CITATION REPORT List of articles citing

DOI: 10.1109/mcs.2010.936293 IEEE Control Systems, 2010, 30, 49-68.

Source: https://exaly.com/paper-pdf/49606012/citation-report.pdf

Version: 2024-04-27

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper IF	Citations
417	Multiphysical lithium-based battery pack modeling for simulation purposes. 2011 ,	8
416	A genetic algorithm based battery model for Stand Alone Radio Base Stations powering. 2011,	1
415	Power quality issues into a Danish low-voltage grid with electric vehicles. 2011 ,	4
414	Li-ion battery parameter estimation for state of charge. 2011 ,	13
413	A Critical Review of Li/Air Batteries. 2011 , 159, R1-R30	871
412	An Adaptive Strategy for Li-ion Battery SOC Estimation. 2011 , 44, 9721-9726	4
411	Multi-parameter battery state estimator based on the adaptive and direct solution of the governing differential equations. 2011 , 196, 8735-8741	45
410	Comparison of discretization methods applied to the single-particle model of lithium-ion batteries. 2011 , 196, 10267-10279	30
409	State-of-Charge Estimation of the Lithium-Ion Battery Using an Adaptive Extended Kalman Filter Based on an Improved Thevenin Model. 2011 , 60, 1461-1469	393
408	Investigation of battery end-of-life conditions for plug-in hybrid electric vehicles. 2011 , 196, 5147-5154	106
407	On-line battery identification for electric driving range prediction. 2011 ,	16
406	Optimal charging strategies in lithium-ion battery. 2011 ,	78
405	A survey of long-term health modeling, estimation, and control of Lithium-ion batteries: Challenges and opportunities. 2012 ,	29
404	Control Oriented Thermal Modeling of Lithium Ion Batteries from a First Principle Model via Model Reduction by the Global Arnoldi Algorithm. 2012 , 159, A2043-A2052	11
403	Hardware building blocks of a hierarchical battery management system for a fuel cell HEV. 2012,	6
402	An efficient control oriented modeling approach for Lithium ion cells. 2012,	5
401	HIBased Supervisory Control Strategy for A Parallel HEV with Battery Fault Accommodation. 2012 , 45, 1167-1172	

(2013-2012)

400	An advanced simulation platform to support combustion developments in DISI engines: From engine design to control and calibration. 2012 , 45, 199-205	1
399	Estimation of Lithium Transport Rate in Lithium-ion Batteries - A Particle Filtering Approach. 2012 , 45, 116-121	1
398	. 2012 , 61, 3420-3429	53
397	PDE estimation techniques for advanced battery management systems IPart II: SOH identification. 2012 ,	19
396	Forecasting the state-of-charge of Li-ion batteries using fuzzy inference system and fuzzy identification. 2012 ,	2
395	PDE estimation techniques for advanced battery management systems [Part I: SOC estimation. 2012 ,	69
394	Optimal control of batteries with fully and partially available rechargeability. 2012, 48, 1658-1666	15
393	Simplified Electrochemical and Thermal Model of LiFePO4-Graphite Li-Ion Batteries for Fast Charge Applications. 2012 , 159, A1508-A1519	205
392	RBF network-aided adaptive unscented kalman filter for lithium-ion battery SOC estimation in electric vehicles. 2012 ,	
391	An electrochemical model-based particle filter approach for Lithium-ion battery estimation. 2012,	26
390	Estimator for Charge Acceptance of Lead Acid Batteries. 2012 , 67, 613-631	1
389	Controls oriented reduced order modeling of solid-electrolyte interphase layer growth. 2012 , 209, 282-288	56
388	Controls oriented reduced order modeling of lithium deposition on overcharge. 2012, 209, 318-325	82
387	Li-ion battery SOC estimation using particle filter based on an equivalent circuit model. 2013,	9
386	An adaptive strategy for Li-ion battery internal state estimation. 2013 , 21, 1851-1859	8
385	A Method for Geometry Optimization in a Simple Model of Two-Dimensional Heat Transfer. 2013 , 35, B1105-B1131	3
384	A LPV EMS regulator for the parallel HEV with battery life prolongation. 2013,	
383	State-of-charge estimation of LiFePO4/C battery based on extended Kalman filter. 2013 ,	O

382 Component-wise physics-based modelling of a lithium-ion battery for power equalization. **2013**,

381	Survey of Data Cleansing and Monitoring for Large-Scale Battery Backup Installations. 2013,	
380	Adaptive estimation of state of charge for lithium-ion batteries. 2013,	2
379	A time-varying transfer function model for modeling the charging process of a Lithium-ion battery. 2013 ,	1
378	Nonlinear observability and identifiability of single cells in battery packs. 2013,	5
377	Operation and Degradation Aspects of EV Batteries. 2013 , 192-232	
376	Battery-Health Conscious Power Management in Plug-In Hybrid Electric Vehicles via Electrochemical Modeling and Stochastic Control. 2013 , 21, 679-694	150
375	Diagnostics in Lithium-Ion Batteries: Challenging Issues and Recent Achievements. 2013 , 277-291	11
374	Constraint management in Li-ion batteries: A modified reference governor approach. 2013,	13
373	An Efficient Parallelizable 3D Thermoelectrochemical Model of a Li-Ion Cell. 2013 , 160, A2258-A2267	39
372	Nonlinear adaptive estimation of the state of charge for Lithium-ion batteries. 2013,	3
371	Extended Single Particle Model of Li-Ion Batteries Towards High Current Applications. 2013,	12
370	Electrochemical Model Based Observer Design for a Lithium-Ion Battery. 2013 , 21, 289-301	161
369	Approximations for Partial Differential Equations Appearing in Li-Ion Battery Models. 2013,	2
368	Li-lon Battery Charging with a Buck-Boost Power Converter for a Solar Powered Battery Management System. 2013 , 6, 1669-1699	20
367	Comparison Study on the Battery SoC Estimation with EKF and UKF Algorithms. 2013 , 6, 5088-5100	47
366	Lessons Learned from the 787 Dreamliner Issue on Lithium-Ion Battery Reliability. 2013 , 6, 4682-4695	189
365	Development of an Experimental Testbed for Research in Lithium-Ion Battery Management Systems. 2013 , 6, 5231-5258	32

364 State of charge determination of LiFePO4 batteries using an external applied magnetic field. **2013**,

363	Plating Mechanism Detection in Lithium-ion batteries, by using a particle-filtering based estimation technique. 2013 ,	9
362	Online state and parameter estimation of the Li-ion battery in a Bayesian framework. 2013,	16
361	Battery State Estimator Based on a Finite Impulse Response Filter. 2013 , 160, A1962-A1970	12
360	Data-based modeling of a lithium iron phosphate battery as an energy storage and delivery system. 2013 ,	1
359	A LPV/HIApproach for Fuel Consumption Minimization of the PHEV with Battery Life Prolongation. 2013 , 46, 378-383	2
358	State of Charge Estimation in Li-ion Batteries Using an Isothermal Pseudo Two-Dimensional Model. 2013 , 46, 135-140	4
357	A Review of Approaches for the Design of Li-lon BMS Estimation Functions. 2013 , 68, 127-135	10
356	Modeling of Lithium-Ion Battery Management System and Regeneration Control Strategy for Hybrid Electric Vehicles. 2013 ,	1
355	Efficient Simulation and Reformulation of Lithium-Ion Battery Models for Enabling Electric Transportation. 2014 , 161, E3149-E3157	57
354	Application of Dynamic Cell Resistance for determination of state of charge. 2014,	2
353	Sensors fault diagnosis for a BMS. 2014 ,	16
352	A battery modular multilevel management system (BM3) for electric vehicles and stationary energy storage systems. 2014 ,	7
351	Set-based state of charge estimation for lithium-ion batteries. 2014 ,	1
350	Fast UD factorization-based RLS online parameter identification for model-based condition monitoring of lithium-ion batteries. 2014 ,	6
349	Takagi-Sugeno fuzzy model identification of Li-ion battery systems. 2014 ,	O
348	Lithium-ion battery state of charge estimation based on moving horizon. 2014 ,	2
347	Adaptive Partial Differential Equation Observer for Battery State-of-Charge/State-of-Health Estimation Via an Electrochemical Model. 2014 , 136,	130

346 Multiphysics based failure identification of lithium battery failure for prognostics. **2014**,

345	Nonlinear model predictive control for cell balancing in Li-ion battery packs. 2014 ,	18
344	Encyclopedia of Systems and Control. 2014 , 1-10	
343	A fuzzy logic-based model for Li-ion battery with SOC and temperature effect. 2014 ,	8
342	The State of Charge Estimation of Lithium Battery in Electric Vehicle Based on Extended Kalman Filter. 2014 , 953-954, 796-799	1
341	Consensus Control for Battery Management System. 2014 , 945-949, 2732-2736	
340	Embedded Fiber Optic Sensing for Accurate State Estimation in Advanced Battery Management Systems. 2014 , 1681, 1	15
339	Fisher identifiability analysis for a periodically-excited equivalent-circuit lithium-ion battery model. 2014 ,	19
338	State of charge estimation for lithium-ion batteries: An adaptive approach. 2014 , 25, 45-54	59
337	State of charge estimation for Li-ion battery based on model from extreme learning machine. 2014 , 26, 11-19	70
336	Battery parameterisation based on differential evolution via a boundary evolution strategy. 2014 , 245, 583-593	6
335	Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles. 2014 , 258, 321-339	594
334	Battery Energy Storage System (BESS) and Battery Management System (BMS) for Grid-Scale Applications. 2014 , 102, 1014-1030	241
333	Optimized Operating Range for Large-Format LiFePO4/Graphite Batteries. 2014 , 161, A336-A341	27
332	A new control scheme in a multi-battery management system for expanding microgrids. 2014,	14
331	State of charge estimation based on a realtime battery model and iterative smooth variable structure filter. 2014 ,	6
330	SOC estimation of electric vehicle based on the establishment of battery management system. 2014 ,	1
329	An Equivalent Circuit Model With Variable Effective Capacity for \$hbox{LiFePO}_{4}\$ Batteries. 2014 , 63, 3592-3599	25

(2015-2014)

328	A piecewise linear time-varying model for modeling the discharging process of a lithium-ion battery. 2014 ,	O
327	Combined estimation of State-of-Charge and State-of-Health of Li-ion battery cells using SMO on electrochemical model. 2014 ,	20
326	A reduced order electrolyte enhanced single particle lithium ion cell model for hybrid vehicle applications. 2014 ,	10
325	. 2014,	5
324	State-of-charge estimation for batteries: A multi-model approach. 2014 ,	4
323	Open circuit voltage characterization of lithium-ion batteries. 2014 , 269, 317-333	109
322	A novel methodology for non-linear system identification of battery cells used in non-road hybrid electric vehicles. 2014 , 269, 883-897	11
321	. 2014 , 2, 659-677	70
320	Effective Transport Properties of Porous Electrochemical Materials 🖪 Homogenization Approach. 2014 , 161, E3066-E3077	25
319	On-line adaptive battery impedance parameter and state estimation considering physical principles in reduced order equivalent circuit battery models. 2014 , 260, 276-291	109
318	Time-Domain Parameter Extraction Method for Thlenin-Equivalent Circuit Battery Models. 2014 , 29, 558-566	115
317	Low-temperature charging of lithium-ion cells Part II: Model reduction and application. 2014 , 254, 268-276	49
316	Improved adaptive state-of-charge estimation for batteries using a multi-model approach. 2014 , 254, 258-267	49
315	Current Scheduling for Parallel Buck Regulated Battery Modules. 2014 , 47, 2112-2117	5
314	Modeling, Control, Optimization, and Analysis of Electrified Vehicle Systems. 2014 , 6, 541412	1
313	Battery state of health estimation using the generalized regression neural network. 2015,	2
312	Simultaneous state of charge and parameter estimation of lithium-ion battery using log-normalized unscented Kalman Filter. 2015 ,	10
311	Simplification techniques for PDE-based Li-Ion battery models. 2015 ,	4

310 Optimal control for lithium-ion batteries. **2015**, 15, 617-618

309	Rechargeable Battery Energy Storage System Design. 2015 , 1-18	6
308	Nonlinear Adaptive Observer for a Lithium-Ion Battery Cell Based on Coupled Electrochemical Mermal Model. 2015 , 137,	21
307	Matrix regressor adaptive observers for battery management systems. 2015,	6
306	State of Health estimation for NCA-C Lithium-ion cells. 2015 , 48, 376-382	3
305	Metamodel for Efficient Estimation of Capacity-Fade Uncertainty in Li-Ion Batteries for Electric Vehicles. 2015 , 8, 5538-5554	14
304	Fractional-order modeling and parameter identification for lithium-ion batteries. 2015, 293, 151-161	108
303	Adaptive Estimation of the State of Charge for Lithium-Ion Batteries: Nonlinear Geometric Observer Approach. 2015 , 23, 948-962	48
302	Estimation and control of battery electrochemistry models: A tutorial. 2015,	13
301	Control-oriented modeling and adaptive parameter estimation of a Lithium ion intercalation cell. 2015 ,	1
300	Sensitivity-based interval PDE observer for battery SOC estimation. 2015,	14
299	On observer performance for an electrochemical supercapacitor model. 2015 ,	1
298	Combined battery SOC/SOH estimation using a nonlinear adaptive observer. 2015,	6
297	Fractional algebraic identification of the distribution of relaxation times of battery cells. 2015,	11
296	A comparison of model order reduction techniques for electrochemical characterization of Lithium-ion batteries. 2015 ,	11
295	Estimation of Li-ion battery SOH using Fletcher-Reeves based ANFIS. 2015,	
294	PDE battery model simplification for SOC and SOH estimator design. 2015,	11
293	Health monitoring of Li-ion batteries: A particle filtering approach. 2015,	1

292	PDE battery model simplification for charging strategy evaluation. 2015 ,	1
291	Low-order mathematical modelling of electric double layer supercapacitors using spectral methods. 2015 , 277, 317-328	39
290	A Consumer-Oriented Control Framework for Performance Analysis in Hybrid Electric Vehicles. 2015 , 23, 1451-1464	10
289	Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles. 2015 , 281, 114-130	229
288	Enhanced Performance of Li-Ion Batteries via Modified Reference Governors and Electrochemical Models. 2015 , 20, 1511-1520	38
287	Lithium-ion battery thermal-electrochemical model-based state estimation using orthogonal collocation and a modified extended Kalman filter. 2015 , 296, 400-412	130
286	Electrochemical model of a lithium-ion battery implemented into an automotive battery management system. 2015 , 76, 87-97	27
285	Fast and slow ion diffusion processes in lithium ion pouch cells during cycling observed with fiber optic strain sensors. 2015 , 296, 46-52	52
284	Model-based condition monitoring for lithium-ion batteries. 2015 , 295, 16-27	49
283	A Temperature Dependent, Single Particle, Lithium Ion Cell Model Including Electrolyte Diffusion. 2015 , 137,	64
282	State of health estimation in composite electrode lithium-ion cells. 2015 , 284, 642-649	9
281	Simplification of pseudo two dimensional battery model using dynamic profile of lithium concentration. 2015 , 286, 510-525	31
280	Analysis of the Implications of Rapid Charging on Lithium-Ion Battery Performance. 2015 , 162, A1382-A1395	48
279	Nonlinear Robust Observers for State-of-Charge Estimation of Lithium-Ion Cells Based on a Reduced Electrochemical Model. 2015 , 23, 1935-1942	96
278	Monitoring of Intercalation Stages in Lithium-Ion Cells over Charge-Discharge Cycles with Fiber Optic Sensors. 2015 , 162, A2664-A2669	33
277	. 2015 , 1-1	59
276	A Multi-Factor Battery Cycle Life Prediction Methodology for Optimal Battery Management. 2015,	21
275	. 2015 , 30, 842-851	31

274	On Veracity of Macroscopic Lithium-Ion Battery Models. 2015 , 162, A1940-A1951	36
273	Adaptive approach for on-board impedance parameters and voltage estimation of lithium-ion batteries in electric vehicles. 2015 , 299, 176-188	40
272	A novel battery/ ultracapacitor hybrid energy storage system analysis based on physics-based lithium-ion battery modeling. 2015 ,	1
271	State-of-charge estimation for lithium-ion batteries via a coupled thermal-electrochemical model. 2015 ,	13
270	State-space representation of Li-ion battery porous electrode impedance model with balanced model reduction. 2015 , 273, 1226-1236	16
269	Electrochemical Model-Based State of Charge Estimation for Li-Ion Cells. 2015 , 23, 117-127	63
268	A Comparative Study Based on the Least Square Parameter Identification Method for State of Charge Estimation of a LiFePO4 Battery Pack Using Three Model-Based Algorithms for Electric Vehicles. 2016 , 9, 720	22
267	Fast Characterization Method for Modeling Battery Relaxation Voltage. 2016 , 2, 7	30
266	Dynamic Prediction of Power Storage and Delivery by Data-Based Fractional Differential Models of a Lithium Iron Phosphate Battery. 2016 , 9, 590	10
265	Feasibility Study of Modified Single-Particle Model for Composite Cathode at High-Rate Discharge. 2016 , 84, 432-437	2
264	Matlab simulation of lithium ion cell using electrochemical single particle model. 2016,	5
263	A distributed computation scheme for real-time control and estimation of PDEs. 2016,	
262	Backstepping PDE-based adaptive observer for a Single Particle Model of Lithium-Ion Batteries. 2016 ,	1
261	Parameter estimation of an electrochemical supercapacitor model. 2016,	1
260	. 2016 , 2, 417-431	31
259	An internal state variable mapping approach for Li-Plating diagnosis. 2016 , 323, 115-124	5
258	Order Reduction of Lithium-Ion Battery Model Based on Solid State Diffusion Dynamics via Large Scale Systems Theory. 2016 , 163, A1429-A1441	8
257	Co-estimation of state-of-charge, capacity and resistance for lithium-ion batteries based on a high-fidelity electrochemical model. 2016 , 180, 424-434	135

256	State-of-charge estimation in lithium-ion batteries: A particle filter approach. 2016 , 331, 208-223	72
255	SOC and SOH estimation for Li-ion batteries based on an equivalent hydraulic model. Part I: SOC and surface concentration estimation. 2016 ,	11
254	Modeling of battery dynamics and hysteresis for power delivery prediction and SOC estimation. 2016 , 180, 823-833	18
253	Energy Storage Integration. 2016 , 433-476	O
252	Multi-time-scale observer design for state-of-charge and state-of-health of a lithium-ion battery. 2016 , 335, 121-130	149
251	State of charge estimation of a LiFePO4 battery: A dual estimation approach incorporating open circuit voltage hysteresis. 2016 ,	1
250	A physically meaningful equivalent circuit network model of a lithium-ion battery accounting for local electrochemical and thermal behaviour, variable double layer capacitance and degradation. 2016 , 325, 171-184	43
249	Resolving a Discrepancy in Diffusion Potentials, with a Case Study for Li-Ion Batteries. 2016 , 163, E223-E229	17
248	A Framework for Simplification of PDE-Based Lithium-Ion Battery Models. 2016 , 24, 1594-1609	112
247	Electrochemical model parameter identification of a lithium-ion battery using particle swarm optimization method. 2016 , 307, 86-97	134
246	An integrated approach for the analysis and control of grid connected energy storage systems. 2016 , 5, 48-61	47
245	Electrochemical model based charge optimization for lithium-ion batteries. 2016, 313, 164-177	55
244	Modeling of Li-Ion Cells for Fast Simulation of High C-Rate and Low Temperature Operations. 2016 , 163, A666-A676	40
243	Online internal short circuit detection for a large format lithium ion battery. 2016 , 161, 168-180	167
242	State-of-Charge Estimation for Lithium-Ion Batteries Based on a Nonlinear Fractional Model. 2017 , 25, 3-11	77
241	State-Space Modeling and Observer Design of Li-Ion Batteries Using TakagiBugeno Fuzzy System. 2017 , 25, 301-308	13
240	Battery State Estimation for a Single Particle Model With Electrolyte Dynamics. 2017, 25, 453-468	125
239	Real-Time Estimation of Lithium-Ion Concentration in Both Electrodes of a Lithium-Ion Battery Cell Utilizing ElectrochemicalIIhermal Coupling. 2017 , 139,	13

238	A Single Particle Model for Lithium-Ion Batteries with Electrolyte and Stress-Enhanced Diffusion Physics. 2017 , 164, A874-A883	48
237	Parameter identification of a lithium-ion cell single-particle model through non-invasive testing. 2017 , 12, 138-148	18
236	Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: Cell embedding method and performance. 2017 , 341, 466-473	48
235	Battery State of Health Monitoring by Estimation of Side Reaction Current Density Via Retrospective-Cost Subsystem Identification. 2017 , 139,	6
234	Simulation and Optimization Applied to Power Flow in Hybrid Vehicles. 2017, 185-224	
233	Circuit synthesis of electrochemical supercapacitor models. 2017 , 10, 48-55	19
232	Design of Piecewise Affine and Linear Time-Varying Model Predictive Control Strategies for Advanced Battery Management Systems. 2017 , 164, A949-A959	15
231	Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2: Internal cell signals and utility for state estimation. 2017 , 341, 474-482	48
230	Multivariable State Feedback Control as a Foundation for Lithium-Ion Battery Pack Charge and Capacity Balancing. 2017 , 164, A61-A70	11
229	How Does Model Reduction Affect Lithium-Ion Battery State of Charge Estimation Errors? Theory and Experiments. 2017 , 164, A237-A251	16
228	Optimal charging for general equivalent electrical battery model, and battery life management. 2017 , 9, 47-58	24
227	A computationally efficient implementation of a full and reduced-order electrochemistry-based model for Li-ion batteries. 2017 , 208, 1285-1296	19
226	A Computationally Efficient Implementation of an Electrochemistry-Based Model for Lithium-Ion Batteries. 2017 , 50, 2169-2174	3
225	Internal Short Circuit Trigger Method for Lithium-Ion Battery Based on Shape Memory Alloy. 2017 , 164, A3038-A3044	48
224	Battery storage system optimal exploitation through physics-based model predictive control. 2017,	
223	. 2017,	2
222	An equivalent circuit model of li-ion battery based on electrochemical principles used in grid-connected energy storage applications. 2017 ,	5
221	Distributed Kalman filtering-based three-dimensional temperature field reconstruction for a lithium-ion battery pack. 2017 ,	

220	Observers for Nonlinear Systems, Part 2 [About This Issue]. IEEE Control Systems, 2017, 37, 5-8	2.9	
219	State Estimation for Lithium Ion Batteries With Phase Transition Materials. 2017,		5
218	Battery Capacity Estimation From Partial-Charging Data Using Gaussian Process Regression. 2017,		
217	State-of-Charge estimation from a thermal@lectrochemical model of lithium-ion batteries. 2017 , 83, 206-219		27
216	Real-Time Estimation of Temperature Distribution for Cylindrical Lithium-Ion Batteries Under Boundary Cooling. 2017 , 64, 2316-2324		21
215	Reduced-Order Electrochemical Model-Based SOC Observer With Output Model Uncertainty Estimation. 2017 , 25, 1217-1230		29
214	Health-Aware and User-Involved Battery Charging Management for Electric Vehicles: Linear Quadratic Strategies. 2017 , 25, 911-923		39
213	Cloud-based battery condition monitoring platform for large-scale lithium-ion battery energy storage systems using internet-of-things (IoT). 2017 ,		13
212	Lithium Iron Phosphate (LiFePO4) Battery Power System for Deepwater Emergency Operation. 2017 , 143, 348-353		9
211	Experimental validation of adaptive observers for battery management systems. 2017,		1
210	State-of-charge inconsistency estimation for li-ion battery pack using electrochemical model. 2017,		1
209	Optimal control of film growth in dual lithium-ion battery energy storage system. 2017,		3
208	Centralized recursive optimal scheduling of parallel buck regulated battery modules. 2017,		2
207	A new hybrid filter-based online condition monitoring for lithium-ion batteries. 2017,		2
206	Online SoC estimation for Li-ion batteries: A survey explore the distributed secure cloud management to battery packs. 2017 ,		0
205	A real-time condition monitoring for lithium-ion batteries using a low-price microcontroller. 2017 ,		2
204	Robust identification of time-varying electrical equivalent circuit models of Li-ion batteries. 2017,		
203	State of charge estimation of lead-carbon batteries in actual engineering. 2017,		1

202	Computationally-efficient constrained control of the state-of-charge of a Li-ion battery cell. 2017,	6
201	A soft-constrained unscented Kalman filter estimator for Li-ion cells electrochemical model. 2017,	2
200	Towards electric vehicles integration to distributed energy resources of prosumer. 2017,	
199	Control of the State-of-Charge of a Li-ion Battery Cell via Reference Governor * *This work is performed in the framework of the BATWAL project financed by the Walloon region (Belgium).This research has been funded by the Mandats dImpulsion Scientific "Optimization-free Control of	4
198	Comparative Research on RC Equivalent Circuit Models for Lithium-Ion Batteries of Electric Vehicles. 2017 , 7, 1002	75
197	Improved OCV Model of a Li-Ion NMC Battery for Online SOC Estimation Using the Extended Kalman Filter. 2017 , 10, 764	52
196	Electrochemical Model-Based Condition Monitoring via Experimentally Identified Li-Ion Battery Model and HPPC. 2017 , 10, 1266	4
195	A Novel Methodology for Estimating State-Of-Charge of Li-Ion Batteries Using Advanced Parameters Estimation. 2017 , 10, 1751	5
194	Hybrid electrochemical modeling with recurrent neural networks for li-ion batteries. 2017,	4
193	State of charge estimation of lithium ion batteries using an extended single particle model and sigma-point Kalman filter. 2017 ,	6
192	Selection guidelines for BMSs used in ultralight electric vehicles. 2017,	1
191	Parameter Identification of Electrochemical Model for Vehicular Lithium-Ion Battery Based on Particle Swarm Optimization. 2017 , 10, 1811	17
190	Comparison of Lithium-Ion Anode Materials Using an Experimentally Verified Physics-Based Electrochemical Model. 2017 , 10, 2174	17
189	A parameter estimation method for a simplified electrochemical model for Li-ion batteries. 2018 , 275, 50-58	31
188	Lithium-ion Battery Instantaneous Available Power Prediction Using Surface Lithium Concentration of Solid Particles in a Simplified Electrochemical Model. 2018 , 33, 9551-9560	32
187	Model Predictive Control for Lithium-Ion Battery Optimal Charging. 2018 , 23, 947-957	50
186	Analysis on the Fault Features for Internal Short Circuit Detection Using an Electrochemical-Thermal Coupled Model. 2018 , 165, A155-A167	44
185	A comparative study of model-based capacity estimation algorithms in dual estimation frameworks for lithium-ion batteries under an accelerated aging test. 2018 , 212, 1522-1536	44

184	Battery electric vehicles: Looking behind to move forward. 2018 , 115, 54-65	48
183	A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors. 2018 , 390, 286-296	233
182	A reliability design method for a lithium-ion battery pack considering the thermal disequilibrium in electric vehicles. 2018 , 386, 10-20	42
181	A computationally efficient Li-ion electrochemical battery model for long-term analysis of stand-alone renewable energy systems. 2018 , 17, 93-101	23
180	A Reduced-Order Model of a Lithium-Ion Cell Using the Absolute Nodal Coordinate Formulation Approach. 2018 , 26, 1001-1014	10
179	Predictive energy management for hybrid electric vehicles considering extension of the battery life. 2018 , 232, 499-510	3
178	Optimal Design of Experiment for Parameter Estimation of a Single Particle Model for Lithiumion Batteries. 2018 ,	3
177	Estimation of SoC of Batteries Using Terminal Sliding-Mode Observer. 2018,	
176	A Computationally-Efficient Electrochemical-Thermal Model for Small-Format Cylindrical Lithium Ion Batteries. 2018 ,	1
175	On Physical Modeling of Lithium-Ion Cells and Adaptive Estimation of their State-of-Charge. 2018,	
174	A New Nonlinear Double-Capacitor Model for Rechargeable Batteries. 2018,	4
173	Assessing the Performance of Model-Based Energy Saving Charging Strategies in Li-Ion Cells. 2018,	1
172	A State of Charge Estimation Method Based on Adaptive Extended Kalman-Particle Filtering for Lithium-ion Batteries. 2018 , 11, 2755	7
171	Li-Ion Battery Pack SoC Estimation for Electric Vehicles. 2018,	1
170	ReviewDynamic Models of Li-Ion Batteries for Diagnosis and Operation: A Review and Perspective. 2018 , 165, A3656-A3673	70
169	Film growth minimization in a Li-ion cell: a Pseudo Two Dimensional model-based optimal charging approach. 2018 ,	9
168	Self-preheating Method for Li-ion Battery Using Battery Impedance Estimator. 2018,	1
167	Feature time series clustering for lithium battery based on SOM neural network. 2018,	2

The Modeling and Identification of Lithium-Ion Battery System. **2018**, 99-140

165	A PadlApproximate Model of Lithium Ion Batteries. 2018 , 165, A1409-A1421	13
164	Optimal Experimental Design for Parameterization of an Electrochemical Lithium-Ion Battery Model. 2018 , 165, A1309-A1323	46
163	State of charge estimation for electric vehicle power battery using advanced machine learning algorithm under diversified drive cycles. 2018 , 162, 871-882	77
162	PHM of Li-ion Batteries. 2018 , 349-375	2
161	State-of-Charge Estimation of Battery Pack under Varying Ambient Temperature Using an Adaptive Sequential Extreme Learning Machine. 2018 , 11, 711	17
160	. 2018,	2
159	Lithium-Ion Battery State Estimation for a Single Particle Model with Intercalation-Induced Stress. 2018 ,	2
158	Optimal Input Design for Parameter Identification in an Electrochemical Li-ion Battery Model. 2018,	5
157	On the well-posedness of a multiscale mathematical model for Lithium-ion batteries. 2019 , 8, 1132-1157	5
156	Identifiability and Parameter Estimation of the Single Particle Lithium-Ion Battery Model. 2019 , 27, 1862-1877	7 46
155	State of charge estimation of a lithium-ion battery using robust non-linear observer approach. 2019 , 9, 1-7	8
154	An electrochemical model for high C-rate conditions in lithium-ion batteries. 2019 , 436, 226885	20
153	Modeling of Lithium-ion Battery Charging and Discharging Using the Preisach Hysteresis Model. 2019 ,	
152	Comparative Study of State-Of-Charge Estimation with Recurrent Neural Networks. 2019,	1
151	A Computationally Efficient Coupled Electrochemical-Thermal Model for Large Format Cylindrical Lithium Ion Batteries. 2019 , 166, A3059-A3071	16
150	A hybrid observer for SOC estimation of lithium-ion battery based on a coupled electrochemical-thermal model. 2019 , 16, 1527-1538	8
149	A perspective on inverse design of battery interphases using multi-scale modelling, experiments and generative deep learning. 2019 , 21, 446-456	50

148	A feedback charge strategy for Li-ion battery cells based on Reference Governor. 2019 , 83, 164-176	10
147	Fast charging of an electric vehicle lithium-ion battery at the limit of the lithium deposition process. 2019 , 427, 260-270	48
146	Incorporating Dendrite Growth into Continuum Models of Electrolytes: Insights from NMR Measurements and Inverse Modeling. 2019 , 166, A1591-A1602	14
145	Classification and Review of the Charging Strategies for Commercial Lithium-Ion Batteries. 2019 , 7, 43511-435	52 / 8
144	Influence Analysis and Optimization of Sampling Frequency on the Accuracy of Model and State-of-Charge Estimation for LiNCM Battery. 2019 , 12, 1205	6
143	Parameter identification and systematic validation of an enhanced single-particle model with aging degradation physics for Li-ion batteries. 2019 , 307, 474-487	31
142	The influence of coupling of charge/discharge rate and short term cycle on the battery capacity of Li-ion batteries. 2019 ,	2
141	Frequency Selective Filters for Estimating the Equivalent Circuit Parameters of Liion Battery. 2019,	
140	Charge analysis for Li-ion battery pack state of health estimation for electric and hybrid vehicles. 2019 ,	
139	Research of Adaptive Extended Kalman Filter-Based SOC Estimator for Frequency Regulation ESS. 2019 , 9, 4274	3
138	State of health estimation for lithium ion batteries based on an equivalent-hydraulic model: An iron phosphate application. 2019 , 21, 259-271	21
137	Optimal Design of Experiments for a Lithium-Ion Cell: Parameters Identification of an Isothermal Single Particle Model with Electrolyte Dynamics. 2019 , 58, 1286-1299	29
136	A physics-based distributed-parameter equivalent circuit model for lithium-ion batteries. 2019 , 299, 451-469	49
135	Evaluation of convective heat transfer coefficient and specific heat capacity of a lithium-ion battery using infrared camera and lumped capacitance method. 2019 , 412, 552-558	33
134	Gaussian Process Regression for In Situ Capacity Estimation of Lithium-Ion Batteries. 2019 , 15, 127-138	122
133	Analysis and Control of Charge and Temperature Imbalance Within a Lithium-Ion Battery Pack. 2019 , 27, 1622-1635	14
132	Remaining Useful Life Prediction of Lithium-Ion Battery Based on Gauss⊞ermite Particle Filter. 2019 , 27, 1788-1795	54
131	. 2020 , 28, 505-520	7

130	Fast Adaptive Observers for Battery Management Systems. 2020 , 28, 776-789	9
129	A Feedback Interpretation of the DoyleBullerNewman Lithium-Ion Battery Model. 2020 , 28, 1284-1295	6
128	Battery Adaptive Observer for a Single-Particle Model With Intercalation-Induced Stress. 2020 , 28, 1363-1377	12
127	. 2020 , 67, 4013-4023	43
126	Properly Lumped Lithium-ion Battery Models: A Tanks-in-Series Approach. 2020 , 167, 013534	6
125	Comparative study on substitute triggering approaches for internal short circuit in lithium-ion batteries. 2020 , 259, 114143	31
124	Electrochemical model-based state estimation for lithium-ion batteries with adaptive unscented Kalman filter. 2020 , 476, 228534	50
123	A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems. 2020 , 131, 110015	199
122	Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer. 2020 , 131, 109994	44
121	Interval Observer for SOC Estimation in Parallel-Connected Lithium-ion Batteries*. 2020,	3
120	Balancing-Aware Charging Strategy for Series-Connected Lithium-Ion Cells: A Nonlinear Model Predictive Control Approach. 2020 , 28, 1862-1877	8
119	Capacity Loss Reduction using Smart-Battery Management System for Li-ion Battery Energy Storage Systems. 2020 ,	Ο
118	State of Charge Estimation of Parallel Connected Battery Cells via Descriptor System Theory. 2020 ,	5
117	An Effective Method for Estimating State of Charge of Lithium-Ion Batteries Based on an Electrochemical Model and Nernst Equation. 2020 , 8, 211738-211749	2
116	Estimating the State-of-Charge of Lithium-Ion Battery Using an H-Infinity Observer Based on Electrochemical Impedance Model. 2020 , 8, 26872-26884	23
115	Parameter sensitivity analysis of electrochemical model-based battery management systems for lithium-ion batteries. 2020 , 269, 115104	48
114	MPC strategies based on the equivalent hydraulic model for the fast charge of commercial Li-ion batteries. 2020 , 141, 107010	5
113	Hard limitations of polynomial approximations for reduced-order models of lithium-ion cells. 2020 , 50, 343-354	3

112	Online State of Charge Estimation of Lithium-Ion Cells Using Particle Filter-Based Hybrid Filtering Approach. 2020 , 2020, 1-10	12
111	Parameter identification of electrolyte decomposition state in lithium-ion batteries based on a reduced pseudo two-dimensional model with Pad[approximation. 2020 , 460, 228093	12
110	Lithium-ion battery SOC/SOH adaptive estimation via simplified single particle model. 2020 , 44, 12444-12459	11
109	Joint estimation of battery state-of-charge and state-of-health based on a simplified pseudo-two-dimensional model. 2020 , 344, 136098	31
108	Model-Based Estimation of Lithium Concentrations and Temperature in Batteries Using Soft-Constrained Dual Unscented Kalman Filtering. 2021 , 29, 926-933	11
107	Constrained Ensemble Kalman Filter for Distributed Electrochemical State Estimation of Lithium-Ion Batteries. 2021 , 17, 240-250	34
106	Nonlinear Double-Capacitor Model for Rechargeable Batteries: Modeling, Identification, and Validation. 2021 , 29, 370-384	9
105	Low-Complexity Fast Charging Strategies Based on Explicit Reference Governors for Li-Ion Battery Cells. 2021 , 29, 1597-1608	1
104	Efficient Control-Oriented Coupled Electrochemical Thermal Modeling of Li-Ion Cells. 2021, 68, 7024-7033	3
103	Evaluation and observability analysis of an improved reduced-order electrochemical model for lithium-ion battery. 2021 , 368, 137604	19
102	Extended state observer assisted Coulomb counting method for battery state of charge estimation. 2021 , 45, 3157-3169	2
101	Electrode-Level State Estimation in Lithium-Ion Batteries via Kalman Decomposition. 2021 , 5, 1657-1662	6
100	Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends. 2021 , 138, 110480	57
99	Bending Detection of Li-Ion Pouch Cells Using Impedance Spectra. 2021 , 1,	2
98	Electrochemical Model-Based Fast Charging: Physical Constraint-Triggered PI Control. 2021 , 1-1	8
97	A tracking problem for the state of charge in a electrochemical Li-ion battery model. 2021 ,	0
96	Estimation of Potentials in Lithium-Ion Batteries Using Machine Learning Models. 2021, 1-16	0
95	Thermal-Enhanced Adaptive Interval Estimation in Battery Packs With Heterogeneous Cells. 2021 , 1-14	O

94	Modeling ionic intercalation and solid-state diffusion using typical descriptors of batteries. 2021 , 51, 703-713	1
93	A Modified Electrochemical Model to Account for Mechanical Effects Due to Lithium Intercalation and External Pressure. 2021 , 168, 020533	3
92	A Study of Model-Based Protective Fast-Charging and Associated Degradation in Commercial Smartphone Cells: Insights on Cathode Degradation as a Result of Lithium Depositions on the Anode. 2021 , 11, 2003019	3
91	Lithium-iron-phosphate battery electrochemical modelling under a wide range of ambient temperatures. 2021 , 882, 115041	4
90	Intelligent algorithms and control strategies for battery management system in electric vehicles: Progress, challenges and future outlook. 2021 , 292, 126044	44
89	Integrating Electrochemical Modeling with Machine Learning for Lithium-Ion Batteries. 2021,	1
88	Minimum lithium plating overpotential control based charging strategy for parallel battery module prevents side reactions. 2021 , 494, 229772	7
87	State Estimation for a Zero-Dimensional Electrochemical Model of Lithium-Sulfur Batteries. 2021 ,	O
86	Electrode-Level State Estimation in Lithium-ion Batteries via Kalman Decomposition. 2021,	
85	Estimation of Cyclable Lithium for Li-ion Battery State-of-Health Monitoring. 2021,	0
8 ₅	Estimation of Cyclable Lithium for Li-ion Battery State-of-Health Monitoring. 2021, Detection and Isolation of Small Faults in Lithium-Ion Batteries via the Asymptotic Local Approach. 2021,	Ο
	Detection and Isolation of Small Faults in Lithium-Ion Batteries via the Asymptotic Local Approach.	0
84	Detection and Isolation of Small Faults in Lithium-Ion Batteries via the Asymptotic Local Approach. 2021 , Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles. 2021 ,	
84	Detection and Isolation of Small Faults in Lithium-Ion Batteries via the Asymptotic Local Approach. 2021, Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles. 2021, 14, 3284 Innovative lumped-battery model for state of charge estimation of lithium-ion batteries under	19
84 83 82	Detection and Isolation of Small Faults in Lithium-Ion Batteries via the Asymptotic Local Approach. 2021, Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles. 2021, 14, 3284 Innovative lumped-battery model for state of charge estimation of lithium-ion batteries under various ambient temperatures. 2021, 226, 120301	19
84 83 82 81	Detection and Isolation of Small Faults in Lithium-Ion Batteries via the Asymptotic Local Approach. 2021, Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles. 2021, 14, 3284 Innovative lumped-battery model for state of charge estimation of lithium-ion batteries under various ambient temperatures. 2021, 226, 120301 Residue grouping order reduction method in solid-phase lithium-ion battery models. 2021, 51, 1635 A Comprehensive Physics-Based Equivalent-Circuit Model and State of Charge Estimation for	19 13
84 83 82 81 80	Detection and Isolation of Small Faults in Lithium-Ion Batteries via the Asymptotic Local Approach. 2021, Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles. 2021, 14, 3284 Innovative lumped-battery model for state of charge estimation of lithium-ion batteries under various ambient temperatures. 2021, 226, 120301 Residue grouping order reduction method in solid-phase lithium-ion battery models. 2021, 51, 1635 A Comprehensive Physics-Based Equivalent-Circuit Model and State of Charge Estimation for Lithium-Ion Batteries. 2021, 168, 090552	19 13 1

(2021-2021)

76	An improved single-particle model with electrolyte dynamics for high current applications of lithium-ion cells. 2021 , 389, 138623	6
75	A novel numerical implementation of electrochemical-thermal battery model for electrified powertrains with conserved spherical diffusion and high efficiency. 2021 , 178, 121614	О
74	Battery internal temperature estimation via a semilinear thermal PDE model. 2021 , 133, 109849	1
73	Robust state-of-charge estimation for lithium-ion batteries based on an improved gas-liquid dynamics model. 2022 , 238, 122008	5
72	A Composite Single Particle Lithium-Ion Battery Model Through System Identification. 2021 , 1-13	1
71	Model Order Reduction Techniques for Physics-Based Lithium-Ion Battery Management: A Survey. 2021 , 2-18	6
70	Adaptive Ensemble-Based Electrochemical-Thermal-Degradation State Estimation of Lithium-Ion Batteries. 2021 , 1-1	21
69	Lithium-Ion Batteries. 2020 , 199-219	1
68	Differential voltage analysis based state of charge estimation methods for lithium-ion batteries using extended Kalman filter and particle filter. 2018 , 158, 1028-1037	54
67	Nonlinear State and Parameter Estimation for Li-ion Batteries with Thermal Coupling. 2020 , 53, 12479-12484	1
67 66	Nonlinear State and Parameter Estimation for Li-ion Batteries with Thermal Coupling. 2020 , 53, 12479-12484 Bayesian Parameter Estimation Applied to the Li-ion Battery Single Particle Model with Electrolyte Dynamics. 2020 , 53, 12497-12504	3
	Bayesian Parameter Estimation Applied to the Li-ion Battery Single Particle Model with Electrolyte	
66	Bayesian Parameter Estimation Applied to the Li-ion Battery Single Particle Model with Electrolyte Dynamics. 2020 , 53, 12497-12504 Optimal charging of an electric vehicle battery pack: A real-time sensitivity-based model predictive	3
66	Bayesian Parameter Estimation Applied to the Li-ion Battery Single Particle Model with Electrolyte Dynamics. 2020, 53, 12497-12504 Optimal charging of an electric vehicle battery pack: A real-time sensitivity-based model predictive control approach. 2020, 461, 228133 Attractive Ellipsoid Sliding Mode Observer Design for State of Charge Estimation of Lithium-Ion	3
66 65 64	Bayesian Parameter Estimation Applied to the Li-ion Battery Single Particle Model with Electrolyte Dynamics. 2020, 53, 12497-12504 Optimal charging of an electric vehicle battery pack: A real-time sensitivity-based model predictive control approach. 2020, 461, 228133 Attractive Ellipsoid Sliding Mode Observer Design for State of Charge Estimation of Lithium-Ion Cells. 2020, 69, 14701-14712 State Estimation for Lithium-Ion Batteries With Phase Transition Materials Via Boundary Observers.	3 18 6
66 65 64 63	Bayesian Parameter Estimation Applied to the Li-ion Battery Single Particle Model with Electrolyte Dynamics. 2020, 53, 12497-12504 Optimal charging of an electric vehicle battery pack: A real-time sensitivity-based model predictive control approach. 2020, 461, 228133 Attractive Ellipsoid Sliding Mode Observer Design for State of Charge Estimation of Lithium-Ion Cells. 2020, 69, 14701-14712 State Estimation for Lithium-Ion Batteries With Phase Transition Materials Via Boundary Observers. 2021, 143, Mapping of Lithium-Ion Battery Electrolyte Transport Properties and Limiting Currents with In Situ	3 18 6
66 65 64 63	Bayesian Parameter Estimation Applied to the Li-ion Battery Single Particle Model with Electrolyte Dynamics. 2020, 53, 12497-12504 Optimal charging of an electric vehicle battery pack: A real-time sensitivity-based model predictive control approach. 2020, 461, 228133 Attractive Ellipsoid Sliding Mode Observer Design for State of Charge Estimation of Lithium-Ion Cells. 2020, 69, 14701-14712 State Estimation for Lithium-Ion Batteries With Phase Transition Materials Via Boundary Observers. 2021, 143, Mapping of Lithium-Ion Battery Electrolyte Transport Properties and Limiting Currents with In Situ MRI. 2020, 167, 140518 An Electro-chemo-thermo-mechanical Coupled Three-dimensional Computational Framework for	3 18 6 4 14

58	Low complexity state-of-charge estimation for lithium-ion battery pack considering cell inconsistency. 2021 , 515, 230599	1
57	References. 231-234	
56	Lithium-Ion Battery Degradation Related Parameter Estimation Using Electrochemistry-Based Dual Models. 2015 , 565-579	
55	Integrated Battery Management System. 2015 , 173-193	4
54	A Study of Recursive Techniques for Robust Identification of Time-Varying Electrical Equivalent Circuit Models of Li-Ion Batteries. 2017 , 8, 52-74	
53	Kalman filter Observer for SoC prediction of Lithium cells. 2017 , 2, 180-188	
52	. 2018,	0
51	SOC and SOH Estimation for a Lithium-Ion Battery Using a Novel Adaptive Observer Based Approach. 2020 ,	
50	Accurate and reliable state of charge estimation of lithium ion batteries using time-delayed recurrent neural networks through the identification of overexcited neurons. 2022 , 305, 117962	4
49	Unlocking electrochemical model-based online power prediction for lithium-ion batteries via Gaussian process regression. 2022 , 306, 118114	2
48	Structural Identifiability of a Pseudo-2D Li-ion Battery Electrochemical Model. 2020 , 53, 12452-12458	1
47	A comparison of low-complexity charging and balancing protocols with degradation awareness for a string of Li-ion cells. 2020 , 53, 11570-11576	
46	Global Sensitivity Methods for Design of Experiments in Lithium-ion Battery Context. 2020 , 53, 7248-7255	1
45	A Physically Inspired Equivalent Neural Network Circuit Model for SoC Estimation of Electrochemical Cells. 2021 , 14, 7386	1
44	Data-driven systematic parameter identification of an electrochemical model for lithium-ion batteries with artificial intelligence. 2021 , 44, 557-557	6
43	Review of fast charging strategies for lithium-ion battery systems and their applicability for battery electric vehicles. 2021 , 44, 103306	5
42	High-Dimensional State Estimation Using an Adaptive Ensemble Adjustment Kalman Filter for Lithium-Ion Batteries. 2021 ,	
41	Research on battery SOH estimation algorithm of energy storage frequency modulation system. 2021 , 8, 217-217	1

40	Linearized Versus Nonlinear Observability Analysis for Lithium-Ion Battery Dynamics: Why Respecting the Nonlinearities Is Key for Proper Observer Design. 2021 , 9, 163431-163440	3
39	Faster and Healthier Charging of Lithium-Ion Batteries via Constrained Feedback Control. 2021 , 1-12	Ο
38	Bayesian Estimation of Model Parameters of Equivalent Circuit Model for Detecting Degradation Parts of Lithium-Ion Battery. 2021 , 9, 159699-159713	
37	Simplification of full homogenized macro-scale model for lithium-ion batteries. 2022 , 46, 103801	1
36	An accurate and computationally efficient method for battery capacity fade modeling. 2022, 432, 134342	0
35	Optimal Charging Control. 2022 , 227-252	
34	A Deep Reinforcement Learning Framework for Fast Charging of Li-ion Batteries. 2022, 1-1	1
33	Application of Neural Networks in a Sodium-Nickel Chloride Battery Management System. 1	
32	Energy storage integration. 2022 , 685-728	
31	Parametrization of physics-based battery models from inputButput data: A review of methodology and current research. 2022 , 521, 230859	2
30	Enhanced Lithium-ion battery model considering critical surface charge behavior. 2022 , 314, 118915	2
29	Modular Multilevel Series Parallel Converter Prototype Design for Li-ion Battery Management Systems. 2021 ,	O
28	State estimation of the Stefan PDE: A tutorial on design and applications to polar ice and batteries. 2022 ,	
27	Mixed-Integer Linear Programming Model to Assess Lithium-Ion Battery Degradation Cost. 2022 , 15, 3060	1
26	Robust Dissipative-based PI Observer Design for the State of Charge estimation of a Lithium-Ion Battery. 2022 , 4, 41-56	
25	Lexicographic model predictive control strategy in ageing-aware optimal charging procedure for lithium-ion batteries. 2022 , 163, 107847	O
24	An Efficient Electrical Network Model for Computing Electrochemical State Distributions in a Spirally Wound Lithium-Ion Cell. 2022 , 169, 050541	1
23	A Descriptor Modelling Approach for the Observer Design of Interconnected Li-ion Batteries Using Limited Measurements. 2022 , 779-798	

On Solvability of Dissipative Partial Differential-Algebraic Equations. **2022**, 6, 3188-3193

21	A Neural Network-Based Approximation of Model Predictive Control for a Lithium-Ion Battery with Electro-Thermal Dynamics. 2022 ,	
20	STUDY AND MATHEMATICAL MODELING OF A LITHIUM-ION BATTERY. 2022 , 22, 30-36	
19	Fast Charging Control of Lithium-Ion Batteries: Effects of Input, Model, and Parameter Uncertainties. 2022 ,	
18	Stochastic model predictive control for optimal charging of electric vehicles battery packs. 2022 , 55, 105332	О
17	Modeling of Li-ion batteries for real-time analysis and control: A data-driven approach*. 2022,	O
16	Electrochemical Models: Methods and Applications for Safer Lithium-Ion Battery Operation.	0
15	A Descriptor System Approach for the Nonlinear State Estimation of Li-Ion Battery Series/Parallel Arrangements. 2022 , 1-16	О
14	Lithium-ion battery design optimization based on a dimensionless reduced-order electrochemical model. 2022 , 125966	О
13	Integrating physics-based modeling with machine learning for lithium-ion batteries. 2023 , 329, 120289	O
12	Deep Learning-Based Predictive Control for the Optimal Charging of a Lithium-Ion Battery with Electrochemical Dynamics. 2022 ,	O
11	Lithium-lon Battery Models. 2023 , 25-33	O
10	Identifying household EV models via weighted power recurrence graphs. 2023, 217, 109121	О
9	A deep learning-based predictive controller for the optimal charging of a lithium-ion cell with non-measurable states. 2023 , 173, 108222	O
8	BattX: An equivalent circuit model for lithium-ion batteries over broad current ranges. 2023 , 339, 120905	О
7	Diffusion-aware voltage source: An equivalent circuit network to resolve lithium concentration gradients in active particles. 2023 , 339, 121004	O
6	On the Error of Li-ion Battery Parameter Estimation Subject to System Uncertainties. 2023 , 170, 030510	О
5	Nelder-Mead Simplex Algorithm for Age-dependent Parameter Estimation of a Lithium-ion Electrochemical Battery Model. 2022 ,	O

CITATION REPORT

4	Lithium-Ion Battery State-of-Charge Estimation Using Electrochemical Model with Sensitive Parameters Adjustment. 2023 , 9, 180	O
3	Degradation-Conscious Multiobjective Optimal Control of Reconfigurable Li-Ion Battery Energy Storage Systems. 2023 , 9, 217	O
2	Real-World Aging Prediction of a Lithium-Ion Battery Using a Simulation-Driven Approach.	О
1	Study on the Influence of Air Inlet and Outlet on the Heat Dissipation Performance of Lithium Battery. 2023 , 14, 113	0