic Field Environment. Materials, 2021, 14, 3806.	1.3	4
1566	Rational Design of Perforated Bimetallic (Ni, Mo) Sulfides/Nâ€doped Graphitic Carbon Composite Microspheres as Anode Materials for Superior Naâ€lon Batteries. Small Methods, 2021, 5, e2100195.	4.6	17
1567	Alkoxide hydrolysis in-situ constructing robust trimanganese tetraoxide/graphene composite for high-performance lithium storage. Journal of Colloid and Interface Science, 2021, 594, 531-539.	5.0	11
1568	Tailored synthesis of molybdenum-selenide/selenium/sodium-molybdate hybrid composites as a promising anode for lithium-ion and sodium-ion batteries. Chemical Engineering Journal, 2021, 415, 128813.	6.6	9
1569	Electrospun Fe3O4-Sn@Carbon Nanofibers Composite as Efficient Anode Material for Li-Ion Batteries. Nanomaterials, 2021, 11, 2203.	1.9	1
1570	Progress in Iron Oxides Based Nanostructures for Applications in Energy Storage. Nanoscale Research Letters, 2021, 16, 138.	3.1	19
1571	Porous carbon assisted carbon nanotubes supporting Fe3O4 nanoparticles for improved lithium storage. Ceramics International, 2021, 47, 26092-26099.	2.3	21

#	Article	IF	CITATIONS
1572	Synergistic effect between flake graphite and small-sized graphene in lithium storage. Functional Materials Letters, 2021, 14, .	0.7	3
1573	Effective Disposal of Methylene Blue and Bactericidal Benefits of Using GO-Doped MnO ₂ Nanorods Synthesized through One-Pot Synthesis. ACS Omega, 2021, 6, 24866-24878.	1.6	20
1574	Synthesis of SnW3O9/C as novel anode material for lithium-ion battery application. Journal of Materials Science: Materials in Electronics, 2021, 32, 23935-23943.	1.1	0
1575	Materials and electrode designs of high-performance NiCo2S4/Reduced graphene oxide for supercapacitors. Ceramics International, 2021, 47, 25942-25950.	2.3	40
1576	Architecture of NaFe(MoO4)2 as a novel anode material for rechargeable lithium and sodium ion batteries. Applied Surface Science, 2021, 559, 149903.	3.1	7
1577	Graphene-Enhanced Battery Components in Rechargeable Lithium-Ion and Lithium Metal Batteries. Journal of Carbon Research, 2021, 7, 65.	1.4	8
1578	Engineering microstructure of LiFe(MoO4)2 as an advanced anode material for rechargeable lithium-ion battery. Journal of Materials Science: Materials in Electronics, 2021, 32, 24273-24284.	1.1	7
1579	Architectural Genesis of Metal(loid)s with Iron Nanoparticle in Water. Environmental Science & Technology, 2021, 55, 12801-12808.	4.6	5
1580	In situ implanting fine ZnSe nanoparticles into N-doped porous carbon nanosheets as an exposed highly active and long-life anode for lithium-ion batteries. Journal of Alloys and Compounds, 2021, 876, 160135.	2.8	22
1581	Double core–shell structure H-TiO2/C/Fe3O4@rGO for Li+ battery anodes with long cyclability. Applied Surface Science, 2021, 559, 149975.	3.1	10
1582	Three-dimensional laser-induced holey graphene and its dry release transfer onto Cu foil for high-rate energy storage in lithium-ion batteries. Applied Surface Science, 2021, 564, 150416.	3.1	12
1583	Heterogeneous iron oxide nanoparticles anchored on carbon nanotubes for high-performance lithium-ion storage and fenton-like oxidation. Journal of Colloid and Interface Science, 2021, 601, 283-293.	5.0	19
1584	Boosting the lithium storage performance of tin dioxide by carbon nanotubes supporting and surface engineering. Journal of Colloid and Interface Science, 2021, 602, 789-798.	5.0	11
1585	Two-dimensional porous NiCo2O4 nanostructures for use as advanced high-performance anode material in lithium-ion batteries. Journal of Alloys and Compounds, 2021, 886, 161224.	2.8	19
1586	One-dimensional porous nanostructure composed of few-layered MoSe2 nanosheets and highly densified-entangled-N-doped CNTs as anodes for Na ion batteries. Chemical Engineering Journal, 2021, 425, 129051.	6.6	25
1587	Preparation of lightweight daisy-like magnetic molecularly imprinted polymers via etching synergized template immobilization for enhanced rapid detection of trace 17β-estradiol. Journal of Hazardous Materials, 2022, 424, 127216.	6.5	9
1588	An integrated strategy based on Schiff base reactions to construct unique two-dimensional nanostructures for intrinsic pseudocapacitive sodium/lithium storage. Chemical Engineering Journal, 2022, 429, 132339.	6.6	12
1589	Encapsulation of a Core–Shell Porous Fe ₃ O ₄ @Carbon Material with Reduced Graphene Oxide for Li ⁺ Battery Anodes with Long Cyclability. Langmuir, 2021, 37, 785-792.	1.6	25

#	Article	IF	CITATIONS
1590	Recent advances and prospects in reduced graphene oxide-based photodetectors. Journal of Materials Chemistry C, 2021, 9, 8129-8157.	2.7	22
1591	Controllable design of defect-rich hybrid iron oxide nanostructures on mesoporous carbon-based scaffold for pseudocapacitive applications. Nanoscale, 2021, 13, 3662-3672.	2.8	6
1592	Carbon-incorporated Fe ₃ O ₄ nanoflakes: high-performance faradaic materials for hybrid capacitive deionization and supercapacitors. Materials Chemistry Frontiers, 2021, 5, 3480-3488.	3.2	147
1594	Silicon-Graphene Composite Anodes for High-Energy Lithium Batteries. Energy Technology, 2013, 1, 77-84.	1.8	118
1595	Anode Materials, SEI, Carbon, Graphite, Conductivity, Graphene, Reversible, Formation. , 2019, , 1-71.		6
1596	Bio-Inspired Engineering of 3D Carbon Nanostructures. Springer Series in Biomaterials Science and Engineering, 2016, , 365-420.	0.7	1
1597	CNT Applications in Microelectronics, "Nanoelectronics,―and "Nanobioelectronics― , 2018, , 65-72.		1
1598	CNT Applications in Displays and Transparent, Conductive Films/Substrates. , 2018, , 73-75.		1
1599	Graphene Applications in Electronics, Electrical Conductors, and Related Uses. , 2018, , 141-146.		4
1600	Characterization Methods. , 2018, , 403-488.		2
1601	Microwave- and Conductivity-Based Technologies. , 2018, , 655-669.		3
1602	CNT Applications in Sensors and Actuators. , 2018, , 53-60.		3
1603	Two-step method to synthesize spinel Co3O4-MnCo2O4 with excellent performance for lithium ion batteries. Chemical Engineering Journal, 2018, 334, 2021-2029.	6.6	62
1604	Monodispersed FeCO 3 nanorods anchored on reduced graphene oxide as mesoporous composite anode for high-performance lithium-ion batteries. Journal of Power Sources, 2017, 364, 359-366.	4.0	31
1605	Nanorod-structured Fe3O4/Graphene Nanocomposite as High Performance Anode for Lithium-Ion Batteries. International Journal of Electrochemical Science, 2017, 12, 2506-2519.	0.5	9
1606	Graphene and Graphene/Binary Transition Metal Oxide Composites as Anode Materials in Li-Ion Batteries. Nanoscience and Nanotechnology - Asia, 2015, 5, 90-108.	0.3	7
1607	Preparation of Co3O4/NF Anode for Lithium-ion Batteries. Journal of Electrochemical Science and Technology, 0, , .	0.9	1
1608	Research Progress of Graphene Composites. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2013, 28, 235-246.	0.6	23

#	Article	IF	CITATIONS
1609	Performance of Nanosized Fe3O4and CuO Supported on Graphene as Anode Materials for Lithium Ion Batteries. Journal of the Korean Electrochemical Society, 2011, 14, 239-244.	0.1	2
1610	Synthesis and Applications of Colloidal Nanomaterials of Main Group- and Transition- Metal Phosphides. Indian Institute of Metals Series, 2021, , 461-536.	0.2	1
1611	Magnetic Nanoparticle-Embedded Ionic Microporous Polymer Composite as an Efficient Scavenger of Organic Micropollutants. ACS Applied Materials & Interfaces, 2021, 13, 51474-51484.	4.0	5
1612	Sodium carboxymethylcellulose induced engineering a porous carbon and graphene immobilized magnetite composite for lithium-ion storage. Journal of Colloid and Interface Science, 2022, 608, 1707-1717.	5.0	6
1613	Facile Synthesis of Graphene/ZnO Nanocomposites by a Low-temperature Exfoliation Method. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2012, 27, 591-595.	0.6	2
1616	Metal Oxide-Graphene Nanocomposites. Advances in Chemical and Materials Engineering Book Series, 2014, , 196-225.	0.2	0
1617	Chemically derived graphene. , 2014, , 223-250.		2
1619	Basic Electrochemistry of CPs. , 2018, , 283-309.		0
1620	Miscellaneous CNT Applications. , 2018, , 89-90.		0
1621	CNT Applications in Specialized Materials. , 2018, , 45-48.		0
1622	Structural Aspects and Morphology of CPs. , 2018, , 389-402.		0
1623	A Review of Potential Applications of Graphene Composites in Anode Materials for Lithium Ion Batteries. Material Sciences, 2018, 08, 188-201.	0.0	0
1624	Electronic Structure and Conduction Models of Graphene. , 2018, , 101-106.		0
1625	Electrochromics. , 2018, , 601-624.		1
1626	Classes of CPs: Part 1. , 2018, , 489-507.		0
1627	Electro-Optic and Optical Devices. , 2018, , 671-684.		2
1628	Conduction Models and Electronic Structure of CNTs. , 2018, , 11-16.		0
1629	Miscellaneous Applications. , 2018, , 695-715.		0

# 1630	ARTICLE CNT Applications in the Environment and in Materials Used in Separation Science. , 2018, , 81-87.	IF	Citations
1631	Graphene Applications in Displays and Transparent, Conductive Films/Substrates. , 2018, , 147-148.		0
1632	Classes of CPs: Part 2. , 2018, , 509-545.		0
1633	Introducing Conducting Polymers (CPs). , 2018, , 159-174.		0
1634	Syntheses and Processing of CPs. , 2018, , 311-388.		0
1635	Physical, Mechanical, and Thermal Properties of CNTs. , 2018, , 33-36.		0
1636	CNT Applications in Electrical Conductors, "Quantum Nanowires,―and Potential Superconductors. , 2018, , 77-79.		1
1637	Toxicology of CNTs. , 2018, , 37-39.		0
1638	Synthesis, Purification, and Chemical Modification of CNTs. , 2018, , 17-31.		0
1639	Introducing Graphene. , 2018, , 93-99.		0
1641	Conduction Models and Electronic Structure of CPs. , 2018, , 175-249.		1
1642	Brief, General Overview of Applications. , 2018, , 123-124.		0
1643	Electrochemomechanical, Chemomechanical, and Related Devices. , 2018, , 685-693.		0
1644	Displays, Including Light-Emitting Diodes (LEDs) and Conductive Films. , 2018, , 625-654.		0
1647	Developing the processing stages of carbon fiber composite paper as efficient materials for energy conversion, storage, and conservation. , 2022, , 399-440.		1
1648	Magnetically sensitive and high template affinity surface imprinted polymer prepared using porous TiO2-coated magnetite-silica nanoparticles for efficient removal of tetrabromobisphenol A from polluted water. Advanced Composites and Hybrid Materials, 2022, 5, 130-143.	9.9	20
1651	Preparation of V2O5 porous microstructures with enhanced performances of lithium ion batteries. Materials Chemistry and Physics, 2022, 277, 125489.	2.0	3
1652	Recent trends in the development of MXenes and MXene-based composites as anode materials for Li-ion batteries. Journal of Energy Storage, 2022, 47, 103572.	3.9	31

#	Article	IF	CITATIONS
1653	The Effect of Annealing Temperature on the Synthesis of Nickel Ferrite Films as High-Capacity Anode Materials for Lithium Ion Batteries. Nanomaterials, 2021, 11, 3238.	1.9	3
1654	Fe3O4 Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications. Applied Sciences (Switzerland), 2021, 11, 11301.	1.3	159
1655	Co-Existence of Iron Oxide Nanoparticles and Manganese Oxide Nanorods as Decoration of Hollow Carbon Spheres for Boosting Electrochemical Performance of Li-Ion Battery. Materials, 2021, 14, 6902.	1.3	1
1656	Facile Premixed Flame Synthesis C@Fe ₂ O ₃ /SWCNT as Superior Free-Standing Anode for Lithium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1658	Synthesis, characterization and electrochemical behavior of Zn-doped MnO/C submicrospheres for lithium ion batteries. Journal of Alloys and Compounds, 2022, 897, 163153.	2.8	7
1659	Bismuth/bismuth trioxide with a dual-carbon support for high and long life lithium storage. Journal of Physics and Chemistry of Solids, 2022, 163, 110562.	1.9	8
1660	Porous engineering enables one-dimensional Co O /C composite to enhance lithium storage. Journal of Alloys and Compounds, 2022, 899, 163293.	2.8	12
1661	Reduced graphene oxide supported NiCo2O4 nanocomposite bifunctional electrocatalyst for glucose-oxygen fuel cell. Fuel, 2022, 312, 122937.	3.4	16
1662	Boosting lithium storage of manganese oxides by integrating improved kinetics porous carbon coating and one-dimensional porous nanostructure. Applied Surface Science, 2022, 581, 152382.	3.1	2
1663	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mrow></mml:mrow> <mml:mn>3</mml:mn> </mml:msub> O <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow> <mml:mn>4</mml:mn> </mml:msub>@carbon microspheres with high lithium storage performance. Comptes</mml:math 	0.2	1
1664	Rendus Chimie, 2020, 23, 279-289. Synthesis and Applications of Graphene Oxide. Materials, 2022, 15, 920.	1.3	121
1665	An environmentally friendly sepiolite/Cu2O/Cu ternary composite as anode material for Li-ion batteries. Ionics, 2022, 28, 1091-1098.	1.2	6
1666	Recent Advances in the Synthesis and Application of Three-Dimensional Graphene-Based Aerogels. Molecules, 2022, 27, 924.	1.7	14
1667	Porous carbons for energy storage and conversion. , 2022, , 239-540.		1
1668	Turning carbon black into hollow carbon nanospheres to encapsulate Fe2O3 as high-performance lithium-ion batteries anode. Microporous and Mesoporous Materials, 2022, 332, 111681.	2.2	14
1669	Synergistic activation of peroxymonosulfate by MnO/Fe3C encapsulated in N-doped carbon nanosheets for the enhanced degradation of bisphenol A. Journal of Environmental Chemical Engineering, 2022, 10, 107251.	3.3	4
1670	Metal oxide–carbon composites and their applications in optoelectronics and electrochemical energy devices. , 2022, , 309-339.		2
1671	Metal oxide–carbon composite electrode materials for rechargeable batteries. , 2022, , 237-254.		0

#	Article	IF	CITATIONS
1672	Synthesis and Electromagnetic Properties of Fe ₃ 0 ₄ @SiO ₂ @C Core-Shell Nanoparticles. Material Sciences, 2022, 12, 209-218.	0.0	0
1673	ZnO/ZnFe ₂ O ₄ nanocomposite-based electrochemical nanosensors for the detection of furazolidone in pork and shrimp samples: exploring the role of crystallinity, phase ratio, and heterojunction formation. New Journal of Chemistry, 2022, 46, 7090-7102.	1.4	17
1674	Graphene: Chemistry and Applications for Lithium-Ion Batteries. Electrochem, 2022, 3, 143-183.	1.7	16
1675	Mechanically Resilient Graphene Assembly Microspheres with Interlocked Nâ€Doped Graphene Nanostructures Grown In Situ for Highly Stable Lithium Metal Anodes. Advanced Functional Materials, 2022, 32, .	7.8	10
1676	Advances of Metal Oxide Composite Cathodes for Aqueous Zincâ€ion Batteries. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	4
1678	Facile premixed flame synthesis C@Fe2O3/SWCNT as superior free-standing anode for lithium-ion batteries. Journal of Alloys and Compounds, 2022, 905, 164247.	2.8	14
1679	Reduced graphene oxide as a charge reservoir of manganese oxide: Interfacial interaction promotes charge storage property of MnO -based micro-supercapacitors. Chemical Engineering Journal, 2022, 439, 135569.	6.6	8
1680	Nanostructured Molybdenum-Oxide Anodes for Lithium-Ion Batteries: An Outstanding Increase in Capacity. Nanomaterials, 2022, 12, 13.	1.9	12
1681	VN Quantum Dots Embedded in N-Doped Carbon for High-Performance Lithium Storage. Energy & Fuels, 2022, 36, 1043-1051.	2.5	9
1682	Extra Storage Capacity Enabled by Structural Defects in Pseudocapacitive NbN Monocrystals for Highâ€Energy Hybrid Supercapacitors. Advanced Functional Materials, 2022, 32, .	7.8	14
1683	A simple way for preparing CoFe2O4-based composite with improved lithium storage. Applied Surface Science, 2022, 593, 153433.	3.1	5
1687	Honeycomb-Like Fe3o4/Rgo Nanocomposite Powders as High-Performance Anodes for Li-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	1
1688	Preferred coordination of polymers at MOFs enables improved lithium-ion battery anode performance. Materials Chemistry Frontiers, 2022, 6, 1690-1705.	3.2	6
1689	Porous Microspheres Comprising CoSe2 Nanorods Coated with N-Doped Graphitic C and Polydopamine-Derived C as Anodes for Long-Lived Na-Ion Batteries. Nano-Micro Letters, 2022, 14, 113.	14.4	40
1690	Facile synthesis of multifunctional C@Fe3O4–MoO3-rGO ternary composite and its versatile roles as sonoadsorbent to ameliorate triphenylmethane textile dye and as potential electrode for supercapacitor applications. Environmental Research, 2022, 212, 113417.	3.7	3
1691	Review on the lithium transport mechanism in solidâ€state battery materials. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	6.2	11
1692	Atomic Insights into Mechanisms of Carbon Coating on Titania Nanoparticle During Flame Synthesis. SSRN Electronic Journal, 0, , .	0.4	0
1693	Hybridization of Ti2snc with Carbon Nanofibers Via Electrospinning for Improved Lithium Ion Storage Performance. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
1696	Rationally engineering a hierarchical porous carbon and reduced graphene oxide supported magnetite composite with boosted lithium-ion storage performances. Journal of Colloid and Interface Science, 2022, 628, 154-165.	5.0	8
1697	Electrochemical evaluation of helical carbon nanofibers prepared by ethanol flame method as anode materials of lithium-ion batteries. Journal of Electrochemical Energy Conversion and Storage, 0, , 1-22.	1.1	0
1698	Surfactant-Assisted Rgo Limited Spherical Fe S ÂWith Superior Stability and High Capacity as an Anode for Lithium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1699	Active Buffer Matrix in Nanoparticleâ€Based Siliconâ€Rich Silicon Nitride Anodes Enables High Stability and Fast Charging of Lithiumâ€Ion Batteries. Advanced Materials Interfaces, 0, , 2201389.	1.9	1
1700	Highly Stable Iron―and Carbonâ€Based Electrodes for Liâ€Ion Batteries: Negative Fading and Fast Charging within 12 Min. ChemSusChem, 2022, 15, .	3.6	6
1701	Vertically-oriented zinc-doped γ-MnO2 nanowalls as high-rate anode materials for li-ion batteries. Journal of Energy Storage, 2022, 54, 105329.	3.9	7
1702	Photocatalytic oxidation pathways of arsenite on spontaneously forming FeOOH/GO heterostructure. Separation and Purification Technology, 2022, 299, 121796.	3.9	6
1703	Efficient recovery of lead and iron from disposal residues of spent lead-acid batteries. Resources, Conservation and Recycling, 2022, 187, 106614.	5.3	10
1704	Self-assembled 3D Fe3O4/N-Doped graphene aerogel composite for large and fast lithium storage with an excellent cycle performance. Journal of Electroanalytical Chemistry, 2022, 922, 116763.	1.9	2
1705	Hybridization of Ti2SnC with carbon nanofibers via electrospinning for improved lithium ion storage performance. Journal of Power Sources, 2022, 547, 232011.	4.0	10
1706	Atomic insights into mechanisms of carbon coating on titania nanoparticle during flame synthesis. Carbon, 2023, 201, 189-199.	5.4	3
1707	One-step and room-temperature fabrication of carbon nanocomposites including Ni nanoparticles for supercapacitor electrodes. RSC Advances, 2022, 12, 21318-21331.	1.7	2
1708	New Frontiers of Graphene Based Nanohybrids for Energy Harvesting Applications. Current and Future Developments in Nanomaterials and Carbon Nanotubes, 2022, , 78-103.	0.1	0
1709	Fe-based frameworks in situ derived 3D Ni-Co-Fe nanocage TMO anode for LIB batteries. Ionics, 2022, 28, 5489-5498.	1.2	1
1710	Engineering a hierarchical carbon supported magnetite nanoparticles composite from metal organic framework and graphene oxide for lithium-ion storage. Journal of Colloid and Interface Science, 2023, 630, 86-98.	5.0	18
1711	Study of graphite interlayer modification on the interfacial stability of solid electrolyte Li7La3Zr2O12 with lithium metal anode. Journal of Alloys and Compounds, 2023, 933, 167736.	2.8	2
1712	Surfactant-assisted RGO limited spherical FeS with superior stability and high capacity as an anode for lithium-ion batteries. Electrochimica Acta, 2023, 437, 141517.	2.6	3
1713	Key Challenges for Grid cale Lithiumâ€lon Battery Energy Storage. Advanced Energy Materials, 2022, 12,	10.2	35

#	Article	IF	CITATIONS
1714	Solution combustion synthesis of Fe3O4/reduced graphene oxide nanocomposite powders as high-performance anodes for Li-ion batteries. Ionics, 0, , .	1.2	0
1715	Improved performance of supercapacitor and zinc-ion battery based on 3D architectured porous manganese oxide-based nanosheets as binder-free electrodes. Journal of Materials Research, 0, , .	1.2	0
1716	Design of Cuboidal FeNi2S4-rGO-MWCNTs Composite for Lithium-Ion Battery Anode Showing Excellent Half and Full Cell Performances. Batteries, 2022, 8, 261.	2.1	5
1717	Insights into Enhancing Electrochemical Performance of Li-Ion Battery Anodes via Polymer Coating. Energies, 2022, 15, 8791.	1.6	8
1719	Nickel-Ion Activating Discarded COVID-19 Medical Surgical Masks for Forming Carbon–Nickel Composite Nanowires and Using as a High-Performance Lithium Battery Anode. Energy & Fuels, 2023, 37, 702-710.	2.5	5
1720	Green synthesis and characterization of superparamagnetic nanocomposite based on reduced graphene oxide/Fe ₃ O ₄ prepared using leaf extract of <i>Azadirachta indica</i> . Inorganic and Nano-Metal Chemistry, 0, , 1-9.	0.9	2
1721	Recycling Microplastics to Fabricate Anodes for Lithiumâ€ion Batteries: From Removal of Environmental Troubles via Electrocoagulation to Useful Resources. Advanced Science, 2023, 10, .	5.6	3
1722	Nanoparticle-decorated graphene/graphene oxide: synthesis, properties and applications. Journal of Materials Science, 2023, 58, 2971-2992.	1.7	10
1723	Through-hole graphite made from waste graphite for high-rate lithium-ion battery anodes. Journal of Materials Chemistry A, 2023, 11, 4729-4738.	5.2	6
1724	Case study 3: fruit and vegetable waste valorization in North and Northeast regions of Brazil. , 2023, , 269-284.		0
1725	Mesoporous carbons and Fe collectively boost the capacity increases upon Long-term cycling of Ni/Fe/NiFe2O4@C anode for Lithium-ion batteries. Applied Surface Science, 2023, 623, 156994.	3.1	3
1726	Biosynthesis of multifunctional Fe3O4/cocoa pod carbon composite and its versatile role as sonoadsorbent in triphenylmethane textile dye remediation and potential cathode material for energy storage applications. Sustainable Energy Technologies and Assessments, 2023, 56, 103102.	1.7	2
1727	Grapheneâ€based Composite Materials as Catalyst for Organic Transformations. ChemistrySelect, 2023, 8, .	0.7	3
1728	Hydrogenated titanium dioxide modified core–shell structure Fe3O4@NiO for lithium-ion battery anode material. lonics, 0, , .	1.2	0
1729	Carbon foams with Fe-organic network-derived Fe3O4 for efficient electromagnetic shielding. Materials Chemistry and Physics, 2023, 304, 127797.	2.0	4
1736	Short Communication: Facile Synthesis of High-quality N-doped Graphene Anchored with Fe2O3 for Use As Lithium-ion Battery Anode Materials. International Journal of Electrochemical Science, 2015, 10, 10651-10658.	0.5	3
1751	Reduced graphene oxide: Synthesis and structural properties. AIP Conference Proceedings, 2023, , .	0.3	0
1757	Promoted kinetics and capacity on the Li ₂ CuTi ₃ O ₈ /C anode by constructing a one dimensional hybrid structure for superior performance lithium ion batteries. Chemical Communications, 2023, 59, 14165-14168.	2.2	0

#	Article	IF	CITATIONS
1758	Fabrication and Application of Graphene-Composite Materials. Advances in Material Research and Technology, 2024, , 391-421.	0.3	0
1764	Graphene Edge Structures: Folding, Tubing, and Twisting. , 2023, , 1-39.		0
1770	Progress and prospects of graphene-based materials in lithium batteries. Rare Metals, 2024, 43, 1886-1905.	3.6	0