Light-Controlled Self-Assembly of Semiconductor Nano

Science 327, 1355-1359

DOI: 10.1126/science.1177218

Citation Report

#	Article	IF	CITATIONS
1	Optical systems and sensors for measurement and control. Journal of Physics E: Scientific Instruments, 1983, 16, 978-986.	0.7	45
2	Pseudodifferential operators on ultrametric spaces and ultrametric wavelets. Izvestiya Mathematics, 2005, 69, 989-1003.	0.1	35
3	Low-momentum interactions for nuclei. Journal of Physics G: Nuclear and Particle Physics, 2005, 31, S1273-S1282.	1.4	9
4	Node Weight Distribution and Disparity of Some Collaboration–Competition Networks. Chinese Physics Letters, 2008, 25, 4181-4184.	1.3	10
5	Inorganic Nanoparticles as Protein Mimics. Science, 2010, 330, 188-189.	6.0	316
6	Thiol-capped CdTe nanocrystals: progress and perspectives of the related research fields. Physical Chemistry Chemical Physics, 2010, 12, 8685.	1.3	113
7	Dense Crystalline Dimer Packings of Regular Tetrahedra. Discrete and Computational Geometry, 2010, 44, 253-280.	0.4	87
9	Sideâ€byâ€Side and Endâ€toâ€End Gold Nanorod Assemblies for Environmental Toxin Sensing. Angewandte Chemie - International Edition, 2010, 49, 5472-5475.	7.2	239
10	Progress in the Light Emission of Colloidal Semiconductor Nanocrystals. Small, 2010, 6, 1364-1378.	5.2	159
12	DNA-nanoparticle superlattices formed from anisotropic building blocks. Nature Materials, 2010, 9, 913-917.	13.3	596
13	Focusing of Time Reversal Lamb Waves and Its Applications in Structural Health Monitoring. Chinese Physics Letters, 2010, 27, 104301.	1.3	12
14	Mesoporous silica nanotubes hybrid membranes for functional nanofiltration. Nanotechnology, 2010, 21, 375603.	1.3	36
15	Twisted Metalâ^'Amino Acid Nanobelts: Chirality Transcription from Molecules to Frameworks. Journal of the American Chemical Society, 2010, 132, 8202-8209.	6.6	110
16	Organic–inorganic mesoporous silica nanostrands for ultrafine filtration of spherical nanoparticles. Chemical Communications, 2010, 46, 3917.	2.2	62
17	Predicting the self-assembly of a model colloidal crystal. Soft Matter, 2011, 7, 6294.	1.2	35
18	Non-lithographic formation of three dimensional periodic nanostructures by germanium nanowire etching. Chemical Communications, $2011,47,11665$.	2.2	1
19	Oligomerization of cadmium chalcogenide nanocrystals into CdTe-containing superlattice chains. Chemical Communications, 2011, 47, 11270.	2.2	5
20	Impact of defect creation and motion on the thermodynamics and large-scale reorganization of self-assembled clathrin lattices. Soft Matter, 2011, 7, 8789.	1.2	9

#	Article	IF	CITATIONS
21	Gold nanorod ensembles as artificial molecules for applications in sensors. Journal of Materials Chemistry, 2011, 21, 16759.	6.7	59
22	Hierarchical self-assembly of CdTe quantum dots into hyperbranched nanobundles: Suppression of biexciton Auger recombination. Nanoscale, 2011, 3, 2882.	2.8	19
23	Nanoparticles. Annual Reports on the Progress of Chemistry Section A, 2011, 107, 505.	0.8	2
24	Spontaneous Self-Organization Enables Dielectrophoresis of Small Nanoparticles and Formation of Photoconductive Microbridges. Journal of the American Chemical Society, 2011, 133, 10688-10691.	6.6	18
25	Rapid and scalable route to CuS biosensors: a microwave-assisted Cu-complex transformation into CuS nanotubes for ultrasensitive nonenzymatic glucose sensor. Journal of Materials Chemistry, 2011, 21, 223-228.	6.7	162
26	Practical aspects of self-organization of nanoparticles: experimental guide and future applications. Journal of Materials Chemistry, 2011, 21, 16673.	6.7	26
27	Lamellar Assembly of Cadmium Selenide Nanoclusters into Quantum Belts. Journal of the American Chemical Society, 2011, 133, 17005-17013.	6.6	196
28	Characterizing Structure Through Shape Matching and Applications to Self-Assembly. Annual Review of Condensed Matter Physics, 2011, 2, 263-285.	5.2	59
29	Preparation of metal "nanosalts―and their application in catalysis: heterogeneous and homogeneous pathways. Dalton Transactions, 2011, 40, 4011.	1.6	39
30	Size/Shape-Controlled Synthesis of Colloidal CdSe Quantum Disks: Ligand and Temperature Effects. Journal of the American Chemical Society, 2011, 133, 6578-6586.	6.6	250
31	Large-Scale Synthesis of Ultrathin Manganese Oxide Nanoplates and Their Applications to T1 MRI Contrast Agents. Chemistry of Materials, 2011, 23, 3318-3324.	3.2	92
32	Reversible nanoparticle gels with colour switching. Journal of Materials Chemistry, 2011, 21, 11639.	6.7	23
33	Hierarchical assembly of micro-/nano-building blocks: bio-inspired rigid structural functional materials. Chemical Society Reviews, 2011, 40, 3764.	18.7	341
34	Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters. Chemical Reviews, 2011, 111, 3888-3912.	23.0	1,224
35	Nanoparticle Shape Anisotropy Dictates the Collective Behavior of Surface-Bound Ligands. Journal of the American Chemical Society, 2011, 133, 18865-18869.	6.6	143
36	Nanoscale helices from inorganic materials. Journal of Materials Chemistry, 2011, 21, 6775.	6.7	87
37	Aqueous synthesis of CdTe nanocrystals: progresses and perspectives. Chemical Communications, 2011, 47, 9293.	2.2	99
38	Endothelial Targeting of Antibody-Decorated Polymeric Filomicelles. ACS Nano, 2011, 5, 6991-6999.	7.3	102

3

#	ARTICLE	IF	CITATIONS
39	Synthesis of Silver Nanorods by Low Energy Excitation of Spherical Plasmonic Seeds. Nano Letters, 2011, 11, 2495-2498.	4.5	192
40	Hierarchical Self-Assembly and Optical Disassembly for Controlled Switching of Magnetoferritin Nanoparticle Magnetism. ACS Nano, 2011, 5, 6394-6402.	7.3	75
41	Hyperbranched CdTe nanostructures via a self-assembly route: optical properties. Applied Optics, 2011, 50, G31.	2.1	1
42	Chiral assembly of gold nanorods with collective plasmonic circular dichroism response. Soft Matter, 2011, 7, 8370.	1.2	84
43	Porous CdTe Nanocrystal Assemblies: Ligation Effects on the Gelation Process and the Properties of Resultant Aerogels. Inorganic Chemistry, 2011, 50, 9985-9992.	1.9	40
44	Interface-Directed Assembly of One-Dimensional Ordered Architecture from Quantum Dots Guest and Polymer Host. Journal of the American Chemical Society, 2011, 133, 8412-8415.	6.6	104
45	Nanoporous Anatase TiO ₂ Mesocrystals: Additive-Free Synthesis, Remarkable Crystalline-Phase Stability, and Improved Lithium Insertion Behavior. Journal of the American Chemical Society, 2011, 133, 933-940.	6.6	598
46	Recent progress in the therapeutic applications of nanotechnology. Current Opinion in Pediatrics, 2011, 23, 215-220.	1.0	18
47	Nanoparticle Superlattice Engineering with DNA. Science, 2011, 334, 204-208.	6.0	1,013
48	Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. Nature Nanotechnology, 2011, 6, 580-587.	15.6	488
49	Multicomponent periodic nanoparticle superlattices. Journal of Nanoparticle Research, 2011, 13, 15-32.	0.8	29
50	Characterizing complex particle morphologies through shape matching: Descriptors, applications, and algorithms. Journal of Computational Physics, 2011, 230, 6438-6463.	1.9	62
51	Physical properties of elongated inorganic nanoparticles. Physics Reports, 2011, 501, 75-221.	10.3	138
52	Engineering, Characterization and Directional Selfâ€Assembly of Anisotropically Modified Nanocolloids. Small, 2011, 7, 812-819.	5.2	36
53	Design and Application of Inorganic Nanoparticle Superstructures: Current Status and Future challenges. Small, 2011, 7, 2133-2146.	5.2	191
54	Helical Assemblies of Gold Nanoparticles. Small, 2011, 7, 2004-2009.	5.2	27
55	Using Magnetic Levitation for Three Dimensional Selfâ€Assembly. Advanced Materials, 2011, 23, 4134-4140.	11.1	131
56	Regulation of the Chiral Twist and Supramolecular Chirality in Coâ€Assemblies of Amphiphilic <scp>L</scp> â€Glutamic Acid with Bipyridines. Chemistry - A European Journal, 2011, 17, 3429-3437.	1.7	84

#	ARTICLE	IF	Citations
57	Effect of Ag addition on the thermal characteristics and structural evolution of Ag-Cu-Ni ternary alloy nanoclusters: Atomistic simulation study. Physical Review B, 2011, 84, .	1.1	22
58	Tunable helical ribbons. Applied Physics Letters, 2011, 98, .	1.5	93
59	Screening and designing patchy particles for optimized self-assembly propensity through assembly pathway engineering. Soft Matter, 2012, 8, 2852.	1.2	40
60	Ligand-Controlled Growth of ZnSe Quantum Dots in Water during Ostwald Ripening. Langmuir, 2012, 28, 12931-12940.	1.6	38
61	Implantation of nanomaterials and nanostructures on surface and their applications. Nano Today, 2012, 7, 258-281.	6.2	70
62	Ordering Ag nanowire arrays by a glass capillary: A portable, reusable and durable SERS substrate. Scientific Reports, 2012, 2, 987.	1.6	93
63	Universal chiral twist via metal ion induction in the organogel of terephthalic acid substituted amphiphilic l-glutamide. Chemical Communications, 2012, 48, 7501.	2.2	85
64	Synergism of interparticle electrostatic repulsion modulation and heat-induced fusion: a generalized one-step approach to porous network-like noble metals and their alloy nanostructures. Journal of Materials Chemistry, 2012, 22, 349-354.	6.7	25
65	Inorganic salts direct the assembly of charged nanoparticles into composite nanoscopic spheres, plates, or needles. Faraday Discussions, 2012, 159, 201.	1.6	6
66	Streptavidin Inhibits Self-Assembly of CdTe Nanoparticles. Journal of Physical Chemistry Letters, 2012, 3, 3249-3256.	2.1	7
67	Robust DNA-Functionalized Core/Shell Quantum Dots with Fluorescent Emission Spanning from UV–vis to Near-IR and Compatible with DNA-Directed Self-Assembly. Journal of the American Chemical Society, 2012, 134, 17424-17427.	6.6	108
68	Self-Limiting Assembly of Two-Dimensional Domains from Graphene Oxide at the Air/Water Interface. Journal of Physical Chemistry C, 2012, 116, 19018-19024.	1.5	21
69	Self-Assembly of Chiral Nanoparticle Pyramids with Strong $\langle i \rangle R \langle i \rangle / \langle i \rangle S \langle i \rangle$ Optical Activity. Journal of the American Chemical Society, 2012, 134, 15114-15121.	6.6	366
70	The State of Nanoparticle-Based Nanoscience and Biotechnology: Progress, Promises, and Challenges. ACS Nano, 2012, 6, 8468-8483.	7.3	211
71	Hierarchical Self-Assembly of Achiral Amino Acid Derivatives into Dendritic Chiral Nanotwists. Langmuir, 2012, 28, 15410-15417.	1.6	82
73	PbS–Organic Mesocrystals: The Relationship between Nanocrystal Orientation and Superlattice Array. Angewandte Chemie - International Edition, 2012, 51, 10776-10781.	7.2	67
74	Self-Assembly of Inorganic Nanoparticle Vesicles and Tubules Driven by Tethered Linear Block Copolymers. Journal of the American Chemical Society, 2012, 134, 11342-11345.	6.6	286
75	Simple and accurate scheme to compute electrostatic interaction: Zero-dipole summation technique for molecular system and application to bulk water. Journal of Chemical Physics, 2012, 137, 054314.	1.2	45

#	Article	IF	Citations
76	Regiospecific Plasmonic Assemblies for $\langle i \rangle$ in Situ $\langle i \rangle$ Raman Spectroscopy in Live Cells. Journal of the American Chemical Society, 2012, 134, 1699-1709.	6.6	259
77	Resonant light-controlled self-assembly of ordered nanostructures. Photonics and Nanostructures - Fundamentals and Applications, 2012, 10, 636-643.	1.0	14
78	Asymmetric and symmetric PCR of gold nanoparticles: A pathway to scaled-up self-assembly with tunable chirality. Journal of Materials Chemistry, 2012, 22, 5574.	6.7	35
79	Additive-free synthesis of unique TiO ₂ mesocrystals with enhanced lithium-ion intercalation properties. Energy and Environmental Science, 2012, 5, 5408-5413.	15.6	145
80	Recent progress in the fields of tuning the band gap of quantum dots. Science China Technological Sciences, 2012, 55, 903-912.	2.0	17
81	Non-Ewald methods: theory and applications to molecular systems. Biophysical Reviews, 2012, 4, 161-170.	1.5	53
82	Expanding 3D geometry for enhanced on-chip microbubble production and single step formation of liposome modified microbubbles. Lab on A Chip, 2012, 12, 4544.	3.1	80
83	Tuning Multiphase Amphiphilic Rods to Direct Self-Assembly. Journal of the American Chemical Society, 2012, 134, 5801-5806.	6.6	55
84	Mesostructured Block Copolymer Nanoparticles: Versatile Templates for Hybrid Inorganic/Organic Nanostructures. Chemistry of Materials, 2012, 24, 4036-4042.	3.2	51
85	Semiconductor nanowires self-assembled from colloidal CdTe nanocrystal building blocks: optical properties and application perspectives. Journal of Materials Chemistry, 2012, 22, 20831.	6.7	9
86	Crystalline Assemblies and Densest Packings of a Family of Truncated Tetrahedra and the Role of Directional Entropic Forces. ACS Nano, 2012, 6, 609-614.	7.3	190
87	Reconfigurable self-assembly through chiral control of interfacial tension. Nature, 2012, 481, 348-351.	13.7	206
88	Unknown Aspects of Self-Assembly of PbS Microscale Superstructures. ACS Nano, 2012, 6, 3800-3812.	7.3	92
89	Light-Induced Ostwald Ripening of Organic Nanodots to Rods. Journal of the American Chemical Society, 2012, 134, 7227-7230.	6.6	72
90	Dynamic Nanoparticle Assemblies. Accounts of Chemical Research, 2012, 45, 1916-1926.	7.6	209
91	Light-Induced Cleaning of CdS and ZnS Nanoparticles: Superiority to Annealing as a Postsynthetic Treatment of Functional Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 15427-15431.	1.5	3
93	Unique Ordered TiO ₂ Superstructures with Tunable Morphology and Crystalline Phase for Improved Lithium Storage Properties. Chemistry - A European Journal, 2012, 18, 10753-10760.	1.7	43
94	Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging. Biomaterials, 2012, 33, 1079-1089.	5.7	388

#	Article	IF	Citations
95	Nanoâ€photocatalytic Materials: Possibilities and Challenges. Advanced Materials, 2012, 24, 229-251.	11.1	3,375
96	Engineering of Micro―and Nanostructured Surfaces with Anisotropic Geometries and Properties. Advanced Materials, 2012, 24, 1628-1674.	11.1	203
97	CdSe Magicâ€Sized Nuclei, Magicâ€Sized Nanoclusters and Regular Nanocrystals: Monomer Effects on Nucleation and Growth. Advanced Materials, 2012, 24, 1123-1132.	11.1	95
98	Largeâ€Scale, Lowâ€Cost Fabrication of Janusâ€Type Emulsifiers by Selective Decoration of Natural Kaolinite Platelets. Angewandte Chemie - International Edition, 2012, 51, 1348-1352.	7.2	56
99	Optically Active Charge Traps and Chemical Defects in Semiconducting Nanocrystals Probed by Pulsed Optically Detected Magnetic Resonance. Springer Theses, 2013, , .	0.0	1
100	Quantum Effects in Confined Systems. Nanoscience and Technology, 2013, , 1-6.	1.5	0
101	Physical Properties of Nanorods. Nanoscience and Technology, 2013, , .	1.5	17
102	Versatile Self-Assembly of Water-Soluble Thiol-Capped CdTe Quantum Dots: External Destabilization and Internal Stability of Colloidal QDs. Langmuir, 2013, 29, 10907-10914.	1.6	23
103	Rapid room-temperature synthesis of nanosheet-assembled ZnO mesocrystals with excellent photocatalytic activity. CrystEngComm, 2013, 15, 754-763.	1.3	71
104	Photomediated assembly of single crystalline silver spherical particles with enhanced electrochemical performance. Journal of Materials Chemistry A, 2013, 1, 692-698.	5.2	29
105	Composites of V2O3–ordered mesoporous carbon as anode materials for lithium-ion batteries. Carbon, 2013, 62, 382-388.	5.4	89
106	Solvent-Triggered Self-Assembly of CdTe Quantum Dots into Flat Ribbons. Journal of Physical Chemistry C, 2013, 117, 22069-22078.	1.5	7
107	Controlled cross-linking strategy: from hybrid hydrogels to nanoparticle macroscopic aggregates. Polymer Chemistry, 2013, 4, 4596.	1.9	54
108	Attomolar DNA detection with chiral nanorod assemblies. Nature Communications, 2013, 4, 2689.	5.8	443
109	Architectural transformation of the nanoparticle superstructures induced by ultraviolet light irradiation and their application in photoelectrochemical switch devices. Journal of Materials Chemistry C, 2013, 1, 1926.	2.7	5
110	Nanowires-assembled CuO Interpenetrated-leaf Architecture by () Twinning. Materials Research Letters, 2013, 1, 32-38.	4.1	3
111	Structure-dependent light-responsiveness of chemically linked nanoparticle clusters. RSC Advances, 2013, 3, 1055-1060.	1.7	2
112	Assembling TiO2 nanocrystals into nanotube networks on two dimensional substrates. RSC Advances, 2013, 3, 18894.	1.7	0

#	Article	IF	CITATIONS
113	The investigation of the hydrogen bond saturation effect during the dipole–dipole induced azobenzene supramolecular self-assembly. Physical Chemistry Chemical Physics, 2013, 15, 20753.	1.3	11
114	Colloidal semiconductor nanocrystals: the aqueous approach. Chemical Society Reviews, 2013, 42, 2905-2929.	18.7	247
115	Universal Synthesis of Single-Phase Pyrite FeS ₂ Nanoparticles, Nanowires, and Nanosheets. Journal of Physical Chemistry C, 2013, 117, 2567-2573.	1.5	112
116	Compression stiffness of porous nanostructures from self-assembly of branched nanocrystals. Nanoscale, 2013, 5, 681-686.	2.8	8
117	Nanoparticle assemblies: dimensional transformation of nanomaterials and scalability. Chemical Society Reviews, 2013, 42, 3114.	18.7	216
118	Colloidal ribbons and rings from Janus magnetic rods. Nature Communications, 2013, 4, 1516.	5.8	140
119	Alternating Plasmonic Nanoparticle Heterochains Made by Polymerase Chain Reaction and Their Optical Properties. Journal of Physical Chemistry Letters, 2013, 4, 641-647.	2.1	72
120	Immiscible lipids control the morphology of patchy emulsions. Soft Matter, 2013, 9, 7150.	1.2	31
121	Nanomechanics of Lipid Encapsulated Microbubbles with Functional Coatings. Langmuir, 2013, 29, 4096-4103.	1.6	36
123	Layered titanate nanostructures and their derivatives as negative electrode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 4403.	5.2	84
124	MoO ₂ -Ordered Mesoporous Carbon Nanocomposite as an Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2013, 5, 2182-2187.	4.0	138
125	Wet chemical synthesis, structural and spectroscopic studies of CuSe–Ag hierarchical sphere and drum-like microporous structure. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 110, 67-71.	2.0	4
126	Nanoscale Superstructures Assembled by Polymerase Chain Reaction (PCR): Programmable Construction, Structural Diversity, and Emerging Applications. Accounts of Chemical Research, 2013, 46, 2341-2354.	7.6	38
127	Sensitive Detection of Silver Ions Based on Chiroplasmonic Assemblies of Nanoparticles. Advanced Optical Materials, 2013, 1, 626-630.	3.6	60
128	Controlled self-assembly of CdTe quantum dots into different microscale dendrite structures by using proteins as templates. Journal of Materials Chemistry A, 2013, 1, 15082.	5.2	6
129	Crystal splitting and enhanced photocatalytic behavior of TiO ₂ rutile nano-belts induced by dislocations. Nanoscale, 2013, 5, 753-758.	2.8	51
130	Topological Structural Transformations of Nanoparticle Self-Assemblies Mediated by Phase Transfer and Their Application as Organic–Inorganic Hybrid Photodetectors. ACS Applied Materials & Samp; Interfaces, 2013, 5, 12254-12261.	4.0	3
131	Reversible Photoinduced Formation and Manipulation of a Two-Dimensional Closely Packed Assembly of Polystyrene Nanospheres on a Metallic Nanostructure. Journal of Physical Chemistry C, 2013, 117, 2500-2506.	1.5	71

#	Article	IF	CITATIONS
132	Composition pathway in Fe–Cu–Ni alloy during coarsening. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 075012.	0.8	15
133	Chiral plasmonics of self-assembled nanorod dimers. Scientific Reports, 2013, 3, 1934.	1.6	185
134	Highly Stretchable Nanoparticle Helices Through Geometric Asymmetry and Surface Forces. Advanced Materials, 2013, 25, 6703-6708.	11.1	36
135	Topotactic Interconversion of Nanoparticle Superlattices. Science, 2013, 341, 1222-1225.	6.0	137
136	Aqueous Synthesis of Colloidal CdTe Nanocrystals. , 2013, , 23-59.		0
137	Selfâ€Assembly Mechanism of Spiky Magnetoplasmonic Supraparticles. Advanced Functional Materials, 2014, 24, 1439-1448.	7.8	70
138	The zero-multipole summation method for estimating electrostatic interactions in molecular dynamics: Analysis of the accuracy and application to liquid systems. Journal of Chemical Physics, 2014, 140, 194307.	1.2	17
139	Laser-driven self-assembly of shape-controlled potassium nanoparticles in porous glass. Laser Physics Letters, 2014, 11, 085902.	0.6	5
140	A loop of two rods. Nature Materials, 2014, 13, 228-229.	13.3	7
141	From core–shell and Janus structures to tricompartment submicron particles. Polymer, 2014, 55, 715-720.	1.8	5
142	Spatially and temporally reconfigurable assembly of colloidal crystals. Nature Communications, 2014, 5, 3676.	5.8	58
143	Controlling the crystalline three-dimensional order in bulk materials by single-wall carbon nanotubes. Nature Communications, 2014, 5, 3763.	5.8	28
144	Terminal supraparticle assemblies from similarly charged protein molecules and nanoparticles. Nature Communications, 2014, 5, 3593.	5.8	97
145	Tangled loops and knots. Nature Materials, 2014, 13, 229-231.	13.3	13
146	A maximum in the hardness of nanotwinned cadmium telluride. Scripta Materialia, 2014, 72-73, 39-42.	2.6	10
147	Cyclic arginyl–glycyl–aspartic acid (RGD) peptide-induced synthesis of uniform and stable one-dimensional CdTe nanostructures in aqueous solution. RSC Advances, 2014, 4, 11794.	1.7	2
148	Chirality of self-assembled metal–semiconductor nanostructures. Journal of Materials Chemistry C, 2014, 2, 2702-2706.	2.7	19
149	Self-Organization of Plasmonic and Excitonic Nanoparticles into Resonant Chiral Supraparticle Assemblies. Nano Letters, 2014, 14, 6799-6810.	4.5	61

#	Article	IF	Citations
150	Structure and Ultrasonic Sensitivity of the Superparticles Formed by Self-Assembly of Single Chain Janus Nanoparticles. Macromolecules, 2014, 47, 365-372.	2.2	58
151	Facile synthesis of Li ₂ MnO ₃ nanowires for lithium-ion battery cathodes. New Journal of Chemistry, 2014, 38, 584-587.	1.4	22
152	Quantum-Dot-Induced Self-Assembly of Cricoid Protein for Light Harvesting. ACS Nano, 2014, 8, 3743-3751.	7.3	83
153	Assembly of quantum dots on peptide nanostructures and their spectroscopic properties. Applied Physics A: Materials Science and Processing, 2014, 116, 977-985.	1.1	11
154	Self-assembly of magnetite nanocubes into helical superstructures. Science, 2014, 345, 1149-1153.	6.0	435
155	Linking experiment and theory for three-dimensional networked binary metal nanoparticle–triblock terpolymer superstructures. Nature Communications, 2014, 5, 3247.	5.8	58
156	A General Strategy for Synthesizing Colloidal Semiconductor Zinc Chalcogenide Quantum Rods. Journal of the American Chemical Society, 2014, 136, 11121-11127.	6.6	69
157	Polyrotaxaneâ€Mediated Selfâ€Assembly of Gold Nanospheres into Fully Reversible Supercrystals. Angewandte Chemie - International Edition, 2014, 53, 12751-12755.	7.2	36
158	Dynamics of self-organized aggregation of resonant nanoparticles in a laser field. Applied Physics B: Lasers and Optics, 2014, 117, 271-278.	1.1	8
160	Design principles for Bernal spirals and helices with tunable pitch. Nanoscale, 2014, 6, 9448-9456.	2.8	25
161	Exploring the significance of structural hierarchy in material systemsâ€"A review. Applied Physics Reviews, 2014, 1, 021302.	5.5	29
162	Colloidal Polymers via Dipolar Assembly of Magnetic Nanoparticle Monomers. ACS Applied Materials & Colloidal Polymers, 2014, 6, 6022-6032.	4.0	51
163	Electrochemical modelling of QD-phospholipid interactions. Journal of Colloid and Interface Science, 2014, 420, 9-14.	5.0	3
164	Visible Light Catalysis-Assisted Assembly of Ni _h -QD Hollow Nanospheres in Situ via Hydrogen Bubbles. Journal of the American Chemical Society, 2014, 136, 8261-8268.	6.6	74
165	Polyrotaxaneâ€Mediated Selfâ€Assembly of Gold Nanospheres into Fully Reversible Supercrystals. Angewandte Chemie, 2014, 126, 12965-12969.	1.6	9
166	Controlling Chirality of Entropic Crystals. Physical Review Letters, 2015, 115, 158303.	2.9	15
167	Stepwise Formation of Photoconductive Nanotubes through a New Topâ€Down Method. Advanced Materials, 2015, 27, 7746-7751.	11.1	40
169	Coordination Assembly of Discoid Nanoparticles. Angewandte Chemie - International Edition, 2015, 54, 8966-8970.	7.2	25

#	Article	IF	CITATIONS
170	Multiscale deep drawing analysis of dual-phase steels using grain cluster-based RGC scheme. Modelling and Simulation in Materials Science and Engineering, 2015, 23, 045005.	0.8	22
171	Generic, phenomenological, on-the-fly renormalized repulsion model for self-limited organization of terminal supraparticle assemblies. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3161-8.	3.3	24
172	Control of self-assembly in micro- and nano-scale systems. Journal of Process Control, 2015, 27, 38-49.	1.7	37
173	One-pot preparation of cationic charged Pt nanoparticles by the autocatalytic hydrolysis of acetylthiocholine. New Journal of Chemistry, 2015, 39, 4214-4217.	1.4	6
174	Self-Assembled Chiral Nanofibers from Ultrathin Low-Dimensional Nanomaterials. Journal of the American Chemical Society, 2015, 137, 1565-1571.	6.6	123
175	Spontaneous Transformation of CdSe Nanoparticles into Nonspherical Se Crystals: Role of the Precursor Ligand. Crystal Growth and Design, 2015, 15, 602-609.	1.4	5
176	Light-Controlled Morphologies of Self-Assembled Triarylamine–Fullerene Conjugates. ACS Nano, 2015, 9, 2760-2772.	7.3	39
177	Emerging strategies for the synthesis of monodisperse colloidal semiconductor quantum rods. Journal of Materials Chemistry C, 2015, 3, 8284-8293.	2.7	25
178	Film-Stabilizing Attributes of Polymeric Core–Shell Nanoparticles. ACS Nano, 2015, 9, 7940-7949.	7.3	10
179	Evaluation of silver nanoparticles toxicity of Arachis hypogaea peel extracts and its larvicidal activity against malaria and dengue vectors. Environmental Science and Pollution Research, 2015, 22, 17769-17779.	2.7	36
180	Unusual Li-ion storage through anionic redox processes of bacteria-driven tellurium nanorods. Journal of Materials Chemistry A, 2015, 3, 16978-16987.	5.2	14
181	Photo-induced modifications of the substrate-adsorbate interaction in K-loaded porous glass. Journal Physics D: Applied Physics, 2015, 48, 205301.	1.3	2
182	Tunable synthesis of single-crystalline-like TiO2 mesocrystals and their application as effective scattering layer in dye-sensitized solar cells. Journal of Colloid and Interface Science, 2015, 456, 125-131.	5.0	16
183	Molybdenum oxide-iron oxide/graphene composite as anode materials for lithium ion batteries. Journal of Solid State Electrochemistry, 2015, 19, 1867-1874.	1.2	8
184	Cooperative Self-Assembly Transfer from Hierarchical Supramolecular Polymers to Gold Nanoparticles. ACS Nano, 2015, 9, 11241-11248.	7.3	9
185	Nonadditivity of nanoparticle interactions. Science, 2015, 350, 1242477.	6.0	403
186	Thermodynamic insights into the self-assembly of capped nanoparticles using molecular dynamic simulations. Physical Chemistry Chemical Physics, 2015, 17, 3820-3831.	1.3	13
187	Enantioselective photoactivation. Nature Materials, 2015, 14, 21-22.	13.3	8

#	Article	IF	CITATIONS
188	Assembly engineering: Materials design for the 21st century (2013 P.V. Danckwerts lecture). Chemical Engineering Science, 2015, 121, 3-9.	1.9	23
189	Chiral templating of self-assembling nanostructures by circularly polarized light. Nature Materials, 2015, 14, 66-72.	13.3	330
190	Colloidal polymers from inorganic nanoparticle monomers. Progress in Polymer Science, 2015, 40, 85-120.	11.8	67
191	DNA Directed Selfâ€Assembly of Fluorescent Colloidal Semiconductor Quantum Dots and Plasmonic Metal Nanoparticles Heterogeneous Nanomaterials. Chinese Journal of Chemistry, 2016, 34, 259-264.	2.6	7
192	Tunable Bandgap Energy and Promotion of H ₂ O ₂ Oxidation for Overall Water Splitting from Carbon Nitride Nanowire Bundles. Advanced Energy Materials, 2016, 6, 1502352.	10.2	79
193	Reconfigurable optical assembly of nanostructures. Nature Communications, 2016, 7, 12002.	5.8	51
194	Entropy-driven formation of chiral nematic phases by computer simulations. Nature Communications, 2016, 7, 11175.	5.8	72
195	Oriented-assembly of hollow FePt nanochains with tunable catalytic and magnetic properties. Nanoscale, 2016, 8, 11432-11440.	2.8	45
196	Optical anisotropy and sign reversal in layer-by-layer assembled films from chiral nanoparticles. Faraday Discussions, 2016, 191, 141-157.	1.6	9
197	Nanoparticle Assemblies into Luminescent Dendrites in Shrinking Microdroplets. Langmuir, 2016, 32, 12468-12475.	1.6	3
198	Aqueous Based Semiconductor Nanocrystals. Chemical Reviews, 2016, 116, 10623-10730.	23.0	364
199	Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chemical Reviews, 2016, 116, 11220-11289.	23.0	1,485
200	Substrate induced morphology in a hydrosulfide-molybdenum complex. New Journal of Chemistry, 2016, 40, 8905-8910.	1.4	1
201	Inorganic Double Helices in Semiconducting SnIP. Advanced Materials, 2016, 28, 9783-9791.	11.1	73
202	Laser-induced wavelength-controlled self-assembly of colloidal quasi-resonant quantum dots. Optics Express, 2016, 24, 11145.	1.7	10
203	Ethanol thermal reduction synthesis of hierarchical MoO ₂ –C hollow spheres with high rate performance for lithium ion batteries. RSC Advances, 2016, 6, 105558-105564.	1.7	33
204	Electrostatic Self-Assembly of Dendrimer Macroions and Multivalent Dye Counterions: The Role of Solution Ionic Strength. Macromolecules, 2016, 49, 8661-8671.	2.2	12
205	Optical Properties of Plasmonic Mirror-Image Nanoepsilon. Nanoscale Research Letters, 2016, 11, 327.	3.1	3

#	Article	IF	CITATIONS
206	Wavelength-controlled manipulation of colloidal quasi-resonant quantum dots under pulsed laser irradiation. Proceedings of SPIE, 2016, , .	0.8	0
207	Assembly of an Achiral Chromophore into Lightâ€Responsive Helical Nanostructures in the Absence of Chiral Components. Chemistry - A European Journal, 2016, 22, 3971-3975.	1.7	15
208	Chiral Nanoarchitectonics: Towards the Design, Selfâ€Assembly, and Function of Nanoscale Chiral Twists and Helices. Advanced Materials, 2016, 28, 1044-1059.	11.1	237
209	Influence of heavy nanocrystals on spermatozoa and fertility of mammals. Materials Science and Engineering C, 2016, 69, 52-59.	3.8	57
210	Structure Tuning of Electrostatically Self-Assembled Nanoparticles through pH. Journal of Physical Chemistry B, 2016, 120, 1380-1389.	1.2	7
211	Biomimetic Hierarchical Assembly of Helical Supraparticles from Chiral Nanoparticles. ACS Nano, 2016, 10, 3248-3256.	7.3	104
212	Nanodroplet-Mediated Assembly of Platinum Nanoparticle Rings in Solution. Nano Letters, 2016, 16, 1092-1096.	4.5	38
213	Orientational nanoparticle assemblies and biosensors. Biosensors and Bioelectronics, 2016, 79, 220-236.	5.3	34
214	Self-assembly of like-charged nanoparticles into microscopic crystals. Nanoscale, 2016, 8, 157-161.	2.8	28
215	Sulphur-reduced self-assembly of flower-like vanadium pentoxide as superior cathode material for Liion battery. Journal of Alloys and Compounds, 2016, 655, 79-85.	2.8	12
216	SiO 2 monomer-triggered self-assembly of hybrid CdTe quantum dots. Chemical Engineering and Processing: Process Intensification, 2017, 122, 357-364.	1.8	1
218	Large-scale self-assembly of uniform submicron silver sulfide material driven by precise pressure control. Nanotechnology, 2017, 28, 105606.	1.3	1
219	Chiral Inorganic Nanostructures. Chemical Reviews, 2017, 117, 8041-8093.	23.0	656
220	Assembled Suprastructures of Inorganic Chiral Nanocrystals and Hierarchical Chirality. Journal of the American Chemical Society, 2017, 139, 6070-6073.	6.6	40
221	Facile preparation of a V ₂ O ₃ /carbon fiber composite and its application for long-term performance lithium-ion batteries. New Journal of Chemistry, 2017, 41, 5380-5386.	1.4	29
222	Transmission of chirality through space and across length scales. Nature Nanotechnology, 2017, 12, 410-419.	15.6	189
223	Light-induced self-assembly of bi-color CdTe quantum dots allows the discrimination of multiple proteins. Journal of Materials Chemistry B, 2017, 5, 5745-5752.	2.9	6
224	Geometric effects of cross sections on equilibrium of helical and twisted ribbon. Applied Mathematics and Mechanics (English Edition), 2017, 38, 495-504.	1.9	5

#	Article	IF	CITATIONS
225	Discrete Single Crystalline Titanium Oxide Nanoparticle Formation from a Two-Dimensional Nanowelded Network. Crystal Growth and Design, 2017, 17, 2660-2666.	1.4	16
226	Inducing Heteroâ€aggregation of Different Azo Dyes through Electrostatic Selfâ€Assembly. Chemistry - A European Journal, 2017, 23, 6249-6254.	1.7	9
227	Application of Au based nanomaterials in analytical science. Nano Today, 2017, 12, 64-97.	6.2	68
228	Evaluation of phytosynthesised silver nanoparticles from leaf extracts of Leucas aspera and Hyptis suaveolens and their larvicidal activity against malaria, dengue and filariasis vectors. Parasite Epidemiology and Control, 2017, 2, 15-26.	0.6	73
229	Template-Free Hierarchical Self-Assembly of Iron Diselenide Nanoparticles into Mesoscale Hedgehogs. Journal of the American Chemical Society, 2017, 139, 16630-16639.	6.6	43
230	Green synthesis of a Se/HPCF–rGO composite for Li–Se batteries with excellent long-term cycling performance. Journal of Materials Chemistry A, 2017, 5, 22997-23005.	5.2	61
231	Opto-thermophoretic assembly of colloidal matter. Science Advances, 2017, 3, e1700458.	4.7	115
232	Ligand-induced twisting of nanoplatelets and their self-assembly into chiral ribbons. Science Advances, 2017, 3, e1701483.	4.7	80
233	Ultrathin One- and Two-Dimensional Colloidal Semiconductor Nanocrystals: Pushing Quantum Confinement to the Limit. Journal of Physical Chemistry Letters, 2017, 8, 4077-4090.	2.1	58
234	Formation of Colloidal Copper Indium Sulfide Nanosheets by Two-Dimensional Self-Organization. Chemistry of Materials, 2017, 29, 10551-10560.	3.2	22
235	Chiral Mesoporous Silica Materials., 0,, 121-177.		0
236	Filamentous phages as building blocks for reconfigurable and hierarchical self-assembly. Journal of Physics Condensed Matter, 2017, 29, 493003.	0.7	8
237	Self-Assembly of Nanoparticles. World Scientific Series in Nanoscience and Nanotechnology, 2017, , 1-56.	0.1	1
238	Chiral Arrangements of Au Nanoparticles with Prescribed Handedness Templated by Helical Pores in Block Copolymer Films. Macromolecules, 2017, 50, 5293-5300.	2.2	41
239	Self-assembly of nanoparticles into biomimetic capsid-like nanoshells. Nature Chemistry, 2017, 9, 287-294.	6.6	94
240	Stability and Reactivity: Positive and Negative Aspects for Nanoparticle Processing. Chemical Reviews, 2018, 118, 3209-3250.	23.0	261
241	Elastic moduli of a smectic membrane: a rod-level scaling analysis. Journal of Physics Condensed Matter, 2018, 30, 075101.	0.7	1
242	Spontaneous Folding of CdTe Nanosheets Induced by Ligand Exchange. Chemistry of Materials, 2018, 30, 1710-1717.	3.2	41

#	Article	IF	CITATIONS
243	Lightâ€Responsive Shape: From Micrometerâ€Long Nanocylinders to Compact Particles in Electrostatic Selfâ€Assembly. Macromolecular Rapid Communications, 2018, 39, e1700860.	2.0	14
244	Manipulation of Colloidal Particles in Three Dimensions via Microfluid Engineering. Advanced Materials, 2018, 30, e1707291.	11.1	28
245	Reconfigurable engineered motile semiconductor microparticles. Nature Communications, 2018, 9, 1791.	5.8	18
246	Microanalysis using surface modification and biphasic droplets. Polymer Journal, 2018, 50, 699-709.	1.3	4
247	Nanoparticle Superlattices: The Roles of Soft Ligands. Advanced Science, 2018, 5, 1700179.	5.6	170
248	Controlling polar-toroidal multi-order states in twisted ferroelectric nanowires. Npj Computational Materials, 2018, 4, .	3.5	18
249	Optical Activity of Semiconductor Nanosprings. Optics and Spectroscopy (English Translation of) Tj ETQq0 0 0 rg	BT/Overlo	ock 10 Tf 50 !
250	Patterning well-controlled cross section of ordered 3D architecture via capillary bridge route. AIP Advances, 2018, 8, .	0.6	1
251	Complex assembly from planar and twisted π-conjugated molecules towards alloy helices and core-shell structures. Nature Communications, 2018, 9, 4358.	5.8	40
252	Chirality in bare and ligand-protected metal nanoclusters. Advances in Physics: X, 2018, 3, 1509727.	1.5	21
253	Synthesis of dandelion-like V2O3/C composite with bicontinuous 3D hierarchical structures as an anode for high performance lithium ion batteries. Ceramics International, 2018, 44, 14128-14135.	2.3	29
254	Fabrication of light-responsively controlled-release herbicide using a nanocomposite. Chemical Engineering Journal, 2018, 349, 101-110.	6.6	93
255	Self-assembly of twisted, multi-sheet aggregates. Molecular Physics, 2018, 116, 2823-2835.	0.8	2
256	Density-Gradient Control over Nanoparticle Supercrystal Formation. Nano Letters, 2018, 18, 6022-6029.	4.5	12
257	Incorporation of clusters within inorganic materials through their addition during nucleation steps. Nature Chemistry, 2019, 11, 839-845.	6.6	104
258	A NEW SETUP FOR THE STUDY OF ADSORPTION/DESORPTION PROCESSES AND NANOPARTICLES FORMATION IN POROUS ALUMINA. Journal of the Siena Academy of Sciences, 2019, 10, .	0.0	1
259	Direct solar-to-hydrogen generation by quasi-artificial leaf approach: possibly scalable and economical device. Journal of Materials Chemistry A, 2019, 7, 3179-3189.	5.2	23
260	The Author's Choice of 2016–2017. , 2019, , 3-32.		0

#	Article	IF	CITATIONS
261	Helical van der Waals crystals with discretized Eshelby twist. Nature, 2019, 570, 358-362.	13.7	91
262	The study on size dependent dipole–dipole interaction in the self-assembly of twisting nanoribbons with circular polarization activation. Nanotechnology, 2019, 30, 385602.	1.3	2
263	Self-Assembled Chiral Nanoparticle Superstructures and Identification of Their Collective Optical Activity from Ligand Asymmetry. ACS Nano, 2019, 13, 2879-2887.	7.3	5
264	Light-Induced Self-Assembly of Cubic CsPbBr ₃ Perovskite Nanocrystals into Nanowires. Chemistry of Materials, 2019, 31, 6642-6649.	3.2	119
265	Spontaneous and instant formation of highly stable protein–nanoparticle supraparticle co-assemblies driven by hydrophobic interaction. Nanoscale Advances, 2019, 1, 4137-4147.	2.2	2
266	Strain-controlled shell morphology on quantum rods. Nature Communications, 2019, 10, 2.	5.8	73
267	Flexible Polymer-Assisted Mesoscale Self-Assembly of Colloidal CsPbBr ₃ Perovskite Nanocrystals into Higher Order Superstructures with Strong Inter-Nanocrystal Electronic Coupling. Journal of the American Chemical Society, 2019, 141, 1526-1536.	6.6	54
268	Chiral Surface and Geometry of Metal Nanocrystals. Advanced Materials, 2020, 32, e1905758.	11.1	85
269	Construction of Chiral, Helical Nanoparticle Superstructures: Progress and Prospects. Advanced Materials, 2020, 32, e1905975.	11.1	69
270	Self-Assembly of Chiral Nanoparticles into Semiconductor Helices with Tunable near-Infrared Optical Activity. Chemistry of Materials, 2020, 32, 476-488.	3.2	79
271	Self-assembly of anisotropic nanoparticles into functional superstructures. Chemical Society Reviews, 2020, 49, 6002-6038.	18.7	140
272	Probing Chirality with Inelastic Electron-Light Scattering. Nano Letters, 2020, 20, 4377-4383.	4.5	23
273	Ag/Au alloy entangled in a protein matrix: A plasmonic substrate coupling surface plasmons and molecular chirality. Applied Surface Science, 2020, 526, 146711.	3.1	7
274	Colloidal Synthesis of Nanohelices via Bilayer Lattice Misfit. Journal of the American Chemical Society, 2020, 142, 12777-12783.	6.6	10
275	Axial-Circular Magnetic Levitation: A Three-Dimensional Density Measurement and Manipulation Approach. Analytical Chemistry, 2020, 92, 6925-6931.	3.2	26
276	Force-Induced Formation of Twisted Chiral Ribbons. Physical Review Letters, 2020, 125, 018002.	2.9	5
277	Corrosion of Heritage Objects: Collagenâ€Like Triple Helix Found in the Calcium Acetate Hemihydrate Crystal Structure. Angewandte Chemie - International Edition, 2020, 59, 9438-9442.	7.2	8
278	Korrosion von Kulturgut: Entdeckung einer kollagenartigen Tripelhelix in der Kristallstruktur von Calciumacetatâ€Hemihydrat. Angewandte Chemie, 2020, 132, 9525-9529.	1.6	1

#	Article	IF	CITATIONS
279	Supramolecular materials based on AIE luminogens (AIEgens): construction and applications. Chemical Society Reviews, 2020, 49, 1144-1172.	18.7	498
280	Atomic and electronic structure of solids of Ge ₂ Br ₂ PN, Ge ₂ I ₂ PN, Sn ₂ Cl ₂ PN, Sn ₂ Br ₂ PN and Sn ₂ l ₂ PN inorganic double helices: a first principles study. RSC Advances. 2020. 10. 14714-14719.	1.7	4
281	Superhierarchical Inorganic/Organic Nanocomposites Exhibiting Simultaneous Ultrahigh Dielectric Energy Density and High Efficiency. Advanced Functional Materials, 2021, 31, 2007994.	7.8	46
282	Self-assembly of colloidal inorganic nanocrystals: nanoscale forces, emergent properties and applications. Chemical Society Reviews, 2021, 50, 2074-2101.	18.7	54
283	Recent Advances in Inorganic Chiral Nanomaterials. Advanced Materials, 2021, 33, e2005506.	11.1	47
284	Recent Advances on Alloyed Quantum Dots for Photocatalytic Hydrogen Evolution: A Mini-Review. Energy & Samp; Fuels, 2021, 35, 4670-4686.	2.5	34
285	Enhancement of X-ray-Excited Red Luminescence of Chromium-Doped Zinc Gallate via Ultrasmall Silicon Carbide Nanocrystals. Chemistry of Materials, 2021, 33, 2457-2465.	3.2	9
286	Unconventional-Phase Crystalline Materials Constructed from Multiscale Building Blocks. Chemical Reviews, 2021, 121, 5830-5888.	23.0	57
287	Semiconductor Bowâ€Tie Nanoantenna from Coupled Colloidal Quantum Dot Molecules. Angewandte Chemie, 2021, 133, 14588-14593.	1.6	1
288	Semiconductor Bowâ€Tie Nanoantenna from Coupled Colloidal Quantum Dot Molecules. Angewandte Chemie - International Edition, 2021, 60, 14467-14472.	7.2	11
289	Double-helical assembly of heterodimeric nanoclusters into supercrystals. Nature, 2021, 594, 380-384.	13.7	138
290	Quantum Dot Assembly Driven by Electrochemically Generated Metal-Ion Crosslinkers. Chemistry of Materials, 2021, 33, 4522-4528.	3.2	11
291	Spontaneous chiral self-assembly of CdSe@CdS nanorods. CheM, 2021, 7, 2695-2707.	5.8	16
292	Photo-induced structured waves by nanostructured topological insulator Bi2Te3. Optics and Laser Technology, 2021, 140, 107015.	2.2	8
293	Supramolecular Chirality from Hierarchical Self-Assembly of Atomically Precise Silver Nanoclusters Induced by Secondary Metal Coordination. ACS Nano, 2021, 15, 15910-15919.	7. 3	42
294	Engineering of inorganic nanostructures with hierarchy of chiral geometries at multiple scales. AICHE Journal, 2022, 68, e17438.	1.8	9
296	Applications of gold nanoparticles in medicine and therapy. Pharmacy & Pharmacology International Journal, 2018, 6, .	0.1	8
297	Inorganic Nanostructures with Strong Chiroptical Activity. CCS Chemistry, 2020, 2, 583-604.	4.6	38

#	Article	IF	CITATIONS
298	Shining light on chiral inorganic nanomaterials for biological issues. Theranostics, 2021, 11, 9262-9295.	4.6	27
301	Self-Assembly of Nanoparticles Controlled by Resonant Laser Light. Journal of Siberian Federal University - Mathematics and Physics, 2015, 8, 109-122.	0.2	2
302	Interface-Induced Macroscopic Nanowire Assemblies. Springer Theses, 2017, , 39-55.	0.0	0
303	Influence of Photon and Electrical Energy in the Nucleation of Silver Nanoparticles Synthesis. Journal of Cluster Science, 0, , 1.	1.7	O
304	Third-harmonic Mie scattering from semiconductor nanohelices. Nature Photonics, 2022, 16, 126-133.	15.6	31
305	Chiral Helices Formation by Self-Assembled Molecules on Semiconductor Flexible Substrates. ACS Nano, 2022, 16, 2901-2909.	7.3	12
306	Lightâ€Directed Assembly of Colloidal Matter. Advanced Functional Materials, 2022, 32, .	7.8	10
307	Nanostructured materials for circular dichroism and chirality at the nanoscale: towards unconventional characterization. Optical Materials Express, 0, , .	1.6	6
308	Rigidity Dictates Spontaneous Helix Formation of Thermoresponsive Colloidal Chains in Poor Solvent. ACS Nano, 2021, 15, 19702-19711.	7.3	5
309	Chirality of Fingerprints: Pattern- and Curvature-Induced Emerging Chiroptical Properties of Elastomeric Grating Meta-Skin. ACS Nano, 2022, 16, 6103-6110.	7.3	3
312	Chiral plasmonic nanomaterials for assembly., 2022,,.		0
313	Recent advances in chiral nanomaterials with unique electric and magnetic properties. Nano Convergence, 2022, 9, .	6.3	14
314	Assembly of planar chiral superlattices from achiral building blocks. Nature Communications, 2022, 13, .	5.8	16
315	Low energy ion beam-induced joining of TiO2 nanoparticles. Journal of Alloys and Compounds, 2022, 924, 166440.	2.8	10
316	Modulation of Nano-superstructures and Their Optical Properties. Accounts of Chemical Research, 2022, 55, 2425-2438.	7.6	10
317	Ligand-Free Direct Optical Lithography of Bare Colloidal Nanocrystals via Photo-Oxidation of Surface lons with Porosity Control. ACS Nano, 2022, 16, 16067-16076.	7.3	7
318	Chiral Mesostructured Inorganic Materials with Optical Chiral Response. Advanced Materials, 2023, 35, .	11.1	12
319	Biomimetic Self-Assembled Chiral Inorganic Nanomaterials: A New Strategy for Solving Medical Problems. Biomimetics, 2022, 7, 165.	1.5	0

#	Article	IF	Citations
320	Photo-processing of perovskites: current research status and challenges., 2022, 1, 220014-220014.		8
321	Construction and Catalysis Advances of Inorganic Chiral Nanostructures. Acta Chimica Sinica, 2022, 80, 1507.	0.5	0
322	Synthesis of Ligand-Induced Chiral Tellurium Nanocrystals. Journal of Physical Chemistry Letters, 2022, 13, 11669-11677.	2.1	1
323	Chiral Au Nanorods: Synthesis, Chirality Origin, and Applications. ACS Nano, 2022, 16, 19789-19809.	7.3	26
324	Morphology transitions of twisted ribbons: Dependence on tension and geometry. Applied Physics Letters, 2022, 121, .	1.5	3
325	Multicomponent nanoparticle superlattices. , 2023, , 298-323.		1
326	Electric, magnetic, and shear field-directed assembly of inorganic nanoparticles. Nanoscale, 2023, 15, 2018-2035.	2.8	5
327	Reproduction of super-multicomponent self-assembled structures and their functionality using coarse-grained molecular simulation – the example of cleansing agents. Molecular Systems Design and Engineering, 2023, 8, 538-550.	1.7	2
328	Fundamentals and Advances in Laser-Induced Transfer. Optics and Laser Technology, 2023, 160, 109065.	2.2	8
329	Bioinspired chiral inorganic nanomaterials. , 2023, 1, 88-106.		41
330	Breaking the symmetry of colloidal 2D nanoplatelets: Twist induced quantum coupling. Nano Research, 2023, 16, 10522-10529.	5.8	1
331	Ligandâ€Triggered Selfâ€Assembly of Flexible Carbon Dot Nanoribbons for Optoelectronic Memristor Devices and Neuromorphic Computing. Advanced Science, 2023, 10, .	5 . 6	18
332	Selfâ€Organization of Iron Sulfide Nanoparticles into Complex Multiâ€Compartment Supraparticles. Advanced Materials, 0, , .	11.1	1
333	Chirality Analysis of Complex Microparticles using Deep Learning on Realistic Sets of Microscopy Images. ACS Nano, 2023, 17, 7431-7442.	7.3	3