Quantum interface between light and atomic ensembles

Reviews of Modern Physics 82, 1041-1093

DOI: 10.1103/revmodphys.82.1041

Citation Report

#	Article	IF	CITATIONS
1	Gaussification of quantum states of traveling light beams in atomic memory. Physical Review A, 2010, 82, .	2.5	1
2	Linear and nonlinear light propagations in a Doppler-broadened medium via electromagnetically induced transparency. Physical Review A, 2010, 82, .	2.5	24
3	Quantum imaging of spin states in optical lattices. Physical Review A, 2010, 82, .	2.5	13
4	Quantum memory for light via a stimulated off-resonant Raman process: Beyond the three-level <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Î></mml:mi></mml:mrow></mml:math> -scheme approximation. Physical Review A. 2010. 82	2.5	24
5	Light-matter entanglement via dark-state resonances. Physical Review A, 2010, 82, .	2.5	12
6	Generation of two-color EPR-entangled optical beams in macroscopic atomic ensembles. Physical Review A, 2010, 82, .	2.5	1
7	Collective photon emission from symmetric states created with Rydberg atoms on a ring lattice. Physical Review A, $2010,82,1$	2.5	22
8	Semiconductor spin noise spectroscopy: Fundamentals, accomplishments, and challenges. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 43, 569-587.	2.7	102
9	Entangled photons and quantum communication. Physics Reports, 2010, 497, 1-40.	25.6	75
10	Entanglement of spin waves among four quantum memories. Nature, 2010, 468, 412-416.	27.8	113
11	Writing and reading quantum states of light with tunable cavity: Application to single-photon sources. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2010, 109, 32-39.	0.6	4
12	A quantum telecom link. Nature Physics, 2010, 6, 838-839.	16.7	0
13	Just a matter of time. Nature Physics, 2010, 6, 839-839.	16.7	0
14	Strongly Enhanced Spin Squeezing via Quantum Control. Physical Review Letters, 2010, 105, 193602.	7.8	31
15	Highly entangled photons and rapidly responding polarization qubit phase gates in a room-temperature active Raman gain medium. Physical Review A, 2010, 82, .	2.5	7
16	Distillation and purification of symmetric entangled Gaussian states. Physical Review A, 2010, 82, .	2.5	34
17	Calculated Hanle transmission and absorption spectra of theRb87D1line with residual magnetic field for arbitrarily polarized light. Physical Review A, 2010, 82, .	2.5	18
18	Memory effects in attenuation and amplification quantum processes. Physical Review A, 2010, 82, .	2.5	13

#	Article	IF	CITATIONS
19	Optical lattices with micromechanical mirrors. Physical Review A, 2010, 82, .	2.5	57
20	Qubit-induced high-order nonlinear interaction of the polar molecules in a stripline cavity. Physical Review A, 2010, 82, .	2.5	10
21	Optical control of Faraday rotation in hot Rb vapor. Physical Review A, 2010, 81, .	2.5	28
22	Coupling Nitrogen-Vacancy Centers in Diamond to Superconducting Flux Qubits. Physical Review Letters, 2010, 105, 210501.	7.8	215
23	Nonlinear metrology with a quantum interface. New Journal of Physics, 2010, 12, 093016.	2.9	39
24	Comparing phonon dephasing lifetimes in diamond using Transient Coherent Ultrafast Phonon Spectroscopy. Diamond and Related Materials, 2010, 19, 1289-1295.	3.9	44
25	Controllable Gaussian-Qubit Interface for Extremal Quantum State Engineering. Physical Review Letters, 2010, 104, 240501.	7.8	15
26	Strong nonlinear coupling between an ultracold atomic ensemble and a nanomechanical oscillator. Optics Express, 2010, 18, 23016.	3.4	4
27	Quantum information with Rydberg atoms. Reviews of Modern Physics, 2010, 82, 2313-2363.	45.6	1,968
28	Nonlinear emission spectra of quantum dots strongly coupled to a photonic mode. Physical Review B, 2010, 82, .	3.2	25
29	Impedance-matched cavity quantum memory. Physical Review A, 2010, 82, .	2.5	143
30	Efficient quantum repeater based on deterministic Rydberg gates. Physical Review A, 2010, 81, .	2.5	71
31	Engineering biphoton wave packets with an electromagnetically induced grating. Physical Review A, 2010, 82, .	2.5	34
32	From molecular control to quantum technology with the dynamic Stark effect. Faraday Discussions, 2011, 153, 321.	3.2	11
33	Gauge fields emerging from time-reversal symmetry breaking for spin-5/2 fermions in a honeycomb lattice. Physical Review A, 2011, 84, .	2.5	43
34	Photon-Photon Gates in Bose-Einstein Condensates. Physical Review Letters, 2011, 107, 043601.	7.8	18
35	Entanglement concentration for two atomic ensembles using an effective atom-light beamsplitter. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 175506.	1.5	2
36	An approximate effective beamsplitter interaction between light and atomic ensembles. Physica Scripta, 2011, T143, 014023.	2.5	1

#	ARTICLE	IF	CITATIONS
37	Stroboscopic Backaction Evasion in a Dense Alkali-Metal Vapor. Physical Review Letters, 2011, 106, 143601.	7.8	51
38	Storage and retrieval of continuous-variable polarization-entangled cluster states in atomic ensembles. Physical Review A, 2011, 84, .	2.5	2
39	Dicke-like quantum phase transition and vacuum entanglement with two coupled atomic ensembles. Physical Review A, $2011,84,.$	2.5	14
40	Dissipatively driven entanglement of two macroscopic atomic ensembles. Physical Review A, 2011, 83, .	2.5	130
41	Spectroscopic properties of inhomogeneously broadened spin ensembles in a cavity. Physical Review A, 2011, 83, .	2.5	74
42	Storing Optical Information as a Mechanical Excitation in a Silica Optomechanical Resonator. Physical Review Letters, 2011, 107, 133601.	7.8	301
43	Quantum storage via refractive-index control. Physical Review A, 2011, 83, .	2.5	21
44	Quantum memory, entanglement and sensing with room temperature atoms. Journal of Physics: Conference Series, 2011, 264, 012022.	0.4	0
45	Fock-state view of weak-value measurements and implementation with photons and atomic ensembles. Physical Review A, 2011, 83, .	2.5	26
46	Refractive index control for optical quantum storage. Journal of Modern Optics, 2011, 58, 1971-1976.	1.3	5
47	Double-pass quantum volume hologram. Physical Review A, 2011, 83, .	2.5	2
48	Optical quantum memory with generalized time-reversible atom–light interaction. New Journal of Physics, 2011, 13, 063035.	2.9	24
49	Three-dimensional theory of quantum memories based on <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>i></mml:mi>-</mml:math> -type atomic ensembles. Physical Review A, 2011, 84, .	2.5	19
50	Optical control of diffuse light storage in an ultracold atomic gas. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 1459.	2.1	8
51	Exact treatment for the entanglement of the multiphoton two-qubit system with the single-mode thermal field. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 2087.	2.1	3
52	Reconfiguration of spectral absorption features using a frequency-chirped laser pulse. Applied Optics, 2011, 50, 6548.	2.1	15
53	Simple proof of the quantum benchmark fidelity for continuous-variable quantum devices. Physical Review A, 2011, 83, .	2.5	12
54	Simple performance evaluation of pulsed spontaneous parametric down-conversion sources for quantum communications. Optics Express, 2011, 19, 616.	3.4	5

#	ARTICLE	IF	CITATIONS
55	Deterministic generation of multiparticle entanglement in a coupled cavity-fiber system. Optics Express, 2011, 19, 1207.	3.4	18
56	Discrimination of one-photon and two-photon coherence parts in electromagnetically induced transparency for a ladder-type three-level atomic system. Optics Express, 2011, 19, 11128.	3.4	34
57	High-efficiency frequency doubling of continuous-wave laser light. Optics Letters, 2011, 36, 3467.	3.3	42
58	Extended Coherence Time on the Clock Transition of Optically Trapped Rubidium. Physical Review Letters, 2011, 106, 240801.	7.8	40
59	Super-activated channels. Nature Photonics, 2011, 5, 578-580.	31.4	9
60	The nonlinearity of single photons. Nature Photonics, 2011, 5, 580-581.	31.4	0
61	Atomic homodyne detection of continuous-variable entangled twin-atom states. Nature, 2011, 480, 219-223.	27.8	177
62	Entanglement Generated by Dissipation and Steady State Entanglement of Two Macroscopic Objects. Physical Review Letters, 2011, 107, 080503.	7.8	465
63	Advanced semiconductor quantum optics., 0,, 608-626.		0
64	Absolute absorption on the rubidium D ₁ line including resonant dipole–dipole interactions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 195006.	1.5	70
65	Quantum memory for entangled continuous-variable states. Nature Physics, 2011, 7, 13-16.	16.7	130
66	Interaction-based quantum metrology showing scaling beyond the Heisenberg limit. Nature, 2011, 471, 486-489.	27.8	185
67	Quantum spin squeezing. Physics Reports, 2011, 509, 89-165.	25.6	568
68	Atoms, Photons and Entanglement for Quantum Information Technologies. Procedia Computer Science, 2011, 7, 52-55.	2.0	2
69	Quantum repeaters based on atomic ensembles and linear optics. Reviews of Modern Physics, 2011, 83, 33-80.	45.6	1,412
70	Light storage in an optically thick atomic ensemble under conditions of electromagnetically induced transparency and four-wave mixing. Physical Review A, $2011, 83, .$	2.5	59
71	Approaches for a quantum memory at telecommunication wavelengths. Physical Review A, 2011, 83, .	2.5	47
72	Enhancement of electromagnetically induced transparency in room temperature alkali metal vapor. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2011, 111, 583-588.	0.6	2

#	Article	IF	Citations
73	Quantum holography upon resonant adiabatic interaction of fields with an atomic medium in a \hat{b} -configuration. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2011, 110, 775-787.	0.6	3
74	Solid state multi-ensemble quantum computer in cavity quantum electrodynamics model. Laser Physics, 2011, 21, 1503-1510.	1.2	2
75	Spontaneous emission of the non-Wiener type. Journal of Experimental and Theoretical Physics, 2011, 113, 376-393.	0.9	10
76	Tailoring quantum superpositions with linearly polarized amplitude-modulated light. Physical Review A, 2011, 83, .	2.5	19
77	Entanglement of nitrogen-vacancy-center ensembles using transmission line resonators and a superconducting phase qubit. Physical Review A, $2011,83,.$	2.5	56
78	Electromagnetically induced transparency in an inhomogeneously broadened <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>i></mml:mi></mml:mrow></mml:math> transition with multiple excited levels. Physical Review A. 2011. 83	2.5	44
79	Quantum information at the interface of light with atomic ensembles and micromechanical oscillators. Quantum Information Processing, 2011, 10, 839-863.	2.2	21
80	Measurement schemes for the spin quadratures on an ensemble of atoms. Applied Physics B: Lasers and Optics, 2011, 105, 197-201.	2.2	3
81	Efficient solid state memories for quantum cryptography. Journal of Luminescence, 2011, 131, 469-472.	3.1	1
82	Would one rather store squeezing or entanglement in continuous variable quantum memories?. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 1864-1869.	2.1	7
83	Creation of collective many-body states and single photons from two-dimensional Rydberg lattice gases. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 184017.	1.5	7
84	Entanglement Generated by Dissipation. , 2011, , .		1
85	Laser Cooling and Optical Detection of Excitations in aLCElectrical Circuit. Physical Review Letters, 2011, 107, 273601.	7.8	68
86	Exact transient photon correlation with arbitrary laser pulses. Physical Review A, 2011, 84, .	2.5	0
87	Diagrammatic analysis of multiphoton processes in a ladder-type three-level atomic system. Physical Review A, 2011, 84, .	2.5	24
88	Imaging of quantum Hall states in ultracold atomic gases. Physical Review A, 2011, 84, .	2.5	15
89	Operator-sum representation for bosonic Gaussian channels. Physical Review A, 2011, 84, .	2.5	85
90	Heralded amplification for precision measurements with spin ensembles. Physical Review A, 2011, 84, .	2.5	5

#	ARTICLE	IF	CITATIONS
91	Optimal unitary dilation for bosonic Gaussian channels. Physical Review A, 2011, 84, .	2.5	24
92	High-speed spatially multimode atomic memory. Physical Review A, 2011, 83, .	2.5	24
93	Photon-echo quantum memory with complete use of natural inhomogeneous broadening. Physical Review A, 2011, 83, .	2.5	15
94	Strong Quantum Spin Correlations Observed in Atomic Spin Mixing. Physical Review Letters, 2011, 107, 210406.	7.8	58
95	Differential Light-Shift Cancellation in a Magnetic-Field-Insensitive Transition of Rb87. Physical Review Letters, 2011, 106, 063002.	7.8	29
96	Entanglement dynamics of two electron-spin qubits in a strongly detuned and dissipative quantum-dot-cavity system. Physica Scripta, 2011, 84, 065010.	2.5	4
97	GENERATION OF GRAPH-STATE ENTANGLEMENT WITH ATOMIC ENSEMBLES VIA THE DIPOLE BLOCKADE MECHANISM. International Journal of Quantum Information, 2011, 09, 547-554.	1.1	0
98	Quantum hologram of macroscopically entangled light via the mechanism of diffuse light storage. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 124012.	1.5	6
99	A state-insensitive, compensated nanofiber trap. New Journal of Physics, 2012, 14, 023056.	2.9	55
100	All-atomic source of squeezed vacuum with full pulse-shape control. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 124015.	1.5	7
101	Beyond pure state entanglement for atomic ensembles. New Journal of Physics, 2012, 14, 033034.	2.9	0
102	Asymptotically optimal quantum channel reversal for qudit ensembles and multimode Gaussian states. New Journal of Physics, 2012, 14, 113041.	2.9	2
103	Quantum noise for Faraday light–matter interfaces. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 124007.	1.5	14
104	REALIZATION OF NONLOCAL QUANTUM GATE THROUGH ASSISTED-CAVITIES. International Journal of Quantum Information, 2012, 10, 1250011.	1.1	2
105	Enhancing electromagnetically-induced transparency in a multilevel broadened medium. Optics Express, 2012, 20, 4346.	3.4	17
106	Generation and delayed retrieval of spatially multimode Raman scattering in warm rubidium vapors. Optics Express, 2012, 20, 29540.	3.4	28
107	Quantum memory in warm rubidium vapor with buffer gas. Optics Letters, 2012, 37, 142.	3.3	35
108	Scheme for implementing W state, Greenberger–Horne–Zeilinger state, and cluster state via cavity-assisted interaction. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 841.	2.1	1

#	ARTICLE	IF	CITATIONS
109	Creation of four-mode weighted cluster states with atomic ensembles in high-Q ring cavities. Optics Express, 2012, 20, 3176.	3.4	9
110	Robust-Fidelity Atom-Photon Entangling Gates in the Weak-Coupling Regime. Physical Review Letters, 2012, 109, 160504.	7.8	48
111	Quantum Memory Assisted Probing of Dynamical Spin Correlations. Physical Review Letters, 2012, 108, 065302.	7.8	10
112	Enhanced Squeezing of a Collective Spin via Control of Its Qudit Subsystems. Physical Review Letters, 2012, 109, 173603.	7.8	26
113	Magnetic-Field Control of Photon Echo from the Electron-Trion System in a CdTe Quantum Well: Shuffling Coherence between Optically Accessible and Inaccessible States. Physical Review Letters, 2012, 109, 157403.	7.8	36
114	Squeezing of collective excitations in spin ensembles. Physical Review A, 2012, 86, .	2.5	6
115	Raman scattering of atoms from a quasicondensate in a perturbative regime. Physical Review A, 2012, $86, .$	2.5	5
116	Cooperative light scattering on an atomic system with degenerate structure of the ground state. Physical Review A, 2012, 86, .	2.5	14
117	Spin squeezing and Schr \tilde{A} q dinger-cat-state generation in atomic samples with Rydberg blockade. Physical Review A, 2012, 86, .	2.5	30
118	Eigenmode description of Raman scattering in atomic vapors in the presence of decoherence. Physical Review A, 2012, 86, .	2.5	12
119	Preparation of four-mode cluster states with distant atomic ensembles. Physical Review A, 2012, 85, .	2.5	12
120	Photonic families of non-Gaussian entangled states and entanglement criteria for continuous-variable systems. Physical Review A, 2012, 85, .	2.5	7
121	Bilocal versus nonbilocal correlations in entanglement-swapping experiments. Physical Review A, 2012, 85, .	2.5	153
122	Schmidt-number benchmark for genuine quantum memories and gates. Physical Review A, 2012, 85, .	2.5	8
123	Noiseless Loss Suppression in Quantum Optical Communication. Physical Review Letters, 2012, 109, 180503.	7.8	74
124	Breakdown of the Classical Description of a Local System. Physical Review Letters, 2012, 108, 233601.	7.8	8
125	Optical logic gates using coherent feedback. Applied Physics Letters, 2012, 101, .	3.3	14
126	The Observables of a Dissipative Quantum System. Open Systems and Information Dynamics, 2012, 19, 1250002.	1.2	9

#	Article	IF	CITATIONS
127	Realization of a general quantum cloning machine via cavity-assisted interaction. Europhysics Letters, 2012, 97, 60002.	2.0	14
128	Control of two-atom entanglement with two thermal fields in coupled cavities. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 2379.	2.1	17
129	Feedback Control in Quantum Optics: An Overview of Experimental Breakthroughs and Areas of Application., 2012, 2012, 1-15.		30
130	Quantum memory with a single two-level atom in a half cavity. Physical Review A, 2012, 85, .	2.5	16
131	Two-color quantum memory in double- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>i></mml:mi>v/mml:math>media. Physical Review A, 2012, 86, .</mml:math>	2.5	13
132	Giant laser gyroscope detects Earth's wobble. Nature Photonics, 2012, 6, 12-12.	31.4	4
133	Strongly entangled light from planar microcavities. Physical Review A, 2012, 86, .	2.5	22
134	Full symmetrization of two-mode entangled Gaussian states by local operations. Physical Review A, 2012, 86, .	2.5	2
135	Controllable-dipole quantum memory. Physical Review A, 2012, 86, .	2.5	13
136	Analyzing atomic noise with a consumer sound card. American Journal of Physics, 2012, 80, 240-245.	0.7	5
137	Two-mode squeezing of distant nitrogen-vacancy-center ensembles by manipulating the reservoir. Physical Review A, 2012, 85, .	2.5	33
138	Quantum memories and error correction. Journal of Modern Optics, 2012, 59, 1717-1738.	1.3	26
139	Generation of a wave packet tailored to efficient free space excitation of a single atom. European Physical Journal D, 2012, 66, 1.	1.3	30
140	Creating multimode squeezed states and Greenberger-Horne-Zeilinger entangled states using atomic coherent effects. Physical Review A, 2012, 85, .	2.5	17
141	Quantum simulation of an artificial Abelian gauge field using nitrogen-vacancy-center ensembles coupled to superconducting resonators. Physical Review A, 2012, 86, .	2.5	45
142	Spin squeezing, entanglement and quantum metrology with Bose–Einstein condensates. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 103001.	1.5	112
143	Qubit-assisted thermometry of a quantum harmonic oscillator. Physical Review A, 2012, 86, .	2.5	64
144	An elementary quantum network of single atoms in optical cavities. Nature, 2012, 484, 195-200.	27.8	684

#	ARTICLE	IF	CITATIONS
145	Transmittance signal in real ladder-type atoms. Physical Review A, 2012, 85, .	2.5	33
146	Atomic nonclassicality quasiprobabilities. Physical Review A, 2012, 86, .	2.5	24
147	Measuring the Stokes parameters for light transmitted by a high-density rubidium vapour in large magnetic fields. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 055001.	1.5	20
148	Modeling and Control of Quantum Systems: An Introduction. IEEE Transactions on Automatic Control, 2012, 57, 1898-1917.	5 . 7	187
149	Cavity QED with atomic mirrors. New Journal of Physics, 2012, 14, 063003.	2.9	205
150	Controllable quantum state transfer and entanglement generation between distant nitrogen-vacancy-center ensembles coupled to superconducting flux qubits. Physical Review A, 2012, 86, .	2.5	33
151	Retrieval of multiple spin waves from a weakly excited, metastable atomic ensemble. Physical Review A, $2012, 85, .$	2.5	12
152	Enhancing quantum entanglement by photon addition and subtraction. Physical Review A, 2012, 86, .	2.5	139
153	Atomic frequency comb storage as a slow-light effect. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 124002.	1.5	13
154	Decoherence effects on superpositions of chiral states in a chiral molecule. Physical Chemistry Chemical Physics, 2012, 14, 9214.	2.8	9
155	Analytical solutions of the susceptibility for Doppler-broadened three-level atomic systems. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 245002.	1.5	3
156	Quadripartite cluster and Greenberger–Horne–Zeilinger entangled light via cascade interactions with separated atomic ensembles. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 135503.	1.5	3
157	Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond. Nature Photonics, 2012, 6, 41-44.	31.4	112
158	Phonons in diamond crystals. Nature Photonics, 2012, 6, 10-12.	31.4	6
159	Robust entanglement generation by reservoir engineering. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 124021.	1.5	20
160	Quantum uncertainty relation saturated by the eigenstates of the harmonic oscillator. Physical Review A, 2012, 86, .	2.5	21
161	Pre-selection of optical transitions in rare-earth ions in crystals perspective for quantum information processing. Journal of Modern Optics, 2012, 59, 166-178.	1.3	8
162	Dynamical Recurrence and the Quantum Control of Coupled Oscillators. Physical Review Letters, 2012, 108, 150501.	7.8	17

#	Article	IF	CITATIONS
163	In-situ dual-port polarization contrast imaging of FaradayÂrotation in a high optical depth ultracold 87Rb atomic ensemble. European Physical Journal D, 2012, 66, 1.	1.3	14
164	Efficiency of quantum volume hologram. European Physical Journal D, 2012, 66, 1. Spectroscopic investigations of Eu <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1.3</td><td>2</td></mml:math>	1.3	2
165	display="inline"> <mml:msup><mml:mrow ><mml:mrow><mml:mn>3< mml:mn><mml:mo>+< mml:mo></mml:mo></mml:mn></mml:mrow>< mml:msup>< mml:math>:Y<mml: xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow ><mml:mn>2</mml:mn></mml:mrow </mml:msub>SiO<mml:math< td=""><td>math 3.2</td><td>64</td></mml:math<></mml: </mml:mrow </mml:msup>	math 3.2	64
166	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow />cmml: High-Capacity Spatial Multimode Quantum Memories Based on Atomic Ensembles. Physical Review Letters, 2012, 109, 133601.</mml:mrow </mml:msub>	7.8	45
167	Measurement-based quantum repeaters. Physical Review A, 2012, 85, .	2.5	76
168	Multiphoton entanglement and interferometry. Reviews of Modern Physics, 2012, 84, 777-838.	45.6	1,007
169	Quantum Storage of a Photonic Polarization Qubit in a Solid. Physical Review Letters, 2012, 108, 190504.	7.8	102
170	Spin-nematic squeezed vacuum in a quantum gas. Nature Physics, 2012, 8, 305-308.	16.7	251
171	Quantum teleportation of high-dimensional atomic ensemble states. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 095502.	1.5	5
172	Electromagnetically induced transparencyâ€based slow and stored light in warm atoms. Laser and Photonics Reviews, 2012, 6, 333-353.	8.7	258
173	Interferometric measurement of local spin fluctuations in a quantum gas. Nature Physics, 2012, 8, 454-458.	16.7	37
174	Gaussian quantum information. Reviews of Modern Physics, 2012, 84, 621-669.	45. 6	2,430
175	Optical quantum swapping in a coherent atomic medium. Europhysics Letters, 2012, 97, 34010.	2.0	0
176	Ultracold collisions between two light indistinguishable diatomic molecules: Elastic and rotational energy transfer in HD+HD. Physical Review A, 2012, 85, .	2.5	1
177	Floquet analysis of the modulated two-mode Bose-Hubbard model. Physical Review A, 2012, 85, .	2.5	19
178	Generation and distillation of non-Gaussian entanglement from nonclassical photon statistics. Quantum Information Processing, 2012, 11, 873-885.	2.2	16
179	Light storage in a tripod medium as a basis for logical operations. Optics Communications, 2012, 285, 2392-2396.	2.1	14
180	Efficient generation and control of robust stationary light signals in a double-î system of cold atoms. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 656-661.	2.1	18

#	Article	IF	CITATIONS
181	Analysis of elliptically polarized maximally entangled states for bell inequality tests. Laser Physics, 2012, 22, 1105-1112.	1.2	3
182	Robustness of tripartite entanglement transfer from bosonic modes to localized qubits. European Physical Journal: Special Topics, 2012, 203, 25-47.	2.6	1
183	On the genesis and evolution of Integrated Quantum Optics. Laser and Photonics Reviews, 2012, 6, 115-143.	8.7	196
184	Generation of macroscopic quantum superpositions of optomechanical oscillators by dissipation. Physical Review A, 2013, 88, .	2.5	62
185	<i>Colloquium</i> : Coherent diffusion of polaritons in atomic media. Reviews of Modern Physics, 2013, 85, 941-960.	45.6	42
186	Quantum Teleportation of Dynamics and Effective Interactions between Remote Systems. Physical Review Letters, 2013, 111, 020501.	7.8	9
187	Spinor Bose gases: Symmetries, magnetism, and quantum dynamics. Reviews of Modern Physics, 2013, 85, 1191-1244.	45.6	667
188	Off-resonant Raman-echo quantum memory for inhomogeneously broadened atoms in a cavity. Physical Review A, 2013, 88, .	2.5	28
189	Intuitions in physics. SynthÃ^se, 2013, 190, 2959-2980.	1.1	13
190	Quantum storage and retrieval of light by sweeping the atomic frequency. New Journal of Physics, 2013, 15, 085029.	2.9	5
191	Triggering an Optical Transistor with One Photon. Science, 2013, 341, 725-726.	12.6	12
192	High-temperature Bose-Einstein condensation of photonlike atom-light polaritons. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2013, 115, 363-367.	0.6	0
193	Tunable Spin-orbit Coupling and Quantum Phase Transition in a Trapped Bose-Einstein Condensate. Scientific Reports, 2013, 3, 1937.	3.3	90
194	Prospective applications of optical quantum memories. Journal of Modern Optics, 2013, 60, 1519-1537.	1.3	218
195	The efficiency of parallel quantum memory for light in a cavity configuration. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2013, 115, 875-883.	0.6	3
196	Scheme for the preparation of macroscopicW-type state of atomic ensembles in cavity QED coulped with optical fibers. Science China: Physics, Mechanics and Astronomy, 2013, 56, 2122-2127.	5.1	3
197	Excitons and Cavity Polaritons for Optical Lattice Ultracold Atoms. Advances in Atomic, Molecular and Optical Physics, 2013, 62, 171-229.	2.3	8
198	Multimode cavity-assisted quantum storage via continuous phase-matching control. Physical Review A, 2013, 88, .	2.5	24

#	Article	IF	CITATIONS
199	Macroscopic quantum mechanics: theory and experimental concepts of optomechanics. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 104001.	1.5	195
200	High-bandwidth quantum memory protocol for storing single photons in rare-earth doped crystals. New Journal of Physics, 2013, 15, 095012.	2.9	17
201	Dissipative Preparation of Spin Squeezed Atomic Ensembles in a Steady State. Physical Review Letters, 2013, 110, 120402.	7.8	139
202	Single gamma-photon revival from sandwich absorbers. Physical Review A, 2013, 87, .	2.5	23
203	Robust atomic entanglement in two coupled cavities via virtual excitations and quantum Zeno dynamics. Quantum Information Processing, 2013, 12, 493-504.	2.2	10
204	Directional emission of single photons from small atomic samples. Physical Review A, 2013, 87, .	2.5	30
205	NONLINEAR OPTICS USING COLD RYDBERG ATOMS. Annual Review of Cold Atoms and Molecules, 2013, , 301-350.	2.8	49
206	Optomechanical light storage in a silica microresonator. Physical Review A, 2013, 87, .	2.5	78
207	Understanding quantum measurement from the solution of dynamical models. Physics Reports, 2013, 525, 1-166.	25.6	160
208	Optical echo holography. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2013, 114, 96-103.	0.6	31
209	Quantum Control over Single Spins in Diamond. Annual Review of Condensed Matter Physics, 2013, 4, 23-50.	14.5	139
210	Quantum storage based on control-field angular scanning. Physical Review A, 2013, 87, .	2.5	21
211	Efficient Quantum Memory Using a Weakly Absorbing Sample. Physical Review Letters, 2013, 110, 133604.	7.8	155
212	Atom lasers: Production, properties and prospects for precision inertial measurement. Physics Reports, 2013, 529, 265-296.	25.6	89
213	Entanglement detection by Bragg scattering. Physical Review A, 2013, 87, .	2.5	5
214	Dynamical polarizability of atoms in arbitrary light fields: general theory and application to cesium. European Physical Journal D, 2013, 67, 1.	1.3	142
215	Ultranarrow-Band Photon-Pair Source Compatible with Solid State Quantum Memories and Telecommunication Networks. Physical Review Letters, 2013, 110, 220502.	7.8	122
216	Light–matter interaction in free space. Journal of Modern Optics, 2013, 60, 36-42.	1.3	30

#	ARTICLE	IF	CITATIONS
217	Deterministic quantum teleportation between distant atomic objects. Nature Physics, 2013, 9, 400-404.	16.7	162
218	Multipartite entanglement between atoms and fields via twofold phase-dependent electromagnetically induced transparency. Optics Communications, 2013, 306, 154-159.	2.1	1
219	Quantum Memory for Microwave Photons in an Inhomogeneously Broadened Spin Ensemble. Physical Review Letters, 2013, 110, 250503.	7.8	119
220	Suppressing four-wave mixing in warm-atomic-vapor quantum memory. Physical Review A, 2013, 87, .	2.5	24
221	All-atomic generation and noise-quadrature filtering of squeezed vacuum in hot Rb vapor. Journal of Modern Optics, 2013, 60, 43-49.	1.3	8
222	A scaling law for light scattering from dense and cold atomic ensembles. Journal of Modern Optics, 2013, 60, 50-56.	1.3	33
223	Cooperative fluorescence from a strongly driven dilute cloud of atoms. Physical Review A, 2013, 87, .	2.5	23
224	An efficient quantum memory based on two-level atoms. New Journal of Physics, 2013, 15, 085012.	2.9	13
225	Quantum state tomography of slow and stored light. , 2013, , .		1
226	Studying the fidelity of quantum memory based on control-field angular scanning. Journal of Physics: Conference Series, 2013, 478, 012025.	0.4	0
227	Coherent generation and efficient manipulation of dual-channel robust stationary light pulses in ultracold atoms. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2333.	2.1	5
228	Electromagnetically induced transparency and slow light in quantum degenerate atomic gases. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2855.	2.1	7
229	Single Emitters in Isolated Quantum Systems. Experimental Methods in the Physical Sciences, 2013, 45, 467-539.	0.1	4
230	All-Optically Controlled Quantum Memory for Light with a Cavity-Optomechanical System. Entropy, 2013, 15, 434-444.	2.2	5
231	Standard super-activation for Gaussian channels requires squeezing. New Journal of Physics, 2013, 15, 123003.	2.9	9
232	Scalable time reversal of Raman echo quantum memory and quantum waveform conversion of light pulse. New Journal of Physics, 2013, 15, 105005.	2.9	11
233	Gradient echo memory in an ultra-high optical depth cold atomic ensemble. New Journal of Physics, 2013, 15, 085027.	2.9	49
234	Enhanced gain and narrow linewidth of an optical cavity by the Doppler effect in a four-level atomic system. Journal of Modern Optics, 2013, 60, 1083-1089.	1.3	0

#	ARTICLE	IF	CITATIONS
235	Quantum State Orthogonalization and a Toolset for Quantum Optomechanical Phonon Control. Physical Review Letters, 2013, 110, 010504.	7.8	67
236	Time-Continuous Bell Measurements. Physical Review Letters, 2013, 111, 170404.	7.8	24
237	Optimal working points for continuous-variable quantum channels. Physical Review A, 2013, 88, .	2.5	21
238	Macroscopic singlet states for gradient magnetometry. Physical Review A, 2013, 88, .	2.5	42
239	Robust Gaussian entanglement with a macroscopic oscillator at thermal equilibrium. Physical Review A, 2013, 87, .	2.5	6
240	Non-destructive Faraday imaging of dynamically controlled ultracold atoms. Review of Scientific Instruments, 2013, 84, 083105.	1.3	56
241	Quantum backaction in spinor-condensate magnetometry. Physical Review A, 2013, 88, .	2.5	3
242	Near-Heisenberg-Limited Atomic Clocks in the Presence of Decoherence. Physical Review Letters, 2013, 111, 090801.	7.8	58
243	Unconditional Quantum-Noise Suppression via Measurement-Based Quantum Feedback. Physical Review Letters, 2013, 110, 163602.	7.8	55
244	Efficient representation of purity-preserving Gaussian quantum filters. Physical Review A, 2013, 87, .	2.5	2
245	Bichromatic electromagnetically induced transparency in hot atomic vapors. Physical Review A, 2013, 87, .	2.5	17
246	Dissipative versus conditional generation of Gaussian entanglement and spin squeezing. Physical Review A, 2013, 87, .	2.5	9
247	Nonclassical features of the polarization quasiprobability distribution. Physical Review A, 2013, 88, .	2.5	4
248	Quantum superposition in composite systems of microscopic and macroscopic parts resistant to particle loss and local decoherence. Physical Review A, 2013, 87, .	2.5	3
249	State-dependent potentials in a nanofiber-based two-color trap for cold atoms. Physical Review A, 2013, 88, .	2.5	20
250	Rb atoms in a blue-detuned dipole trap: Coherence and ground-state differential ac Stark shift. Physical Review A, 2013, 87, .	2.5	4
251	Quantum atom–light interfaces in the Gaussian description for spin-1 systems. New Journal of Physics, 2013, 15, 103007.	2.9	29
252	Toward quantum state tomography of a single polariton state of an atomic ensemble. New Journal of Physics, 2013, 15, 015002.	2.9	19

#	Article	IF	CITATIONS
253	Propagation of quantum optical fields under the conditions of multi-photon resonances in a coherent atomic vapor. Proceedings of SPIE, $2013, \ldots$	0.8	0
254	Light Propagation in Cavity Optomechanical System. , 2013, , 33-56.		O
255	Quantum metrology with cold atomic ensembles. EPJ Web of Conferences, 2013, 57, 03004.	0.3	0
256	Optical quantum simulation of Abelian gauge field using cold atomic ensembles coupled with arrays of optical cavities. Science China: Physics, Mechanics and Astronomy, 2014, 57, 2259-2265.	5.1	5
257	Cavity optomechanics. Reviews of Modern Physics, 2014, 86, 1391-1452.	45.6	4,064
258	Generation and Detection of a Sub-Poissonian Atom Number Distribution in a One-Dimensional Optical Lattice. Physical Review Letters, 2014, 113, 263603.	7.8	68
259	Topologically protected strongly correlated states of photons. New Journal of Physics, 2014, 16, 113030.	2.9	22
260	Squeezed-light-enhanced atom interferometry below the standard quantum limit. Physical Review A, 2014, 90, .	2.5	38
261	Spontaneuos and Parametric Processes in Warm Rubidium Vapours. Latvian Journal of Physics and Technical Sciences, 2014, 51, 21-34.	0.6	1
262	Cavity-enhanced storage in an optical spin-wave memory. New Journal of Physics, 2014, 16, 083005.	2.9	106
263	Saturated-absorption spectroscopy revisited: atomic transitions in strong magnetic fields (>20  mT) with a micrometer-thin cell. Optics Letters, 2014, 39, 2270.	3.3	48
264	Cavity enhanced quantum limited magnetometry. , 2014, , .		1
265	Polarization-entangled photon-pair generation in commercial-grade polarization-maintaining fiber. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 277.	2.1	37
266	Broad-band sources of single-photon pulses, based on spontaneous parametric scattering in nonlinear impurity crystals. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2014, 81, 423.	0.4	0
267	Quantum State Engineering for High Efficiency Quantum Memories and Cavity Line Narrowing. , 2014, , .		0
268	Unitary two-axis-twisting spin squeezing induced by entanglement swapping. , 2014, , .		0
269	Optical continuous-variable quadratic phase gate via Faraday interaction. Optics Express, 2014, 22, 9182.	3.4	3
270	Optically controlled waveplate at a telecom wavelength using a ladder transition in Rb atoms for all-optical switching and high speed Stokesmetric imaging. Optics Express, 2014, 22, 28898.	3.4	6

#	Article	IF	CITATIONS
271	Purely lossy and robust quantum interfaces between light and matter. Optics Express, 2014, 22, 30697.	3.4	2
272	Transformations of symmetric multipartite Gaussian states by Gaussian local operations and classical communication. Physical Review A, 2014, 89, .	2.5	2
273	Shifts of a Resonance Line in a Dense Atomic Sample. Physical Review Letters, 2014, 112, 113603.	7.8	106
274	Quantum metrology from a quantum information science perspective. Journal of Physics A: Mathematical and Theoretical, 2014, 47, 424006.	2.1	523
275	Stationary entanglement of photons and atoms in a high-finesse resonator. Physical Review A, 2014, 89,	2.5	4
276	Disorder-induced transparency in a one-dimensional waveguide side coupled with optical cavities. Journal of Applied Physics, 2014, 115, .	2.5	1
277	Tunneling-assisted optical information storage with lattice polariton solitons in cavity-QED arrays. Physical Review A, 2014, 89, .	2.5	18
278	All-optical quantum storage based on spatial chirp of the control field. Physical Review A, 2014, 90, .	2.5	15
279	Ensemble master equation for a trapped-atom clock with one- and two-body losses. Physical Review A, 2014, 89, .	2.5	2
280	Spin squeezing and entanglement for an arbitrary spin. Physical Review A, 2014, 89, .	2.5	47
281	Coherent versus Measurement Feedback: Linear Systems Theory for Quantum Information. Physical Review X, 2014, 4, .	8.9	65
282	Creating a tunable spin squeezing via a time-dependent collective atom-photon coupling. Physical Review A, 2014, 89, .	2.5	16
283	Exploiting the local polarization of strongly confined light for sub-micrometer-resolution internal state preparation and manipulation of cold atoms. Physical Review A, 2014, 89, .	2.5	27
284	Raman quantum memory based on an ensemble of nitrogen-vacancy centers coupled to a microcavity. Physical Review A, 2014, 89, .	2.5	24
285	Detection of multipartite entanglement in spin rings by use of exchange energy. Physical Review A, 2014, 90, .	2.5	3
286	Noiseless Conditional Teleportation of a Single Photon. Physical Review Letters, 2014, 113, 223602.	7.8	21
287	Quantum interference of a single spin excitation with a macroscopic atomic ensemble. Physical Review A, 2014, 89, .	2.5	24
288	Raman process under condition of radiation trapping in a disordered atomic medium. Physical Review A, 2014, 90, .	2.5	4

#	Article	IF	CITATIONS
289	Inducing Nonclassical Lasing via Periodic Drivings in Circuit Quantum Electrodynamics. Physical Review Letters, 2014, 113, 193601.	7.8	30
290	Thermally induced creation of quantum coherence. Physical Review A, 2014, 90, .	2.5	3
291	Quantum control of atoms and photons by optical nanofibers. Physics-Uspekhi, 2014, 57, 607-615.	2.2	4
292	Zero-dynamics principle for perfect quantum memory in linear networks. New Journal of Physics, 2014, 16, 073032.	2.9	33
293	Spin Ensembles Coupled to Superconducting Resonators: A Scalable Architecture for Solid-State Quantum Computing. Communications in Theoretical Physics, 2014, 62, 196-204.	2.5	1
294	Generating Spin Squeezing State of Two Bose-Einstein Condensates with Josephson-Like Coupling. International Journal of Theoretical Physics, 2014, 53, 1648-1653.	1.2	1
295	Quantum Storage of Heralded Single Photons in a Praseodymium-Doped Crystal. Physical Review Letters, 2014, 112, 040504.	7.8	65
296	Storage and recall of single-photon states in systems with controlled phase matching. Physics of Wave Phenomena, 2014, 22, 10-14.	1.1	0
297	Frequency comb polarization spectroscopy of multilevel rubidium atoms. European Physical Journal D, 2014, 68, 1.	1.3	2
298	Three-dimensional light-matter interface for collective spin squeezing in atomic ensembles. Physical Review A, 2014, 89, .	2.5	18
299	Coherent control of the waveforms of recoilless Î ³ -ray photons. Nature, 2014, 508, 80-83.	27.8	107
300	Electromagnetically induced transparency with cold Rydberg atoms: Superatom model beyond the weak-probe approximation. Physical Review A, 2014, 89, .	2.5	39
301	Fidelity of Fock-state-encoded qubits subjected to continuous-variable Gaussian processes. Physical Review A, 2014, 89, .	2.5	3
302	Active narrowband filtering, line narrowing and gain using ladder electromagnetically induced transparency in an optically thick atomic vapour. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 075002.	1.5	17
303	Nuclear spin dynamics in double quantum dots: Multistability, dynamical polarization, criticality, and entanglement. Physical Review B, 2014, 89, .	3.2	15
304	Single-atom quantum control of macroscopic mechanical oscillators. Physical Review A, 2014, 89, .	2.5	14
305	Quantum Benchmarks for Pure Single-Mode Gaussian States. Physical Review Letters, 2014, 112, 010501.	7.8	29
306	Storage and retrieval of squeezing in multimode resonant quantum memories. Physical Review A, 2014, 89, .	2.5	8

#	Article	IF	CITATIONS
307	Addressable parallel cavity-based quantum memory. European Physical Journal D, 2014, 68, 1.	1.3	8
308	Access to long-term optical memories using photon echoes retrieved from semiconductor spins. Nature Photonics, 2014, 8, 851-857.	31.4	74
309	Decoherence-Free Linear Quantum Subsystems. IEEE Transactions on Automatic Control, 2014, 59, 1845-1857.	5.7	20
310	Coherently Opening a High-QCavity. Physical Review Letters, 2014, 112, 133605.	7.8	14
311	Single-shot quantum state estimation via a continuous measurement in the strong backaction regime. Physical Review A, 2014, 90, .	2.5	14
312	Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre. Nature Communications, 2014, 5, 4096.	12.8	79
313	Genuine multipartite entanglement of superpositions. Physical Review A, 2014, 90, .	2.5	9
314	Generation and tomography of arbitrary optical qubits using transient collective atomic excitations. Optics Letters, 2014, 39, 5447.	3.3	10
315	Quantum nonlinear optics—Âphoton by photon. Nature Photonics, 2014, 8, 685-694.	31.4	539
316	Optomechanical Sensing of Spontaneous Wave-Function Collapse. Physical Review Letters, 2014, 113, 020405.	7.8	114
317	Quantum coherence and population transfer in a driven cascade three-level artificial atom. Physical Review A, 2014, 89, .	2.5	13
318	Nonlinear potential of a quantum oscillator induced by single photons. Physical Review A, 2014, 90, .	2.5	17
319	Quantum memory based on phase matching control. Laser Physics, 2014, 24, 094016.	1.2	2
320	Continuous-Variable Quantum Computing in Optical Time-Frequency Modes Using Quantum Memories. Physical Review Letters, 2014, 113, 130502.	7.8	53
321	Quantum state manipulation of dipole emitters with a plasmonic double-bar resonator. Quantum Information Processing, 2014, 13, 2513-2523.	2.2	0
322	A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band. Nature Communications, 2014, 5, 3376.	12.8	86
323	Detecting nonlocality in many-body quantum states. Science, 2014, 344, 1256-1258.	12.6	129
324	Light propagation through atomic vapours. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 093001.	1.5	13

#	ARTICLE	IF	CITATIONS
325	Continuous-variable versus hybrid schemes for quantum teleportation of Gaussian states. Physical Review A, 2014, 89 , .	2.5	16
326	Multimode quantum state tomography of slow light in rubidium vapor. , 2014, , .		О
327	Effects of non-idealities and quantization of the center of mass motion on symmetric and asymmetric collective states in a collective state atomic interferometer. Journal of Modern Optics, 2015, 62, 1253-1263.	1.3	6
328	Synchronization of interacting quantum dipoles. New Journal of Physics, 2015, 17, 083063.	2.9	80
329	Entanglement over global distances via quantum repeaters with satellite links. Physical Review A, 2015, 91, .	2.5	70
330	Spin squeezing by tensor twisting and Lipkin-Meshkov-Glick dynamics in a toroidal Bose-Einstein condensate with spatially modulated nonlinearity. Physical Review A, 2015, 91, .	2.5	32
331	Signatures of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>A</mml:mi><mml:mn>2<td>ın> ⊄ısıml:r</td><td>nsump⊗ </td></mml:mn></mml:msup></mml:math>	ın> ⊄ıs ıml:r	nsump⊗
332	Three-photon coherence in a ladder-type atomic system. Physical Review A, 2015, 92, .	2.5	10
333	Quantum controlled-Zgate for weakly interacting qubits. Physical Review A, 2015, 92, .	2.5	4
334	Continuous-variable entanglement mediated by a thermal oscillator. Physical Review A, 2015, 92, .	2.5	4
335	SU(1,1)-type light-atom-correlated interferometer. Physical Review A, 2015, 92, .	2.5	14
336	Long-range quantum gate via Rydberg states of atoms in a thermal microwave cavity. Physical Review A, 2015, 92, .	2.5	29
337	Quantum metrology with mixed states: When recovering lost information is better than never losing it. Physical Review A, 2015, 92, .	2.5	28
338	Atom-based coherent quantum-noise cancellation in optomechanics. Physical Review A, 2015, 92, .	2.5	45
339	Transfer of non-Gaussian quantum states of mechanical oscillator to light. Physical Review A, 2015, 92, .	2.5	13
340	Elementary test for nonclassicality based on measurements of position and momentum. Physical Review A, 2015, 92, .	2.5	1
341	N-atom collective-state atomic interferometer with ultrahigh Compton frequency and ultrashort de Broglie wavelength, withNreduction in fringe width. Physical Review A, 2015, 92, .	2.5	7
342	Hybrid Einstein-Podolsky-Rosen steering in an atom-optomechanical system. Physical Review A, 2015, 92,	2.5	18

#	ARTICLE	IF	CITATIONS
343	Entangled collective-spin states of atomic ensembles under nonuniform atom-light interaction. Physical Review A, 2015 , 92 , .	2.5	29
344	Hybrid Matter-Wave–Microwave Solitons Produced by the Local-Field Effect. Physical Review Letters, 2015, 115, 023901.	7.8	36
345	Squeezing and Entanglement of Density Oscillations in a Bose-Einstein Condensate. Physical Review Letters, 2015, 115, 060401.	7.8	39
346	Large Phase-by-Phase Modulations in Atomic Interfaces. Physical Review Letters, 2015, 115, 113005.	7.8	12
347	Operating Spin Echo in the Quantum Regime for an Atomic-Ensemble Quantum Memory. Physical Review Letters, 2015, 115, 133002.	7.8	23
348	Controlled Rephasing of Single Collective Spin Excitations in a Cold Atomic Quantum Memory. Physical Review Letters, 2015, 115, 160501.	7.8	28
349	Secure Continuous Variable Teleportation and Einstein-Podolsky-Rosen Steering. Physical Review Letters, 2015, 115, 180502.	7.8	237
350	Long-distance entanglement distribution using individual atoms in optical cavities. Physical Review A, 2015, 92, .	2.5	28
351	All-optical simulations of nonclassical noise-induced effects in quantum optomechanics. Physical Review A, 2015, 92, .	2.5	6
352	Direct counterfactual transmission of a quantum state. Physical Review A, 2015, 92, .	2.5	40
353	Polarization-selective optical nonlinearities in cold Rydberg atoms. Physical Review A, 2015, 92, .	2.5	6
354	Proposed Robust Entanglement-Based Magnetic Field Sensor Beyond the Standard Quantum Limit. Physical Review Letters, 2015, 115, 170801.	7.8	44
355	Performing private database queries in a real-world environment using a quantum protocol. Scientific Reports, 2014, 4, 5233.	3.3	51
356	Control of parameters of quantum memory for light in a cavity configuration. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2015, 119, 1004-1009.	0.6	9
357	Selective protected state preparation of coupled dissipative quantum emitters. Scientific Reports, 2015, 5, 16231.	3.3	46
358	Detecting metrologically useful entanglement in the vicinity of Dicke states. New Journal of Physics, 2015, 17, 083027.	2.9	30
359	Cavity-Assisted Generation of Sustainable Macroscopic Entanglement of Ultracold Gases. Atoms, 2015, 3, 348-366.	1.6	6
360	Focus on Quantum Memory. New Journal of Physics, 2015, 17, 050201.	2.9	35

#	Article	IF	Citations
361	Symmetric-cycle pulse sequence for dynamical decoupling of local fields and dipole–dipole interactions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 135503.	1.5	2
363	Heralded Storage of a Photonic Quantum Bit in a Single Atom. Physical Review Letters, 2015, 114, 220501.	7.8	78
364	Efficiency in Multimode Broadband Resonant Quantum Memory. Journal of Russian Laser Research, 2015, 36, 522-533.	0.6	3
365	The features of a quantum description of radiation in an optically dense medium. Annals of Physics, 2015, 360, 571-595.	2.8	11
366	Cavity-based quantum networks with single atoms and optical photons. Reviews of Modern Physics, 2015, 87, 1379-1418.	45.6	632
367	Detection of genuine tripartite entanglement and steering in hybrid optomechanics. Optics Express, 2015, 23, 30104.	3.4	14
368	Multiple photon-echo rephasing of coherent matter waves. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 691-695.	2.1	0
369	Pulse propagation, population transfer, and light storage in five-level media. Physical Review A, 2015, 91, .	2.5	13
370	Phase control of stationary light pulses due to a weak microwave coupling. Optics Communications, 2015, 343, 183-187.	2.1	4
371	One-step generation of multipartite entanglement among nitrogen-vacancy center ensembles. Scientific Reports, 2015, 5, 7755.	3.3	23
372	Electromagnetically induced transparency and tunable fano resonances in hybrid optomechanics. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 065502.	1.5	68
373	Short-cycle pulse sequence for dynamical decoupling of local fields and dipole-dipole interactions. Physical Review A, 2015, 91, .	2.5	5
374	Generating continuous variable entangled states for quantum teleportation using a superposition of number-conserving operations. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 185502.	1.5	13
375	Atom-Light Hybrid Interferometer. Physical Review Letters, 2015, 115, 043602.	7.8	83
376	Detuning-enhanced cavity spin squeezing. Physical Review A, 2015, 91, .	2.5	26
377	Photon-echo-based quantum memory for optical squeezed states. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 155501.	1.5	0
378	Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science, 2015, 349, 405-408.	12.6	542
379	Multifrequency modes in superconducting resonators: Bridging frequency gaps in off-resonant couplings. Physical Review A, 2015, 91, .	2.5	19

#	Article	IF	Citations
380	Steady-state one-way Einstein-Podolsky-Rosen steering in optomechanical interfaces. Physical Review A, 2015, 91 , .	2.5	49
381	Coherent coupling of a single spin to microwave cavity photons. Science, 2015, 349, 408-411.	12.6	169
382	Tomography of a multimode quantum black box. New Journal of Physics, 2015, 17, 043063.	2.9	17
383	Quantum Benchmark via an Uncertainty Product of Canonical Variables. Physical Review Letters, 2015, 114, 140503.	7.8	4
384	Rapid mixing and stability of quantum dissipative systems. Physical Review A, 2015, 91, .	2.5	10
385	Quantum state transfer between atomic ensembles trapped in separate cavities via adiabatic passage. Chinese Physics B, 2015, 24, 070310.	1.4	4
386	Heisenberg-limited metrology with a squeezed vacuum state, three-mode mixing, and information recycling. Physical Review A, 2015, 91, .	2.5	13
387	Heisenberg-limited metrology with information recycling. Physical Review A, 2015, 91, .	2.5	26
388	Measuring work and heat in ultracold quantum gases. New Journal of Physics, 2015, 17, 035004.	2.9	56
389	Stability of Local Quantum Dissipative Systems. Communications in Mathematical Physics, 2015, 337, 1275-1315.	2.2	38
390	Spin Squeezing in Highly Anisotropic Bose-Einstein Condensates. International Journal of Theoretical Physics, 2015, 54, 1122-1127.	1.2	0
391	Correlations in \$\$n\$\$ n -local scenario. Quantum Information Processing, 2015, 14, 2025-2042.	2.2	28
392	Demonstration of a Memory for Tightly Guided Light in an Optical Nanofiber. Physical Review Letters, 2015, 114, 180503.	7.8	132
393	Strong coupling of a Rydberg superatom to a moving membrane. , 2015, , .		1
394	Coherent control of light transport in a dense and disordered atomic ensemble. Physical Review A, 2015, 91, .	2. 5	8
395	Spectral features of electromagnetically induced absorption in ⁸⁵ Rb atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 115502.	1.5	9
396	Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime. Physical Review A, 2015, 91, .	2.5	107
397	Generation of a squeezed state of an oscillator by stroboscopic back-action-evading measurement. Nature Physics, 2015, 11, 389-392.	16.7	92

#	ARTICLE	IF	CITATIONS
398	Optomechanical interfaces for hybrid quantum networks. National Science Review, 2015, 2, 510-519.	9.5	48
399	Generations of N-atom GHZ state and \$\$2^n\$\$ 2 n -atom W state assisted by quantum dots in optical microcavities. Quantum Information Processing, 2015, 14, 3661-3676.	2.2	2
400	Atomic thermal motion effect on efficiency of a high-speed quantum memory. European Physical Journal D, $2015, 69, 1$.	1.3	8
401	Nonlocality in many-body quantum systems detected with two-body correlators. Annals of Physics, 2015, 362, 370-423.	2.8	43
402	Squeezed Light from Entangled Nonidentical Emitters via Nanophotonic Environments. ACS Photonics, 2015, 2, 1686-1691.	6.6	16
403	Generating non-classical states from spin coherent states via interaction with ancillary spins. Optics Communications, 2015, 337, 71-78.	2.1	1
404	Linking measures for macroscopic quantum states via photon–spin mapping. Optics Communications, 2015, 337, 2-11.	2.1	33
405	Entanglement of two atomic ensembles in coupled cavities via adiabatic passage. Optics Communications, 2015, 339, 61-65.	2.1	3
406	Trajectories without quantum uncertainties. Annalen Der Physik, 2015, 527, A15.	2.4	41
407	Generation of three-qutrit singlet states for three atoms trapped in separated cavities. Optics Communications, 2015, 338, 366-370.	2.1	10
408	Arbitrary multi-qubit generation. New Journal of Physics, 2016, 18, 103020.	2.9	5
409	Atom–light superposition oscillation and Ramsey-like atom–light interferometer. Optica, 2016, 3, 775.	9.3	19
410	Nonclassical correlations between a C-band telecom photon and a stored spin-wave. Optica, 2016, 3, 1019.	9.3	29
411	A quantum optomechanical interface beyond the resolved sideband limit. New Journal of Physics, 2016, 18, 053030.	2.9	36
412	Tunable two-axis spin model and spin squeezing in two cavities. Chinese Physics B, 2016, 25, 050301.	1.4	2
413	Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection. New Journal of Physics, 2016, 18, 073040.	2.9	83
414	Cascade correlation-enhanced Raman scattering in atomic vapors. Chinese Physics B, 2016, 25, 124206.	1.4	1
415	Pulsed quantum interaction between two distant mechanical oscillators. Physical Review A, 2016, 94, .	2.5	12

#	Article	IF	CITATIONS
416	Time-resolved scattering of a single photon by a single atom. Nature Communications, 2016, 7, 13716.	12.8	35
417	Few-body quantum physics with strongly interacting Rydberg polaritons. European Physical Journal: Special Topics, 2016, 225, 2957-2976.	2.6	6
418	Temporal Multimode Storage of Entangled Photon Pairs. Physical Review Letters, 2016, 117, 240506.	7.8	30
419	Correlation spectroscopy in cold atoms: Light sideband resonances in electromagnetically-induced-transparency condition. Physical Review A, 2016, 94, .	2.5	2
420	Logical operations with single x-ray photons via dynamically-controlled nuclear resonances. Scientific Reports, 2016, 6, 25136.	3.3	21
421	Information and backaction due to phase-contrast-imaging measurements of cold atomic gases: Beyond Gaussian states. Physical Review A, 2016, 94, .	2.5	11
422	Proposal and proof-of-principle demonstration of non-destructive detection of photonic qubits using a Tm:LiNbO3 waveguide. Nature Communications, 2016, 7, 13454.	12.8	20
423	Storing Light with Subradiant Correlations in Arrays of Atoms. Physical Review Letters, 2016, 117, 243601.	7.8	136
424	Quantum Optomechanics. Progress in Optics, 2016, 61, 113-236.	0.6	17
425	Nonclassical correlation between optical and microwave photons in a hybrid electro-optomechanical system. Optics Communications, 2016, 376, 21-25.	2.1	1
426	Revealing advantage in a quantum network. Quantum Information Processing, 2016, 15, 2895-2921.	2.2	12
427	Storage and retrieval of quantum information with a hybrid optomechanics-spin system. Journal of Optics (United Kingdom), 2016, 18, 085703.	2.2	3
428	Quantum photonics at telecom wavelengths based on lithium niobate waveguides. Journal of Optics (United Kingdom), 2016, 18, 104001.	2.2	132
429	Influence of self-phase modulation on coherent effects in five-level system. Journal of Contemporary Physics, 2016, 51, 244-249.	0.6	3
430	Nonlinear quantum optics mediated by Rydberg interactions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 152003.	1.5	169
431	Dual atomic interferometer with a tunable point of minimum magnetic sensitivity. Physical Review A, 2016, 94, .	2.5	5
432	Quantum magnonics: The magnon meets the superconducting qubit. Comptes Rendus Physique, 2016, 17, 729-739.	0.9	122
433	Coupled spin-light dynamics in cavity optomagnonics. Physical Review A, 2016, 94, .	2.5	142

#	Article	IF	CITATIONS
434	Effects of losses in the atom-light hybrid SU(1,1) interferometer. Optics Express, 2016, 24, 17766.	3.4	24
435	Generation of six-mode cluster states in a coupled cavity array. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 1865.	2.1	3
436	Storage and conversion of quantum-statistical properties of light in resonant quantum memory on a tripod atomic configuration. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 195501.	1.5	4
437	Measurement-induced long-distance entanglement of superconducting qubits using optomechanical transducers. Physical Review A, 2016, 94, .	2.5	26
438	Manipulation of collective quantum states in Bose-Einstein condensates by continuous imaging. Physical Review A, 2016, 93, .	2.5	15
439	Quantum enhanced measurement of rotations with a spin-1 Bose-Einstein condensate in a ring trap. Physical Review A, 2016, 93, .	2.5	28
440	Quantum nondemolition measurement by pulsed oscillation. Physical Review A, 2016, 93, .	2.5	4
441	Dissipative structures in optomechanical cavities. Physical Review A, 2016, 93, .	2.5	5
442	Spectral-hole memory for light at the single-photon level. Physical Review A, 2016, 93, .	2.5	11
443	Discriminating the effects of collapse models from environmental diffusion with levitated nanospheres. Physical Review A, 2016, 93, .	2.5	28
444	Estimation of the covariance matrix of macroscopic quantum states. Physical Review A, 2016, 93, .	2.5	3
445	Schmidt-number benchmarks for continuous-variable quantum devices. Physical Review A, 2016, 93, .	2.5	5
446	Nonclassical-state generation in macroscopic systems via hybrid discrete-continuous quantum measurements. Physical Review A, 2016, 93, .	2.5	20
447	Dynamical zeroing of spin-wave momentum to suppress motional dephasing in an atomic-ensemble quantum memory. Physical Review A, 2016, 93, .	2.5	20
448	Control of atomic spin squeezing via quantum coherence. Physical Review A, 2016, 93, .	2.5	4
449	Perturbative approach in the frequency domain for the intensity correlation spectrum in electromagnetically induced transparency. Physical Review A, 2016, 94, .	2.5	3
450	Cooperative single-photon subradiant states. Physical Review A, 2016, 94, .	2.5	31
451	Single-Photon Superradiance from a Quantum Dot. Physical Review Letters, 2016, 116, 163604.	7.8	48

#	Article	IF	CITATIONS
452	Entanglement and spin squeezing in a network of distant optical lattice clocks. Physical Review A, 2016, 93, .	2.5	21
453	Dispersive response of atoms trapped near the surface of an optical nanofiber with applications to quantum nondemolition measurement and spin squeezing. Physical Review A, 2016, 93, .	2.5	20
454	Photonic controlled-phase gates through Rydberg blockade in optical cavities. Physical Review A, 2016, 93, .	2.5	51
455	Coherent-state-induced transparency. Physical Review A, 2016, 93, .	2.5	1
456	Bidirectional conversion between microwave and light via ferromagnetic magnons. Physical Review B, 2016, 93, .	3.2	302
457	Resource-Efficient Measurement-Device-Independent Entanglement Witness. Physical Review Letters, 2016, 116, 190501.	7.8	33
458	Scalable photonic network architecture based on motional averaging in room temperature gas. Nature Communications, 2016, 7, 11356.	12.8	34
459	Robust entanglement between a movable mirror and atomic ensemble and entanglement transfer in coupled optomechanical system. Scientific Reports, 2016, 6, 33404.	3.3	41
460	Hong-Ou-Mandel Interference between Two Deterministic Collective Excitations in an Atomic Ensemble. Physical Review Letters, 2016, 117, 180501.	7.8	31
461	Nonlinear optomechanical measurement of mechanical motion. Nature Communications, 2016, 7, 10988.	10.0	106
		12.8	100
462	Optomechanically induced transparency in multi-cavity optomechanical system with and without one two-level atom. Scientific Reports, 2016, 6, 28830.	3.3	36
462			
	two-level atom. Scientific Reports, 2016, 6, 28830. Entanglement dynamics of Nitrogen-vacancy centers spin ensembles coupled to a superconducting	3.3	36
463	two-level atom. Scientific Reports, 2016, 6, 28830. Entanglement dynamics of Nitrogen-vacancy centers spin ensembles coupled to a superconducting resonator. Scientific Reports, 2016, 6, 21775. One-way steering of optical fields via dissipation of an atomic reservoir. Journal of Physics B: Atomic,	3.3	36
463 464	two-level atom. Scientific Reports, 2016, 6, 28830. Entanglement dynamics of Nitrogen-vacancy centers spin ensembles coupled to a superconducting resonator. Scientific Reports, 2016, 6, 21775. One-way steering of optical fields via dissipation of an atomic reservoir. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 225502. Continuous variable quantum optical simulation for time evolution of quantum harmonic	3.3 3.3 1.5	36 17 9
463 464 465	Entanglement dynamics of Nitrogen-vacancy centers spin ensembles coupled to a superconducting resonator. Scientific Reports, 2016, 6, 21775. One-way steering of optical fields via dissipation of an atomic reservoir. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 225502. Continuous variable quantum optical simulation for time evolution of quantum harmonic oscillators. Scientific Reports, 2016, 6, 22914. Faithful conditional quantum state transfer between weakly coupled gubits. Scientific Reports, 2016,	3.3 3.3 1.5	36 17 9
464 465 466	Entanglement dynamics of Nitrogen-vacancy centers spin ensembles coupled to a superconducting resonator. Scientific Reports, 2016, 6, 21775. One-way steering of optical fields via dissipation of an atomic reservoir. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 225502. Continuous variable quantum optical simulation for time evolution of quantum harmonic oscillators. Scientific Reports, 2016, 6, 22914. Faithful conditional quantum state transfer between weakly coupled qubits. Scientific Reports, 2016, 6, 32125. Optical quantum memory for ultrafast photons using molecular alignment. Journal of Modern	3.3 3.3 1.5 3.3	36 17 9 10 2

#	Article	IF	CITATIONS
470	Quantum and Nonlinear Optics in Strongly Interacting Atomic Ensembles. Advances in Atomic, Molecular and Optical Physics, 2016, , 321-372.	2.3	36
471	Interplay of classical and quantum dynamics in a thermal ensemble of atoms. New Journal of Physics, 2016, 18, 053022.	2.9	5
472	Optimized geometries for future generation optical lattice clocks. Europhysics Letters, 2016, 114, 14003.	2.0	36
473	Suppression of the four-wave mixing amplification via Raman absorption. Journal of Modern Optics, 2016, 63, 2048-2057.	1.3	13
475	Nonlinear interferometers in quantum optics. Advances in Optics and Photonics, 2016, 8, 104.	25.5	171
476	Quantum memories: emerging applications and recent advances. Journal of Modern Optics, 2016, 63, 2005-2028.	1.3	294
477	Collective state synthesis in an optical cavity using Rydberg atom dipole blockade. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 064014.	1.5	9
478	Atomic frequency comb memory in an isotopically pure ¹⁴³ Nd ³⁺ :Y ⁷ LiF ₄ crystal. Laser Physics Letters, 2016, 13, 015202.	1.4	10
479	Mesoscopic coherence in light scattering from cold, optically dense and disordered atomic systems. Physics Reports, 2017, 671, 1-60.	25.6	35
480	Heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. Annals of Physics, 2017, 378, 33-46.	2.8	9
481	Optical quantum memory based on electromagnetically induced transparency. Journal of Optics (United Kingdom), 2017, 19, 043001.	2.2	72
482	Designing exotic many-body states of atomic spin and motion in photonic crystals. Nature Communications, 2017, 8, 14696.	12.8	20
483	Cavity-Assisted Single-Mode and Two-Mode Spin-Squeezed States via Phase-Locked Atom-Photon Coupling. Physical Review Letters, 2017, 118, 083604.	7.8	34
484	Motion-induced enhancement of Rabi coupling between atomic ensembles in cavity optomechanics. Physical Review A, 2017, 95, .	2.5	10
485	Multiresonator quantum memory. Physical Review A, 2017, 95, .	2.5	18
486	Quantum signature for laser-driven correlated excitation of Rydberg atoms. Physical Review A, 2017, 95, .	2.5	7
487	Manipulation of quantum states in a memory cell: controllable Mach–Zehnder interferometer. Laser Physics Letters, 2017, 14, 055208.	1.4	1
488	Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells. Nature Communications, 2017, 8, 15359.	12.8	106

#	Article	IF	CITATIONS
489	Towards a quantum internet. European Journal of Physics, 2017, 38, 043001.	0.6	35
490	Quadrature-Squeezed from Emitters in Optical. Springer Series in Solid-state Sciences, 2017, , 25-46.	0.3	2
491	Characterizing Entanglement and Quantum Correlations Constrained by Symmetry. Springer Theses, 2017, , .	0.1	6
492	Quantum State Transfer via Noisy Photonic and Phononic Waveguides. Physical Review Letters, 2017, 118, 133601.	7.8	100
493	Quantum particle interacting with a metallic particle: Spectra from quantum Langevin theory. Physical Review A, 2017, 95, .	2.5	2
494	Unitarity, feedback, interactionsâ€"dynamics emergent from repeated measurements. New Journal of Physics, 2017, 19, 013035.	2.9	29
495	Multimode optomechanical system in the quantum regime. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 62-66.	7.1	89
496	Nonlocality in Multipartite Quantum States. Springer Theses, 2017, , 73-137.	0.1	0
497	All-optical photon echo on a chip. Laser Physics Letters, 2017, 14, 015202.	1.4	19
498	Playing distributed two-party quantum games on quantum networks. Quantum Information Processing, 2017, 16, 1.	2.2	11
499	Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles. Nature Communications, 2017, 8, 718.	12.8	44
500	Continuous generation of delayed light. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 215003.	1.5	3
501	Off-resonant Raman quantum memory in impurity crystals: signal-to-noise ratio analysis. Quantum Electronics, 2017, 47, 790-793.	1.0	3
502	Experimental certification of millions of genuinely entangled atoms in a solid. Nature Communications, 2017, 8, 907.	12.8	27
503	Multipass configuration for improved squeezed vacuum generation in hot Rb vapor. Physical Review A, 2017, 96, .	2.5	8
504	Noiseless signal shaping and cluster-state generation with a quantum memory cell. Physical Review A, 2017, 96, .	2.5	6
505	Optical properties of an atomic ensemble coupled to a band edge of a photonic crystal waveguide. New Journal of Physics, 2017, 19, 083018.	2.9	15
506	Multipartite entanglement detection with nonsymmetric probing. Physical Review A, 2017, 95, .	2.5	5

#	ARTICLE	IF	CITATIONS
507	Quantum memory in an orthogonal geometry of silenced echo retrieval. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2017, 123, 211-216.	0.6	9
508	Quantum Spin Lenses in Atomic Arrays. Physical Review X, 2017, 7, .	8.9	12
509	Exact electrodynamics versus standard optics for a slab of cold dense gas. Physical Review A, 2017, 96,	2.5	32
510	Quantum Nonlinear Optics in Optomechanical Nanoscale Waveguides. Physical Review Letters, 2017, 119, 123602.	7.8	16
511	Exciton-polariton Josephson junctions at finite temperatures. Scientific Reports, 2017, 7, 9515.	3.3	9
512	Preparation of Macroscopic Entangled Coherent States in Nitrogen-Vacancy Centers Ensembles Coupled to a Superconducting Flux Qubit. Communications in Theoretical Physics, 2017, 67, 674.	2.5	2
513	Optimal entanglement witnesses in a split spin-squeezed Bose-Einstein condensate. Physical Review A, 2017, 95, .	2.5	7
514	Pumped-Up SU(1,1) Interferometry. Physical Review Letters, 2017, 118, 150401.	7.8	93
515	Quantum control of spin-nematic squeezing in a dipolar spin-1 condensate. Scientific Reports, 2017, 7, 43159.	3.3	3
516	Theory of noise suppression in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">Î></mml:mi></mml:math> -type quantum memories by means of a cavity. Physical Review A. 2017. 96	2.5	26
517	Phase-imprinted multiphoton subradiant states. Physical Review A, 2017, 96, .	2.5	30
518	High-Resolution Two-Dimensional Optical Spectroscopy of Electron Spins. Physical Review X, 2017, 7, .	8.9	9
519	Quantum fluctuations in mesoscopic systems. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 423001.	2.1	8
520	Simulating quantum light propagation through atomic ensembles using matrix product states. Nature Communications, 2017, 8, 1743.	12.8	44
521	Continuous Faraday measurement of spin precession without light shifts. Physical Review A, 2017, 96, .	2.5	15
522	Building mechanical Greenberger-Horne-Zeilinger and cluster states by harnessing optomechanical quantum steerable correlations. Physical Review A, 2017, 96, .	2.5	8
523	Entanglement distribution schemes employing coherent photon-to-spin conversion in semiconductor quantum dot circuits. Semiconductor Science and Technology, 2017, 32, 093001.	2.0	17
524	Single-Photon Interference due to Motion in an Atomic Collective Excitation. Physical Review Letters, 2017, 118, 253601.	7.8	38

#	ARTICLE	IF	CITATIONS
525	Quantum back-action-evading measurement of motion in a negative mass reference frame. Nature, 2017, 547, 191-195.	27.8	153
526	Two-axis-twisting spin squeezing by multipass quantum erasure. Physical Review A, 2017, 96, .	2.5	22
527	Quantum Fisher information as a predictor of decoherence in the preparation of spin-cat states for quantum metrology. Physical Review A, 2017, 95, .	2.5	17
528	Influence of multiphoton detunings from resonance on adiabatic processes in a five-level system. Journal of Experimental and Theoretical Physics, 2017, 124, 540-545.	0.9	3
529	Light-mediated non-Gaussian entanglement of atomic ensembles. Physical Review A, 2017, 95, .	2.5	14
530	Cascaded cold atomic ensembles in a diamond configuration as a spectrally entangled multiphoton source. Physical Review A, 2017, 95, .	2.5	10
531	Encoding qubits into oscillators with atomic ensembles and squeezed light. Physical Review A, 2017, 95, .	2.5	52
533	Robust Learning Control Design for Quantum Unitary Transformations. IEEE Transactions on Cybernetics, 2017, 47, 4405-4417.	9.5	46
534	Dynamical observations of self-stabilizing stationary light. Nature Physics, 2017, 13, 68-73.	16.7	23
535	One- and two-axis squeezing of atomic ensembles in optical cavities. New Journal of Physics, 2017, 19, 093021.	2.9	31
536	Nonlinearities in reservoir engineering: Enhancing quantum correlations. Physical Review A, 2017, 96, .	2.5	5
537	Quantum manipulation and enhancement of deterministic entanglement between atomic ensemble and light via coherent feedback control. Quantum Science and Technology, 2017, 2, 024003.	5.8	11
538	Entanglement and asymmetric steering over two octaves of frequency difference. Physical Review A, 2017, 96, .	2.5	16
539	Conditional phase-shift enhancement through dynamical Rydberg blockade. Europhysics Letters, 2017, 120, 54002.	2.0	4
540	One-way Einstein-Podolsky-Rosen steering via atomic coherence. Optics Express, 2017, 25, 11584.	3.4	20
541	Engineering temporal-mode-selective frequency conversion in nonlinear optical waveguides: from theory to experiment. Optics Express, 2017, 25, 12952.	3.4	34
542	Light-matter quantum interferometry with homodyne detection. Optics Express, 2017, 25, 15456.	3.4	2
543	Dissipation-assisted spin squeezing of nitrogen-vacancy centers coupled to a rectangular hollow metallic waveguide. Optics Express, 2017, 25, 19226.	3.4	20

#	Article	IF	CITATIONS
544	Coherence effects in electromagnetically induced transparency in V-type systems of ^87Rb. Optics Express, 2017, 25, 21762.	3.4	14
545	Asymmetric light diffraction of an atomic grating with PT symmetry. Optics Letters, 2017, 42, 4283.	3.3	47
546	Interaction of light with planar lattices of atoms: Reflection, transmission, and cooperative magnetometry. Physical Review A, 2018, 97, .	2.5	36
547	Laser cooling of Rb85 atoms to the recoil-temperature limit. Physical Review A, 2018, 97, .	2.5	5
548	Experimental entanglement of 25 individually accessible atomic quantum interfaces. Science Advances, 2018, 4, eaar3931.	10.3	37
549	Circular Dichroism Control of Tungsten Diselenide (WSe ₂) Atomic Layers with Plasmonic Metamolecules. ACS Applied Materials & Samp; Interfaces, 2018, 10, 15996-16004.	8.0	25
550	Photon scattering from a system of multilevel quantum emitters. I. Formalism. Physical Review A, 2018, 97, .	2.5	18
551	Engineering Photon-Photon Interactions within Rubidium-Filled Waveguides. Physical Review Applied, 2018, 9, .	3.8	7
552	Broadband multiresonator quantum memory-interface. Scientific Reports, 2018, 8, 3982.	3.3	20
553	Reservoir-engineered entanglement in a hybrid modulated three-mode optomechanical system. Physical Review A, 2018, 97, .	2.5	33
554	Polarization-induced interference within electromagnetically induced transparency for atoms of double- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mtext mathvariant="sans-serif">V</mml:mtext> </mml:math> linkage. Physical Review A, 2018, 97, .	2.5	2
555	Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble. Nature Communications, 2018, 9, 363.	12.8	109
556	Cavity electromagnetically induced transparency with Rydberg atoms. Laser Physics Letters, 2018, 15, 025201.	1.4	1
557	Generating maximally-path-entangled number states in two spin ensembles coupled to a superconducting flux qubit. Physical Review A, 2018, 97, .	2.5	19
558	Phase control of squeezed state in double electromagnetically induced transparency system with a loop-transition structure. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 818-822.	2.1	2
559	Quantum tomography enhanced through parametric amplification. New Journal of Physics, 2018, 20, 013005.	2.9	19
560	Coherent single-atom superradiance. Science, 2018, 359, 662-666.	12.6	42
561	Quantum Transduction with Adaptive Control. Physical Review Letters, 2018, 120, 020502.	7.8	18

#	ARTICLE	IF	CITATIONS
562	Controlled-phase Gate for Photons Based on Stationary Light. Physical Review Letters, 2018, 120, 010502.	7.8	15
563	Quantum correlations across two octaves from combined up- and down-conversion. Physical Review A, 2018, 97, .	2.5	13
564	Third-harmonic entanglement and Einstein-Podolsky-Rosen steering over a frequency range of more than an octave. Physical Review A, 2018, 97, .	2. 5	15
565	Quantum-dot based photonic quantum networks. Quantum Science and Technology, 2018, 3, 013001.	5.8	108
566	Dynamic generation and coherent control of beating stationary light pulses by a microwave coupling field in five-level cold atoms. Optics Communications, 2018, 412, 49-54.	2.1	1
567	Optimal photon generation from spontaneous Raman processes in cold atoms. New Journal of Physics, 2018, 20, 123018.	2.9	1
568	Bragg Diffraction in Atomic Systems in Quantum Degeneracy Conditions. JETP Letters, 2018, 108, 714-721.	1.4	3
569	Long-lived non-classical correlations towards quantum communication at room temperature. Communications Physics, 2018, 1 , .	5. 3	26
570	Scaling Phononic Quantum Networks of Solid-State Spins with Closed Mechanical Subsystems. Physical Review X, 2018, 8, .	8.9	46
571	Optimization of photon storage fidelity in ordered atomic arrays. New Journal of Physics, 2018, 20, 083048.	2.9	64
572	Squeezing-enhanced rotating-angle measurement beyond the quantum limit. Applied Physics Letters, 2018, 113, 261103.	3.3	22
573	Using interaction-based readouts to approach the ultimate limit of detection-noise robustness for quantum-enhanced metrology in collective spin systems. Physical Review A, 2018, 98, .	2.5	30
574	Deterministic Free-Space Source of Single Photons Using Rydberg Atoms. Physical Review Letters, 2018, 121, 123605.	7.8	23
575	Quantum Nonlinear Optics in Atomically Thin Materials. Physical Review Letters, 2018, 121, 123606.	7.8	39
576	Sub-microwave wavelength localization of Rydberg superatoms. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 2588.	2.1	6
577	Ultracold Rydberg atoms for efficient storage of terahertz frequency signals using electromagnetically induced transparency. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 3500-3504.	2.1	11
578	Quantum correlations between two cavity QED systems coupled by a mechanical resonator. European Physical Journal B, 2018, 91, 1.	1.5	2
579	Microwave quantum memory on a controlled frequency comb. Quantum Electronics, 2018, 48, 898-901.	1.0	3

#	Article	IF	CITATIONS
580	Free-space photonic quantum link and chiral quantum optics. Physical Review A, 2018, 98, .	2.5	57
581	Quantum interference manipulation and enhancement with fluctuation-correlation-induced dephasing in an atomic system. Physical Review A, 2018, 98, .	2.5	7
582	Superefficient cascade multiresonator quantum memory. Laser Physics Letters, 2018, 15, 125203.	1.4	5
583	Collective Effects in Casimir-Polder Forces. Physical Review Letters, 2018, 121, 183605.	7.8	23
584	Quantum metrology with nonclassical states of atomic ensembles. Reviews of Modern Physics, 2018, 90, .	45.6	852
585	Unconditional Steady-State Entanglement in Macroscopic Hybrid Systems by Coherent Noise Cancellation. Physical Review Letters, 2018, 121, 103602.	7.8	19
586	Population mixing due to dipole-dipole interactions in a one-dimensional array of multilevel atoms. Physical Review A, 2018, 98, .	2.5	9
587	One-step engineering many-atom NOON state. New Journal of Physics, 2018, 20, 093019.	2.9	5
588	Deterministic nonlinear phase gates induced by a single qubit. New Journal of Physics, 2018, 20, 053022.	2.9	13
589	Quantum antenna arrays: The role of quantum interference on direction-dependent photon statistics. Physical Review A, 2018, 97, .	2.5	13
590	Noise reduction in optically controlled quantum memory. Modern Physics Letters B, 2018, 32, 1830001.	1.9	4
591	Temporal optical memory based on coherent population and two-photon coherence oscillations. Physical Review A, 2018, 98, .	2.5	4
592	Electric control of cooperative polariton dynamics in a cavity-magnon system. Applied Physics Letters, 2018, 112, .	3.3	3
593	Quantum spin chain dissipative mean-field dynamics. Journal of Physics A: Mathematical and Theoretical, 2018, 51, 325001.	2.1	21
594	Tunable Optomechanically Induced Transparency and Fano Resonance in Optomechanical System with Levitated Nanosphere. International Journal of Theoretical Physics, 2018, 57, 2814-2827.	1.2	17
595	Polarization rotation with electromagnetically induced transparency in a V-type configuration of Rb D1 and D2 transitions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 175502.	1.5	2
596	<i>Colloquium </i> : Quantum matter built from nanoscopic lattices of atoms and photons. Reviews of Modern Physics, 2018, 90, .	45.6	292
597	Witnessing quantum entanglement in ensembles of nitrogen–vacancy centers coupled to a superconducting resonator. Optics Express, 2018, 26, 17849.	3.4	14

#	Article	IF	Citations
598	Synchronization of strongly interacting alkali-metal spins. Physical Review A, 2018, 98, .	2.5	1
599	Overcoming the Standard Quantum Limit in Gravitational Wave Detectors Using Spin Systems with a Negative Effective Mass. Physical Review Letters, 2018, 121, 031101.	7.8	37
600	Observation of Quantum Spin Noise in a 1D Light-Atoms Quantum Interface. Physical Review X, 2018, 8, .	8.9	10
601	Optical Rabi oscillations and EPR steering from asymmetrically pumped non-degenerate three wave mixing. Optics Communications, 2018, 427, 447-451.	2.1	0
602	Cooperative light scattering from helical-phase-imprinted atomic rings. Scientific Reports, 2018, 8, 9570.	3.3	11
603	Directional subradiance from helical-phase-imprinted multiphoton states. Scientific Reports, 2018, 8, 7163.	3.3	10
604	Entanglement manipulation via Coulomb interaction in an optomechanical cavity assisted by two-level cold atoms. Laser Physics, 2018, 28, 065202.	1.2	7
605	Electromagnetically induced absorption free from power broadening. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 185002.	1.5	2
606	Light storage for one second in room-temperature alkali vapor. Nature Communications, 2018, 9, 2074.	12.8	82
607	Quantum Optical Memory Protocols in Atomic Ensembles. Advances in Atomic, Molecular and Optical Physics, 2018, , 77-150.	2.3	16
608	Robustness of distributed nonclassicality against local Gaussian noise. Physical Review A, 2019, 100, .	2.5	2
609	Remote Hamiltonian interactions mediated by light. Physical Review A, 2019, 99, .	2.5	19
610	Maximal quantum scattering by homogeneous spherical inclusions. Physical Review B, 2019, 100, .	3.2	11
611	Engineering asymmetric steady-state Einstein-Podolsky-Rosen steering in macroscopic hybrid systems. Physical Review A, 2019, 100, .	2.5	7
612	Non-Hermitian Magnon-Photon Interference in an Atomic Ensemble. Physical Review Letters, 2019, 122, 253602.	7.8	18
613	Multipolar Conversion Induced Subwavelength Highâ€Q Kerker Supermodes with Unidirectional Radiations. Laser and Photonics Reviews, 2019, 13, 1900067.	8.7	39
614	Analogue of dynamic Hall effect in cavity magnon polariton system and coherently controlled logic device. Nature Communications, 2019, 10, 2934.	12.8	44
615	Analytical study of the spiky feature in a two-photon driven lossy ladder system. Laser Physics, 2019, 29, 105203.	1.2	1

#	Article	IF	CITATIONS
616	Gravitational wave detection beyond the standard quantum limit using a negative-mass spin system and virtual rigidity. Physical Review D, 2019, 100 , .	4.7	17
617	Quantum state preparation of an atomic ensemble via cavity-assisted homodyne measurement. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 215003.	1.5	0
618	Power narrowing: counteracting Doppler broadening in two-color transitions. New Journal of Physics, 2019, 21, 103024.	2.9	12
619	Characterisation of peanut protein concentrates from industrial aqueous extraction processing prepared by spray and freeze drying methods. International Journal of Food Science and Technology, 2019, 54, 1597-1608.	2.7	17
620	Quantum mechanics with patterns of light: Progress in high dimensional and multidimensional entanglement with structured light. AVS Quantum Science, 2019, 1, .	4.9	114
621	Enhancing distributed functional monitoring with quantum protocols. Quantum Information Processing, 2019, 18, 1.	2.2	2
622	Entangling two microwave modes via optomechanics. Physical Review A, 2019, 100, .	2.5	10
623	Cavity-assisted atomic Raman memories beyond the bad cavity limit: Effect of four-wave mixing. Physical Review A, 2019, 99, .	2.5	4
624	Merging and Repulsion of Eigenmodes in Multiresonator Memory. Bulletin of the Russian Academy of Sciences: Physics, 2019, 83, 377-380.	0.6	0
625	Microwave to optical conversion with atoms on a superconducting chip. New Journal of Physics, 2019, 21, 073033.	2.9	34
626	Bell correlation depth in many-body systems. Physical Review A, 2019, 100, .	2.5	24
627	Preservation of quantum correlation between nitrogen-vacancy-center ensembles by squeezed-reservoir engineering. Physical Review A, 2019, 100, .	2.5	11
628	Quantum information scrambling through a high-complexity operator mapping. Physical Review A, 2019, 100, .	2.5	8
629	Transverse optical pumping of spin states. Communications Physics, 2019, 2, .	5.3	4
630	Dynamics of multiple atoms in one-dimensional fields. Physical Review A, 2019, 99, .	2.5	7
631	Restricted distribution of quantum correlations in bilocal network. Quantum Information Processing, 2019, 18, 1.	2.2	8
632	Spectrally entangled biphoton state of cascade emissions from a Doppler-broadened atomic ensemble. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 135501.	1.5	1
633	Thermometry in the quantum regime: recent theoretical progress. Journal of Physics A: Mathematical and Theoretical, 2019, 52, 303001.	2.1	93

#	Article	IF	Citations
634	Theory of Subradiant States of a One-Dimensional Two-Level Atom Chain. Physical Review Letters, 2019, 122, 203605.	7.8	112
635	Stationary Light in Atomic Media. Advanced Quantum Technologies, 2019, 2, 1800100.	3.9	9
636	Advanced quantum techniques for future gravitational-wave detectors. Living Reviews in Relativity, 2019, 22, 1.	26.7	39
637	Experimental realization of 105 -qubit random access quantum memory. Npj Quantum Information, 2019 , 5 , .	6.7	42
638	Transporting Long-Lived Quantum Spin Coherence in a Photonic Crystal Fiber. Physical Review Letters, 2019, 122, 163901.	7.8	16
639	Spectral-Topological Superefficient Quantum Memory. Scientific Reports, 2019, 9, 1568.	3.3	11
640	Influence of Partial Coherent Light on the Transmission Spectrum and Goos-HÃ ¤ chen Shift in Rydberg Atomic Medium. Communications in Theoretical Physics, 2019, 71, 281.	2.5	2
641	Electromagnetically induced squeezing of atomic spin. Journal of Modern Optics, 2019, 66, 1071-1078.	1.3	2
642	Selective transport of atomic excitations in a driven chiral-coupled atomic chain. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 065502.	1.5	12
643	Optical waveguiding by atomic entanglement in multilevel atom arrays. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25503-25511.	7.1	37
644	Storage of telecom-C-band heralded single photons with orbital-angular-momentum encoding in a crystal. Science Bulletin, 2019, 64, 1577-1583.	9.0	5
645	Spatial Multiplexing of Squeezed Light by Coherence Diffusion. Physical Review Letters, 2019, 123, 203604.	7.8	10
646	Programmable quantum motherboard for logical qubits. Laser Physics, 2019, 29, 124016.	1.2	2
647	Helicity-Changing Brillouin Light Scattering by Magnons in a Ferromagnetic Crystal. Physical Review Letters, 2019, 123, 207401.	7.8	29
648	Tunable super- and subradiant boundary states in one-dimensional atomic arrays. Communications Physics, 2019, 2, .	5.3	13
649	Long-Distance Entanglement between a Multiplexed Quantum Memory and a Telecom Photon. Physical Review X, 2019, 9, .	8.9	19
650	Nuclear Quantum Memory and Time Sequencing of a Single <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>γ</mml:mi></mml:math> Photon. Physical Review Letters, 2019, 123, 250504.	7.8	18
651	Few-photon transport in strongly interacting light-matter systems: A scattering approach. International Journal of Quantum Information, 2019, 17, 1950050.	1.1	0

#	Article	IF	CITATIONS
652	Collective suppression of optical hyperfine pumping in dense clouds of atoms in microtraps. Physical Review A, $2019,100,$.	2.5	10
653	NOON State Generation with Phonons in Acoustic Wave Resonators Assisted by a Nitrogenâ€Vacancyâ€Center Ensemble. Annalen Der Physik, 2019, 531, 1800430.	2.4	3
654	Photonic quantum information processing: a review. Reports on Progress in Physics, 2019, 82, 016001.	20.1	402
655	Controlling chaos in the quantum regime using adaptive measurements. Physical Review A, 2019, 99, .	2.5	11
656	Photon-Mediated Spin-Exchange Dynamics of Spin-1 Atoms. Physical Review Letters, 2019, 122, 010405.	7.8	120
657	Hybrid Rabi interactions with traveling states of light. New Journal of Physics, 2020, 22, 013056.	2.9	1
658	Pulsed atom-mechanical quantum non-demolition gate. Npj Quantum Information, 2020, 6, .	6.7	2
659	Distributed quantum sensing in a continuous-variable entangled network. Nature Physics, 2020, 16, 281-284.	16.7	166
660	Feedback-Induced Quantum Phase Transitions Using Weak Measurements. Physical Review Letters, 2020, 124, 010603.	7.8	42
661	Cavity-assisted squeezing and entanglement: non-adiabatic effects and optimal cavity-atomic ensemble matching. Physica Scripta, 2020, 95, 034009.	2.5	3
662	Quantum Internet: Networking Challenges in Distributed Quantum Computing. IEEE Network, 2020, 34, 137-143.	6.9	210
663	Thermal preparation of an entangled steady state of distant nitrogen-vacancy-center ensembles. European Physical Journal B, 2020, 93, 1.	1.5	1
664	Single-Photon-Level Sub-Doppler Pump-Probe Spectroscopy of Rubidium. Physical Review Applied, 2020, 14, .	3.8	4
665	Enhancement of mechanical entanglement in hybrid optomechanical system. Quantum Information Processing, 2020, 19, 1.	2.2	20
666	Nearly Nondestructive Thermometry of Labeled Cold Atoms and Application to Isotropic Laser Cooling. Physical Review Applied, 2020, 14, .	3.8	7
667	Noisy Quantum Metrology Enhanced by Continuous Nondemolition Measurement. Physical Review Letters, 2020, 125, 200505.	7.8	28
668	Retrodiction beyond the Heisenberg uncertainty relation. Nature Communications, 2020, 11, 5658.	12.8	16
669	Quantum dynamics of collective spin states in a thermal gas. Physical Review A, 2020, 102, .	2.5	16

#	Article	IF	CITATIONS
670	Protecting Spin Coherence in a Tunable Heisenberg Model. Physical Review Letters, 2020, 125, 060402.	7.8	31
671	Quantum $SU(1,1)$ interferometers: Basic principles and applications. APL Photonics, 2020, 5, 080902.	5.7	65
672	Collective radiation from distant emitters. Physical Review A, 2020, 102, .	2.5	22
673	Delayed transfer of entanglement to initially populated qubits. Physical Review A, 2020, 102, .	2.5	6
674	Spectral Compression of Narrowband Single Photons with a Resonant Cavity. Physical Review Letters, 2020, 125, 183603.	7.8	5
675	Correlating photons using the collective nonlinear response of atoms weakly coupled to an optical mode. Nature Photonics, 2020, 14, 719-722.	31.4	64
676	Quantum and nonlinear effects in light transmitted through planar atomic arrays. Communications Physics, 2020, 3, .	5. 3	38
677	Heisenberg-Limited Noisy Atomic Clock Using a Hybrid Coherent and Squeezed State Protocol. Physical Review Letters, 2020, 125, 210503.	7.8	23
678	Theoretical design of quantum memory unit for under water quantum communication using electromagnetically induced transparency protocol in ultracold 87Rb atoms. International Journal of Quantum Information, 2020, 18, 2050027.	1.1	1
679	Light-mediated strong coupling between a mechanical oscillator and atomic spins 1 meter apart. Science, 2020, 369, 174-179.	12.6	48
680	Dual-comb-based asynchronous pump-probe measurement with an ultrawide temporal dynamic range for characterization of photo-excited InAs quantum dots. Applied Physics Express, 2020, 13, 062003.	2.4	12
681	Spin squeezing of 1011 atoms by prediction and retrodiction measurements. Nature, 2020, 581, 159-163.	27.8	83
682	Narrowing of electromagnetically induced transparency by using structured coupling light in ⁸⁵ Rb atomic vapor medium. Laser Physics, 2020, 30, 065203.	1.2	8
683	Quantum interface between light and a one-dimensional atomic system. Physical Review A, 2020, 101, .	2.5	5
684	Preparing Squeezed Spin States in a Spin–Mechanical Hybrid System with Siliconâ€Vacancy Centers. Advanced Quantum Technologies, 2020, 3, 2000034.	3.9	6
685	Simulating Nonlinear Dynamics of Collective Spins via Quantum Measurement and Feedback. Physical Review Letters, 2020, 124, 110503.	7.8	27
686	Stokes and anti-Stokes quantum fields from a mesoscopic microparticle with cylindrical geometry: Orientation, size and angular-dependence of spectra. Modern Physics Letters B, 2020, 34, 2050103.	1.9	1
687	Phase anti-synchronization dynamics between mechanical oscillator and atomic ensemble within a Fabry–Perot cavity. Quantum Information Processing, 2020, 19, 1.	2.2	1

#	Article	IF	CITATIONS
688	Entangling Two Macroscopic Mechanical Resonators at High Temperature. Physical Review Applied, 2020, 13 , .	3.8	31
689	Fabrication and optical characterization of photonic crystal nanocavities with electrodes for gate-defined quantum dots. Japanese Journal of Applied Physics, 2020, 59, SGGI05.	1.5	6
690	Frequency Manipulations in Single-Photon Quantum Transport under Ultrastrong Driving. ACS Photonics, 2020, 7, 2010-2017.	6.6	10
691	Limits of photon-mediated interactions in one-dimensional photonic baths. Physical Review A, 2020, 102, .	2.5	10
692	Darkness of two-mode squeezed light in $\hat{\mathfrak{b}}$ -type atomic system. New Journal of Physics, 2020, 22, 013014.	2.9	5
693	Feasibility study of a coherent feedback squeezer. Physical Review A, 2020, 101, .	2.5	2
694	Quantum non-demolition measurement of a many-body Hamiltonian. Nature Communications, 2020, 11, 775.	12.8	21
695	Reservoir-Mediated Quantum Correlations in Non-Hermitian Optical System. Physical Review Letters, 2020, 124, 030401.	7.8	30
696	Concurrence of two identical atoms in a rectangular waveguide: linear approximation with single excitation. Quantum Information Processing, 2020, $19, 1$.	2.2	5
697	Long-Lived Entanglement Generation of Nuclear Spins Using Coherent Light. Physical Review Letters, 2020, 124, 043602.	7.8	30
698	Entanglement between distant macroscopic mechanical and spin systems. Nature Physics, 2021, 17, 228-233.	16.7	71
699	Squeezing of Longitudinal Spin Component in Spin Coherent State. The National Academy of Sciences, India, 2021, 44, 443-445.	1.3	0
700	Single-crystal 3C-SiC-on-insulator platform for integrated quantum photonics. Optics Express, 2021, 29, 1011.	3.4	9
701	Coherent control of collective nuclear quantum states via transient magnons. Science Advances, 2021, 7, .	10.3	12
702	Frequency Characteristics of a Quantum Motherboard in Preprocessor and Distributed Sensor Mode. Studies in Systems, Decision and Control, 2021, , 373-383.	1.0	0
703	Loss-induced nonreciprocity. Light: Science and Applications, 2021, 10, 30.	16.6	48
704	Driven quadrature and spin squeezing in a cavity-coupled ensemble of two-level states. Physical Review A, 2021, 103, .	2.5	1
705	Experimental demonstration of memory-enhanced scaling for entanglement connection of quantum repeater segments. Nature Photonics, 2021, 15, 374-378.	31.4	36

#	ARTICLE	IF	CITATIONS
706	Maximum Refractive Index of an Atomic Medium. Physical Review X, 2021, 11, .	8.9	25
707	Collective emission of photons from dense, dipole-dipole interacting atomic ensembles. Physical Review A, 2021, 103, .	2.5	5
708	Nondestructive microwave detection of a coherent quantum dynamics in cold atoms. Communications Physics, $2021, 4, .$	5.3	5
709	Collective decay induce quantum phase transition in a well-controlled hybrid quantum system. Results in Physics, 2021, 21, 103832.	4.1	5
710	One-step implementation of a coherent conversion between microwave and optical cavities via an ensemble of nitrogen-vacancy centers. Physical Review A, 2021, 103, .	2.5	13
711	Spin squeezing of a Bose-Einstein condensate via a quantum nondemolition measurement for quantum-enhanced atom interferometry. Physical Review A, 2021, 103, .	2.5	6
712	Cavity-Enhanced Atom-Photon Entanglement with Subsecond Lifetime. Physical Review Letters, 2021, 126, 090501.	7.8	23
713	Optimal Control for Robust Photon State Transfer in Optomechanical Systems. Annalen Der Physik, 2021, 533, 2000608.	2.4	7
714	Study of the optical response and coherence of a quadratically coupled optomechanical system. Physica Scripta, 2021, 96, 065102.	2.5	5
715	Analysis of necessary and sufficient conditions for quantum teleportation with non-Gaussian resources. Physical Review A, 2021, 103, .	2.5	4
716	Quantum interference on the transmission spectrum of a timed Dicke state in an open cavity. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 1359.	2.1	1
717	Subradiance with Saturated Atoms: Population Enhancement of the Long-Lived States. Physical Review Letters, 2021, 126, 103604.	7.8	25
718	Realization of superabsorption by time reversal of superradiance. Nature Photonics, 2021, 15, 272-276.	31.4	20
719	Enhanced optomechanically induced transparency via atomic ensemble in optomechanical system. Quantum Information Processing, 2021, 20, 116.	2.2	5
720	Superabsorption by time-reversing superradiance. Nature Photonics, 2021, 15, 251-252.	31.4	2
721	Quantum storage of single photons with unknown arrival time and pulse shapes*. Chinese Physics B, 2021, 30, 084207.	1.4	2
722	Cavity-enhanced magnetometer with a spinor Bose–Einstein condensate. New Journal of Physics, 2021, 23, 043020.	2.9	4
723	Improving cold-atom sensors with quantum entanglement: Prospects and challenges. Applied Physics Letters, 2021, 118, .	3.3	24

#	ARTICLE	IF	CITATIONS
724	Coupling light to a nuclear spin gas with a two-photon linewidth of five millihertz. Science Advances, 2021, 7, .	10.3	16
725	Cavity magnomechanical storage and retrieval of quantum states. New Journal of Physics, 2021, 23, 043041.	2.9	39
726	Measurement-feedback control of the chiral photon emission from an atom chain into a nanofiber. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 1470.	2.1	1
727	Error suppression in adiabatic quantum computing with qubit ensembles. Npj Quantum Information, 2021, 7, .	6.7	10
728	Quantum computation and simulation with vibrational modes of trapped ions. Chinese Physics B, 2021, 30, 060311.	1.4	14
729	Quantum nondemolition measurement based generation of entangled states in two Bose–Einstein condensates. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 105502.	1.5	8
730	Crossover from a delocalized to localized atomic excitation in an atom–waveguide interface. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 105002.	1.5	4
731	Parametrized protocol achieving the Heisenberg limit in the optical domain via dispersive atom–light interactions. Results in Physics, 2021, 24, 104159.	4.1	1
732	Optimal collection of radiation emitted by a trapped atomic ensemble. EPJ Quantum Technology, 2021, 8, .	6.3	2
733	Exploring Bell nonlocality of quantum networks with stabilizing and logical operators. Physical Review Research, 2021, 3, .	3.6	4
734	Controlling Interactions between Quantum Emitters Using Atom Arrays. Physical Review Letters, 2021, 126, 223602.	7.8	22
735	Ultraprecision quantum sensing and measurement based on nonlinear hybrid optomechanical systems containing ultracold atoms or atomic Bose–Einstein condensate. AVS Quantum Science, 2021, 3, .	4.9	21
736	Bound and subradiant multiatom excitations in an atomic array with nonreciprocal couplings. Physical Review A, 2021, 103, .	2.5	13
737	Broadband quantum memory in a cavity via zero spectral dispersion. New Journal of Physics, 2021, 23, 063071.	2.9	9
739	Long-lived dark coherence brought to light by magnetic-field controlled photon echo. Physical Review B, 2021, 103, .	3.2	4
740	Nuclear Spin Squeezing in Helium-3 by Continuous Quantum Nondemolition Measurement. Physical Review Letters, 2021, 127, 013601.	7.8	15
741	Spectroscopy of Rubidium with a Tuneable Single Photon Source. , 2021, , .		0
742	Quantum Entanglement Among Multiple Memories for Continuous Variables. Advanced Quantum Technologies, 2021, 4, 2100071.	3.9	6

#	Article	IF	Citations
743	Random singlet phase of cold atoms coupled to a photonic crystal waveguide. Physical Review A, 2021, 104, .	2.5	1
744	Engineering of the qubit initialization in an imperfect physical system. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 135503.	1.5	1
745	Calibration of spin-light coupling by coherently induced Faraday rotation. Optics Express, 2021, 29, 23637.	3.4	1
746	Coherent perfect absorption of quantum light. Physical Review A, 2021, 104, .	2.5	15
747	Inferring Nonlinear Many-Body Bell Inequalities From Average Two-Body Correlations: Systematic Approach for Arbitrary Spin- <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>j</mml:mi></mml:math> Ensembles. PRX Quantum, 2021, 2,	9.2	11
748	Electromagnetically induced transparency in a V-system with ⁸⁷ Rb vapour in the hyperfine Paschen-Back regime. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 165403.	1.5	6
749	Einstein–Podolsky–Rosen paradox with position–momentum entangled macroscopic twin beams. Quantum Science and Technology, 2021, 6, 045016.	5.8	9
750	Cooperatively enhanced precision of hybrid light-matter sensors. Physical Review A, 2021, 104, .	2.5	0
751	Photon retention in coherently excited nitrogen ions. Science Bulletin, 2021, 66, 1511-1517.	9.0	12
752	Adiabaticity in state preparation for spin squeezing of large atom ensembles. Photonics Research, 2021, 9, 2296.	7.0	4
753	Design of bull's-eye optical cavity toward efficient quantum media conversion using gate-defined quantum dot. Japanese Journal of Applied Physics, 2021, 60, 102003.	1.5	8
7 54	Many-body localization in waveguide quantum electrodynamics. Physical Review Research, 2021, 3, .	3.6	31
755	Dynamical Phases and Quantum Correlations in an Emitter-Waveguide System with Feedback. Physical Review Letters, 2021, 127, 133601.	7.8	21
756	Tuning the universality class of phase transitions by feedback: Open quantum systems beyond dissipation. Physical Review A, 2021, 104, .	2.5	7
757	Quantum memory of single-photon polarization qubits via double electromagnetically induced transparency. Physical Review A, 2021, 104, .	2.5	7
758	Quantum Light Storage in Solid State Atomic Ensembles. Nano-optics and Nanophotonics, 2015, , 241-273.	0.2	14
760	Multiparameter quantum estimation theory in quantum Gaussian states. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 385301.	2.1	12
761	Nonequilibrium readiness and precision of Gaussian quantum thermometers. Physical Review Research, 2020, 2, .	3.6	14

#	Article	IF	CITATIONS
762	Collisional picture of quantum optics with giant emitters. Physical Review Research, 2020, 2, .	3.6	31
763	Atomic-waveguide quantum electrodynamics. Physical Review Research, 2020, 2, .	3.6	49
764	Atomic spin-wave control and spin-dependent kicks with shaped subnanosecond pulses. Physical Review Research, 2020, 2 , .	3.6	10
765	Exponential Improvement in Photon Storage Fidelities Using Subradiance and "Selective Radiance―in Atomic Arrays. Physical Review X, 2017, 7, .	8.9	263
766	Superefficient long-lived multiresonator quantum memory. , 2018, , .		1
767	Non-Markovian dynamics of collective atomic states coupled to a waveguide. , 2019, , .		5
768	Macroscopic tripartite entanglement of nitrogen-vacancy centers in diamond coupled to a superconducting resonator. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 443.	2.1	4
769	Cavity-enhanced optical controlling based on three-wave mixing in cavity-atom ensemble system. Optics Express, 2019, 27, 6660.	3.4	5
770	Realizing a high-efficiency 426nm laser with PPKTP by reducing mode-mismatch caused by the thermal effect. Optics Express, 2019, 27, 28534.	3.4	5
771	Two-pulse photon echo area theorem in an optically dense medium. Optics Express, 2019, 27, 28983.	3.4	9
772	Efficient all-optical router and beam splitter for light with orbital angular momentum. Optics Express, 2020, 28, 19750.	3.4	4
773	Experimental quantum homodyne tomography via machine learning. Optica, 2020, 7, 448.	9.3	44
774	Phonon counting thermometry of an ultracoherent membrane resonator near its motional ground state. Optica, 2020, 7, 718.	9.3	20
775	Efficient reversible entanglement transfer between light and quantum memories. Optica, 2020, 7, 1440.	9.3	45
776	Probing, quantifying, and freezing coherence in a thermal ensemble of atoms. Optica, 2018, 5, 1462.	9.3	5
777	Analysis of atom–photon quantum interface with intracavity Rydberg-blocked atomic ensemble via two-photon transition. Optica, 2018, 5, 1492.	9.3	18
778	Frequency-tuning-induced state transfer in optical microcavities. Photonics Research, 2020, 8, 490.	7.0	13
779	Photon subtraction from traveling fields - recent experimental demonstrations. Progress in Informatics, 2011, , 5.	0.2	8

#	Article	IF	CITATIONS
781	Generation of two-mode photon-atom quadrature squeezing based on enhanced raman scattering. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 014202.	0.5	1
782	Dynamic generation and manipulaition of electromagnetically induced 2D phtonic band-gaps. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 224203.	0.5	1
783	Deterministic quantum entanglement among multiple quantum nodes. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 034202.	0.5	2
784	Nonlocal correlations in the tree-tensor-network configuration. Physical Review A, 2021, 104, .	2.5	8
785	Electromagnetically induced grating using Rydberg atom in the vicinity of metal nanoparticle. Physica Scripta, 2021, 96, 125115.	2.5	0
786	Spectral compression and entanglement reduction in the cascaded biphoton state with cavities. Journal of Physics B: Atomic, Molecular and Optical Physics, 0, , .	1.5	2
787	Weak-Measurement-Induced Asymmetric Dephasing: Manifestation of Intrinsic Measurement Chirality. Physical Review Letters, 2021, 127, 170401.	7.8	10
788	Role of quadrature squeezing in continuous-variable quantum teleportation. Physical Review A, 2021, 104, .	2.5	0
789	Trapping Light in a Crystal. , 2009, , .		0
790	Electromagnetically Induced Transparency in Cesium Vapor with a Single Photon Probe Beam. , 2010, , .		0
791	Quantum optical interface for atoms and electro-mechanical systems. , 2011, , .		0
792	Quantum Storage of a Photonic Polarization Qubit in a Doped Crystal. , 2012, , .		0
793	Interaction-based Quantum Metrology Showing Scaling Beyond the Heisenberg Limit. , 2012, , .		0
794	Realization of an economical phase-covariant telecloning in separate cavities. Quantum Information and Computation, 2012, 12, 334-345.	0.3	4
795	Classicalization and the Macroscopicity of Quantum Superposition States. Springer Theses, 2014, , $161-238$.	0.1	0
798	Nuclear Spin Dynamics in Double Quantum Dots: Multi-stability, Dynamical Polarization, Criticality and Entanglement. Springer Theses, 2017, , 65-141.	0.1	0
799	Coherent control of light transport in 1D-array of cold atoms: a microscopic approach., 2017,,.		0
800	Proposal for a Quantum-Based Memory for Storing Classical Information and the Connection Between Molecular Dynamics Simulations and the Landauer's Principle. Studies in Big Data, 2018, , 291-316.	1.1	0

#	Article	IF	CITATIONS
801	Hamiltonian of a Spin-1 Bose-Einstein Condensate. Springer Theses, 2018, , 31-49.	0.1	0
802	Entanglement of quantum node based on hybrid system of diamond nitrogen-vacancy center spin ensembles and superconducting quantum circuits. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 070302.	0.5	2
803	Coherent optical spectroscopy of charged exciton complexes in semiconductor nanostructures. , 2018, , .		0
804	Er3+ doped Y2O3 transparent ceramic for quantum memory applications., 2018,,.		1
805	Using interaction-based readouts to approach the ultimate limit of detection noise robustness for quantum-enhanced metrology in collective spin systems. , 2019, , .		0
806	Transit Ramsey EIT resonances in a Rb vacuum cell. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 890.	2.1	0
807	Long-lived quantum coherence in a two-level semiconductor quantum dot. Pramana - Journal of Physics, 2020, 94, 1.	1.8	13
808	Dispersive detection of atomic ensembles in the presence of strong lensing. New Journal of Physics, 2020, 22, 073017.	2.9	2
810	Squeezed Lasing. Physical Review Letters, 2021, 127, 183603.	7.8	7
811	Electrically Tunable and Dramatically Enhanced Valleyâ€Polarized Emission of Monolayer WS ₂ at Room Temperature with Plasmonic Archimedes Spiral Nanostructures. Advanced Materials, 2022, 34, e2104863.	21.0	24
812	Reconfigurable nonreciprocity with low insertion loss using a simple two-level system. Optics Express, 2020, 28, 38710.	3.4	2
813	Hierarchy of magnon mode entanglement in antiferromagnets. Physical Review B, 2020, 102, .	3.2	6
814	Quantum coherence in a coupled optomechanical system with atomic ensemble. Physica A: Statistical Mechanics and Its Applications, 2022, 587, 126523.	2.6	2
815	Auxiliary cavity enhanced dipole induced transparency and fast to slow light using cavity quantum electrodynamics in a photonic crystal nanocavity. OSA Continuum, 2020, 3, 929.	1.8	1
816	Quantum Communication: Concept, Applications, and Future Outlook., 2021,,.		1
817	Electromagnetically induced grating and parity-time symmetry in coupled quantum wells. Chinese Journal of Physics, 2021, 74, 440-453.	3.9	3
818	Reducing the mode-mismatch noises in atom–light interactions via optimization of the temporal waveform. Photonics Research, 2020, 8, 1697.	7.0	1
819	The Effect of Diffraction on a Pulse of Squeezed Light in the Protocol of a Multimode Resonant Quantum Memory Based on a Thermal Atomic Ensemble. Optics and Spectroscopy (English Translation) Tj ETQq	1 10067843	31 4 rgBT /Ov

#	ARTICLE	IF	CITATIONS
820	Role of EPR correlation in Gaussian quantum teleportation. Physica Scripta, 2020, 95, 105105.	2.5	0
821	Position representation of single-mode Gaussian channels beyond the Gaussian functional form. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 425304.	2.1	0
823	Quantum non-demolition measurement based on an $SU(1,1)$ - $SU(2)$ -concatenated atom-light hybrid interferometer. Photonics Research, 2022, 10, 475.	7.0	4
824	Characterization of isotropic laser cooling for application in quantum sensing. Optics Express, 0, , .	3.4	2
825	Robust multipartite entanglement without entanglement breaking. Physical Review Research, 2021, 3, .	3.6	10
826	Single-photon-triggered spin squeezing with decoherence reduction in optomechanics via phase matching. Physical Review A, 2021, 104, .	2.5	6
827	Maximizing precision in saturation-limited absorption measurements. Physical Review A, 2021, 104, .	2.5	3
828	Renormalization group analysis of near-field induced dephasing of optical spin waves in an atomic medium. New Journal of Physics, 2022, 24, 013031.	2.9	1
829	Quantum Interface for Noble-Gas Spins Based on Spin-Exchange Collisions. PRX Quantum, 2022, 3, .	9.2	14
830	Coherent Feedback Cooling of a Nanomechanical Membrane with Atomic Spins. Physical Review X, 2022, 12, .	8.9	10
831	Quantum fidelity of electromagnetically induced transparency: the full quantum theory. Optics Express, 2022, 30, 2097.	3.4	5
832	Quantum memory on multi atom-resonator system. , 2022, , .		0
833	Improving Atom–Mirror Entanglement and Mechanical Squeezing in a Modulated Optomechanical System. Annalen Der Physik, 2022, 534, .	2.4	4
834	Building a large-scale quantum computer with continuous-variable optical technologies. Journal of Physics B: Atomic, Molecular and Optical Physics, 2022, 55, 012001.	1.5	21
835	Analytical solutions for susceptibility in electromagnetically induced transparency in a Doppler-broadened V-type three-level atomic system. Optik, 2022, 254, 168610.	2.9	0
836	Deterministic Time-Bin Entanglement between a Single Photon and an Atomic Ensemble. Physical Review Letters, 2022, 128, 060502.	7.8	8
837	Quantum Single-Photon Control, Storage, and Entanglement Generation with Planar Atomic Arrays. PRX Quantum, 2021, 2, .	9.2	22
838	<i>In situ</i> tunable circular dichroism of flexible chiral metasurfaces composed of plasmonic nanorod trimers. Nanoscale Advances, 2022, 4, 2428-2434.	4.6	3

#	Article	IF	CITATIONS
839	Stroboscopic quantum nondemolition measurements for enhanced entanglement generation between atomic ensembles. Physical Review A, 2022, 105, .	2.5	5
840	Quantum Interference between Photons and Single Quanta of Stored Atomic Coherence. Physical Review Letters, 2022, 128, 083605.	7.8	9
841	Quantum correlations of localized atomic excitations in a disordered atomic chain. Physical Review A, 2022, 105 , .	2.5	9
842	A theoretical analysis on quantum memory parameters in ultracold $\87 and $\133 Cs alkali species using EIT protocol in the presence of structured light. Quantum Information Processing, 2022, 21, 1.	2.2	4
843	Sensing the performance enhancement via asymmetric gain optimization in the atom-light hybrid interferometer. Optics Express, 2022, 30, 11514.	3.4	1
844	Memory-assisted quantum accelerometer with multi-bandwidth. Photonics Research, 2022, 10, 1022.	7.0	2
845	Cavity-driven Rabi oscillations between Rydberg states of atoms trapped on a superconducting atom chip. Physical Review Research, 2022, 4, .	3.6	9
846	Experimental realization of efficient nondegenerate four-wave mixing in cesium atoms. Optics Express, 2022, 30, 12576.	3.4	5
847	Strong coupling of alkali-metal spins to noble-gas spins with an hour-long coherence time. Nature Physics, 2022, 18, 506-510.	16.7	19
848	Manipulation of quantum phase transitions with <mml:math altimg="si4.svg" display="inline" id="d1e854" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>Z</mml:mi></mml:mrow><mml:mrow><mml:mn>2<td>:mn><td>nl:mrow></td></td></mml:mn></mml:mrow></mml:msub></mml:math>	:mn> <td>nl:mrow></td>	nl:mrow>
849	Lamb shift statistics in mesoscopic quantum ensembles. Quantum Information Processing, 2022, 21, 1.	2.2	1
850	Emerging Dissipative Phases in a Superradiant Quantum Gas with Tunable Decay. Physical Review X, 2021, 11 , .	8.9	28
851	Dynamic synthesis of Heisenberg-limited spin squeezing. Npj Quantum Information, 2021, 7, .	6.7	10
852	Detection of spin coherence in cold atoms via Faraday rotation fluctuations. Physical Review Research, 2021, 3, .	3.6	7
853	Formation of photon molecules in nanoscale waveguides. Physical Review A, 2021, 104, .	2.5	1
854	Collective Spin-Light and Light-Mediated Spin-Spin Interactions in an Optical Cavity. PRX Quantum, 2022, 3, .	9.2	20
855	Optical quantum memory for noble-gas spins based on spin-exchange collisions. Physical Review A, 2022, 105, .	2.5	5
856	Quantum entanglement in a four-partite hybrid system containing three macroscopic subsystems. European Physical Journal Plus, 2022, 137, .	2.6	2

#	Article	IF	CITATIONS
857	Information flow and error scaling for fully quantum control. Physical Review Research, 2022, 4, .	3.6	4
859	Understanding and Improving Critical Metrology. Quenching Superradiant Light-Matter Systems Beyond the Critical Point. Quantum - the Open Journal for Quantum Science, 0, 6, 700.	0.0	15
860	High-performance cavity-enhanced quantum memory with warm atomic cell. Nature Communications, 2022, 13, 2368.	12.8	19
861	Accelerated Gaussian quantum state transfer between two remote mechanical resonators. New Journal of Physics, 0, , .	2.9	0
862	Quantum treatment of cavity-assisted entanglement of three-level atoms and two fields in an electromagnetically-induced-transparency configuration. Physical Review A, 2022, 105, .	2.5	3
863	Collection efficiency of optical photons generated from microwave excitations of a Bose-Einstein condensate. Physical Review A, 2022, 105, .	2.5	0
864	Error-disturbance uncertainty relations in Faraday measurements. Physical Review A, 2022, 105, .	2.5	1
865	Resonant dipole-dipole interactions in electromagnetically induced transparency. Physical Review A, 2022, 105, .	2.5	1
866	One-step construction of a multi-qubit controlled phase gate with ensembles of nitrogen-vacancy centers in hybrid circuit QED. Quantum Information Processing, 2022, 21, .	2.2	1
867	Realizing fast temperature measurement and simulating Maxwell demon with nearly nondestructive detection in cold atoms. Photonics Research, 0, , .	7.0	1
868	Almost indistinguishable single photons via multiplexing cascaded biphotons with cavity modulation and phase compensation. Physical Review A, 2022, 105, .	2.5	1
869	Decoherence effects in quantum nondemolition measurement induced entanglement between Bose–Einstein condensates. Journal of Physics B: Atomic, Molecular and Optical Physics, 2022, 55, 195501.	1.5	4
870	Large- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>N</mml:mi></mml:math> limit of Dicke superradiance. Physical Review A, 2022, 106, .	2.5	4
871	Two-colour high-purity Einstein-Podolsky-Rosen photonic state. Nature Communications, 2022, 13, .	12.8	3
872	Quantifying the breakdown of the rotating-wave approximation in single-photon superradiance. Journal of Physics B: Atomic, Molecular and Optical Physics, 2022, 55, 195401.	1.5	2
873	Effects of spin-exchange collisions on the fluctuation spectra of hot alkali-metal vapors. Physical Review A, 2022, 106, .	2.5	3
874	Coherent information of a quantum channel or its complement is generically positive. Quantum - the Open Journal for Quantum Science, 0, 6, 775.	0.0	2
875	Measurement of spin systems under the Faraday interaction. , 2022, , .		0

#	Article	IF	CITATIONS
876	Quantum Interface Based on a Non-Hermitian Magnon-Photon Beamsplitter., 2022,,.		0
877	Three-color reflections in one-dimensional ordered and disordered atomic lattices with trapped N-type cold atoms. Optics Express, 2022, 30, 34887.	3.4	0
878	Deterministic preparation of supersinglets with collective spin projections. Physical Review A, 2022, 106, .	2.5	2
879	Unidirectional absorption, storage, and emission of single photons in a collectively responding bilayer atomic array. Physical Review Research, 2022, 4, .	3.6	8
880	Axiogeometry. , 2022, , 79-86.		0
881	Field-Deployable Quantum Memory for Quantum Networking. Physical Review Applied, 2022, 18, .	3.8	9
882	Anti-Hong-Ou-Mandel interference by coherent perfect absorption of entangled photons. New Journal of Physics, 0, , .	2.9	0
883	Quantum memory based on SiV-centers in nanodiamonds. Laser Physics Letters, 2022, 19, 125206.	1.4	1
884	Optimized geometries for cooperative photon storage in an impurity coupled to a two-dimensional atomic array. Physical Review A, 2022, 106, .	2.5	5
885	Quantum metrology with imperfect measurements. Nature Communications, 2022, 13, .	12.8	10
886	Transfer of arbitrary quantum states between separated superconducting cavities via an ensemble of nitrogen-vacancy centers. Results in Physics, 2023, 44, 106157.	4.1	4
887	High-dimensional SO(4)-symmetric Rydberg manifolds for quantum simulation. Quantum Science and Technology, 2023, 8, 015020.	5.8	8
888	Optical parametric oscillator with quantum memory for quantum repeaters. Laser Physics, 2023, 33, 015202.	1.2	1
889	<i>Colloquium</i> : Cavity-enhanced quantum network nodes. Reviews of Modern Physics, 2022, 94, .	45.6	15
890	Polariton dynamics in one-dimensional arrays of atoms coupled to waveguides. New Journal of Physics, 2022, 24, 123023.	2.9	1
891	Quantum remote sensing with atom-light entangled interface. , 2022, 1, .		1
892	Rare-earth quantum memories: The experimental status quo. Frontiers of Physics, 2023, 18, .	5.0	7
893	Radiation-free and non-Hermitian topology inertial defect states of on-chip magnons. Physical Review Research, 2023, 5, .	3.6	3

#	Article	IF	CITATIONS
894	Resonant Multilevel Amplitude Damping Channels. Quantum - the Open Journal for Quantum Science, 0, 7, 902.	0.0	3
895	Light-matter quantum interface with continuous pump and probe. Journal of Physics B: Atomic, Molecular and Optical Physics, 0, , .	1.5	0
896	Interaction of two Rydberg atoms in the vicinity of an optical nanofibre. New Journal of Physics, 2023, 25, 023022.	2.9	2
897	Number-phase uncertainty relations and bipartite entanglement detection in spin ensembles. Quantum - the Open Journal for Quantum Science, 0, 7, 914.	0.0	3
898	Quantum backaction effects in sequential measurements. Annals of Physics, 2023, 453, 169310.	2.8	0
899	Universal Time-Dependent Control Scheme for Realizing Arbitrary Linear Bosonic Transformations. Physical Review Letters, 2023, 130, .	7.8	2
900	Perfect nonreciprocity by loss engineering. Physical Review A, 2023, 107, .	2.5	3
901	Enhancing the spectrum of timed Dicke state via squeezing a cavity mode. Physica Scripta, 2023, 98, 045103.	2.5	0
902	Emergence of super-Poissonian light from indistinguishable single-photon emitters. Optica, 2023, 10, 456.	9.3	0
903	Vacuum-enhanced charging of a quantum battery. Physical Review A, 2023, 107, .	2.5	5
904	Waveguide quantum electrodynamics: Collective radiance and photon-photon correlations. Reviews of Modern Physics, 2023, 95, .	45.6	63
905	Simultaneous quantum squeezing of light polarizations and atomic spins in a cold atomic gas. Physical Review A, 2023, 107, .	2.5	2
906	Multichannel waveguide QED with atomic arrays in free space. Physical Review A, 2023, 107, .	2.5	1
907	Symmetry breaking and competition effect in phase transitions. Journal of Physics Condensed Matter, 2023, 35, 275401.	1.8	1
908	Quantum back-action limits in dispersively measured Bose-Einstein condensates. Communications Physics, 2023, 6, .	5. 3	3
909	Strain-mediated ion–ion interaction in rare-earth-doped solids. Journal of Physics Condensed Matter, 2023, 35, 305501.	1.8	1
910	Heisenberg-limited spin squeezing in coupled spin systems. Physical Review A, 2023, 107, .	2.5	2
911	Imaginary-time evolution with quantum nondemolition measurements: Multiqubit interactions via measurement nonlinearities. Physical Review A, 2023, 107, .	2.5	5

#	ARTICLE Pulse-area theorem in a single-mode waveguide and its application to photon echo and optical memory	IF	CITATIONS
912	in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>Tm</mml:mi>Y<mml:mn>3</mml:mn><mml:msub><mml:mi>Al</mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:< td=""><td>mi2a5√> < m nl:mn > 5 < /</td><td>m&mrow><n /mml:mn></n </td></mml:<></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:msub></mml:mrow></mml:msup></mml:math>	mi 2a 5√> < m nl:mn > 5 < /	m&mrow> <n /mml:mn></n
913	mathvariant="normal">O <mml:mn>12</mml:mn> <. Physical Review A, 2023, 107, . Hybrid approximation approach to the generation of atomic squeezing with quantum nondemolition measurements. Physical Review A, 2023, 107, .	2.5	0
914	Entanglement-Enhanced Magnetic Induction Tomography. Physical Review Letters, 2023, 130, .	7.8	2
915	Dynamic population of multiexcitation subradiant states in incoherently excited atomic arrays. Physical Review A, 2023, 107, .	2.5	7
916	Super- and subradiance in dilute disordered cold atomic samples: observations and interpretations. Advances in Atomic, Molecular and Optical Physics, 2023, , 253-296.	2.3	1
917	Noncryogenic Quantum Repeaters with hot Hybrid Alkali-Noble Gases. Physical Review Applied, 2023, 19,	3.8	1
918	A Review of Intercalation of Rare Gas Solids on Graphene and Hexagonal Boron Nitride. Physica Status Solidi - Rapid Research Letters, 0, , .	2.4	1
919	Rydberg Atoms In the Vicinity of an Optical Nanofiber. , 2023, , .		0
920	Quantenkommunikationsnetze: Entwurf und Simulation. , 2023, , 209-234.		0
921	Tailoring population transfer between two hyperfine ground states of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi>Rb</mml:mi><mml:mpresd></mml:mpresd><mml:none></mml:none><mml:mn>87</mml:mn></mml:mmultiscripts></mml:math> . Physical Review A, 2023, 107, .	cripts	0
922	Progress in quantum teleportation. Nature Reviews Physics, 2023, 5, 339-353.	26.6	18
923	Controlling frequency-domain Hong-Ou-Mandel interference via electromagnetically induced transparency. Physical Review A, 2023, 108, .	2.5	0
924	Strong single-photon to two-photon bundles emission in spin-1 Jaynes–Cummings model. APL Photonics, 2023, 8, .	5.7	0
925	Quantum NETwork: from theory to practice. Science China Information Sciences, 2023, 66, .	4.3	1
926	Error-Disturbance relations in spin measurement using Faraday interaction. , 2022, , .		0
927	Non-Markovian open quantum dynamics in squeezed environments: Coherent-state unraveling. Physical Review A, 2023, 108, .	2.5	1
928	Decoherence of Singleâ€Excitation Entanglement over Duanâ€Lukinâ€Ciracâ€Zoller Quantum Networks Caused by Slowâ€Magneticâ€Field Fluctuations and Protection Approach. Advanced Quantum Technologies, 2023, 6, .	3.9	0
929	Manipulating Growth and Propagation of Correlations in Dipolar Multilayers: From Pair Production to Bosonic Kitaev Models. Physical Review Letters, 2023, 131, .	7.8	1

#	Article	IF	CITATIONS
930	Prediction-Retrodiction Measurements for Teleportation and Conditional State Transfer. Physical Review Letters, 2023, 131, .	7.8	0
931	Optical control of collective states in one-dimensional ordered atomic chains beyond the linear regime. Physical Review A, 2023, 108, .	2.5	2
932	State carving in a chirally-coupled atom-nanophotonic cavity. New Journal of Physics, 0, , .	2.9	2
933	Cooperative quantum-optical planar arrays of atoms. Physical Review A, 2023, 108, .	2.5	3
934	Optical and atomic decoherence in quantum nondemolition measurement induced atomic ensemble entanglement. AVS Quantum Science, 2023, 5, .	4.9	1
935	Synergistic Effect of Chiral Metasurface and Hot Carrier Injection Enabling Manipulation of Valley Polarization of WSe ₂ at Room Temperature., 2024, 3,.		0
936	A quantum trajectory picture of single photon absorption and energy transport in photosystem II. Journal of Chemical Physics, 2023, 159, .	3.0	0
937	Rydberg Atoms In the Vicinity of an Optical Nanofiber. , 2023, , .		0
938	Performance and application analysis of quantum memory. Wuli Xuebao/Acta Physica Sinica, 2023, 72, 206701.	0.5	0
939	Macroscopic maximally-entangled-state preparation between two atomic ensembles. Physical Review A, 2023, 108, .	2.5	3
940	Nanofibre-based trap for Rb ₂ molecule. Physica Scripta, 2023, 98, 115404.	2.5	0
941	Quantum optical memory for entanglement distribution. Optica, 2023, 10, 1511.	9.3	3
942	Interferometry-Integrated Noise-Immune Quantum Memory. Physical Review Letters, 2023, 131, .	7.8	0
943	Acoustic frequency atomic spin oscillator in the quantum regime. Nature Communications, 2023, 14, .	12.8	0
944	Numerical analysis of photon absorption of gate-defined quantum dots embedded in asymmetric bull's-eye optical cavities. , 2023, 2, 2270.		0
945	Quantum steering in two-forked tree-shaped networks. Physica Scripta, 0, , .	2.5	0
946	Fast quantum state transfer and entanglement preparation in strongly coupled bosonic systems. New Journal of Physics, 2023, 25, 113015.	2.9	0
947	Superradiance - an encyclopedia article. , 2005, , .		0

#	Article	IF	CITATIONS
948	Nonorthogonal coding in spectrally-entangled photons. Journal of Physics B: Atomic, Molecular and Optical Physics, 0, , .	1.5	0
949	Quantum non-Gaussian optomechanics and electromechanics. Progress in Quantum Electronics, 2024, 93, 100495.	7.0	0
950	Cooperative photon emission rates in random atomic clouds. Physical Review A, 2023, 108, .	2.5	0
951	Superradiant Detection of Microscopic Optical Dipolar Interactions. Physical Review Letters, 2023, 131,	7.8	2
952	Early stage disentanglement mediated by plasmons for different waveguide geometries. Quantum Information Processing, 2024, 23, .	2.2	0
953	Light–matter interactions in quantum nanophotonic devices. Nature Reviews Physics, 2024, 6, 166-179.	26.6	1
954	Extreme single-excitation subradiance from two-band Bloch oscillations in atomic arrays. Photonics Research, 2024, 12, 571.	7.0	0
955	Long-distance transmission of arbitrary quantum states between spatially separated microwave cavities. Optics Express, 2024, 32, 4728.	3.4	0
956	Excitation spectrum of a multilevel atom coupled with a dielectric nanostructure. Physical Review A, 2024, 109, .	2.5	0
957	Cavity-Mediated Molecular Entanglement and Generation of Non-classical States of Light. Journal of Physical Chemistry A, 2024, 128, 799-806.	2.5	0
958	Parallel multi-two-qubit swap gate via quantum nondemolition interaction of orbital-angular-momentum light and an atomic ensemble. Physical Review A, 2024, 109, .	2.5	0
959	Optical circuit compactification for ultracold atoms. Review of Scientific Instruments, 2024, 95, .	1.3	0
960	Modifying cooperative decay via disorder in atom arrays. Physical Review A, 2024, 109, .	2.5	1
961	Network mechanism for generating genuinely correlative Gaussian states*. Journal of Physics Communications, 2024, 8, 025006.	1.2	0
962	Strongly Nonlinear Interaction between Nonclassical Light and a Blockaded Rydberg Atomic Ensemble. Physical Review Letters, 2024, 132, .	7.8	0
963	Non-Hermitian topological magnonics. Physics Reports, 2024, 1062, 1-86.	25.6	0
964	Wall-collision effect on optically polarized atoms in small and hot vapor cells. Physical Review A, 2024, 109, .	2.5	0
965	Characterization and optimized engineering of bosonic quantum interfaces under single-mode operational constraints. Physical Review Research, 2024, 6, .	3.6	0

CITATION REPORT

#	Article	IF	CITATIONS
966	Multipartite spin coherent states and spinor states. Physical Review A, 2024, 109, .	2.5	0
967	Optimized optical tomography of quantum states of a room-temperature alkali-metal vapor. Physical Review A, 2024, 109, .	2.5	0
968	Error-Disturbance Relations in Spin Measurement Using Faraday Interaction., 2022,,.		0
969	Implementing a cross-Kerr interaction between microwave and optical cavities and its application in generating a hybrid continuous-variable–discrete-variable entangled state. Physical Review A, 2024, 109, .	2.5	0