Expansion and maintenance of human embryonic stem inhibition is Id1 dependent

Nature Biotechnology 28, 161-166

DOI: 10.1038/nbt.1605

Citation Report

#	Article	IF	CITATIONS
1	Human Vascular Progenitor Cells. , 2009, , 227-232.		0
2	Smooth-Muscle-Like Cells Derived from Human Embryonic Stem Cells Support and Augment Cord-Like Structures In Vitro. Stem Cell Reviews and Reports, 2010, 6, 237-247.	5.6	64
3	Signaling by members of the TGF-β family in vascular morphogenesis and disease. Trends in Cell Biology, 2010, 20, 556-567.	7.9	348
4	A role for Egfl7 during endothelial organization in the embryoid body model system. Journal of Angiogenesis Research, 2010, 2, 4.	2.9	26
5	Deconvolution of complex G protein–coupled receptor signaling in live cells using dynamic mass redistribution measurements. Nature Biotechnology, 2010, 28, 943-949.	17.5	246
6	Mapping the first stages of mesoderm commitment during differentiation of human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13742-13747.	7.1	232
7	New Dimensions in Vascular Engineering: Opportunities for Cancer Biology. Tissue Engineering - Part A, 2010, 16, 2157-2159.	3.1	3
8	Derivation of Endothelial Cells From Human Embryonic Stem Cells by Directed Differentiation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1389-1397.	2.4	147
9	Engineering blood vessels using stem cells: innovative approaches to treat vascular disorders. Expert Review of Cardiovascular Therapy, 2010, 8, 1433-1445.	1.5	29
10	Induced pluripotent stem (iPS) cells and endothelial cell generation: SIRT-ainly a good idea!. Atherosclerosis, 2010, 212, 36-39.	0.8	3
11	Chemical Strategies for Stem Cell Biology and Regenerative Medicine. Annual Review of Biomedical Engineering, 2011, 13, 73-90.	12.3	61
12	Bioengineering Heart Muscle: A Paradigm for Regenerative Medicine. Annual Review of Biomedical Engineering, 2011, 13, 245-267.	12.3	172
13	VEGFR-1 Mediates Endothelial Differentiation and Formation of Blood Vessels in a Murine Model of Infantile Hemangioma. American Journal of Pathology, 2011, 179, 2266-2277.	3.8	72
14	Three-dimensional biomaterials for the study of human pluripotent stem cells. Nature Methods, 2011, 8, 731-736.	19.0	205
15	Human embryonic stem cell-derived vascular smooth muscle cells in therapeutic neovascularisation. Journal of Molecular and Cellular Cardiology, 2011, 51, 651-664.	1.9	46
16	Induced Pluripotent Stem Cells as Human Disease Models. Annual Reports in Medicinal Chemistry, 2011, 46, 369-383.	0.9	4
17	Thrombospondin-1 Modulates the Angiogenic Phenotype of Human Cerebral Arteriovenous Malformation Endothelial Cells. Neurosurgery, 2011, 68, 1342-1353.	1.1	23
18	Enhancement of differentiation efficiency of hESCs into vascular lineage cells in hypoxia via a paracrine mechanism. Stem Cell Research, 2011, 7, 173-185.	0.7	19

#	Article	IF	CITATIONS
19	Pluripotent stem cell differentiation into vascular cells: A novel technology with promises for vascular re(generation). , 2011, 129, 29-49.		95
20	Endothelial Cells Derived From Human iPSCS Increase Capillary Density and Improve Perfusion in a Mouse Model of Peripheral Arterial Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, e72-9.	2.4	230
21	Differentiation of an embryonic stem cell to hemogenic endothelium by defined factors: essential role of bone morphogenetic protein 4. Development (Cambridge), 2011, 138, 2833-2843.	2.5	35
22	ID1 and ID3 represent conserved negative regulators of human embryonic and induced pluripotent stem cell hematopoiesis. Journal of Cell Science, 2011, 124, 1445-1452.	2.0	50
23	Adaptive response of vascular endothelial cells to an acute increase in shear stress magnitude. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H983-H991.	3.2	51
24	TGFβ inhibition enhances the generation of hematopoietic progenitors from human ES cell-derived hemogenic endothelial cells using a stepwise strategy. Cell Research, 2012, 22, 194-207.	12.0	72
25	Role of E-cadherin and other cell adhesion molecules in survival and differentiation of human pluripotent stem cells. Cell Adhesion and Migration, 2012, 6, 59-73.	2.7	169
26	Engineering bone tissue from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8705-8709.	7.1	153
27	Endothelial Cells Derived From Nuclear Reprogramming. Circulation Research, 2012, 111, 1363-1375.	4.5	46
28	Small Molecule Mesengenic Induction of Human Induced Pluripotent Stem Cells to Generate Mesenchymal Stem/Stromal Cells. Stem Cells Translational Medicine, 2012, 1, 83-95.	3.3	172
29	Multipotent Vasculogenic Pericytes From Human Pluripotent Stem Cells Promote Recovery of Murine Ischemic Limb. Circulation, 2012, 125, 87-99.	1.6	204
30	Industry Update: Latest developments in stem cell research and regenerative medicine. Regenerative Medicine, 2012, 7, 19-24.	1.7	1
31	ROCK suppression promotes differentiation and expansion of endothelial cells from embryonic stem cell–derived Flk1+ mesodermal precursor cells. Blood, 2012, 120, 2733-2744.	1.4	49
32	Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nature Biotechnology, 2012, 30, 783-791.	17.5	623
33	Efficient Direct Reprogramming of Mature Amniotic Cells into Endothelial Cells by ETS Factors and TGFÎ ² Suppression. Cell, 2012, 151, 559-575.	28.9	212
34	Bone scaffold architecture modulates the development of mineralized bone matrix by human embryonic stem cells. Biomaterials, 2012, 33, 8329-8342.	11.4	88
35	LIF maintains progenitor phenotype of endothelial progenitor cells via Krüppel-like factor 4. Microvascular Research, 2012, 84, 270-277.	2.5	8
36	Strategies of Regenerative Medicine. , 2012, , 229-260.		Ο

#	Article	IF	CITATIONS
37	Derivation of Vascular Endothelial Cells from Human Embryonic Stem Cells Under GMP-Compliant Conditions: Towards Clinical Studies in Ischaemic Disease. Journal of Cardiovascular Translational Research, 2012, 5, 605-617.	2.4	21
38	State of the Art in Stem Cell Research: Human Embryonic Stem Cells, Induced Pluripotent Stem Cells, and Transdifferentiation. Journal of Blood Transfusion, 2012, 2012, 1-10.	3.3	14
39	Stem Cell Sources for Vascular Tissue Engineering and Regeneration. Tissue Engineering - Part B: Reviews, 2012, 18, 405-425.	4.8	81
40	Microfluidic Single-Cell Analysis Shows That Porcine Induced Pluripotent Stem Cell–Derived Endothelial Cells Improve Myocardial Function by Paracrine Activation. Circulation Research, 2012, 111, 882-893.	4.5	106
41	Pluripotent stem cellâ€based heart regeneration: From the developmental and immunological perspectives. Birth Defects Research Part C: Embryo Today Reviews, 2012, 96, 98-108.	3.6	9
42	Case study: adapting in vitro blood–brain barrier models for use in early-stage drug discovery. Drug Discovery Today, 2012, 17, 285-290.	6.4	25
43	The Role of miRNA in Stem Cell Pluripotency and Commitment to the Vascular Endothelial Lineage. Microcirculation, 2012, 19, 196-207.	1.8	7
44	Vascular differentiation from embryonic stem cells: Novel technologies and therapeutic promises. Vascular Pharmacology, 2012, 56, 267-279.	2.1	45
45	Heparan sulfate proteoglycan mediates shear stressâ€induced endothelial gene expression in mouse embryonic stem cellâ€derived endothelial cells. Biotechnology and Bioengineering, 2012, 109, 583-594.	3.3	60
46	Modeling the blood–brain barrier using stem cell sources. Fluids and Barriers of the CNS, 2013, 10, 2.	5.0	105
47	Molecular Signatures of Tissue-Specific Microvascular Endothelial Cell Heterogeneity in Organ Maintenance and Regeneration. Developmental Cell, 2013, 26, 204-219.	7.0	548
48	Molecular Pathways Governing Development of Vascular Endothelial Cells from ES/iPS Cells. Stem Cell Reviews and Reports, 2013, 9, 586-598.	5.6	25
49	Potential for pharmacological manipulation of human embryonic stem cells. British Journal of Pharmacology, 2013, 169, 269-289.	5.4	11
50	Vascular tissue engineering: biodegradable scaffold platforms to promote angiogenesis. Stem Cell Research and Therapy, 2013, 4, 8.	5.5	73
51	Conversion of human fibroblasts to angioblast-like progenitor cells. Nature Methods, 2013, 10, 77-83.	19.0	140
52	Therapeutic potential of human-induced pluripotent stem cell-derived endothelial cells in a bleomycin-induced scleroderma mouse model. Stem Cell Research, 2013, 10, 288-300.	0.7	23
53	Endothelial progenitor cells from human dental pulp-derived iPS cells as a therapeutic target for ischemic vascular diseases. Biomaterials, 2013, 34, 8149-8160.	11.4	52
54	Bone morphogenetic protein 4, inhibitor of differentiation 1, and epidermal growth factor receptor regulate the survival of cochlear sensory epithelial cells. Journal of Neuroscience Research, 2013, 91, 515-526.	2.9	5

#	Article	IF	CITATIONS
55	Limited Gene Expression Variation in Human Embryonic Stem Cell and Induced Pluripotent Stem Cell-Derived Endothelial Cells. Stem Cells, 2013, 31, 92-103.	3.2	99
56	Human Vascular Progenitor Cells. , 2013, , 587-594.		1
57	Stem cellâ€derived endothelial cells for cardiovascular disease: a therapeutic perspective. British Journal of Clinical Pharmacology, 2013, 75, 897-906.	2.4	33
58	Insulin Inhibits Cardiac Mesoderm, Not Mesendoderm, Formation During Cardiac Differentiation of Human Pluripotent Stem Cells and Modulation of Canonical Wnt Signaling Can Rescue This Inhibition. Stem Cells, 2013, 31, 447-457.	3.2	57
59	Growth, metabolic activity, and productivity of immobilized and freely suspended <scp>CHO</scp> cells in perfusion culture. Biotechnology and Applied Biochemistry, 2013, 60, 436-445.	3.1	6
60	Derivation of endothelial cells from human embryonic stem cells in fully defined medium enables identification of lysophosphatidic acid and platelet activating factor as regulators of eNOS localization. Stem Cell Research, 2013, 10, 103-117.	0.7	23
61	NYSTEM: Igniting a Thriving Stem Cell Research Community. Stem Cells Translational Medicine, 2013, 2, 325-327.	3.3	0
62	Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12774-12779.	7.1	137
63	Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12601-12606.	7.1	199
64	Engineering bone tissue substitutes from human induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8680-8685.	7.1	196
65	FGF2-induced Ras/Erk MAPK signalling maintains lymphatic endothelial cell identity by up-regulating endothelial cell-specific gene expression and suppressing TGFβ signalling via Smad2. Journal of Cell Science, 2014, 127, 845-57.	2.0	46
66	Human ESC-derived hemogenic endothelial cells undergo distinct waves of endothelial to hematopoietic transition. Blood, 2013, 121, 770-780.	1.4	78
67	Modulating the biochemical and biophysical culture environment to enhance osteogenic differentiation and maturation of human pluripotent stem cell-derived mesenchymal progenitors. Stem Cell Research and Therapy, 2013, 4, 106.	5.5	24
68	Therapeutic Transdifferentiation: Can we Generate Cardiac Tissue Rather Than Scar after Myocardial Injury?. Methodist DeBakey Cardiovascular Journal, 2013, 9, 210-212.	1.0	5
69	Human Embryonic Stem Cell Derived Mesenchymal Progenitors Express Cardiac Markers but Do Not Form Contractile Cardiomyocytes. PLoS ONE, 2013, 8, e54524.	2.5	26
70	Stem cells for vascular engineering. , 0, , 621-639.		0
72	Building blood vessels. Science-Business EXchange, 2014, 7, 1283-1283.	0.0	0
73	Enhanced Differentiation of Human Embryonic Stem Cells on Extracellular Matrix-Containing Osteomimetic Scaffolds for Bone Tissue Engineering. Tissue Engineering - Part C: Methods, 2014, 20, 865-874.	2.1	33

#	Article	IF	CITATIONS
74	Manipulation of a VEGF-Notch signaling circuit drives formation of functional vascular endothelial progenitors from human pluripotent stem cells. Cell Research, 2014, 24, 820-841.	12.0	81
75	Derivation of Endothelial Cells and Pericytes from Human Pluripotent Stem Cells. Methods in Molecular Biology, 2014, 1307, 213-222.	0.9	9
76	Efficient Differentiation of Human Pluripotent Stem Cells to Endothelial Progenitors via Small-Molecule Activation of WNT Signaling. Stem Cell Reports, 2014, 3, 804-816.	4.8	271
77	Next-Generation Models of Human Cardiogenesis via Genome Editing. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a013920-a013920.	6.2	4
78	Concise Review: Tissue-Specific Microvascular Endothelial Cells Derived From Human Pluripotent Stem Cells. Stem Cells, 2014, 32, 3037-3045.	3.2	60
79	Tolerance induction to human stem cell transplants with extension to their differentiated progeny. Nature Communications, 2014, 5, 5629.	12.8	26
80	Quantitative, Label-Free Characterization of Stem Cell Differentiation at the Single-Cell Level by Broadband Coherent Anti-Stokes Raman Scattering Microscopy. Tissue Engineering - Part C: Methods, 2014, 20, 562-569.	2.1	31
81	Scaffold biomaterials for nano-pathophysiology. Advanced Drug Delivery Reviews, 2014, 74, 104-114.	13.7	12
82	Make no bones about it: cells could soon be reprogrammed to grow replacement bones?. Expert Opinion on Biological Therapy, 2014, 14, 1-5.	3.1	17
83	On the road to bioartificial organs. Pflugers Archiv European Journal of Physiology, 2014, 466, 1847-1857.	2.8	20
84	Stem Cells and Cell Therapy. Cell Engineering, 2014, , .	0.4	4
85	The ID proteins: master regulators of cancer stem cells and tumour aggressiveness. Nature Reviews Cancer, 2014, 14, 77-91.	28.4	304
86	Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nature Reviews Genetics, 2014, 15, 82-92.	16.3	403
87	Functionality of Endothelial Cells and Pericytes From Human Pluripotent Stem Cells Demonstrated in Cultured Vascular Plexus and Zebrafish Xenografts. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 177-186.	2.4	172
88	Akt Suppression of TGFÎ ² Signaling Contributes to the Maintenance of Vascular Identity in Embryonic Stem Cell-Derived Endothelial Cells. Stem Cells, 2014, 32, 177-190.	3.2	20
89	Antitumor Effects of CD40 Ligand-Expressing Endothelial Progenitor Cells Derived From Human Induced Pluripotent Stem Cells in a Metastatic Breast Cancer Model. Stem Cells Translational Medicine, 2014, 3, 923-935.	3.3	20
91	Cell-Culture Models of the Blood–Brain Barrier. Stroke, 2014, 45, 2514-2526.	2.0	129
92	Effect of Human Donor Cell Source on Differentiation and Function of Cardiac Induced Pluripotent Stem Cells. Journal of the American College of Cardiology, 2014, 64, 436-448.	2.8	119

#	Article	IF	CITATIONS
94	BMP4 Promotes EMT and Mesodermal Commitment in Human Embryonic Stem Cells via SLUG and MSX2. Stem Cells, 2014, 32, 636-648.	3.2	74
95	Differentiation of human pluripotent stem cells to cells similar to cord-blood endothelial colony–forming cells. Nature Biotechnology, 2014, 32, 1151-1157.	17.5	203
96	Inhibitory role of Id1 on TGF-Î ² -induced collagen expression in human dermal fibroblasts. Biochemical and Biophysical Research Communications, 2014, 444, 81-85.	2.1	15
97	Reprogramming human endothelial cells to haematopoietic cells requires vascular induction. Nature, 2014, 511, 312-318.	27.8	211
98	Stem Cells: A Promising Source for Vascular Regenerative Medicine. Stem Cells and Development, 2014, 23, 2931-2949.	2.1	24
99	Strategies for Whole Lung Tissue Engineering. IEEE Transactions on Biomedical Engineering, 2014, 61, 1482-1496.	4.2	49
100	Human embryonic stem cells and macroporous calcium phosphate construct for bone regeneration in cranial defects in rats. Acta Biomaterialia, 2014, 10, 4484-4493.	8.3	51
101	Generation, expansion and functional analysis of endothelial cells and pericytes derived from human pluripotent stem cells. Nature Protocols, 2014, 9, 1514-1531.	12.0	281
103	Defining Minimum Essential Factors to Derive Highly Pure Human Endothelial Cells from iPS/ES Cells in an Animal Substance-Free System. Scientific Reports, 2015, 5, 9718.	3.3	17
104	Endothelial properties of third-trimester amniotic fluid stem cells cultured in hypoxia. Stem Cell Research and Therapy, 2015, 6, 209.	5.5	31
105	G-protein Coupled Receptor Signaling in Pluripotent Stem Cell-derived Cardiovascular Cells: Implications for Disease Modeling. Frontiers in Cell and Developmental Biology, 2015, 3, 76.	3.7	11
107	Direct conversion of human amniotic cells into endothelial cells without transitioning through a pluripotent state. Nature Protocols, 2015, 10, 1975-1985.	12.0	27
108	Efficient differentiation of human embryonic stem cells to arterial and venous endothelial cells under feeder- and serum-free conditions. Stem Cell Research and Therapy, 2015, 6, 261.	5.5	85
109	Long-Term Expandable SOX9+ Chondrogenic Ectomesenchymal Cells from Human Pluripotent Stem Cells. Stem Cell Reports, 2015, 4, 712-726.	4.8	44
110	R-Smad Signaling-Mediated VEGF Expression Coordinately Regulates Endothelial Cell Differentiation of Rat Mesenchymal Stem Cells. Stem Cells and Development, 2015, 24, 1320-1331.	2.1	18
111	Patterning Vascular Networks <i>In Vivo</i> for Tissue Engineering Applications. Tissue Engineering - Part C: Methods, 2015, 21, 509-517.	2.1	47
112	Signaling Via PI3K/FOXO1A Pathway Modulates Formation and Survival of Human Embryonic Stem Cell-Derived Endothelial Cells. Stem Cells and Development, 2015, 24, 869-878.	2.1	18
113	Integrin α6β1 Expressed in ESCs Instructs the Differentiation to Endothelial Cells. Stem Cells, 2015, 33, 1719-1729.	3.2	27

#	Article	IF	CITATIONS
114	ETV2 expression increases the efficiency of primitive endothelial cell derivation from human embryonic stem cells. Cell Regeneration, 2015, 4, 4:1.	2.6	26
115	Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nature Cell Biology, 2015, 17, 994-1003.	10.3	463
116	Generating induced pluripotent stem cell derived endothelial cells and induced endothelial cells for cardiovascular disease modelling and therapeutic angiogenesis. International Journal of Cardiology, 2015, 197, 116-122.	1.7	37
117	Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells. Nature Biotechnology, 2015, 33, 970-979.	17.5	165
118	Enhanced therapeutic neovascularization by CD31-expressing cells and embryonic stem cell-derived endothelial cells engineered with chitosan hydrogel containing VEGF-releasing microtubes. Biomaterials, 2015, 63, 158-167.	11.4	64
119	Inhibition of β-catenin signaling respecifies anterior-like endothelium into beating human cardiomyocytes. Development (Cambridge), 2015, 142, 3198-209.	2.5	64
120	Engineering pulmonary vasculature in decellularized rat and human lungs. Nature Biotechnology, 2015, 33, 1097-1102.	17.5	199
121	Review: in vitro microvessel models. Lab on A Chip, 2015, 15, 4242-4255.	6.0	121
122	Chemically-defined albumin-free differentiation of human pluripotent stem cells to endothelial progenitor cells. Stem Cell Research, 2015, 15, 122-129.	0.7	71
123	Characterizing Human Pluripotent-Stem-Cell-Derived Vascular Cells for Tissue Engineering Applications. Stem Cells and Development, 2015, 24, 451-458.	2.1	21
124	Embryonic Stem Cells: Keeping Track of the Pluripotent Status. , 0, , .		1
126	<i>In Vitro</i> Osteogenic Potential of Green Fluorescent Protein Labelled Human Embryonic Stem Cell-Derived Osteoprogenitors. Stem Cells International, 2016, 2016, 1-9.	2.5	10
127	Multifactorial Optimizations for Directing Endothelial Fate from Stem Cells. PLoS ONE, 2016, 11, e0166663.	2.5	13
128	Cartilage Regeneration Using Pluripotent Stem Cellâ€Derived Chondroprogenitors: Promise and Challenges. , 2016, , .		0
129	Efficient generation of endothelial cells from human pluripotent stem cells and characterization of their functional properties. Journal of Biomedical Materials Research - Part A, 2016, 104, 678-687.	4.0	5
130	PAR1 Scaffolds TGFβRII to Downregulate TGF-β Signaling and Activate ESC Differentiation to Endothelial Cells. Stem Cell Reports, 2016, 7, 1050-1058.	4.8	14
131	<scp>KLF</scp> 4 is a key determinant in the development and progression of cerebral cavernous malformations. EMBO Molecular Medicine, 2016, 8, 6-24.	6.9	141
132	Minireview: Genome Editing of Human Pluripotent Stem Cells for Modeling Metabolic Disease. Molecular Endocrinology, 2016, 30, 575-586.	3.7	5

#	Article	IF	CITATIONS
133	Cell Programming for Future Regenerative Medicine. , 2016, , 389-424.		0
134	Regenerative Medicine - from Protocol to Patient. , 2016, , .		2
135	Directed Endothelial Progenitor Differentiation from Human Pluripotent Stem Cells Via Wnt Activation Under Defined Conditions. Methods in Molecular Biology, 2016, 1481, 183-196.	0.9	21
136	Transplantation of Endothelial Cells to Mitigate Acute and Chronic Radiation Injury to Vital Organs. Radiation Research, 2016, 186, 196-202.	1.5	21
137	Differentiation of Human Embryonic Stem Cells to Endothelial Progenitor Cells on Laminins in Defined and Xeno-free Systems. Stem Cell Reports, 2016, 7, 802-816.	4.8	47
138	Wnt Signaling. Methods in Molecular Biology, 2016, , .	0.9	0
139	Stress-Induced Premature Senescence of Endothelial and Endothelial Progenitor Cells. Advances in Pharmacology, 2016, 77, 281-306.	2.0	14
140	Notch hyper-activation drives trans-differentiation of hESC-derived endothelium. Stem Cell Research, 2016, 17, 391-400.	0.7	11
141	A novel lineage restricted, pericyte-like cell line isolated from human embryonic stem cells. Scientific Reports, 2016, 6, 24403.	3.3	22
142	Nox2 contributes to the arterial endothelial specification of mouse induced pluripotent stem cells by upregulating Notch signaling. Scientific Reports, 2016, 6, 33737.	3.3	16
143	InÂvitro screening of nanomedicines through the blood brain barrier: A critical review. Biomaterials, 2016, 103, 229-255.	11.4	48
144	Angiocrine functions of organ-specific endothelial cells. Nature, 2016, 529, 316-325.	27.8	717
145	The TGF-β pathway mediates doxorubicin effects on cardiac endothelial cells. Journal of Molecular and Cellular Cardiology, 2016, 90, 129-138.	1.9	27
146	Human Embryonic Stem Cell Protocols. Methods in Molecular Biology, 2016, 1307, v.	0.9	3
147	Vascular disease modeling using induced pluripotent stem cells: Focus in Hutchinson-Gilford Progeria Syndrome. Biochemical and Biophysical Research Communications, 2016, 473, 710-718.	2.1	6
148	Bridging the gap: induced pluripotent stem cell derived endothelial cells for 3D vascular assembly. Current Opinion in Chemical Engineering, 2017, 15, 102-109.	7.8	5
149	Targeting TGF-β Signaling for Therapeutic Gain. Cold Spring Harbor Perspectives in Biology, 2017, 9, a022301.	5.5	153
150	Thrombospondin-4 mediates TGF-β-induced angiogenesis. Oncogene, 2017, 36, 5189-5198.	5.9	102

#	Article	IF	CITATIONS
151	Human Induced Pluripotent Stem Cell-Derived Endothelial Cells for Three-Dimensional Microphysiological Systems. Tissue Engineering - Part C: Methods, 2017, 23, 474-484.	2.1	75
152	Direct reprogramming into endothelial cells: a new source for vascular regeneration. Regenerative Medicine, 2017, 12, 317-320.	1.7	9
153	Human pluripotent stem cellâ€derived epicardial progenitors can differentiate to endocardialâ€like endothelial cells. Bioengineering and Translational Medicine, 2017, 2, 191-201.	7.1	43
154	Compliant substratum guides endothelial commitment from human pluripotent stem cells. Science Advances, 2017, 3, e1602883.	10.3	47
155	Microlens topography combined with vascular endothelial growth factor induces endothelial differentiation of human mesenchymal stem cells into vasculogenic progenitors. Biomaterials, 2017, 131, 68-85.	11.4	16
156	High-throughput identification of small molecules that affect human embryonic vascular development. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3022-E3031.	7.1	35
157	Application of induced pluripotent stem cells to model smooth muscle cell function in vascular diseases. Current Opinion in Biomedical Engineering, 2017, 1, 38-44.	3.4	12
158	A Genome-wide Analysis of Human Pluripotent Stem Cell-Derived Endothelial Cells in 2D or 3D Culture. Stem Cell Reports, 2017, 8, 907-918.	4.8	41
159	Human Pluripotent Stem Cells to Engineer Blood Vessels. Advances in Biochemical Engineering/Biotechnology, 2017, 163, 147-168.	1.1	7
160	Differentiation, Evaluation, and Application of Human Induced Pluripotent Stem Cell–Derived Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2014-2025.	2.4	68
161	Organotypic vasculature: From descriptive heterogeneity to functional pathophysiology. Science, 2017, 357, .	12.6	497
162	Directed Differentiation of Human Pluripotent Stem Cells for Therapeutic Applications. Frontiers in Nanobiomedical Research, 2017, , 75-100.	0.1	Ο
163	Functional characterization of human pluripotent stem cell-derived arterial endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6072-E6078.	7.1	105
164	Human Stem Cell-Derived Endothelial-Hepatic Platform for Efficacy Testing of Vascular-Protective Metabolites from Nutraceuticals. Stem Cells Translational Medicine, 2017, 6, 851-863.	3.3	12
165	Suppression of Transforming Growth Factor- <i>β</i> Signaling Delays Cellular Senescence and Preserves the Function of Endothelial Cells Derived from Human Pluripotent Stem Cells. Stem Cells Translational Medicine, 2017, 6, 589-600.	3.3	28
166	Wnt inhibition promotes vascular specification of embryonic cardiac progenitors. Development (Cambridge), 2018, 145, .	2.5	10
167	1. Human pluripotent stem-cell-derived vascular cells: in vitro model for angiogenesis and drug discovery. , 2017, , 1-34.		2
168	Human dental pulp pluripotent-like stem cells promote wound healing and muscle regeneration. Stem Cell Research and Therapy, 2017, 8, 175.	5.5	48

#	Article	IF	CITATIONS
169	Engineering and Application of Pluripotent Stem Cells. Advances in Biochemical Engineering/Biotechnology, 2018, , .	1.1	0
170	Let's get physical: Biomechanical influences on human pluripotent stem cell differentiation towards vascular engineering. Current Opinion in Biomedical Engineering, 2018, 5, 42-49.	3.4	4
171	The TGFÎ ² pathway is a key player for the endothelial-to-hematopoietic transition in the embryonic aorta. Developmental Biology, 2018, 434, 292-303.	2.0	11
172	Cardiac Endothelial Cell Transcriptome. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 566-574.	2.4	51
173	Meso-Endothelial Bipotent Progenitors from Human Placenta Display Distinct Molecular and Cellular Identity. Stem Cell Reports, 2018, 10, 890-904.	4.8	27
174	TGF-β Signaling in Control of Cardiovascular Function. Cold Spring Harbor Perspectives in Biology, 2018, 10, a022210.	5.5	238
175	Endothelial Progenitor Cells for the Vascularization of Engineered Tissues. Tissue Engineering - Part B: Reviews, 2018, 24, 1-24.	4.8	128
176	Tissue regeneration using endothelial colony-forming cells: promising cells for vascular repair. Pediatric Research, 2018, 83, 283-290.	2.3	80
177	Inhibition of TGF-β Signaling in SHED Enhances Endothelial Differentiation. Journal of Dental Research, 2018, 97, 218-225.	5.2	27
178	The utility of stem cells in pediatric urinary bladder regeneration. Pediatric Research, 2018, 83, 258-266.	2.3	8
179	iPSCs-based generation of vascular cells: reprogramming approaches and applications. Cellular and Molecular Life Sciences, 2018, 75, 1411-1433.	5.4	52
180	Single Cell Resolution of Human Hematoendothelial Cells Defines Transcriptional Signatures of Hemogenic Endothelium. Stem Cells, 2018, 36, 206-217.	3.2	24
181	Conversion of human adipose-derived stem cells into functional and expandable endothelial-like cells for cell-based therapies. Stem Cell Research and Therapy, 2018, 9, 350.	5.5	13
182	Stem Cell Sources and Graft Material for Vascular Tissue Engineering. Stem Cell Reviews and Reports, 2018, 14, 642-667.	5.6	34
183	Dental Pulp Stem Cells Promote Wound Healing and Muscle Regeneration. , 2018, , 221-240.		0
184	A Scalable and Efficient Bioprocess for Manufacturing Human Pluripotent Stem Cell-Derived Endothelial Cells. Stem Cell Reports, 2018, 11, 454-469.	4.8	22
185	Temporal Dynamics of Gene Expression During Endothelial Cell Differentiation From Human iPS Cells: A Comparison Study of Signalling Factors and Small Molecules. Frontiers in Cardiovascular Medicine, 2018, 5, 16.	2.4	10
186	Efficient Differentiation of Human Pluripotent Stem Cells to Endothelial Cells. Current Protocols in Human Genetics, 2018, 98, e64.	3.5	27

#	Article	IF	CITATIONS
187	Preparation of iPS cell-derived CD31+ endothelial cells using three-dimensional suspension culture. Regenerative Therapy, 2018, 9, 1-9.	3.0	7
188	Generation of Human Pluripotent Stem Cell-derived Endothelial Cells and Their Therapeutic Utility. Current Cardiology Reports, 2018, 20, 45.	2.9	15
189	Harnessing cell pluripotency for cardiovascular regenerative medicine. Nature Biomedical Engineering, 2018, 2, 392-398.	22.5	16
190	Modeling the Neurovascular Unit InÂVitro and In Silico. , 2018, , 127-142.		0
191	A Highâ€Throughput Screening Method to Identify Compounds Displaying Human Vascular Embryonic Toxicity. Current Protocols in Stem Cell Biology, 2019, 50, e93.	3.0	1
192	What human blood-brain barrier models can tell us about BBB function and drug discovery?. Expert Opinion on Drug Discovery, 2019, 14, 1113-1123.	5.0	9
193	Monolayer Generation of Vascular Endothelial Cells from Human Pluripotent Stem Cells. Methods in Molecular Biology, 2019, 1994, 17-29.	0.9	8
194	Strategies for derivation of endothelial lineages from human stem cells. Stem Cell Research and Therapy, 2019, 10, 200.	5.5	32
195	Generation of Endothelial Cells From Human Pluripotent Stem Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1317-1329.	2.4	67
196	Engineering transferrable microvascular meshes for subcutaneous islet transplantation. Nature Communications, 2019, 10, 4602.	12.8	63
197	Application of Human Induced Pluripotent Stem Cells in Generating Tissue-Engineered Blood Vessels as Vascular Grafts. Stem Cells and Development, 2019, 28, 1581-1594.	2.1	13
198	Manufacturing human pluripotent stem cell derived endothelial cells in scalable and cell-friendly microenvironments. Biomaterials Science, 2019, 7, 373-388.	5.4	12
199	Unveiling the molecular crosstalk in a human induced pluripotent stem cellâ€derived cardiac model. Biotechnology and Bioengineering, 2019, 116, 1245-1252.	3.3	27
200	ECFL7 Mediates BMP9-Induced Sprouting Angiogenesis of Endothelial Cells Derived from Human Embryonic Stem Cells. Stem Cell Reports, 2019, 12, 1250-1259.	4.8	26
201	Engineering the vasculature of decellularized rat kidney scaffolds using human induced pluripotent stem cell-derived endothelial cells. Scientific Reports, 2019, 9, 8001.	3.3	43
202	A Human Pluripotent Stem Cell-Based Screen for Smooth Muscle Cell Differentiation and Maturation Identifies Inhibitors of Intimal Hyperplasia. Stem Cell Reports, 2019, 12, 1269-1281.	4.8	23
203	Human Pluripotent Stem Cell-Derived Multipotent Vascular Progenitors of the Mesothelium Lineage Have Utility in Tissue Engineering and Repair. Cell Reports, 2019, 26, 2566-2579.e10.	6.4	28
204	Perinatal Stem Cells. , 2019, , .		2

#	Article	IF	CITATIONS
205	Proangiogenic Features of Perinatal Tissue-Derived Stem Cells in Cardiovascular Disease Therapy. , 2019, , 121-139.		0
206	Bioactive Molecules for Skin Repair and Regeneration: Progress and Perspectives. Stem Cells International, 2019, 2019, 1-13.	2.5	21
207	Induced Pluripotent Stem Cells as Vasculature Forming Entities. Journal of Clinical Medicine, 2019, 8, 1782.	2.4	11
208	Generation of blood vessel organoids from human pluripotent stem cells. Nature Protocols, 2019, 14, 3082-3100.	12.0	136
209	Endogenous IGF Signaling Directs Heterogeneous Mesoderm Differentiation in Human Embryonic Stem Cells. Cell Reports, 2019, 29, 3374-3384.e5.	6.4	15
210	Human blood vessel organoids as aÂmodel ofÂdiabetic vasculopathy. Nature, 2019, 565, 505-510.	27.8	500
211	In vitro and in vivo models of BBB to evaluate brain targeting drug delivery. , 2019, , 53-101.		17
212	Enhanced Function of Induced Pluripotent Stem Cell-Derived Endothelial Cells Through ESM1 Signaling. Stem Cells, 2019, 37, 226-239.	3.2	25
213	Reconstructing the Vascular Developmental Milieu InÂVitro. Trends in Cell Biology, 2020, 30, 15-31.	7.9	11
214	Human pluripotent stem cell-derived chondroprogenitors for cartilage tissue engineering. Cellular and Molecular Life Sciences, 2020, 77, 2543-2563.	5.4	26
215	cAMP/EPAC Signaling Enables ETV2 to Induce Endothelial Cells with High Angiogenesis Potential. Molecular Therapy, 2020, 28, 466-478.	8.2	13
216	Long-term single-cell passaging of human iPSC fully supports pluripotency and high-efficient trilineage differentiation capacity. SAGE Open Medicine, 2020, 8, 205031212096645.	1.8	19
217	Cells, Materials, and Fabrication Processes for Cardiac Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2020, 8, 955.	4.1	32
218	Stepwise differentiation and functional characterization of human induced pluripotent stem cell-derived choroidal endothelial cells. Stem Cell Research and Therapy, 2020, 11, 409.	5.5	19
219	Cyclic Strain Promotes H19 Expression and Vascular Tube Formation in iPSC-Derived Endothelial Cells. Cellular and Molecular Bioengineering, 2020, 13, 369-377.	2.1	3
220	Machine learning uncovers cell identity regulator by histone code. Nature Communications, 2020, 11, 2696.	12.8	25
221	Efficient differentiation and purification of human induced pluripotent stem cell-derived endothelial progenitor cells and expansion with the use of inhibitors of ROCK, TGF-β, and GSK3β. Heliyon, 2020, 6, e03493.	3.2	11
222	Clonally selected primitive endothelial cells promote occlusive pulmonary arteriopathy and severe pulmonary hypertension in rats exposed to chronic hypoxia. Scientific Reports, 2020, 10, 1136.	3.3	15

#	Article	IF	CITATIONS
223	A Modular Differentiation System Maps Multiple Human Kidney Lineages from Pluripotent Stem Cells. Cell Reports, 2020, 31, 107476.	6.4	71
224	Human radiation exposures (occupational, medical, environmental, and radiation incidents) and vascular dysfunction. , 2021, , 115-127.		0
225	A High-Efficiency Method for the Production of Endothelial Cells from Human Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2021, , 1.	0.9	1
227	Nuclear ILâ€33/SMAD signaling axis promotes cancer development in chronic inflammation. EMBO Journal, 2021, 40, e106151.	7.8	37
228	Pluripotent stem cell-derived epithelium misidentified as brain microvascular endothelium requires ETS factors to acquire vascular fate. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	119
229	Comparative Study of Human Pluripotent Stem Cell-Derived Endothelial Cells in Hydrogel-Based Culture Systems. ACS Omega, 2021, 6, 6942-6952.	3.5	7
230	Human Induced Pluripotent Stem Cell-Derived Brain Endothelial Cells: Current Controversies. Frontiers in Physiology, 2021, 12, 642812.	2.8	33
231	The next generation of endothelial differentiation: Tissue-specific ECs. Cell Stem Cell, 2021, 28, 1188-1204.	11.1	31
232	In vitro and in vivo study on angiogenesis of porcine induced pluripotent stem cell-derived endothelial cells. Differentiation, 2021, 120, 10-18.	1.9	6
233	Lentiviral Transduction and Clonal Selection of hESCs with Endothelialâ€ S pecific Transgenic Reporters. Current Protocols in Stem Cell Biology, 2011, 17, Unit1F.12.	3.0	8
234	Heart regeneration with human pluripotent stem cells: Prospects and challenges. Bioactive Materials, 2020, 5, 74-81.	15.6	24
236	Effects of cellular origin on differentiation of human induced pluripotent stem cell–derived endothelial cells. JCI Insight, 2016, 1, .	5.0	75
237	ZFX Controls the Self-Renewal of Human Embryonic Stem Cells. PLoS ONE, 2012, 7, e42302.	2.5	46
238	Differentiation of hESCs into Mesodermal Subtypes: Vascular-, Hematopoietic- and Mesenchymal-lineage Cells. International Journal of Stem Cells, 2011, 4, 24-34.	1.8	9
239	Impairment of hypoxia-induced angiogenesis by LDL involves a HIF-centered signaling network linking inflammatory TNFα and angiogenic VEGF. Aging, 2019, 11, 328-349.	3.1	26
240	Protein Kinases and Associated Pathways in Pluripotent State and Lineage Differentiation. Current Stem Cell Research and Therapy, 2014, 9, 366-387.	1.3	9
241	Different roles of TGF-β in the multi-lineage differentiation of stem cells. World Journal of Stem Cells, 2012, 4, 28.	2.8	41
242	MicroRNAs as novel regulators of stem cell fate. World Journal of Stem Cells, 2013, 5, 172.	2.8	50

# 243	ARTICLE Mechanotransduction Modulates the Effect of Mechanical Forces (fluid shear stress and cyclic) Tj ETQq0 0 0 rgBT Cells. , 2012, , .	IF /Overlock	CITATIONS 10 Tf 50 74 1
244	Discovery of novel determinants of endothelial lineage using chimeric heterokaryons. ELife, 2017, 6, .	6.0	7
245	Vascular Differentiation of Human Pluripotent Stem Cells. , 2012, , 97-115.		0
246	Vascular Stem Cell Therapy. Cell Engineering, 2014, , 49-69.	0.4	0
247	Direct Reprogramming of Amniotic Cells into Endothelial Cells. , 2014, , 67-85.		0
248	Derivation of Human Embryonic Stem Cells (hESC). Methods in Molecular Biology, 2014, 1154, 121-144.	0.9	0
249	The Differentiation of Pluripotent Stem Cells towards Endothelial Progenitor Cells - Potential Application in Pulmonary Arterial Hypertension. International Journal of Stem Cells, 2022, 15, 122-135.	1.8	2
253	Human CD34+ very small embryonic-like stem cells can give rise to endothelial colony-forming cells with a multistep differentiation strategy using UM171 and nicotinamide acid. Leukemia, 2022, 36, 1440-1443.	7.2	9
254	Modeling Transposition of the Great Arteries with Patient-Specific Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 2021, 22, 13270.	4.1	3
255	Progress in Bioengineering Strategies for Heart Regenerative Medicine. International Journal of Molecular Sciences, 2022, 23, 3482.	4.1	14
263	Challenges and opportunities in the use of transcriptomic characterization of human iPSC-derived BBB models. Toxicology in Vitro, 2022, 84, 105424.	2.4	0
264	Vascular development and organogenesis. , 2022, , 241-249.		Ο
265	Derivation and Characterization of Endothelial Cells from Porcine Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 2022, 23, 7029.	4.1	3
266	Engineering bioactive nanoparticles to rejuvenate vascular progenitor cells. Communications Biology, 2022, 5, .	4.4	7
268	Expanding tubular microvessels on stiff substrates with endothelial cells and pericytes from the same adult tissue. Journal of Tissue Engineering, 2022, 13, 204173142211253.	5.5	2
269	Recent advancements and future requirements in vascularization of cortical organoids. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	5
271	Building human artery and vein endothelial cells from pluripotent stem cells, and enduring mysteries surrounding arteriovenous development. Seminars in Cell and Developmental Biology, 2024, 155, 62-75.	5.0	2
272	Extracellular matrix cues regulate the differentiation of pluripotent stem cell-derived endothelial cells. Frontiers in Cardiovascular Medicine, 0, 10, .	2.4	0

#	Article	IF	CITATIONS
274	TGF-β and SHH Regulate Pluripotent Stem Cell Differentiation into Brain Microvascular Endothelial Cells in Generating an In Vitro Blood–Brain Barrier Model. Bioengineering, 2023, 10, 1132.	3.5	0
275	Development of Reproducible and Scalable Culture Conditions for In Vitro Maintenance of Pig Embryonic Stem Cells Using the Sandoz Inbred Swiss Mouse Thioguanine-Resistant Ouabain-Resistant Cell Line as a Feeder Layer. Stem Cells and Development, 0, , .	2.1	0
276	Clonal and Scalable Endothelial Progenitor Cell Lines from Human Pluripotent Stem Cells. Biomedicines, 2023, 11, 2777.	3.2	0
277	PCSK9 activation promotes early atherosclerosis in a vascular microphysiological system. APL Bioengineering, 2023, 7, .	6.2	1
278	Advancing cardiac regeneration through 3D bioprinting: methods, applications, and future directions. Heart Failure Reviews, 0, , .	3.9	0
281	From theory to therapy: a bibliometric and visual study of stem cell advancements in age-related macular degeneration. Cytotherapy, 2024, , .	0.7	0
282	Direct programming of human pluripotent stem cells into endothelial progenitors with SOX17 and FGF2. Stem Cell Reports, 2024, 19, 579-595.	4.8	0